
Classification of Distributed Binary Labeling
Problems
Alkida Balliu
Freiburg University, Germany
alkida.balliu@cs.uni-freiburg.de

Sebastian Brandt
ETH Zürich, Switzerland
brandts@ethz.ch

Yuval Efron
Technion – Israel Institute of Technology,
Haifa, Israel
efronyuv@gmail.com

Juho Hirvonen
Aalto University, Finland
juho.hirvonen@aalto.fi

Yannic Maus
Technion – Israel Institute of Technology,
Haifa, Israel
yannic.maus@cs.technion.ac.il

Dennis Olivetti
Freiburg University, Germany
dennis.olivetti@cs.uni-freiburg.de

Jukka Suomela
Aalto University, Finland
jukka.suomela@aalto.fi

Abstract
We present a complete classification of the deterministic distributed time complexity for a family of
graph problems: binary labeling problems in trees. These are locally checkable problems that can be
encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling
problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, perfect
matching, and the task of coloring edges red and blue such that all nodes are incident to at least
one red and at least one blue edge. More generally, we can encode e.g. any cardinality constraints
on indegrees and outdegrees.

We study the deterministic time complexity of solving a given binary labeling problem in trees,
in the usual LOCAL model of distributed computing. We show that the complexity of any such
problem is in one of the following classes: O(1), Θ(log n), Θ(n), or unsolvable. In particular, a
problem that can be represented in the binary labeling formalism cannot have time complexity
Θ(log∗ n), and hence we know that e.g. any encoding of maximal matchings has to use at least three
labels (which is tight).

Furthermore, given the description of any binary labeling problem, we can easily determine in
which of the four classes it is and what is an asymptotically optimal algorithm for solving it. Hence
the distributed time complexity of binary labeling problems is decidable, not only in principle, but
also in practice: there is a simple and efficient algorithm that takes the description of a binary
labeling problem and outputs its distributed time complexity.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Complexity classes

Keywords and phrases LOCAL model, graph problems, locally checkable labeling problems, dis-
tributed computational complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.17

Related Version The full version of this work is available at https://arxiv.org/abs/1911.13294.

Funding This work was supported in part by the Academy of Finland, Grant 314888 (Juho Hirvonen),
and by the European Union’s Horizon 2020 Research And Innovation Programme under grant
agreement no. 755839 (Yuval Efron, Yannic Maus).

Acknowledgements We thank Jan Studený and anonymous reviewers for helpful comments on
earlier versions of this work.

© Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and
Jukka Suomela;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5293-8365
mailto:alkida.balliu@cs.uni-freiburg.de
https://orcid.org/0000-0001-5393-6636
mailto:brandts@ethz.ch
https://orcid.org/0000-0003-0882-9342
mailto:efronyuv@gmail.com
https://orcid.org/0000-0001-8268-1070
mailto:juho.hirvonen@aalto.fi
https://orcid.org/0000-0003-4062-6991
mailto:yannic.maus@cs.technion.ac.il
https://orcid.org/0000-0002-6600-6443
mailto:dennis.olivetti@cs.uni-freiburg.de
https://orcid.org/0000-0001-6117-8089
mailto:jukka.suomela@aalto.fi
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://arxiv.org/abs/1911.13294
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Classification of Distributed Binary Labeling Problems

1 Introduction

This work presents a complete classification of the deterministic distributed time complexity
for a family of distributed graph problems: binary labeling problems in trees. These are a
special case of widely-studied locally checkable labeling problems [27]. The defining property
of a binary labeling problem is that it can be encoded with an alphabet of size two in
the edge labeling formalism, which is a modern representation for locally checkable graph
problems [3, 9, 28]; we will give the precise definition in Section 2.

Contributions. In this work, we focus on deterministic distributed algorithms in the LOCAL
model of distributed computing [24,29], and we study the computational complexity of solving
a binary labeling problem in trees. It is easy to see that there are binary labeling problems
that fall in each of the following classes:

Trivial problems, solvable in O(1) rounds.
Problems similar to sinkless orientation, solvable in Θ(logn) rounds [10,15,22].
Global problems, requiring Θ(n) rounds.
Unsolvable problems.

We show that this is a complete list of all possible complexities. In particular, there
are no binary labeling problems of complexities such as Θ(log∗ n) or Θ(

√
n). For example,

maximal matching is a problem very similar in spirit to binary labeling problems, it has a
complexity Θ(log∗ n) in bounded-degree graphs [17,24], and it can be encoded in the edge
labeling formalism using an alphabet of size three [3] – our work shows that three labels are
also necessary for all problems in this complexity class.

Moreover, using our results one can easily determine the complexity class of any given
binary labeling problem. We give a simple, concise characterization of all binary labeling
problems for classes O(1), Θ(n), and unsolvable, and we show that all other problems belong
to class Θ(logn). Hence the deterministic distributed time complexity of a binary labeling
problem is decidable, not only in theory but also in practice: given the description of any
binary labeling problem, a human being or a computer can easily find out the distributed
computational complexity of the problem, as well as an asymptotically optimal algorithm
for solving the problem. Our classification of all binary labeling problems is presented in
Table 1, and given any binary labeling problem Π, one can simply do mechanical pattern
matching to find its complexity class in this table.

Our work also sheds new light on the automatic round elimination technique [9, 28].
Previously, it was known that sinkless orientation is a nontrivial fixed point for round
elimination [10] – such fixed points are very helpful for lower bound proofs, but little was
known about the existence of other nontrivial fixed points. Our classification of binary
labeling problems in this work led to the discovery of new nontrivial fixed points – this will
hopefully pave the way for the development of a theoretical framework that enables us to
understand when round elimination leads to fixed points and why.

This work will also make it easier to prove lower bounds in the future. Before this work,
in essence the only known way to prove a nontrivial Ω(logn) lower bound for some locally
checkable problem Π was to come up with a reduction showing that Π is at least as hard
as sinkless orientation. Our systematic exploration of binary labeling problems led to the
discovery of an entire family of simple graph problems that are not directly comparable with
sinkless orientation, but for which we can prove tight Ω(logn) lower bounds directly with
round elimination. In the future, whenever we encounter a graph problem Π of an unknown
complexity, we can try to relate it not only to sinkless orientation but also to one of the new
problems for which we now have new lower bounds.

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:3

Open questions. The main open question that we leave for future work is extending the
characterization to randomized distributed algorithms: some binary labeling problems can
be solved in Θ(log logn) rounds with randomized algorithms, but it is not yet known exactly
which binary labeling problems belong to this class. Our work takes the first steps towards
developing such a classification.

Structure. We start with the model of computation in Section 1.1 and a brief discussion
of the general landscape of distributed computational complexity in Section 1.2, and then
give the formal definitions of binary labeling problems in Section 2 that are needed to
present our results in a concise manner, which we do in Section 3 – our main contribution
is the characterization of all binary labeling problems in Table 1. Section 4 discusses the
expressive power of binary labeling problems and collects examples of interesting binary
labeling problems. In Section 5, we explain our proof techniques, and, more importantly, the
key ideas of the technically most involved results. We conclude with Section 6, in which we
discuss additional connections between the present work and related work – in particular, we
highlight the role of binary labeling problems in the recent developments in the distributed
computational complexity theory – and we will also introduce new directions for future
research. All algorithms and lower bound proofs related to deterministic complexity and a
discussion of randomized complexity are presented in the full version [2].

1.1 Model of computing
Deterministic LOCAL model. In this work, we use the standard LOCAL model of dis-
tributed computing [24,29]. In this model, the input graph G represents a communication
network, where each node is a computer and each edge is a communication link. If there are
n nodes in the graph, each node is labeled with a unique identifier from {1, 2, . . . ,poly(n)}.
This is part of the local input, and a distributed algorithm can use it when it initializes the
local state of a node. Computation proceeds in synchronous rounds, and in each round each
node:

sends a message to each neighbor,
receives a message from each neighbor,
performs local computation and updates its local state.

After each round, a node can choose to stop and produce its local output.
Let Π be a graph problem. We say that A is a deterministic algorithm that solves problem

Π in T (n) rounds if, for any input graph G with n nodes and for any assignment of unique
identifiers, each node stops after at most T (n) rounds and the local outputs of the nodes
form a feasible solution of Π in G; if the task is to label edges we require that both endpoints
agree on a label for the edge. We say that Π has complexity T in the LOCAL model if T is
the pointwise minimum of all functions T ′ such that there exists an algorithm A that solves
Π in time T ′.

Note that in this model time is equivalent to distance: in T synchronous communication
rounds all nodes can gather their radius-T neighborhoods (and nothing more). Hence
we can interchangeably refer to locality, distributed time complexity, and the number of
communication rounds.

Randomized LOCAL model. Our main focus is on deterministic distributed algorithms,
but we will also discuss randomized distributed algorithms. In the randomized LOCAL model,
in addition to having unique identifiers, nodes are labeled with an unbounded stream of
random bits. Hence, we can let state transitions be probabilistic, and we arrive at randomized
algorithms. In this work, randomized algorithms are Monte Carlo algorithms that are correct
w.h.p. in the size of the graph.

DISC 2020

17:4 Classification of Distributed Binary Labeling Problems

1.2 Background and related work
Distributed complexity theory and LCL problems. The study of distributed graph algo-
rithms has traditionally focused on specific graph problems – for example, investigating exactly
what is the locality of finding a maximal independent set [3, 4]. However, in the recent years
we have seen more focus on the development of a distributed complexity theory with which
we can reason about entire families of graph problems [1,5–7,10,11,15,16,18,19,21,23,30,31].

The key example is the family of locally checkable labeling problems (LCLs), introduced
by [27]. Informally, a problem is locally checkable if the feasibility of a solution can be
verified by looking at all constant-radius neighborhoods. For example, maximal independent
sets are locally checkable, as we can verify both independence and maximality by looking at
radius-1 neighborhoods.

In this line of research, among the most intriguing results are various gap theorems: For
example, there are LCL problems solvable in Θ(log∗ n) rounds, while some LCL problems
require Θ(logn) rounds. However, between these two classes there is a gap: there are no LCL
problems whose deterministic complexity in bounded-degree graphs is between ω(log∗ n) and
o(logn) [15].

Decidability of distributed computational complexity. The existence of such a gap imme-
diately suggests a follow-up question: given the description of an LCL problem, can we decide
on which side of the gap it lies? And if so, can we automatically construct an asymptotically
optimal algorithm for solving the problem?

As soon as we look at a family of graphs that contains e.g. 2-dimensional grids, questions
related to the distributed complexity of a given LCL problem become undecidable [11,27].
However, if we look at the case of paths and cycles, we can at least in principle write a computer
program that determines the computational complexity of a given LCL problem [1,11,27],
and some questions related to the complexity of LCLs in trees are also decidable [16] –
unfortunately, we run into PSPACE-hardness already in the case of paths and cycles [1].

We conjecture that all questions about the distributed complexity of LCL problems in
trees are decidable. Proving (or disproving) the conjecture is a major research program, but
in this work we take one step towards proving the conjecture and we bring plenty of good
news: we introduce a family of LCL problems, so-called binary labeling problems, and we show
that we can completely characterize the deterministic distributed complexity of every binary
labeling problem in trees. In particular, all questions about the deterministic distributed
complexity of these problems are decidable not only in principle but also in practice – using
our results, a human being or a computer can easily find an optimal algorithm for solving
any given binary labeling problem.

2 Binary labeling problems

We will now give the formal definition of the family of binary labeling problems. LCL problems
have been traditionally specified by listing a collection of permitted local neighborhoods [27].
However, we will use the more recent edge labeling formalism [3, 9, 28], which is equally
expressive in the case of trees, and it has the additional benefit that it makes it very convenient
to apply the automatic round elimination technique [9, 28], which is very helpful to prove
lower bounds:

we have a bipartite graph and the nodes are colored with two colors, white and black,
the task is to label edges with symbols from some alphabet Σ,
there are both white and black constraints that define the graph problem.

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:5

We emphasize that despite its bipartite appearance, the edge labeling formalism can easily
be used to describe problems on general graphs by interpreting edges as “black nodes”. In
fact, as explained in detail in Section 4, problems on general graphs are a special case in the
edge labeling formalism – in general the formalism describes problems on hypergraphs.

2.1 General form
If we set |Σ| = 2 in the edge labeling formalism, we arrive at the definition of binary labeling
problems. Formally, a binary labeling problem is a tuple Π = (d, δ,W,B), where

d ∈ {2, 3, . . . } is the white degree,
δ ∈ {2, 3, . . . } is the black degree,
W ⊆ {0, 1, . . . , d} is the white constraint, and
B ⊆ {0, 1, . . . , δ} is the black constraint.

An instance of problem Π is a pair (G, f), where
G = (V,E) is a simple graph,
f : V → {black,white} is a proper 2-coloring of G, i.e., f(u) 6= f(v) for all {u, v} ∈ E.

In the distributed setting, we will assume that the color f(v) is part of the local input of
node v ∈ V .

Let X ⊆ E be a subset of edges. For each node v ∈ V , its X-degree degX(v) is the
number of edges in X that are incident to v. We say that X ⊆ E is a solution to binary
labeling problem Π if it satisfies the following constraints for all v ∈ V :

If f(v) = white and deg(v) = d, then degX(v) ∈W .
If f(v) = black and deg(v) = δ, then degX(v) ∈ B.

We use the term relevant nodes to refer to white nodes of degree d and black nodes of degree
δ. The interpretation is that problem Π is interesting in regular neighborhoods in which all
white nodes have degree d and all black nodes have degree δ; any irregularities make the
problem easier to solve, as all other nodes are unconstrained.

I Example 2.1 (bipartite splitting). Let d = δ = 4 and W = B = {1, 2, 3}. We can interpret
a solution X ⊆ E as a coloring: edges in X are colored red and all other edges are colored
blue. Now Π is equivalent to the following graph problem on bipartite graphs: color all edges
red or blue such that all degree-4 nodes are incident to at least one blue edge and at least
one red edge.

In order to be able to state our results in a concise manner, we will introduce some
necessary notation and terminology in the following.

2.2 Equivalence, restrictions, and relaxations
If a is a natural number and A is a set of natural numbers, we will define a−A = {a− x :
x ∈ A}.

I Definition 2.2 (Equivalence). For any d, δ,W,B we call the following four problems
equivalent

Π00 = (d, δ,W,B), Π01 = (δ, d,B,W),
Π10 = (d, δ, d−W, δ −B), Π11 = (δ, d, δ −B, d−W).

Definition 2.2 partitions binary labeling problems in equivalence classes, each of them with
at most four distinct problems. We use notation Π ∼ Π′ for this equivalence relation, and
say that Π and Π′ are equivalent.

DISC 2020

17:6 Classification of Distributed Binary Labeling Problems

I Observation 2.3. If Π ∼ Π′ then Π and Π′ have the same distributed complexity up to ±1
round.

Proof. Given an algorithm for Π, we get an algorithm for Π′ by either exchanging the roles
of black and white nodes or by replacing solution X with its complement E \X. As incident
nodes need to agree on the output on edges the complexity can differ by 1 round. J

The following definition is helpful to show that our classification is complete.

I Definition 2.4. Given two problems Π = (d, δ,W,B) and Π′ = (d, δ,W ′, B′), we say that
Π′ is a restriction of Π and Π is a relaxation of Π′ if W ′ ⊆W , and B′ ⊆ B.

We use notation Π′ ⊆ Π to denote that Π′ is a restriction of Π.

I Observation 2.5. If Π′ ⊆ Π, then any feasible solution for Π′ is also a feasible solution
for Π. In particular, if Π′ can be solved in T rounds, then Π can also be solved in T rounds.

2.3 Vector notation
It is convenient to interpret set W as a bit vector w0w1 . . . wd with d+ 1 bits, so that bit
wi = 1 if i ∈ W and wi = 0 if i /∈ W . Similarly, B can be interpreted as a bit vector with
δ + 1 bits.

I Example 2.6. Using this notation, the problem of Example 2.1 can be represented with
W = 01110 and B = 01110, or, in brief, Π = (01110, 01110).

Note that when we use vector notation, vectors W and B fully determine problem Π;
therefore we do not need to specify d and δ separately and we can simply write Π = (W,B).

We will use shorthand notation such as 1x for a vector of x 1s and 1+ for a vector of
one or more 1s, and we will use ∗ to refer to a bit of any value. For example, W = 0∗∗0 is
a shorthand for W ∈ {0000, 0010, 0100, 0110} and W = 01+0 is a shorthand for W ∈ {010,
0110, 01110, . . . }.

3 Our contributions

3.1 Main results: deterministic complexity
Our main contribution is a complete classification of the deterministic distributed complexity
of binary labeling problems in trees – this is presented in Table 1, and our results hold in the
standard LOCAL model of distributed computing [24,29].

Next, we discuss the classification in more detail: One can partition all binary labeling
problems in 15 families of problems based on the structure of their white and black constraints
such that, given a binary labeling problem Π in the vector notation, one can simply do
pattern matching in Table 1 to first find its problem family and this way also find its
deterministic complexity. For easier reference, we have listed all problem families explicitly,
but if we combine families whose problems are equivalent (recall Observation 2.3) we can
partition problems in seven types, labeled with I, II, . . . ,VII in the table. Types also reflect
the structure of our proofs. The mapping from types (and families) to distributed complexity
is also shown in Table 1. It then directly follows that the distributed complexity of any given
binary labeling problem is decidable, and efficiently computable.

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:7

Table 1 The deterministic distributed complexity of binary labeling problems in trees; 1+signifies
one or more 1s, 0+ signifies one or more 0s, and ∗ signifies either 0 or 1. Non-empty means that the
constraint is not 0+. Note that e.g. all problem families of type I are equivalent to each other in the
following sense: for any problem Π of type I, there is exactly one problem equivalent to Π in each of
the four families I.a, I.b, I.c, and I.d.

Type Problem White Black Deterministic
family constraint constraint complexity

I I.a 100+ 0∗∗+ unsolvable
I.b 00+1 ∗∗+0
I.c 0∗∗+ 100+

I.d ∗∗+0 00+1

II II.a 000+ ∗∗∗+

II.b ∗∗∗+ 000+

III III.a non-empty 111+ O(1)
III.b 111+ non-empty

IV IV.a 1∗∗+ 1∗∗+

IV.b ∗∗+1 ∗∗+1

V V.a 10+1 010 Θ(n)
V.b 010 10+1

VI VI.a 0+1∗ ∗10+

VI.b ∗10+ 0+1∗

VII VII.a all other cases Θ(log n)

Table 2 Examples of binary labeling problems and problem families and their deterministic
complexities.

Deterministic
complexity

Type Examples of problems

W B reference description

unsolvable I 011+ 100 Example 4.8 contradiction

O(1) III 0010+ 111 Example 4.9 trivial

Θ(n) V 10+1 010 Example 4.5 two-coloring

Θ(log n) VII 01110 01110 Example 2.1 bipartite splitting
1010 010 Example 4.4 even orientation
111+0 010 Example 4.1 sinkless orientation
011+0 010 Example 4.3 sinkless & sourceless orientation
0100+ 101 Example 4.6 regular matching
011+0 101 Example 4.7 splitting
0100+ 0100+ Section 5 bipartite matching
0100+ 10+1 Section 5 hypergraph matching
0100+ 110 Section 5 edge grabbing

Ω(log n), O(n) V or VII 1+01+ 01+0 Section 5 forbidden degree
VI or VII 11+0 011+ Section 5 bipartite sinkless orientation

DISC 2020

17:8 Classification of Distributed Binary Labeling Problems

We next detail on the different types. Problems of types I and II are unsolvable, problems
of type III and IV have complexity O(1), and problems of types V an VI have complexity
Θ(n). Now by definition all problems that are not of type I–VI are of type VII; we prove
that all of them are solvable in O(logn) rounds and we also prove a matching lower bound
of Ω(logn). This completes the proof that the classification of Table 1 is correct.

Finding problems that are unsolvable or need O(1) rounds is not difficult:
There are two types of problems that are unsolvable for trivial reasons. For example, if
all white nodes must have X-degree 0 and all black nodes must have a non-zero X-degree,
no solution exists as long as the tree is large enough.
There are two types of problems that are solvable in O(1) time for trivial reasons. For
example, if black nodes are happy with any X-degree, then white nodes can simply pick
some number x ∈W and choose arbitrarily x adjacent edges.

However, what is not obvious is that this list is exhaustive: no other problems are unsolvable,
and no other problem is solvable in O(1) time.

Furthermore, as we can see in Table 1, there are only very few binary labeling problems
that are solvable but inherently global, i.e., they require Θ(n) rounds to solve. What is
perhaps the biggest surprise is that all other problems can be solved in O(logn) rounds, and
they also require Ω(logn) rounds. In particular:

I Theorem 3.1. There are no binary labeling problems with deterministic distributed com-
plexity in the following ranges:

between ω(1) and o(logn),
between ω(logn) and o(n).

Table 2 shows examples of problems in each complexity class.

3.2 Additional results: randomized complexity
While our focus in this work is on deterministic complexity, we will also explore the randomized
complexity of binary labeling problems. Many of our theorems from the deterministic parts
have direct implications on randomized complexity. By prior work, it is known that classes
O(1) and Θ(n) remain the same also for randomized complexity – this follows from [19] and
(unpublished) extensions of the result in [5]. However, class Θ(logn) is more interesting, as
there are binary labeling problems of the following types:

Deterministic complexity Θ(logn) and randomized complexity Θ(log logn), e.g. sinkless
orientation, Example 4.1.
Deterministic complexity Θ(logn) and randomized complexity Θ(logn), e.g. even orien-
tation, Example 4.4.

That is, randomness helps with some binary labeling problems but not all. While we present a
partial classification of the randomized complexity of binary labeling problems, the main open
question for the future work is coming up with a complete characterization of exactly which
binary labeling problems can be solved in O(log logn) rounds with randomized algorithms.

4 Expressive power of binary labeling problems

At first the bipartite setting in the definition of binary labeling problems in Section 2.1
may seem restrictive – indeed, why would we care about graphs that are properly 2-colored.
However, we can take any graph and interpret edges as “black nodes” and this way many
graph problems of interest can be represented in the binary labeling formalism. More precisely,
let G0 = (V0, E0) be a graph. Subdivide (i.e., add a vertex in the middle of each edge) all
edges of G0 to construct a new graph G = (V,E), and assign the color white to all original
nodes in V0 and color black to the new nodes in V \ V0.

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:9

graph G0 graph G solution X orientation of G0

Figure 1 Binary labeling problems with B = 010 are orientation problems.

To simulate an algorithm A for the (virtual) network G in the communication network
G0 each vertex of G has to be simulated by a vertex of G0 and we use node identifiers (or
randomness) to choose which endpoint simulates the black node of an edge. Finally, for the
purposes of lower bounds we can also go in the other direction and take an algorithm for G0
and simulate it in graph G. This increases the round complexity by a factor of two, which
we can ignore as we are only interested in asymptotics.

Consider a binary labeling problem Π with B = 010. Assume that we have a solution
X to Π in G. We can now interpret X as an orientation of the original graph G0: If an
edge e = {u, v} ∈ E0 was subdivided in two edges, e1 = {u, x}, and e2 = {x, v}, we will have
exactly one of these edges in set X. If we have e1 ∈ X, we can interpret it so that edge {u, v}
is oriented from v to u, and otherwise it is oriented from u to v; see Figure 1. In essence, Π
is now equivalent to the following problem: Find an orientation of G0 such that all nodes
with deg(v) = d have indegree(v) ∈W .

I Example 4.1 (sinkless orientation). Let d > 2, δ = 2, W = 111+0, and B = 010. Now all
edges must be properly oriented: there is exactly one head. Furthermore, for all nodes of
degree d, they must have indegree in {0, 1, . . . , d− 1}. Put otherwise, degree-d nodes must
have outdegree at least one. Hence a feasible solution represents an orientation in which
none of degree-d nodes are sinks.

I Example 4.2. Let W = 0111+ and B = 010. By Observation 2.3, this is equivalent to
Example 4.1. In essence, we have merely reversed the roles of heads and tails – now the task
is to find a sourceless orientation.

I Example 4.3 (sinkless and sourceless orientation). Let W = 011+0 and B = 010. Now
in d-regular graphs the task is to find an orientation such that all nodes have at least one
incoming and at least one outgoing edge.

Note that this problem is a restriction of Example 4.1; recall Definition 2.4.

I Example 4.4 (even orientation). Let W = 1010 and B = 010. In 3-regular graphs the task
is to find an orientation such that all nodes have an even number of outgoing edges.

I Example 4.5 (two-coloring). Let W = 10+1 and B = 010. In d-regular graphs this is a
2-coloring problem: each node v is either “red” (indegree 0) or “blue” (indegree d), and all
edges between such nodes are properly colored (they are always oriented from red to blue).

Another interesting special case is B = 101. Now for each original edge of G0 we will
select either both of the half-edges or none of the half-edges, and hence a solution X ⊆ E
can be interpreted in a natural way as a subset of edges X0 ⊆ E0 in the original graph; see
Figure 2. This is a splitting problem: partition E0 in two classes, X0 and E0 \X0, and W
determines how many incident edges in each class we can have.

DISC 2020

17:10 Classification of Distributed Binary Labeling Problems

graph G0 graph G solution X solution X0

Figure 2 Binary labeling problems with B = 101 are splitting problems.

graph G0 graph G solution X partial orientation

Figure 3 Binary labeling problems with B = 110 are partial orientation problems.

I Example 4.6 (regular matching). Let W = 0100+ and B = 101. The task is to find a set
X0 ⊆ E0 such that all nodes of degree d are incident to exactly one edge in X0. In particular,
if we have a d-regular graph, X0 is a perfect matching.

I Example 4.7 (splitting). Let W = 011+0 and B = 101. In this problem we will need to
color edges red and blue such that all degree-d nodes are incident to at least one red edge
and at least one blue edge.

We can also consider e.g. B = 110 and interpret X as a partial orientation: some
edges of G0 are oriented and some may be left unoriented and again W indicates which
indegrees are permitted; see Figure 3. The case of B = 011 is equivalent to B = 110 – recall
Observation 2.3.

As we will see, all other cases B = 000, B = 100, B = 001, and B = 111 are either trivial
or unsolvable; we will give two examples:

I Example 4.8 (contradiction). Let W = 011+ and B = 100. Here black nodes must have
X-degree 0, so we must have X = ∅. However, all white nodes must be adjacent to at least
one edge in X. Hence there is no solution to the problem.

I Example 4.9 (trivial). Let W = 0010+ and B = 111. Here all white nodes can arbitrarily
choose two incident edges and add them to X.

I Remark 4.10. Similar ideas can be generalized to hypergraphs. In essence, we can interpret
the bipartite graph G as a hypergraph H, where white nodes of G correspond to nodes of
H and black nodes of G correspond to hyperedges of H. Now Π is in essence a hypergraph
problem. If we set B = 010+, a solution X can be interpreted as an orientation of hyperedges,
and if we set B = 10+1, a solution X can be interpreted as a subset of hyperedges. Sinkless
orientations in hypergraphs have been studied, e.g., in [12].

4.1 Binary labeling problems in trees
All of the above examples are well-defined also in trees; however, some care is needed when we
interpret them. For example, let us revisit the “regular matching” problem from Example 4.6.
Let W = 0100+ and B = 101. Now in the case of a tree, the task is to find a subset of edges

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:11

X such that internal nodes of degree d are incident to exactly one such edge. However, leaf
nodes are unconstrained. Informally, if we are in the middle of a d-regular tree, we will need
to find a solution that locally looks like a perfect matching, but near leaf nodes and other
irregularities the output is more relaxed. One consequence is that for this problem a solution
always exists (while there are of course trees in which a perfect matching does not exist).

5 Overview of the key technical ideas

Due to space constraints, the full proofs are deferred to the full version [2]. Here, we give an
overview of the key techniques and ideas where we focus on the technically most involved
parts. In these parts we show that all problems that cannot be (easily) put into the categories
unsolvable, O(1) round complexity or Θ(n) round complexity have complexity Θ(logn).

Problems of types I and II are unsolvable. We show that problems of types I and II are
problems in which a contradiction occurs, e.g., black nodes can only label their incident
edges with 0, but white nodes must have at least one incident edge labeled 1. Such problems
clearly cannot be solved.

Problems of types III and IV can be solved in O(1) rounds. We show that problems of
types III and IV can be solved without any communication. These problem classes consist
of problems in which all nodes can output the same label on all their incident edges, and
problems in which black (white) nodes are happy with any labeling.

Problems of types V and VI require Θ(n) rounds. We show that problems of types
V and VI consist of variants of the 2-coloring problem and variants of the problem of
consistently orienting a given tree. We prove that all such problems require Ω(n) rounds,
using indistinguishability arguments. In essence, we prove that some nodes need to coordinate
their outputs over a linear distance.

Key idea: all remaining cases have complexity Θ(log n). So far we have covered
relatively simple cases. Surprisingly, we can show that for all problems not of types I–VI
there are deterministic O(logn) upper bounds and deterministic Ω(logn) lower bounds.

All other problems can be solved in O(log n) rounds. To show the upper bound, we
define the following notion of resilience. Let Π = (d, δ,W,B) be a binary labeling problem.
For 0 ≤ t ≤ d+ 1 and 0 ≤ s ≤ δ + 1 we say that Π is (t, s)-resilient if both of the following
hold:

bit string W does not contain a substring of the form 0d+1−t,
bit string B does not contain a substring of the form 0δ+1−s.

We also introduce three special problem families:
Problems of the form Π = (0100+

, 0100+) are called bipartite matching problems.
Problems of the form Π = (0100+

, 10+1) are called hypergraph matching problems.
Problems of the form Π = (0100+

, 110) are called edge grabbing problems.
We show that any problem that is not of types I–VI has to fall in one of the following four
classes:
(1) (2, 1)-resilient problems and (1, 2)-resilient problems.
(2) Bipartite matching and equivalent problems.

DISC 2020

17:12 Classification of Distributed Binary Labeling Problems

(3) Hypergraph matching and equivalent problems.
(4) Edge grabbing and equivalent problems.
We show how to use the rake & compress technique [25] to design O(logn)-round algorithms
for all of these problems. In brief, we decompose the vertex set of the tree into L = O(logn)
layers, and sequentially construct a valid solution in O(logn) iterations. We first fix the
solutions of all nodes in layer L in parallel, then all nodes in layer L− 1 in parallel, and so
on. Here resilience is crucial, as it guarantees lower layers can still satisfy their requirements
even if the higher layers have made arbitrary choices.

All other problems require Ω(log n) rounds. To show the matching lower bound, we
define two more problem families:

Problems of the form Π = (1+01+, 01+0) are called forbidden degree problems.
Problems of the form Π = (11+0, 011+) are called bipartite sinkless orientation problems.

We then show that all problem that are not unsolvable (types I and II) or trivial (types III
and IV) are at least as hard as forbidden degree problems or bipartite sinkless orientation
problems. Finally, we show that both of these problems require Ω(logn) rounds.

The lower bounds for bipartite sinkless orientation problems essentially follow from [10];
however, for forbidden degree problems no lower bounds were known previously.

We show the lower bound using the round elimination technique [9]. We define a new
parameterized problem family that we call FDSO(s) – we emphasize that this is not a binary
labeling problem, but it turns out that an efficient algorithm for the forbidden degree problem
implies an efficient algorithm for FDSO(s). In the language of [3, 28], FDSO(s) is defined by
the white constraint

AXd−1, Hs+1Xd−s−1, T d−s+1Xs−1,

and black constraint

X[AHTX]δ−1, HT [AHTX]δ−2.

We show that FDSO(s) is a fixed point for the round elimination technique, and a lower
bound of Ω(logn) then follows.

Randomized complexity. To conclude this work, we take a closer look at the problems
of type VII, i.e., problems with deterministic complexity Θ(logn). Together with prior
work [14,16], our results imply that all such problems have randomized complexity either
Θ(log logn) or Θ(logn) rounds. Moreover, there are already many known examples of
problems of type VII that fall in the class of Θ(log logn); examples include sinkless orientation
[15], as well as many orientation and splitting problems that are known to be as easy as
sinkless orientation [20]. We focus on new hardness results: we give a list of problem families
within type VII that fall in the class of Θ(logn)-round randomized complexity.

Our list of problems of type VII that require Θ(logn) rounds with randomized algorithms
is not complete. The main open question for future work is completing the list of all such
binary labeling problems.

6 Discussion and additional related work

In this work we initiated a systematic investigation of the distributed complexity of LCL prob-
lems on trees, and we presented a complete characterization of the deterministic distributed
complexity of a specific family of LCL problems, binary labeling problems. To conclude this

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:13

work, we will discuss additional connections between the present work and related work – in
particular, highlighting the role of binary labeling problems in the recent developments in
the distributed computational complexity theory – and we will also introduce new directions
for future research.

Sinkless orientation is a binary labeling problem. Sinkless orientation (Example 4.1) is
one of the cornerstones of the modern theory of distributed computational complexity. This
problem was introduced in our context in 2016 [10], and in Google Scholar there are already
more than 30 papers written since 2016 that mention the term “sinkless orientation”, all
of them related to the theory of distributed computing. There are many variants of the
definition, but for our purposes all of them are in essence equivalent to each other, so let us
use the following version: there is a fixed parameter d > 2, and the task is to orient edges
so that nodes of degree d are not sinks (note that low-degree nodes can be sinks and the
problem is therefore trivial in cycles).

The distributed complexity of solving sinkless orientation is now completely understood:
Θ(logn) rounds with deterministic algorithms and Θ(log logn) rounds with randomized
algorithms [10, 15, 22]. Yet there are many fundamental questions related to the role of
sinkless orientation that we do not understand at all.

One of the mysteries is the following observation: whenever we encounter a problem Π
that turns out to be as hard as sinkless orientation, usually the reason for Π being hard is
that Π is directly related to sinkless orientation through reductions. For example, sinkless
and sourceless orientation (Example 4.3) has the same complexity as sinkless orientation;
the upper bound is nontrivial [22], but the lower bound trivially comes from the observation
that a sinkless and sourceless orientation gives a sinkless orientation. Before this work, we
were not aware of any LCL problem Π that has the same complexity as sinkless orientation –
Θ(logn) rounds deterministic and Θ(log logn) rounds randomized – with a nontrivial lower
bound that is not merely an observation that an algorithm for solving Π directly gives an
algorithm for solving sinkless orientation.

Indeed, we did not know if all problems in this complexity class are merely extensions
and variants of the same problem!

Our systematic study of binary labeling problems succeeded in shedding new light on this
issue: we identified problems that are as hard as sinkless orientation, yet require a new lower
bound proof that is not based on the previous result of the hardness of sinkless orientation.

Automatic round elimination and fixed points. The new problems that we discovered are
also directly related to another ongoing research topic: understanding the automatic round
elimination technique [9, 28]. As we mentioned in Section 2, the edge labeling formalism
makes it easy to apply the round elimination technique, which is an effective technique for
proving lower bounds [3, 4, 8–10, 13, 24, 26]. However, there are still many open research
questions related to round elimination itself. One of the key questions is about fixed points;
here the sinkless orientation problem is a good example.

Let Π be the sinkless orientation problem from Example 4.1. If we start with the
assumption that the complexity of Π is T = o(logn) rounds in regular trees, and apply the
round elimination technique [9, 28] in a mechanical manner, we will immediately get the
result that the complexity of the same problem Π is T −1 rounds, which is absurd, and hence
we immediately get a lower bound (at least for some weak models of distributed computing).
A bit more formally, Π is a nontrivial fixed point for round elimination, and such fixed points
immediately imply nontrivial lower bounds. This is particularly interesting as fixed points
can be detected automatically with a computer.

DISC 2020

17:14 Classification of Distributed Binary Labeling Problems

Now let Π′ be the problem of finding a sinkless and sourceless orientation from Example 4.3.
For a human being, it is now trivial that Π′ is at least as hard as Π. However, Π′ is not a
fixed point for round elimination, and we do not seem to have any automatic way for proving
lower bounds for problems similar to Π′.

What is not understood at all is what is the fundamental difference between Π and Π′
and why one of them is a fixed point and the other one is not. Indeed, so far there have not
been many examples of nontrivial fixed points that are not merely trivial variants of sinkless
orientations. Our work now presented the first new examples of nontrivial fixed points, and
these new examples will hopefully inspire follow-up work towards a better understanding of
fixed points in round elimination in general.

Binary labeling problems vs. homogeneity. LCLs come in many flavors. Some problems
are trivial in a regular unlabeled graph – fractional problems are a good example here.
However, for many distributed problems the interesting part is specifically what to do in
the middle of a regular unlabeled tree – symmetry-breaking problems and orientation and
splitting problems fall in this category. Our focus was on the latter case.

In the definition of binary labeling problems, the idea of focusing on regular parts is
captured in the constraint that only white nodes of degree d and only black nodes of degree
δ are relevant. In essence, as soon as we see some irregularities (e.g., leaf nodes of the tree),
the problem becomes potentially easier to solve.

The idea of investigating what happens in the middle of a regular tree was previously
formalized using a somewhat different idea of homogeneous LCLs [8]. Both homogeneous
LCLs and binary labeling problems are defined so that the problem is interesting in a
d-regular part of a tree and any irregularities make the problem easier to solve. However,
this is achieved through a different mechanism:

Homogeneous LCLs [8]: Instead of solving the original problem Π in some neighborhood,
you can create a pointer. The pointers have to form a chain, and a chain of pointers can
only terminate at a node with degree different from d.
Binary labeling problems (this work): The labels are constrained only for nodes of
degree d. The labels incident to other nodes are unconstrained.

In practice, this means that homogeneous LCLs are always solvable in trees, and they can be
solved in O(logn) rounds (assuming d > 2): we can always find a node v of degree 1 or 2
within distance O(logn), and hence instead of solving the original problem, we can construct
a pointer chain towards v. Therefore homogeneous LCLs are well-suited for the original
purpose of investigating distributed computational complexity in the o(logn) region, but
they can neither provide insights into the Ω(logn) regime nor classify unsolvable problems.
Our work on binary LCLs gives complete answers for both.

On the other hand, homogeneous problems are not restricted to two labels, and hence
it is possible that there are complexity classes below o(logn) that do not exist for binary
labeling problems. As we see in Table 3, this is indeed the case: problems with complexity
Θ(log∗ n) exist among homogeneous problems, but as we have seen in this work, they do not
exist among binary labeling problems.

Restriction to two labels and Θ(log∗ n) complexity. In a binary labeling problem we
label edges (or half-edges) with two labels: whether it is part of solution X or not. If we
looked at the more general case of |Σ| = O(1) possible edge labels, we would have a family
of problems that is, in essence, more expressive than the family of all homogeneous LCLs.

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:15

Table 3 An overview of possible distributed time complexities in trees for different classes of
LCLs.

Deterministic Randomized General Homog. Binary Examples
complexity complexity LCLs LCLs labeling

O(1) O(1) YES YES YES trivial problems
ω(1), o(log∗ n) ω(1), o(log∗ n) ? NO [8] NO ?
Θ(log∗ n) Θ(log∗ n) YES YES NO (∆ + 1)-coloring [17,24]
Θ(log n) Θ(log log n) YES YES YES sinkless orientation [10,15,22]
Θ(log n) Θ(log n) YES YES YES even orientation (Ex. 4.4)
Θ(n1/k) Θ(n1/k) YES NO [8] NO 2 1

2 -coloring [16]
Θ(n) Θ(n) YES NO [8] YES 2-coloring (Ex. 4.5)

The case of |Σ| = 2 that we studied here is the smallest nontrivial case, but there is
another reason that makes the case of |Σ| = 2 interesting: as mentioned above, we have seen
that the complexity class Θ(log∗ n) disappears when we go from |Σ| = 3 down to |Σ| = 2.

There are numerous symmetry-breaking problems that can be solved in Θ(log∗ n) rounds
in graphs of maximum degree ∆ = O(1). Examples include maximal matching, maximal
independent set, minimal dominating set, (∆ + 1)-vertex coloring, (2∆− 1)-edge coloring,
weak 2-coloring, and many variants of these problems.

It is known that with 3 edge labels we can encode e.g. the problem of finding a maximal
matching [3]; hence as soon as |Σ| ≥ 3, there are edge labeling problems solvable in Θ(log∗ n)
rounds. However, previously it was not known if the use of |Σ| ≥ 3 labels was necessary
in order to encode any such problem. After all, the use of |Σ| ≥ 3 labels seems unnatural
when we consider problems such as maximal matching, maximal independent set, and weak
2-coloring, all of which in essence ask one to find a subset of edges or a subset of nodes
subject to local constraints.

The results of this work imply that none of these problems can be encoded with two
labels. We have showed that for binary labeling problems, there is a gap in the deterministic
complexity between ω(1) and o(logn). Hence binary labeling problems give rise to a different
landscape of computational complexity in comparison with any other number of labels. We
conjecture that there is no such qualitative difference between e.g. alphabets of size 3 or 4.

References
1 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka

Suomela. The Distributed Complexity of Locally Checkable Problems on Paths is Decidable.
In Proc. 38th ACM Symposium on Principles of Distributed Computing (PODC 2019), pages
262–271. ACM Press, 2019. doi:10.1145/3293611.3331606.

2 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems, 2019. arXiv:
1911.13294.

3 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In Proc. 60th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2019), pages 481–497.
IEEE, 2019. doi:10.1109/FOCS.2019.00037.

4 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed Lower Bounds for Ruling
Sets. In Proc. 61st IEEE Symposium on Foundations of Computer Science (FOCS 2020).
IEEE, 2020. arXiv:2004.08282.

DISC 2020

https://doi.org/10.1145/3293611.3331606
http://arxiv.org/abs/1911.13294
http://arxiv.org/abs/1911.13294
https://doi.org/10.1109/FOCS.2019.00037
http://arxiv.org/abs/2004.08282

17:16 Classification of Distributed Binary Labeling Problems

5 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global problems
in the LOCAL model. In Proc. 32nd International Symposium on Distributed Computing
(DISC 2018), Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:16. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.DISC.2018.9.

6 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does
randomness help with locally checkable problems? In Proc. 39th ACM Symposium on Principles
of Distributed Computing (PODC 2020). ACM Press, 2020. doi:10.1145/3382734.3405715.

7 Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis Olivetti,
and Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM
Symposium on Theory of Computing (STOC 2018), pages 1307–1318. ACM Press, 2018.
doi:10.1145/3188745.3188860.

8 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of Minimal
Symmetry Breaking in Distributed Computing. In Proc. 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 369–378. ACM Press, 2019. doi:10.1145/
3293611.3331605.

9 Sebastian Brandt. An Automatic Speedup Theorem for Distributed Problems. In Proc. 38th
ACM Symposium on Principles of Distributed Computing (PODC 2019), pages 379–388. ACM
Press, 2019. doi:10.1145/3293611.3331611.

10 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC 2016), pages 479–488.
ACM Press, 2016. doi:10.1145/2897518.2897570.

11 Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric R J
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proc. 36th ACM Symposium on Principles of Distributed Computing
(PODC 2017), pages 101–110. ACM Press, 2017. doi:10.1145/3087801.3087833.

12 Sebastian Brandt, Yannic Maus, and Jara Uitto. A sharp threshold phenomenon for the
distributed complexity of the lovász local lemma. In Proc. 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 389–398. ACM Press, 2019. doi:10.1145/
3293611.3331636.

13 Sebastian Brandt and Dennis Olivetti. Truly Tight-in-∆ Bounds for Bipartite Maximal
Matching and Variants. In Proc. 39th ACM Symposium on Principles of Distributed Computing
(PODC 2020). ACM Press, 2020. doi:10.1145/3382734.3405745.

14 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The Complexity
of Distributed Edge Coloring with Small Palettes. In Proc. 29th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2018), pages 2633–2652. Society for Industrial and Applied
Mathematics, 2018. doi:10.1137/1.9781611975031.168.

15 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE
Symposium on Foundations of Computer Science (FOCS 2016), pages 615–624. IEEE, 2016.
doi:10.1109/FOCS.2016.72.

16 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. SIAM
Journal on Computing, 48(1):33–69, 2019. doi:10.1137/17M1157957.

17 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)
80023-7.

18 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic Distributed Algorithms for Lovász Local
Lemma, and the Complexity Hierarchy. In Proc. 31st International Symposium on Distributed
Computing (DISC 2017), pages 18:1–18:16, 2017. doi:10.4230/LIPIcs.DISC.2017.18.

19 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On Derandomizing Local Distributed
Algorithms. In Proc. 59th IEEE Symposium on Foundations of Computer Science (FOCS
2018), pages 662–673, 2018. doi:10.1109/FOCS.2018.00069.

https://doi.org/10.4230/LIPIcs.DISC.2018.9
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3293611.3331636
https://doi.org/10.1145/3293611.3331636
https://doi.org/10.1145/3382734.3405745
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1137/17M1157957
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2018.00069

A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela 17:17

20 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara Uitto.
Improved distributed degree splitting and edge coloring. In Proc. 31st International Symposium
on Distributed Computing (DISC 2017), volume 91 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 19:1–19:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.DISC.2017.19.

21 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proc. 49th ACM SIGACT Symposium on Theory of Computing (STOC
2017), pages 784–797. ACM Press, 2017. doi:10.1145/3055399.3055471.

22 Mohsen Ghaffari and Hsin-Hao Su. Distributed Degree Splitting, Edge Coloring, and Ori-
entations. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pages 2505–2523. Society for Industrial and Applied Mathematics, 2017. doi:10.1137/1.
9781611974782.166.

23 Janne H Korhonen and Jukka Suomela. Towards a complexity theory for the congested clique.
In Proc. 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2018),
pages 163–172. ACM Press, 2018. doi:10.1145/3210377.3210391.

24 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

25 Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In Proc. 26th
Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 478–489. IEEE,
1985. doi:10.1109/SFCS.1985.43.

26 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

27 Moni Naor and Larry Stockmeyer. What Can be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

28 Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation, 2020. URL:
https://github.com/olidennis/round-eliminator.

29 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

30 Will Rosenbaum and Jukka Suomela. Seeing Far vs. Seeing Wide: Volume Complexity of
Local Graph Problems. In Proc. 39th ACM Symposium on Principles of Distributed Computing
(PODC 2020). ACM Press, 2020. doi:10.1145/3382734.3405721.

31 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-Time Deterministic Network Decompo-
sition and Distributed Derandomization. In Proc. 52nd Annual ACM Symposium on Theory
of Computing (STOC 2020), 2020. doi:10.1145/3357713.3384298.

DISC 2020

https://doi.org/10.4230/LIPIcs.DISC.2017.19
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1145/3210377.3210391
https://doi.org/10.1137/0221015
https://doi.org/10.1109/SFCS.1985.43
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/3382734.3405721
https://doi.org/10.1145/3357713.3384298

	Introduction
	Model of computing
	Background and related work

	Binary labeling problems
	General form
	Equivalence, restrictions, and relaxations
	Vector notation

	Our contributions
	Main results: deterministic complexity
	Additional results: randomized complexity

	Expressive power of binary labeling problems
	Binary labeling problems in trees

	Overview of the key technical ideas
	Discussion and additional related work

