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Abstract
In the load balancing problem, the input is an n-vertex bipartite graph G = (C ∪ S,E) – where the
two sides of the bipartite graph are referred to as the clients and the servers – and a positive weight
for each client c ∈ C. The algorithm must assign each client c ∈ C to an adjacent server s ∈ S. The
load of a server is then the weighted sum of all the clients assigned to it. The goal is to compute
an assignment that minimizes some function of the server loads, typically either the maximum
server load (i.e., the `∞-norm) or the `p-norm of the server loads. This problem has a variety of
applications and has been widely studied under several different names, including: scheduling with
restricted assignment, semi-matching, and distributed backup placement.

We study load balancing in the distributed setting. There are two existing results in the CONGEST
model. Czygrinow et al. [DISC 2012] showed a 2-approximation for unweighted clients with round-
complexity O(∆5), where ∆ is the maximum degree of the input graph. Halldórsson et al. [SPAA
2015] showed an O(logn/ log logn)-approximation for unweighted clients and O(log2n/ log logn)-
approximation for weighted clients with round-complexity polylog(n).

In this paper, we show the first distributed algorithms to compute an O(1)-approximation to the
load balancing problem in polylog(n) rounds:

In the CONGEST model, we give an O(1)-approximation algorithm in polylog(n) rounds for
unweighted clients. For weighted clients, the approximation ratio is O(logn).

In the less constrained LOCAL model, we give an O(1)-approximation algorithm for weighted
clients in polylog(n) rounds.

Our approach also has implications for the standard sequential setting in which we obtain the
first O(1)-approximation for this problem that runs in near-linear time. A 2-approximation is already
known, but it requires solving a linear program and is hence much slower. Finally, we note that all
of our results simultaneously approximate all `p-norms, including the `∞-norm.
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1:2 Improved Bounds for Distributed Load Balancing

1 Introduction

In this paper, we study the load balancing problem. The input is a bipartite graph G =
(C ∪ S,E), where we refer to the sets C and S the clients and servers, respectively. The
goal is to find an assignment of clients to servers such that no server is assigned too many
clients. To be more precise, we define the load of a server in an assignment to be the number
of clients assigned to it, and we are interested in finding an assignment that minimizes the
maximum load of any server (or minimizes the `p-norm of the server loads – we will discuss
this objective more later in the introduction).

The load balancing problem has a rich history in the scheduling literature as the job
scheduling with restricted assignment problem [14, 6, 19, 13], in the distributed computing
literature as the backup placement problem [12, 22, 3], in sensor networks [23, 21] and peer-to-
peer systems [18, 26, 25] as the load-balanced data gathering tree construction problem, and
more generally as a relaxation of the bipartite matching problem known as the semi-matching
problem [13, 8, 9, 17]. We refer the reader to [13, 9, 12] for more background.

Our primary focus in this paper is on the load balancing problem in a distributed
setting, where clients and servers correspond to separate nodes in a network. Communication
through the network happens in synchronous rounds, where in each round, every node can
send O(logn) bits to its neighbors over any of its incident edges (formally, we work in the
CONGEST model – see Section 2 for more details). In the distributed setting, the load
balancing problem generalizes the distributed backup placement problem with replication
factor one (introduced in [12]), where the nodes (corresponding to clients) in a distributed
network may have memory faults and therefore wish to store backup copies of their data
at neighboring nodes (corresponding to servers). Since backup-nodes may incur faults as
well, the number of nodes that select the same backup-node should be minimized. See the
full version of this paper [1] for the exact formulation of the distributed backup placement
problem and for how some of our results extend to the more general version of the problem
with arbitrary replication factor.

A simple distributed algorithm for the load balancing problem in which the nodes
myopically reassign themselves to a server with smaller load eventually converges to an
O( logn

log logn )-approximation, where n is the number of nodes in the network [10, 16], but as was
shown in Halldórsson et al. [12], the algorithm requires Ω(

√
n) rounds. The same paper [12]

shows a way of circumventing this costly process and gives a distributed algorithm that
achieves the same O( logn

log logn )-approximation in only polylog(n) rounds. On the other hand,
Czygrinow et al. [8] show a distributed O(1)-approximation (precisely, a 2-approximation)
that requires O(∆5) rounds, where ∆ is the maximum degree of a node in the network. This
algorithm is highly efficient for low-degree networks but is again too expensive for high-degree
graphs.

This state-of-affairs is the starting point of our work: Can we obtain the best of both
worlds, namely, an O(1)-approximation algorithm in polylog(n) rounds?

Our first contribution. Our first main contribution in this paper is an affirmative answer
to this question.

I Result 1 (Formalized in Theorem 6). We give an O(1)-approximate randomized distributed
algorithm for load balancing in the CONGEST model that runs in O(log5n) rounds.

At the core of our algorithm is a new structural lemma for the load balancing problem.
Informally speaking, we show that eliminating all “short augmenting paths” of length
O(logn) is sufficient to assign all clients to servers with load a constant factor as much as
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the optimum (Lemma 3). In conjunction with ideas from [12], this effectively reduces the
load balancing problem to that of finding a matching with no short augmenting paths, which
can be solved using the by-now standard algorithm of Lotker et al. [20].

Our second contribution. Next, we consider the weighted load balancing problem in
which every client comes with a weight. The load of a server is then the total weight of
the clients assigned to it. The goal, as before, is to minimize the maximum load of any
server. Halldórsson et al. [12] also studied the weighted problem and gave an O( log2n

log logn )-
approximation in polylog(n) rounds using a simple reduction to the unweighted case.

Using the same weighted-to-unweighted reduction, our algorithm in Result 1 also implies
an O(logn)-approximation for the weighted load balancing problem in polylog(n) rounds of
the CONGEST model. Our main technical contribution in this paper is a new algorithm for
this problem that achieves an O(1)-approximation in the less constrained LOCAL model, in
which communication over edges in each round is unbounded.

I Result 2 (Formalized in Theorem 15). We give an O(1)-approximate randomized distributed
algorithm for weighted load balancing in log3n rounds of the LOCAL model.

Our LOCAL algorithm consists of two main components: a distributed algorithm for
(approximately) solving a relaxed version of the problem where each client c with weight
w(c) should be assigned to w(c) adjacent servers with multiplicity – a split assignment – and
a novel distributed rounding procedure. Using our structural result in Lemma 3, we can find
a split assignment by approximately solving (or rather, eliminating short augmenting paths
in) a generalized b-matching problem with edge capacities. We are not aware of any efficient
algorithm for this problem in the CONGEST model, but we can show that a simple extension
of the work of [20] can solve this problem in polylog(n) rounds in the LOCAL model. The
rounding step is also based on a new application of our Lemma 3 that allows us to circumvent
the typical use of “cycle canceling” procedures for rounding fractional matching LP solutions
into integral ones, which do not translate to efficient distributed algorithms.

We now turn to two important extensions of Results 1 and 2. The first is the more general
problem of all-norm load balancing, and the second is a fast sequential algorithm.

Approximating all norms. Recall that our goal in the load balancing problem has been
to minimize the maximum load of any server. Assuming we denote the loads of servers
under some assignment A by a vector LA := [LA(s1), LA(s2), . . . , LA(sn)] for all si ∈ S,
minimizing the maximum server load is equivalent to minimizing ‖LA‖∞, i.e., the `∞-norm
of LA. Depending on the application, however, miniziming this norm may not be the most
natural notion of a “balanced” assignment; if some server requires vastly more load than the
other servers, an `∞-norm-minimizing assignment may put needlessly large load on those
other servers.

As a result, it is natural to consider minimizing some other `p-norm of LA for some p ≥ 1.
This is done, for instance, in [13, 9, 17], which considered `2-norms. An even more general
objective is the all-norm problem, studied in [2, 5, 7, 13], where the goal is to simultaneously
optimize with respect to every `p-norm. These results compute an assignment which is an
O(1)-approximation (or even optimal) simultaneously with respect to all `p-norms, including
p =∞ (a priori, even the existence of such an assignment is not clear).

All of our results extend to the all-norm problem without any increase in approxima-
tion factor or round-complexity. In particular, in the CONGEST model, we give random-
ized distributed O(1)- and O(logn)-approximation algorithms for all-norm load balancing

DISC 2020
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in polylog(n) rounds, in the unweighted and weighted variant of the problem, respec-
tively (Theorem 11). In the LOCAL model, the approximation ratio for the weighted
problem can be reduced to O(1) as well (Theorem 15).

Faster sequential algorithms. Finally, we show that our new approach to weighted load
balancing can also be used to design a near-linear time algorithm for this problem in
the sequential setting. We give a deterministic O(m log3(n)) time algorithm for the O(1)-
approximate all-norm load balancing problem in the sequential setting (Theorem 20).

Previously, a deterministic O(m
√
n logn) time for the exact problem in case of unweighted

graphs was given in [9]. The weighted variant of the problem is NP-hard [2]; 2-approximate
algorithms were shown in [2] and [7], but they are based on solving, respectively, the linear
and convex programming relaxations of the problem exactly using the ellipsoid algorithm,
and thus are much slower than the algorithm we present.

2 Preliminaries

Notation. For any function f : A→ N and B ⊆ A, we use the notation f(B) =
∑
b∈B f(b)

to sum f over all elements in B. For any integer t ≥ 1, we denote [t] := {1, . . . , t}.
Throughout, we assume G = (C ∪ S,E) is a bipartite graph. We refer to C and S as the

clients and the servers, respectively. We let uv denote the edge between vertices u and v and
let δ(v) denote the set of edges incident to a vertex v. We use n as number of vertices in G
and m as the number of edges in G.

Load balancing. In the load balancing problem, the input is a bipartite graph G = (C∪S,E)
together with a client weight function w : C → [W ]. The output is an assignment A : C → S

mapping every client to one of its adjacent servers. The load LA(s) of a server s ∈ S under
assignment A is the sum of the weights of the clients assigned to it: LA(s) = w(A−1(s)).
The maximum load of an assignment A is the maximum load of any server under A. We refer
to the problem of computing an assignment of minimum load as the (weighted) min-max
load balancing problem.

As mentioned in the introduction, the min-max objective can be generalized by considering
any `p-norm of LA, defined as ‖LA‖p =

(∑
s∈S (LA(s))p

)1/p. For brevity, we also use the
notation ‖A‖p := ‖LA‖p. In the language of norms, the min-max objective corresponds
to minimizing the load vector’s `∞-norm. When the goal is to find an assignment A that
simultaneously minimizes ‖A‖p for all p ≥ 1, including p = ∞, the problem is called the
(weighted) all-norm load balancing problem. Prior results in [2, 5, 7, 13] show the existence
of an assignment that can (approximately) minimize all these norms simultaneously. In
particular, we use the following result due to Harvey et al. [13] in our proofs (see also [5]).

I Lemma 1 ([13]). Given any instance of the unweighted load balancing problem, there exists
an assignment A∗ that simultaneously minimizes ‖A∗‖p for all p ≥ 1, including p =∞.

b-matchings. In addition to assignments, we will also work with b-matchings. For a vertex
capacity function b : V → Z+, a b-matching is an assignment x : E → Z+ of integer
multiplicities to edges so that for every vertex v, the sum x(δ(v)) of the multiplicities of the
edges incident to v does not exceed b(v).

Since we will focus solely on the case when G is bipartite and V = C ∪ S, it will be
convenient to split b into two separate capacity functions, one for the clients and one for the
servers. We use κ : C → Z+ to denote the client capacities and τ : S → Z+ to denote the
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server capacities. A (κ, τ)-matching is then a function x : E → Z+ assigning multiplicities to
edges such that∑

s∈N(c)

x(cs) ≤ κ(c) (1)

for every client c and∑
c∈N(s)

x(cs) ≤ τ(s)

for every server s. A (κ, τ)-matching is client-perfect if (1) holds with equality for all
c ∈ C. We say that a server s (resp. client c) is x-saturated if x(δ(s)) = τ(s) (resp.
x(δ(c)) = κ(c)). If a vertex is not x-saturated, then it is x-unsaturated. An x-augmenting
path is a path v1, . . . , v2k+1 such that v1 and v2k+1 are x-unsaturated and x(v2i+1v2i+2) > 0
for all 0 ≤ i < k.

We will make repeated use of the following simple remark.
I Remark 2. When all client weights are one (the unweighted case), a client-perfect (1, τ)-
matching induces an assignment of maximum load at most maxs∈S τ(s), and vice versa.
Note that the remark does not generalize to weighted clients; under a (w, τ)-matching, a
client may be split across multiple servers, which does not correspond to a proper assignment.

The LOCAL and CONGEST models. In both the LOCAL and the CONGEST models of
distributed computation, each vertex of the input graph hosts a processor that initially only
knows its neighbors and its weight. Following a standard assumption, we assume that all
vertices know n and the maximum weight W . Computation proceeds in synchronous rounds;
in each round, vertices may send messages to their neighbors and then receive messages from
their neighbors in lockstep. Local computation is free – we are only interested in the round
complexity, the number of rounds required by the algorithm.

The LOCAL and CONGEST models differ in that in the LOCAL model, vertices can send
and receive arbitrarily large messages to and from their neighbors, while in the CONGEST
model, the communication between adjacent vertices in each round is capped at O(logn).

3 A Structural Lemma

A crucial component of our results is a structural observation about approximate (κ, τ)-
matchings in the context of the load balancing problem, which is inspired by results from
online load balancing [11, 4]: if a graph contains some client-perfect (κ, τ)-matching, then
every (κ, 2τ)-matching is either client-perfect or can be augmented via an augmenting path
of logarithmic length. Formally, and more generally, we have the following lemma.

I Lemma 3. If G contains a client-perfect (κ, τ)-matching and x is a (κ, ατ)-matching for
α > 1, then either x is client-perfect or there is an x-augmenting path of length at most
2dlogατ(S)e+ 1.

Proof. Suppose G contains a client-perfect (κ, τ)-matching x∗. To simplify the discussion,
we define a directed multigraph D on V (G) whose arcs are oriented edges in the support of x
and x∗ as follows. For every cs ∈ E(G) with c ∈ C and s ∈ S, D has x(cs) copies of the arc
(s, c) and x∗(cs) copies of the arc (c, s) and no other arcs. Notice that every directed path in
D starting at an x-unsaturated client and ending at an x-unsaturated server corresponds to
an x-augmenting path in G.

DISC 2020



1:6 Improved Bounds for Distributed Load Balancing

Suppose x is not client-perfect and let c ∈ C be an x-unsaturated client. Let k ∈ N be
fixed and define Uk to be the set of vertices reachable via a walk of length k from c in D.
Call Uk full if u is x-saturated for all u ∈ Uk.

The lemma follows from two simple claims:
1. if U2k+1 is not full, then G contains an x-augmenting path of length at most 2k + 1; and
2. if U2k+1 is full, then τ(U2k+3) ≥ ατ(U2k+1).

The first claim follows from the fact that a directed walk contains a directed path with
the same endpoints and from the correspondence noted earlier between directed paths with
unsaturated endpoints in D and augmenting paths in G.

We proceed to the second claim. If s ∈ U2k+1 and U2k+1 is full, then s is x-saturated
and the out-degree of s is ατ(s). Thus, the total out-degree of U2k+1 – and also the total
in-degree of U2k+2 – is ατ(U2k+1). Now we use the fact that the out-degree of a client
c ∈ U2k+2 is at least as large as its in-degree. This follows simply from the fact that the
in-degree must be at most κ(c), and since x∗ is client-perfect, the out-degree is exactly κ(c).
Following the arcs once more, the total in-degree of U2k+3 is at least ατ(U2k+1). Finally,
since the in-degree of U2k+3 is also point-wise less than τ , we have ατ(U2k+1) ≤ τ(U2k+3).

Now we show how the two claims together imply the lemma. If any U2i+1 for i ≤
dlogα(τ(S))e is not full, we are done by the first claim. Otherwise, the sums of capacities
grow exponentially starting with τ(U1) ≥ 1. Inductively, |U2i+1| ≥ αi for all i ∈ N. For
k = dlogα τ(S)e, therefore, we have τ(U2k+3) ≥ ατ(S), a contradiction. Thus, not all {U2i+1}
are full. J

4 Unweighted Load Balancing

Assuming an algorithm to eliminate augmenting paths up to a certain length efficiently,
the structural lemma from the previous section almost immediately implies an algorithm
for the unweighted load balancing problem. To obtain an algorithm for eliminating short
augmenting paths, we use the following lemma which is implied by Lemma 24 in [12].

I Lemma 4 ([12]). There exists an O(k3 logn)-round randomized algorithm in the CONGEST
model that, with high probability, given a graph G = (C ∪ S,E), a positive integer k, and
server capacity function τ , computes a (1, τ)-matching with no augmenting paths of length
less than k.

The proof of Lemma 4 combines two existing results. The algorithm of Lotker et al. [20]
computes a (1,1)-matching with no augmenting paths of length ≤ k in O(k3 logn) rounds.
Halldórsson et al. [12] then show a black-box extension from (1,1)-matching to (1, τ)-matching
which does not increase the round-complexity; see [12] for more details.

I Remark 5. Both our algorithm and the algorithm of [12] use the above lemma as a starting
point. But the algorithm of [12] only removes short augmenting paths to ensure that the
(1, τ)-matching is approximately optimal. Since a near-optimal matching is still not an
assignment (it is not client-perfect), they then use a different set of tools to convert an
approximate (1, τ)-matching to an O(logn/ log logn)-approximate assignment.

Our analysis, by contrast, directly exploits the non-existence of short augmenting paths
via Lemma 3. We thus avoid the additional conversion of [12], which leads to a better
approximation ratio, as well as a simpler algorithm.
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Approximating the `∞-norm (the min-max load balancing problem). Let B∗ be the
optimum `∞-norm. We will first describe an algorithm that assumes as input some B ≥ 2B∗.
The algorithm begins by using Lemma 4 to compute a (1, B)-matching x with no augmenting
paths of length 4dlog2 ne + 1. The sum of the server capacities is at most nB, and since
clients have unitary weight, we can assume B ≤ n. Therefore, by Lemma 3, since there
are no x-augmenting paths of length 2dlog2(nB)e + 1 ≤ 4dlog2 ne + 1, we know that x is
necessarily client-perfect. A client c can now assign itself to the vertex it is matched to under
x.

To remove the assumption that we are given a B ≥ 2B∗, we run the algorithm above logn
times with B = 1, 2, 4, . . . , n. For every run where B ≥ 2B∗, the algorithm will successfully
assign every client. Note, however, that in the distributed setting, there is no efficient way
for the clients to determine the smallest B for which the algorithm successfully matched
every client. Instead, each client c locally assigns itself according to the run with smallest
B that succeeded—i.e., according to the first run in which c was matched. We show that
the resulting assignment has maximum load at most 8B∗. See Algorithm 1 for a concise
treatment.

Algorithm 1 Approximate unweighted load balancing in the CONGEST model.

1 for B ∈ {1, 2, 4, . . . , n} do
2 compute a (1, B)-matching xB with no augmenting paths of length 4dlogne+ 1
3 end
4 each client c locally finds the minimum B such that c is matched in xB and assigns

itself to the server it is matched to in xB

I Theorem 6. In the CONGEST model, there is a randomized algorithm (Algorithm 1) that
with high probability computes an 8-approximation to the min-max load balancing problem in
O(log5n) rounds.

Proof. First observe that since augmenting paths with respect to a (1, n)-matching have
length at most 1, all clients are assigned in xn. Therefore the algorithm always outputs an
assignment of all clients.

Let B∗ be the optimal maximum load and B be the smallest power of 2 that is at least
2B∗ (we have B ≤ 4B∗). The (1, B)-matching xB computed in the main loop of Algorithm 1
will be client-perfect by Lemma 3, and so no client will assign itself according to x′B for
B′ > B. A single server is only assigned at most i clients from xi, and since x1, x2, x4, . . . , xB
are the only assignments in play, the total load of a server under any combination of these
assignments is at most 1 + 2 + 4 + · · ·+B < 2B ≤ 8B∗. Thus every server has load at most
8B∗.

Finally, each xB is computed in O(log4n) rounds with high probability by Lemma 4. We
compute them sequentially, resulting in total round complexity of O(log5n). J

I Remark 7. In the LOCAL model, the round complexity of Algorithm 1 is O(log3n). One
log factor is shaved off of Lemma 4 because the algorithm of [20] for finding a (1,1)-matching
is faster in the LOCAL model. The second log factor is shaved off by running the for-loop of
Algorithm 1 in parallel for every B.

Approximating all `p-norms simultaneously (the all-norm load balancing problem). The
assignment produced by Algorithm 1 in fact does more than approximate the optimal
`∞-norm; it also simultaneously approximates every `p-norm for p ≥ 1, as we will now show.

DISC 2020



1:8 Improved Bounds for Distributed Load Balancing

Recall that by Lemma 1, when clients are unweighted, there is an all-norm optimal
assignment that simultaneously minimizes the `p-norm for all p ≥ 1, including p =∞. Let
A∗ be the set of all all-norm optimal assignments; by Lemma 1, the set A∗ is non-empty.
We need the following key definition.

I Definition 8. The level `(s) of a server s is the maximum load of s over all assignments in
A∗, i.e., `(s) := maxA∈A∗ LA(s). The level `(c) of a client c is `(c) := maxA∈A∗ LA(A(c)).

I Lemma 9. For i ∈ [n], let Ci ⊆ C be the set of clients at level i and let Si ⊆ S be the set
of servers at level i. There are no edges in G from Ci to Sj for any j < i.

Proof. Fix a client c ∈ Ci and let A be an all-norm optimal assignment such that LA(A(c)) =
i. Suppose to obtain a contradiction that N(c) ∩ Sj 6= ∅ and let s ∈ N(c) ∩ Sj . Consider the
assignment A′ which maps c to s and is otherwise identical to A. Comparing the load vector
of A to A′, one entry of the load vector moves from i to i− 1, another entry moves from j to
j + 1, and the rest remain unchanged. Since j < i, it follows that ‖A′‖p ≤ ‖A‖p for all p. If
‖A′‖p < ‖A‖p for some p, then A is not all-norm optimal, a contradiction. Otherwise, the
norms are equal for all p. But then there is an all-norm optimal assignment, namely A′, in
which s has level j + 1, contradicting that the level of s is j. J

I Lemma 10. If a client c ∈ C has level at most ` and x is a (1, B)-matching with B ≥ 2`
such that there are no x-augmenting paths of length at most 4dlogne+ 1 in the graph, then c

is matched under x.

Proof. Consider the graph G′ constructed by removing all servers of load larger than ` from
G and let x′ be x restricted to G′. Since every augmenting path in G′ is an augmenting path
in G, there are no x′-augmenting paths of length ≤ 4dlogne+ 1 in G′. Note that any optimal
assignment in G restricted to G′ has maximum load at most `. Since x′ is a (1, B)-matching,
G′ has a client-perfect (1, `)-matching, and B ≥ 2`, it follows that x′ is client-perfect in G′
by Lemma 3. As x′ is the restriction of x to G′, it follows that x matches all clients of level
at most ` in G. J

I Theorem 11. In the CONGEST model, there is a randomized algorithm (Algorithm 1) that
with high probability computes an 8-approximation to the all-norm load balancing problem in
O(log5n) rounds.

Proof. For each client c, let Bc be the smallest power of two that is at least 2`(c). By
Lemma 10, each client c will be assigned in xBc

. Fix a server s. Lemma 9 implies that the
load of s is only determined by clients whose level is at most `(s) as no other clients can be
adjacent to s. Since each xB contributes at most B to the load of s and only contributes for
B ≤ 4`(s), we obtain that LA(s) ≤ 1 + 2 + 4 + · · ·+ 4`(s) ≤ 8`(s). Thus,

‖A‖p =
(∑
s∈S

(LA(s))p
)1/p

≤

(∑
s∈S

(8`(s))p
)1/p

= 8 ‖A∗‖p . J

5 Weighted Load Balancing

In this section, we describe our algorithms for the weighted load balancing problem. We start
by showing that with the simple reduction in [12] from unweighted to weighted load balancing,
our unweighted algorithm (Algorithm 1) also implies an O(logn)-approximate polylog(n)-
round CONGEST algorithm for weighted instances. We then turn to the main result of
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this section: an O(1)-approximate polylog(n)-round LOCAL algorithm for the weighted load
balancing problem. We conclude this section with an O(1)-approximate sequential algorithm
that runs in near-linear time.

As our goals in this section are to obtain, at best, an O(1)-approximation, we may assume
that all client weights are powers of two. If not, rounding weights up to the nearest power of
two will at most double the approximation ratio. We can assume similarly that the maximum
weight W ≤ n. Indeed, clients with load less than W/n can collectively distribute at most
W weight across the servers and can therefore be assigned arbitrarily. Thus, when W > n,
clients can simply rescale their own weight by n/W (and round it up to the nearest integer).

Throughout this section, we denote by Ci the set of clients whose weight is exactly 2i.
(By our previous assumption, the sets {Ci} partition C.) We let Gi := G[Ci, N(Ci)] be the
induced graph on Ci and its neighborhood.

An O(log n)-approximation in the CONGEST model. We begin with an easy corollary
of our unweighted algorithm following a simple reduction in [12].

I Theorem 12. In the CONGEST model, an O(logn)-approximation to the all-norm weighted
load balancing problem can be computed with high probability in O(log5n) rounds.

Proof. Consider the following algorithm: For each weight class i, compute an assignment Ai
of Gi using Algorithm 1 by treating all clients as having weight 1. Then, have each client in
Ci assign itself according to Ai.

Since all Ai’s can be computed in parallel (as the graphs Gi are edge-disjoint, only one
of the parallel copies need to communicate over an edge), the algorithm runs in O(log5n)
rounds. We now show that the resulting assignment A is O(logn)-approximate for all norms.

Fix any p ≥ 1 including p =∞; let A∗ be an assignment for G with minimum `p-norm,
and let A∗i be an assignment for Gi with minimum `p-norm. Clearly ‖A∗i ‖p ≤ ‖A∗‖p for all i.
By Theorem 11, ‖Ai‖p ≤ 8 ‖A∗i ‖p ≤ 8 ‖A∗‖p. It follows that

‖A‖p = ‖A1 + · · ·+Alogn‖p ≤ ‖A1‖p + · · ·+ ‖Alogn‖p ≤ 8 log(n) ‖A∗‖p . J

Preliminaries for the weighted algorithms. Though they use entirely different techniques,
the LOCAL and sequential algorithms of the next two subsections both follow the same
high-level approach: first compute a split assignment, then round it into an integral one.

I Definition 13. Let G = (C ∪ S,E) be a bipartite graph with client weights w : C → Z+.
A split assignment yf in G is a client-perfect (w,∞)-matching (so servers have unbounded
capacity). For every server s, the load Lyf

(s) is the sum of edge-multiplicities incident to s.

Notice that split assignments are a relaxation of standard assignments by allowing clients
to be assigned to several different servers at once, contributing an integral load to each server,
provided that the total load distributed by the client does not exceed its weight.

We will also need the following notion. Define the client-expanded graph G̃ of G as
the graph formed by making w(c) copies of each client c. Formally, for each c ∈ C, the
client-expanded graph has vertices c1, . . . , cw(c) and an edge between ci and s for all i ∈ [w(c)]
if and only if G has an edge between c and s.

I Observation 14. A split assignment yf in G corresponds to an integral assignment in
the client-expanded graph G̃ with the same server loads. Thus, since G̃ is unweighted, by
Lemma 1 there exists an all-norm optimal split assignment y∗f .
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5.1 An O(1)-approximation in the LOCAL model
Our main result in this section is the following theorem.

I Theorem 15. In the LOCAL model, there is a randomized algorithm (Algorithm 2) that
with high probability computes an O(1)-approximation to the weighted all-norm load balancing
problem in O(log3n) rounds.

We will need the next rounding lemma to describe our algorithm; the proof is standard.

I Lemma 16. If G = (C ∪S,E) contains a client-perfect (κ, τ)-matching x, then there exists
an assignment A : C → S such that for all servers s ∈ S,

LA(s) ≤ τ(s) + max
c∈A−1(s)

κ(c).

Proof of Lemma 16. Consider the set of edges F in the support of x. If C ⊆ F is a cycle,
we can alternately increase and decrease the value of x(e) on each edge e of the cycle by
minf∈C x(f) to break the cycle without changing x(δ(v)) for any v ∈ V (this cycle can only
be of even length as the input graph is bipartite). Thus, we may assume that the support of
x has no cycles and thus is a forest.

We can next turn F into a collection of stars centered on servers. This done by rooting
each tree T in the support of F arbitrarily, picking each server s which has a client parent-
node c, and setting the edge x(cs) = κ(c) and x(cs′) = 0 for all other s′ ∈ N(c). This clearly
satisfies the requirement of client c and the load on server s can only ever be increased by
maxc∈A−1(s) κ(c) as each server can only have one parent client. At this point, in F , any
client is assigned to exactly one server and thus we obtain an integral solution in which the
load of any server s is at most τ(s) + maxc∈A−1(s) κ(c), finalizing the proof. J

Our LOCAL algorithm consists of two main parts, an algorithm for solving the split load
balancing problem and a rounding procedure, which we describe now in turn.

Computing a split assignment. The first step of the LOCAL algorithm is to compute an
assignment Ã in the client-expanded graph G̃ of G using Algorithm 1. Note that in the
LOCAL model, each client c can simulate all “new” clients c1, . . . , cw(c) in Algorithm 1 without
any overhead in the round complexity.1 As mentioned in Observation 14, the assignment
Ã corresponds to a split assignment with the same server loads. To limit the amount of
notation in the algorithm description, we will sometimes refer to Ã as a split assignment in
G, although formally it is an assignment in G̃.

The guarantees of Algorithm 1 tell us that Ã has small `p-norm. The next step is to use
Ã to find an integral assignment without much loss in the norm.

A “rounding” procedure. We would now ideally round the split assignment Ã into an
integral assignment, but even in the LOCAL model we cannot afford to run such a procedure
directly. The fact that a good rounding exists, however, is enough for us to apply Lemma 3
to obtain a similarly good assignment, as we show below.

For each i, let Ãi be Ã restricted to Gi. Lemma 16 states that there is a way to round
Ãi into an assignment with load τi(s) = Li

Ãi
(s) + 2i for servers s assigned to by Ãi and

τi(s) = 0 for the remaining servers. Treating the clients as unweighted, Ãi corresponds to

1 We remark that computing this assignment is the only step of our weighted algorithm that does not
run efficiently in the CONGEST model, precisely because this simulation not possible in the CONGEST
model in polylog(n) rounds.
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Algorithm 2 Approximate weighted (all-norm) load balancing in the LOCAL model.

1 emulate Algorithm 1 on G̃ to compute an assignment Ã
2 for i ∈ {1, 2, 4, . . . , n} in parallel do
3 let Ãi be Ã restricted to G̃i

4 let τi(s) =
{
LÃi

(s) + 2i, if LÃi
(s) > 0

0, otherwise
. by Lemma 16, an assignment with load vector point-wise less than τi exists in Gi

. therefore, scaling clients in Gi to weight 1, a (1, d2−iτie)-matching exists
5 treating Gi as unweighted, compute a (1, 2d2−iτie)-matching xi in Gi with no

augmenting paths of length 4dlogne+ 1
. by Lemma 3, xi is client-perfect

6 let Ai be the assignment induced by xi
7 assign each c ∈ Ci to Ai(c)
8 end

a (1, d2−iτie)-matching. We now compute a (1, 2d2−iτie)-matching xi with no augmenting
paths of length 4dlogne+ 1 or smaller. By Lemma 3, each xi is client-perfect, inducing an
(integral) assignment Ai in Gi. Lastly, each client in Ci assigns itself in accordance with Ai
to produce the global assignment A. See Algorithm 2.

To formalize the logic of the algorithm, we make a few claims that together will imply
the algorithm’s correctness. The first claim ensures that the algorithm produces a proper
assignment.

B Claim 17. Algorithm 2 assigns every client to some server.

Proof. We need to show that the matching xi computed in Line 5 of Algorithm 2 is client-
perfect. Consider τi from Line 4 of Algorithm 2. Viewing Ãi as a client-perfect (w,LÃi

)-
matching, Lemma 16 guarantees that there is an assignment wherein each server s has load
at most τi(s).

Because all clients in Gi have the same weight, we can interpret the assignment from
Lemma 16 as a client-perfect (1, d2−iτie)-matching in the unweighted graphGi. When treating
clients as unweighted, server capacities are always bounded by n, and so by Lemma 3, if xi
has no augmenting paths of length ≤ 4dlogne+ 1, it follows that xi is client-perfect. C

The next claim shows that the assignment produced is O(1)-approximate.

B Claim 18. There is a universal constant C such that for all p ≥ 1, including p = ∞,
the assignment A produced by Algorithm 2 satisfies ‖A‖p ≤ C ‖A∗‖p, where A∗ is an
`p-norm-minimizing assignment.

Proof. Fix p ≥ 1 (including p =∞). Let A∗ and Ã∗ be assignments for G and G̃, respectively,
that minimize the `p-norm. For brevity, we omit the subscript p when writing norms with
the understanding that all norms in this proof are `p-norms. We will also treat the client
weight function w as a vector so that we can write its norm as ‖w‖.

Our strategy is to decompose the final assignment A into two parts and bound the norms
of those parts separately. First, we decompose each assignment Ai of Line 6. We define the
first part, ρi, by ρi(s) = 2i if s is assigned to by Ai and ρi(s) = 0 otherwise. In other words,
ρi has the same support as the load vector LAi of Ai, but all of its nonzero entries are 2i.
The second part, µi, docks 2i+1 from the support of LAi

: µi = LAi
− 2ρi. Letting µ =

∑
i µi
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and ρ =
∑
i ρi, we have that ‖A‖ = ‖µ+ 2ρ‖ ≤ ‖µ‖ + 2 ‖ρ‖. It therefore suffices to show

that ‖µ‖ and ‖ρ‖ both O(1)-approximate ‖A∗‖.
Let us first bound ‖µ‖. For any server s assigned to by Ai, we have

µi(s) = LAi(s)− 2i+1

≤ 2i+1d2−iτi(s)e − 2i+1

≤ 2i+1d2−iLÃi
(s) + 1e − 2i+1

≤ 2i+12−i+1LÃi
(s) + 2i+1 − 2i+1 (dxe ≤ 2x for all x ≥ 1)

≤ 4LÃi
(s).

For any server s not assigned to by Ai we have µi(s) = 0, and so trivially µi(s) ≤ 4LÃi(s)
for such s. Therefore, µ(s) =

∑
i µi(s) ≤

∑
i 4LÃi

(s) = 4LÃ(s). Using Theorem 6, it follows
that ‖µ‖ ≤ 4

∥∥Ã∥∥ ≤ 32
∥∥Ã∗∥∥ ≤ 32 ‖A∗‖.

We now bound ‖ρ‖. Define ρ∗(s) = maxc∈A−1(s) w(c). Note that ρ∗ is the load vector of
a “partial” assignment (not all clients are assigned) that assigns to each server at most once.
Since w can be interpreted as the load vector of an assignment that assigns every client to a
unique server, we have ‖ρ∗‖ ≤ ‖w‖. Now observe that ρ(s) =

∑log ρ∗(s)
i=1 ρi(s) ≤ 2ρ∗(s) simply

because ρi(s) is either 0 or 2i for each i. To complete the bound, notice that ‖w‖ ≤ ‖A∗‖;
the best (hypothetical) assignment would assign every client to a unique server, resulting in
value ‖w‖. Putting things together, we have shown that ‖ρ‖ ≤ 2 ‖A∗‖. C

It remains to bound the round-complexity of the algorithm.

B Claim 19. Algorithm 2 takes O(log3n) rounds in the LOCAL model.

Proof. In the LOCAL model, we can easily emulate Algorithm 1 (or any algorithm) on the
client-expansion G̃ at no extra cost; any communication across an edge cs simply needs to
specify which ci in the expansion the message is to/from. Since W ≤ n, Algorithm 1 still
runs in O(log3n) rounds in the LOCAL model (see Remark 7). The main for-loop is run
in parallel, and so we only need to bound the round-complexity of its body. Line 5 is the
only line inside the loop that requires (additional) communication, and this again only takes
O(log3n) rounds. The total round-complexity is therefore O(log3n). C

This concludes the proof of Theorem 15.

5.2 An O(1)-approximate O(m log3n)-time sequential algorithm
We now show that our approach can also be used to compute an O(1)-approximation to
the weighted all-norm load balancing problem in near-linear time in the standard sequential
setting, proving the following theorem.

I Theorem 20. In the standard sequential model, there is a deterministic algorithm to
compute an O(1)-approximate solution to the weighted all-norm load balancing problem that
runs in O(m log3n) time.

Previously, Azar et al. [2] showed a 2-approximate algorithm for this problem, which runs
in two phases: (1) compute an optimal fractional assignment and (2) round the fractional
assignment, which incurs a 2-approximation. But their algorithm computes the optimal
fractional assignment using the ellipsoid method to solve a linear program with exponentially
many constraints, and hence incurs a large polynomial runtime.
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Our algorithm uses the same rounding procedure as [2], but instead of computing an
exact fractional assignment, we compute an O(1)-approximate split assignment in near-linear
time by simulating our distributed approach in the sequential setting. To this end, we will
need the following subroutine:

I Lemma 21. Given any bipartite graph G = (C ∪ S,E) and capacity functions κ, τ , it
is possible to compute a (κ, τ)-matching with no augmenting paths of length ≤ 8 log(n) in
O(m log2n) time in the sequential setting.

Proof. Note that a (κ, τ)-matching corresponds to the following flow problem. Every edge
in E gets infinite capacity; there is a dummy source vs and for every client c ∈ C there is an
edge (vs, c) of capacity κ(c); there is also a dummy sink vt and for every server s ∈ S there
is an edge from s to vt of capacity τ(s). It is immediate to verify that any vs-vt flow in this
network corresponds to a (κ, τ)-matching and vice versa.

We now show how to compute a solution to this flow problem that contains no augmenting
paths of length 9 log(n) ≥ 8 log(n) + 2 which corresponds to the desired (κ, τ)-matching.

The algorithm simply runs 9 log(n) successive iterations of blocking flow. A blocking flow
in a capacitated graph can be computed in O(m logn) time using the dynamic tree structure
of Sleator and Tarjan [24]. J

We are now ready to show our algorithm to compute a split assignment.

I Lemma 22. Let G = (C ∪ S,E) be a bipartite graph with client-weights w(C). There
exists a sequential algorithm that in O(m log3n) time computes a split assignment yf such
that

∥∥Lyf

∥∥
p
≤ 8

∥∥∥Ly∗
f

∥∥∥
p

for every p ≥ 1 (including p =∞).

Proof. Recall from Observation 14 that the optimal split assignment y∗f corresponds to an
optimal (integral) assignment Ã∗ in the client-expanded graph G̃; server loads in the two
solutions are the same, so

∥∥∥Ly∗
f

∥∥∥
p

= ‖LÃ∗‖p. We obtain our split assignment yf by simulating

Algorithm 1 on the graph G̃: by Theorem 11, this yields the desired 8-approximation. We
now describe how to execute the simulation in the sequential model and how to convert
between the perspectives of split assignment in G and integral assignment in G̃.

Firstly, in Line 2 of Algorithm 1, we need to a compute a (1, B)-matching in G̃ with no
short augmenting paths. This is equivalent to a (w,B)-matching in G, which we compute in
O(m log2n) time using Lemma 21.

Secondly, in Line 4 of Algorithm 1, each client-copy c̃ in G̃ must find the minimum B such
that c̃ is matched in xB . We need to convert this line to the language of split assignments.
In particular, note that in our sequential simulation, xB is a (w,B)-matching in G rather
than a (1, B)-matching in G̃. It is easy to see that the following simulates Line 4. For
each client c in G, let sB(c) be the set of servers incident to c in xB: if an edge cs has
multiplicity α in xB , then s appears α times in sB(c). To construct the split assignment yf ,
first assign c to the server in s1(c) (if any). Then assign c to an arbitrary |s2(c)| − |s1(c)|
servers from s2(c), an arbitrary |s4(c)| − |s2(c)| servers from s4(c), and more generally an
arbitrary |sB(c)| − |sB/2(c)| servers from sB(c). It is not hard to check that the resulting
split assignment is equivalent to some integral assignment in G̃ formed by executing Line 4
of Algorithm 1 in G̃. It is also easy to see that for each xB the assignments can be performed
in O(m) time, for a total of O(m logn) time.

The running time of the algorithm is thus dominated by the time for computing matchings
xB. Each takes O(m log2n) time to compute (Lemma 21), and there are O(log(nW )) =
O(logn) values of B, so the total run-time is O(m log3n). J
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1:14 Improved Bounds for Distributed Load Balancing

Finally, we round the split assignment to an integral assignment using the rounding
procedure of [2], which is described in the proof of Lemma 16. The rounding procedure has
two steps: cycle cancelling and computing a matching in a tree. The second can clearly be
done in O(m) sequential time. Cycle cancelling can be done deterministically in O(m logn)
time (see, e.g., [15]). The total time for rounding is thus O(m logn). (Note that in the
distributed setting we only relied on the existence of such a rounding procedure, because it
is unclear how to implement cycle canceling efficiently in the LOCAL model.)

Following the exact same argument as in [2] or in the proof of Lemma 15 of this paper,
since our split assignment was an 8-approximation (Theorem 22), the integral assignment
formed by rounding yields a 9-approximation. This concludes the proof of Theorem 20.
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