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Abstract
We introduce and evaluate dynamic branching strategies for solving Qualitative Constraint Networks
(QCNs), which are networks that are mostly used to represent and reason about spatial and temporal
information via the use of simple qualitative relations, e.g., a constraint can be “Task A is scheduled
after or during Task C”. In qualitative constraint-based reasoning, the state-of-the-art approach to
tackle a given QCN consists in employing a backtracking algorithm, where the branching decisions
during search are governed by the restrictiveness of the possible relations for a given constraint
(e.g., after can be more restrictive than during). In the literature, that restrictiveness is defined a
priori by means of static weights that are precomputed and associated with the relations of a given
calculus, without any regard to the particulars of a given network instance of that calculus, such
as its structure. In this paper, we address this limitation by proposing heuristics that dynamically
associate a weight with a relation, based on the count of local models (or local scenarios) that the
relation is involved with in a given QCN; these models are local in that they focus on triples of
variables instead of the entire QCN. Therefore, our approach is adaptive and seeks to make branching
decisions that preserve most of the solutions by determining what proportion of local solutions agree
with that decision. Experimental results with a random and a structured dataset of QCNs of Interval
Algebra show that it is possible to achieve up to 5 times better performance for structured instances,
whilst maintaining non-negligible gains of around 20% for random ones.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in AI that
deals with the fundamental cognitive concepts of space and time in a human-like manner, via
simple qualitative constraint languages [18, 8]. Such languages consist of abstract, qualitative,
expressions like inside, before, or north of to spatially or temporally relate two or more
objects to one another, without involving any quantitative information. Thus, QSTR offers
tools for efficiently automating common-sense spatio-temporal reasoning and, hence, further
boosts research to a plethora of application areas and domains that deal with spatio-temporal
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Figure 1 The static weighting scheme in the literature dictates that relation during is less
restrictive than relation after in general for the IA calculus and, hence, during should be preferred
over after in branching decisions [39, Figure 9], but in the above simplified QCN during cannot
appear in any solution; such schemes are defined for other calculi as well [13].

information, such as cognitive robotics [10], deep learning [17], visual explanation [37]
and sensemaking [36], semantic question-answering [35], qualitative simulation [5], modal
logic [21, 3, 20, 16, 11], temporal diagnosis [12], and stream reasoning [6, 14].

Qualitative spatial or temporal information may be modeled as a Qualitative Constraint
Network (QCN), which is a network where the vertices correspond to spatial or temporal
entities, and the arcs are labeled with qualitative spatial or temporal relations respectively.
For instance x ≤ y can be a temporal QCN over Z. Given a QCN N , the literature is
particularly interested in its satisfiability problem, which is the problem of deciding if there
exists a spatial or temporal interpretation of the variables of N that satisfies its constraints,
viz, a solution of N . For instance, x = 0 ∧ y = 1 is one of the infinitely many solutions of
the aforementioned QCN, and x < y is the corresponding scenario that concisely represents
all the cases where x is assigned a lesser value than y. In general, for most widely-adopted
qualitative calculi the satisfiability problem is NP-complete [9]. In the sequel, we will be
using Interval Algebra (IA) [1] as an illustrative example of a qualitative calculus.

Motivation & Contribution. The state-of-the-art constraint-based approach for tackling a
given QCN consists in employing a backtracking algorithm, where each branching decision
during search is guided by the restrictiveness of the possible relations for a given constraint.
Currently, that restrictiveness is defined a priori by means of entirely precomputed static
weights that are associated with the relations of a given calculus. That static strategy has
two major problems: it assumes a uniform use of relations in QCNs (as weights are computed
by equally considering all the relations of a calculus); and it does not exploit any structure
that may exist in QCNs (a relation that is used to form more than one constraints in a given
QCN, which is typically the case, may exhibit different levels of restrictiveness among those
constraints). A simple example of how this scheme can be problematic is detailed in Figure 1.
In this paper, we address this limitation by proposing a dynamic branching mechanism via
heuristics that dynamically associate a weight with a relation during search, based on the
count of local models, i.e., scenarios pertaining to triples of variables, that the relation is
involved with in a given QCN. This makes our approach similar to a counting-based one for
CSPs [24], as it too is adaptive and it too seeks to make branching decisions that preserve
most of the solutions by determining what proportion of local solutions agree with that
decision. Further inspiration was drawn from a recent work in [32], where it was observed
that a scenario of a QCN may often be constructed collectively by relations that appear in
many scenarions individually, i.e., a scenario of a QCN may often be constructed by selecting
the most popular relation for each constraint. Finally, through an evaluation with a random
and a structured dataset of QCNs of IA, we show that we may achieve up to 5 times better
performance for structured instances, and gains of about 20% for random ones.
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Figure 2 The base relations of IA; ·i denotes the converse of ·.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries on
QSTR. Next, in Section 3 we propose our dynamic approach, discuss some dynamic heuristics
that are used internally, and present the related algorithms. Then, in Section 4 we evaluate
our approach with random and structured QCNs of IA and comment on the outcome. Finally,
in Section 5 we draw some conclusive remarks and give directions for future work.

2 Preliminaries

A binary qualitative spatial or temporal constraint language, is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called the set of base relations [19], that is defined
over an infinite domain D. The base relations of a particular qualitative constraint language
can be used to represent the definite knowledge between any two of its entities with respect
to the level of granularity provided by the domain D. The set B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can be specified
by a union of possible base relations, and is represented by the set containing them. Hence,
2B represents the total set of relations. The set 2B is equipped with the usual set-theoretic
operations of union and intersection, the converse operation, and the weak composition
operation denoted by the symbol � [19]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}.

The weak composition (�) of two base relations b, b′ ∈ B is defined as the smallest (i.e.,
strongest) relation r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},
where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition
of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =

⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA), introduced by Allen [1]. IA considers time intervals (as temporal
entities) and the set of base relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f , fi} to

TIME 2020
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Figure 3 Figurative examples of QCN terminology using IA.

encode knowledge about the temporal relations between intervals on the timeline, as depicted
in Figure 2. Specifically, each base relation represents a particular ordering of the four
endpoints of two intervals on the timeline, and eq is the identity relation Id.

Notably, most of the well-known and well-studied qualitative constraint languages, such
as Interval Algebra [1] and RCC8 [25], are in fact relation algebras [9].

The problem of representing and reasoning about qualitative spatial or temporal informa-
tion can be modeled as a qualitative constraint network, defined as follows:

I Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity of an
infinite domain D;
and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V , where

⋃
B = D× D.

An example of a QCN of IA is shown in Figure 3a; for clarity, converse relations as well
as Id loops are not mentioned or shown in the figure.

I Definition 2. Let N = (V,C) be a QCN, then:
a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such
that (σ(u), σ(v)) ∈ b (see Figure 3b);
N is satisfiable iff it admits a solution;
a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that C ′(u, v) ⊆ C(u, v)
∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂ C(u, v), then N ′ ⊂ N ;
N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with b ∈ B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);
the constraint graph of N is the graph (V,E) where {u, v} ∈ E iff C(u, v) 6= B and u 6= v;
N is trivially inconsistent, denoted by ∅ ∈ N , iff ∃v, v′ ∈ V such that C(v, v′) = ∅;
N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .

Given a QCN N = (V,C) and v, v′ ∈ V , we introduce the following operation that
substitutes C(v, v′) with a relation r ∈ 2B to produce a new, modified, QCN: N[v,v′]/r

with r ∈ 2B yields the QCN N ′ = (V,C ′), where C ′(v, v′) = r, C ′(v′, v) = r−1 and
C ′(u, u′) = C(u, u′) ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}.

We recall the definition of �G-consistency [4] (cf [27]), which entails consistency for all
triples of variables in a QCN that form triangles in an accompanying graph G, and is a basic
and widely-used local consistency for reasoning with QCNs.

I Definition 1. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be
�
G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆ C(vi, vk) �C(vk, vj).
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We note here that if G is complete, �G-consistency becomes identical to �-consistency [27],
and, hence, �-consistency is a special case of �G-consistency. In the sequel, given a QCN
N = (V,C) of some calculus and a graph G = (V,E), we assume that �G(N ) is computable.
This assumption holds for most widely-adopted qualitative calculi [9].

3 Approach

In qualitative constraint-based reasoning, the state-of-the-art approach to check the sat-
isfiability of a given QCN N , consists in splitting every relation r that forms a constraint
between two variables in N into a subrelation r′ ⊆ r that belongs to a set of relations A over
which the QCN becomes tractable [29]. In particular, for most widely-adopted qualitative
calculi [9], such split sets are either known or readily available [26], and tractability is then
achieved via the use of some local consistency in backtracking fashion; after every refinement
of a relation r into a subrelation r′, the local consistency is enforced to know whether the
refinement is valid or backtracking should occur and another subrelation should be chosen
at an earlier point [29, Section 2]. One of the most essential and widely-used such local
consistencies is �G-consistency, where G is either the complete graph on the variables of
N [27], or a triangulation (chordal completion) of the constraint graph of N [4].2

As an illustration, the subset HIA of the set of relations of Interval Algebra [23] is tractable
for �G-consistency, i.e., �G-consistency is complete for deciding the satisfiability of any QCN
defined over HIA with respect to a triangulation G of its constraint graph [4]. That subset
contains exactly those relations that are transformed to propositional Horn formulas when
using the propositional encoding of Interval Algebra [23]. To further facilitate the reader, let
us consider the constraint C(x3, x4) in the QCN of Interva Algebra in Figure 4. The relation
{mi, di, si, p,m, d, s} that is associated with that constraint does not appear in the subset
HIA and hence tractability is not guaranteed in general, but it can be split into subrelations
{mi}, {di, si}, {p,m}, {d, s} with respect to HIA; each of those subrelations belongs to HIA.

Dynamic Selection of Subrelations via Counting Local Models

It is standard practice in the qualitative constraint-based reasoning community, and the
constraint programming community in general, that, given a constraint of some QCN, a
subrelation that is most likely to lead to a solution should be prioritized [39, 28]; in the context
of finite-domain CSPs, this strategy is known as the least-constraining value heuristic [7].

Currently, the state of the art in qualitative constraint-based reasoning implements that
selection strategy in a completely static manner. In particular, base relations of a calculus are
assigned static weights a priori, and the overall weight that is associated with a subrelation
corresponds to the sum of the weights of its base relations [39, 28]. In detail, a weight for
a base relation is obtained by successively composing it with every possible relation and
calculating the sum of the cardinalities of the results, which is then suitably scaled. Thus,
the bigger the weight for a base relation is, the less restrictive that base relation is. For
example, the weights of base relations d and s in Interval Algebra are 4 and 2 respectively
and, consequently, the weight of relation {d,s} is 4 + 2 = 6 [39, Figure 9].

2 Please refer to [15] for the properties that are needed to exploit triangulations of QCNs in terms of
tractability preservation.
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Figure 4 Given the above QCNN = (V,C) of IA, a partition of C(x3, x4) with respect to the subset
HIA [23] is {{mi}, {di, si}, {p,m}, {d, s}}; for this QCN, heuristics dynamic_avg and dynamic_sum
would prioritize relation {p,m}, and heuristics static [39], dynamic_max, and dynamic_min would
prioritize relations {d, s}, {di, si}, and {mi} respectively.

Two major problems with the aforementioned static strategy is that it assumes a uniform
use of relations in QCNs (since weights are computed by equally considering all the relations
of a calculus), and it does not exploit any structure that may be present in QCNs (a relation
that is used to form more than one constraints in a given QCN, which is typically the case,
may exhibit different levels of restrictiveness among those constraints).

In this paper, we propose the selection of subrelations to be dynamic and, in particular,
based on the count of local models that the individual base relations of a subrelation are part
of. Let N↓V ′ , with V ′ ⊆ V , denote the QCN N = (V,C) restricted to V ′, we formally define
the notion of local models as follows:

I Definition 3 (local models). Given a QCN N = (V,C), a graph G = (V,E), and a constraint
C(v, v′) with {v, v′} ∈ E, the local models of a base relation b ∈ C(v, v′) are the scenarios S
= (V ′, C ′) of N↓V ′ , with V ′ = {v, v′, u}, such that {v, u}, {u, v′} ∈ E and C(v, v′) = {b}.

Simply put, given a QCN (V,C), a graph G = (V,E), and a constraint C(v, v′) with
{v, v′} ∈ E, we count how many times a given base relation b ∈ C(v, v′) participates in the
scenarios of each triangle in G that involves variables v and v′, i.e., the local models from
our perspective. In that sense, our approach can be seen as being similar to a counting-based
one for CSPs [24], which, as our own method, formalizes a framework that is adaptive and
seeks to make branching decisions that preserve most of the solutions by determining what
proportion of local solutions agree with that decision. We devise the following strategies for
choosing a subrelation from a given set of subrelations:

dynamic_f: for each subrelation r′ find the f count of local models among each base
relation b ∈ r′, where f ∈ {max,min, avg, sum}, then choose the subrelation for which the
highest such count was obtained.

In the context of counting local models, dynamic_max, dynamic_min, dynamic_avg,
and dynamic_sum prioritize the subrelation with the best most, least, on avegare, and in
aggregate supportive base relation respectively. At this point, let us revisit the QCN of
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Algorithm 1 Refinement(N , G, A, f).

in :A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, and a function
f ∈ {max,min, avg, sum}.

out :A refinement of N with respect to G over A, or ⊥V .
1 begin
2 N ← �

G(N );
3 if ∅ ∈ �G(N ) then
4 return ⊥V ;
5 if ∀{v, v′} ∈ E, C(v, v′) ∈ A then
6 return N ;
7 (v, v′) ← {v, v′} ∈ E such that C(v, v′) 6∈ A;
8 foreach r ∈ dynamicSelection(N , G, A, (v, v′), f) do
9 result ← Refinement(N[v,v′]/r, G, A, f);

10 if result 6= ⊥V then
11 return result;

12 return ⊥V ;

Algorithm 2 dynamicSelection(N , G, A, (v, v′), f).

in :A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, a pair of variables
(v, v′), and a function f ∈ {max,min, avg, sum}.

out :A relation r ∈ A.
1 begin
2 counter ← hashTable();
3 foreach r ∈ {r1, r2, . . . , rn ∈ A | {r1, r2, . . . , rn} is a partition of C(v, v′)} do
4 counter[r] ← f{localModels(b,N , G, (v, v′)) | b ∈ r};
5 while counter is not empty do
6 r ← counter key paired with the maximum value;
7 remove r from counter;
8 yield r;

Interval Algebra in Figure 4, where the relation {mi, di, si, p,m, d, s} that is associated with
the constraint C(x3, x4) is split into subrelations {mi}, {di, si}, {p,m}, {d, s} with respect to
subset HIA. By viewing the table that lists the count of local models for each base relation
in C(x3, x4) on the right-hand side of the figure, the reader can verify that each strategy
correctly prioritizes its subrelation of choice according to its objective; as a reminder, the
weights associated with the static strategy detailed earlier are provided in [39, Figure 9].

Tackling QCNs via Incorporating Dynamic Branching
For reference, a variation of the state-of-the-art backtracking algorithm for solving a QCN
is provided in Algorithm 1, the main diffence to the one appearing in the literature [29,
Section 2] being the use of dynamic selection of subrelations, in line 8, instead of selection
based on static weights. Another difference is the use of a graph as a parameter, but, over
the past few years, this has become a standard way of generalizing the original algorithm to
exploit certain properties of a calculus that relate to graphs, see [34] and references therein.

The dynamic strategies that we described earlier are formally presented in Algorithms 2
and 3. In particular, in lines 2–4 of Algorithm 2 we calculate the count of local models for
each base relation of each subrelation that pertains to a given constraint. This calculation

TIME 2020
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Algorithm 3 localModels(b,N , G, (v, v′)).

in :A base relation b, a QCN N = (V,C), a graph G = (V,E), and a pair of variables
(v, v′).

out :An integer.
1 begin
2 count ← 0;
3 foreach u ∈ NG(v) ∩ NG(v′) do
4 foreach (b′, b′′) ∈ C(v, u)× C(u, v′) do
5 if b ∈ b′ � b′′ then
6 count ← count + 1;

7 return count;

is performed via a call to Algorithm 3. After obtaining the count of models for each such
base relation, we implement the chosen strategy by applying the respective function among
{max,min, avg, sum} on the results. Now, each subrelation is associated with a number,
a dynamic weight, and in lines 5–8 the subrelation with the highest dynamic weight is
prioritized each time there is a need for a new subrelation to be tried out in an assignment.

Complexity Analysis. Given the fact that for a calculus the number of its base relations,
i.e., |B|, can be viewed as a constant, Algorithm 2 calculates the count of local models for
a base relation in a given constraint in linear time in the maximum degree of the graph G
that is used as a parameter; each subsequent prioritization of a subrelation based on those
calculated counts (lines 5–8) takes constant time. In particular, given a QCN N = (V,C)
and a graph G = (V,E), Algorithm 2 runs in Θ(∆(G)) time. In practice, there was no
noticable slowdown for the dataset that we consider in this paper (see Section 4), which is
not surprising, as the search space for solving a QCN is O(|B||E|) in general.

4 Evaluation

In this section we evaluate the proposed dynamic branching heuristics, as well as the
state-of-the-art static branching strategy that appears in the literature, with respect to the
fundamental reasoning problem of satisfiability checking of QCNs. Specifically, we explore
the efficiency of the involved heuristics in determining the satisfiability of a given network
instance when used in the standard backtracking algorithm (see Algorithm 1), and investigate
their fitness score too, which is the difference “% of times a heuristic f is the best choice” −
“% of times a heuristic f is the worst choice” ; clearly, fitness score ∈ [−100%, 100%]. Finally,
we also present results for two virtual portfolios of reasoners that always make the best and
worst choice of a heuristic respectively for a given network instance.

Technical specifications. The evaluation was carried out on a computer with an Intel
Core i7-8565U processor, 16 GB of RAM, and the Ubuntu 18.04.4 LTS x86_64 OS. All
algorithms were coded in Python and run using the PyPy intepreter under version 5.10.0,
which implements Python 2.7.13. Only one CPU core was used per run.

Dataset. We generated 7 000 random instances of Interval Algebra using model H(n =
40, d) [22], 1 000 for each constraint graph degree value d ∈ {9, 10, 11, 12, 13, 14, 15} specifically,
and 4 000 structured instances of Interval Algebra using model BA(n = 80,m, 3CNF) [31],
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Figure 5 Fitness score of each strategy for the instances of Table 1; “% of times a heuristic f is
the best choice” − “% of times a heuristic f is the worst choice”.

1 000 for each constraint graph preferential attachment [2] value m ∈ {4, 5, 6, 7} specifically.
In both of the aforementioned generation models, constraints were picked from the set of
relations expressible in 3CNF when transformed into first-order formulae [22], in order to
increase the branching factor in the search tree as much as possible. Finally, regarding
the graphs that were given as input to our algorithms, the maximum cardinality search
algorithm [38] was used to obtain triangulations of the constraint graphs of our QCNs.

Results. Regarding the generation model H(n = 40, d), the main results are presented in
Table 1. The dynamic strategies of dynamic_min and dynamic_avg are up to 20% faster on
average than the static one in the phase transition of the tested instances.3 Specifically, the
phase transition covers mostly the case where d = 12, and a little less the case where d = 13.
With respect to the rest of the dynamic heuristics, viz., dynamic_max and dynamic_sum,
the results suggest that dynamic_max outperforms static by a small margin on average in
the phase transition, whilst dynamic_sum almost mimics the performance of static, if not
arguably being a little worse than static overall. This last finding informs us that relying too
much on the number of base relations of a relation (viz., the cardinality of a relation) is a
bad choice in general, i.e., it is better to focus on few base relations individually, where each
one appears in many local models (quality), than on many base relations aggregately, where
each one appears in few local models (quantity). The aforementioned results are depicted
from a different perspective and complemented in Figure 5, where the fitness score for each
heuristic is detailed. The superiority of heuristics dynamic_min and dynamic_avg among all
strategies becomes even more so clear, and the marginal performance gains of dynamic_max,
and dynamic_sum at times with respect to static in the phase transition are well-captured
by their fitness scores too. Finally, at this point, it is interesting to observe the performance
of the virtual portfolios of reasoners best and worst; as a reminder these always make the best

3 Even though the improvement for this particular dataset may not seem that drastic, bear in mind that
the instances of this dataset have little to no structure as their constraint graphs are regular graphs.
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Figure 6 Fitness factor of each strategy for the instances of Table 2; “% of times a heuristic f is
the best choice” − “% of times a heuristic f is the worst choice”.

and worst choice of a heuristic respectively for a given network instance. The performance
of portfolio best in particular allows us to be optimistic about future research in dynamic
strategies, since it shows that there is still a lot of room for improvement. Specifically,
research could be carried out both in terms of defining new dynamic strategies and in terms
of devising selection protocols that choose among already existing strategies.

Regarding the generation model BA(n = 80,m, 3CNF), the results are presented in Table 2
and Figure 6. Here, dynamic_min and dynamic_avg are up to 3 and 5 times faster on
average respectively than the static one in the phase transition of the tested instances, which
appears for m = 6. The rest of the results are qualitative similar to the previous dataset.

Since the runtime distribution is heavy-tailed for both datasets, the interested reader
may want to look into the 0.5th percentile of most difficult instances pertaining to Tables 1
and 2 for each strategy, depicted in Figures 7 and 8 respectively in Appendix A.

5 Conclusion and Future Work

We introduced and evaluated dynamic branching strategies for solving QCNs via backtracking
search, based on the count of local models (or local scenarios) that a possible relation for
a given constraint is involved with in a considered QCN. Thus, we addressed a limitation
in the state of the art in qualitative constraint-based reasoning, where the selection of a
possible relation for a given contraint is dictated a priori by precomputed static weights,
without any regard to the particulars of a given network instance of that calculus, such as its
structure. Our approach is adaptive and seeks to make branching decisions that preserve
most of the solutions by determining what proportion of local solutions agree with that
decision. An evaluation with a random and a structured dataset of QCNs of Interval Algebra
showed that up to 5 times better performance may be achieved for structured instances,
whilst non-negligible gains of around 20% are maintained for random ones.

As this is a new approach, there are many directions for future work. In particular, we aim
to devise selection protocols that choose among different strategies, as the performance of the
virtual portfolio best in our evaluation, which always makes the best choice of a heuristic for

TIME 2020
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a given network instance, revealed that there is still a lot of room for improvement. Further,
more sophisticated dynamic heuristics could be developed by going beyond triples of variables,
which currently form the local models, and engaging larger parts of an instance. Finally, we
would like to pair this approach with ongoing research on singleton consistencies [33, 30], and
implement adaptive reasoners where the level of consistency checking during search would be
adjusted according to the count of local models pertaining to a given constraint.
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A Evaluation Figures
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Figure 7 Insight into the 0.5th percentile of most difficult instances of Table 1 for each strategy.
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Figure 8 Insight into the 0.5th percentile of most difficult instances of Table 2 for each strategy.
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