
On the Decidability of a Fragment of
preferential LTL
Anasse Chafik
CRIL, University of Artois & CNRS, Arras, France
chafik@cril.fr

Fahima Cheikh-Alili
CRIL, University of Artois & CNRS, Arras, France
cheikh@cril.fr

Jean-François Condotta
CRIL, University of Artois & CNRS, Arras, France
condotta@cril.fr

Ivan Varzinczak
CRIL, University of Artois & CNRS, Arras, France
varzinczak@cril.fr

Abstract
Linear Temporal Logic (LTL) has found extensive applications in Computer Science and Artificial
Intelligence, notably as a formal framework for representing and verifying computer systems that
vary over time. Non-monotonic reasoning, on the other hand, allows us to formalize and reason
with exceptions and the dynamics of information. The goal of this paper is therefore to enrich
temporal formalisms with non-monotonic reasoning features. We do so by investigating a preferential
semantics for defeasible LTL along the lines of that extensively studied by Kraus et al. in the
propositional case and recently extended to modal and description logics. The main contribution of
the paper is a decidability result for a meaningful fragment of preferential LTL that can serve as the
basis for further exploration of defeasibility in temporal formalisms.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Knowledge Representation, non-monotonic reasoning, temporal logic

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.19

Related Version https://github.com/calleann/Preferential_LTL.

1 Introduction

Specification and verification of dynamic computer systems is an important task, given
the increasing number of new computer technologies being developed. Recent examples
include blockchain technology and various existing tools for home automation of the different
production chains provided by Industry 4.0. Therefore, it is fundamental to ensure that
systems based on them have the desired behavior but, above all, satisfy safety standards.
This becomes even more critical with the increasing deployment of artificial intelligence
techniques as well as the need to explain their behaviors.

Several approaches for qualitative analysis of computer systems have been developed.
Among the most fruitful are the different families of temporal logic. The success of these is
due mainly to their simplified syntax compared to that of first-order logic, their intuitive
syntax, semantics and their good computational properties. One of the members of this
family is Linear Temporal Logic [15, 19], known as LTL, is wildly used in formal verification
and specification of computer programs.

© Anasse Chafik, Fahima Cheikh-Alili, Jean-François Condotta, and Ivan Varzinczak;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chafik@cril.fr
mailto:cheikh@cril.fr
mailto:condotta@cril.fr
mailto:varzinczak@cril.fr
https://doi.org/10.4230/LIPIcs.TIME.2020.19
https://github.com/calleann/Preferential_LTL
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 On the Decidability of a Fragment of preferential LTL

Despite the success and wide use of linear temporal logic, it remains limited for modeling
and reasoning about the real aspects of computer systems or those that depend on them.
In fact, computer systems are not either 100% secure or 100% defective, and the properties
we wish to check may have innocuous and tolerable exceptions, or conversely, exceptions
that must be carefully addressed in order to guarantee the overall reliability of the system.
Similarly, the expected behavior of a system may be correct not for all possible execution,
but rather for its most “normal” or expected executions.

It turns out that LTL, because it is a logical formalism of the so-called classical type,
whose underlying reasoning is that of mathematics and not that of common sense, does not
allow at all to formalize the different nuances of the exceptions and even less to treat them.
First of all, at the level of the object language (that of the logical symbols), it has operators
behaving monotonically, and at the level of reasoning, posses a notion of logical consequence
which is monotonic too, and consequently, it is not adapted to the evolution of defeasible
facts.

Non-monotonic reasoning (NMR), on the other hand, allows to formalize and reason with
exceptions, it has been widely studied by the AI community for over 40 years now. Such is
the case of Kraus et al. [12] , known as the KLM approach.

However, the major contributions in this area are limited to the propositional framework.
It is only recently that some approaches to non-monotonic reasoning, such as belief revision,
default rules and preferential approaches, have been studied for more expressive logics than
propositional logic, including modal [3, 5] and description logics [4, 9]. The objective of
our study is to establish a bridge between temporal formalisms for the specification and
verification of computer systems and approaches to non-monotonic reasoning, in particular
the preferential one, which satisfactorily solves the limitations raised above.

In this paper, we define a logical framework for reasoning about defeasible properties of
program executions, we investigate the integration of preferential semantics in the case of
LTL, hereby introducing preferential linear temporal logic LTL˜. The remainder of the
present paper is structured as follows: In Section 3 we set up the notation and appropriate
semantics of our language. In Sections 4, 5 and 6, we investigate the satisfiability problem of
this formalism. The appendix contains proofs of results in this paper. The remaining proofs
can be viewed in https://github.com/calleann/Preferential_LTL.

2 Preliminaries: LTL and the KLM approach to NMR

Let P be a finite set of propositional atoms. The set of operators in the Linear Temporal
Logic can be split into two parts: the set of Boolean connectives (¬,∧), and that of temporal
operators (�,♦,©,U), where � reads as always, ♦ as eventually, © as next and U as until.
The set of well-formed sentences expressed in LTL is denoted by L. Sentences of L are built
up according to the following grammar: α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα.

Let the set of natural numbers N denote time points. A temporal interpretation I is
a mapping function V : N −→ 2P which associates each time point t ∈ N with a set
of propositional atoms V (t) corresponding to the set of propositions that are true in t.
(Propositions not belonging to V (t) are assumed to be false at the given time point.) The
truth conditions of LTL sentences are defined as follows, where I is a temporal interpretation
and t a time point in I:

I, t |= p if p ∈ V (t); I, t |= ¬α if I, t 6|= α;
I, t |= α ∧ α′ if I, t |= α and I, t |= α′; I, t |= α ∨ α′ if I, t |= α or I, t |= α′;

https://github.com/calleann/Preferential_LTL

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:3

I, t |= �α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t; I, t |= ♦α if I, t′ |= α for some t′ ∈ N s.t.
t′ ≥ t;
I, t |= ©α if I, t+ 1 |= α;
I, t |= αUα′ if I, t′ |= α′ for some t′ ≥ t and for all t ≤ t′′ < t′ we have I, t′′ |= α.

We say α ∈ L is satisfiable if there are I and t ∈ N such that I, t |= α.

We now give a brief outline to Kraus et al.’s [12] approach to non-monotonic reasoning.
A propositional defeasible consequence relation |∼ [12] is defined as a binary relation on
sentences of an underlying propositional logic. The semantics of preferential consequence
relation is in terms of preferential models: A preferential model on a set of atomic propositions
P is a tuple P def= (S, l, g) where S is a set of elements called states, l : S −→ 2P is a mapping
which assigns to each state s a single world m ∈ 2P and g is a strict partial order on S

satisfying smoothness condition. Intuitively, the states that are lower down in the ordering
are more plausible, normal or in a general case preferred, than those that are higher up. A
statement of the form α |∼ β holds in a preferential model iff he minimal α-states are also
β-states.

3 Preferential LTL

In this paper, we introduce a new formalism for reasoning about time that is able to
distinguish between normal and exceptional points of time. We do so by investigating a
defeasible extension of LTL with a preferential semantics. The following example introduces
a case scenario we shall be using in the remainder of this section, with the purpose of giving
a motivation for this formalism and better illustrating the definitions in what follows.

I Example 1. We have a computer program in which the values of its variables change
with time. In particular, the agent wants to check two parameters, say x and y. These two
variables take one and only one value between 1 and 3 on each iteration of the program. We
represent the set of atomic propositions by P = {x1, x2, x3, y1, y2, y3} where xi (resp. yi) for
all i ∈ {1, 2, 3} is true iff the variable x (resp. y) has the value i in a current iteration. Figure
1 depicts a temporal interpretation corresponding to a possible behaviour of such a program:

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

Figure 1 LTL interpretation V (for t > 5, V (t) = V (5) = {x2, y3}).

Under normal circumstances, the program assigns the value 3 to y whenever x = 2. We
can express this fact using classical LTL as follows: �(x2 → y3), with x2 → y3 is defined by
¬x2 ∨ y3. Nevertheless, the agent notices that there is one exceptional iteration (Iteration 3)
where the program assigns the value 1 to y when x = 2.

Some might consider that the current program is defective at some points of time. In LTL,
the statement �(x2 → y3)∧♦(x2 ∧ y1) will always be false, since y cannot have two different
values in an iteration where x = 2. Nonetheless we want to propose a logical framework
that is exception tolerant for reasoning about a system’s behaviour. In order to express this
general tendency (x2 → y3) while taking into account that there might be some exceptional
iterations that are expected.

TIME 2020

19:4 On the Decidability of a Fragment of preferential LTL

3.1 Introducing defeasible temporal operators
Britz & Varzinczak [5] introduced new modal operators called defeasible modalities. In their
setting, defeasible operators, unlike their classical counterparts, are able to single out normal
worlds from those that are less normal or exceptional in the reasoner’s mind. Here we extend
the vocabulary of classical LTL with the defeasible temporal operators �∼ and ♦∼. Sentences
of the resulting logic LTL˜ are built up according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα | �∼α | ♦∼α

The intuition behind these new operators is the following: �∼ reads as defeasible always and
♦∼ reads as defeasible eventually.

I Example 2. Going back to our example 1, we can describe the normal behaviour of the
program using the statement �∼(x2 → y3)∧♦(x2 ∧ y1). In all normal future time points, the
program assigns the value 3 to y when x = 2. Although unlikely, there are some exceptional
time points in the future where x = 2 and y = 1. But those are ‘ignored’ by the defeasible
always operator.

The set of all well-formed LTL˜ sentences is denoted by L˜ . It is worth to mention
that any well-formed sentence α ∈ L is a sentence of L ˜ . We denote a subset of our
language that contains only Boolean connectives, the two defeasible operators �∼, ♦∼ and their
classical counterparts by L?. Next we shall discuss how to interpret statements that have
this defeasible aspect and how to determine the truth values of each well-formed sentence
in L˜ .

3.2 Preferential semantics
First of all, in order to interpret the sentences of L˜ we consider, as stated on the preliminaries,
(N, <) to be a temporal structure. Hence, a temporal interpretation that associates each
time point t with a truth assignment of all propositional atoms.

The preferential component of the interpretation of our language is directly inspired by
the preferential semantics proposed by Shoham [17] and used in the KLM approach [12].
The preference relation g is a strict partial order on our points of time. Following Kraus et
al. [12], t g t′ means that t is more preferred than t′. The reasoner has now the tools to
express the preference between points of time by comparing them w.r.t. each other, with
time points lower down the order being more preferred than those higher up.

I Definition 3. Let g be a strict partial order on a set N and N ⊆ N. The set of the minimal
elements of N w.r.t. g , denoted by min g (N), is defined by min g (N) def= {t ∈ N | there is no
t′ ∈ N such that t′ g t}.

I Definition 4 (Well-founded set). Let g be a strict partial order on a set N. We say N is
well-founded w.r.t. g iff min g (N) 6= ∅ for every ∅ 6= N ⊆ N.

I Definition 5 (Preferential temporal interpretation). An LTL˜ interpretation on a set of
propositional atoms P, also called preferential temporal interpretation on P, is a pair I def=(V, g)
where V is a temporal interpretation on P, and g ⊆ N×N is a strict partial order on N such
that N is well-founded w.r.t. g . We denote the set of preferential temporal interpretations by
I.

In what follows, given a preference relation g and a time point t ∈ N, the set of preferred
time points relative to t is the set min g ([t,+∞[) which is denoted in short by min g (t). It
is also worth to point out that given a preferential interpretation I = (V, g) and N, the set
min g (t) is always a non-empty subset of [t,+∞[at any time point t ∈ N.

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:5

Preferential temporal interpretations provide us with an intuitive way of interpreting
sentences of L˜. Let α ∈ L˜, let I = (V, g) be a preferential interpretation, and let t be a
time point in I in N. Satisfaction of α at t in I, denoted I, t |= α, is defined as follows:

I, t |= �∼α if I, t′ |= α for all t′ ∈ min g (t);
I, t |= ♦∼α if I, t′ |= α for some t′ ∈ min g (t).

The truth values of Boolean connectives and classical modalities are defined as in LTL.
The intuition behind a sentence like �∼α is that α holds in all preferred time points that
come after t. ♦∼α intuitively means that α holds on at least one preferred time point relative
in the future of t.

We say α ∈ L˜ is preferentially satisfiable if there is a preferential temporal interpretation I
and a time point t in N such that I, t |= α. We can show that α ∈ L˜ is preferentially
satisfiable iff there is a preferential temporal interpretation I s.t. I, 0 |= α. A sentence α ∈ L˜
is valid (denoted by |= α) iff for all temporal interpretation I and time points t in N, we
have I, t |= α.

I Example 6. Going back to Example 1, we can see that the time points 5 and 1 are
more “normal” than iteration 3. By adding preferential preference g := {(5, 3), (1, 3)}, we
denote the preferential temporal interpretation by I = (V, g). We have that I, 0 6|= �(x2 →
y3) ∧ ♦(x2 ∧ y1) and I, 0 |= �∼(x2 → y3) ∧ ♦(x2 ∧ y1).

We can see that the addition of g relation preserves the truth values of all classical
temporal sentences. Moreover, for every α ∈ L, we have that α is satisfiable in LTL if and
only if α is preferentially satisfiable in LTL˜.

We discuss some properties of these defeasible modalities next. In what follows, let
α, β be well-formed sentences in L˜ . We have duality between our defeasible operators:
|= �∼α↔ ¬ ♦∼¬α. We also have |= �α→ �∼α and |= ♦∼α→ ♦α. Intuitively, This property
states that if a statement holds in all of future time points of any given point of time t, it holds
on all our future preferred time points. As intended, this property establishes the defeasible
always as “weaker” than the classical always. It can commonly be accepted since the set of
all preferred future states are in the future. This is why we named �∼ defeasible always. On
the other hand, we see that ♦∼ is “stronger” than classical eventually, the statement within
♦∼ holds at a preferable future.

The axiom of distributivity (K) can be stated in terms of our defeasible operators.
We can also verify the validity of these two statements |= �∼(α ∧ β) ↔ (�∼α ∧ �∼β) and
|= (�∼α ∨ �∼β)→ �∼(α ∨ β), the converse of the second statement is not always true.

The reflexivity axiom (T) for the classical operators does not hold in the case of defeasible
modalities. We can easily find an interpretation I = (V, g) where I, t 6|= �∼α→ α. Indeed,
since we can have t 6∈ min g (t) for a temporal point t, we can have I, t |= �∼α and I, t |= ¬α.

One thing worth pointing out is the set of future preferred time points changes dynamically
as we move forward in time. Given three time points t1 ≤ t2 ≤ t3, t3 6∈ min g (t1) whilst
t3 ∈ min g (t2) could be true in some cases. Hence, if I, t |= �∼�∼α does not imply that for
all t′ ∈ min g (t), I, t

′ |= �∼α. Therefore, the transitivity axiom (4) does not hold also in
our defeasible modalities. On the other hand, given those three time points, t3 6∈ min g (t1)
implies that t3 6∈ min g (t2).

3.3 State-dependent preferential interpretations
We define a class of well-behaved LTL˜ interpretations that are useful in the remainder of
the paper.

TIME 2020

19:6 On the Decidability of a Fragment of preferential LTL

I Definition 7 (State-dependent preferential interpretations). Let I = (V, g) ∈ I. I is
state-dependent preferential interpretation iff for every i, j, i′, j′ ∈ N, if V (i′) = V (i) and
V (j′) = V (j), then (i, j) ∈ g iff (i′, j′) ∈ g .

In what follows, Isd denotes the set of all state-dependent interpretations. The intuition
behind setting up this restriction is to have a more compact form of expressing preference
over time points. In a way, time points with similar valuations are considered to be identical
with regards to g , they express the same preferences towards other time points. Moreover,
we have some interesting properties that do not in the general case. In particular, we have
the following property :

I Proposition 8. Let I = (V, g) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). If V (j) = V (j′), then j′ ∈ min g (i

′).

This property is specific to the class of state-dependent interpretations. However, the
following proposition is true for every I ∈ I.

I Proposition 9. Let I = (V, g) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j,
we have j ∈ min g (i

′).

4 A useful representation of preferential structures

One of the objectives of this paper is to establish some computational properties about the
satisfiability problem. In order to do this, we introduce into the sequel different structures
inspired by the approach followed by Sistla and Clarke in [18]. They observe that in every
LTL interpretation, there is a time point t after which every t-successor’s valuation occurs
infinitely many times. This is an obvious consequence of having an infinite set of time points
and a finite number of possible valuations. That is the case also for LTL˜ interpretations.

I Lemma 10. Let I = (V, g) ∈ I. There exists a t ∈ N s.t. for all l ∈ [t,+∞[, there is a
k > l where V (l) = V (k).

For an interpretation I ∈ I, we denote the first time point where the condition set in
Lemma 10 is satisfied by tI . We can split each temporal structure into two intervals: an
initial and a final part.

I Definition 11. Let I = (V, g) ∈ I. We define: init(I) def= [0, tI [; final(I) def= [tI ,+∞[;
range(I) def= {V (i) | i ∈ final(I)}; val(I) def= {V (i) | i ∈ N}; size(I) def= length(init(I)) +
card(range(I)), where length(·) denotes the length of a sequence and card(·) set cardinality.

In the size of I we count the number of time points in the initial part and the number of
valuations contained in the final part. In what follows, we discuss some properties concerning
these notions and state dependent interpretations.

I Proposition 12. Let I = (V, g) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i

′).

I Lemma 13. Let I = (V, g) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).
Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.

I Definition 14 (Faithful Interpretations). Let I = (V, g) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two
interpretations over the same set of atoms P. We say that I, I ′ are faithful interpretations
if val(I) = val(I ′) and, for all i, j, i′, j′ ∈ N s.t. V ′(i′) = V (i) and V ′(j′) = V (j), we have
(i, j) ∈ g iff (i′, j′) ∈ g ′.

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:7

Throughout this paper, we write init(I) .= init(I ′) as shorthand for the condition that
states: length(init(I)) = length(init(I ′)) and for each i ∈ init(I) we have V (i) = V ′(i).

I Lemma 15. Let I = (V, g) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over
P such that V ′(0) = V (0) (in case init(I) is empty), init(I) .= init(I ′), and range(I) =
range(I ′). Then for all α ∈ L?, we have that I, 0 |= α iff I ′, 0 |= α.

Lemma 15 implies that the ordering of time points in final(·) does not matter, and what
matters is the range(·) of valuations contained within it. It is worth to mention that Lemma
13 and 15 hold only in the case interpretations in Isd and they are not always true in the
general case.

Sistla & Clarke [18] introduced the notion of acceptable sequences. The general purpose
behind it is the ability to build, from an initial interpretation, other interpretations. We
adapt this notion for preferential temporal structures. We then introduce the notion of
pseudo-interpretations that will come in handy in showing decidability of the satisfiability
problem in L? in the upcoming section.

In the sequel, the term temporal sequence or sequence in short, will denote a sequence of
ordered integer numbers. A sequence allows to represent a set of time points. Sometimes,
we will consider integer intervals as sequences. Moreover, given two sequences N1, N2, the
union of N1 and N2, denoted by N1 ∪N2, is the sequence containing only elements of N1 and
N2. An acceptable sequence is a temporal sequence that is built relatively to a preferential
temporal interpretation I as follows:

I Definition 16 (Acceptable sequence w.r.t. I). Let I = (V, g) ∈ I and N be a sequence of
temporal time points. N is an acceptable sequence w.r.t. I iff for all i ∈ N ∩ final(I) and for
all j ∈ final(I) s.t. V (i) = V (j), we have j ∈ N .

The particularity we are looking for is that any picked time point in init(·) (resp. final(·))
will remain in the initial (resp. final) part of the new interpretation. It is worth pointing
out that an acceptable sequence w.r.t. a preferential temporal interpretation can be either
finite or infinite. Moreover, N is an acceptable sequence w.r.t. any interpretation I ∈ I. The
purpose behind the notion of acceptable sequence is to construct new interpretations starting
from an LTL˜ interpretation.

Given N an acceptable sequence w.r.t. I, if N has a time point t in final(I), then all
time points t′ that have the same valuation as t must be in N . Thus, we have an infinite
sequence of time points. As such, we can define an initial part and a final part, in a similar
way as LTL˜ interpretations. We let init(I,N) be the largest subsequence of N that is a
subsequence of init(I). Note that if N does not contain any time point of final(I), then N is
finite.

I Definition 17. Let I = (V, g) ∈ I, and let N be an acceptable sequence w.r.t. I. We define:
init(I,N) def=N ∩ init(I); final(I,N) def=N \ init(I,N); range(I,N) def= {V (t) | t ∈ final(I,N)};
val(I,N) def= {V (t) | t ∈ N}; size(I,N) def= length(init(I,N)) + card(range(I,N)).

It is worth mentioning that, thanks to Definition 16, given an acceptable sequence w.r.t.
I, we have size(I,N) ≤ size(I).

I Definition 18 (Pseudo-interpretation over N). Let I = (V, g) ∈ I and N be an acceptable
sequence w.r.t. I. The pseudo-interpretation over N is the tuple IN def= (N,V N , g N) where:

V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have V N (i) =
V (i),
g N⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ g N iff (i, j) ∈ g .

TIME 2020

19:8 On the Decidability of a Fragment of preferential LTL

The truth values of L? sentences in pseudo-interpretations are defined in a similar fashion
as for preferential temporal interpretations. With |=P we denote the truth values of sentences
in a pseudo-interpretation. We highlight truth values for classical and defeasible modalities.

IN , t |=P �α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;
IN , t |=P ♦α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;
IN , t |=P �∼α if for all t′ ∈ N s.t. t′ ∈ min g N (t), we have IN , t |=P α;
IN , t |=P ♦∼α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ∈ min g N (t).

I Proposition 19. Let I = (V, g) ∈ I, N1, N2 be two acceptable sequences w.r.t. I. Then
N1 ∪N2 is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).

I Proposition 20. Let I = (V, g) ∈ I and N be an acceptable sequence w.r.t. I. If
for all distinct t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then
size(I,N) ≤ 2|P|.

5 Bounded-model property

The main contribution of this paper is to establish certain computational properties regarding
the satisfiability problem in L?. The algorithmic problem is as follows: Given an input
sentence α ∈ L?, decide whether α is preferentially satisfiable. In this section, we show that
this problem is decidable.

The proof is based on the one given by Sistla and Clarke to show the complexity of
propositional linear temporal logic [18]. Let L? be the fragment of L˜ that contains only
Boolean connectives and temporal operators (�, �∼,♦, ♦∼). Let α ∈ L?, with |α| we denote
the number of symbols within α. The main result of the present paper is summarized in the
following theorem, of which the proof will be given in the remainder of the section.

I Theorem 21 (Bounded-model property). If α ∈ L? is Isd-satisfiable, then we can find an
interpretation I ∈ Isd such that I, 0 |= α and size(I) ≤ |α| × 2|P|.

Hence, given a satisfiable sentence α ∈ L?, there is an interpretation satisfying α of which
the size is bounded. Since α is Isd-satisfiable, we know I, 0 |= α. From I we can construct an
interpretation I ′ also satisfying α, i.e., I ′, 0 |= α, which is bounded on its size by |α| × 2|P|.
The goal of this section is to show how to build said bounded interpretation. Let α ∈ L? and
let I ∈ Isd be s.t. I, 0 |= α. The first step is to characterize an acceptable sequence N w.r.t.
I such that N is bounded first of all, and “keeps” the satisfiability of the sub-sentences α1 of
α i.e., if I, t |= α1, then IN , t |=P α1 (see Definition 18). We do so by building a bounded
pseudo-interpretation step by step by selecting what to take from the initial interpretation
I for each sub-sentence α1 contained in α to be satisfied. In what follows, we introduce
Anchors(·) as a strategy for picking out the desired time points.

I Definition 22 (Acceptable sequence transformation). Let I = (V, g) ∈ I and let N be a
sequence of time points. Let N ′ be the sequence of all time points t′ in final(I) for which there
is t ∈ N ∩ final(I) with V (t′) = V (t). With AS(I,N) def= N ∪N ′ we denote the acceptable
sequence transformation of N w.r.t. I.

The sequence AS(I,N) is the acceptable sequence transformation of N w.r.t. I. In the
previous definition, N ′ is the sequence of all time points t′ having the same valuation as some
time point t ∈ N that is in final(I). It is also worth to point out that N ′ can be empty in
the case of there being no time point t ∈ N that is in final(I). N is then a finite acceptable
sequence w.r.t. I where AS(I,N) = N . This notation is mainly used to ensure that we are
using the acceptable version of any sequence.

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:9

I Definition 23 (Chosen occurrence w.r.t. α). Let I = (V, g) ∈ I, α ∈ L ˜ and N be an
acceptable sequence w.r.t. I s.t. there exists a time point t in N with I, t |= α. The chosen
occurrence satisfying α in N , denoted by tI,Nα , is defined as follows:

tI,Nα
def=

{
min<{t ∈ final(I,N) | I, t |= α}, if {t ∈ final(I,N) | I, t |= α} 6= ∅

max<{t ∈ init(I,N) | I, t |= α}, otherwise.

Notice that < above denotes the natural ordering of the underlying temporal structure.
The strategy to pick out a time point satisfying a given sentence α in N is as follows. If said
sentence is in the final part, we pick the first time point that satisfies it, since we have the
guarantee to find infinitely many time points having the same valuations as tI,Nα that also
satisfy α (see Lemma 13). If not, we pick the last occurrence in the initial part that satisfies
α. Thanks to Definition 23, we can limit the number of time points taken that satisfy the
same sentence.

I Definition 24 (Selected time points). Let I = (V, g) ∈ I, N be an acceptable sequence
w.r.t. I and α ∈ L˜ s.t. there is t in N s.t. I, t |= α. With ST(I,N, α) def= AS(I, (tI,Nα)) we
denote the selected time points of N and α w.r.t. I. (Note that (tI,Nα) is a sequence of only
one element.)

Given a sentence α ∈ L˜ and an acceptable sequenceN w.r.t. I s.t. there is at least one time
point t where I, t |= α, the sequence ST (I,N, α) is the acceptable sequence transformation
of the sequence (tI,Nα). If tI,Nα ∈ init(I), the sequence ST(I,N, α) is the sequence (tI,Nα).
Otherwise, the sequence ST (I,N, α) is the sequence of all time points t in final(I) that have
the same valuation as tI,Nα . In both cases, we can see that size(I,ST (I,N, α)) = 1.

Given an interpretation I = (V, g) andN an acceptable sequence w.r.t I, the representative
sentence of a valuation v is formally defined as αv def=

∧
{p | p ∈ v} ∧

∧
{¬p | p 6∈ v}.

IDefinition 25 (Distinctive reduction). Let I = (V, g) ∈ I and let N be an acceptable sequence
w.r.t. I. With DR(I,N) def=

⋃
v∈val(I,N) ST (I,N, αv) we denote the distinctive reduction of N .

Given an acceptable sequence N w.r.t. I, DR(I,N) is the sequence containing the chosen
occurrence tI,Nαv

that satisfies the representative αv in N for each v ∈ val(I,N). In other
words, we pick the selected time points for each possible valuation in val(I,N). There are two
interesting results with regard to DR(I,N). The first one is that DR(I,N) is an acceptable
sequence w.r.t. I. This can easily be proven since ST (I,N, αv) is also an acceptable sequence
w.r.t. I, and the union of all ST (I,N, αv) is an acceptable sequence w.r.t. I (see Proposition
19). The second result is that size(I,DR(I,N)) ≤ 2|P|. Indeed, thanks to Proposition
19, we can see that size(I,DR(I,N)) ≤

∑
v∈val(I,N) size(ST(I,N, αv)). Moreover, we have

size(I,ST (I,N, αv)) = 1 for each v ∈ val(I,N). On the other hand, there are at most 2|P|

possible valuations in val(I,N). Thus, we can assert that
∑
v∈val(I,N) size(I,ST (I,N, αv)) ≤

2|P|, and then we have size(I,DR(I,N)) ≤ 2|P|.

I Definition 26 (Anchors). Let a sentence α ∈ L? starting with a temporal operator, let
I = (V, g) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we
have I, t |= α. The sequence Anchors(I, T, α) is defined as: Let α1 ∈ L?.

Anchors(I, T,♦α1) def= ST (I,N, α1);
Anchors(I, T,�α1) def= ∅;
Anchors(I, T, ♦∼α1) def=

⋃
t∈T ST (I,AS(I,min g (t)), α1);

Anchors(I, T, �∼α1) def= DR(I,
⋃
t∈T AS(I,min g (t))).

TIME 2020

19:10 On the Decidability of a Fragment of preferential LTL

Given an acceptable sequence T w.r.t. I ∈ Isd where all of its time points satisfy α, where
α is a sentence starting with a temporal operator, Anchors(I, T, α) is an acceptable sequence
w.r.t. I. This is due thanks to the notion of selected time points and distinctive reduction
(see Definition 24 and 25). Anchors(I, T, α) contains the selected time points satisfying the
sub-sentence α1 of α (except for �α1). Our goal is to have the selected time points that
satisfy α1 for each t ∈ T .

It is worth to point out that the choice of Anchors(I, T,�α1) = ∅ is due to the fact α1 is
satisfied starting from the first time t0 ∈ T i.e., for all t ≥ t0, we have I, t |= α. So no matter
what time point t we pick after t0, we have I, t |= α1. On the other hand, by the nature of
the semantics of �∼α1, all t ∈

⋃
ti∈T AS(I,min g (ti)) satisfy α1. The acceptable sequence

Anchors(I, T, �∼α1) contains only the selected time points for each distinct valuation in⋃
ti∈T AS(I,min g (ti)).

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g) ∈
Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= ♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♦∼α1)).

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g) ∈
Isd. Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α.
Then, we have size(I,Anchors(I, T, α)) ≤ 2|P|.

I Proposition 29. Let α1 ∈ L?, I = (V, g) ∈ Isd, let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences
N w.r.t. I s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let
IN = (V N , g N) be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then
t′ 6∈ min g N (ti).

The strategy of building Anchors(·) is explained by the fact that we want to preserve the
truth values of defeasible sub-sentences of α in the bounded interpretation.

With Anchors(·) defined, we introduce the notion of Keep(·). This function will help us
compute recursively starting from the initial satisfiable sentence α down to its literals, the
selected time points to pick in order to build our pseudo-interpretation.

I Definition 30 (Keep). Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be an acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence Keep(I, T, α) is defined
as ∅, if T = ∅; otherwise it is recursively defined as follows:

Keep(I, T, `) def= ∅, where ` is a literal;
Keep(I, T, α1 ∧ α2) def= Keep(I, T, α1) ∪Keep(I, T, α2);
Keep(I, T, α1 ∨ α2) def= Keep(I, T1, α1) ∪ Keep(I, T2, α2), where T1 ⊆ T (resp. T2 ⊆ T) is
the sequence of all t1 ∈ T (resp. t2 ∈ T) s.t. I, t1 |= α1 (resp. I, t2 |= α2);
Keep(I, T,♦α1) def= Anchors(I, T,♦α1) ∪Keep(I,Anchors(I, T,♦α1), α1);
Keep(I, T,�α1) def= Keep(I, T, α1);
Keep(I, T, ♦∼α1) def= Anchors(I, T, ♦∼α1) ∪Keep(I,Anchors(I, T, ♦∼α1), α1);
Keep(I, T, �∼α1)def=Anchors(I, T, �∼α1)∪Keep(I, T ′, α1), whereT ′ =

⋃
ti∈T AS(I,min g (ti)).

With µ(α) we denote the number of classical and non-monotonic modalities in α.

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:11

Given an acceptable sequence N w.r.t. I, we need to make sure when a time point t ∈ N
in our acceptable sequence s.t. I, t |= α, then IN , t |=P α. The function Keep(I, T, α) returns
the acceptable sequence of time s.t. if Keep(I, T, α) ⊆ N and t ∈ T , then said condition is
met. We prove this in Lemma 32.

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I,
if Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.

Since we build our pseudo-interpretation IN by adding selected time points for each
sub-sentence α1 of α, we need to make sure that said sub-sentence remains satisfied in IN .

I Definition 33 (Pseudo-interpretation transformation). Let I = (V, g) ∈ Isd and let N be
an infinite acceptable sequence w.r.t. I. The pseudo-interpretation IN = (V N , g N) can be
transformed into a preferential interpretation I ′ = (V ′, g ′) ∈ Isd as follows:

for all i ≥ 0, we have V ′(i) = V N (ti);
for all i, j ≥ 0, ti, tj ∈ N , we have (ti, tj) ∈ g N iff (i, j) ∈ g ′.

Proof of Theorem 21. We assume that α ∈ L? is Isd-satisfiable. The first thing we notice
is that |α| ≥ µ(α) + 1. Let α′ be the NNF of the sentence α. As a consequence of
the duality rules of L?, we can deduce that µ(α′) = µ(α). Let I = (V, g) ∈ Isd s.t.
I, 0 |= α′. Let T0 = AS(I, (0)) be an acceptable sequence w.r.t. I. We can see that
size(I, T0) = 1. Since for all t ∈ T0 we have I, t |= α′ (see Lemma 13), we can compute
recursively U = Keep(I, T0, α

′). Thanks to Proposition 31, we conclude that U is an
acceptable sequence w.r.t. I s.t. size(I, U) ≤ µ(α′) × 2|P|. Let N = T0 ∪ U be the union
of T0 and U and let IN = (N,V N , g N) be its pseudo-interpretation over N . Thanks to
Proposition 19, we have size(I,N) ≤ 1 +µ(α′)×2|P|. Thanks to Lemma 32, since 0 ∈ N ∩T0
and Keep(I, T0, α

′) ⊆ N , we have IN , 0 |=P α′. In case N is finite, we replicate the last time
point tn infinitely many times. Notice that size(I,N) does not change if we replicate the
last element. We can transform the pseudo interpretation IN to I ′ ∈ Isd by changing the
labels of N into a sequence of natural numbers minding the order of time points in N (see
Definition 33). We can see that size(I ′) = size(I,N) and I ′, 0 |= α. Consequently, we have
size(I ′) ≤ 1 + µ(α′)× 2|P|. Hence, from a given interpretation I s.t. I, 0 |= α we can build
an interpretation I ′ s.t. I ′, 0 |= α and size(I ′) ≤ 1 + µ(α′)× 2|P|. Without loss of generality,
we conclude that size(I ′) ≤ |α| × 2|P|. J

6 The satisfiability problem in L?

We now provide an algorithm allowing to decide whether a sentence α ∈ L? is Isd-satisfiable
or not. For this purpose, first we focus on particular interpretations of the class Isd, namely
the ultimately periodic interpretations (UPI in short), and a finite representation of these
interpretations, called ultimately periodic pseudo-interpretation (UPPI in short). As we will
see in the second part of this section, to decide the Isd-satisfiability of a sentence α ∈ L?, the
proposed algorithm guesses a bounded UPPI in a first step. Then, it checks the satisfiability
of α by the UPI of the guessed UPPI.

I Definition 34 (UPI). Let I = (V, g) ∈ Isd and let π = card(range(I)). We say I is an
ultimately periodic interpretation if:

for every t, t′ ∈ [tI , tI + π[s.t. t 6= t′ (see Definition 10), we have V (t) 6= V (t′),
for every t ∈ [tI ,+∞[, we have V (t) = V (tI + (t− tI) mod π).

TIME 2020

19:12 On the Decidability of a Fragment of preferential LTL

A UPI I is a state dependent interpretation s.t. each time point’s valuation in final(I) is
replicated periodically. Given a UPI, π = card(range(I)) denotes the length of the period
and the interval [tI , tI + π[is the first period which is replicated periodically throughout the
final part. It is worth pointing out that for every t ∈ final(I), we have V (t) ∈ {V (t′) | t′ ∈
[tI , tI + π[}, which is one of the consequences of the definition above. Thanks to Lemma 15,
we can prove the following proposition.

I Proposition 35. Let P be a set of atomic propositions, I = (V. g) ∈ Isd, i = length(init(I))
and π = card(range(I)). There exists an ultimately periodic interpretation I ′ = (V ′, g ′) ∈ Isd

s.t. I, I ′ are faithful interpretations over P (Definition 14), init(I ′) .= init(I), range(I ′) =
range(I) and V ′(0) = V (0). Moreover, for all α ∈ L?, we have I, 0 |= α iff I ′, 0 |= α.

It is worth to point out that the size of an interpretation and that of its UPI counterparts
are equal. It can easily be seen that these interpretations have the same initial part and the
same range of valuations in the final part. We can see that I and I ′ are faithful and that
init(I ′) .= init(I), range(I ′) = range(I) and V ′(0) = V (0). Therefore, I and I ′ satisfy the
same sentences.

I Definition 36 (UPPI). A model structure is a tuple M = (i, π, VM , g M) where: i, π are
two integers such that i ≥ 0 and π > 0 (where i is intended to be the starting point of the
period, π is the length of the period); VM : [0, i+ π[−→ 2P , and g M ⊆ 2P × 2P is a strict
partial order. Moreover, (I) for all t ∈ [i, i+ π[, we have VM (t) 6= VM (i− 1); and (II) for all
distinct t, t′ ∈ [i, i+ π[, we have VM (t) 6= VM (t′).

The reason behind setting properties (I) and (II) is that we can build a UPPI from a UPI,
and back. Given a UPPI M = (i, π, VM , g M), we define the size of M by size(M) def= i+ π.
From a UPPI we define a UPI in the following way:

I Definition 37. Given a UPPI M = (i, π, VM , g M), let I(M) def= (V, g), where for every
t ≥ 0, V (t) def= VM (t), if t < i, and V (t) def= VM (i+ (t− i) mod π), otherwise, and g def= {(t, t′) |
(V (t), V (t′)) ∈ g M}.

Given a UPPI M = (i, π, VM , g M), the interval [0, i[of a UPPI corresponds to the initial
temporal part of the underlying interpretation I(M) and [i, i+π[represents a temporal period
that is infinitely replicated in order to determine the final temporal part of the interpretation.

I Definition 38 (UPPI’s preferred time points). Let M = (i, π, VM , g M) be a UPPI and
a time point t ∈ [0, i + π[. The set of preferred time points of t w.r.t. M , denoted by
min g M

(t), is defined as follows: min g M
(t) def= {t′ ∈ [min<{t, i}, i + π[| there is no t′′ ∈

[min<{t, i}, i+ π[with (VM (t′′), VM (t′)) ∈ g M}.

I Proposition 39. Let M = (i, π, VM , g M) be a UPPI, I(M) = (V, g) and t, t′, tM , t′M ∈ N
s.t.:

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM).

Now that UPPI is defined, we can move to the task of checking the satisfiability of a
sentence α. We define for a UPPI M = (i, π, VM , g M) and a sentence α ∈ L? a labelling
function labMα (·) which associates a set of sub-sentences of α to each t ∈ [0, i+ π[.

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:13

I Definition 40 (Labelling function). Let M = (i, π, VM , g M) be a UPPI, α ∈ L?. The set
of sub-sentences of α for t ∈ [0, i+ π[, denoted by labMα (t), is defined as follows:

p ∈ labMα (t) iff p ∈ VM (t); ¬α1 ∈ labMα (t) iff α1 6∈ labMα (t);
α1 ∧ α2 ∈ labMα (t) iff α1, α2 ∈ labMα (t); α1 ∨ α2 ∈ labMα (t) iff α1 ∈ labMα (t) or α2 ∈
labMα (t);
♦α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ [min<{t, i}, i+ π[;
�α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ [min<{t, i}, i+ π[;
♦∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ min g M

(t);
�∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ min g M

(t).

I Lemma 41. Let a UPPI M = (i, π, VM , g M), α ∈ L? and t ∈ N, I(M), 0 |= α iff
α ∈ labMα (0).

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M
such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.

Hence, to decide the satisfiability of a sentence α ∈ L?, we can first guess a UPPI M
bounded by |α| × 2|P|. Next, using the labelling function of M , we check the satisfiability of
α by the UPI I(M).

I Theorem 43. Isd-satisfiability problem for L? sentences is decidable.

7 Concluding remarks

In this paper, we have introduced LTL˜, a meaningful extension of linear temporal logic
featuring defeasible temporal operators. These are given an intuitive semantics in terms of
preferential temporal interpretations in which time points are ordered according to their
likelihood (or normality). The main research question of the paper is the decidability of the
resulting framework. Here we have defined the class of state-dependent interpretations Isd
and the fragment L?, and we have shown that Isd-satisfiability in the referred fragment is a
decidable problem.

We are aware that the upper bound established in this paper is intractable in practice.
One of our immediate next steps is to tighten the complexity results for the class of state-
dependent interpretations. We envisage two options: either the complexity remains the same,
in which case we shall explore other well-behaved fragments of LTL˜ ; or we show reasoning
with L? remains in the same class of LTL, in which case we shall add defeasible counterparts
to © and U together with a notion of defeasible conditional à la KLM to our framework,
thereby depicting a complete picture of defeasible model checking. In both cases, the results
here established will prove useful.

An outstanding task in the study of preferential temporal reasoning is the definition of a
sound and complete analytical tableau method for LTL˜ . For that, we can benefit from the
work of Giordano et al. [10] and Britz and Varzinczak [5, 6] in similarly-structured logics.
Nevertheless, in the case of preferential LTL, the task is far from being an easy one. The first
hurdle we need to overcome is in the definition of appropriate tableau rules for our defeasible
operators �∼ and ♦∼. Indeed, given their non-monotonic semantics, we cannot make use of a
recursive rewriting similar to that in Wolper’s rules [19] in order to get rid of nested classical
modalities. To witness, we have 6|= �∼α↔ α ∧ ©�∼α and 6|= ♦∼α↔ α ∨ © ♦∼α.

TIME 2020

19:14 On the Decidability of a Fragment of preferential LTL

References
1 O. Arieli and A. Avron. General patterns for nonmonotonic reasoning: From basic entailments

to plausible relations. Logic Journal of the IGPL, 8:119–148, 2000.
2 M. Ben-Ari. Mathematical Logic for Computer Science, third edition. Springer, 2012.
3 K. Britz, T. Meyer, and I. Varzinczak. Preferential reasoning for modal logics. Electronic

Notes in Theoretical Computer Science, 278:55–69, 2011. Proceedings of the 7th Workshop on
Methods for Modalities and the 4th Workshop on Logical Aspects of Multi-Agent Systems.
doi:10.1016/j.entcs.2011.10.006.

4 K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation for preferential description logics.
In Dianhui Wang and Mark Reynolds, editors, AI 2011: Advances in Artificial Intelligence,
pages 491–500, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

5 K. Britz and I. Varzinczak. From KLM-style conditionals to defeasible modalities, and back.
Journal of Applied Non-Classical Logics, 28(1):92–121, 2018. doi:10.1080/11663081.2017.
1397325.

6 K. Britz and I. Varzinczak. Preferential tableaux for contextual defeasible ALC. In S. Cerrito
and A. Popescu, editors, Proceedings of the 28th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), number 11714 in LNCS,
pages 39–57. Springer, 2019.

7 D. M. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In
Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems, pages 439–457, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg.

8 D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in
Specification, Altrincham, UK, April 8-10, 1987, Proceedings, volume 398 of Lecture Notes in
Computer Science, pages 409–448. Springer, 1987. doi:10.1007/3-540-51803-7_36.

9 L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. Preferential description logics. In
N. Dershowitz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), number 4790 in LNAI, pages 257–272. Springer, 2007.

10 L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. Analytic tableaux calculi for KLM logics
of nonmonotonic reasoning. ACM Transactions on Computational Logic, 10(3):18:1–18:47,
2009.

11 R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D.M. Gabbay,
R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 297–396. Kluwer
Academic Publishers, 1999.

12 S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44:167–207, 1990.

13 N. Laverny and J. Lang. From knowledge-based programs to graded belief-based pro-
grams, part i: On-line reasoning*. Synthese, 147(2):277–321, November 2005. doi:
10.1007/s11229-005-1350-1.

14 D. Makinson. How to Go Nonmonotonic, pages 175–278. Springer Netherlands, Dordrecht,
2005. doi:10.1007/1-4020-3092-4_3.

15 A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57, October 1977. doi:10.1109/SFCS.1977.32.

16 Y. Shoham. A semantical approach to nonmonotic logics. In Proceedings of the Symposium
on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987, pages
275–279, 1987.

17 Y. Shoham. Reasoning about Change: Time and Causation from the Standpoint of Artificial
Intelligence. MIT Press, 1988.

18 A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM,
32(3):733–749, July 1985. doi:10.1145/3828.3837.

19 P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1):72–99,
1983. doi:10.1016/S0019-9958(83)80051-5.

https://doi.org/10.1016/j.entcs.2011.10.006
https://doi.org/10.1080/11663081.2017.1397325
https://doi.org/10.1080/11663081.2017.1397325
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1007/s11229-005-1350-1
https://doi.org/10.1007/s11229-005-1350-1
https://doi.org/10.1007/1-4020-3092-4_3
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/3828.3837
https://doi.org/10.1016/S0019-9958(83)80051-5

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:15

A Proofs of results in Section 3 and Section 4

I Proposition 8. Let I = (V, g) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). If V (j) = V (j′), then j′ ∈ min g (i

′).

Proof. Let I = (V, g) ∈ Isd and let i, j, i′, j′ be four time points s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). We assume that V (j) = V (j′) and we suppose that j′ 6∈ min g (i

′). Following
our supposition, j′ 6∈ min g (i

′) means that there exists k ∈ [i′,+∞[where (k, j′) ∈ g . From
Definition 7, if (k, j′) ∈ g and V (j) = V (j′), then (k, j) ∈ g . Since (k, j) ∈ g , we have
j 6∈ min g (i). This conflicts with our assumption of j ∈ min g (i). We conclude that if
V (j) = V (j′) then j′ ∈ min g (i

′). J

I Proposition 9. Let I = (V, g) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j,
we have j ∈ min g (i

′).

Proof. Let I = (V, g) ∈ I and let i, i′, j ∈ N s.t. j ∈ min g (i) and i ≤ i′ ≤ j. Since
j ∈ min g (i), there is no j′ ∈ [i,+∞[s.t. (j′, j) ∈ g . Moreover, we have i ≤ i′, we conclude
that there is no j′ ∈ [i′,+∞[s.t. (j′, j) ∈ g . Therefore, we have j ∈ min g (i

′). J

I Proposition 12. Let I = (V, g) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i

′).

Proof. Let I = (V, g) ∈ Isd. We have four time points i ≤ j ≤ i′ ≤ j′ ∈ final(I), this proof
is divided in two parts:

For the only-if part, we suppose that j ∈ min g (i) and we prove that j′ ∈ min g (i
′).

We have i ≤ i′, i′ ≤ j′, V (j) = V (j′) and j ∈ min g (i). Thanks to Proposition 8,
j′ ∈ min g (i

′).
For the if part, we suppose that j′ ∈ min g (i′) and we prove that j ∈ min g (i). We use a
proof by contradiction. We assume that j′ ∈ min g (i′) and we suppose that j 6∈ min g (i).
This implies that there exists k ∈ [i,+∞[such that (k, j) ∈ g .

Case 1: k ∈ [i′,+∞[. From Definition 7, since V (j) = V (j′) and (k, j) ∈ g , then
(k, j′) ∈ g thus j′ 6∈ min g (i

′). This conflicts with our assumption that j′ ∈ min g (i
′).

Case 2: k ∈ [i, i′[. From Lemma 10, since k ∈ final(I), then there exists k′ ∈ [i′,+∞[
such that V (k′) = V (k). From Definition 7, since we have V (j′) = V (j), V (k′) = V (k)
and (k, j) ∈ g , then (k′, j′) ∈ g , thus j′ 6∈ min g (i′). This conflicts with our assumption
that j′ ∈ min g (i

′). J

I Lemma 13. Let I = (V, g) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).
Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.

Proof. Let I = (V, g) ∈ Isd and i ≤ i′ in final(I) such that V (i) = V (i′). We prove that
I, i |= α iff I, i′ |= α using structural induction on α.

Base: α is an atomic proposition p. For the only-if part, we know that I, i |= p iff p ∈ V (i).
Since V (i) = V (i′), we have p ∈ V (i′), thus I, i′ |= p. Same reasoning applies for the if
part.
α = ♦∼α1. For the only-if part, we assume that I, i |= ♦∼α1. Following our assumption,
I, i |= ♦∼α1 means that there exists j ∈ [i,+∞[s.t. j ∈ min g (i) and I, j |= α1. Thanks
to Lemma 10. Since j ∈ final(I), there exists j′ ∈ [i′,+∞[such that V (j′) = V (j).
Thanks to the induction hypothesis, if V (j) = V (j′) and I, j |= α1 then (I) I, j′ |= α1.
Thanks to Proposition 8, V (j) = V (j′), i ≤ i′, i′ ≤ j′ and j ∈ min g (i) means that (II)
j′ ∈ min g (i

′). From (I) and (II), we conclude that I, i′ |= ♦∼α1.

TIME 2020

19:16 On the Decidability of a Fragment of preferential LTL

For the if part, we assume that I, i′ |= ♦∼α1. I, i′ |= ♦∼α1 means that there is a
j′ ∈ [i′,+∞[such that j′ ∈ min g (i

′) and (I) I, j′ |= α1. We need to prove that
j′ ∈ min g (i) . We suppose that j′ 6∈ min g (i). It means that there exists k ∈ [i,+∞[
such that (k, j′) ∈ g . From Lemma 10, since k ∈ final(I), that means there is k′ ∈ [i′,+∞[
such that V (k) = V (k′). Following the condition set in Definition 7, since (k, j′) ∈ g and
V (k′) = V (k), then (k′, j′) ∈ g and thus j′ 6∈ min g (i

′), conflicting with our assumption
of j′ ∈ min g (i′), thus (II) j′ ∈ min g (i) . From (I) and (II), we conclude that I, i |= ♦∼α.

J

B Proofs of results in Section 5

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g) ∈
Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= ♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♦∼α1)).

Proof. Let α1 ∈ L?, let T be a non-empty acceptable sequence w.r.t. I ∈ Isd where
for all t ∈ T we have I, t |= ♦∼α1. Just as a reminder, we have Anchors(I, T, ♦∼α1) =⋃
ti∈T ST(I,AS(I,min g (ti)), α1). Thus, there exists ti ∈ T such that t ∈

ST(I,AS(I,min g (ti)), α1). Suppose that there exist t, t′ ∈ Anchors(I, T, ♦∼α1) with
t 6= t′ such that t is in init(I,Anchors(I, T, ♦∼α1)) and V (t) = V (t′). Notice that t ∈ init(I),
since t ∈ init(I,Anchors(I, T, ♦∼α1)). Without loss of generality, we assume that t < t′. From

Definition 24, we have t ∈ AS(I, (t
I,AS(I,min g (ti))
α1)). Thanks to Definition 22 and Definition

23, the fact that t′ ∈ init(I), we can see that : (1) there is no t′′ ∈ final(I, AS(I,min g (ti))) s.t.

I, t′′ |= α1 and (2) t = t
I,AS(I,min g (ti))
α1 = max<{t′′ ∈ init(I, AS(I,min g (ti))) | I, t

′′ |= α1}.
On the other hand, thanks to Proposition 8, since t′ < t′′ and t′ ∈ min g (ti), we have
t′′ ∈ min g (ti). Hence t′′ ∈ AS(I,min g (ti)). Since t′′ ∈ Anchors(I, T, ♦∼α1), we also
have I, t′′ |= α1. From this and the property (1) we can assert that t′ does not belong to
final(I, AS(I,min g (ti))). It follows that t′ ∈ init(I, AS(I,min g (ti))). From the property (2)
we can assert that t ≥ t′, which leads to a contradiction since t < t′. Therefore, for all t, t′ ∈
Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′), we must have t, t′ ∈ final(Anchors(I, T, ♦∼α1)). J

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g) ∈
Isd. Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α.
Then, we have size(I,Anchors(I, T, α)) ≤ 2|P|.

Proof. Let I = (V, g) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for
all t ∈ T we have I, t |= α. . We show that is the case for our temporal operators:

T is an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= ♦∼α1. From
Proposition 27, for all t′i, t′j ∈ Anchors(I, T, ♦∼α1) s.t. V (t′i) = V (t′j) we have t′i, t′j ∈
final(I,Anchors(I, T, ♦∼α1)). From Proposition 20, we can conclude that
size(Anchors(I, T, ♦∼α1)) ≤ 2|P|.
Going back to Definition 26, we have Anchors(I, T,�∼α1)=DR(I,

⋃
ti∈T AS(I,min g (ti))).

We denote the acceptable sequence
⋃
ti∈T AS(I,min g (ti)) by N . From Definition

25 we have Anchors(I, T, �∼α1) = DR(I,N) =
⋃
v∈val(I,N) ST(I,N, αv). Moreover,

we know that size(ST(I,N, αv)) = 1 for all v ∈ val(I,N). Consequently, thanks
to Proposition 19, we have size(

⋃
v∈val(I,N) ST(I,N, αv)) ≤ card(val(I,N)). We can

see that card(val(I,N)) ≤ 2|P|, we can conclude that size(Anchors(I, T, �∼α1)) =
size(

⋃
v∈val(I,N) ST (I,N, αv)) ≤ 2|P|. J

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:17

I Proposition 29. Let α1 ∈ L?, I = (V, g) ∈ Isd, let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences
N w.r.t. I s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let
IN = (V N , g N) be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then
t′ 6∈ min g N (ti).

Proof. Let I = (V, g) ∈ Isd, let T be a non-empty acceptable sequence w.r.t. I s.t. for all
t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. Let N be an acceptable sequence w.r.t. I s.t.
Anchors(I, T, �∼α1) ⊆ N . Let ti ∈ N ∩ T . Let t′ ∈ N be a time point s.t. t′ 6∈ min g (ti), we
discuss these two cases:

t′ 6∈ [ti,+∞[: Since t′ 6∈ [ti,+∞[, then t′ 6∈ [ti,+∞[∩N . Therefore, we conclude that
t′ 6∈ min g N (ti).
t′ ∈ [ti,+∞[: Since g satisfies the well-foundedness condition, t′ 6∈ min g (ti) im-
plies that there exists a time point t′′ ∈ min g (ti) s.t. (t′′, t′) ∈ g . Let αt′′ be the
representative sentence of V (t′′). For the sake of readability, we shall denote the se-
quence

⋃
t∈T AS(I,min g (t)) with M . Notice that there exists V ∈ val(I,M) such that

V = V (t′′) since ti ∈ T and t′′ ∈ min g (ti). Thanks to Definition 25, since DR(I,M) =⋃
v∈val(I,M) ST (I,M,αv) and V (t′′) ∈ val(I,M), we can find t′′′ ∈ ST (I,M,αt′′) where

t′′′ ∈ DR(I,M) ⊆ N , V (t′′′) = V and t′′′ ≥ t′′. Since (t′′, t′) ∈ g , I ∈ Isd and V (t′′′) =
V (t′′), we have (t′′′, t′) ∈ g . Moreover, we have t′′′, t′ ∈ N , and therefore (t′′′, t′) ∈ g N .
Since t′′′ ∈ [ti,+∞[∩N and (t′′′, t′) ∈ g N , we conclude that t′ 6∈ min g N (ti). J

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.

Proof. Let I = (V, g) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for
all t ∈ T we have I, t |= α which α ∈ L?.

We use structural induction on T and α in order to prove this property.
Base α = p or α = ¬p. Keep(I, T, α) = ∅. Since size(I, ∅) = 0 ≤ µ(α) × 2|P| = 0, then
the property holds on atomic propositions.
α = ♦∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, ♦∼α1)) ≤
2|P|. On the other hand, thanks to Definition 26 it is easy to see that Anchors(I, T, ♦∼α1)
is a non-empty acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T, ♦∼α1) we have
I, t′ |= α1. By the induction hypothesis on Anchors(I, T, ♦∼α1) and α1, we have (II)
size(I,Keep(I,Anchors(I, T, ♦∼α1), α1)) ≤ µ(α1)× 2|P|. Thanks to Proposition 19, from
(I) and (II), we conclude that size(I,Keep(I, T, ♦∼α1)) ≤ (1+µ(α1))×2|P| = µ(♦∼α1)×2|P|.
α = �∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, �∼α1)) ≤
2|P|. On the other hand, from definition30, we have T ′ =

⋃
ti∈T AS(I,min g (ti)). It

is easy to see that for all t′ ∈ T ′ we have I, t′ |= α1 and that T ′ is a non-empty
acceptable sequence w.r.t. I. By the induction hypothesis on T ′ and α1, we have (II)
size(I,Keep(I, T ′, α1)) ≤ µ(α1)× 2|P|. Thanks to Proposition 19, form (I) and (II) we
conclude that size(I,Keep(I, T, �∼α1)) ≤ (1 + µ(α1))× 2|P| = µ(�∼α1)× 2|P|. J

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I,
if Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.

TIME 2020

19:18 On the Decidability of a Fragment of preferential LTL

Proof. Let α ∈ L? be in NNF, I = (V, g) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. We consider N to be an acceptable
sequence w.r.t. I s.t. Keep(I, T, α) ⊆ N and t ∈ N ∩ T . Let IN = (N,V N , g N) be the
pseudo-interpretation over N .

We use structural induction on T and α in order to prove this property.

α = p or α = ¬p. Since I, t |= p (resp. ¬p), it means that p ∈ V (t) (resp. p 6∈ V (t)). We
know that V N (t) = V (t). We conclude that IN , t |=P p (resp. ¬p).
α = ♦∼α1. We have I, t |= ♦∼α1 and we need to prove that IN , t |=P ♦∼α1. I, t |= ♦∼α1
means that there exists t′ ∈ min g (t) such that I, t′ |= α1, therefore Anchors(I, T, ♦∼α1) is
non-empty (see Definition 26). We know that Anchors(I, T, ♦∼α1) ⊆ Keep(I, T, ♦∼α1) ⊆ N ,
consequently Anchors(I, T, ♦∼α1) ∩N is non-empty. Thanks to Definition 26 it is easy to
see that for all t1 ∈ Anchors(I, T, ♦∼α1) we have I, t1 |= α1. By the induction hypothesis on
Anchors(I, T, ♦∼α1) and α1, since Keep(I, T1, α1) ⊆ N with T1 = Anchors(I, T, ♦∼α1), and
T1 is an acceptable sequence where I, t′ |= α1 for all t′ ∈ T1, we conclude that IN , t′ |=P α1
(I). Thanks to the construction of the pseudo-interpretation IN , since t′ ∈ min g N (t),
therefore t′ ∈ min g (t) (II). From (I) and (II), we conclude that IN , t |=P ♦∼α1.
α = �∼α1. We have I, t |= �∼α1 and we need to prove that IN , t |=P �∼α1. I, t |=
�∼α1 means that for all t′ ∈ min g (t) we have I, t′ |= α1, therefore for all t′ ∈ T ′ =⋃
ti∈T AS(I,min g (ti)) we have I, t′ |= α1. In addition, thanks to the well-foundedness

condition on g , T ′ is non-empty. We know that Anchors(I, T, �∼α1) ⊆ Keep(I, T, �∼α1) ⊆
N and that Anchors(I, T, �∼α1) = DR(I, T ′) consequently T ′ ∩ N is non-empty. We
use proof by contradiction. Suppose that IN , t 6|=P �∼α1, which means there exists
t′ ∈ min g N (ti) s.t. IN , t′ 6|=P α1. Thanks to Proposition 29, if t′ ∈ min g N (ti), then
t′ ∈ min g (ti). Just a reminder, we have T ′ =

⋃
ti∈T AS(I,min g (ti)) where for all t′′ ∈ T ′

we have I, t′′ |= α1 (Note that T ′ is a non-empty acceptable sequence w.r.t. I). By the
induction hypothesis on T ′ and α1, since Keep(I, T ′, α1) ⊆ N , and t′ ∈ AS(I,min g (t)) ⊆
T ′, therefore IN , t′ |=P α1. This conflicts with our supposition. We conclude that there
is no t′ ∈ min g N (t) s.t. IN , t′ 6|=P α1, and therefore IN , t |=P �∼α1. J

C Proof of results in Section 6

NB: The results marked (∗) are introduced here, while they are omitted in the main text.

I Proposition 39. Let M = (i, π, VM , g M) be a UPPI, I(M) = (V, g) and t, t′, tM , t′M ∈ N
s.t.:

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM).

Proof. Let M = (i, π, VM , g M) be a UPPI, I(M) = (V, g) and t, t′ ∈ N.
For the only-if part, we assume that t′ ∈ min g (t). Following our assumption, there is
no t′′ ∈ [t,+∞[s.t. (t′′, t′) ∈ g . We use a proof by contradiction. Suppose that t′M 6∈
min g M

(tM), which means there exists t′′M ∈ [min<{tM , i}, i+π[with (VM (t′′M), VM (t′M))∈
g M . Going back to Definition 37, VM (t′M) = V (t′) and . Consequently, (V (t′′M), VM (t′)) ∈
g M . Thanks to Definition 37, (I) (t′′M , t′) ∈ g . There are two possible cases for t, . If
t ∈ [0, i[then tM = t and (II) t′′M ∈ [t, i+ π[. From (I) and (II), there exists t′′M > t such
that (t′′M , t′) ∈ g . This conflicts with our supposition. If t ∈ [i,+∞[, then t′′M ∈ [i, i+ π[

A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 19:19

and t, t′, t′′ are in final(I(M)). Thanks to proposition 10, there exists t′′ > t such that
V (t′′) = V (tM). Since I(M) ∈ Isd and (t′′M , t′) ∈ g then (t′′, t) ∈ g . Consequently, there
exists t′′ > t such that (t′′, t) ∈ g . This conflicts with our supposition.
For the if part, we assume that t′M ∈ min g M

(tM). Following our assumption, there is no
t′′M ∈ [min<{tM , i}, i+π[with (VM (t′′M), VM (t′M)) ∈ g M . We use proof by contradiction.
Suppose that t′ 6∈ min g (t), which means there exists t′′′ > t such that (t′′′, t′) ∈ g . Let
t′′′M be defined as follows:

t′′′M =
{

t′′′, if t′′′ < i;

i+ (t′′′ − i) mod π, otherwise.

Thanks to definition 37, V (t′′′) = VM (t′′′M), V (t′) = VM (t′M) and since (t′′′, t′) ∈ g then
(V (t′′′), V (t′)) ∈ g M . Consequently, (I) (V (t′′′M), V (t′M)) ∈ g M . . From (I) and (II), we
have t′M 6∈ min g M

(tM). This conflicts with our supposition. J

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M
such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.

Proof. Let α ∈ L?.

For the only if part, let α be Isd-satisfiable. Thanks to Theorem 21 and Proposition 35,
there exists a UPI I = (V, g) ∈ Isd s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We define the
UPPI M(I) from I. It can be checked that I(M(I)) = I. Therefore, from Isd-satisfiable
sentence α, we can find a UPPI M such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.
For the if part, let M = (i, π, VM , g M) be a UPPI s.t. I(M), 0 |= α. Since I(M) ∈ Isd,
therefore α is Isd-satisfiable. J

TIME 2020

	Introduction
	Preliminaries: LTL and the KLM approach to NMR
	Preferential LTL
	Introducing defeasible temporal operators
	Preferential semantics
	State-dependent preferential interpretations

	A useful representation of preferential structures
	Bounded-model property
	The satisfiability problem in L^{*}
	Concluding remarks
	Proofs of results in Section 3 and Section 4
	 Proofs of results in Section 5
	Proof of results in Section 6

