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Abstract
A family of error-correcting codes is list-decodable from error fraction p if, for every code in the
family, the number of codewords in any Hamming ball of fractional radius p is less than some integer
L that is independent of the code length. It is said to be list-recoverable for input list size ` if for
every sufficiently large subset of codewords (of size L or more), there is a coordinate where the
codewords take more than ` values. The parameter L is said to be the “list size” in either case.
The capacity, i.e., the largest possible rate for these notions as the list size L→∞, is known to be
1− hq(p) for list-decoding, and 1− logq ` for list-recovery, where q is the alphabet size of the code
family.

In this work, we study the list size of random linear codes for both list-decoding and list-recovery
as the rate approaches capacity. We show the following claims hold with high probability over the
choice of the code (below q is the alphabet size, and ε > 0 is the gap to capacity).

A random linear code of rate 1− logq(`)− ε requires list size L ≥ `Ω(1/ε) for list-recovery from
input list size `. This is surprisingly in contrast to completely random codes, where L = O(`/ε)
suffices w.h.p.
A random linear code of rate 1−hq(p)−ε requires list size L ≥ bhq(p)/ε+ 0.99c for list-decoding
from error fraction p, when ε is sufficiently small.
A random binary linear code of rate 1− h2(p)− ε is list-decodable from average error fraction p
with list size with L ≤ bh2(p)/εc+ 2. (The average error version measures the average Hamming
distance of the codewords from the center of the Hamming ball, instead of the maximum distance
as in list-decoding.)

The second and third results together precisely pin down the list sizes for binary random linear
codes for both list-decoding and average-radius list-decoding to three possible values.

Our lower bounds follow by exhibiting an explicit subset of codewords so that this subset – or
some symbol-wise permutation of it – lies in a random linear code with high probability. This uses a
recent characterization of (Mosheiff, Resch, Ron-Zewi, Silas, Wootters, 2019) of configurations of
codewords that are contained in random linear codes. Our upper bound follows from a refinement of
the techniques of (Guruswami, Håstad, Sudan, Zuckerman, 2002) and strengthens a previous result
of (Li, Wootters, 2018), which applied to list-decoding rather than average-radius list-decoding.
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1 Introduction

In coding theory, one is interested in the combinatorial properties of sets C ⊆ Fnq .1 Such
a set C is called a code of length n over the alphabet Fq, and the elements c ∈ C are called
codewords.

List-decoding, introduced by Elias and Wozencraft in the 1950’s [10, 44], is such a
combinatorial property. For p ∈ [0, 1] and integer L ≥ 1, we say that a code C ⊆ Fnq is
(p, L)-list-decodable if, for all z ∈ Fnq ,

| {c ∈ C : δ(c, z) ≤ p} | < L,

where δ(x, y) = 1
n |{i : xi 6= yi}| denotes relative Hamming distance. That is, C is list-

decodable if not too many codewords of C live in any small enough Hamming ball. In this
paper, we are interested in the trade-offs between p, L, and the rate of the code C. The rate
R of C is defined as R = logq |C|

n . The rate lies in the interval [0, 1], and larger is better.

Variations of list-decoding

In this work, we consider standard list-decoding along with two variations.
The first variation is a strengthening of list-decoding known as average-radius list-decoding.

A code C is (p, L)-average-radius list-decodable if for any set Λ ⊆ C of size L and z ∈ Fnq ,

1
L

∑
c∈Λ

δ(c, z) ≥ p.

1 Here and throughout the paper, Fq denotes the finite field with q elements. In this we work only consider
linear codes, so we always assume that the alphabet is a finite field.
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It is not hard to see that (p, L)-average-radius list-decodability implies (p, L)-list-decodability,
and this stronger formulation has led to stronger lower bounds than are achievable other-
wise [22]. In addition to stronger lower bounds, average-radius list-decoding – essentially
replacing a maximum with an average in the definition of list-decoding – is a natural concept,
and it has helped establish connections between list-decoding and compressed sensing [7].

The second variation, known as list-recovery, is a version where the “noise” is replaced by
uncertainty about each symbol of the received word z. Formally, we say that a code C is
(`, L)-list-recoverable if for any sets S1, . . . , Sn ⊆ Fq with |Si| ≤ ` for all i,

| {c ∈ C : ci ∈ Si ∀i} | < L.

List-recovery was originally used as a stepping-stone to list-decoding and unique-decoding
(e.g., [17, 18, 19, 20]) but it has since become a useful primitive in its own right, with
applications beyond coding theory [31, 38, 13, 28, 8].

Pinning down the output list size

We are motivated by the problem of pinning down the output list size L for (average-radius)
list-decoding and for list-recovery. For all three of these problems, given q and p (respectively,
q and `), there exists an optimal rate, denoted R∗. Namely, R∗ is the largest rate so that,
for any ε > 0, there are q-ary codes of rate R∗ − ε and arbitrarily large length, which are
(p, L)-(average-weight)-list-decodable (resp. (`, L)-list-recoverable), for some L(q, p, ε) (resp.
L(q, `, ε)). Importantly, L must not depend on the length of the code. The list-decoding
capacity theorem gives the dependence of R∗ on q and p (resp. q and `): R∗ = 1 − hq(p)
for both standard and average-radius list-decoding, [11, 45] and R∗ = 1 − logq(`) for list-
recovery (e.g., [42]).

We are interested in the trade-off between the list size L, the parameters p, q, ` of the
problem, and this gap ε; we refer to ε as the gap to capacity. Pinning down the list size
L is an important problem. For example, for many of the algorithmic applications within
coding theory, the list size represents a bottleneck on the running time of an algorithm that
must check each item in the list before pruning it down [20, 9, 26, 27, 21]. For applications
in pseudorandomness, for example to expanders or extractors, the list size corresponds to
the expansion or to the amount of entropy in the input, respectively, and it is of interest to
precisely pin down these quantities.

We make progress on pinning down the output list sizes for the case of random linear
codes. A random linear code is a uniformly random subspace of Fnq of certain dimension.
The list-decodability of random linear codes has been well studied for many reasons [45,
15, 7, 43, 40, 42, 34]. First, it is a natural mathematical question that studies the interplay
between two fundamental notions in Fnq : subspaces and Hamming balls. Second, there
are constructions of codes which use random linear codes (and their list-decodability) as a
building block [20, 24, 30, 29], and improvements in the parameters of random linear codes
will lead to improvements in these constructions as well. Third, random linear codes can
be seen as one way to partially derandomize completely random codes; this is especially
motivating in the binary (or fixed alphabet) case, where we do not know of any explicit
constructions of optimally list-decodable codes, linear or otherwise.

1.1 Contributions
Our main results are improved bounds on the list size of random linear codes. We defer the
formal theorem statements until after we have set up notation, but we informally summarize
our results here. Below, we consider codes of rate R∗ − ε, where as above we use R∗ to
denote best achievable rate for each particular problem.

APPROX/RANDOM 2020



9:4 Bounds for List-Decoding and List-Recovery of Random Linear Codes

(1) Lower bound on the list size for list-recovery of random linear codes. We
show that if a random linear code of rate R∗ − ε is list-recoverable with high probability
with input list sizes ` and output list size L, then we must have L = `Ω(1/ε). This is in
contrast to completely random codes, for which the output list size is L = O(`/ε) with
high probability.
This gap between random linear codes and completely random codes demonstrates that
in some sense zero-error list-recovery behaves more like erasure-list-decoding [14] than
it does like list-decoding with errors. Such a gap is present between general and linear
codes in erasure list-decoding, but as we see below, there is no such gap for list-decoding
from errors.
Our result extends to the setting of list-recovery with erasures as well. The formal
theorem statement and proof can be found in Section 3.

(2) Better lower bounds on the list size for list-decoding random linear codes. We
show that if a q-ary random linear code of rateR∗−ε is list-decodable with high probability
up to radius p with an output list size of L, then we must have L ≥

⌊
hq(p)
ε + 0.99

⌋
.

By [34], this result is tight for list-decoding of binary random linear codes up to a
small additive factor. As an immediate corollary, L ≥

⌊
hq(p)
ε + 0.99

⌋
for average-radius

list-decoding of random linear codes as well, and, as we will see below, this is also tight
for binary random linear codes, up to a small additive factor. We conjecture that the
leading constant hq(p) is also correct for q > 2.
Previous work [22] has established that L = Ω(1/ε), but to the best of our knowledge
this is the first work that pins down the leading constant. In particular, [22] shows that,
in the situation above, we have L ≥ cp,q/ε, where cp,q is a constant that goes to zero as
p goes to 1− 1/q. In contrast, we show below that the leading constant is at least hq(p),
which goes to 1 as p goes to 1− 1/q.
The formal theorem statement and proof can be found in Section 4.

(3) Completely pinning down the list size for average-radius list-decoding of
binary random linear codes. We prove a new upper bound on the average-radius
list-decodability of binary random linear codes, which matches our lower bound, even up
to the leading constant. More precisely, we show that with high probability, a random
binary linear code of rate R∗ − ε is average-radius list-decodable up to radius p with
L ≤ bh2(p)/εc+ 2.
Such a bound was known for standard list-decoding [34], but our upper bound holds
even for the stronger notion of average-radius list-decoding, and improves the additive
constant by 1.2 In particular, this shows that for both list-decoding and average-radius
list-decoding of binary random linear codes, the best possible L is concentrated on at most
three values: bhq(p)/εc+ 2, bhq(p)/εc+ 1 and bh(p)/ε+ 0.99c. This tight concentration
demonstrates the sharpness of our upper and lower bound techniques.
The formal theorem statement and proof can be found in Section A.

1.2 Overview of techniques
In this section, we give a brief overview of our techniques.

Lower bounds

To illustrate the techniques for our lower bounds, we warm up with a back-of-the-envelope
calculation which suggests why the “right” answer for our result (1) above is `Ω(1/ε).

2 Under our definition of list-decoding, [34] show (p, L) list-decodability with L = bh(p)/εc+ 3.
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Consider a random linear code C ⊂ Fnq , of rate R = 1 − logq(`) − ε, where ε ∈ (0, 1
2 ).

That is, C is the kernel3 of a uniformly random matrix sampled from F(1−R)n×n
q . Suppose

that ` is a prime power, and q = `t for some t ≥ 2. Thus, F` is a sub-field of Fq. Let D be
an integer slightly smaller than 1

2ε and let L = `D ≥ `Ω(1/ε). We claim that C is unlikely to
be (`, L)-list-recoverable.

Given a matrix M ∈ Fn×Dq , we write M ⊆ C (“C contains M”) to mean that each of the
columns of M is a codeword in C.

LetM denote the set of all full-rank matricesM ∈ Fn×Dq that have the following property:
for every row Mi of M there exists some xi ∈ F∗q such that all entries of Mi belong to the
set xi · F`.

We will show thatM is bad and abundant. By bad we mean that a linear code containing
a matrix fromM cannot be (`, L)-list-recoverable. We say thatM is abundant (for the rate
R) if a random linear code of rate R is likely to contain at least one matrix fromM. Clearly,
the combination of these properties means that C is unlikely to be (`, L)-list-recoverable.

We first prove thatM is bad. Assume that C contains some matrix M ∈M. By linearity
of the code, C also contains every vector of the form Mu, for u ∈ FDq . In particular, consider
the set of vectors B :=

{
Mu | u ∈ FD`

}
⊆ C. Observe that C cannot be (`, L)-list-recoverable,

since B is a “bad list” for list-recoverability with these parameters: First, since M has
full-rank, B is of cardinality `D = L. Now, given i ∈ [n], we need to show that there exists a
subset Si ⊆ Fq with |Si| = `, such that vi ∈ Si for all v ∈ B. We take Si to be the set xi · F`,
which contains all entries of the row Mi. For j ∈ [D], write Mi,j = xi · wj (wj ∈ F`), and let
v = Mu for some u ∈ FD` . Then

vi =
D∑
j=1

Mi,juj = xi ·

 D∑
j=1

wj · uj

 ∈ xi · F`,
and we conclude thatM is bad.

Showing thatM is abundant is harder, and at this stage we only provide some intuition
for this fact. Let us compute the expected number of matrices M ∈M that are contained in
C. First, we estimate the cardinality ofM. One may generate a matrix inM by choosing
each of its rows in an essentially independent fashion.4 Choosing a row amounts to choosing
one of q−1

`−1 sets of the form x ·F` (x ∈ F∗q) and then taking each entry to be an element of that
set. Accounting for multiple counting of the all-zero row, the number of possible rows is thus
q−1
`−1 · (`

D − 1) + 1, which we approximate as q · `D−1 . Thus, |M| ≈ (q · `D−1)n. Next, it is
not hard to see that a random linear code contains a given matrix of rank r with probability
q−(1−R)·r·n. Consequently, for M ∈M, we have Pr[M ⊆ C] = q−(1−R)Dn. Therefore,

E |{M ∈M : M ⊆ C}| = |M|q−(1−R)Dn ≈
(
q · `D−1)n · q−(1−R)Dn

=
(
`−1 · q1−εD)n = `(−1+t(1−εD))n,

where, the penultimate equality is due to substituting 1− logq(`)− ε for R. Finally, since
t ≥ 2 and D < 1

2ε , the right-hand side of the above is `Ω(n). Thus, in expectation, C contains
many “bad” lists for list-recovery.

3 This is one of several natural models for a random linear code. Another possible model is taking a
uniformly random subspace of dimension Rn. It is not hard to see that the total variation distance
between these distributions is exponentially small. In particular, our model yields a code of dimension
exactly Rn with probability 1− exp (−Ω(n)).

4 We say “essentially” since the resulting matrix might not have full rank, but this happens with negligibly
small probability.

APPROX/RANDOM 2020



9:6 Bounds for List-Decoding and List-Recovery of Random Linear Codes

Of course, this back-of-the-envelope calculation does not yield the result advertised above.
It might be the case that, even though the expected number of M ∈ M so that M ⊆ C
is large, the probability that such an M exists is still small. In fact, as [37] shows, there
are simple examples where this does happen. Thus, proving thatM is abundant requires
more work.

A standard approach to show that M is abundant would be via the second-moment
method. Recently, [37] gave a general theorem which encompasses second-moment calculations
in this context. In particular, they showed that there is essentially only one reason that
a set M might not be abundant: there exists some matrix A ∈ FD×D′q , such that the set
{MA |M ∈M} is small. If this occurs, we say thatM is implicitly rare.5 They used this
result to study the list-decodability of random Low-Density Parity-Check codes, but we can
use their result to do our second moment calculation. We show that our example of M
above6 is not implicitly rare, by showing that there is no such linear map A. This establishes
that the back-of-the-envelope calculation is in fact correct. Appealing to the machinery of
[37], rather than applying the second moment method from scratch, allows us to get tighter
constants with slightly less work, and gives a more principled approach to our lower bounds;
indeed, our result (2) follows the same outline.

The intuition for our second result (2) is similar: we give an example of a classM which
is bad for list-decoding and abundant. We defineM as follows: Let u ∈ FDq be a random
vector with independent Bernoulliq(p) entries, namely, each entry is 0 with probability 1− p,
and chosen uniformly from F∗q with probability p. Let x be uniformly sampled from Fq. Let
τ denote the distribution (over FDq ) of the random vector u + x · 1D. Finally, define M
to be the set of all matrices M ∈ Fn×Dq , such that a uniformly sampled row of M has the
distribution τ . As before, we show thatM is abundant by showing thatM is not implicitly
rare and using the result of [37].

Upper bounds

Our argument for our upper bound result (3) closely follows that of [34], which itself builds on
the argument of [16]. The argument imagines building the random linear code one dimension
at a time and uses a potential function to show that, so long as we do not add too many
dimensions, no ball intersects the code too much. We now provide an informal overview of
our approach, specifically comparing and contrasting it with the arguments of Guruswami,
Håstad, Sudan and Zuckerman [16]; and Li and Wootters [34].

Let R = 1− h(ρ)− ε and put k := Rn (which we assume for exposition is an integer).
Note that sampling a random linear code of rate R is the same as sampling b1, . . . , bk ∈ Fn2
independently and uniformly at random and outputting span{b1, . . . , bk}. Consider the
“intermediate” codes Ci = span{b1, . . . , bi}; [34] (following [16]) define a potential function
SCi and endeavor to show that SCi does not grow too quickly. The work [16] demonstrated
that this holds in expectation; the work [34] improved their argument to show that it holds
with high probability. In both cases the potential function is such that it is easy to show
that, so long as SC is O(1), the code C is list-decodable.

The potential function in these works keeps track of the radius p list-size at each vector
x ∈ Fn2 , that is, the cardinalities |{c ∈ Ci : δ(x, c) ≤ p}| for i = 1, . . . , k, and shows that
so long as i is not too large all these cardinalities remain at most L. For average-radius
list-decoding, we instead keep track of a sort of “weighted” list size, where codewords that

5 The term “implicitly rare” is used by the first version of [37], available at https://arxiv.org/abs/
1909.06430v1.

6 More precisely, we study an example similar to this one; the example above was slightly tweaked to
simplify the exposition for this back-of-the-envelope explanation.

https://arxiv.org/abs/1909.06430v1
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are very close x are weighted more heavily. We can reuse much of the analysis from [34] to
demonstrate that on the k-th step the potential function is still bounded by a constant (in
fact, it is at most 2). The real novelty in our argument is a demonstration that, assuming
this potential function is small, the code is indeed (p, L)-average-radius list-decodable. This
step is more involved than the argument in [16, 34] to establish (p, L)-list-decodability.

1.3 Related work
We now highlight some related work. In what follows, ε is always the “gap-to-capacity”, i.e.,
if the capacity for a particular problem is R∗, then the result concerns codes of rate R∗ − ε.

Lower bounds for list sizes of arbitrary codes

It is known that a typical (i.e., uniformly random) list-decodable code of rate R∗ − ε has
list size L = Θ(1/ε), and a natural question to ask is whether every code requires a list
of size L = Ω(1/ε). Blinovsky ([5, 4]) showed that lists of size Ωp(log(1/ε)) are necessary
for list-decoding a code of rate R∗ − ε. Later, Guruswami and Vadhan [25] considered the
high-noise regime where p = 1− 1/q − η and showed that lists of size Ωq(1/η2) are necessary.
Finally, Guruswami and Narayanan [22] showed that for average-radius list-decoding, the list
size must be Ωp(1/

√
ε).

Existing lower bounds for random linear codes

For the special case of random linear codes, Guruswami and Narayanan [22] showed that
lists of size cp,q/ε are necessary. The constant cp,q is not explicitly computed (and in fact
relies on a constant from [15] which we discuss below), but one can deduce from the proof
that if p tends to 1− 1/q then cp,q will tend to 0. Their lower bound follows from a second
moment method argument, i.e., they consider a certain random variable X whose positivity
is equivalent to the failure of a random linear code to be list-decodable, and then show that
Var (X) = o(E [X])2. In this sense our approach is similar to theirs, because we rely on
results from [37] which themselves are proved using a second moment method. However,
we are able to get stronger results (in the sense that our leading constant does not decay
as p→ 1− 1/q, and moreover is optimal for binary codes). One of the reasons may be the
notion of “implicit rareness” from [37], which provides a useful characterization of the lists
contained in a random linear code.

The work [22] also established lower bounds on list-decoding random linear codes from
erasures. While we do not discuss list-decoding from erasures in this work (except in the
sense that erasure list-recovery is a generalization of list-decoding from erasures), this result
is relevant to our work because [22] established an exponential lower bound of the form
L ≥ exp(Ω(1/ε)), in contrast to the list size O(1/ε) that is attained by uniformly random
codes. Thus, our results suggest that (zero-error) list-recovery behaves more like list-decoding
from erasures than from errors, at least with respect to the list size of random (linear) codes.

Existing upper bounds for random linear codes

We now turn our attention to upper bounds on list sizes for random linear codes. A long
line of works [45, 16, 15, 7, 43, 40, 42, 34] has studied this problem, and we highlight the
most relevant results now. Zyablov and Pinsker [45] showed that random linear codes of rate
R∗ − ε have lists of size at most q1/ε.7 Guruswami, Håstad, Sudan and Zuckerman [16] first

7 For list-recovery with input lists of size `, the argument of [45] shows that the list size is at most q`/ε.
Furthermore, their results for list-decoding also apply to average-radius list-decoding.
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9:8 Bounds for List-Decoding and List-Recovery of Random Linear Codes

showed the existence of capacity-achieving binary linear codes with lists of size O(1/ε). Li
and Wootters [34] revisited their techniques and showed that in fact random linear codes
of rate R∗ − ε have lists of size O(1/ε) with high probability; moreover they computed the
constant coefficient in the big-Oh notation. However, neither of these results apply to either
average-radius list-decoding or to list-recovery. As discussed above in Section 1.2, our new
upper bound is the result of an improvement of the techniques of [34], which extends their
result to average-radius list-decoding.

As for larger alphabets, Guruswami, Håstad and Kopparty [15] showed that there exists
a constant Cp,q for which random linear codes are (p, Cp,q/ε)-list-decodable with high
probability. Unfortunately, if p tends to 1 − 1/q then this constant tends to infinity. To
address this, an ongoing line of works [7, 43, 41, 42] has studied the list-decodability of
random linear codes in the “high-noise regime” where p is close to 1− 1/q; these results also
apply to average-radius list-decodability. These results imply that for binary random linear
codes, when p = 1− 1/q −Θ(

√
ε), random linear codes with rate R∗ − ε are average-radius

list-decodable with list sizes O(1/ε). However, the constant hiding in the big-Oh is not
correct (in particular, the authors do not see how to make it smaller than 2). Moreover,
these results only hold in a particular parameter regime for p and ε, and degrade as the
alphabet size grows.

As for list-recovery, a result by Rudra and Wootters [42] guarantees that random linear
codes with rate R∗ − ε over sufficiently large alphabets Fq have lists of sizes at most
(q`)O(log(`)/ε). To the best of our knowledge, no lower bounds were known.

Relevant results for other ensembles of codes

Lastly, we discuss some other results concerning other code ensembles. First of all, recent
work of [37] shows that a random code from Gallager’s ensemble of LDPC codes [12] achieves
list-decoding capacity with high probability. More generally, they show that random LDPC
codes have similar combinatorial properties to random linear codes, including list-decoding,
average-radius list-decoding, and list-recovery. As part of their approach, they develop
techniques to characterize the lists that appear in a random linear code with high probability,
which we utilize for our work.

Finally, we note that there are no known explicit constructions of list-decodable codes of
rate R∗ − ε which achieve a list size even of O(1/ε). Over large alphabets, the best explicit
constructions of capacity-achieving list-decodable or list-recoverable codes have list sizes
at least (1/ε)Ω(1/ε) (e.g., [33, 32]). Further, if one insists on binary codes, or even codes
over alphabets of size independent of ε, we do not know of any explicit constructions of
list-decodable codes with rate approaching R∗.

Two-point concentration

We showed that the optimal list size L of a random linear code is concentrated on at most
three values for both list-decoding and average-radius list-decoding: bh(p)/εc+2, bh(p)/εc+1,
and, if the value is different, bh(p)/ε+ 0.99c.

In [34, Theorem 2.5], it was also shown that the optimal list size of a completely random
binary code is concentrated on two or three values for list-decoding. This type of concentration
is also well studied in graph theory, where it is known that in Erdős-Rényi graphs, a number
of graph parameters are concentrated on two values. Examples include the clique number
(size of the largest clique) [36, 6], the chromatic number [35, 2, 1], and the diameter [39].
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1.4 Discussion and open problems

In this work, we have made progress on pinning down the output list sizes for (average-radius)
list-decoding and list-recovery for random linear codes. Before we continue with the technical
portion of the paper, we highlight some open questions and future directions.

We showed that random linear codes of rate 1− hq(p)− ε are not (p, L)-list-decodable for
L ∼ hq(p)

ε . We conjecture this lower bound is tight, i.e. that random linear codes of rate
1− hq(p)− ε are (p, L)-(average-radius) list-decodable for L = hq(p)

ε (1 + o(1)), where the
o(1)→ 0 as ε→ 0. Our Theorem 14 (and earlier in [34] for list-decoding) shows it is true
for q = 2, and we conjecture this is true for larger q.
Our results show that list-decoding and average-radius list-decoding have essentially
the same output list sizes over binary alphabets, for random linear codes. It would be
interesting to extend this to larger alphabets, or even to more general families of codes.
This is especially interesting given that there is an exponential gap in the best known lower
bounds (on the list-size for arbitrary codes) between list-decoding and average-radius
list-decoding for general codes.
We have used different techniques for our upper and lower bounds. However, we think it
is an interesting direction to use the characterization of [37] – which we used to prove
our lower bounds – to prove upper bounds as well. This would entail showing that every
sufficiently bad list is implicitly rare.
Finally, we note that our lower bounds for list-recovery rely on the field Fq being an
extension field (that is, q = pt for some t > 1). It is an interesting question whether or
not an exponential lower bound also holds over prime fields. We note that other lower
bounds on list-decoding and list-recovery for Reed-Solomon codes also apply only to
extension fields [23, 3]; perhaps all of these bounds taken together are evidence that
better list-decodability may be possible in general over prime fields.

1.5 Organization

In Section 2 we set up notation and formally state the results of [37] that we build on for our
lower bounds. In Section 3 we state and sketch the proof of our lower bound on list-recovery
of random linear codes. In Section 4 we state and sketch the proof of our lower bound on
the list-decodability of random linear codes. In Appendix A we state and prove our upper
bound on the list-decodability of random linear codes.

2 Preliminaries

In this section, we set notation and introduce the notions and results from [37] that we need
for our lower bounds.

2.1 Notation

Unless otherwise specified, all logarithms are base 2. We use the notation exp(x) to mean
ex. For an integer a, we define [a] := {1, . . . , a}. For a vector x ∈ FAq and I ⊂ [A], we use
xI ∈ F|I|q to denote the vector (xi)i∈I with coordinates from I in increasing order. We use
1D to denote the all ones vector of length D.

APPROX/RANDOM 2020
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We use several notions from information theory. Define the q-ary entropy hq : [0, 1]→ [0, 1]
by

hq(x) def= x logq(q − 1)− x logq x− (1− x) logq(1− x) (1)

We assume q = 2 if q is omitted from the subscript.
For a random variable X with domain X , we use H(X) to denote the entropy of X:

H(X) = −
∑
x∈X

PrX(x) log(PrX(x)).

For a probability distribution τ , we may also use H(τ) to denote the entropy of a random
variable with distribution τ .

Let X be a random variable supported on X and Y be a random variable supported on
Y. We define the conditional entropy of Y given X as

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y)

p(x) .

It is easy to check that H(X) −H(X|Y ) = H(Y ) −H(Y |X) and we call this the mutual
information I(X;Y ):

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

For random variables X,Y, Z, we define the conditional mutual information I(X;Y |Z) by

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

Conditional entropy, mutual information, and conditional mutual information satisfy the
data processing inequality: for any function f supported on the domain of Y , we have

H(X|f(Y )) ≥ H(X|Y ) and I(X;Y ) ≥ I(X; f(Y )) and I(X;Y |Z) ≥ I(X; f(Y )|Z).

We also use Fano’s inequality, which states that if X is a random variable supported on
X and Y is a random variable supported on Y, and if f : Y → X is a function and
perr = PrX,Y [f(Y ) 6= X]

H(X|Y ) ≤ h(perr) + perr · log(|X | − 1)

We define

Hq(X) def= H(X)
log q , Iq(X;Y ) = I(X;Y )

log q .

and similarly for conditional entropy and conditional mutual information.
For a distribution τ on FLq and a matrix A ∈ FL′×Lq , we define the distribution Aτ on

FL′q in the natural way by

PrAτ (x) =
∑

{y∈FLq :Ay=x}

Prτ (y),

namely, Aτ is the distribution of the random vector Ay, where y ∼ τ .
We have defined list-decoding, average-radius list-decoding, and list-recovery in the

introduction. We will in fact consider a more general version of list-recovery, which also
tolerates erasures:

I Definition 1 (List-recovery from erasures). A code C ⊂ Fnq is (α, `, L)-list-recoverable from
erasures if the following holds. Let S1, . . . , Sn ⊂ Fq be lists so that |Si| ≤ ` for at least αn
values of i. Then

|{c ∈ C : ∀i ∈ [n], ci ∈ Si}| < L.

We take α = 1 if it is omitted.
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2.2 Tools from [37]
As discussed in Section 1.2, for our lower bounds we use tools from the recent work [37].
We work with matrices M ∈ Fn×Lq (L ∈ N), where we view the columns of M as potential
codewords in C. We use the notation “M ⊆ C” to mean that the columns of M are all
contained in C.

We group together sets of such matrices M according to their row distribution.

I Definition 2 (τM , dim(τ), Mn,τ ). Given a matrix M ∈ Fn×Lq , the empirical row distri-
bution defined by the rows of M over FLq is called the type τM of M . That is, τM is the
distribution so that for v ∈ FLq ,

PrτM (v) = |{i : the i’th row of M is equal to v}|
n

.

For a distribution τ on FLq , we use dim(τ) to refer to dim(span(supp(τ))). We useMn,τ to
refer to the set of all matrices in Fn×Lq which have empirical row distribution τ .

I Remark 3. We remark that for some distributions τ over FLq , the setMn,τ may be empty
due to n · Prτ (v) not being an integer. For such τ we can defineMn,τ to consist of matrices
M with either bn · Prτ (v)c or dn · Prτ (v)e copies of v. This has a negligible effect on the
analysis as we always take n to be sufficiently large compared to other parameters, so for
clarity of exposition we ignore this technicality.

Given M ∈ Mn,τ , note that Mn,τ consists exactly of those matrices obtained by
permuting the rows of M . In particular, since the random linear code model is invariant to
such permutations, all of the matrices inMn,τ have the same probability of being contained
in C.

As discussed in Section 1.2, we prove a lower bound by exhibiting a distributions τ over
FLq such that the corresponding setMn,τ is both bad and abundant. WhenMn,τ satisfies
these properties, we say that τ itself is, respectively, bad and abundant.

The work [37] characterizes which distributions τ satisfy the abundance property, namely,
which classesMn,τ are likely to have at least one of their elements appear (as a matrix) in
a random linear code of a given rate. To motivate the definition below, suppose that the
distribution τ has low entropy: Hq(τ) < γ · dim(τ) for some γ ∈ (0, 1). This implies that
the classMn,τ is not too big: more precisely, it is not hard to see that |Mn,τ | ≤ qHq(τ)·n ≤
qγ dim(τ)n. Using a calculation like we did in Section 1.2, we see that, sinceMn,τ is not very
large, it is unlikely for a random linear code of rate less than 1 − γ to contain a matrix
fromMn,τ .

However, this is not the only reason thatMn,τ might be unlikely to appear in a random
linear code. As is shown in [37], it could also be because a random output of τ , subject to
some linear transformation (perhaps to a space of smaller dimension), has low entropy. We
call such distributions implicitly rare:

I Definition 4 (γ-implicitly rare). We say that a distribution τover FLq is γ-implicitly rare if
there exists a full-rank linear transformation A : FLq → FL′q where L′ ≤ L such that

Hq(Aτ) < γ · dim(Aτ)

Observe that by taking A to be the identity map, we recover the case where τ itself has low
entropy. Furthermore, note that every matrix inMn,Aτ has all of its columns contained in
the column-span of some matrix inMn,τ . This implies that if no matrix inMn,Aτ lies in
a code, then no matrix inMn,τ lies in the code. Thus, abundance of the distribution Aτ
implies abundance of τ .

APPROX/RANDOM 2020
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For an illustrative example of an implicitly rare distribution, we refer the reader to [37,
Example 2.5]. Specifically, the example provides a case where for some full-rank matrix A,
we have Hq(Aτ)/dim(Aτ) > Hq(τ)/ dim(τ).

Essentially, [37] shows that a row distribution τ is likely to appear in a random linear
code (namely, τ satisfies the abundance property) if and only if it is not implicitly rare. The
following theorem follows from Lemma 2.7 in [37].8

I Theorem 5 (Follows from Lemma 2.7 in [37]). Let R ∈ (0, 1) and fix η > 0. Let τ be a
(1−R− η)-implicitly rare distribution over FLq (L ∈ N), and let C be a random linear code
of rate R. Then

Pr[∃M ∈Mn,τ : M ⊆ C] ≤ q−ηn

Conversely, suppose that τ is not (1−R+ η)-implicitly rare. Then

Pr[∃M ∈Mn,τ : M ⊆ C] ≥ 1− nOL,q(1) · q−ηn .

The first part of the theorem follows from a natural first-moment method argument,
while the second part follows from the analogous second-moment argument. We emphasize
that it is important that we allow arbitrary full-rank linear transformations A : FLq → FL′q in
Definition 4: if we only allowed A to be the identity map, the second part of the theorem
would be false.

3 Lower bounds for list-recovery with erasures

Our main result in this section is the following.

I Theorem 6. Fix 0 ≤ ρ < 1. Fix a prime power ` ≥ 2 and an integer t ≥ 2, and let q = `t.
Fix 0 < ε ≤ 1−ρ

20t and let L = `d
1−ρ
20ε e. For n ∈ N, let C ⊆ Fnq denote a random linear code of

rate R := 1− (ρ+ (1− ρ) logq(`))− ε. Then the probability of C being (1− ρ, `, L)-erasure
list-recoverable is at most q−Ω(n).

We will prove Theorem 6 below, after we build up the necessary building blocks. As
discussed in Sections 1.2 and 2, to prove Theorem 6 we seek a distribution τ that is both
is bad and abundant. That is, C should likely contains some matrix from Mn,τ , and the
corresponding codewords should yield a counterexample to the list-recoverability of C. We
will describe our choice of τ in Definition 7; we will show that it is bad in Proposition 8; and
finally we will show that it is not implicitly rare (and hence abundant by Theorem 5) in
Lemma 9.

Our construction of the distribution τ follows similar lines to that in Section 1.2.

I Definition 7 (The bad distribution τ for list-recovery lower bounds). Fix ρ, `, t, q as in
Theorem 6. Let D ≥ t be a positive integer. Let F` be a subfield of Fq, where q = `t and
t ≥ 2. Let α1, . . . , α(q−1)/(`−1) be a set so that αiF∗` are disjoint cosets of F∗` partitioning F∗q .
Let L = `D. Let G ∈ FL×D` be the matrix whose rows are all of the distinct elements of FD` .

Let σ be the distribution that with probability 1 − ρ returns αiu for (i, u) uniform in{
1, . . . , q−1

`−1

}
× FD` ; and with probability ρ returns a uniformly random element of FDq .

Let τ be the distribution given by Gv for v ∼ σ.

8 This is also given as Theorem 2.2 in the first version of [37], available at https://arxiv.org/abs/1909.
06430v1.

https://arxiv.org/abs/1909.06430v1
https://arxiv.org/abs/1909.06430v1
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To motivate this construction, consider first the ρ = 0 case. Now consider a matrix
M ∈ Fn×Lq that has row distribution given by τ . If we ignore the coefficients αi, the columns
of M span a D-dimensional subspace of Fn` . In particular, they are bad, in the sense that
each coordinate of these codewords are contained in a list of size ` (namely, F`). Moreover,
as soon as any D linearly independent columns of M are contained in C, all of the columns
of M are contained in C; this suggests that it’s relatively likely (compared to, say, a random
matrix in FL×nq ) that M ⊆ C. These properties don’t change when we multiply by the
coefficients αi: each coordinate is now contained in some list αiF` rather than F` (notice
that the fact that the αi are coset representatives means that all of these possible lists are
disjoint, other than zero), and it’s still just as likely that M ⊆ C. However, by throwing these
multiples αi into the mix, we have increased the size of Mn,τ , making τ more abundant.
In particular, note that, over all choices of (i, u), the value αiu is distinct except when
u = 0. Thus, τ has entropy close to the entropy of the uniform distribution on (i, u), so
Hq(τ) ≈ logq(q`D−1) ≈ D(logq(`) + 1

D ). Using a similar idea, we can estimate the entropy
of Aτ for all matrices A, showing that τ is not logq(`) + 1

10D implicitly rare, implying that it
is abundant.

To generalize to the ρ > 0 case, the construction essentially “frees” a ρ fraction of the
coordinates relative to the ρ = 0 case. This further increases the size ofMn,τ (making τ
even more abundant), while still maintaining the badness property for list-recovery with a ρ
fraction of erasures.

I Proposition 8 (τ is bad). Let τ be as in Definition 7. Let C ⊆ Fnq , and let M ∈Mn,τ . If
M ⊆ C, then C is not (1− ρ, `, L)-list-recoverable.

Proof. Suppose that M ⊆ C. Let w1, w2, . . . , wn ∈ FLq be the rows of M . It suffices to show
that there are input lists S1, . . . , Sn so that wj ∈ SLj for all j ∈ [n], and so that for at least
(1− ρ)n values of j ∈ [n], we have |Sj | ≤ `. Recall that each row wj of M is of the form Gvj
where a (1− ρ) fraction of the vj are of the form αij · uj for (ij , uj) ∈ [(q − 1)/(`− 1)]× FD` ,
and a ρ fraction of the vj are arbitrary vectors in FDq .9

In the first case, set Sj = αij · F`. Because the elements of G are all in F`, all the
coordinates of wj = Gvj = αijGuj lie in Sj . Moreover by definition |Sj | ≤ `. In the second
case, set Sj = Fq. By definition all the coordinates of wj ∈ FLq lie in Sj = Fq.

This completes the proof. J

Next, we claim that τ is not implicitly rare, which will imply that τ is abundant. Due to
space constraints, the proof is omitted.

I Lemma 9 (τ is abundant). Let τ be as in Definition 7. Then τ is not(
ρ+ (1− ρ) logq(`) + 1− ρ

10D

)
-implicitly rare.

We now show how to use Proposition 8 and Lemma 9 to prove Theorem 6.

Proof of Theorem 6. Let 0 < ε ≤ 1−ρ
20t . Let τ be as in Definition 7, choosing D =

⌈ 1−ρ
20ε
⌉
. By

our choice of ε, we indeed have D ≥ t. Lemma 9 shows that τ is not (ρ+(1−ρ) logq(`)+ 1−ρ
10D )-

implicitly rare. By choice of D, we have 1−ρ
10D > ε. From Theorem 5 with η = 1−ρ

10D − ε, we see
that for any sufficiently large n, a random code of rate

9 As per Remark 3, we may ignore the rounding issue that ρn may not be an integer. This is without loss
of generality, as we may replace τ with a very similar distribution so that a dρne fraction of the vj are
arbitrary in FD

q , and adjust all parameters by a term that is o(1) as n→∞.
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(
1−

(
ρ+ (1− ρ) logq(`) + 1− ρ

10D

))
+ η = 1−

(
ρ+ (1− ρ) logq(`)

)
− ε

contains `D codewords given by a matrix M ∈Mn,τ with probability at least 1− qΩ(εn). By
Proposition 8, if this occurs, then C is not (1− ρ, `, L)-list-recoverable. J

4 Lower bounds for list-decoding with errors

Our main theorem in this section is the following.

I Theorem 10. Fix a prime power q, fix p ∈ (0, 1 − 1
q ), and fix δ ∈ (0, 1). There exists

εp,q,δ > 0 such that for all ε ∈ (0, εp,q,δ) and n sufficiently large, a random linear code in Fnq
of rate 1− hq(p)− ε is not

(
p,
⌊
hq(p)
ε − δ

⌋)
-list-decodable with probability 1− q−Ω(n).

Our proof of Theorem 10 below follows the same outline as the proof of Theorem 6 above.
We first define a bad distribution τ in Definition 11; then we will show that it is bad in
Proposition 12; then we will show that it is not implicitly rare (and hence abundant by
Theorem 5) in Lemma 13. Finally we will prove Theorem 10 from these pieces.

Below, we let Bernoulliq(p) be the distribution that returns 0 ∈ Fq with probability 1− p
and any other element of Fq with probability p

q−1 .

I Definition 11 (The bad distribution τ for list-decoding lower bounds). Let p ∈ (0, 1 − 1
q )

and δ > 0. Choose L > 0. Define the distribution τ on FLq as the distribution of the random
vector u+ α1L, where u ∼ Bernoulliq(p)L, and α is sampled independently and uniformly
from Fq.

First, we observe that τ is indeed bad, in the sense that it provides a counter-example to
list-decodability.

I Proposition 12 (τ is bad). Let τ be as in Definition 11. Let C ⊆ Fnq and let M ∈ Mn,τ .
If M ⊆ C, then C is not (p, L)-list-decodable.

Proof. Let M ∈ Mn,τ . We want to show that the columns of M all lie in a single ball of
radius pn.

By definition of τ andMn,τ , we may write the j-th row of M as u(j) +αj1L, so that the
empirical distribution of the pairs (u(j), αj)1≤j≤n is Bernoulliq(p)L ×Uniform(Fq).10

For any i ∈ [L], the number of j ∈ [n] such that Mi,j = u
(j)
i + αj 6= αj is exactly the

number of times u(j)
i 6= 0, which is pn, since u(j)

i is distributed as Bernoulliq(p). Thus, each
column Mi,∗ of M has distance at most pn from the word (α1, . . . , αn), so that any code
containingM has L codewords in a ball of radius pn and hence is not (p, L)-list-decodable. J

Next, we claim that τ is appropriately implicitly rare for large enough L. Due to space
constraints, the proof is omitted.

I Lemma 13. Let p ∈ (0, 1− 1
q ) and let δ > 0. There exists Lp,q,δ such that, for L ≥ Lp,q,δ,

the distribution τ given in Definition 11 is not
(
hq(p) + hq(p)

L+δ

)
-implicitly rare.

10This is without loss of generality: if not, as per Remark 3, we can associate pairs with rows so that the
empirical distribution is close to Bernoulliq(p)L ×Uniform(Fq) up to an additive factors that are o(1)
as n→∞. After adjusting parameters, this has a negligible effect on the analysis and final result.
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We now show how to use Proposition 12 and Lemma 13 to prove Theorem 10.

Proof of Theorem 10. Let Lp,q,δ/2 be as in Lemma 13 and choose εp,q,δ
def= hq(p)

Lp,q,δ/2+1 .

Fix ε < εp,q,δ. Let L =
⌊
hq(p)
ε − δ

⌋
. Let τ be as in Definition 11 with this choice of

L. By Lemma 13, as L ≥ Lp,q,δ/2, τ is not
(
hq(p) + hq(p)

L+δ/2

)
-implicitly rare. Thus, as

ε ≤ hq(p)
L+δ <

hq(p)
L+δ/2 , there is some constant cp,q,ε > 0 so that τ is not (hq(p) + ε + cp,q,ε)-

implicitly rare.
Then Theorem 5 with η = cp,q,ε tells us that, for n sufficiently large, a random linear

code of rate 1− (hq(p) + ε+ cp,q,ε) + cp,q,ε = 1− hq(p)− ε contains L codewords given by
some matrix M ∈Mn,τ with probability at least 1− q−Ωp,q,ε(n).

Finally, Proposition 12 implies that C is not (p, L)-list-decodable. Our choice of L proves
the theorem. J
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A Upper bounds for average-radius list-decoding over F2

In this section we prove the following theorem. Recall that we abbreviate h(p) = h2(p).

I Theorem 14. Let n ∈ N. Let p ∈ (0, 1
2 ) and R = 1 − h(p) − ε, where 0 < ε < 1 − h(p).

Let L = bh(p)
ε + 2c. Then, a random linear code C ≤ Fn2 of rate R is (p, L)-average-radius

list-decodable with probability 1− 2−Ωp,ε(n).

Recall from the introduction that, following the techniques in [16] and [34], we imagine
sampling independent and uniform vectors b1, . . . , bk and constructing the “intermediate”
random linear codes Ci = span{b1, . . . , bi}. A potential function based argument is used to
show that, with high probability, each of these intermediate codes is indeed (p, L)-average-
radius list-decodable; in particular, this is true for Ck.

Before discussing our potential function, we first briefly review the techniques of [16] and
[34]; in particular, we describe the potential function they use. First, for a code C and a
vector x ∈ Fn2 , we define

LC(x) := |{c ∈ C : δ(x, c) ≤ p}| .

In [16], the authors define

SC := 1
2n
∑
x∈Fn2

2εnLC(x)
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and observe that, for any b1, . . . , bi ∈ Fn2 ,

E
bi+1∼Fn2

[
SCi+{0,bi+1}

]
= S2

Ci ,

where we recall Ci = span{b1, . . . , bi}.11 That is, the potential function squares in expectation,
so the probabilistic method guarantees that we can choose some bi+1 for which SCi+1 ≤ S2

Ci .
Thus, for some choice of b1, . . . , bk, one has SCk ≤ (S{0})2k .

In [34], the definition of SC is slightly modified:

SC := 1
2n
∑
x∈Fn2

2
εnLC(x)

1+ε .

This little bit of extra room allows to show that, in fact, with high probability over the
choice of bi+1, SCi+{0,bi+1} ≤ S2

Ci . By a union bound, it follows that with high probability,
SCk ≤ (S{0})2k .

In either case, to conclude the proof, one observes the bound12 S{0} ≤ 1 + 2−n(1−h(p)−ε)

and then uses

SCk ≤ (S{0})2k ≤ (1 + 2−n(1−h(p)−ε))2k ≤ exp 2k−n(1−h(p)−ε) ≤ O(1)

for k chosen as above.

A.1 Alterations for average-radius list-decoding
While this argument analyzes the (absolute-radius) list-decodability of random linear codes
very effectively, it is not immediately clear how to generalize the argument to study average-
radius list-decodability. We now introduce the additional ideas we need to derive Theorem 14.
We will fix a threshold parameter λ ∈ (p, 1

2 ) for which h(λ) < 1 − R = h(p) + ε, to be
determined later, and define

η
def= 1−R− h(λ).

We define the function MR,λ : [0, 1]→ R by

MR,λ(γ) :=
{

1−R− h(γ) if γ < λ

0 if γ ≥ λ
.

I Remark 15. One can think of this quantity as a sort of “normalized entropy change” up to
the threshold λ. Recalling that 1−R = h(p) + ε, if γ < λ, then

MR,λ(γ) ≈ 1
n

(h(p)− h(λ)) ≈ log
(
|Bn(p)|
|Bn(γ)|

)
,

where Bn(p) denotes the Hamming ball in Fn2 of radius p. Hence, MR,λ(γ) is something like
a normalized “surprise” an observer would experience if they are expecting a random vector
of weight ≤ p and see a vector of weight ≤ γ.

11Here and throughout, for two subsets A,B ⊆ Fn
2 , we denote A + B = {a + b : a ∈ A, b ∈ B. Thus,

Ci + {0, bi+1} = Ci+1.
12Actually, for the potential function in [34], one has S{0} ≤ 1 + 2−n(1−h(p)− ε

1+ε ), but this difference does
not matter for the conclusion.
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For a linear code C ≤ Fn2 and x ∈ Fn2 we define

LC,R,λ(x) :=
∑
y∈C

MR,λ(δ(x, y)).

This is intuitively the “smoothed-out” list-size of x, where nearby codewords are weighted
more heavily than far away codewords, and the weighting is given by the “entropy change”
implied by the distance from x to y.

Next, we define

AC,R,λ(x) := 2
nLC,R,λ(x)

1+η and SC,R,λ := 1
2n
∑
x∈Fn2

AC,R,λ(x).

The quantity SC,R,λ is the potential function we analyze.

A.2 Proof of Theorem 14
In this subsection we prove Theorem 14. The quantities R and λ (and hence η = 1−R−h(λ))
will be fixed throughout – although the precise value of λ will be determined later – and so
we will suppress their dependence and simply write M(x), LC(x), AC(x) and SC .

First, we observe that the following analog of [34, Lemma 3.2] holds. The proof is a
simple adaptation of theirs (which in turn follows [16]).

I Lemma 16. For all C ≤ Fn2 and b ∈ Fn2 ,

LC+{0,b}(x) ≤ LC(x) + LC(x+ b), (2)
AC+{0,b}(x) ≤ AC(x) ·AC(x+ b). (3)

Moreover, equality holds if and only if b /∈ C.

Next, we bound S{0}. We have

S{0} ≤ 1 + 2−n
∑
x∈Fn2

wt(x)≤λ

2
n·(1−R−h(wt(x)))

1+η ≤ 1 +
bλnc∑
i=0

2−n
(

1−h(i/n)−h(λ)+η−h(i/n)
1+η

)
.

As this sum is dominated by its last term, we deduce

S{0} ≤ 1 + (λn)2−n
(

1−h(λ)− η
1+η
)
. (4)

From here, we can combine Lemma 16 and (4) to deduce

I Lemma 17. Let p ∈ (0, 1
2 ) and R = 1− h(p)− ε for 0 < ε < 1− h(p). Let CRn ≤ Fn2 be a

random linear code of rate R. Then SCRn ≤ 2 with probability at least 1− exp (−Ωη(n)).

The proof of this lemma is completely analogous to that of [34, Lemma 3.3]. One only
needs to be careful about the growth rate of SC. In particular, this proof crucially uses
that η is positive. We again choose vectors b1, . . . , bRn independently and uniformly at
random. If Ci = span{b1, . . . , bi}, we need “in expectation” that SCi ≤ 1 + 2−Ω(n) for all i
for the error bounds to succeed. As we expect the o(1) term to roughly double, we need
2Rn · (S(0) − 1) = 2−n(η− η

1+η ) ≤ 2−Ωη(n).
Thus, in order to conclude Theorem 14, we are simply required to demonstrate that SC ≤ 2

implies that C is (p, L)-average-radius list-decodable: this is the crux of our contribution.
The main lemma we require is the following.
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I Lemma 18. Let C ≤ Fn2 be a linear code of rate R such that SC ≤ 2. Then, for all x ∈ Fn2
and D ⊆ C ∩B(x, λ), it holds that∑

y∈D
h(δ(x, y)) ≥ (|D| − 1− η)(1−R)− 1 + η

n
.

Proof. First, observe that for any x ∈ Fn2 ,

LC(x) ≥
∑
y∈D

((1−R)− h(δ(x, y))) = |D|(1−R)−
∑
y∈D

h(δ(x, y))

so logAC(x) ≥ n
|D|(1−R)−

∑
y∈D h(δ(x, y))

1 + η
. (5)

Next, as δ(x, y) = δ(x+ z, y + z) for any z ∈ Fn2 , we have, for any x ∈ Fn2 and c ∈ C, that
LC(x) = LC(x + c) and hence AC(x) = AC(x + c). Thus, maxx∈Fn2 AC(x) is attained at at
least |C| different values of x, so

SC = 1
2n
∑
x∈Fn2

AC(x) ≥ 1
2n · |C| ·max

x∈Fn2
AC(x) = 2−(1−R)n ·max

x∈Fn2
AC(x).

Combining this with (5), we have, for any x ∈ Fn2 ,

1 ≥ logSC ≥ −(1−R)n+ log (AC(x))

≥ n ·
(
−(1−R) +

|D|(1−R)−
∑
y∈D h(δ(x, y))

1 + η

)
= n ·

(|D| − 1− η)(1−R)−
∑
y∈D h(δ(x, y))

1 + η
.

Rearranging yields the lemma. J

We may now conclude Theorem 14.

Proof of Theorem 14. Since L = bh(p)
ε + 2c > h(p)

ε + 1 = 1−R
ε , there exists η > 0 small

enough so that for all sufficiently large n

L >
1−R+ η + 1+η

n

ε− η
. (6)

Thus, we define λ so that η (which we defined as η = 1−R− h(λ)) satisfies (6). Let C be a
random linear code of rate R. Due to Lemma 17, the conclusion of Lemma 18, holds with
probability 1− 2−Ωη(n) for C. It remains to show that, assuming n is sufficiently large, any
code C satisfying the conclusion of Lemma 18 is (p, L)-average-radius list-decodable.

Let x ∈ Fn2 and Λ ⊆ C such that |Λ| = L; our goal is to show that, for all such x and Λ,

1
L

∑
y∈Λ

δ(x, y) > p. (7)

Let

D = {y ∈ Λ : δ(x, y) ≤ λ}

and define

h∗(α) =
{
h(α) if α ≤ 1

2

1 if α > 1
2
.
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Now,∑
y∈Λ

h∗(δ(x, y)) ≥
∑
y∈D

h(δ(x, y)) + (L− |D|)h(λ) (8)

≥ (|D| − 1− η)(1−R) + (L− |D|)(1−R− η)− 1 + η

n
(9)

= (1−R) · (L− 1)− η · (1−R)− η · (L− |D|)− 1 + η

n

≥ (1−R) · (L− 1)− η · (L+ 1)− 1 + η

n

= (1−R)L− (1−R)− η · (L+ 1)− 1 + η

n

= Lh(p)− (1−R)− (L+ 1)η + Lε− 1 + η

n
(10)

= Lh(p)− (1−R+ η) + L(ε− η)− 1 + η

n

> Lh(p). (11)

Here, Inequality (8) holds because h∗(α) > h(λ) for all α > λ; Inequality (9) is the conclusion
of Lemma 18; Equality (10) follows from the fact that R = 1− h(p)− ε; and Inequality (11)
follows from (6). Thus, we deduce

1
L

∑
y∈Λ

h∗(δ(x, y)) > h(p). (12)

Since h∗ is concave,

h∗

 1
L

∑
y∈Λ

(δ(x, y))

 ≥ 1
L

∑
y∈Λ

h∗(δ(x, y)),

and so (7) follows from (12), the monotonicity of h∗ and the fact that h∗(p) = h(p). J
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