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—— Abstract

Linial’s famous color reduction algorithm reduces a given m-coloring of a graph with maximum degree
A to a O(A?log m)-coloring, in a single round in the LOCAL model. We show a similar result when
nodes are restricted to choose their color from a list of allowed colors: given an m-coloring in a directed
graph of maximum outdegree 3, if every node has a list of size Q(3%(log 3 + loglogm + loglog |C|))
from a color space C then they can select a color in two rounds in the LOCAL model. Moreover, the
communication of a node essentially consists of sending its list to the neighbors. This is obtained
as part of a framework that also contains Linial’s color reduction (with an alternative proof) as a
special case. Our result also leads to a defective list coloring algorithm. As a corollary, we improve
the state-of-the-art truly local (deg + 1)-list coloring algorithm from Barenboim et al. [PODC’18] by
slightly reducing the runtime to O(4/Alog A) + log™ n and significantly reducing the message size
(from huge to roughly A). Our techniques are inspired by the local conflict coloring framework of
Fraigniaud et al. [FOCS’16].
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1 Introduction

Symmetry breaking problems are a cornerstone of distributed graph algorithms in the LOCAL
model.! A central question in the area asks: How fast can these problems be solved in terms
of the mazimum degree A, when the dependence on n is as mild as O(log™ n)? [12]. That is,
we are looking for truly local algorithms, with complexity of the form f(A)+O(log* n).2 The
O(log* n) term is unavoidable due to the seminal lower bound by Linial [41] that, via simple
reductions, applies to most typical symmetry breaking problems. (A + 1)-vertex coloring and
mazimal independent set (MIS) are the key symmetry breaking problems. Both can be solved
by simple centralized greedy algorithms (in particular they are always solvable), and even
more importantly in a distributed context, any partial solution (e.g. a partial coloring) can
be extended to a complete solution. The complexity of MIS is settled up to constant factors
with f(A) = ©(A), by the algorithm from [14] and a recent breakthrough lower bound by

In the LOCAL model [41, 46] a communication network is abstracted as an n-node graph G = (V, E)
with unique O(logn)-bit identifiers. Communications happen in synchronous rounds. Per round, each
node can send one (unbounded size) message to each of its neighbors. At the end, each node should
know its own part of the output, e.g., its own color. In the CONGEST model, there is a limitation of
O(logn) bits per message.

Not all symmetry breaking problems admit such a runtime, e.g., A-coloring and sinkless orientation [17].
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Balliu et al. [3]. In contrast, the complexity of vertex coloring, despite being among the most
studied distributed graph problems [12], remains widely open, with the current best upper
bound f(A) = O(v/A) and lower bound f(A) = ©(1). While most work has focused on the
(A + 1)-coloring problem, recent algorithms, e.g., [8, 23, 13, 37|, rely on the more general
list coloring problem as a subroutine, where each vertex v of a graph G has a list L, C C of
colors from a colorspace C, and the objective is to compute a proper vertex coloring, but
each vertex has to select a color from its list. Again, a natural case is the always solvable
(deg + 1)-list coloring problem, where the list of each vertex is larger than its degree. Our
paper contributes to the study of list coloring problems. To set the stage for our results, let
us start with an overview of truly local coloring algorithms.

In [41], besides the mentioned lower bound, Linial also showed that O(A?)-coloring
can be done in O(log" n) rounds. Szegedy and Vishwanathan [49] improved the runtime
to 1log*n + O(1) rounds, and showed that in additional O(A -log A) rounds, the O(A?)-
coloring could be reduced to (A+1)-coloring. The latter result was rediscovered by Kuhn and
Wattenhofer [39]. Barenboim, Elkin and Kuhn used defective coloring for partitioning the
graph into low degree subgraphs and coloring in a divide-and-conquer fashion, and brought
the complexity of (A + 1)-coloring down to O(A + log™ n) [14]. A simpler algorithm with
the same runtime but without using defective coloring was obtained recently in [13]. All
of these results also hold for (deg + 1)-list coloring, since given a O(A)-coloring, one can
use it as a “schedule” for computing a (deg + 1)-list coloring in O(A) additional rounds.
Meantime, two sub-linear in A algorithms were already published [8, 23]. They both used
low outdegree colorings, or arb-defective colorings, introduced by Barenboim and Elkin in [10],
for graph partitioning purposes. The basic idea here is similar to the defective coloring
approach, with the difference that the graph is partitioned into directed subgraphs with
low mazimum outdegree. In [13] they also improved and simplified the computation of low
outdegree colorings, which led to improved runtime and simplification of that component
in the mentioned sublinear algorithms. As a result, the currently fastest algorithm in
CONGEST needs O(A3/4 +1log* n) rounds ([8]+[13]),% while the fastest one in LOCAL needs
O(y/Alog Alog™ A +log™ n) rounds ([23]+][13]).

Let us take a better look at the latter result, which is the closest to our paper. The
algorithm consists of two main ingredients: (1) an algorithm that partitions a given graph
into p = O(A/p) subgraphs, each equipped with a 8 = O(1/A/log A)-outdegree orientation,
in O(p)+ 3 log* n rounds [13], (2) a list coloring subroutine that gives rise to the following [23]:

» Theorem 1.1 ([23]). In a directed graph with max. degree A, mazx. outdegree B, and an
input m-coloring, list coloring with lists L, of size |L,| > 108%In A from any color space can
be solved in O(log™ (A + m)) rounds in LOCAL.

The two ingredients are combined to give a (deg + 1)-list coloring of the input graph G [23].
First, partition G using (1), iterate through the p directed subgraphs, and for each of them,
let uncolored nodes refine their lists by removing colors taken by a neighbor, and use (2) to
color nodes that still have sufficiently large lists (> 103?In A). With a fine grained choice of
B it is ensured that every node v with (refined) list size greater than A/2 is colored. Thus,
after iterating through all p subgraphs, all uncolored nodes have list size at most A/2, and
because each vertex always has more colors in its list than uncolored neighbors, the max
degree of the graph induced by uncolored nodes is at most half of that of G. Thus, we can
apply the partition-then-list-color paradigm recursively to the subgraph induced by uncolored
nodes to complete the coloring. The runtime is dominated by the first level of recursion.

3 For more colors, i.c., (1 + &)A-coloring, [8] gives runtime O(v/A + log* n) in CONGEST.
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The strength of the partitioning algorithm above is that it is conceptually simple and works
with small messages. In contrast, the algorithm from Thm. 1.1 is conceptually complicated
and uses gigantic messages. This complication might be due to the generality of the addressed
setting as, in fact, [23] studies the more general local conflict coloring problem, and Thm. 1.1
is only a special case. In local conflict coloring, each edge of the given graph is equipped with

an arbitrary conflict relation between colors and this relation may vary across different edges.

This framework is also leveraged to achieve the colorspace size independence of Thm. 1.1
(see the technical overview below). It was not clear prior to our work whether the situation
simplifies significantly if one restricts to ordinary list coloring because, even if the input to
the algorithm in Thm. 1.1 is a list coloring problem, the intermediate stages of the algorithm
fall back to the more general local conflict coloring.

The overarching goal of our paper is providing deeper understanding of the remarkable
framework of [23], better connecting it with classic works in the area, and obtaining a simpler

list coloring algorithm that also uses smaller messages, by moderately sacrificing generality.

1.1 OQOur Contribution

Our main result is a simple algorithm that yields the following theorem.

» Theorem 1.2 (Linial for Lists). In a directed graph with maz. degree A, max. outdegree
B, and an input m-coloring, list coloring with lists L, from a color space C and of size

|Ly,| > lo = 4eB?(4log B + loglog |C| + loglogm + 8) can be solved in 2 rounds in LOCAL.

Each node sends ly + 1 colors in the first round, and a lo/B3%-bit message in the second.

The name “Linial for Lists” stems from the fact that Thm. 1.2 is a “list version” of one
of the cornerstones of distributed graph coloring, Linial’s color reduction, which says that an
m-coloring can be reduced to a (5A2logm)-coloring in a single round [41]. Moreover, our

framework is itself a natural generalization of Linial’s approach of cover-free set families.

Applied to equal lists, it yields an alternative proof of Linial’s color reduction, in the form of a
greedy construction of cover-free families (Linial proved their existence using the probabilistic
method [41]; he also used an alternative construction from [21] via polynomials over finite
fields, which however yields a weaker color reduction for m > A) (see Sec. 2.3 and Sec. 5).

Compared with Thm. 1.1, we lose colorspace independence, and our algorithm does not
extend to general local conflict coloring (although we use a kind of conflict coloring in the
process). In exchange, we eliminate A from the bound on the list size, reduce the runtime to
exactly 2 rounds, and dramatically reduce message size. This is achieved by a non-trivial

paradigm shift in the local conflict coloring framework (see the technical overview below).

The runtime cannot be reduced to 1 round, due to a lower bound of [49] (see Sec. 5).
Combining Thm. 1.2 with the partitioning algorithm of [13] as outlined above gives us
a (deg + 1)-list coloring algorithm. Note that any improvement in the list size bound in

Thm. 1.2 (with little increase in runtime) would yield a faster (deg+ 1)-list coloring algorithm.

» Theorem 1.3 ((deg + 1)-List Coloring). In a graph with maz. degree A, (deg + 1)-list
coloring with lists L, C C from a color space of size |C| = 2P°W(A) 4 can be solved in
O(\/Alog A) + % -log™ n rounds in LOCAL. Furthermore, each node only needs to broadcast
to its neighbors a single non-CONGEST message consisting of a subset of its list.

4 We use the notation poly(X) = O(X¢), for an absolute constant ¢, and O(X) = X - poly(log X).
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The bound on the color space size stems from the color space dependence in Theorem 1.2.
As discussed in Sec. 5, it is possible to trade color space dependence with runtime in Theo-
rem 1.2, which could improve or suppress the bound in Theorem 1.3. That, however, comes
with the cost of having huge messages.
Theorem 1.3 immediately provides the fastest known truly local (A+1)-coloring algorithm
in LOCAL. Below we list further implications of our framework.
CONGEST (see Cor. 4.2): We obtain an improved (A + 1)-coloring algorithm in a low
degree regime in CONGEST. In particular, if A = O(logn) then (A + 1)-coloring (more
generally, (deg + 1)-list coloring with colorspace of size |C| = poly(A)) can be solved in
O(VA) + % -log™ n rounds in CONGEST. Generally, if one allows messages of size B, this
runtime holds for degree up to A = O(B). On the other hand, if A = Q(log?*® n), for
an arbitrarily small constant € > 0, an algorithm from recent work [37] achieves runtime
O(v/A) in CONGEST (if one recasts their dependency on n as a A-dependency). Thus,
only for the regime of A € Q(log'™*n) N O(log? ™ n) we do not have an algorithm with
runtime O(vV/A) in CONGEST (with the current best being O(A3/* + log* n) due to [8]).
Defective list coloring: Our framework extends to d-defective list coloring, that is,
list coloring where each node v can have at most d neighbors with the same colors as
v: If lists are of size Q((A/(d+ 1))? - (log A + loglog |C| 4 loglogm)) we can compute
a d-defective list coloring in 2 rounds in LOCAL. The result can be seen as the “list
variant” of a defective coloring result in [36]. While we are not aware of an immediate
application, defective list coloring with a better “colors vs. defect” tradeoff (d vs. O(A/d))
for line graphs has recently been used to obtain a edge-coloring algorithm with complexity
quasi polylog A + O(log* n) [6]. See the full paper [42] for the formal statement and
proof.
A-coloring: The improvements obtained in Thm. 1.3 also imply respective improvements
for several A-coloring algorithms that use (deg+1)-list coloring as a subroutine [27].

1.2 Technical Overview

At their core, the proofs of Theorems 1.1 and 1.2 are based on three important concepts:
conflict coloring, problem amplification and 0-round solvability. A conflict coloring problem is
a list coloring problem where two colors can conflict even if they are not equal. The associated
conflict degree is the maximum number of conflicts per color a node can have. Problem
amplification transforms one conflict coloring problem instance into another, as follows: given
an input to a problem A, each node computes its input to another problem B (perhaps by
exchanging information along the way), with the property that, 1. having a solution to B, a
simple one round algorithm computes a solution to A, and 2. the list-size-to-conflict-degree
(1/d) ratio of B is larger than that of A. Note that the first property essentially determines
the conflicts in B, and usually a color in B is a set of colors in A. The importance of the
second property stems from the concept of 0-round solvability: an instance of a problem B
with large enough [/d ratio can be solved in 0 rounds, i.e., with no communication.

From here, the plan is simple: take problem F,, which is the list coloring problem, recast
it as a conflict coloring problem, and amplify it into problems P, ..., P, so that P; is 0-round
solvable. Then we can cascade down to a solution of problem Py, in ¢ rounds. Crucially, in
order to do the above, we need Py to have sufficiently large [/d ratio to begin with (which
explains the particular list size requirements in our theorems). The input m-coloring is used
for tie-breaking in the O-round solution of F;.

In [23], local conflict coloring is the main problem type, where the conflict between two
colors depends on who the colors belong to, i.e., two colors can conflict along one edge of the
graph and not conflict on another one. Their framework allows solving any local conflict
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coloring problem, and by re-modeling a problem with an arbitrary colorspace via mapping
each list to an interval [1,!] of natural numbers, one can redefine local conflicts and “forget”
about the real size of the colorspace (hence colorspace independence). When computing the
input of P; (given P;_1), in order to maintain manageable conflict degree, nodes exchange
messages to filter out colors in P; that cause too much conflict with any neighboring node.
These messages are huge (recall that a color in P; is a set of colors in P;_1). Thus, the input
to P; is usually the topology, Pp-lists and conflicts in the i-hop neighborhood of a node. The
goal towards O-round solvability is then to find a problem P; whose I/d ratio is larger than
the number of all ¢-hop neighborhood patterns (i.e., inputs). The complicated nature of
the input to P; also makes the 0-round solvability proof rather conceptually involved. The
number ¢ of problems required is about 3log™(m + A).

Our framework, on the other hand, is based on special global conflict coloring instances,
where the conflict relation of two colors does not depend on the edge across which they are.
This limits us to solving only ordinary list problems Py. Our key insight (see Section 3.3),
which sets Theorems 1.1 and 1.2 apart, is that in our setting nodes do not need to communicate
for computing the input to problems P4, ..., P;. To achieve this, we show that when forming
the lists for P; from the input to P;_1, it suffices to drop “universally bad” colors (sets of
colors in P;_1), whose absence is enough to ensure moderate conflict degree towards any (!)
other node. We achieve this by crucially exploiting the symmetry of the particular conflict
coloring problems arising from ordinary list coloring.

Thus, the input of a node in P, is just its input in Py. This makes the 0-round solution
(of P;) particularly simple. The only communication happens when we cascade down from
a solution of P; to that of Py. With ¢t = 2, we get our main theorem. Since here we have
only two problems, the message size is limited (the first round is needed to learn the Py-lists
of neighbors, while the second one consists of a small auziliary message). Taking larger ¢
would reduce the requirement on the initial list size but increase message size (see Section 5).
Since t = 2 is sufficient for our applications, we limit our exposition to that case. Setting
t = 1 does not give anything non-trivial for list coloring, since the [/d ratio is not large
enough, but when all Py-lists are equal, it gives an alternative proof of Linial’s color reduction
(Section 2.3). In fact, P; is essentially the problem of finding a low intersecting set family,
which Linial’s algorithm is based on, while P, is a “higher-dimensional” variant of it. Thus,
at the core of our result there is an (offline) construction of certain set families over the given
color space: given those, the algorithm is easy. This way, we believe our paper also provides
a deeper insight into the framework of Thm. 1.1. Our result can also be seen as a bridge
between the results of [23] and the recently popular concept of speedup (see Section 5).

1.3 Further Related Work

Most results on distributed graph coloring until roughly 2013 are covered in the excellent
monograph by Barenboim and Elkin [12]. An overview of more recent work can be found
in [37]. Due to the large volume of published work on distributed graph coloring, we limit
this section to an informative treatment of a selected subset. While we have covered most
literature on truly local vertex coloring algorithms, there are many known algorithms that
trade the high A-dependence in the runtime with lower n-dependence. All deterministic
algorithms in this category (for general input graphs) involve a Q(logn) factor. From the
early 90s until very recently, the complexity of (deg +1)-list coloring (and (A + 1)-coloring) in
terms of n was 20(v/1ogn) [1, 45], with algorithms based on network decomposition (into small
diameter components). A recent breakthrough in network decomposition algorithms [47]
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brought the runtime of (deg 4 1)-list coloring down to polylogn in LOCAL (it also applies
to many other symmetry breaking problems; see [47, 29, 26]). A little later, [7] found a
poly logn round CONGEST algorithm.

Historically, decompositions into subgraphs that are equipped with low outdegree orienta-
tions as used in our results, in [23], and in [8] are closely related to the notion of arboricity. To
the best of our knowledge, [9] was the first paper to introduce low out-degree orientations as a
tool for distributed graph coloring. First, they showed that one can compute O(a)-outdegree
orientations in graphs with arboricity a in O(logn) rounds, and used it to devise several algo-
rithms to color graphs with bounded arboricity. [9] is also the first paper to notice that the
degree bound of A in Linial’s color reduction can be replaced with a bound on the outdegree.
Then, [10] devised methods to recursively partition into graphs with small arboricity yielding
an O(log Alogn)-round algorithm for O(A!*¢)-coloring and an O(A® log n)-round algorithm
for O(A) coloring. Recently, this recursive technique was extended to (deg+1)-list coloring,
giving a (20(\/@) log n)-round algorithm [37]; the runtime of [37] has a hidden dependence
on the color space. While [9, 10, 37] have an inherent O(logn)-factor in their runtime, [§]
showed that one can decompose a graph into small arboricity subgraphs (equipped with a
small outdegree orientation) without inferring a O(logn) factor, yielding the first sublinear in
A algorithm for A + 1 coloring. In the aftermath, [13] improved the runtime for computing
the underlying decompositions (and also simplified the algorithm). Thus, the best forms of
our results, [23] and [8] are obtained by using [13] to compute decompositions into subgraphs
of small arboricity (equipped with small outdegree orientations).

Note that our results, [23] and [8] only require a bound on the outdegree of the subgraphs’
orientations and are oblivious to their arboricity. While bounded outdegree in a graph with
a given orientation implies bounded arboricity, computing a bounded outdegree orientation
in a graph with bounded arboricity requires 2(logn) rounds, as shown in [9].

Recent randomized coloring algorithms rely on the graph shattering technique [15]. In
the shattering phase, a randomized algorithm computes a partial coloring of the graph, after
which every uncolored connected component of the graph has small size (say, polylogn).
Then, in the post-shattering phase, deterministic (deg+1)-list coloring is applied on all
uncolored components in parallel. The runtime of the shattering phase has progressed
from O(log A) [15], over O(y/log A) [33] to O(log™ A) [20]. Combined with the poly log n-
round list coloring algorithm of [47], this gives the current best runtime poly log logn, for
(A + 1)-coloring [20], and O(log A) 4 poly loglogn, for (deg + 1)-list coloring [15].

While special graph classes are out of the scope of this paper, we mention the extensively
studied case of distributed edge coloring. Here, poly log n-round algorithms were designed
for progressively improving number of colors, from (24 ¢)A [31, 28] to (2A —1) [22, 32], then
to (1 +¢&)A [30, 32, 48]. The truly local complexity of (2A — 1)-edge coloring has improved
from O(A) [44] to 20(\/@)) [37] then to quasipolylog A [6] (in addition to O(log™* n)).
O(A'*)-edge colorings can be computed in O(log A + log* n) rounds [11].

Little is known on coloring lower bounds (in contrast to other symmetry breaking
problems, e.g., maximal matching, MIS or ruling sets [38, 3, 4]). Linial’s Q(log" n) lower bound
is extended to randomized algorithms in [43]. The deterministic bound has recently been
re-proven in a topological framework [24]. A Q(A'/3) lower bound for O(A)-coloring holds
in a weak variant of the LOCAL model [34]. Several works characterized coloring algorithms
which can only spend a single communication round [49, 39, 34]. None of these results gives
anything non-trivial for two rounds. Also, the speedup technique (e.g., [16, 17, 3, 18, 4, 2]),
which proved very successful for MIS lower bounds, is poorly understood for graph coloring.
We briefly discuss the technique and its relation to our result in Sec. 5. There are lower
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bounds for more restricted variants of coloring. There is a Q(logn) (2(loglogn)) lower
bound for deterministic [17] (randomized [19]) A-coloring, as well as for (A — 2)-defective
2-coloring [5]. Further, [25] provides a Q(logn/loglogn) lower bound for greedy coloring.
Similar bounds hold for coloring trees and bounded arboricity graphs with significantly fewer
than A colors [41, 9].

1.4 Roadmap

Section 2.1 introduces our version of conflict coloring together with the 0-round solvability
lemma. Section 2.2 defines the problems Py and P; and provides further notation. Sec-
tion 2.3 contains the first result of our framework: an alternative proof of Linial’s algorithm.
Theorem 1.2 (Linial for Lists) is proved in Section 3. Theorem 1.3 ((deg + 1)-list coloring)
is proved in Section 4. We conclude with a discussion of the results and open problems in
Section 5.

2 Basic Setup and Linial’s Color Reduction

In this section, we first introduce the conflict coloring framework that is the basis of our
algorithm, then we show how it quickly implies an alternative variant of Linial’s color
reduction algorithm. For a set S and an integer k& > 0, let P(S) and (“2) denote the set of all
subsets and all size-k subsets of S, respectively. For a map f we use f(*) to denote the i-fold
application of f, e.g., P (S) = P(P(9)).

2.1 Global Conflict Coloring

A list family F C P(C) is a set of subsets of a color space C. Given a symmetric conflict
relation R C {{c,c'} | ¢,¢’ € C}, the conflict degree of a family F in R is the maximum
number of colors in a list L that conflict with a single color in a list L’ (possibly same as L),
ie. , dr(F)=maxy percer |{c € L' | {¢,d} € R}|. An instance P = (C,R,F, L) of the
global conflict coloring problem on the graph G is given® by a color space C, a symmetric
conflict relation R on C, a list family F, and an assignment £ : V — F of lists L(v) € F
of colors to each vertex v. The goal is to assign each vertex a color from its list such that
no pair of neighboring vertices get conflicting colors {¢,¢'} € R. The conflict degree of P is
dr(F). Note that the conflict degree does not depend on G or L.

» Lemma 2.1 (Zero Round Solution). An instance (C,R,F, L) of the conflict coloring problem
on a graph G can be solved without communication if G is m-colored, m, R, F are globally
known, and every list in F has size at least I > m - |F| - dr(F) .

Proof. Every vertex v has a type (¢, L(v)) € [m] x F, which is uniquely determined by its
input color %, and list £(v). Note that adjacent vertices have distinct types, and there are
t = m - |F| (globally known) possible types. Below, we show how to greedily assign each
type a color from its list s.t. different types get non-conflicting colors. The conflict coloring
problem is then solved by running this algorithm locally and consistently by all vertices,
where each vertex gets the color assigned to its type.

5 Formally, G is also part of the problem, but we omit it since it is always clear from the context. These
definitions crucially differ from local conflict coloring in [23], where a pair of colors can conflict along
one edge and not conflict along another.
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Let {T; = (my, L;)},_; be a fixed ordering of [m] x F. Assign T} a color ¢(T}) € L,
arbitrarily. For any ¢ > 1, given the colors ¢(T1), ..., d(T;) of preceding types, assign T;11 a
color from L;;; that does not conflict with ¢(71),...,¢(T;). This can be done since each
of the ¢ fixed colors conflicts with at most dg(F) colors in L;;1, i.e., there are at most
i-dr(F) < m-|F|-dr(F) colors that T;;; cannot take, and this is less than the size of
L;y,, as assumed. |

2.2 Basic Problems: P, and P;

Let C be a fixed and globally known color space (which may depend on the graph G). An
i-list is a subset L C P (C); e.g., the initial color list L, C C of a vertex v is a 0-list. Below,
we introduce two problems. Problem Fj is the standard list coloring problem, which we
would like to solve via Lemma 2.1. However, the Lemma may not apply, if the lists L, are
not large enough. We then introduce problem P;, with parameters 0 < 7 < k, which is a low
intersecting sublist selection problem. On the one hand, P; can be reformulated as a conflict
coloring problem with larger lists and color space (hence could be solvable via Lemma 2.1),
and on the other hand, a solution to P; can be used to solve Py. The input of a node v in
both problems contains its list L,. Formally, we have, for parameters 7 and k,

Py (list coloring): Node v has to output a color ¢(v) € L, such that adjacent nodes’

colors do not conflict, i.e., they are not equal.

P; (low intersecting sublists): Node v has to output a 0-list C,, C L, such that

|Cy| = k and adjacent nodes’ 0-lists do not 7-conflict.

Two 0-lists C,C" C C do 7-conflict if |CNC'| > .
Note that problems Py and P; are not conflict coloring problems in the formal sense defined
above (e.g., we do not define a list family F or a list assignment £ : V' — F). The aim
with such definitions is to have a higher level and more intuitive (but still formal) problem
statement. As the name suggests, in P; each node needs to compute a subset of its list such
that the outputs form a low intersecting set family. P; can be reduced to a formal conflict
coloring problem 3; whose solution immediately solves the P; instance (see Thm. 2.2).

2.3 Warmup: Linial's Color Reduction (without Lists)

As a demonstration, we use the introduced framework to re-prove Linial’s color reduction
theorem [41, Thm. 4.1] (which was extended to directed graphs in [9]). An r-cover-free
family of size k over a set U is a collection of k subsets C,...,Cy C U such that no set C; is
a subset of the union of r others. The obtained algorithm is essentially a greedy construction
(via Lemma 2.1) of an r-cover-free family (with appropriate parameters) whose existence
was proved via the probabilistic method in [41]. This greedy construction was first obtained
in [35] but, to our knowledge, remained unnoticed in the distributed computing community.

While our aim is to make the proof below reusable for the later sections (hence the general
statement in list coloring terms), we note that similar ideas can be used to obtain a less
technical proof of Linial’s color reduction (see the full version [42]).

» Theorem 2.2 ([41, 9]). Let the graph G be m-colored and oriented, with mazx outdegree (3.
All nodes have an identical color list L, = C from a color space C. Further, C, m, and 3 are
globally known. If |L,| = ly > 2e- 3% - [logm] holds then in 1 round in LOCAL, each node
can output a color from its list s.t. adjacent nodes output distinct colors.

Proof. Our goal is to solve P, with the given lists. To this end, it suffices to solve P,
with parameters 7 = [logm] > 1 and k = 8 - 7, without communication. Indeed, having
selected the sublists (Cy)yecv, we need only one round to solve Py: Node v learns sublists
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of its outneighbors and outputs any color c(v) € Cy, \ Uyen,,,(v)Cu- This can be done
since for any outneighbor u, C, and C, do not 7-conflict (|C, N Cy| < 7 — 1) and hence
|CU \ UuGNout(v)Cu| >k — (T — 1)ﬂ > 0.

We recast the given P; instance with (identical) input lists (L, ),cy as a conflict coloring

problem 1 = (C1, R, F1, £1) with color space C; = P(C) and the T-conflict relation as R;.

The list of a node £;(v) = (Lk) in B, consists of all k-sized subsets of its input list L,. As

each L, is identical to C, we have that £, maps each node v to the same list (Lk) = (i) and

the list family F; = {(i)} consists of that singleton. A solution to 3; immediately solves P;.

> Claim 2.3. The conflict degree of P; is upper bounded by d; = (*) - (_7).

Proof. Consider two arbitrary lists L, L’ € F; and some 0-list C' € L (that is of size k). Each
0-list C" € L' that 7-conflicts with C' can be constructed by first choosing 7 elements of C,
and then adding k& — 7 elements from the rest of C which is of size lg — 7. This can be done
in at most d; many ways. <

> Claim 2.4. Let Iy = (). For any k > 7 > 1, if [y > 2ek?/7 then l; /d; > 27.

Proof. We have

= M ORCRICIRS

k—T

where in the first inequality, we used the well-known approximation (f) < (ek/T)7, and the

following inequality, applied to (l,g) / (l,‘;::): for integers L > K > x > 0,

(£) _L(K-a)(L-K)! LL-1)..(L-z+1) <L> o

() KN(L-K)NL-=2)! KK-1)...(K-z+1) K

which follows as (L —4)/(K — i) > L/K holds for 0 < i < z. <

Since 7 > [logm| and |F1| = 1 the last claim implies |£1(v)| = 1 > md; > m|F1|dr, (F1),
hence we can solve By (and thus also P;) without communication, using Lemma 2.1. <

What we did above is greedily forming a A-cover-free family C1, . ..,Cp, C [O(A%logm)]
of size m. The same was done in [41], using the probabilistic method. Having such a family
globally known, every vertex of input color x picks, in 0 rounds, the set C, as its candidate
output colors (neighboring vertices get distinct sets). Then, every vertex of color x learns
the sets C of its neighbors, and based on the A-cover-free property and the fact that there
are at most A neighbors, can select a color ¢ € C, that is not a candidate for any neighbor.

3 Linial for Lists

The goal of this section is to prove the following theorem.

» Theorem 1.2 (Linial for Lists). In a directed graph with maz. degree A, max. outdegree
B, and an input m-coloring, list coloring with lists L, from a color space C and of size
|Ly,| > lo = 4eB?(4log B + loglog |C| + loglogm + 8) can be solved in 2 rounds in LOCAL.
Each node sends ly + 1 colors in the first round, and a lo/B3%-bit message in the second.

Assumption. Throughout this section, we assume that the list of each node is exactly of
size lg; if a node’s list is larger it can select an arbitrary subset of size [j.
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3.1 The Problem P, (Low Intersecting Sublist Systems)

Recall that when applying our framework to the case where all lists were equal (Thm. 2.2),
we essentially constructed a A-cover-free family over the color space, and this was sufficient
because we only needed a family of size m: one set for each possible input pair (z, L) of
a color x and list L, with the same L for all nodes. In order to replicate the construction
for list coloring, we would need to construct a cover-free family with a set C, j, for every
combination of color z and list L, and such that C, ;, C L. It is not hard to see that such a
family does not exist. Instead, we introduce problem P,, whose goal is to assign every input
(z,L) a collection of candidate subsets Ky 1, = {Cy 1.1,Cqs,1,2,- -}, where each Cy 1 ; C L.
Further, we need that for every pair of distinct collections, there are not many pairs of
subsets from the two collections that intersect much (in a sense formally defined below).
This ensures that having such K r, the nodes can compute the desired A-cover free family
with one communication round, and use it to choose a color in another round.

Problem P, depends on parameters 0 < 7 < k < g and 0 < 7/ < k/, and each node has a
list L, C C in its input. Instead of a color (as in Py) or a sublist (as in P;), each vertex v
now needs to output a collection K, = {Cy,Cy, ...} of sublists of L,, each of size k.

P, (low intersecting sublist systems): Node v has to output a 1-list K, C P(L,) s.t.

adjacent nodes’ 1-lists do not (7', 7)-conflict and |K,| = ¥’ and |C| =k for all C € K,,.

Two 1-lists K, K/ C P(C) do (7', 7)-conflict if there are two sequences C1,...,Cr € K

and C1,...,C., € K', where at least one of the sequences has 7’ distinct elements and

for every 1 < i < 7', C; and C! 7-conflict.
We prove in Lemma 3.1 that with a suitable choice of the parameters a solution of
Py(7,k, 7', k') yields a solution of Py (7, k) and Py, where we implicitly impose (and throughout
this section assume) that Py, P, and P, receive the same input lists (L, )yev -

3.2 Algorithm

Under the assumptions of Thm. 1.2, fix the following (globally known) four parameters:
7 = [8log B + 2loglog |C| + 2loglogm] + 14, 7/ = 27-M1082eB)] | = 3.7 and k' = B - 7/.
Note that, 7/, k, k" are determined by 7 and 3. 6 We have the bound Iy > 2ek? /7 on list size.

The algorithm consists of two phases. In the first phase, nodes locally and without any
communication compute a solution (K, )yecy of Py consisting of 1-lists (see Lemma 3.2). The
second phase has two rounds of communication. In the first round, each node v learns the
solution K, to Py of each outneighbor u € N, (v), and selects a 0-list C,, € K, that does not
conflict with the 0-lists in K, for u € N,y (v), and thus is a solution to P; (Lemma 3.1). In
the second round, node v learns the lists C,, of outneighbors, and selects a color ¢(v) € C,
that does not appear in C,,, for u € Nyyi(v) (Lemma 3.1). This solves Pp.

» Lemma 3.1 (P, — P, — Fy). Given a solution (K,),cv of Po (a solution (Cy)vev of
Py), a solution of Py (of Py, resp.) can be computed in one round.

Proof. P, — P;: As K, and K, do not (7, 7)-conflict for any u € Ny (v), there are
at most 7/ — 1 0-lists C € K, that 7-conflict with a 0-list in K,. By removing all C
from K, that 7-conflict with any C’ € K, for any outneighbor u € Ny, (v) at least
|Ky| = 8- (7" =1) =k — - (7' — 1) > 1 outputs remain; let C, be any such 0-list. As the
conflict relation is symmetric, P; is solved.

6 It may also be helpful to note the similarity between this parameter setting and that in Thm. 2.2.
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P; — Py: Since C,, C,, do not 7-conflict, removing from C, all the colors from the 0-lists
of the outneighbors leaves at least k — - (1 — 1) > 1 colors that v can select as c¢(v). |

3.3 Zero Round Solution to P,

The results in this section hold for parameters 7,7/, k' fixed as in Section 3.2, and for any
7 < k < B7r. While we set k = g7 for solving Py, we will use another value of k for our
defective coloring result (see [42]). Note that we still have the bound Iy > 2ek?/7 on list size,
for any such k. The goal of this section is to prove the following lemma.

» Lemma 3.2 (P, in zero rounds). Under the assumptions of Thm. 1.2, the problem
Py(r,k, 7' k') can be solved in zero rounds.

To prove Lemma 3.2, we reduce (without communication) an instance of P, to a conflict
coloring instance P2 that can be solved in zero rounds with Lemma 2.1.

Reducing P, to a conflict coloring instance P, (without communication):
Given input lists (L,)yev and parameters 0 < 7 < k < [y and 0 < 7/ < k, the conflict
coloring instance B is given by the colorspace P?)(C), the (7', 7)-conflict relation Ry on
1-lists, the list family F = Im(L2) = {L2(S) | S € (l(;)} and list L(v) = Lo(L,) for node v,
where Ly : (zco) — PB)(C) maps lp-sized subsets of C to 2-lists and is defined below. The
map Lo, the colorspace, the conflict relation and the set family F, are global knowledge and
no communication is needed to compute the list £(v) of a node in Po.

To define the map Lo we need another definition. For an integer ¢ > 0 and a 2-list T, a
1-list K € T is (T,t, 7', 7)-good if there are less than ¢ 1-lists K’ € T such that K and K’ do
(7', 7)-conflict. We define maps Ly, Lo and Lo, as follows. For S € (lco),

Li(S) = (i) (elements C' are 0-lists)
- L

Ly(S) = ( 1kE/S)> (elements K are 1-lists)
Ly(S) = {K € Ly(S)| K is (L2(S),dy, 7', 7)-good} (elements K are 1-lists),

where dy is chosen as in Lemma 3.4.7 Due to the definition of the (7/,7)-conflict relation
and the map Lo, solving PBo immediately solves Ps.

The sizes of L;(S), L2(S) and Lo (S) do not depend on S. Let 1 = |L1(S)| = (l,g), and
ly = |Lo(S)]/2 = (2%)/2 We will later show that |Lo(S)| > l3. Let 1 = {L1(S) | S € (lco)}

Some intuition: In the conflict coloring instance B, every node v has a list { K7, K», ...}
of 1-lists, each a collection of subsets of its input list L,. To ensure small conflict degree, but
still large list size, it is enough that v only takes K's that are “good”, as defined above. Since
being “good” only depends on L,, node v can also compute its Bs-list locally.

In Lemmas 3.3 to 3.5, we show that lists Lo(L,) are large and that 9Bo has small conflict

degree. Before that, let us see how these lemmas imply 0-round solvability of P, (Lemma 3.2).

Proof of Lemma 3.2. To solve an instance of P, on input lists (L,),cv, nodes locally set
up the conflict coloring instance 5. Lemmas 3.3 and 3.4 show that the conflict degree of
Po is bounded by dr,(F2) < da, and that every list in F» has size at least lo. Note that Fp

is globally known and |F3| = (IICU\) < |C|, since each element in F can be written as L (S)

7 The precise value is not important to understand how Lo is formed.
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T —log(4ep?
for some S € (l(f,) Using Lemma 3.5 we obtain lp/dy > 22 R S ICllo > m - |Fsl,

where the second inequality follows by a routine calculation using the definition of 7 and [y
(see [42]). Thus, Lemma 2.1 holds, and 5 and P, can be solved in zero rounds. <

We continue with proving Lemmas 3.3 to 3.5. First, we bound the conflict degree of
Bo. Recall that it is a property of the list family /> and the conflict relation R, and is
independent of the graph and list assignment. The proof involves establishing an isomorphism
between Lo(S) and Lo(S’), for any S, S’, which preserves their common elements. For this,
it is crucial to have |S| = |S’|. This is why we need all input lists to have same size |L,| = lo.

» Lemma 3.3 (Conflict Degrees). Let X,Y € (lco) be O-lists. Let di = (’:) - (l,g::)
1. For any 0-list C € L1(X), there are at most dy 0-lists in L1(Y") that T-conflict with C.
2. For any 1-list K € Ly(X), there are at most do 1-lists in Lo(Y') that (7/,7)-conflict

with K. In particular, dg,(F2) < da, and this holds irrespective of the value of da.

Proof. The proof of the first claim is along the same lines as the proof of Claim 2.3, so we
only prove the second claim here. Let X; = L1(X), Xy = Lo(X) and Xy = Ly(X), and
define Y7, Y5, Y, similarly. As |X| = |Y], there is a bijection a : X — Y that is the identity
on X NY: if ce X NY then a(c) = c. Further, since X; = ()k() and Y7 = (32), we have the
bijection 8 : X1 — Y given by B({c1,...,c.}) = {a(c1), ..., a(c)}, and since X = (f}) and
Y, = (}k/}), we have the bijection v : X5 — Y3, where v({C1,...,Cr}) = {B(C1),...,B(Cy)}.

We show that the claim holds for any ¢ > 0 and for any K € X, that is (Xy, ¢, 7/, 7)-good
(which demonstrates that the actual value of dy is irrelevant). As Yy C Ya, it suffices to
show that K does (7/,7)-conflict with at most ¢ 1-lists in Y5. Towards a contradiction,
let K € X, (7/,7)-conflict with each of ¢ distinct 1-lists K, K3,..., K, € Y5 and define
K; =~y Y(K!) € X,. We show that K also (7, 7)-conflicts with each of the distinct (v is a
bijection) K71, ..., K; € Xo, which is a contradiction to K being (Xz,t,7’,7)-good: To ease
notation, let us focus on K and Kj. Assume there are 7' distinct (case 2: not necessarily
distinct) 0-lists C1,C5, ..., CL, in Ki, and 7' not necessarily distinct (case 2: distinct) 0-lists
C1,Cs,...,Cr in K, such that C; and C! 7-conflict. Then 371(C!) and C; T-conflict, since
a is the identity on C; N C!, 71(C}) are all distinct (since 3 is a bijection) and belong to
K1, therefore K and K; (77, 7)-conflict. <

Next, we show that at most half of the elements K € L, fail to be good; this lemma
crucially depends on the value of dy. Below, we use the conflict degree d; from Lemma 3.3.

» Lemma 3.4 (L, is large). Let dy = 4(’“;”}1) . (ll*T/). For any S € (lco), we have |Ly(S)| > ls.

k! —!

Proof. Fix S € (lco) and consider the digraph H = (Viz, Epr) over the vertex set Vi = La(S),
where (K, K') € Ey iff K contains at least 7/ lists, each in 7-conflict with a list in K’ (in
particular, for every K, (K, K) € E). Note that a 1-list K is (L2(S), da, 7', 7)-good iff its
undirected degree in H is at most ds.

> Claim. The maximum outdegree of a node K € Vj is at most ds/4.

Proof. Consider a fixed K € V. Let X C K be the set of 0-lists in L;(.5) that 7-conflict
with a 0-list in K. By Lemma 3.3 part 1, every C' € K 71-conflicts with at most d; of 0-lists,
hence | X| < |K|-d; = kdy. Every 1-list K', such that there are at least 7/ 0-lists in K
that are in 7-conflict with a 0-list in K’ can be obtained by first choosing 7/ 0-lists from X,
and adding an arbitrary subset of ¥’ — 7/ other 0-lists. Clearly, this can be done in at most
(k"fl) . (21/::/) = dy/4 many ways. <

T
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The Claim implies that |Eg| < |Vg| - d2/4, hence the undirected average degree of a
node in H is at most 2|Eg|/|Vi| < d2/2, and by Markov’s inequality, at most half of the
nodes have degree greater than ds. Since L(S) is the set of nodes of degree at most dy, we
conclude that |Lo(S)| > [Vi|/2 = |L2(S)|/2 = lo. <

Finally, we bound the ratio ls/ds based on the values of the remaining parameters.

» Lemma 3.5 (I/d Ratio). If k > 7 > [log(2¢82)], lo > 2ek?/7, 7/ = 27— Me2e8)1  gpg
T—log(4e 2
k' = Br', then ly/dy > 227577 /8.

Proof. First, we get [1/d; > 27, as in Eq. (1). Then, with (k,dl) < (¢kds )T,, and (2) applied

to (f@l,)/(f;,:::), we lower bound ly/dy as

4 4 ’ r—log(4eB?
L1 (B) V(L 7\ 12 \T 2 gty
—=csa = miv > s\ > =,
dy 8 (LTT)(My T 8 \K e(kdy) 8 \ ep?r’ 8 8
where the third and fourth inequalities hold since 7/ < 25;32 <27, <

3.4 Proof of the Main Theorem

Proof of Thm. 1.2. Nodes solve P in zero rounds (Lemma 3.2), and then use two rounds
of communication to solve the input list coloring problem P, (see algorithm description and
Lemma 3.1). We bound the messages sent by a node v during the algorithm. In the first
round, v needs to send K, to its neighbors. Note that K, is uniquely determined by the
list L,, and the input color 9, (see the proof of Lemma 2.1) | so it suffices to send (., L,),

which can be encoded in ly[log [C|] + [logm] bits. In the second round, v needs to send C,.

Since C, € K, and the neighbors know K, it suffices to send the index of C, in K, (in a
fixed ordering). Recall that |K,| = k’ < 27, so v only needs to send 7 < [/4ef3? bits. <

» Remark 3.6. Note that in both communication rounds of Theorem 1.2 each node only
needs to send messages to its in-neighbors. In contrast, the results in Section 4 and the
defective coloring results require bi-directional communication.

4 Application: (A + 1)-Coloring and (deg + 1)-List Coloring

» Theorem 1.3 ((deg + 1)-List Coloring). In a graph with maz. degree A, (deg + 1)-list
coloring with lists L, C C from a color space of size |C| = 2poly(A) 8 can be solved in
O(\/Alog A) + % -log* n rounds in LOCAL. Furthermore, each node only needs to broadcast
to its neighbors a single non-CONGEST message consisting of a subset of its list.

The proof combines Thm. 1.2 with the graph partitioning provided by [13], following

the high level description in Sec. 1. A variant of this framework was also used in [37, 6].

We nevertheless present a proof for completeness, and also due to subtle but important
differences from [23] (we have an additional finishing phase that is not present there).

The graph partitioning given by [13] aims at arbdefective colorings, as introduced in
[10], but the main technical object provided by [13] (and which is all we need here) is a
low outdegree partition of a graph. For a graph H = (V, E), the collection Hy,..., Hy of
directed graphs H; = (V;, E;) is a f3-outdegree partition of H if their vertices span V| i.e.,

8 We use the notation poly(X) = O(X¢), for an absolute constant ¢, and O(X) = X - poly(log X).
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V =V; U--- UV, the underlying undirected graph of H; is the induced subgraph H[V;] (so
it is indeed a partition), and the max. outdegree of a node in H; is at most (3, for all i.

» Lemma 4.1 (Lemmas 6.1-6.3, [13]). There are constants ¢,c¢’ > 0, s.t. for every 8 > c,
given a graph H with an m-coloring, there is a deterministic algorithm that computes a
B-outdegree partition Hy, ..., Hy with k = A/B in O(k + log* m) rounds in CONGEST.

Proof of Thm. 1.3. We begin with computing an m = O(A?)-coloring in §log*n + O(1)
rounds [41, 49]. The main algorithm consists of ¢ = log,(A/A/4) phases. After phase j, we
have colored a subset of vertices, s.t. the maximum degree A; of the graph G[U;] induced by
uncolored vertices is upper bounded as A; < A/ 27, Before describing a phase j, let us show
how we finish the coloring after the phase ¢, in a final phase. Consider the graph G[U;]
at the end of phase t. Note that it has maximum degree A; = O(A1/4). We compute an
m/-coloring of G[U;] with m’ = O(A?) = O(V/A) from the initial m-coloring in O(1) rounds
[41]. In each of the final m’ rounds i = 1,...,m/, vertices with color ¢ pick a color from
their list not picked by a neighbor (can be done since |L,| > A and no two neighbors pick
simultaneously). The runtime of the final phase is O(VA).

The following happens in phase j = 1,...,t. At the beginning of the phase, we have
the set U;_1 of uncolored vertices, where Uy = V(G). Let X = 4e - (4log A + loglog|C| +
loglogm + 8) = O(log A) and for j =0,...,t —11let 8; = \/A,;/(2X) and k; = - A;/B5;,
where ¢’ is the constant in Lemma 4.1.° We partition G[U;_1] into §;-outdegree subgraphs
Hy, Hs, ..., Hg,, using Lemma 4.1. The phase consists of k; stages i = 1,...,k;, each
consisting of 3 rounds. In stage i, we partially color H;, as follows. For every uncolored
vertex v € H;, let L, ;; be the set of colors in L, that have not been taken by a neighbor
of v. Let W; = {v € H; : |Ly, ;4| > BJZX}. Color the graph H;[W;] using Linial for Lists
(Thm. 1.2) with color space C, the §j-outdegree orientation and the m-coloring. This is a
valid application of the theorem, by the definition of X, §; and W;. In the third round of
the stage, all nodes in W; send their color to their neighbors. This completes the algorithm
description. Clearly, phase j takes 3k; rounds.

It remains to show that A; < A/27. We do this by induction, with base j = 0, Ag = A.
Assume A; < A/Zj holds for some j > 0. Let v € U; be a node that is uncolored at the end
of phase j. We know that |L, ;.| < B?X = A;/2, in a stage i. Recall that L, ;, is the set of
colors in L, not taken by a neighbor of v. Since |L,| is larger than the number of neighbors
of v, | Ly ; ;| is larger than the number of uncolored neighbors of v. Therefore v has at most
|Ly,ji] < Aj/2 < A/27F1 neighbors in Uj, which proves the induction: Ajyq < A/27F1

Recall that X = O(log A) and bound the runtime as follows:

t t
1., [ XA Lo«
3 log" n+0O(1)+ E 3k;j+m’ = §1og n+j§:1 3c 571 +O(VA) = 3 log* n+0(\/Alog A) .

j=1
The second claim easily follows, recalling the message complexity of Linial for Lists. |

Note that the final phase in the algorithm above is necessary as otherwise, if the recursion

continued until the maximum degree of uncolored nodes was, say, O(log® A), their reduced

list size would be similarly small, and we could no longer apply Theorem 1.2, which requires

lists of size Q(loglog|C|) = (loglog A), as the color space does not change in the recursion.
The (simple) proof of the following corollary is deferred to the full version [42].

9 In order to apply the lemma, we need 3; > c. Since 8; > B = Q(\/VA/logA), B; > ¢ holds if A is
large enough. For A = O(1), Thm. 1.3 holds via a O(A) + 1/2log™ n round algorithm (see e.g. [13]).
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» Corollary 4.2. In a graph with max. degree A = O(log n), (deg + 1)-list coloring with lists
L, CC from a color space of size |C| = poly(A) can be solved in O(VA) + & -log"* n rounds
in CONGEST.

5 Discussion

We conclude with several observations on our results, as well as open problems.

1. It is possible to define problems P, ..., P; for any t, as we defined P; and P,. Lemma 3.3
extends naturally to these problems, so the input of a node v in P; is again only its initial
list L,. We need t rounds, instead of 2, to derive a solution of Py from a solution of P,
(which also implies larger messages). On the other hand, we have somewhat smaller list
size requirement: ¢32(log 8 + log®) |C| +log¥ m), for a constant ¢ > 0. In particular, one
can list color in O(log” max{|C|,m}) rounds if lists are at least ¢3?log 3 for a sufficiently
large constant ¢ > 0.

2. Unlike in [23], our bound on the list size does not depend on A. This result implies that,
e.g., given a graph with a S-outdegree orientation and an input coloring with 2°P°(#)
colors and list sizes of at least ¢32 - log 8 from a color space of size 2P°Y(%)  for a constant
¢ > 0, it is possible to list-color the graph in 2 rounds. By the remark above, one can
have even larger color space, by increasing the runtime accordingly.

3. A lower bound in [49] suggests that the coloring in Theorem 1.2 cannot be done in a
single round. In particular, if one is willing to keep the doubly-logarithmic dependence
on m in the list size, then one has to pay a factor exponential in S. On the other hand,
we do not know how to eliminate the log 8 term, even if we use more communication.

4. The recently popular speedup technique has mostly been used to prove lower bounds, e.g.,
[16, 17, 3, 18, 4, 2]. Here, a problem P, is mechanically (and without communication!)
transformed into a problem P; whose complexity is exactly one round less. Then, if P;
cannot be solved locally one deduces that Py cannot be solved in 1 round. By iterating
this process, one can derive larger lower bounds. However, the description complexity of
derived problems grows exponentially, and it is very important to be able to simplify the
problem description, in order to iterate the process. If Py is the (A + 1)-vertex coloring
problem, this process has only been understood in the special case of A = 2, which
corresponds to Linial’s Q(log* n) lower bound [41, 40]. While [23] also performs a similar
transformation, it is different from the speedup technique, since the transformation is
not mechanical, requiring nodes to communicate for building the new problems. It may
rather be seen as a transformation of problem instances (that depend on the graph) than
problems. In contrast, our transformations are mechanical, and the input and output
labels live in the same universe as it is the case for mechanical speedup.

5. While our present treatment of the proof of Thm. 1.2 in terms of conflict coloring problems
and problems Py, Py and P, has the aim of connecting to the framework of [23] as well as
to the speedup framework, we note that the proof can be stated entirely in terms of set
systems, just like the proof of Linial’s color reduction.

Open Problem: Remove the log 8 term in Thm. 1.2 while keeping the runtime o(+/log ).
This question is particularly of interest because log 8 is the source of the /log A factor
in in Thm. 1.3 (note that the terms depending on m, |C| can be reduced, by the remarks
above). The non-list O(A?%)-coloring by Linial uses, in addition to his main color reduction,
a O(A3?)-to-O(A?) color reduction, using polynomials over finite fields [41]. With a more
sophisticated use of polynomials [8] constructs a cover-free family for list coloring but it
requires a much smaller outdegree. It is not clear if polynomials help with our question.
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