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Abstract
Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra. As in
the linear case, the consistency problem for Branching Algebra is NP-hard. Being relatively new,
however, not much is known about the computational behaviour of the consistency problem of its
sub-algebras, except in the case of the recently found subset of convex branching relations, for which
the consistency of a network can be tested via path consistency and it is therefore deterministic
polynomial. In this paper, following Nebel and Bürckert, we define the Horn fragment of Branching
Algebra, and prove that it is a sub-algebra of the latter, being closed under inverse, intersection, and
composition, that it strictly contains both the convex fragment of Branching Algebra and the Horn
fragment of Interval Algebra, and that its consistency problem can be decided via path consistency.
Finally, we experimentally prove that the Horn fragment of Branching Algebra can be used as an
heuristic for checking the consistency of a generic network with a considerable improvement over the
convex subset.
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1 Introduction

In the context of temporal reasoning, Allen’s Interval Algebra [1] (IA) is certainly one of
the most important formalisms. Applications of the IA are widespread, and range from
scheduling, to planning, database theory, and natural language processing, among others.
In Allen’s IA we consider the domain of all intervals on a linear order, and define thirteen
basic relations (IAbasic) between pairs of intervals (such as, for example, meets or before);
a constraint between two intervals is any disjunction of basic relations, and a network of
constraints is defined as a set of variables plus a set of constraints between them, interpreted
as a logical conjunction. Among the problems that emerge naturally in this field, checking
the consistency of a network N of constraints is probably the most relevant one, and consists
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5:2 The Horn Fragment of Branching Algebra

of deciding whether N can be realized, that is, deciding if every variable can be instantiated
to an interval without violating any constraint. The consistency problem is archetypical of
the class of constraints satisfaction problems (CSP), because a network is a conjunction of
constraints. The consistency problem for the IA is NP-complete, and classical approaches to
efficient implementations are based either on clever brute-force enumerating algorithms (see,
e.g. [8, 18]), or on tractable fragments of the algebra, which are interesting both on their
own [9] and as heuristics to reduce the branching factor in branch-and-bound approaches
for the full algebra [10, 13]. Two important fragments of the IA are the convex fragment
(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the
more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced
by Nebel and Bürckert in [14], with 868 relations. In particular, to prove the tractability of
the latter, Nebel and Bürckert identify a suitable point-based language that allows one to
translate every relation of the Horn fragment of IAHorn to a conjunction of Horn clauses;
then, they prove that IAHorn is closed under inverse, intersection, and composition, and
that path consistency is complete for it.

In [15], the authors define a branching version of Allen’s IA, which we refer to as
Branching Algebra (BA), and introduce two possible sets of basic relations that may hold
between two intervals on a tree-like partial order. One of these sets, composed of 24 mutually
exclusive and jointly exhaustive basic relations, and also studied from the (first-order)
expressive power point of view in [5], is characterized by basic relations whose semantics
cannot be always written in the language of endpoints, therefore requiring quantification. By
joining some of these relations via disjunction, one obtains a second set of 19, still mutually
exclusive and jointly exhaustive, relations (BAbasic), each of which is translatable to the
language of endpoints without using quantification. The consistency problem for a network of
constraints in the algebra that emerges from these relations is, quite obviously, still NP-hard,
and, in general, computationally more difficult than the one for IA. In [6], the authors
presented the subset BAconvex of convex BA-relations, inspired by the convex fragment of
the IA (IAconvex). The fragment BAconvex, that encompasses 91 relations, unlike its linear
analogous, is not a subalgebra of BA, as it is not closed under composition; yet, it is closed
on the (less restricting) operation of path consistency, which is also complete (w.r.t. deciding
consistency) for it, making BAconvex the first non-trivial tractable fragment of BA. In this
paper, we follow Nebel and Bürckert’s approach, and define, first, a first order Horn theory
(TORD-Horn), whose models can be interpreted as trees and in which BA-relations can be
translated; then, we enumerate the subset of all and only BA-relations that can be translated
in the language of TORD-Horn; finally, we prove, by enumeration, that such a subset (which
we call BAHorn) is closed under inverse, intersection, and composition, and it is therefore a
subalgebra of BA. Finally, in the spirit of [6, 17], we implement a simple branch-and-bound
algorithm for BA-networks to empirically study the expected improvement in computation
time when the splitting is driven by BAHorn-relations instead of basic relations.

2 Preliminaries

Notation. Let (T , <) be a partial order, whose elements are generally denoted by a, b, . . .,
and where a||b (resp., a lin b) denotes that a and b are incomparable (resp., comparable)
with respect to the ordering relation <. We use x, y, . . . to denote variables in the domain of
points, and x ≤ y to denote x < y ∨ x = y. A partial order (T , <), often denoted by T , is a
future branching model of time (or, simply, a branching model) if for all a, b ∈ T there is a
greatest lower bound of a and b in T , and, if a||b then there exists no c ∈ T such that c > a
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Figure 1 A pictorial representation of the four basic branching point relations, where a = b,
a < c, d > c, and d||e (left-hand side), and an example of two situations that require quantification
to be distinguished in the language of endpoints (right-hand side).

Table 1 Composition of basic branching relations between points.

◦ < > = ||

< {<} lin {<} {||, <}
> ? {>} {>} {||}
= {<} {>} {=} {||}
|| {||} {>, ||} {||} ?

and c > b (that is, it is a tree). There are four basic relations that may hold between two
points on a branching model: equals (=), incomparable (‖), less than (<), and greater than
(>); the first two are symmetric, while the last two are inverse of each other. These relations
are depicted in Figure 1 (left-hand side), and are called basic branching point relations. The
set of basic branching point relations is denoted by BPAbasic. In the linear setting, the set
of basic relations has only three elements, <,=, and >, and it is called PAbasic (basic point
relations). An interval in T is a pair [a, b] where a < b, and [a, b] = {x ∈ T : a ≤ x ≤ b}.
Intervals are generically denoted by I, J, . . .. For an interval I (resp., X), we use I−, I+ to
denote its endpoints. Following [5], one can describe 24 basic branching relations based on
the possible relative position of two pairs of ordered points on a branching model, that is,
by directly generalizing the universally known set of 13 basic interval relations [1] (IAbasic).
While towards a precise study of the expressive power of branching relations in a first-order
context this is an optimal choice, this is no longer true when studying the computational
properties of the consistency problem. In particular, some of these relations require first-order
quantification to be defined: for example, in Figure 1 (right-hand side) we see that, in order
to distinguish the two situations, we need to quantify of the existence, or non-existence,
of a point between a and c. To overcome this problem, that becomes relevant when we
study the behaviour of branching relations in association with the behaviour of branching
point relations (that is, by studying the properties of their point-based translations), Ragni
and Wölfl [15] introduce a set of coarser relations, characterized by being translatable to
point-based relations using only the language of endpoints, without quantification. These
19 relations are depicted in Figure 2, and form the set of basic branching interval relations
(BAbasic); for each relation, the symbol in parentheses corresponds to its inverse, if the
relation is not symmetric. A relation in the set BAbasic is either a linear relation, or the
relation u (unrelated), or it corresponds to the disjunction between a pair of finer relations
from the set of 24 [5]. For example, the relation ib is the disjunction of the two relations in
Figure 1.

Operations and algebras. In general, given the basic relations r1, . . . , rl, we denote by
R = {r1, . . . , rl} the disjunctive relation r1 ∨ . . . ∨ rl; thus, a relation is seen as a set, and
a basic relation as a singleton. As the set IAbasic contains 13 elements, the set IA of all
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b (bi) I before J I+ < J−
I− I+ J− J+

m (mi) I meets J I+ = J−
I− I+

J−
J+

o (oi) I overlaps J I− < J− < I+ < J+ I− I+

J− J+

d (di) I during J J− < I− < I+ < J+ J− J+

I− I+

s (si) I starts J I− = J− < I+ < J+ J− J+

I− I+

f (fi) I finishes J J− < I− < I+ = J+ I− I+

J− J+

e I equals J I− = J− < I+ = J+ I− I+

J− J+

ib (ibi) I init. before J I− < J− ‖ I+ I−

I+
J−

J+

im (imi) I init. meets J I− < J− < I+ ‖ J+ I− J−
I+

J+

ie I init. equals J I− = J− < I+ ‖ J+ I−

J−

I+

J+

u I unrelated J I− ‖ J−
I−

J−

I+

J+

Figure 2 A pictorial representation of the nineteen basic branching interval relations. In this
picture, in which I = [I−, I+] and J = [J−, J+], we assume I− < I+ and J− < J+. Solid lines
are actual intervals, dashed lines complete the underlying tree structure. We use aR1bR2c as a
shorthand for aR1b and bR2c.

interval relations in the linear setting encompasses 213−1 elements; similarly, the set BAbasic

of 19 basic relations entails 219 − 1 interval relations in the branching setting. A constraint
is an object of the type xRy, where x, y are point variables and R is a relation. There are
three basic operations with relations: (Boolean) intersection, inverse, and composition. The
inverse of a relation R = {r1, . . . , rl} is the relation R−1 = {r−1

1 , . . . , r−1
l }, where, for each

basic relation r, r−1 is its inverse. In our notation, for example, bi (later) denotes the inverse
of the basic relation b (before). The composition of two basic relations r1, r2 is defined as
follows: for variables s, t, z, we say that s is in the composed relation r1 ◦ r2 with t, denoted
s(r1 ◦ r2)t, if there exists z such that sr1z and zr2t. The composition of two relations R1, R2
is defined component-wise: R1 ◦ R2 = {r | ∃r1 ∈ R1∃r2 ∈ R2(r = r1 ◦ r2)}. When a set
of relations A is closed under inverse, intersection, and composition, we call it an algebra.
Clearly, to compute the composition of two non-basic relations we base ourselves on the
composition between basic relations, and to compute the latter in the interval ontology,
both in the linear and the branching setting, we use the composition between basic relations
in the point ontology. The latter can be easily computed “by hand” (see Table 1 for the
branching case). The entire composition table between two intervals in the branching case is
fully reported in [16] (and in [2] in the linear case). Given a set A of relations, an A-network
is a directed graph N = (V,E), where V is a set of variables and E ⊆ V × V is a set of
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A-constraints between pairs of variables. To denote a constraint between the variables s and
t in a network, we use indistinctly the notation (s, t) or the infix notation sRt (when we
want to specify the relation). Given a network N = (V,E), we say that N ′ is a sub-network
of N if N ′ = (V ′, E′), V ′ ⊆ V , and E′ is the projection of E on the variables in V ′. Given a
network, we say that it is consistent if there exists a model such that each variable can be
mapped (realized) to a concrete element so that every constraint is respected; establishing if
an A-network is consistent is the A-consistency problem.

Tractability and local consistency. Consistency problems such as those for IA, BA, and
their fragments are often approached via popular heuristics such as constraint propagation and
local consistency. A network N is said to be k-consistent if, given any consistent realization
of k − 1 variables, there exists an instantiation of any k-th variable such that the constraints
between the subset of k variables can be satisfied together. Because of the particular nature
of networks of constraints in temporal algebras, they are always 1-consistent (also called
node consistent) and 2-consistent (also called arc consistent), by definition. Enforcing path
consistency, that is, 3-consistency, in a network N , corresponds to apply the following simple
algorithm: for every triple (s, t, z) of variables in N = (V,E) such that sRt, sR1z, tR2z ∈ E,
replace sRt by s(R ∩ (R1 ◦ R2))t. Clearly, if enforcing path consistency results in at least
one empty constraint, the entire network N is not consistent. But, in general, enforcing
path consistency (in fact, k-consistency for any constant k < |V |) does not imply consistency,
and, indeed checking the consistency of a IA-network is a NP-hard problem [9]. Much effort
has been devoted to identify, and classify, the relevant fragments of the IA for which the
consistency problem becomes tractable. Besides the fragment of basic relations only, IAbasic,
which is trivially tractable, two important tractable fragments are the convex fragment
(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the
more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced
by Nebel and Bürckert in [14], encompassing 868 relations. Both IAconvex and IAHorn are
subalgebras of the IA, and in both cases checking path consistency is a complete method for
checking the consistency.

In analogy with the linear case, Ragni and Wölfl [15] proved that also checking the
consistency of a BA-network is at least NP-hard, and observed that the set of basic BA-
relations only constitutes a tractable fragment (although not an algebra); also, in [6], the
authors presented the branching version of the fragment IAconvex, called BAconvex, which
is tractable, but, unlike its linear homologous, not closed under composition, and therefore
not an algebra. Tractable fragments are not only important per se. As a matter of fact, the
consistency problem for the full IA and BA alike is NP-complete, thanks to the fact that
it can be decided by a simple branch-and-bound algorithm based on basic relations, and
the completeness of path consistency for a fragment has another interesting consequence:
improving the performances of such an algorithm. A branch-and-bound consistency checking
algorithm is a backtracking algorithm that enforces path-consistency in each node of the
search tree (more detail is in Section 5). At each step, the algorithm tries one basic relation
for each relation. If at any step one relation results in the empty relation, it backtracks to
the last choice; otherwise it proceeds to the next relation in the network. Fragments of the
full algebra, both in the linear and the branching case, whose consistency can be decided via
path consistency can be used to drive the splitting in such an algorithm, as a heuristics to
speed up the branch-and-bound process: if, at any step, one ends up with a network whose
labels are all contained in any such a fragment, that particular branch can be decided by
simply enforcing path consistency. This has been done with both IAconvex and IAHorn in
the linear case, and with BAconvex in the branching case.

TIME 2020



5:6 The Horn Fragment of Branching Algebra

3 Applying Branching Algebra

Interval algebra has been known for 30 years, and its role in planning and database theory
is universally accepted. Temporal reasoning in a branching setting is also a very well-
established research area, at least at the logical level. Therefore, studying interval algebra in
the branching setting is very natural. Possible application fields include the following ones.

Planning with errors. The use of IA, and in particular of IA-networks of constraints, to
model planning problems is ubiquitous in the literature (see, e.g. [11, 12, 24]). A typical
modelling exercise involves a set of tasks to be executed in order for a goal to be reached.
Plans that are modelled with linear time, however, allow no margin for error: once the
plan is being followed, every task must be executed. Using branching time we can develop
plans that have alternative routes that can be taken in case some action fails. While we are
following an (initial) part of the plan with actions that have no possibility of failing (in our
abstract model), the underlying temporal model is linear; as soon as we encounter a task
that may fail, the underlying model becomes branching, and, from that moment onward,
different plans may be followed. In this sense, different branches will never join again; so,
the underlying model is in fact tree-like, and a network of constraints that takes mistakes or
obstacles into account is naturally modelled in BA.

Automatic generation of narrative. Generation of narrative is a modern application of
artificial intelligence, and, more specifically, of natural language processing [22]. While
the classical applications of automatically generated narratives include weather reports,
instructions, descriptions of museum artifacts, narratives can be also used as the basis of
automatic storytelling and plot generation [19]. Many modern and classic science-fiction
stories, movies, and even video games make substantial use of parallel, incomparable timelines.
To keep an adequate cause-effect consistency, however, in presence of non-trivial literary
escamotage (such as time travel, for example), modelling the basic elements with BA may
be a solution. The generated narrative can be checked for consistency to ensure that, while
being possibly non-linear, it is internally coherent.

Verification of parallel programs. Some techniques for program verification make use of
IA (see, e.g. [20]). Verifying parallel programs is a challenging task [4] which may take
advantage from a branching interval algebra such as BA, in which the typical fork constructs
can be modelled in a natural way. Consistency, in this case, can be interpreted as the absence
of temporal contradictions in the executions of (sub)routines.

4 The Horn Fragment of BA

Horn branching relations. Every basic relation of IA, interpreted on a linear model (T , <)
can be translated into a conjunction of formulas of the language of endpoints. Every non-basic
relation, obviously, gives rise to a disjunction of such conjunctions, which, in turn, can be
re-written into a conjunction of disjunctions, that is, of clauses. Thus, a network of constraints
can be translated into a conjunction of clauses. Let us denote by Π(r) (resp., Π(R), Π(N))
the translation of a basic relation (resp., non-basic relation, network), and by C,D, . . . (resp.,
C,D) a generic clause (resp., set of clauses). As observed in [14], some translations of relations
have the additional property that their corresponding set of clauses are Horn, that is, each
clause has at most one positive literal; these are called IAHorn-relations. By associating
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such a translation to a first-order Horn theory, called ORD-Horn, whose models can be
interpreted as linear orders, one obtains that:
(i) for a network N of IAHorn-constraint, N is consistent if and only if Π(N)∧ORD-Horn

is satisfiable, and
(ii) checking the satisfiability of Π(N) ∧ORD-Horn is a tractable problem, for example

via positive unit resolution [7].

In order to define the branching equivalent of IAHorn, we need to construct the branching
equivalent of ORD-Horn, which we denote by TORD-Horn. First, we need to define the
language of TORD-Horn; then, we shall specify its axioms, and prove that every model of
TORD-Horn can be interpreted as future branching models of time; finally, we can check
which subset of relations of BA can be translated to the language of TORD-Horn, and
that such subset forms an algebra.

I Definition 1. The language of TORD-Horn encompasses an enumerable set of vari-
ables X,Y, . . . and the binary relations .= (equality), � ( less or equal), ∼ ( linear), q
( incomparable), and ≺q ( less or incomparable).

In this context, the theory of future branching models of time cannot be (fully) axiomatized
in the standard way, because some of the necessary properties are not in form of Horn
formulas (e.g., X ∼ Y defined as X � Y ∨ Y � X). However, to our purposes it suffices to
have models that can be extended to tree-like orderings.

I Definition 2. The theory TORD-Horn is characterized by the following axioms:

1. X .= X (reflexivity of .=);
2. X .= Y → Y

.= X (symmetry of .=);
3. X .= Y ∧ Y .= Z → X

.= Z (transitivity of .=);
4. X � X (reflexivity of �);
5. X � Y ∧ Y � X → X

.= Y (antisymmetry of �);
6. X � Y ∧ Y � Z → X � Z (transitivity of �);
7. X 6 q X (irreflexivity of q);
8. X q Y → Y q X (symmetry of q);
9. X ∼ X (reflexivity of ∼);
10. X ∼ Y → Y ∼ X (symmetry of ∼);
11. X 6≺q X (irreflexivity of ≺q);
12. X ≺q Y ∧ Y ≺q X → X q Y (antisymmetry of ≺q);
13. X .= Y → X � Y ∧ Y � X ∧X ∼ Y (weakening of .=);
14. X � Y → X ∼ Y (weakening of �);
15. X q Y → X ≺q Y ∧ Y ≺q X (weakening of q);
16. X q Y → X 6� Y ∧ Y 6� X (compatibility of q and �);
17. X ∼ Y → X 6 q Y (compatibility of ∼ and q);
18. X ≺q Y → Y 6� X (compatibility of ≺q and �);
19. X q Y ∧ Y � Z → X q Z (tree-likeness).
In the following, we denote by TORD-Horn the set of axioms 1-191; observe that TORD-
Horn is a Horn theory. We use the language of TORD-Horn to translate certain relations
of BA; as we have recalled, such a translation is correct if and only if the resulting model can

1 We do not claim these axiom are minimal; having a minimal set of axioms, however possible, would
probably hid some of the underlying structure.
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5:8 The Horn Fragment of Branching Algebra

be interpreted as a future branching model of time. It turns out that, in order to guarantee
that this is possible, we need to further limit the use of the language of TORD-Horn in
translations, and, in particular, we say that C is an admissible clause if it uses only literals
with the positive relations .=,�,∼, q,≺q, and the negative relation 6 .=. Observe that limiting
the use of certain relations does not decrease the (semantic) expressive power of the language,
as X 6� Y (resp., X 6∼ Y , X 6 q Y , X 6≺q Y ) can be written as Y ≺q X (resp., X q Y , X ∼ Y ,
Y � X).

I Theorem 3. Every model (M,
.=,�,∼, q,≺q) of TORD-Horn ∪ C, where C is a set of

admissible clauses, can be represented as a branching model of time.

It is important to remark that the use of an extended signature to specify the properties
of a tree-like model is justified by the need of such a specification to be Horn. Admissible
Horn clauses, as it can be proved by computer-assisted enumeration, are expressive enough
to translate a subset of BA-relations that form an algebra, and allowing any of the forbidden
symbols would require some non-Horn axiom.

I Definition 4. The set BAHorn is the subset of BA of all and only the relations that can
be translated to the language of TORD-Horn using only admissible Horn clauses.

I Theorem 5. BAHorn is an algebra, that is, it is closed under inverse, intersection, and
composition.

The set BAHorn can be computed automatically, and it consists of 4510 relations. Although
it covers less than 1% of the entire algebra, it is about 50 times more extended than BAconvex.

Completeness of path consistency. Let us consider a network N of BAHorn-constraints.
By the above results, we know that N is consistent if and only if Π(N) ∧ TORD-Horn
is satisfiable. Now, we ask ourselves if the consistency of N can also be checked by path
consistency, in the same way in which the consistency of a network of IAHorn-constraints
can. Again following [14], proving that path consistency is complete for BAHorn boils down
to proving that, given a path consistent network N , the empty clause cannot be derived
from Π(N) ∧TORD-Horn; to show the latter, one can restrict the attention to derivations
that use positive unit resolution, which is complete for Horn clauses [7].

Let N be a path consistent BAHorn-network. Let Π(N) = {ϕ1, ϕ2, . . . , } be the Horn
formulas of the signature TORD-Horn that are the result of translating the BAHorn-
constraints of N = {IR1J,KR2Z, . . .}; each ϕi is a conjunction of Horn clauses. The
following observation will be relevant for us: by exhaustive exploration of all clauses that
can be obtained from translating BAHorn-relations, we realize that they either are unary or
of the type:

(X � Y ∨X 6 .= Y ) or (Y �X ∨X 6 .= Y ),

where � ∈ {�, q,≺q}. In the following we assume that each formula ϕi is explicit, that is, it
explicitly contains all consequences of every axiom of TORD-Horn, and that each clause
Cj ∈ ϕi is minimal, that is, it contains no redundant literal; a set Π(N) in which every
formula is explicit, and every clause in every formula is minimal will be called explicit and
clause-minimal. We want to prove that if N is path consistent and contains no empty relation,
then positive unit resolution cannot deduce the empty clause from Π(N) ∧TORD-Horn.

I Theorem 6. Let N be a path consistent BAHorn-network. Then, if Π(N) is explicit and
clause-minimal, then the empty clause cannot be obtained from Π(N) ∧ TORD-Horn by
positive unit resolution.
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Algorithm 1 Backtracking algorithm.
1: function Consistent(P, Split)
2: enforce generalized arc consistency on P
3: if there is a variable νXY such that DXY = ∅ then
4: return false
5: else
6: choose an unprocessed variable νXY such that DXY /∈ Split
7: if there is no such variable then
8: return true
9: {D1, . . . ,Dp}=Partition(DXY , Split)
10: for all Di ∈ {D1, . . . ,Dp} do
11: P ′ = PDXY /Di

12: if Consistent(P ′, Split) then
13: return true
14: return false

I Corollary 7. Path consistency is complete for checking the consistency of a network of
BAHorn-relations.

5 Experiments

In order to assess the usefulness of the fragment BAHorn to improve the experimental
computation time for checking the consistency of a network of BA-constraints, we devised a
series of tests.

Constraint satisfaction problems. We designed a simple algorithm based on encoding the
temporal network into a constraint satisfaction problem (CSP) using the classical dual CSP
approach by Condotta et al. [3], based on the fact that enforcing path consistency on the
original qualitative temporal network corresponds to enforcing generalized arc consistency
on the corresponding dual CSP.

I Definition 8. Given a BA-network N = (V,E), its dual CSP is a triple P = (V,D,C),
where V is a set of variables, D is a set of variable domains, and C is a set constraints,
such that:
(i) V contains a variable νXY for each pair of nodes X,Y ∈ V ;
(ii) D contains a domain DXY for each variable in V, which corresponds to the constraint

XRY ∈ E, and
(iii) C contains a binary constraint inverse(νXY , νY X) for each pair of nodes X,Y ∈ V , sat-

isfied by all pairs (r, r−1), where r ∈ BAbasic, and a ternary constraint
composition(νXY , νY Z , νXZ) for each triple of nodes X,Y, Z ∈ V , which encodes the
composition table and is satisfied by all triples (r1, r2, r3) such that r3 = r2 ◦ r1.

Since path consistency is not complete for consistency checking of general networks, it is
typically associated to a search algorithm, such as the one depicted in Algorithm 1 [6, 13].
Algorithm 1 checks the consistency of a general network; moreover, when there is a known
fragment which is tractable through path consistency, Algorithm 1 can exploit it to speedup
the search. The family of sets Split represents exactly such a tractable fragment. If no
tractable fragment is known, the set Split contains just basic relations (as singleton sets),
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Figure 3 Running time of the backtracking algorithm varying the number of nodes n of the
network. Each point represents the geometric mean of 100 instances, with density d = 70%. Different
lines represent different fragments as Split set.
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Figure 4 Fraction of instances that incurred in a timeout varying the number of nodes n of the
network and fixing the density to d = 70%. Different lines represent different fragments as Split set.

and the algorithm amounts to selecting a variable of the CSP, then splitting its domain
into the basic relations (function Partition), nondeterministically assigning it one of the
basic relations in its domain, enforcing path consistency on the obtained network, and
recursively solving the remaining part of the CSP. On backtracking, another basic relation
is selected, and so on; the search stops when all the variables of the CSP are assigned a
basic relation in their domain. This is sound in the case of BA, since path consistency is
complete for consistency for the set of basic BA-relations [15]. In case a larger fragment (e.g.,
BAconvex [6], or BAHorn) is known to be solvable by path consistency, such fragment can
be effectively used. Again, a variable of the CSP is selected, and its domain is partitioned
into subsets, each belonging to the family Split. Since the subsets are no longer required to
be singleton, the branching factor can be reduced; in general, the larger the fragment, the
better the algorithm is expected to behave. Function Partition requires the solution of a
set-partitioning problem, which is itself NP-hard, in the general case. In our case the trivial
solution that splits a domain into its singletons is always feasible, and it can be computed
in polynomial time; however such solution is useless, as Algorithm 1 would not exploit the
tractable fragment. As in [6], we used a trie to store the tractable fragment, and a greedy
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Figure 5 Running time of the backtracking algorithm varying the density d of the network. Each
point represents the geometric mean of 50 instances, with number of nodes n = 16. Different lines
represent different fragments as Split set.
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Figure 6 Cactus plot showing the number of solved instances varying the solving time. Instances
have been generated with a number n of nodes varying from 15 to 20 and a constraint density d

varying from 55% to 100%. Different lines represent different fragments as Split set in backtracking
algorithm.

algorithm to quickly find a partition of the domain. Algorithm 1 was implemented in the
Constraint Logic Programming environment ECLiPSe [21], that is a declarative language
with built-in libraries for constraint satisfaction problems.

Experimental setting and results. In this experiment, random instances are generated as
in [6], with a technique derived from [17]. Each instance is characterized by three parameters:
the number of nodes n, the network density d, and the probability of a constraint p. Given
the three parameters, for each given cardinality n, we generate a graph with n nodes, then
we select dn(n−1)

2 edges at random. For each selected edge, we generate its domain by
choosing with probability p each of the basic relations in BAbasic. Edges not selected are
associated with the universal relation. Our experiments aim to assess the improvement of the
backtracking algorithm when the BAHorn fragment is used as Split heuristics as opposed to
use the BAconvex fragment or using basic relations only.
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In Figure 3 each point represents the geometric mean of 100 problem instances with
density of the network fixed to 70%. The results suggest that using the BAHorn fragment
positively influences the computation time, not only with respect to not using it but also
with respect to using the BAconvex fragment. Figure 4 where the fraction of instances that
incurred in a timeout is plotted, confirm this observation. Figure 5 shows the running time
of the backtracking algorithm varying the density of the network, while fixing the number
of nodes to 16. Each point represents the geometric mean of 50 instances. The shape of
the curves shows the phase transition as shown by BAconvex fragment in [6]: low density
networks are easily satisfiable, while in high density networks the unsatisfiability is easily
provable. Note that the new fragment improves in particular in the hardest region, at a
density between 70% and 80%, in which both satisfiability and unsatisfiability are hard to
prove. Finally, we generated 3000 random instances varying the number of nodes n from 15
to 20 and varying the constraint density d from 55% to 100%; also the cactus plot in Figure 6
shows that exploiting the BAHorn fragment leads to an improvement in computation time.
All experiments were run on ECLiPSe v. 7.0, build #54, with a time limit of 600s on Intel®
Xeon® E5-2630 v3 CPUs running at 2.4GHz on CentOS Linux 7, using only one core and
with 1GB of reserved memory.

6 Conclusions

Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra.
Being relatively new, not much is known about the computational behaviour of the consistency
problem of its sub-algebras. Branching Algebra has been introduced in [15], where it has
been proven that the consistency problem for the subset that includes only basic relations is
tractable. Later, in [6], the subset of convex branching relations was introduced, showing that
path consistency is complete for consistency in that case as well. In this paper, following Nebel
and Bürckert [13], we further extended the convex fragment to obtain the Horn fragment
of the Branching Algebra. We proved that it is a subalgebra, being closed under inverse,
intersection, and composition, and that its consistency problem is treatable; we also proved
that path consistency is complete for consistency in this case as well. Finally, we designed
and conducted a series of experiments on randomly generated networks of constraints in the
full algebra, to evaluate the improvement in computation time that comes from using the
Horn fragment as heuristics.

This paper constitutes yet another step towards the complete classification between
tractable/intractable fragments of Branching Algebra. At the moment, the Horn fragment
is the biggest tractable known fragment, and our initial investigation points towards its
maximality w.r.t. the tractability of the consistency problem. Yet, other, incomparable
fragments may exist. The algebra of intervals is traditionally applied to task scheduling. In
the branching case, applications are more difficult to visualize; yet, the Branching Algebra
can be applied to a variety of situations in which multiple, incomparable timelines co-exist.
In this paper, we have suggested a series of possible application scopes, but our list can be
certainly extended and further explored.

References
1 J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983.
2 J.F. Allen and P. J. Hayes. Short time periods. In Proc. of IJCAI 1987: 10th International

Joint Conference on Artificial Intelligence, pages 981–983, 1987.



A. Bertagnon, M. Gavanelli, A. Passantino, G. Sciavicco, and S. Trevisani 5:13

3 J.F. Condotta, D. D’Almeida, C. Lecoutre, and L. Saïs. From qualitative to discrete constraint
networks. In Proc. of KI 2006: Workshop on Qualitative Constraint Calculi, pages 54–64,
2006.

4 S. Darabi, S.C.C. Blom, and M. Huisman. A verification technique for deterministic parallel
programs. In Proc. of NFM 2017: 9th International Symposium on NASA Formal Methods,
volume 10227 of Lecture Notes in Computer Science, pages 247–264. Springer, 2017.

5 S. Durhan and G. Sciavicco. Allen-like theory of time for tree-like structures. Information
and Computation, 259(3):375–389, 2018.

6 M. Gavanelli, A. Passantino, and G. Sciavicco. Deciding the consistency of branching time
interval networks. In Proc. of TIME 2018: 25th International Symposium on Temporal
Representation and Reasoning, volume 120 of LIPIcs, pages 12:1–12:15, 2018.

7 L. Henshen and L. Wos. Unit refutation and Horn sets. Journal of the ACM, 21:590–605,
1974.

8 P. Jonsson and V. Lagerkvist. An initial study of time complexity in infinite-domain constraint
satisfaction. Artificial Intelligence, 245:115–133, 2017.

9 A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable
subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591–640, 2003.

10 P.B. Ladkin and A. Reinefeld. Fast algebraic methods for interval constraint problems. Annals
of Mathematics and Artificial Intelligence, 19(3-4):383–411, 1997.

11 M. Mantle, S. Batsakis, and G. Antoniou. Large scale reasoning using Allen’s Interval Algebra.
In Proc. of the 15th Mexican International Conference on Artificial Intelligence, volume 11062
of Lecture Notes in Computer Science, pages 29–41. Springer, 2017.

12 L. Mudrová and N. Hawes. Task scheduling for mobile robots using interval algebra. In Proc.
of ICRA 2015: International Conference on Robotics and Automation, pages 383–388. IEEE,
2015.

13 B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of
using the ORD-Horn class. Constraints, 1(3):175–190, 1997.

14 B. Nebel and H.J. Bürckert. Reasoning about temporal relations: A maximal tractable subclass
of allen’s interval algebra. Journal of the ACM, 42(1):43–66, 1995.

15 M. Ragni and S. Wölfl. Branching Allen. In Proc. of ISCS 2004: 4th International Conference
on Spatial Cognition, volume 3343 of Lecture Notes in Computer Science, pages 323–343.
Springer, 2004.

16 A.J. Reich. Intervals, points, and branching time. In Proc. of TIME 1994: 9th International
Symposium on Temporal Representation and Reasoning, pages 121–133. IEEE, 1994.

17 J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning. Journal of Artificial
Intelligence Resoning, 15:289–318, 2001.

18 J. Renz and B. Nebel. Qualitative spatial reasoning using constraint calculi. In Handbook of
Spatial Logic, pages 161–215. Springer, 2007.

19 E. Rishes, S.M. Lukin, D.K. Elson, and M.A. Walker. Generating different story tellings from
semantic representations of narrative. In Proc. of ICIDS 2013: 6th International Conference
on Interactive Storytelling, volume 8230 of Lecture Notes in Computer Science, pages 192–204.
Springer, 2013.

20 G. Rosu and S. Bensalem. Allen linear (interval) temporal logic - translation to LTL and
monitor synthesis. In Proc. of CAV 2006: 18th International Conference on Computer Aided
Verification, volume 4144 of Lecture Notes in Computer Science, pages 263–277. Springer,
2006.

21 J. Schimpf and K. Shen. Eclipse - from LP to CLP. Theory and Practice of Logic Programming,
12(1-2):127–156, 2012.

22 M. Theune, K. Meijs, D. Heylen, and R.Ordelman. Generating expressive speech for storytelling
applications. IEEE Transactions on Audio, Speech & Language Processing, 14(4):1137–1144,
2006.

TIME 2020



5:14 The Horn Fragment of Branching Algebra

23 P. van Beek and R. Cohen. Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132–144, 1990.

24 A.K. Zaidi and L.W. Wagenhals. Planning temporal events using point-interval logic. Math-
ematical and Computer Modelling, 43(9):1229–1253, 2006.

A Appendix

Proof. (of Theorem 3) Since .= is an equivalence relation, we can take the quotientM/ .=,
denoted T , and equipped with the canonical equivalence =. In the following, we denote
by x, y, . . ., rather than [X]/ .=, [Y ]/ .=, the elements of T . We define the binary relation ≤
between classes:

x ≤ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X � Y ),

and, consequently, x < y as x ≤ y ∧ x 6= y. We want to prove that (T , <) can be extended
to a branching model of time.

≤ is an ordering relation. Clearly, ≤ is reflexive and antisymmetric because so is �.
Moreover, assume that x ≤ y and y ≤ z for some x, y, z. This means that X � Y and
Y ′ � Z for some X,Y, Y ′, Z such that X ∈ x, Y, Y ′ ∈ y, and Z ∈ z. But since Y, Y ′ ∈ y,
we have that Y .= Y ′, and by axiom 13 we know that Y � Y ′. Since � is transitive, we
obtain that X � Z, implying that x ≤ z. So, ≤ is also transitive. This also implies that
< is a strict pre-order, as it is irreflexive (because .= is reflexive).
≤ can be extended to a tree-like order. To see this, observe that tree-likeness could be
violated by having x 6≤ y, y 6≤ x, y ≤ z, and either x ≤ z or z ≤ x for some x, y, z, but
6≤ simply cannot be generated by the set C, since it contains only admissible clauses.
Because we need to interpret every symbol of the language of TORD-Horn, let us define
the incomparable relation between classes, as:

x ‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X q Y ),

which is well-defined thanks to axiom 7 and axiom 8. To ensure that (T , <) can be
extended to a tree-like ordering, we also have to guarantee that the introduction of ‖
does not generate any contradictions. So, suppose that x ‖ y, x ≤ z, and y ≤ t for some
x, y, z, t. By definition, for some X ∈ x and Y ∈ y we have that X q Y . Moreover, since
x ≤ z, for some X ′ ∈ x and Z ∈ z we have that X ′ � Z. But this implies, by axiom 13,
that X � Z. So, axiom 19 applies, implying that Y q Z. The same argument can be
re-applied, leading us the conclusion that Z q T . By definition, this implies that z ‖ t. By
contradiction, assume now that x ‖ y and x ≤ y for some x, y. This means that X q Y
and X ′ � Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13 and axiom 6, this implies
that X � Y , which is in contradiction with axiom 16. As a consequence of these two
facts we have that x ‖ y ↔ (x 6≤ y ∧ y 6≤ x) is realizable in (T , <). Now define:

x lin y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ∼ Y ),

Clearly lin is reflexive and symmetric because so is ∼, which implies that it is well-defined.
Once again, we need to make sure that introducing lin does not generate contradictions.
So, suppose, by contradiction, that x lin y and x ‖ y hold for some x, y. This means that
X ∼ Y and X ′ q Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13, this implies that
X q Y , which is in contradiction with axiom 17. Similarly, assume that x ≤ y for some
x, y (the case in which y ≤ x or x = y are similar). This means that X � Y for some
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X ∈ x and Y ∈ y. By axiom 14, this implies that X ∼ Y , leading us to conclude that
x lin y. Finally, since C is admissible, x 6lin y ∧ x 6 ‖ y cannot occur. As a consequence, we
have that x lin y ↔ (x ≤ y ∨ y ≤ x ∨ x = y) is realizable in (T , <). Finally, let us define:

x <‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ≺q Y ),

which is well-defined thanks to axiom 11, 12, and 15. Suppose that, for some x, y it is the
case that x <‖ y and y ≤ x. This means that X ≺q Y and Y ′ � X ′ for some X,X ′ ∈ x
and Y, Y ′ ∈ y. But since X,X ′ ∈ x and Y, Y ′ ∈ y, we have that X .= X ′ and Y .= Y ′, and
by axiom 13 and axiom 6, we know that X � Y , which is in contradiction with axiom 18.
Moreover, since C is admissible, x 6<‖ y ∧ y 6≤ x cannot occur. As a consequence, we have
that x <‖ y ↔ x < y ∨ x ‖ y is realizable in (T , <).

In conclusion, the structure (T , <) can be extended to a branching model of time, as we
wanted. J

Proof. (of Theorem 6) We prove a stronger claim, that is, we prove that if N is a path
consistent BAHorn-network, and Π(N) is explicit and clause-minimal, then no new positive
unit clauses at all can be deduced by positive unit resolution from Π(N)∧TORD-Horn. As
a matter of fact, to deduce a new unit clause, it must be the case that Π(N)∧TORD-Horn
contains one clause C = ¬L1∨¬L2∨ . . .∨¬Lq∨L (where L1, L2, . . . are propositional atoms),
and a sequence of positive unit clauses C1 = L1, C2 = L2, . . . , Cq = Lq, but does not contain
the clause C = L. Moreover, it must also be the case that q ≤ 2, as we have observed that
clauses of Π(N) are at most binary, and instances of axioms are at most ternary. We proceed
by case analysis.

Suppose, first, that C and C1, . . . , Cq belong to Π(N). If their variables are endpoints of
different interval variables, then no resolution step can be applied. Suppose, then, that
they contain the same endpoint variables; therefore, they also belong to the same formula
ϕi. So, it must be the case that C = X � Y ∨X 6 .= Y , C1 = X

.= Y , and q = 1 (because,
as we have observed, � must be positive). But, as it turns out, � /∈ { .=,�,∼}, otherwise
Π(N) could not be explicit, and � /∈ {q,≺q}, otherwise Π(N) could not be clause-minimal.
Therefore, C,C1, . . . , Cq cannot all belong to Π(N).
Suppose, then, that C is an instance of some transitivity axiom (3 or 6). Then, no Cj

can be an instance of some irreflexivity axiom (7 or 11), because it would not be positive,
neither can be an instance of any other axiom except 1,4, and 9, because it would not be
unitary; no resolution step can be carried on with 9, because ∼ is not transitive, and the
only possible resolution steps that could be completed with the reflexivity of .= and �
would lead to tautologies. Therefore, every Cj must belong to Π(N). If they are all clauses
of the same formula ϕ, then either C1 = X � Y , C2 = Y � Z, and q = 2, in which case
C = X � Z ∈ ϕ as well because ϕ is explicit, or C1 = X

.= Y , C2 = Y
.= Z, and q = 2,

in which case C = X
.= Z ∈ ϕ for the same reason. Therefore, C1 belongs to ϕ1, which

translates some constraint IR1J , and C2 belongs to ϕ2, which translates some constraint
JR2K (if the constraints referred to completely different interval variables, then the
endpoints variables would be different, and no resolution step could be performed). As
before, either C1 = X � Y and C2 = Y � Z, or C1 = X

.= Y and C2 = Y
.= Z, and

in both cases q = 2. Because N is path consistent, the constraint IR3K exists, and
R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since

(i) R3 is stronger than R1 ◦R2,

TIME 2020



5:16 The Horn Fragment of Branching Algebra

(ii) composition is the systematic application of the transitivity axiom(s) and the tree-
likeness axiom (see Table 1), and

(iii) L (which is either X � Z or X .= Z) can be deduced from C,C1, and C2,
it must be the case that L ∈ ϕ3, so, also in this case, no new deduction can be performed.
Assume, therefore, that C is an instance of the tree-likeness axiom. Then no Cj can be
an instance of some reflexivity axiom (1 or 4), because L would not be new, nor can it
be an instance of some irreflexivity axiom (7 or 11), because it would not be positive.
Also, Cj can never be the instance of any other axiom because it would not be unitary.
Therefore, every Cj must belong to Π(N). If they are all clauses of the same formula
ϕ, then C1 = X q Y , C2 = Y � Z, and q = 2, in which case we have that X q Z ∈ ϕ as
well, because ϕ is explicit. Therefore, C1 belongs to ϕ1, which translates some constraint
IR1J , and C2 belongs to ϕ2, which translates some constraint JR2K (if the constraints
referred to completely different interval variables, then the endpoints variables would
be different, and no resolution step could be performed). As above, C1 = X q Y and
C2 = Y � Z, and q = 2. Because N is path consistent, there exists a constraint IR3K,
and R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since

(i) R3 is stronger than R1 ◦R2,
(ii) composition is the systematic application of the transitivity axiom(s) and the tree-

likeness axiom, and
(iii) L (which is X � Z)) can be deduced from C,C1, C2,

it must be the case that L ∈ ϕ3, so, also in this case, no new deduction can be performed.
Finally, suppose that C is any other axiom. C cannot be an instance of a reflexivity
axiom (1 or 4), because it would be unitary and positive, and it cannot be an instance
of any irreflexivity axiom (7 or 11) because C1 would not be admissible. C cannot be
the instance of any symmetry axiom (2, 8, or 10), because this would entail q = 1, which
is to say C1 would suffice for a deduction, but if C1 belongs to some formula ϕ, then
the latter must also contain L because it is explicit. Finally, if C is an instance of some
antisymmetry axiom (5 or 12), then both C1 and C2 must refer to the same two endpoints
as C, that is, they must belong to the same formula ϕ; therefore, since ϕ is explicit, L
already belongs to ϕ, and if it is the instance of some weakening axiom (13, 14, or 15), or
the instance of some compatibility axiom (16, 17, or 18), then C1 must refer to the same
two endpoints as C, and the same argument applies.

Therefore, no deduction can be performed on the translation of a path consistent network.
J
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