
Distributed Dense Subgraph Detection and Low
Outdegree Orientation
Hsin-Hao Su
Boston College, Chestnut Hill, MA, USA
suhx@bc.edu

Hoa T. Vu
San Diego State University, CA, USA
hvu2@sdsu.edu

Abstract
The densest subgraph problem, introduced in the 80s by Picard and Queyranne [Networks 1982]
as well as Goldberg [Tech. Report 1984], is a classic problem in combinatorial optimization with
a wide range of applications. The lowest outdegree orientation problem is known to be its dual
problem. We study both the problem of finding dense subgraphs and the problem of computing a
low outdegree orientation in the distributed settings.

Suppose G = (V,E) is the underlying network as well as the input graph. Let D denote the
density of the maximum density subgraph of G. Our main results are as follows.

Given a value D̃ ≤ D and 0 < ε < 1, we show that a subgraph with density at least (1− ε)D̃
can be identified deterministically in O((logn)/ε) rounds in the LOCAL model. We also present
a lower bound showing that our result for the LOCAL model is tight up to an O(logn) factor.
In the CONGEST model, we show that such a subgraph can be identified in O((log3 n)/ε3)
rounds with high probability. Our techniques also lead to an O(diameter(G)+(log4 n)/ε4)-round
algorithm that yields a 1− ε approximation to the densest subgraph. This improves upon the
previous O(diameter(G)/ε · logn)-round algorithm by Das Sarma et al. [DISC 2012] that only
yields a 1/2− ε approximation.
Given an integer D̃ ≥ D and Ω(1/D̃) < ε < 1/4, we give a deterministic, Õ((log2 n)/ε2)-round
1 algorithm in the CONGEST model that computes an orientation where the outdegree of
every vertex is upper bounded by (1 + ε)D̃. Previously, the best deterministic algorithm and
randomized algorithm by Harris [FOCS 2019] run in Õ((log6 n)/ε4) rounds and Õ((log3 n)/ε3)
rounds respectively and only work in the LOCAL model.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Networks →
Network algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Distributed Algorithms, Network Algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.15

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.12443.

Acknowledgements We thank David Harris for pointing out Lemma 12, which can be used to
improve the running time of the dual rounding algorithm in our previous version.

1 Introduction

The Dense Subgraph Problem. Given a graph G = (V,E), the maximum density subgraph
problem (or the densest subgraph problem) is to find a subgraph H, where its density
d(H) = |E(H)|/|V (H)| is maximized over all subgraphs of G. We denote the density of the
maximum density subgraph of G, maxH⊆G d(H), by D.

1 Õ hides log logn factors.

© Hsin-Hao Su and Hoa T. Vu;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:suhx@bc.edu
mailto:hvu2@sdsu.edu
https://doi.org/10.4230/LIPIcs.DISC.2020.15
https://arxiv.org/abs/1907.12443
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Distributed Dense Subgraph Detection and Low Outdegree Orientation

First studied by Picard and Queyranne [37] as well as Goldberg [26], the maximum
density subgraph problem has found numerous applications in community detection in
social networks [13,14], link spam identification [8,25], and computational biology [18,38].
Faster algorithms [12, 20, 30] have been developed for the problem and its variants since
then. Moreover, the problem has been widely studied under different models of computation
such as the streaming settings [9, 15, 34], the dynamic setting [9, 40], the massive parallel
computation settings [4, 5, 23], and the distributed settings [39].

We study the problem of detecting dense subgraphs in the distributed settings, namely,
in both the LOCAL and the CONGEST models. Let n and m be the number of vertices and
the number of edges respectively. Furthermore, let ∆ be the maximum degree. In such
models, vertices are labeled with unique IDs and they operate in synchronized rounds. In
each round, each vertex sends a message to each of its neighbors, receives messages from
its neighbors, and performs local computations. The time complexity of an algorithm is
defined to be the number of rounds used. In the LOCAL model, the message size can be
arbitrary. In the CONGEST model, the message size is upper bounded by O(logn) bits. We
consider the following parameterized version of the maximum density subgraph problem in
the distributed settings, which may capture the computational nature of some applications
such as how a dense community can be found by only communicating with the neighbors in
social networks.

DenseSubgraph(D̃, ε) : Given a graph G = (V,E), a parameter D̃ ≥ 0, and 0 < ε < 1,
every vertex u outputs a value hu ∈ {0, 1} such that d(H) ≥ (1− ε)D̃ where H = {u |
hu = 1}. If D̃ ≤ D then H must be non-empty.

The first question we investigate is whether DenseSubgraph(D̃, ε) can be solved locally.
Intuitively, most dense subgraphs have short diameters because they are well-connected.
Thus, they can be detected locally. Our first result justifies this intuition.

I Theorem 1. There exists a deterministic algorithm for DenseSubgraph(D̃, ε) that runs
in O((logn)/ε) rounds in the LOCAL model.

We will also present a lower bound showing that the running time of the algorithm is
tight up to an O(logn) factor. The algorithm for the LOCAL model uses large message size.
This begs the question of whether the problem can be solved in the CONGEST model while
remaining in the poly(1/ε, logn)-round regime. We show that this is indeed possible with
randomization.

I Theorem 2. There exists a randomized algorithm that solves DenseSubgraph(D̃, ε)
w.h.p.2, and runs in O((log3 n)/ε3) rounds in the CONGEST model.

Finding the densest subgraph in such distributed settings inevitably requires
Ω(diameter(G)) rounds (e.g., consider two subgraphs of different densities connected by
a path of length Ω(diameter(G))). Das Sarma et al. [39] gave an algorithm for finding
a (1/2 − ε) approximation to the densest subgraph in O(diameter(G)/ε · logn) rounds in
the CONGEST model. We show that the approximation factor can be improved and the
dependency on diameter(G) can be made additive:

2 W.h.p. denotes with high probability, which means with probability at least 1− 1/nc for an arbitrarily
large constant c.

H.-H. Su and H. T. Vu 15:3

I Corollary 3. There exists a randomized algorithm that finds a (1− ε)-approximation to
the maximum density subgraph w.h.p. and runs in O(diameter(G) + (log4 n)/ε4) rounds in
the CONGEST model.

Inspired by web-graphs, Kannan and Vinay [29] defined the notion of density in directed
graphs. Suppose that G = (V,E) is a directed graph. The density of a pair of sets S, T ⊆ V
is defined as d(S, T) = |E(S,T)|√

|V (S)||V (T)|
, where E(S, T) denote the set of edges that go from a

vertex in S to a vertex in T . Note that we are assuming messages can go in both directions
of an edge. Our result in the LOCAL model can be generalized to the directed version of the
problem.

The Low Outdegree Orientation Problem. Given an undirected graph G = (V,E), an
α-orientation is an orientation of the edges such that the outdegree of every vertex is upper
bounded by α. Picard and Queyranne [37] observed that an α-orientation exists if and only
if α ≥ dDe. Charikar [12] formulated the linear program (LP) for the densest subgraph
problem, and its dual is the fractional version of the lowest outdegree orientation problem [4].

An α-orientation can be used to obtain a decomposition of the graph into α pseudoforests
[37], where a pseudoforest is a collection of disjoint pseudotrees (a pseudotree is a connected
graph containing at most one cycle). The relation between the pseudoforest decomposition
and the maximum density is analogous to that of the forest decomposition and the arboricity
shown by Nash-Williams [36].

We consider the low outdegree orientation problem in the distributed setting. The problem
can be formally stated as follows.

Given a graph G = (V,E), an integer parameter D̃ ≥ D, and 0 < ε < 1, compute a
(1 + ε)D̃-orientation. The orientation of an edge is decided by either of its endpoints.

Our contribution for this problem is a deterministic, Õ((log2 n)/ε2)-round algorithm in the
CONGEST model. Previously, the best deterministic algorithm and randomized algorithm
by Harris [28] run in Õ((log6 n)/ε4) rounds and Õ((log3 n)/ε3) rounds respectively and only
work in the LOCAL model.

I Theorem 4. Given an integer D̃ ≥ D, for any 32/D̃ ≤ ε ≤ 1/4, there exists a deterministic
algorithm in the CONGEST model that computes a (1 + ε)D̃-orientation and runs in

O
(logn

ε2 + (min(log logn, log ∆) + log(1/ε))2.71 · (1/ε)1.71 · log2 n
)
≤ Õ((log2 n)/ε2) rounds.

Table 1 Previous results on the low outdegree orientation problem in the distributed setting.

Reference Time Model Approx. Rand. or Det.
Barenboim and Elkin [6] O((logn)/ε) CONGEST 2 + ε Det.
Ghaffari and Su [24] O((log4 n)/ε3) LOCAL 1 + ε Rand.
Fischer et al. [17] 2O(log2(1/ε·logn)) LOCAL 1 + ε Det.
Ghaffari et al. [21] O((log10 n · log5 ∆)/ε9) LOCAL 1 + ε Det.
Harris [28] Õ((log6 n)/ε4) LOCAL 1 + ε Det.
Harris [28] Õ((log3 n)/ε3) LOCAL 1 + ε Rand.
new Õ((log2 n)/ε2) CONGEST 1 + ε Det.

DISC 2020

15:4 Distributed Dense Subgraph Detection and Low Outdegree Orientation

Table 1 summarizes previous algorithms for this problem in the LOCAL and CONGEST models.
It is worthwhile to note that dDe ≤ a(G) ≤ dDe+ 1 [37], where a(G) is the arborcity of the
graph, as several previous results were parameterized in terms of a(G).

Barenboim and Elkin [6] introduced the H-partition algorithm that obtains a (2 + ε)a(G)-
orientation as well as a (2 + ε)a(G) forest decomposition. Ghaffari and Su [24] observed
that the problem of computing a (1 + ε)a(G)-orientation reduces to computing of maximal
independent sets (MIS) on the conflict graphs formed by augmenting paths. The MIS can be
computed efficiently by simulating Luby’s randomized MIS on the conflict graph. Fischer et
al. [17] initiated the study of computing such MIS (i.e. the maximal matching in hypergraphs)
deterministically. They gave a deterministic quasi-polynomial (in r) algorithm for computing
the maximal matching in rank r hypergraphs, resulting in a 2O(log2(1/ε·logn)) round algorithm
for the orientation problem. Later, the dependency on r has been improved to polynomial
by [21], which results in a O((log10 n · log5 ∆)/ε9) rounds algorithm for the orientation
problem. Recently, the deterministic running time for the problem is further improved
by Harris [28] to Õ((log6 n)/ε4) as they developed a faster algorithm for the hypergraph
maximal matching problem. It is unclear if the above approaches via maximal matching in
hypergraphs can be implemented in the CONGEST model without significantly increase on
the number of rounds. The low outdegree orientation problem has also been studied in the
centralized context by [7, 10,19,27,31,32].

Our methods and contributions in a nutshell. Our first contribution is a simple yet
powerful observation that dense subgraphs have low-diameter approximations. We first
give a simple proof via low-diameter decomposition [33, 35] that there exists a subgraph
with diameter O((logn)/ε) that has density at least (1 − ε)D (Lemma 5). Hence, if each
vertex examines its local neighborhood up to a small radius, at least one vertex gets a
good estimate of the densest subgraph. With appropriate bookkeeping, this leads to our
deterministic O((logn)/ε)-round algorithm for detecting dense subgraphs in the LOCAL
model. We complement this algorithm with a lower bound showing that Ω(1/ε) rounds are
necessary (Lemma 6).

In the CONGEST model, the starting point for both problems of detecting dense sub-
graphs and low outdegree orientation is the adaptation of the multiplicative weights up-
date algorithm of Bahmani et al. [4]. Their algorithm solves the dual linear program for
DenseSubgraph(D̃, ε) (which is the linear program for low outdegree orientation) using the
multiplicative weights method. They also showed how to round the dual program’s fractional
solution to find a dense subgraph. While it appears that their algorithm can be implemented
directly in the CONGEST model, there are a few issues that we need to resolve.

A naive implementation of the algorithm in [4] to solve the dual linear program uses
O(diameter(G)) rounds per iteration. Furthermore, for the dense subgraph detection problem
DenseSubgraph(D̃, ε), the rounding procedures in [4, 12] are inherently global. This is
because they require checking whether certain subgraphs have high enough density. These
subgraphs may have large diameters. Our contribution here is to remove the dependence on
diameter(G) using ideas from Lemma 5 along with appropriate bookkeeping. This results
in a randomized algorithm that runs in O((log3 n)/ε3) rounds instead of O(diameter(G) ·
poly(logn, 1/ε)) rounds. Our adaption also removes the explicit use of real-valued weights
and only use integers, which can be transmitted easily in the CONGEST model.

For the low outdegree orientation problem, we still need to develop a procedure to
round the dual fractional solution obtained from the multiplicative weights update method
into an integral solution efficiently and deterministically in the CONGEST model. Our

H.-H. Su and H. T. Vu 15:5

contribution here is twofold. We use the idea of recent rounding-type algorithms for distributed
matching [1, 16], where we process the fractional solution bit-by-bit and round the solution
at each bit scale. We show that each scale reduces to the directed splitting problem where
there are known algorithms for the LOCAL model [22,24]. We will show how to modify these
directed splitting algorithms to run in the CONGEST model. We provide an analysis showing
that the total error incurred by multiple bit scales is small so that each outdegree is at most
(1 + ε)D at the end of the rounding procedure.

Organization. In Section 2, we present our deterministic algorithm for the dense subgraph
problem in the LOCAL model. Section 3 presents a randomized algorithm for the dense
subgraph problem in the CONGEST model. Section 4 exhibits a deterministic algorithm for
the low outdegree orientation problem in the CONGEST model. Due to space constraint,
some proofs are omitted; all missing proofs can be found in the full version [41].

2 Deterministic Dense Subgraph Detection in the LOCAL Model

In this section, we investigate the locality of the dense subgraph detection problem. In
particular, we show how to solve DenseSubgraph(D̃, ε) deterministically in the LOCAL
model. Combining with ideas in this section, we show that this problem can also be solved
in the CONGEST model with randomization in the next section.

The locality of dense subgraphs. We present an algorithm to solve DenseSubgraph(D̃, ε)
in O((logn)/ε) rounds deterministically in the LOCAL model. We first give a structural
lemma showing that for some sufficiently large constant K, there exists a subgraph with
diameter at most K/ε · logn that has density at least (1− ε)D.

I Lemma 5 (Densest subgraph’s locality). For all simple graphs, there exists a subgraph with
diameter at most K/ε · logn for some sufficiently large constant K that has density at least
(1− ε)D.

Proof. It can be shown that for any simple graph G with n vertices and m edges, we can
decompose G into disjoint components such that each component has diameter at most
K/ε · logn for some sufficiently large constant K and furthermore the number of inter-
component edges is at most εm [3, 33, 35] (see also Theorem 11). This is known as the
low-diameter decomposition.

Consider the densest subgraph H∗ ⊆ G with n∗ vertices and m∗ edges. We apply the
low-diameter decomposition to H∗ and let the components be H∗1 , . . . ,H∗t . Let n∗i and m∗i
be the number of vertices and edges in H∗i respectively. Suppose that d(H∗i) < (1− ε)D for
all i. Then, m∗i /n∗i < (1− ε)D which implies m∗i < (1− ε)m∗n∗i /n∗. Thus,

t∑
i=1

m∗i < (1− ε)
t∑
i=1

m∗n∗i
n∗

= (1− ε)m∗ .

This implies that the number of inter-component edges is more than εm∗ which is a contra-
diction. Therefore, at least one component H∗j must have density d(H∗j) ≥ (1− ε)D. J

Using Lemma 5, we can design a LOCAL algorithm to solve DenseSubgraph(D̃, ε) in
O((logn)/ε) rounds. See Algorithm 1.

I Theorem 1. There exists a deterministic algorithm for DenseSubgraph(D̃, ε) that runs
in O((logn)/ε) rounds in the LOCAL model.

DISC 2020

15:6 Distributed Dense Subgraph Detection and Low Outdegree Orientation

Algorithm 1 Distributed Algorithm for DenseSubgraph(D̃, ε) in the LOCAL model.

1: Initialize hv ← 0 for all vertices v.
2: Let r = K/ε · logn for some sufficiently large constant K.
3: Each vertex v collects the subgraph induced by its r-neighborhood Nr(v) = {u : dist(v, u) ≤ r}

and computes the densest subgraph H(v) in G[Nr(v)], i.e., the subgraph induced by Nr(v).
4: if d(H(v)) ≥ (1− ε)D̃ then
5: v becomes an active vertex and collects its 2r-neighborhood N2r(v).
6: if an active vertex v has the smallest ID among N2r(v) then
7: v becomes a black vertex.
8: Each black vertex v broadcasts H(v) to Nr(v) and set hu ← 1 for all u in V (H(v)).

Proof. Consider Algorithm 1. The number of rounds is clearly O(r) = O(1/ε · logn), since
it is dominated by the steps in Lines 3, 5, and 8 which is O(r). Appealing to Lemma 5, if
D̃ ≤ D, then there must be a subgraph C with diameter at most r whose density is at least
(1− ε)D ≥ (1− ε)D̃. Therefore, at least one vertex must be active. Among the active vertices,
there must be a black vertex, i.e., the active vertex with the smallest ID. We therefore have
a non-empty output.

The next observation is that if u and v are black vertices, then H(v) and H(u) are disjoint.
Otherwise, there is a path of length at most 2r from u to v which leads to a contradiction.
This is because u and v cannot both be black vertices if dist(u, v) ≤ 2r. Furthermore, it is
easy to see that if two subgraphs G[A] and G[B], where A,B ⊂ V are disjoint, have density
at least (1− ε)D̃, then d(G[A ∪B]) ≥ (1− ε)D̃. To see this,

d(G[A ∪B]) ≥ |E(A)|+ |E(B)|
|A|+ |B| ≥ (1− ε)D̃(|A|+ |B|)

|A|+ |B| = (1− ε)D̃ .

Let the set of black vertices be B. Since we argued that H(v)’s are disjoint for v ∈ B
and the output subgraph is H = ∪v∈BH(v), we deduce that d(H) ≥ (1− ε)D̃.

Finally, we need to argue that the algorithm is correct for when D̃ > D. Note that if
the output subgraph is non-empty, its density is at least (1 − ε)D̃. Hence, if D̃ > D, the
algorithm may output an empty subgraph or a subgraph with density (1− ε)D̃ which are
both acceptable. J

We show that Theorem 1 is tight in terms of ε up to a constant.

I Lemma 6. Let 0 < ε < 0.1. Any algorithm that solves DenseSubgraph(D̃, ε) correctly
with probability at least 0.51 requires more than 1/(10ε) rounds.

Proof. Consider deterministic algorithms for DenseSubgraph(D̃, ε) where D̃ = 1 − ε.
Without loss of generality, assume 1/(10ε) is an integer and let ` = 4/(10ε) + 1. Consider
` vertices 1, . . . , ` where (i, i + 1) ∈ E for 1 ≤ i ≤ ` − 1. We consider two cases. Case
1: (`, 1) ∈ E in which the graph (called G1) is a cycle. Case 2: (`, 1) /∈ E in which the
graph (called G2) is a chain of ` vertices. Let v = b`/2c+ 1. In both cases, the (1/(10ε))-
neighborhood of v is the same and therefore hv must be the same regardless of whether the
network is G1 or G2. We observe that a chain of t vertices has density 1− 1/t.

If hv = 0, then let the underlying graph be G1. Then D = 1 > 1− ε = D̃, and therefore
the output must be non-empty. The only correct output is when every vertex outputs 1 since
otherwise the output subgraph’s density is at most 1− 1/(4/(10ε) + 1) < (1− ε)2 = (1− ε)D̃
for ε < 0.1. Hence, the algorithm fails.

If hv = 1, then let the underlying graph be G2. Then D = 1− 1/(4/(10ε) + 1) < (1− ε)D̃.
Then, the only correct output is that every vertex outputs 0. Therefore, the algorithm fails.

H.-H. Su and H. T. Vu 15:7

For a randomized lower bound, we choose the above two inputs with probability 0.5 each
and therefore the probability that a deterministic algorithm is correct is at most 0.5. By
Yao’s minimax principle, no randomized algorithm outputs correctly with probability more
than 0.5. J

We remark that an interesting open question is whether the logn factor is necessary for
either the lower bound or the upper bound. In our full version [41], we show that similar
locality result also holds for directed densest subgraph.

3 Dense Subgraph Detection in the CONGEST Model

Relating the densest subgraph problem and the lowest outdegree orientation problem.
We show how to find a) a dense subgraph and b) a low outdegree orientation (in Section 4)
by first solving the same feasibility LP. Let us first consider the LP formulations in Figure 1.

(Primal) Maximum Density Subgraph

maximize
∑
e∈E

xe

subject to ∑
v∈V

yv = 1

∀e = uv ∈ E, xe ≤ yu and xe ≤ yv
∀e ∈ E, u ∈ V, ye, xu ≥ 0 .

(Dual) Lowest Outdegree Orientation

minimize z

subject to
∀e = uv ∈ E, αeu + αev ≥ 1

∀e ∈ E, u ∈ V,
∑
e3u

αeu ≤ z

∀e = uv ∈ E, αeu, αev ≥ 0 .

Figure 1 Linear programs for densest subgraph and fractional lowest outdegree orientation.

Given a subgraph H ⊆ G of size k, in the primal, we can set yv = 1/k for all v ∈ V (H)
and xe = 1/k for all edges e ∈ E(H) while setting other variables to 0. Then,

∑
e∈E xe =

|E(H)|/k = d(H). In fact, the optimal value of the LP is exactly the maximum subgraph
density D. Charikar gave a rounding algorithm that recovers the densest subgraph [12].

We observe that the dual models the lowest outdegree orientation problem. In particular,
if an edge e = uv is oriented from u to v then we set αeu = 1 and αev = 0. By duality, the
dual is fractionally feasible if and only if z ≥ D.

Now we consider the feasibility versions of the programs. We say a primal solution is a
solution satisfying Primal(z) if it is a feasible solution whose objective function is at least
z. Similarly, we say a dual solution is a solution satisfying Dual(z) if it is a feasible dual
solution whose objective function is at most z.

Adapting the algorithm of Bahmani et al. [4]. Algorithm 2 and Algorithm 3 are adapted
from the multiplicative weights update approach of [4] for solving Dual and Primal. We
modify them in a way so that we only have to operate with integers instead of real-valued
weights. This is more suitable for the CONGEST model because it may take ω(1) rounds to
transfer a real-valued weight over an edge. Similar to the tree packing method for minimum
cuts [42], this is another example of a combinatorial algorithm derived from multiplicative
weights update method, where the weights are only used in the analysis but not in the
algorithms. However, as mentioned in the first section, this adaptation has a dependence
on diameter(G). We will subsequently show how to remove this dependence when solving
DenseSubgraph(D̃, ε).

DISC 2020

15:8 Distributed Dense Subgraph Detection and Low Outdegree Orientation

Algorithm 2 and Algorithm 3 have the same structure except for the outputs. Both
algorithms consist of T = O((logn)/ε2) iterations. Every edge maintains a load `(e) through-
out the algorithms. In each iteration t, each vertex u has z units budget. Each vertex u
distributes the z units of budget to the α(t)

eu variables of the incident edges with the lowest
dz/2e load. It allocates 2 units of budget to the incident edges with the lowest dz/2e − 1
load and the remaining budget to the other edge. Then the load of an edge is updated by
adding the allocation from both endpoints. In Algorithm 2, we output the average of the
allocations,

∑
t α

(t)
eu/T , multiplied by (1 + 2ε). In Algorithm 3, in each iteration, the loads of

the edges will be used as a guide to find a dense subgraph.
We can implement the algorithms by only sending integers across each link. This is

because the value of each αeu and `(e) is a summation of an integer and an integer multiple
of z − 2(dz/2e − 1). A pair of integers will be enough to express each value involved in the
algorithms.

Algorithm 2 Fractional_Dual(z, ε).

1: Let T = K · (1/ε2) · logn for some sufficiently large constant K.
2: Initialize the load `(e)← 0 for each edge e.
3: for t = 1, 2, . . . , T do
4: for each vertex u do
5: Let e1, e2, . . . , edeg(u) be the edges adjacent to u where `(e1) ≤ `(e2) . . . ≤ `(edeg(u)).
6: Set α(t)

eiu ← 2 for i = 1, . . . ,min(dz/2e − 1, deg(u)).
7: Set α(t)

edz/2eu ← z − 2 · (dz/2e − 1) if deg(u) ≥ dz/2e.

8: for each edge e = uv do
9: Set `(e)← `(e) + α

(t)
eu + α

(t)
ev .

10: Return αeu =
∑T

t=1 α
(t)
eu

T
· (1 + 2ε).

Algorithm 3 Integral_Primal(z, ε).

1: Let T = K · (1/ε2) · logn for some sufficiently large constant K.
2: Initialize the load `(e)← 0 for all e.
3: for t = 1, 2, . . . , T do
4: for each vertex u do
5: Let e1, e2, . . . , edeg(u) be the edges adjacent to u where `(e1) ≤ `(e2) . . . ≤ `(edeg(u)).
6: Set α(t)

eiu ← 2 for i = 1, . . . ,min(dz/2e − 1, deg(u)).
7: Set α(t)

edz/2eu ← z − 2 · (dz/2e − 1) if deg(u) ≥ dz/2e.

8: Let `min = mine∈Eb`(e)c and `max = `min + d 1
ε

log 2m
ε
e.

9: for each integer ` ∈ [`min, `max] do
10: Let V ′` be the set of vertices with at least dz/2e incident edges e with d`(e)e ≤ `.
11: Test if G[V ′`] is a graph of density at least (1− 3ε)z.
12: If yes, output G[V ′`] and terminate.
13: for each edge e = uv do
14: Set `(e)← `(e) + α

(t)
eu + α

(t)
ev .

We will show that if we run the algorithms on the same input with the same parameters
z and ε, then at least one of the following must be true:

Algorithm 2 returns a solution satisfying Dual((1 + 2ε)z).
Algorithm 3 outputs a subgraph of density at least (1− 3ε)z, i.e., an integral solution for
Primal((1− 3ε)z).

H.-H. Su and H. T. Vu 15:9

Define we = (1− ε)`(e) to be the weight associated with the edge e. We will use `(t)(e)
and w(t)

e if we are referring to the load or the weight of an edge e at the beginning of iteration
t. We often use u and v to denote the endpoints of an edge e when the context is clear.

If it is the case that
∑
e∈E w

(t)
e (α(t)

eu + α
(t)
ev) ≥

∑
e∈E w

(t)
e for every iteration t, then we

show that Algorithm 2 returns a feasible solution for Dual((1 + 2ε)z). The following lemma
is a standard derivation of the multiplicative weights update method [2, 43].

I Lemma 7. Let 0 < ε < 1/4. Suppose that
∑
e∈E w

(t)
e (α(t)

eu + α
(t)
ev) ≥

∑
e∈E w

(t)
e for every

iteration t in Algorithm 2. Then the dual variables {αeu} returned by Algorithm 2 must be a
feasible solution satisfying Dual((1 + 2ε)z).

Note that if we provide the algorithms with z ≥ D, the condition
∑
e∈E w

(t)
e (α(t)

eu +α(t)
ev) ≥∑

e∈E w
(t)
e holds for every iteration t. This is because if z ≥ D then we know there

exists a feasible solution such that (αeu + αev) ≥ 1 for every edge e = uv. This implies∑
e∈E w

(t)
e (αeu + αev) ≥

∑
e∈E w

(t)
e . Note that∑

e∈E
w(t)
e (α(t)

eu + α(t)
ev) =

∑
u∈V

∑
e3u

α(t)
euw

(t)
e =

∑
u∈V

∑
e3u

α(t)
eu (1− ε)`

(t)(e) .

Hence, the way we assign {α(t)
eu} maximizes

∑
e∈E w

(t)
e (α(t)

eu + α
(t)
ev) over the set of feasible

solutions S(z), where

S(z) = {α :
∑
e3u

αeu ≤ z for all u and 0 ≤ αeu ≤ 2 for all αeu} .

Therefore,
∑
e∈E w

(t)
e (α(t)

eu + α
(t)
ev) ≥

∑
e∈E w

(t)
e (αeu + αev) ≥

∑
e∈E w

(t)
e . From the above

lemma, this implies Algorithm 2 will output a fractional solution satisfying Dual(z).
Next, we need to show that if the opposite holds, i.e.,

∑
e∈E w

(t)
e (α(t)

eu +α
(t)
ev) <

∑
e∈E w

(t)
e

for some iteration t, then Algorithm 3 outputs a subgraph of density at least (1− 3ε)z. First,
we rely on the following lemma which is a paraphrase of [4].

I Lemma 8 (Paraphrase of [4]). Let 1/2 < F < 1. Suppose there exists a set of (non-negative)
weights {w′e} such that

∑
e∈E w

′
e > F ·maxα∈S(z)

(∑
e∈E w

′
e(αeu +αev)

)
. Let V ′′λ denote the

set of vertices that are incident to at least dz/2e edges e with w′e ≥ λ. Then, there exists λ
such that d(G[V ′′λ]) > F · z.

Hence, if there is an iteration t where
∑
e∈E w

(t)
e (α(t)

eu + α
(t)
ev) <

∑
e∈E w

(t)
e , we can apply

the above lemma with F = 1 and w′e = w
(t)
e to find the desired dense subgraph. However,

there may be Ω(m) potential values for λ to check. We circumvent this by discretizing the
weights. Since we are only testing the densities of G[V ′`] for integer loads `, we are effectively
discretizing the weights. We will show that this discretization only introduces a small error
on the inequality so that we can apply Lemma 8 with F = 1−O(ε). This, in turn, gives us
the following.

I Lemma 9. Suppose that there exists an iteration t in Algorithm 3 where
∑
e∈E w

(t)
e (α(t)

eu +
α

(t)
ev) <

∑
e∈E w

(t)
e . Then for 0 < ε < 1/4, Algorithm 3 will output a subgraph of density at

least (1− 3ε)z in that iteration.

I Lemma 10. Suppose 0 < ε < 1/4 and D̃ ≤ D. Then, there exists a deterministic
algorithm that solves DenseSubgraph(D̃, ε) in O(diameter(G) + 1/ε3 · log2 n) rounds in the
CONGEST model.

DISC 2020

15:10 Distributed Dense Subgraph Detection and Low Outdegree Orientation

Proof. Assume that D̃ ≤ D. Let z = (1 − ε/2)D̃ and ε′ = ε/8. If we were to run
Algorithm 2 with parameters z and ε′, then it cannot possibly output a feasible solution
for Dual(z(1 + 2ε′)), since Dual(z(1 + 2ε′)) is infeasible. This is because z(1 + 2ε′) =
(1− ε/2)(1 + ε/4)D̃ < D̃ ≤ D. This implies that Algorithm 3 has to output a subgraph with
density of at least (1− 3ε′)z ≥ (1− ε/2)(1− ε/2)D̃ ≥ (1− ε)D̃.

We now argue that Algorithm 3 can be implemented in O(diameter(G) + 1/ε3 · log2 n)
rounds in the CONGEST model. Each step in the main loop of Algorithm 3 uses O(1)
rounds except for Line 8 and the inner loop (Line 9 – Line 12). Line 8 can be done in
O(diameter(G)) rounds. The inner loop tests the density of O((1/ε) logn) subgraphs. In
total, there are O((1/ε) logn) ·O((1/ε2) logn) subgraphs to be tested. Each subgraph and
its density can be computed in O(diameter(G)) rounds. These steps can be pipelined to run
in O(diameter(G) + (log2 n)/ε3) rounds. Finally, we argue that each α(t)

eu can be represented
using O(log logn + log(1/ε)) bits (Lemma 12) and therefore in each iteration, Line 14 in
Algorithm 3 (and Line 9 in Algorithm 2) can be done in one CONGEST round. J

Using the above lemma, we now present the following results:
There exists an algorithm that solves DenseSubgraph(D̃, ε) in O(poly(logn, 1/ε))
rounds w.h.p. In particular, we are able to avoid diameter(G) rounds in Lemma 10.
There exists an algorithm that finds a 1 − ε approximation of the densest subgraph
(instead of solving the parameterized version) in O(diameter(G)+poly(logn, 1/ε)) rounds
w.h.p.

Solving DenseSubgraph(D̃, ε). Our first goal is to avoid O(diameter(G)) rounds to solve
the parameterized version of the densest subgraph problem. The main idea is to apply the
low diameter decomposition and solve the problem in each component. First, we recall that
the low-diameter decomposition can be implemented efficiently in the CONGEST model. See
also [11].

I Lemma 11 ([35]). There exists an algorithm that decomposes the graph into disjoint
components such that: 1) Each edge is inter-component with probability at most ε, 2) Each
component has diameter O(1/ε · logn) w.h.p. and 3) Runs in O(1/ε · logn) rounds in the
CONGEST model w.h.p.

In the decomposition given by Miller et al. [35], the rough idea is that each vertex v draws
δv from the exponential distribution Exp(ε). Let δ = K/ε · logn for some sufficiently large
constant K. At time step bδ−δvc, v wakes up and starts a breadth first search (BFS) if it has
not been covered by another vertex’s BFS. At the end of the decomposition, v ∈ cluster(u) if
u = miny∈V (dist(y, v) + bδ − δyc). This algorithm can be simulated in the CONGEST model
in O(1/ε · logn) rounds. Now, we are ready to prove our next main result.

I Theorem 2. There exists a randomized algorithm that solves DenseSubgraph(D̃, ε)
w.h.p. and runs in O((log3 n)/ε3) rounds in the CONGEST model.

Proof. We apply the decomposition above with parameter ε/2 to the graph to obtain low-
diameter components C1, . . . , Ct. Let H∗ be the densest subgraph with n∗ vertices and m∗
edges. We condition on the event ξ that at most ε|E(H∗)| edges in E(H∗) are inter-component.
This happens with probability at least 1/2 according to Markov’s inequality.

First, consider the case D̃ ≤ D. Using a similar argument as in the proof of Lemma
5, we can show that the densest subgraph of at least one component has density at least
(1− ε)D ≥ (1− ε)D̃. Specifically, let H∗i = H∗ ∩Ci and let C∗i ⊆ Ci be the densest subgraph
in Ci. Furthermore, let |V (H∗i)| = n∗i and |E(H∗i)| = m∗i .

H.-H. Su and H. T. Vu 15:11

If d(C∗i) < (1 − ε)D for all 1 ≤ i ≤ t. Then, d(H∗i) ≤ d(C∗i) < (1 − ε)D. This implies
m∗i < (1− ε)m∗n∗i /n∗. Therefore,

∑t
i=1m

∗
i < (1− ε)m∗ which means that more than εm∗

edges in E(H∗) are inter-component. This is a contradiction since we condition on ξ.
For each low-diameter component Ci, using the algorithm in Lemma 10, we can solve

DenseSubgraph(D̃, ε) in Ci. As argued above, since D̃ ≤ D, we must have a non-empty
output in some component i. Observe that since the diameter of each Ci is O(1/ε · logn),
this takes O(1/ε3 · log2 n) rounds.

We ensure ξ happen w.h.p. by repeating O(logn) trials. The total number of rounds
becomes O(1/ε3 · log3 n). However, there is a catch regarding the consistency of the output.
Recall that we want the subgraph induced by the marked vertices {v : hv = 1} has density
at least (1 − ε)D̃. It is possible that for different trials j and j′, v might be marked and
unmarked respectively. We need to address the issue of how to decide the final output.

This can be done with proper bookkeeping. Originally, all vertices are unmarked. In
each trial, compute a low-diameter decomposition C1, C2, . . . , Ct. For each low-diameter
component Ci, if it does not contain a marked vertex, check if there exists a subgraph
Hi ⊆ Ci with density at least (1− ε)D̃ using the algorithm in Lemma 10. If there exists such
subgraph, mark every vertex in Hi. In the end, return the subgraph induced by the marked
vertices. The output must be non-empty w.h.p. by considering the first time the event ξ
occurs. Since all the output subgraphs among the trials are disjoint and they have density
at least (1− ε)D̃, their union must have density at least (1− ε)D̃ as argued in the proof of
Theorem 1.

In the case D̃ > D, the algorithm either returns a subgraph with density at least (1− ε)D̃
or an empty subgraph which are both acceptable. J

Approximating the densest subgraph. We can also apply the ideas above to find a 1− ε
approximation of the densest subgraph. This is done by simply running the algorithm in
Theorem 2 on different guesses for the maximum subgraph density D.

I Corollary 12. There exists a randomized algorithm that finds a (1 − ε)-approximation
to the maximum density subgraph w.h.p. and runs in O(diameter(G) + (log4 n/ε4)) in the
CONGEST model.

Proof. For each D̃ = 1, (1+ ε), (1+ ε)2, . . . , (1+ ε)dlog1+ε ne, we run the algorithm in Theorem
2. This requires O(1/ε4 · log4 n) rounds. We then identify the largest D̃ in which we have a
non-empty output. In particular, we refer to when D̃ = (1 + ε)i as phase i. Each vertex v
sets ψ(v) = i where i is the largest phase in which it is marked. In the end, we can broadcast
j = maxv∈V ψ(v) to all vertices v in O(diameter(G)) rounds. Then, for every vertex v, if v
is marked in phase j, set hv = 1. J

We include the following lemma, which will be useful in bounding the running time for
rounding the fractional dual solution into an integer dual solution in the next section.

I Lemma 12. Suppose that we run Algorithm 2 with parameters z and ε, where z is an
integer and ε is a (negative) power of 2. Moreover, assume, T = Θ((logn)/ε2), in the main
loop of Algorithm 2, is a power of 2. Each αeu in the solution returned by Algorithm 2
contains at most O(log logn+ log(1/ε)) bits.

4 Deterministic Algorithms for Low Outdegree Orientation

Recall that in the low outdegree orientation problem, we are given an integer parameter
D̃ ≥ D. The goal is to find an orientation of the edges such that for every vertex, the number
of outgoing edges is upper bounded by (1 + ε)D̃.

DISC 2020

15:12 Distributed Dense Subgraph Detection and Low Outdegree Orientation

In Section 3, we showed that Algorithm 2 can be used to obtain a solution for the
fractional version of the low outdegree orientation problem. In this section, we will show
how to round a fractional solution to an integral solution deterministically in the CONGEST
model. We first present the framework and then describe the subroutine for the directed
splitting procedure adapted from [22] in Section 4.1.

Let ε1, ε2 ∈ Θ(ε) be error control parameters which will be determined later. First,
we will run Algorithm 2 with parameters D̃ and ε1/2 to obtain a fractional solution for
Dual((1 + ε1)D̃). Let {α′eu}e∈E,u∈V be the output fractional solution. They satisfy the
conditions that α′eu + α′ev ≥ 1 for every edge e = uv and

∑
e3u α

′
eu ≤ (1 + ε1)D̃ for every

vertex u. We show how to round the α′-values to {0, 1} bit-by-bit deterministically and incur
bounded errors on the constraints.

We may also assume without loss of generality that both 1/ε1 and the number of iterations,
T = Θ((logn)/ε21), in the main loop of Algorithm 2, is a power of 2. We can apply Lemma
12 to obtain an upper bound, B = O(log logn+ log(1/ε1)), on the number of bits needed to
store each α′eu. In the case where the maximum degree ∆ is very small, we can even truncate
the bits without creating much error. Let t = min(B, dlog2(∆/ε2)e). We round the α′-values
up to the t’th bit after the decimal point. In other words, we set α(0)

eu = d2t · α′eue/2t for
every variable αeu. If t = B, we are just setting α(0)

eu = α′eu.
Note that in the case t = dlog2(∆/ε2)e, because D̃ ≥ 1, we have∑
e3u

α(0)
eu ≤

∑
e3u

α′eu + deg(u) · 2−dlog2(∆/ε2)e ≤ (1 + ε)D̃ + ε2 ≤ (1 + ε1)(1 + ε2)D̃ .

The algorithm (Algorithm 4) consists of t iterations. It processes the α-values bit-by-bit,
from the t’th bit to the first bit after the decimal point. When it is processing the k’th bit,
for each αeu, we will round its k’th bit either up or down. Therefore, after we have processed
the first bit in the last iteration, all the α-values are integers. Let αeu(i) be the (t− i+ 1)’th
bit of αeu after the decimal point (i.e. the i’th rightmost bit after the initial rounding).

Let α(k)
eu denote the value αeu at the end of iteration k. During iteration k, if α(k−1)

eu (k) = 1,
we will either need to round it up (set α(k)

eu = α
(k−1)
eu + 2−(t−k+1)) or round it down (set

α
(k)
eu = α

(k−1)
eu − 2−(t−k+1)) so that α(k)

eu (k) = 0.
Consider an edge e = uv. If α(k−1)

eu (k) = 0 or α(k−1)
ev (k) = 0, we will round both of their

k’th bit down so that α(k)
eu (k) = 0 and α(k)

ev (k) = 0. All the remaining edges must be contained
in the graph Gk = (V,Ek), where Ek = {uv | α(k−1)

eu (k) = 1 and α(k−1)
ev (k) = 1}. We will

perform a deterministic directed splitting algorithm on Gk which we adapt from [22] to the
CONGEST model. Let degk(u) denote the degree of v in Gk. The outcome of the algorithm
is an orientation of the edges in Ek such that for each vertex u, | outdegk(u)− indegk(u)| ≤
ε3 degk(u) + 12.

Suppose that e = uv is oriented from u to v. We will round α(k−1)
eu up and round α(k−1)

ev

down. We do the opposite if it is oriented from v to u.

I Lemma 13. Suppose that ε3 ≤ 1/4. The {αev} values produced by Algorithm 4 satisfy the
following properties. (1) αeu ∈ {0, 1} (2) For every edge e = uv, αeu + αev ≥ 1. (3) For
every vertex u,

∑
e3u αeu ≤ (1 + ε1)(1 + ε2)(1 + ε3)tD̃ + 16.

Proof. For (1), since we either round α
(k−1)
ev (k) up or down during iteration k, we have

α
(k)
ev (k) = 0 at the end of iteration k. Moreover, once α(k)

ev (k) becomes 0, α(k′)
ev (k) remains

0 for k′ ≥ k. Therefore, at the end of iteration t, we have α(t)
ev (i) = 0 for 1 ≤ i ≤ t. This

implies α(t)
ev is a non-negative integer. Since the final output, αev, is the minimum of 1 and

α
(t)
ev , we have αev ∈ {0, 1}.

H.-H. Su and H. T. Vu 15:13

Algorithm 4 Deterministic Rounding for Low Outdegree Orientation.

1: Obtain a feasible {α′eu}eu for Dual((1 + ε1)D̃).
2: Set α(0)

eu = d2t · α′eue/2t for every αeu.
3: for k = 1 . . . t do
4: for every edge e = uv s.t. α(k−1)

eu (k) = 0 or α(k−1)
ev (k) = 0 do

5: Set α(k)
eu = α

(k−1)
eu and then set α(k)

eu (k) = 0. . round the k’th bit down
6: Set α(k)

ev = α
(k−1)
ev and then set α(k)

ev (k) = 0.
7: Let Gk = (V,Ek), where Ek = {uv | α(k−1)

eu (k) = 1 and α(k−1)
ev (k) = 1}.

8: Obtain a directed splitting of Gk whose discrepancy is at most ε3 degk(u) + 12 for each
vertex u.

9: for every edge e = uv where u is oriented toward v do
10: Set α(k)

eu = α
(k−1)
eu + 2−(t−k+1). . round up

11: Set α(k)
ev = α

(k−1)
ev − 2−(t−k+1). . round down

12: for each e = uv do
13: Set αeu = min(α(t)

eu , 1).

We show (2) inductively. In the beginning, since α(0)
eu ≥ α′eu, we must have α(0)

eu +α
(0)
ev ≥ 1.

Suppose that α(k−1)
eu + α

(k−1)
ev ≥ 1. During iteration k, if α(k−1)

eu (k) = 0 and α(k−1)
ev (k) = 0,

then α(k)
eu = α

(k−1)
eu and α(k)

ev = α
(k−1)
ev and so α(k)

eu + α
(k)
ev ≥ 1.

If α(k−1)
eu (k) = 1 and α

(k−1)
ev (k) = 0, then it must be the case that α(k−1)

eu + α
(k−1)
ev ≥

1 + 2−(t−k+1). After rounding α(k−1)
eu down, we still have α(k)

eu + α
(k)
ev ≥ 1. The case for

α
(k−1)
eu (k) = 0 and α(k−1)

ev (k) = 1 is symmetric.
The remaining case is when α(k−1)

eu (k) = 1 and α(k−1)
ev (k) = 1. In this case, e ∈ Gk. We

must have α(k)
eu + α

(k)
ev = α

(k−1)
eu + α

(k−1)
ev ≥ 1, since one of them is rounded up and the other

is rounded down.
For (3), let D0 = (1 + ε1)(1 + ε2)D̃ and Dk = (1 + ε3)Dk−1 + 12 · 2−(t−k+1) for k ≥ 1.

We will show by induction that
∑
e3u α

(k)
eu ≤ Dk. For the base case, initially, we argued that∑

e3u α
(0)
eu ≤ (1 + ε1)(1 + ε2)D̃. For k ≥ 1, note that the increase on the quantity

∑
e3u αeu

during iteration k is at most 2−(t−k+1) · (ε3 · degk(u) + 12). Therefore,∑
e3u

α(k)
eu ≤ 2−(t−k+1) · (ε3 · degk(u) + 12) +

∑
e3u

α(k−1)
eu

≤ ε3Dk−1 + 12 · 2−(t−k+1) +Dk−1 ≤ (1 + ε3)Dk−1 + 12 · 2−(t−k+1) = Dk .

The second inequality follows since 2−(t−k+1) degk(u) ≤
∑
e3u α

(k−1)
eu ≤ Dk−1. This com-

pletes the induction. Since ε3 ≤ 1/4, in the end, we have

∑
e3u

αeu ≤
∑
e3u

α(t)
eu ≤ Dt ≤ (1 + ε1)(1 + ε2)(1 + ε3)tD̃ + 12 · (1/2) ·

t−1∑
k=0

(
1 + ε3

2

)k
≤ (1 + ε1)(1 + ε2)(1 + ε3)tD̃ + 16 . J

I Theorem 4. Given an integer D̃ ≥ D, for any 32/D̃ ≤ ε ≤ 1/4, there exists a deterministic
algorithm in the CONGEST model that computes a (1 + ε)D̃-orientation and runs in

O
(logn

ε2 + (min(log logn, log ∆) + log(1/ε))2.71 · (1/ε)1.71 · log2 n
)
≤ Õ((log2 n)/ε2) rounds.

Proof. We set parameters ε1 = ε2 = ε/8 and ε3 = ε/(4t). Run Algorithm 4 to obtain integral
{αeu} that satisfy αeu+αev ≥ 1 for every e = uv and

∑
e3u αeu ≤ (1+ε1)(1+ε2)(1+ε3)tD̃+16

for every u. For each edge e = uv, if αeu = 1 then we orient e from u to v. Otherwise, we

DISC 2020

15:14 Distributed Dense Subgraph Detection and Low Outdegree Orientation

orient e from v to u. Since 16 ≤ εD̃/2, the out-degree of each vertex is upper bounded by:∑
e3u

αeu ≤ (1 + ε1)(1 + ε2)(1 + ε3)tD̃ + 16 ≤ (1 + ε/2)D̃ + 16 ≤ (1 + ε)D̃ .

The running time for Algorithm 4 consists of the following. The number of rounds
to obtain a fractional solution is O((logn)/ε21) = O((logn)/ε2). Then, it consists of t =
min(log(∆/ε2), B) = O(min(log logn, log ∆) + log(1/ε)) iterations. Each iteration invokes a
directed splitting procedure that runs in O((1/ε3)1.71 · log2 n) rounds by Theorem 16. Recall
that ε3 = ε/(4t), the total number of rounds is therefore:

O

(
logn
ε2

+ t · (1/ε3)1.71 · log2 n

)
= O

(
logn
ε2

+ t2.71 · (1/ε)1.71 · log2 n

)
. J

4.1 Distributed Splitting in the CONGEST Model
Given a graphG = (V,E), a weak f(v)-orientation ofG is an orientation of the edges inG such
that there are at least f(v) outgoing edges for each v ∈ V . In order to adapt the algorithm
of [22] for directed splitting, we need an algorithm for weak bdeg(v)/3c-orientation in the
CONGEST model. The previous algorithms [22,24] for weak bdeg(v)/3c-orientation requires
finding short cycles for containing each edge. They are not adaptable to the CONGEST model.
We use an augmenting path approach for finding a weak bdeg(v)/3c-orientation instead.

I Lemma 14. There exists a deterministic distributed algorithm that computes a weak
bdeg(v)/3c-orientation in O(log2 n) rounds in the CONGEST model.

Proof. First we construct a new graph G′ as follows: Split every vertex v into ddeg(v)/3e
copies. Attach evenly the edges to each copy of the vertex so every copy except possibly
the last gets 3 edges and the last copy gets deg(v) − 3 · (ddeg(v)/3e − 1) edges. Given an
orientation of G′, we call a vertex v a sink if it has exactly 3 incoming edges. Clearly,
a sinkless orientation (i.e. an orientation where there are no sinks) in G′ corresponds to a
weak bdeg(v)/3c-orientation of G. Moreover, one round in G′ can be emulated in G by using
one round.

Now we start with an arbitrary orientation of G′. Some vertices might be sinks. We will
use an augmenting path approach to eliminate sinks.

Divide the vertices into the following three types. Type I vertices are the sinks. Type II
vertices are those u such that deg(u) = 3 and indeg(u) = 2. Type III vertices are those with
indeg(u) ≤ 1 or deg(u) < 3.

An augmenting path is a path P = (u1, . . . , ul) such that:
1. u1 is a Type I vertex. ul is a Type III vertex. ui is a Type II vertex for 1 < i < l.
2. ui+1 is oriented towards ui for 1 ≤ i < l.
If P is an augmenting path then flipping P will make u1 no longer a sink. Moreover, it will
not create any new sink.

Consider a Type I vertex u. An augmenting path of length O(logn) starting from u can
be found as follows. Let L0 = {u}. Given Li−1, let Li be the set of incoming neighbors of
every vertex in Li−1. If Li contains a Type III vertex, then an augmenting path is found.
Otherwise, it must be the case that Li contains all Type II vertices. Since there are at least
2 · |Li−1| incoming edges from Li to Li−1 (indeg(u) = 2 for u ∈ Li−1) and Type II vertices
have out-degree 1, we have |Li| ≥ 2 · |Li−1|. Hence, this process can only continue for at
most O(logn) times.

Every Type I vertex would be able to find an augmenting paths of length O(logn) this
way. Moreover, note that these augmenting paths can only overlap at their ending vertex,
since the intermediate Type II vertices have out-degree 1. Each ending vertex is a Type

H.-H. Su and H. T. Vu 15:15

III vertex, which can only be the ending vertex of at most 3 augmenting paths since it has
at most 3 outgoing edges. It selects an arbitrary augmenting path to accept. Therefore,
at least 1/3 fraction of augmenting paths will be accepted. We flip along the accepted
augmenting paths to fix Type I vertices so that we eliminate at least 1/3 fraction of the sinks.
Therefore, it takes O(logn) repetitions to eliminate all the sinks. The total number of rounds
is O(logn · logn) = O(log2 n). The process can be easily implemented in the CONGEST
model. J

Before we describe how to adapt the splitting algorithm of [22], we need to introduce the
following definition. Given a function δ : V → R≥0 and λ ∈ Z≥0. A (δ, λ)-path decomposition
P is a partition of E into paths P1, . . . , Pρ such that
1. Each vertex v is an endpoint of at most δ(v) paths.
2. Each path Pi is of length at most λ.

Given a (δ, λ)-path decomposition P . The virtual graph GP = (V,EP) consists of exactly
ρ edges, where each path Pi = (vi,start, . . . , vi,end) corresponds to an edge (vi,start, vi,end) in
EP . Lemma 15 is the adaption of [22, Lemma 2.11] to the CONGEST model.

I Lemma 15. Assume that T (n,∆) ≥ logn is the running time of an algorithm A that
finds a weak bdeg(v)/3c-orientation in the CONGEST model. Then for any positive integer
i, there is a deterministic distributed algorithm A that finds a (

(2
3
)i · deg(v) + 12, 2i)-path

decomposition P in time O(2i · T (n,∆)) in the CONGEST model.

The reason of why such an adaptation works is due to the fact that all the paths in P
are disjoint. Therefore, one round in GP can be simulated using O(λ) rounds in G in the
CONGEST model, given P is a (δ, λ)-path decomposition.

For completeness, we explain how the path-decomposition in Lemma 15 can be obtained.
Let P0 denote the initial path decomposition where each path is a single edge in E. Given
Pi−1, Pi can be built as follows: Obtain a bdeg(v)/3c-orientation on GPi−1 . For each vertex
u, group the outgoing edges into at least bbdeg(u)/3c/2c pairs. For each such edge pair (u, x)
and (u,w), we reverse the path that corresponds to (u, x) and append it with (u,w). The
new degree of u becomes at most deg(u)− 2 · bbdeg(u)/3c/2c ≤ 2

3 deg(u) + 4. Therefore, if
Pi−1 is a (δ, λ(v))-decomposition then Pi is a (2

3 · δ(v) + 4, 2λ(v)) decomposition.
Since P0 is a (deg(v), 1)-path decomposition, Pi a (zi(v), 2i)-path decomposition, where

zi(v) =
(

2
3

)i
· deg(v) + 4

i−1∑
k=0

(
2
3

)k
≤
(

2
3

)i
· deg(v) + 12 .

The running time of the j’th iteration is O(2j ·T (n,∆)). Therefore, the total running time
is
∑i
j=1O(2j · T (n,∆)) = O(2i · T (n,∆)). By setting i = log3/2(1/ε) and T (n,∆) = log2 n

from Lemma 14, we get a (ε · deg(v) + 12, (1/ε)log3/2 2)-path decomposition in O((1/ε)log3/2 2 ·
log2 n) rounds.

Suppose P is a (δ, λ)-path decomposition. If we orient the edges on each path in P in
consistent with the direction of the path, then we must have | outdeg(v)− indeg(v)| ≤ δ(v).
Therefore, we obtain the following theorem.

I Theorem 16. For ε > 0, there exists a O((1/ε)1.71 · log2 n) rounds deterministic algorithm
in the CONGEST model that computes an orientation such that for each vertex v, | outdeg(v)−
indeg(v)| ≤ ε deg(v) + 12.

DISC 2020

15:16 Distributed Dense Subgraph Detection and Low Outdegree Orientation

References
1 Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum

matching in the CONGEST model. In Proc. 32nd International Symposium on Distributed
Computing (DISC), pages 6:1–6:17, 2018.

2 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012. doi:10.4086/
toc.2012.v008a006.

3 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
4 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms

for mapreduce. In WAW, volume 8882 of Lecture Notes in Computer Science, pages 59–78.
Springer, 2014.

5 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. PVLDB, 5(5):454–465, 2012.

6 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

7 Edvin Berglin and Gerth Stølting Brodal. A simple greedy algorithm for dynamic graph
orientation. Algorithmica, 82(2):245–259, 2020.

8 Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos.
Copycatch: Stopping group attacks by spotting lockstep behavior in social networks. In
Proceedings of the 22Nd International Conference on World Wide Web (WWW), pages 119–
130, 2013.

9 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Proc. 47th ACM Symposium on Theory of Computing (STOC), pages 173–182,
2015.

10 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
Proc. 6th International Workshop on Algorithms and Data Structures (WADS), pages 342–351,
1999.

11 Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. CoRR, abs/1904.08037, 2019.

12 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In APPROX, volume 1913 of Lecture Notes in Computer Science, pages 84–95. Springer, 2000.

13 Jie Chen and Yousef Saad. Dense subgraph extraction with application to community detection.
IEEE Trans. on Knowl. and Data Eng., 24(7):1216–1230, 2012.

14 Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense
communities in the web. In Proc. 16th International Conference on World Wide Web (WWW),
pages 461–470, 2007.

15 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P. Woodruff. Applications of
uniform sampling: Densest subgraph and beyond. CoRR, abs/1506.04505, 2015.

16 Manuela Fischer. Improved deterministic distributed matching via rounding. In 31st Interna-
tional Symposium on Distributed Computing (DISC), pages 17:1–17:15, 2017.

17 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring
via hypergraph maximal matching. In Proc. 58th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 180–191, 2017.

18 Eugene Fratkin, Brian T. Naughton, Douglas Brutlag, and Serafim Batzoglou. Motifcut:
Regulatory motifs finding with maximum density subgraphs. Bioinformatics (Oxford, England),
22:e150–7, August 2006.

19 Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica, 7(1):465, June 1992.

20 G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30–55, 1989.

https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006

H.-H. Su and H. T. Vu 15:17

21 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. 59th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 662–673, 2018.

22 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara Uitto.
Improved distributed degree splitting and edge coloring. In DISC, pages 19:1–19:15, 2017.

23 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algorithms for
density-based network clustering. In Proc. 36th International Conference on Machine Learning
(ICML), volume 97, pages 2201–2210, 2019.

24 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Proc. of 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2505–
2523, 2017.

25 David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pages 721–732, 2005.

26 A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171,
EECS Department, University of California, Berkeley, 1984.

27 Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching,
scheduling, and flows. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 468–479, 2014.

28 David G. Harris. Distributed approximation algorithms for maximum matching in graphs and
hypergraphs. In Proc. 60th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 700–724, 2019.

29 R. Kannan and V. Vinay. Analyzing the structure of large graphs. Technical report, 1999.
30 Samir Khuller and Barna Saha. On finding dense subgraphs. In Proc. 36th International

Colloquium on Automata, Languages and Programming (ICALP), pages 597–608, 2009.
31 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic

graphs with worst-case time bounds. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Proc. 41st International Colloquium on Automata, Languages
and Programming (ICALP), pages 532–543, 2014.

32 Łukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph density
measures. In Proc. of the 17th International Conference on Algorithms and Computation
(ISAAC), pages 557–566, 2006.

33 Nathan Linial and Michael E. Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993.

34 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph in
dynamic graph streams. In MFCS (2), volume 9235 of Lecture Notes in Computer Science,
pages 472–482. Springer, 2015.

35 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In SPAA, pages 196–203. ACM, 2013.

36 C. St.J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, s1-39(1):12–12, 1964.

37 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

38 Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang. Dense
subgraphs with restrictions and applications to gene annotation graphs. In Research in
Computational Molecular Biology, pages 456–472, 2010.

39 Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. Dense subgraphs
on dynamic networks. In DISC, volume 7611 of Lecture Notes in Computer Science, pages
151–165. Springer, 2012.

40 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Proc. 52th ACM Symposium on Theory of Computing (STOC), 2020. To appear.

DISC 2020

15:18 Distributed Dense Subgraph Detection and Low Outdegree Orientation

41 Hsin-Hao Su and Hoa T. Vu. Distributed dense subgraph detection and low outdegree
orientation. CoRR, abs/1907.12443, 2019.

42 M. Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

43 Neal E. Young. Randomized rounding without solving the linear program. In SODA, pages
170–178. ACM/SIAM, 1995.

https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2

	Introduction
	Deterministic Dense Subgraph Detection in the LOCAL Model
	Dense Subgraph Detection in the CONGEST Model
	Deterministic Algorithms for Low Outdegree Orientation
	Distributed Splitting in the CONGEST Model

