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Abstract
We give a randomized polynomial time algorithm for polynomial identity testing for the class of
n-variate poynomials of degree bounded by d over a field F, in the blackbox setting.

Our algorithm works for every field F with |F| ≥ d + 1, and uses only d logn + log(1/ε) +
O(d log logn) random bits to achieve a success probability 1− ε for some ε > 0. In the low degree
regime that is d� n, it hits the information theoretic lower bound and differs from it only in the
lower order terms. Previous best known algorithms achieve the number of random bits (Guruswami-
Xing, CCC’14 and Bshouty, ITCS’14) that are constant factor away from our bound. Like Bshouty,
we use Sidon sets for our algorithm. However, we use a new construction of Sidon sets to achieve
the improved bound.

We also collect two simple constructions of hitting sets with information theoretically optimal
size against the class of n-variate, degree d polynomials. Our contribution is that we give new, very
simple proofs for both the constructions.
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1 Introduction

We investigate algorithms for the problem of Polynomial Identity testing (PIT). Given a
polynomial in some implicit representation, it asks whether the polynomial is identically
zero or not. It is a fundamental problem in algorithms and complexity theory. It has
found applications in algorithm design, for example in algorithms for perfect matching
in graphs [17, 36, 39], for primality testing [2, 3, 4], for equivalence testing of read once
branching programs [13], and for multi-set equality testing [14], and also in complexity
theory, for example, in establishing some major results related to interactive proofs and
probabilistically-checkable proofs [38, 9, 8, 7, 45]. In fact, it has also been discovered that an
algorithm for polynomial identity testing is intimately connected with complexity theoretic
lower bounds [31, 1].
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8:2 Polynomial Identity Testing for Low Degree Polynomials with Optimal Randomness

In order to formalize the algorithmic problem of polynomial identity testing, it is important
to specify the representation in which the polynomial is given. One possibility is that the
polynomial is given as a blackbox, which means that the algorithm is restricted to using
the given representation of the given polynomial only as an oracle. That is, the algorithm
is only allowed to query the values of the polynomial at points of its choice. Apart from
that, the algorithm only knows that the given polynomial comes from some particular class
of polynomials. The other possibility is that the algorithm is also allowed to look into the
representation. In this case, if the polynomial is given as a list of coefficients, the problem
becomes trivial. The problem remains interesting in the case when the polynomial is given
in some succinct representation, for example, either as a determinant of a given symbolic
matrix, as an algebraic branching program, or more generally, as some arithmetic circuit.

It is known that randomness is necessary for a polynomial time blackbox PIT algorithm
(see for example [35]). The challenge thus in this case is to find polynomial time algorithms that
use optimal amount of randomness. Randomness is not known to be essential in the setting
when the polynomial is given as an arithmetic circuit. In fact, it is popularly believed that
there do exist polynomial time algorithms for this version of PIT which do not use randomness.
More generally, it is believed that in the regime of efficient computation, randomization is
not essential, that is, the complexity classes P and BPP are equal (see [30]). In this case, the
challenge is to come up with a deterministic algorithm. A lot of progress has happened over the
years towards both the challenges [18, 35, 32, 12, 10, 28, 27, 24, 23, 22, 6, 11, 2, 33, 15, 37, 29],
however the problems are still far from the complete solution. For a history on the progress
on polynomial identity testing, we refer the readers to [47, 42, 43].

In this work, we are interested in blackbox polynomial identity testing. We will focus
our attention to the case when the underlying field is a finite field. More precisely, we are
interested in the following computational problem.

I Problem 1. Let (Fq, n, d) denote the class of multivariate polynomials over Fq in n variables
with degree bounded by d 1 with q ≥ d+ 1. Given a polynomial p ∈ (Fq, n, d) as a blackbox
and a parameter ε > 0, decide whether p is an identically zero polynomial in randomized
poly(n, d) time with success probability 1− ε.

We are interested in algorithms for Problem 1 which minimize the number of random bits
needed to solve it. In the next subsection we discuss some previous works on the problem
that are relevant to this article. While mentioning these works, we will assume the error
bound ε to be some inverse polynomial in (nd), and we will focus only on algorithms that
run in poly(n, d) time under this assumption.

1.1 Previous works on Problem 1
A lot of randomized algorithms are known for PIT in the blackbox setting. The first one is
the algorithm due to Schwartz-Zippel-DeMillo-Lipton 2 [44, 49, 21]. It uses

∑n
i=1 log(di +

1) + n logn + 1 random bits. Then came the algorithm by Lewin and Vadhan [35] which
used

∑n
i=1dlog die random bits, where di refers to the degree of the given polynomial with

respect to the variable xi. Using the Kronecker substitution, Agrawal and Biswas [2]
gave a test with d

∑n
i=1 log(di + 1)e random bits, while Bläser-Hardt-Steurer [12] extended

their Kronecker substitution based test to work for asymptotically smaller fields by using∑n
i=1 log(di + 1) + Õ(

√∑n
i=1 log(di + 1)) random bits.

1 in this paper, unless stated otherwise, degree always refers to the total degree
2 In their paper [21], DeMillo-Lipton work with the total degree. However, implicitly, the analysis of their

algorithm only assumes the individual degrees to be bounded by d.
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These works achieve optimal number of random bits in the regime where individual
degrees of x1, . . . , xn are bounded by d1, . . . , dn respectively. In that regime, a simple
dimension argument shows a lower bound of log(

∏n
i=1(di + 1))− log T (n, d1, . . . , dn), where

T (n, d1, . . . , dn) denotes the number of queries made to the blackbox [35, Theorem 7.1]. Thus,
when T (n, d1, . . . , dn) is poly(n) bounded, we get a (1− o(1))

∑n
i=1 log(di + 1) lower bound

on the number of random bits needed. However, when we are in the setting as given in
Problem 1, that is, when only a bound on the total degree is given, the number of random bits
used by these methods are asymptotically similar to that of Schwartz-Zippel-DeMillo-Lipton
i.e. Ω(n log d), which is far from optimal in the regime where d� n. In this regime, again
using a simple dimension argument (see [35, Theorem 7.1] and Lemma 9), we have the
following lower bound:

I Fact 1. Any blackbox identity testing algorithm against (Fq, n, d), q ≥ d + 1 which
makes T (n, d) queries to the blackbox and succeeds with probability 1 − ε uses at least
log(

(
n+d
d

)
) + log(1/ε)− log T (n, d) random bits.

Applying Stirling’s approximation on
(
n+d
d

)
in the above when d = o(n) gives log(

(
n+d
d

)
) =

(1+o(1))d log(n+d
d ) = d logn+o(d logn) [20]. Plugging this in above, with T (n, d) = (nd)O(1),

we get the lower bound of d logn+ log(1/ε) + o(d logn).3
Moving on to the previous works when d� n, several algorithms are known that actually

do achieve the O(d logn) random bits. For instance, Klivans-Spielman [32], Bogdanov [15],
Shpilka-Volkovich generator [46], Lu [37], Guruswami-Xing [29] and finally Bshouty [16]
(also see Cohen-Ta-Shma [19]). However, except for [29] and [16], all of them require the
field size to be superlinear in d/ε as a pre-condition for the algorithm. Moreover, in all of
these algorithms including the ones in Bshouty [16] and Guruswami-Xing [29], the number
of random bits used is ≥ 2d logn.

1.2 Our contributions and methods
From the above, we can see that in the low-degree regime, the number of random bits
needed by all the previously discovered algorithms, is away from the information theoretically
optimal bound at least by a constant multiplicative factor. We take up the challenge and
solve it. We give an algorithm that matches the information theoretic lower bound differing
from it only in the lower order terms.

More precisely, we show the following:

I Theorem 1. Given a polynomial f ∈ (Fq, n, d) with q ≥ d + 1 as a blackbox, and a
parameter ε > 0, there exists a randomized poly(n, d) time algorithm which uses d logn +
log(1/ε) +O(d log logn) random bits and outputs whether f is an identically zero polynomial
with success probability 1− ε.

Starting point of our algorithm is an algorithm given in Bshouty [16]. He used the so-called
Sidon sets (discussed in Section 2.1) for polynomial identity testing by using them to reduce
the problem to the univariate setting while preserving the nonzeroness. He then used the
obvious randomized algorithm for the obtained univariate polynomial. This, however, requires
the field-size to be large. He gets around this problem by inventing the concepts of testers
(discussed in Section 2.2). Informally, testers take a point α from a field F and map it to a
bunch of points in a smaller subfield of F, while maintaining the property that if f(α) 6= 0,
then f will evaluate to a nonzero value on at least one of the points given by the tester.

3 this is what we refer to as the information theoretic lower bound in this article
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He used two constructions for Sidon sets for this purpose. One of them is not known to
be poly time constructible, while the other, which is poly time constructible is factor 2 away
from the information theoretic lower bound. To overcome this, we use a new, elementary
construction of Sidon sets that is mentioned in Timothy Gowers’ weblog [26] (presented in
Section 2.1).

Our second contribution is aesthetic in nature. We first remind the readers that a
hitting set against a class P ⊆ F[x1, . . . , xn] is a set of point H ⊆ Fn such that no nonzero
polynomial in P evaluates to zero on all the points in H. We present two simple constructions
of information theoretically optimal hitting sets (i.e. of size

(
n+d
d

)
) against (F, n, d) with

|F| ≥ d+ 1 that are, at least implicitly, present in the literature. We extract them out and
give very simple and neat proofs for both. The first construction (presented in Section 3.1)
is essentially the set of exponent vectors of all the monomials spanning (F, n, d). This works
when {0, 1, . . . , d} ⊆ F. The second construction (presented in Section 3.2) says that taking
all the intersection points of n-sized subsets of a set of n+ d hyperplanes in general position
also forms a hitting set against (F, n, d) of optimal size.

In the rest of the paper, (F, n, d) (resp. (Fq, n, d)) denotes the class of n-variate polynomials
with degree bounded by d over F (resp. Fq). For a natural number d ∈ N, [d] denotes the
set {1, . . . , d}.

2 Polynomial Identity Testing with optimal randomness

In this section, we present our main result. We first describe the main component of the
proof, that is, the construction of Sidon sets in Section 2.1, and then describe the way to
reduce the field size in Section 2.2. We finally give our algorithm and the proof for our main
theorem in Section 2.3.

2.1 Sidon Sets
A set S := {s1, s2, . . . , sn} ⊂ Z≥0 is said to be a Sidon Bd set if every element in the set
dS := {si1 + si2 + . . . + sid | ∀k ∈ [d], sik ∈ S} are distinct up to rearrangements of the
summands. We also have a stronger notion: we call S to be Sidon B≤d set if the sums
{si1 + si2 + . . . + sir , r ≤ d | ∀k ∈ [r], sik ∈ S} are distinct up to rearrangements of the
summands. For our purposes, the stronger notion of Sidon B≤d set when d � n will be
useful. We are interested in constructions that minimize the size of the maximum element of
S and are poly(n, d) time constructible.

Sidon sets and its variants have a long history in mathematics and several explicit
constructions are known. We refer the readers to a survey by Kevin O’Bryant [40].

In complexity theory, explicit Sidon set constructions have also been used, for example,
by Bshouty for constructions of hitting sets for black box polynomial identity testing [16],
and by Kumar and Volk for matrix factorization lower bounds [34].

Bshouty uses two constructions for polynomial identity testing. The first construction
uses discrete log and is not known to be poly time constructible [16, Lemma 59]. The second
construction is poly time constructible, but the value of the maximum element is (2nd)2d [16,
Lemma 60]. This 2d in the exponent makes this construction suboptimal for our purposes
because the resulting randomized PIT algorithm will have ≥ 2d logn random bits, which is
factor 2 away from the information theoretic bound in low degree regime which is the regime
of interest in this paper.

This motivated us to look for constructions that are both polynomial time constructible
and also give rises to PIT algorithm with optimal randomness. That is when we stumbled
across the weblog of Timothy Gowers about the so-called dense Sidon sets [26] where he
describes the idea of a construction by Imre Z. Ruzsa [41] that scales up for our purposes too.
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In its core, the construction is based on the fundamental theorem of arithmetic. Informally,
when we take a set of primes and consider two different multi-subsets of them. Then the
product of elements will be different for the two multi-subsets. Now taking logarithm of
products convert them to sums. These simple facts along with the mean value theorem
constitute the ingredients of the proof of the construction. We give the construction now.

I Theorem 2. For every n, d, there exists a poly(n, d) time constructible Sidon B≤d set
Sn,d := {b1, . . . , bn} ⊂ N with b1 < b2 < · · · < bn, with bn ≤ d(d+1)·(2n logn)d·log(2n logn)e.

Proof. We take the first n primes p1, . . . , pn. By prime number theorem, we know that
pn < n(logn + log logn) < 2n logn. Let I, J ⊆ {1, . . . , n} be multisets, where |I|, |J | ≤ d,
I 6= J . By the fundamental theorem of arithmetic, we have

∏
i∈I pi 6=

∏
j∈J pj . Without

loss of generality, we can assume that
∏
i∈I pi <

∏
j∈J pj , that is,

∏
i∈I pi ≤

∏
j∈J pj + 1.

Now applying the mean value theorem on the function f(x) = log x in the interval [a, b] with
a :=

∏
i∈I pi and b :=

∏
j∈J pj , we get that

∑
j∈J

`j −
∑
i∈I

`i = 1
c

∏
j∈J

pj −
∏
i∈I

pi

, for some c ∈ (a, b), where `k := log pk.

The numerator in the RHS of the equation is at least 1, while the denominator is upper
bounded by b =

∏
j∈J pj . Thus, we have∑

j∈J
`j −

∑
i∈I

`i ≥
1∏

j∈J pj
. (1)

Thus, if we choose the set to be set of logarithm of the first n primes, we do get, that for
distinct multi-subsets of size at most d, the sum of elements are also distinct. However,
clearly, the elements and their differences will not be all integers. But the above calculation
is suggestive of what the set should be. Note that in Equation (1), the denominator of the
RHS, that is,

∏
j∈J pj is upper bounded by (2n logn)d, Thus,∑

j∈J
(d+ 1) · `j · (2n logn)d −

∑
i∈I

(d+ 1) · `i · (2n logn)d ≥ d+ 1

Now, if we consider the set Sn,d of size n with elements being positive integers bk :=
d(d+ 1) · `k · (2n logn)de of size n, we have that

∑
j∈J bj −

∑
i∈I bi > 0. Thus, Sn,d is a Sidon

B≤d set.
It only remains to argue that the construction can be done in poly(n, d) time. We need

to show that all the bk = d(d+ 1) · log pk · (2n logn)de are poly(n, d) time constructible, It
is known that the first n primes are easily constructible, for example, by using Sieve of
Eratosthenes which takes O(n log logn) time. The other functions like log and powering
function are also known to be efficiently computable to the desired precision. J

We now present the concept useful for transferring a polynomial identity testing algorithm
over a large field to an algorithm for a small subfield of it.

2.2 Testers
The notion of testers is also crucial for our algorithm. They were introduced by Bshouty in
[16]. He also used it for several applications including in the setting of blackbox PIT. We
will be using it in the same fashion as he did i.e. to reduce the field size of the blackbox PIT
set that we would be using for the algorithm. We present the definition of testers restricted
to the setting that we need. He defined it for a more general setting.

APPROX/RANDOM 2020



8:6 Polynomial Identity Testing for Low Degree Polynomials with Optimal Randomness

I Definition 3. Let Fq be a finite field with q elements and let Fqt1 and Fqt2 be two field
extensions of Fq viewed as Fq-algebras with t1 ≥ t2, and let P ⊆ Fq[x1, . . . , xn] be a class
of multivariate polynomials. Let L = {`1, . . . , `ν} be a set of maps Fnqt1 → Fnqt2 . For
f ∈ P, we denote by fL the map Fnqt1 → Fνqt2 defined as: for a ∈ Fnqt1 , (fL)(a) =
(f(`1(a)), . . . , f(`ν(a))). We say that L is an (P,Fqt1 ,Fqt2 )-tester if for every a ∈ Fnqt1 and
f ∈ P we have

(fL)(a) = 0 =⇒ f(a) = 0.

The size of the tester L is defined as |L| = ν, the number of maps constituting L.
So, essentially, a tester L for the class of polynomials P is a set of maps from a field to

its subfield such that for every point on which a polynomial f ∈ P evaluates to a nonzero
value, the tester gives a set of points in the subfield such that the polynomial evaluates to a
nonzero value on at least one of the points given by the tester.

Hence a tester is very useful for reducing a blacbox PIT set over a bigger field to a
blackbox PIT set over a smaller field while incurring a blowup by the size of the tester.
Bshouty [16] also gave many constructions of testers against several classes of multivariate
polynomials which helped him achieve constructions of hitting sets which are optimal with
respect to the field size and the size of hitting sets.

The tester that is relevant to our purposes which we will be using as a blackbox has the
following property. For a proof we refer the readers to [16].

I Lemma 4 ([16], Theorem 40). Let P := (Fq, n, d) ⊆ Fq[x1, . . . , xn] denote the class of
n-variate, degree d polynomials over Fq, with q ≥ d+ 1. Then, for every n, d, t, there exists
a (P,Fqt ,Fq)-tester L of size O(d5t) that can be constructed in poly(n, d, t) time.

The above lemma clearly suggests a strategy for construction of blackbox PIT sets: first
design a blackbox PIT set over a large extension field and then reduce the field size to d+ 1
using the tester promised by the above lemma.

2.3 The algorithm: Proof of Theorem 1
In this section, we present our randomized algorithm for polynomial identity testing and
prove Theorem 1.

Before we prove the theorem, we state a simple lemma about univariate polynomials that
we will need in the proof.

I Lemma 5. Let f ∈ Fq[x] be a nonzero univariate polynomial whose degree is bounded by
d. Let Fqt be an extension field of Fq such that |Fqt | ≥ d/ε and a is sampled uniformly at
random from Fqt , then f(a) 6= 0 with probability 1− ε.

Lemma 5 follows from the folklore theorem that a univariate polynomial of degree d over
a field Fq has at most d roots in any field extension Fqt of Fq.

We are now ready to prove Theorem 1.

I Theorem 6 (Theorem 1 restated). Given a polynomial f ∈ (Fq, n, d) with q ≥ d + 1 as
a blackbox or as a poly(n, d)-sized arithmetic circuit, and ε > 0, there exists a randomized
poly(n, d) time algorithm which uses d logn + log(1/ε) + O(d log logn) random bits and
succeeds with probability 1− ε.

Proof. Suppose we are given a polynomial f ∈ (Fq, n, d) as a blackbox. To test whether the
given polynomial is an identically zero polynomial or not, our algorithm works as follows:
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Step 1. Construct Sidon set: Given n, d, we construct a Sidon B≤d set Sn,d = {b1, . . . , bn}
using the construction in Theorem 2.

Step 2. Pick a random point from large field: We pick a random point α from the
field Fqt with t = dlogq((bnd)/ε)e.

Step 3. Construct the tester: Next we construct a (P,Fqt ,Fq)-tester, L = {`1, . . . , `ν},
for P = (Fq, n, d) and t = dlogq((bnd)/ε)e using the construction promised by Lemma 4.

Step 4. Reduce the field size by testers: We then apply the tester L on (αb1 , . . . , αbn) ∈
Fnqt to get the set of points `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq .

Step 5. Evaluate: We evaluate f on `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq . If f
evaluates to zero on `k(αb1 , . . . , αbn), for every k ∈ 1, . . . , ν, we output that f is an
identically zero polynomial. Otherwise we output that f is not a zero polynomial.

We now show the correctness of the above algorithm. The Sidon B≤d set Sn,d =
{b1, . . . , bn}, b1 < b2 < · · · < bn and bn = d(d+ 1) · (2n logn)d · log(2n logn)e from Theorem 2
is used to reduce the problem to the univariate case. It is also poly(n, d) time constructible. By
the definition of Sidon B≤d set in Section 2.1, it follows that for distinct multi-subsets of Sn,d,
the sum of elements will also be distinct. Thus, the map (x1, x2, . . . , xn) 7→ (xb1 , xb2 , . . . , xbn)
maps the monomials of the degree at most d in the variables x1, . . . , xn to distinct univariate
monomials in x. In particular, every nonzero polynomial f ∈ (Fq, n, d) maps to a nonzero
polynomial g ∈ (Fq, 1, bnd). Thus, g is a polynomial of degree bounded by bnd.

Now, by Lemma 5, on a randomly chosen point α from the extension field Fqt with
|Fqt | ≥ (bnd)/ε, g will evaluate to a nonzero value with probability ≥ 1− ε. Hence, f will
evaluate to a non-zero value on (αb1 , . . . , αbn) with probability ≥ 1−ε. The number of random
bits needed is log((bnd)/ε) = log bn + log d+ log(1/ε) = d logn+O(d log logn) + log(1/ε) as
claimed.

Finally we use an ((Fq, n, d),Fqt ,Fq)-tester from Lemma 4 on (αb1 , . . . , αbn) ∈ Fnqt to
get the set of points `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq . By Lemma 4, the number
of points ν = O(d5t) = O(d5(log(bnd) + log(1/ε))) = O(d6(logn + log 1/ε)) and time to
construct the tester is poly(n, d, t) = poly(n, d, log 1/ε). By the definition of testers from
Definition 3, for a nonzero polynomial f ∈ (Fq, n, d), if f(αb1 , . . . , αbn) 6= 0, then at least one
of f(`1(αb1 , . . . , αbn)), . . . , f(`ν(αb1 , . . . , αbn)) also evaluates to a nonzero value. Thus, we
get the desired result. J

I Remark 7. When d = o(logn), we can get an improvement on the number of random
bits from d logn + d log logn+ lower order terms (as in Theorem 1) to d logn + d log d+
lower order terms. This can be achieved by adapting an idea due to Goldwasser-Grossman
[25, Lemma 8] that they used to construct weight assignments to get unique min-weight
perfect matching. Their idea suggests a map (x1, x2, . . . , xn) 7→ (xb1 , xb2 , . . . , xbn), where
bi = [i]p + (pd)[i2]p + (pd)2[i3]p + · · ·+ (pd)d[id+1]p, where [x]p denotes the number between
0 and p− 1 which is equal to x modulo p, and p is a prime number greater than n. This map
can replace the map due to Sidon Sets in the Step 1 from the above proof, while the rest
of the algorithm and the proof remains the same. As in the above proof of Theorem 1, the
number of random bits needed equals log bn + log d+ log( 1

ε ) which becomes d logn+ d log d+
lower order terms. For the correctness of this map, we refer the reader to the proof of Lemma
8 in [25].
I Remark 8. Our algorithm works for fields of zero characteristic as well. In fact, whenever
the field size is already larger than (bnd)/ε, we do not need Step 3 and Step 4, and we can
directly evaluate f on (αb1 , . . . , αbn) in Step 5. Thus, we have an algorithm for blackbox
polynomial identity testing which uses information theoretically optimal number of random
bits for all fields F with |F| ≥ d+ 1.
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3 Optimal Hitting sets

In this section, we describe a few optimal hitting sets, i.e. the ones that exactly matches
with the lower bound against the class of n-variate polynomials with total degree bounded
by d. The authors are excited about these proofs because of their simplicity and elegance.

We first begin by stating the straight-forward folklore lower bound.

I Lemma 9. For any hitting set H against the class n-variate polynomials with total degree
bounded by d over a field F, we have |H| ≥

(
n+d
d

)
.

This follows by the fact that the set of all n-variate polynomials with total degree bounded
by d over a field F forms a vector space of dimension

(
n+d
d

)
. This is true because the number

of monomials supported on n-variables with total degree bounded by d is
(
n+d
d

)
, and they

form the basis for the vector space as they are all F-linearly independent, and all polynomials
in the set can be represented as an F-linear combination of them. Thus, in the worst case,
one needs to query f on at least

(
n+d
d

)
points.

We now consider a very popular construction which is suboptimal for our purposes.

Construction 0 – Schwartz-Zippel-DeMillo-Lipton lemma: As a consequence of the Lemma
[44, 49, 21], for (F, n, d), one gets the hitting set H0 := Sn where S ⊆ F, with |S| = d+ 1,
which is the grid of size (d+ 1)n. We point out that this is optimal when we are considering
the set of n-variate polynomials with individual degrees of each variable bounded by d, by a
similar argument as in Lemma 9. However, this is not optimal for (F, n, d) where we bound
the total degree. Especially when d� n, the gap is huge.

Thus, it makes sense to investigate optimal hitting sets for (F, n, d). In what follows, we
present two such constructions for the hitting set. They were both, at least implicitly, already
present in the literature. We also believe that other constructions can be found without
much effort. However our predilection towards these constructions and our new proofs is
purely aesthetic.

3.1 Construction 1: The set of exponent vectors
The lower bound tells that any hitting set H should have size at least

(
n+d
d

)
. Now this(

n+d
d

)
comes from the number of monomials in n variables of degree at most d. Very

interestingly, when {0, 1, . . . , d} ⊆ F, these monomials also suggest a set of points of size(
n+d
d

)
that can be seen as a potential hitting set: simply collect all the exponent vectors

of all the monomials in a set, viewing them as points in Fn, that is, the suggested set is
H1 := {(x1, . . . , xn) ∈ {0, 1, . . . , d}n | x1 + x2 + · · · + xn ≤ d}. The above construction
obviously requires that Fn indeed contains H1 as a subset. Surprisingly to some, and
beautifully to the authors, this indeed works. This was shown by Bshouty [16, Lemma 77]
using Combinatorial Nullstellensatz [5].

In this work, we give a direct inductive proof which we found with Mrinal Kumar. It
bypasses the combinatorial nullstellensatz and flows along the lines of the proof of Schwartz-
Zippel-DeMillo-Lipton lemma. We are suprised that we did not find this proof somewhere in
the literature.

I Theorem 10. If {0, 1, . . . , d} ⊆ F, then the set H1 := {(x1, . . . , xn) ∈ {0, 1, . . . , d}n |
x1 + x2 + · · ·+ xn ≤ d}, is a hitting set for (F, n, d).
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Proof. Consider the integral grid G := {0, 1, . . . d}n with |G| = (d+ 1)n. Now the statement
of the theorem can be rephrased as: for every nonzero polynomial f ∈ (F, n, d), there exists
a point g ∈ G with its `1-norm ‖g‖1 ≤ d, such that f(g) 6= 0. We use this as our induction
hypothesis and prove it by induction on the number of variables n.

For n = 1, that is the univariate case, this holds true because every degree d polynomial has
at most d zeros. Suppose the hypothesis holds for n−1. For the inductive step, write a nonzero
f ∈ (F, n, d) as a univariate in xn as f =

∑d′

i=1 Pi(x1, . . . , xn−1)xin, where d′ is the maximum
degree of f in xn and Pi(x1, . . . , xn−1) are the coefficients coming from F[x1, . . . , xn−1]. Now
consider Pd′(x1, . . . , xn−1) which is the coefficient of the highest degree term in xn. If f
is a nonzero polynomial, then so is Pd′(x1, . . . , xn−1). Also, deg(Pd′) is bounded by d− d′.
By the induction hypothesis, there is a point s′ in the grid G′ := {0, 1, . . . , d− d′}n−1 with
‖s′‖1 ≤ d− d′ such that Pd′(s′) 6= 0. Now we fix x1, . . . , xn−1 to the values as given by s′.
Now Pd′ restricted to the assignment s′ is a univariate polynomial in xn of degree d′. Thus,
setting xn to a value in {0, 1, . . . d′} gives a point on which f evaluates to nonzero. The `1
norm of the point is at most (d− d′) + d′ = d. J

We now give another construction which we find beautiful.

3.2 Construction 2: Intersection of hyperplanes in general position
The construction is as follows: In the projective space Pn(F) over a field F, with |F| ≥ d+ 1,
take a collection C of n + d hyperplanes in general position i.e. every size n subsets of C
intersect in a point, whereas no size n+ 1 subset of C intersect. Now all intersection points
of n-sized subset of C gives the desired hitting set.

We now mention a standard explicit family of hyperplanes in general position.

I Example 11. Take hyperplanes H1, . . . ,Hn+d in the projective space Pn where Hi is given
by the equation t1ix1 + t2ix2 + · · ·+ tni xn + xn+1 = 0, where ti ∈ F. Then, H1, . . . ,Hn+d are
hyperplanes in general position.

Itaï Ben Yaacov [48] considers hyperplanes in general position and gives an algebraic
proof of a generalized Vandermonde Identity in higher dimension. What his identity implies
is that taking all intersection points of n-sized subsets of n+d hyperplanes in general position
gives a hitting set for (F, n, d).

In order to state his result, we need some notations. Let Mp×q(F) denote the set of
all p× q matrices over F. He defines the following three maps. It useful to think that the
(n+ 1)×m matrix Q is denoting the family of m hyperplanes, say Hm in Pn, i.e. the entries
of each column correspond to the coefficients of a hyperplane.
i) µ : M(n+1)×m(F)→M(n+1)×(m

n)(F) sends an (n+ 1)×m matrix Q to a matrix P whose
entries are all the minors of Q of order n. Note that a lexicographic ordering on the
chosen sequence of rows and columns of Q induces an ordering on the minors as well.
By Cramer’s rule from linear algebra, P is precisely the matrix of intersection points of
all n-sized subsets of Hm, where each column of Q has the coordinates of an intersection
point as its entries.

ii) δ : M(n+1)×m(F)→ F sends an (n+ 1)×m matrix Q to the product of all its minors of
order n+ 1.

iii) νr : M(n+1)×m(F) → M(n+r
n )×m(F) applies the Veronese map on each column i.e. for

each column, it applies all the n-variate degree r monomials on the entries of the column.
Assume an ordering (say, inverse lexicographical ordering) on the monomials.

We are now ready to quote the generalized Vandermonde identity in higher dimension.

APPROX/RANDOM 2020
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I Theorem 12 ([48], Theorem 1.4). Let R be a commutative ring. n ≤ m ∈ N, and let Q
be a (n + 1) ×m matrix over R. Then νm−nµQ is a square matrix of order

(
m
n

)
, and the

following Vandermonde identity of order m in dimension n holds:

det(νm−nµQ) = (δQ)n

Then the above theorem with m = n+ d, implies that if (δQ) 6= 0, which is the algebraic
condition for the n + d hyperplanes to be in general position, then det(νn+d−nµQ) 6= 0.
Now νm−nµQ is the matrix with Veronese map applied on the intersection points of n-sized
subsets of m hyperplanes. Normalizing the coordinates by the last coordinate gives us the
points in the affine setting with the Veronese maps essentially applying all the monomials
of degree at most d on the points. Thus, det(νdµQ) 6= 0 means that the set of intersection
points form a hitting set against (F, n, d).

We now present a direct, simple, geometric proof of the construction which we found
with Raimund Seidel.

I Theorem 13. Let H1, . . . ,Hn+d be hyperplanes in general position. If f ∈ (F, n, d) vanishes
on all the points obtained by intersecting all n-sized subsets of {H1, . . . ,Hn+d}, then f is an
identically zero polynomial.

Proof. We prove the above statement by induction on the number of variables n. The base
case n = 1 is the univariate case and the hyperplanes become d+ 1 points, and the statement
of the lemma reduces to f vanishing on d+ 1 points. Thus, the statement holds in this case
because a degree d univariate polynomial that vanishes on d+ 1 points is an identically zero
polynomial.

Suppose that the statement holds for the number of variables up to n − 1, and we
assume an f ∈ (F, n, d) that vanishes on all the intersection points of n-sized subsets of
{H1, . . . ,Hn+d}. The assumption, in particular, implies that f restricted to the hyperplane
H1 vanishes on all the intersection points of (n−1)-sized subsets of {H2, . . . ,Hn+d}. However,
note that f restricted to H1 reduces to an (n− 1)-variate case and hence we can apply the
induction hypothesis and conclude that f restricted to H1 is identically zero. Doing the
same for all the hyperplanes, we get that f restricted to all the hyperplanes H1, . . . ,Hn+d is
identically zero. It remains to conclude that f is indeed identically zero. For this, restrict
f to a generic line `. Note that H1, . . . ,Hn+d all intersect ` at distinct points. Thus, f
restricted to ` is a univariate which vanishes on n+ d points, hence f restricted to a generic
` is identically zero. Hence f is identically zero. J

Note that an explicit construction corresponding to Theorem 13 can be obtained using
the family given in Example 11.
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Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of APPROX/RAN-
DOM 2020 (LIPIcs, volume 176, https://www.dagstuhl.de/dagpub/978-3-95977-164-1,
published in August, 2020), in which the proof of Theorem 6 is corrected. The proof in the
previous version did not work, because the tester map constructed in Step 3, was incorrectly
applied to α ∈ Fqt , to get the points `1(α), . . . , `ν(α) ∈ Fq, on which f(xb1 , xb2 , . . . , xbn) was
finally evaluated. In this revised version, the tester map is applied on (αb1 , . . . , αbn) ∈ Fnqt instead,
to get the points `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq , on which f(x1, . . . , xn) is finally
evaluated.
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