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Abstract
In this paper we give fast distributed graph algorithms for detecting and listing small subgraphs,
and for computing or approximating the girth. Our algorithms improve upon the state of the art by
polynomial factors, and for girth, we obtain a constant-time algorithm for additive +1 approximation
in Congested Clique, and the first parametrized algorithm for exact computation in Congest.

In the Congested Clique model, we first develop a technique for learning small neighborhoods,
and apply it to obtain an O(1)-round algorithm that computes the girth with only an additive +1
error. Next, we introduce a new technique (the partition tree technique) allowing for efficiently
listing all copies of any subgraph, which is deterministic and improves upon the state-of the-art for
non-dense graphs. We give two concrete applications of the partition tree technique: First we show
that for constant k, it is possible to solve C2k-detection in O(1) rounds in the Congested Clique,
improving on prior work, which used fast matrix multiplication and thus had polynomial round
complexity. Second, we show that in triangle-free graphs, the girth can be exactly computed in time
polynomially faster than the best known bounds for general graphs. We remark that no analogous
result is currently known for sequential algorithms.

In the Congest model, we describe a new approach for finding cycles, and instantiate it in
two ways: first, we show a fast parametrized algorithm for girth with round complexity Õ(min{g ·
n1−1/Θ(g), n}) for any girth g; and second, we show how to find small even-length cycles C2k for
k = 3, 4, 5 in O(n1−1/k) rounds. This is a polynomial improvement upon the previous running
times; for example, our C6-detection algorithm runs in O(n2/3) rounds, compared to O(n3/4) in
prior work. Finally, using our improved C6-freeness algorithm, and the barrier on proving lower
bounds on triangle-freeness of Eden et al., we show that improving the current Ω̃(

√
n) lower bound

for C6-freeness of Korhonen et al. by any polynomial factor would imply strong circuit complexity
lower bounds.
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1 Introduction

A fundamental problem in many computational settings is that of finding cycles and other
small subgraphs within a given graph. This paper focuses on finding subgraphs in distributed
networks that communicate through limited bandwidth. The motivation for this is two-fold:
first, for some subgraphs H there exist distributed algorithms that perform better on H-free
graphs, such as distributed cut and coloring algorithms in triangle-free graphs [15, 25]. The
second reason for which we are interested in these problems is that while solving them only
requires obtaining local knowledge, about small non-distant neighborhoods, the bandwidth
restrictions impose a major hurdle for collecting this information. This induces a rich
landscape of complexities for subgraph-related problems. We contribute to the effort of
characterizing the complexities of subgraph-related problems by providing new techniques,
from which we derive fast algorithms for such problems in the two key distributed bandwidth
restricted models, namely, Congest and Congested Clique.

In the Congested Clique model, n synchronous nodes can send messages of O(logn)
bits in an all-to-all fashion. The input graph is an arbitrary n vertex graph, partitioned such
that every node receives the edges of a single vertex as input. Our main contribution in this
model is an algorithm for obtaining a +1 approximation for the girth in a constant number
of rounds, where the girth of a graph is the length of its shortest cycle.

I Theorem 1. Given a graph G with an unknown girth g, there exists a deterministic O(1)
round algorithm in the Congested Clique model which outputs an integer a, such that
g ∈ {a, a+ 1}.

For comparison, note that the current state-of-the-art algorithm computes the exact girth
in O(n0.158) rounds [4]. To obtain our +1 approximation algorithm, we devise two main
new methods, which we describe here in a nutshell. The first is an algorithm in which each
node learns its entire neighborhood up to a radius which is a constant approximation of the
girth. To this end, we prove that we can quickly list all paths of sufficient length, as well as
efficiently distribute them to the nodes that need to learn them. The second method that we
introduce is a way to double the radius of the neighborhoods that all the nodes know, by
having each node acquire the knowledge held by the farthest nodes in its currently-known
neighborhood. Crucially, both of these procedures can be done in O(1) rounds, and could be
useful for additional applications.

Our second contribution in the Congested Clique model is a partition tree technique
which allows for efficiently detecting or listing all copies of any subgraph with at most logn
nodes, in a deterministic manner. In particular, our main application of the partition tree
technique is to obtain the following subgraph listing algorithm, which improves upon the
state-of-the-art for non-dense graphs.

I Theorem 2. Given a graph G with n nodes and m edges and a graph H with p ≤ logn
nodes and k edges, let m̃ = max{m,n1+1/p}. There exists a deterministic Congested
Clique algorithm that terminates in O( km̃

n1+2/p + p) rounds and lists all instances of H in G.

We give two concrete applications of this result. The first is fast detection of even cycles.

I Corollary 3. Given a graph G and an integer k ≤ (logn)/2, there exists a deterministic
O(k2)-round algorithm in the Congested Clique model for detecting cycles of length 2k.

Note that for constant k the above algorithm completes within O(1) rounds. Prior work for
cycle detection in the Congested Clique model used fast matrix multiplication (FMM)
and thus had polynomial round complexity, apart from detecting 4-cycles which was shown to
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have a constant-round algorithm [4]. The second implication of the partition-tree technique
is a fast algorithm for computing the exact girth in triangle-free graphs. Prior algorithms for
girth in the Congested Clique model are based on fast matrix multiplication (FMM), a
technique that can be no faster than checking for triangle-freeness.

I Corollary 4. Given a triangle-free graph G with an unknown girth g, there exists a
deterministic Õ(n1/10)-round algorithm in the Congested Clique model which outputs g.

This result leverages the fact that graphs without small cycles become increasingly sparse,
and the algorithm of Theorem 2 is efficient on sparse graphs. We remark that, interestingly,
no analogous result going below the complexity of FMM for girth in triangle-free graphs
is known for sequential algorithms, since the best known sequential algorithms for cycle
detection in sparse graphs (see [2]) are not fast enough. We also note that given further
lower bounds on the girth beyond triangle-freeness, the runtime of our algorithm improves
even further; for instance, if the graph does not contain any k-cycle for k ∈ {3, 4, 5}, then
our algorithm computes the exact girth in Õ(n1/21) rounds. We refer to Proposition 13 in
Section 4 for a more precise statement.

In the Congest model, n synchronous nodes can send messages of O(logn) bits to their
neighbors only, and the input graph is the communication graph. In this model, we develop
a new approach for finding cycles of a given size. A key step that is present in all known
sublinear-round algorithms for finding cycles in Congest is the elimination of high-degree
vertices: we check whether there is a cycle that includes a high-degree node, and if we
conclude that there is no such cycle, we can remove the high-degree nodes from the graph.
The remaining graph is much easier to handle, since it has low degree. In prior work, the
high-degree vertices were eliminated by sequentially enumerating over them and starting
a short BFS from each one. Here we introduce a different method for finding cycles that
include a high-degree node: intuitively, we show that if we start from a neighbor of a small
even cycle, we can quickly find the cycle itself. Since high-degree nodes have many neighbors,
if we sample a uniformly random node in the graph, we are somewhat likely to hit a neighbor
of the high-degree node, and from there we can find the cycle in constant rounds.

We apply this technique to give a fast algorithm that detects small even cycles, and a fast
parameterized algorithm for computing the exact girth. Specifically, we obtain the following:

I Theorem 5. Given a graph G, there exists a randomized algorithm in the Congest model
for detection of 2k-cycles in O(n1−1/k) rounds, for k = 3, 4, 5.

This significantly improves upon the running time of O(n1−1/Θ(k2)) of the previous state-
of-the-art [10]: for cycles of length 6,8 or 10, the previous algorithm had running time
O(n3/4), O(n5/6) or O(n10/11), respectively. We believe that going below round complexity
of O(n1−1/k) for C2k-detection in the Congest model would require a breakthrough beyond
currently known techniques, with potential ramifications also for the Congested Clique
model.

For exact girth, previously, an O(n)-round algorithm for exact girth was known, based
on computing all-pairs shortest paths [16]. Our result is as follows:

I Theorem 6. Given a graph G with an unknown girth g, there exists a randomized O(min{g ·
n1−1/Θ(g), n})-round algorithm in the Congest model which outputs g.

“Outputs” here means that the first node that halts outputs the girth. Other nodes of the
graph may halt later, and output larger values. This is unavoidable, unless we introduce a
term in the running time that depends on the diameter of the graph.

DISC 2020
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Our final result is an obstacle on proving lower bounds for C6-freeness in Congest.
In [19] it was shown that the C2k-freeness problem is subject to a lower bound of Ω̃(

√
n), for

any k. For C6-freeness, the best known algorithm is our new algorithm here, which runs in
Õ(n2/3) rounds, and there are reasons to believe that this may be optimal. Unfortunately,
we show that proving a lower bound of the form Ω(n1/2+α), for any constant α > 0,
would imply breakthrough results in circuit complexity. This result uses ideas from our
improved C6-freeness algorithm, and the barrier on proving lower bounds on triangle-freeness
from [10,11].

Related work. The problem of subgraph-freeness, and in particular cycle detection, has
been extensively studied in the Congested Clique and Congest models. While there
are only a few papers which study girth computation, related problems such as diameter
computation or shortest paths were also extensively studied in these models.

In the first work to consider girth computation in the sequential setting, Itai and Rodeh [17]
gave algorithms with running time O(mn) and O(n2) for computing exact girth and +1
approximation of the girth, respectively, using a BFS approach, and an O(nω) algorithm
for exact girth using an algebric method, where ω is the exponent of matrix multiplication.
Later, various trade-offs between running time and additive or multiplicative approximations
for girth were obtained (e.g [22,26–28]).

In the Congested Clique model, an O(n0.158) round algorithm for exact girth and a
2O(k)n0.158 round algorithm for Ck-detection for any k was shown by [4] based on matrix
multiplication techniques. These algebraic techniques were later extended by [3, 5, 20].

For general subgraphs, a Congested Clique algorithm for listing all instances of a
subgraph H of size k in Õ(n1−2/k) rounds was shown in [8], which was shown to be tight
for triangles [18, 23] and later for cliques of size k > 3 as well [12]. In this work we give a
“sparsity-aware” version of this result, which has improved performance as the graph becomes
sparser. Previously, distributed “sparsity-aware” algorithm were studied in the context of
distributed sparse matrix multiplication [3,5] and in the context of the k-machine model [23].

Frischknecht et al. [13] was the first work to consider girth computation in Congest, and
showed that at least Ω̃(

√
n) rounds are required in order to obtain a (2− ε)-approximation of

the girth. Peleg et al. [24] showed an algorithm computing a (2− 1/g)-approximation of the
girth with round complexity O(D +√gn logn), where g is the girth of the graph. Holzer et
al. [16] showed an algorithm for exact girth computation in O(n) rounds, based on an exact
all-pairs shortest path algorithm, and an algorithm for computing an (1 + ε)-approximation
of the girth in O(min{n/g +D log (D/g), n}) rounds.

In the cycle-freeness problem in the Congest setting, Drucker et al. [9] showed a near
tight lower bound of Ω̃(n) for constant sized odd-length cycles, as well as a lower bound
of Ω̃(n1/k) for C2k-freeness, which was later improved to Ω̃(

√
n) by Korhonen et al. [19].

A Congest randomized algorithm for listing all triangles with round complexity Õ(n1/3)
was shown in [7], which improved the previous Õ(n1/2)-round algorithm of [6] and the
Õ(n3/4)-round algorithm of [18]. The first sublinear-time algorithm for C2k-freeness for k ≥ 3
was given in [12] running in Õ(n1−1/(k2−k)) rounds, and was later improved in [10] to round
complexity Õ(n1−2/(k2−k+2)) for odd k and Õ(n1−2/(k2−2k+4)) for even k.

2 Preliminaries

Definitions. Given a graph H, the H-listing problem is a problem in which each node may
output a set of H-copies, and the goal of the network is that w.h.p. the union over the sets
of outputted H-copies by the nodes is exactly the set of H-copies in G.
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The Túran number of a graph H, denoted ex(n,H), is the maximum number of edges m
such that there exists a graph G on n vertices and m edges which contains no copy of H.

I Lemma 7 (Túran number of C2k [14]). For k ∈ N, if G is C2k-free, then G contains at
most 17kn1+1/k edges.

I Lemma 8 (Túran number for girth [14]). If G is Ci-free for all 3 ≤ i ≤ 2k, then G contains
at most n1+1/k + n edges.

Let Ni(v) denote the graph defined by the nodes of hop-distance at most i from v, that
is, it includes all such nodes and all the edges incident to nodes with hop-distance at most
i− 1 from v. For sets A,B ⊆ V , denote by E(A,B) = {(a, b) ∈ E | a ∈ A ∧ b ∈ B} the set
of edges between A and B.

Load-Balanced Routing in the Congested Clique Model. We introduce a useful routing
procedure which extends that of [21], and it is used throughout our results. The routing
procedure of [21] routes a set of messages where each node needs to send and receive at
most O(n) messages, in O(1) rounds. The following shows that it possible to replace the
constraint where each node needs to send at most O(n) messages with one stating that the
messages each node desires to send are based on at most O(n logn) bits. This allows us to
route messages even when the some nodes are each a source of ω(n) messages.

I Lemma 9 (Load Balanced Routing). Any routing instance M, in which every node v is
the target of up to O(n) messages, and v locally computes the messages it desires to send
from at most |R(v)| = O(n logn) bits, can performed in O(1) rounds.

The proof of Lemma 9 is deferred to the full paper. Notice that this lemma implies, in a
straightforward manner, the following Corollary 10 which we refer to extensively.

I Corollary 10. In the deterministic Congested Clique model, given that each node
originally begins with O(n logn) bits of input, and at most O(1) rounds have passed since the
initiation of the algorithm, then any routing instanceM, in which every node v is the target
of up to O(n · x) messages, can performed in O(x) rounds.

While this is a weaker statement than that of Lemma 9, it is convenient to use when
showing constant-time algorithms in the Congested Clique model, as it completely
circumvents the need for a bound on the number of messages each node desires to send.

3 Deterministic O(1) Round Algorithm for +1 Girth Approximation
in the Congested Clique

In this section we prove Theorem 1: we construct a deterministic O(1) round algorithm for
+1 girth approximation in the Congested Clique model. The algorithm is composed of
two phases, each a novel technique on its own, and through their combination, we achieve
the desired result. The first procedure is based on a subgraph enumeration approach and
allows each node to learn its b g20c hop-neighborhood in O(1) rounds. Formally, it is shown
in the following Theorem 11.

I Theorem 11. Given a graph G, with n nodes, and an unknown girth g < logn, there
exists an O(1) round algorithm in the Congested Clique model, which either outputs g,
or, ensures that every node knows its bg/20c hop-neighborhood.

DISC 2020
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The latter procedure is based on a BFS-like approach and allows each node to double the
hop-distance of the neighborhood which it knows in O(1) rounds, at least until the first cycle
is encountered. This is stated formally in Theorem 12

I Theorem 12. Let G be a graph with n nodes, an unknown girth g < logn, and with
minimum degree δ ≥ 2. Assume that for a given integer parameter a > 0, every v ∈ V knows
the edges of Na(v), and that Na(v) is a tree. There exists an algorithm which completes in
O(1) rounds of the Congested Clique model, and either reports g exactly, or, reaches one
of the following two states: (1) Every v ∈ V knows N2a(v), or (2) For some value b ≥ d g2e−1
which is agreed upon by all nodes of the network, every v ∈ V knows all of Nb(v). All nodes
know whether g was reported exactly, and if not, which state was reached.

Thus, by invoking the first algorithm once, and then the latter for a constant number
of times, we achieve an O(1) round algorithm for the approximation problem. The reason
we achieve a +1 approximation, and not an exact result, is due to the fact that the second
algorithm stops right before detecting the shortest cycle in the graph and cannot differentiate
whether it is of odd or even length. In Section 3.1, we formally prove Theorem 1, when
g < logn and the minimum degree is δ ≥ 2, using Theorems 11, 12. The constraints g < logn
and δ ≥ 2 can be quickly overcome by eliminating some trivial, degenerate cases, and these
details are deferred to the full version. Finally, in Sections 3.2, 3.3, we proceed to our
fundamental technical contributions by showing the proofs of Theorems 11, 12.

3.1 Proving Theorem 1
Here, we prove Theorem 1, in case that g < logn and the minimum degree is δ ≥ 2.

Proof of Theorem 1. We first invoke the algorithm from Theorem 11, in O(1) rounds. Either
g was outputted, or, every node learned its bg/20c hop-neighborhood.

Next, we invoke the algorithm from Theorem 12. The nodes now learned new, larger
neighborhoods - regardless of whether the algorithm halted in State 1 (every v ∈ V knows
N2a(v)) or State 2 (for some b ≥ d g2e − 1, every v ∈ V knows all of Nb(v)). If any node
sees a cycle, then it broadcasts the length of the shortest cycle which it sees and all the
nodes terminate and output the minimum of the values which were broadcast in the network.
It is clear that, in this case, the exact value of g is outputted, since all nodes know the
neighborhoods surrounding them of same radius, and thus if any node saw a cycle, one node
must have seen the shortest cycle in the graph.

Finally, in the case that no cycle was seen so far, we differentiate between the states at
which the algorithm from Theorem 12 can halt at. If it halts at State 1, then every node
learned twice the radius of the neighborhood it already knew. In such a case, we invoke
Theorem 12 again and repeat. Notice that we can do this at most O(1) times, before either
seeing a cycle or halting at State 2, due to the fact that the nodes originally know their
bg/20c hop-neighborhoods. In the case that we eventually halt at State 2, and no cycles
were seen by any node so far, all the nodes output that the girth is either 2b+ 1 or 2b+ 2,
where b is the radius of the neighborhoods which they learned. It is clear that if all nodes
learned their b ≥ d g2e − 1 hop-neighborhoods, and none saw a cycle, then it must be that
b = d g2e − 1 and thus either g = 2b+ 1 or g = 2b+ 2. J

3.2 Phase I: Initial Neighborhood Learning
The key procedure of this phase (formally stated above as Theorem 11) consists of two major
steps. In the first step, either each path of length b g10c in G is detected by at least one node,
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or g is outputted. This step can be seen as an edge-partition variant of the listing algorithm
in [8]. The second step uses a load-balancing routine in order to redistribute the information
computed in the first step so that each node v learn its b g20c hop-neighborhood.

Step 1: Path Listing. We next list all paths of length b g10c, or output g, in O(1) rounds.
First, each node sends its degree to the rest of the network, and each then locally calculates

the number of edges in the graph m =
∑
v deg(v)/2. Let k ∈ N be the largest integer such

that m ≤ n1+1/k + n. Then, each node v is assigned a hard-coded range of deg(v) indices in
{1, . . . ,m}, and locally numbers its edges using these indices.

If k ≤ 4, then by Lemma 8 the girth is of size at most 10, and thus, trivially, paths of
length b g10c ≤ 1 are known and we can halt. Thus, from here on, we may assume that k ≥ 5.

Let P be a partition of the set {1, . . . ,m} into dkn2/k/(20e)e consecutive segments of
size O

(
m

dkn2/k/(20e)e + 1
)
, and let K be a family containing all the possible choices of bk/4c

segments from P (in this context, e denotes the mathematical constant). It holds that

|K| =
(
dkn2/k/(20e)e
bk/4c

)
≤
(
edkn2/k/(20e)e

bk/4c

)bk/4c
≤
(
n2/k

2 + 1
)bk/4c

≤ n 2
k bk/4c ≤ n,

where the first inequality holds due to the well-known combinatorial statement that
(
n
k

)
≤

(nek )k, for all n ∈ N, 1 ≤ k ≤ n, and in the other inequalities, the fact that 5 ≤ k < logn
is used. Thus, it is possible to associate each ki ∈ K with a unique node vi. Each ki is a
set of bk/4c sets of O

(
m

dkn2/k/(20e)e + 1
)
edges, and so let Ei denote the edges in the sets

contained in ki. Notice that

|Ei| ≤ bk/4c
(

m

dkn2/k/(20e)e
+ 1
)
≤ (k/4)20en1+1/k

kn2/k + k = 5en1−1/k + k ≤ n,

and therefore, by Corollary 10, it is possible for each vi to learn all of the edges in Ei in O(1)
rounds of communication.

Finally, every node vi broadcasts the shortest cycle which it witnesses in Ei. Notice
that every path, p, of length at most bk/4c, is fully contained inside some Ej , due to the
construction of P , and therefore the corresponding node, vj , which now knows all of Ej ,
will witness p. Thus, if g ≤ bk/4c, some node will witness the shortest cycle in the graph
and be able to broadcast its length, g. Otherwise, notice that since m 6≤ n1+1/(k+1) + n,
Lemma 8 implies that the graph is not Ci-free for all i ≤ 2(k + 1), and thus g ≤ 2(k + 1).
Thus all paths of length at most bk/4c ≥ bg/8− 1/4c ≥ bg/10c have been listed. Notice that
g/8− 1/4 ≥ g/10 whenever g ≥ 10, and this can be assumed, since otherwise, trivially, paths
of length b g10c < 1 are known.

If at least one node vi informs about a cycle in Ei, the minimum number sent by a node
is outputted as g, and the algorithm terminates. Otherwise, it proceeds to the second step.

Step 2: Neighborhood Learning. We desire to redistribute some of the information learned
in the previous step so that each node will know its b g20c hop-neighborhood.

Notice that all paths of length at most bg/10c have been listed. Therefore, also all paths
of length at most b g20c have been listed. We strive to redistribute this information so that
each node v knows all paths of length at most b g20c which start at v, and thus v knows its
entire b g20c hop-neighborhood. Notice that we would like for each v to know both the nodes
in its b g20c hop-neighborhood, as well as the edges between them.

We begin by ensuring that each v knows every node u in its b g20c hop-neighborhood. Let
v ∈ V and u be some node in its b g20c hop-neighborhood. Since b

g
20c < g/2, then the b g20c

hop-neighborhood of v is a tree. Therefore, there exists exactly one path, pv,u, of length

DISC 2020
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at most b g20c between v and u. In the previous step, we ensured that at least one node
w is aware of pv,u. Specifically, notice that it might be the case that many nodes know
about pv,u, due to the last step, yet, every node w which knows of this path also knows
all the other nodes w′ which learned this path through their Ew′ . Thus, it is possible to
choose, in a hard-coded manner, a single node w which will be responsible for informing
v that pv,u exists. Having done that, node w desires to convey to v the message that u is
in its b g20c hop-neighborhood, in addition to the hop-distance between v and u – that is,
the length of pv,u. Notice that for each such u, node v is destined to receive exactly one
message, and therefore every node in the graph is the target of O(n) messages. This shows
that Corollary 10 may be invoked in order to deliver all these messages in O(1) rounds.

Now, we desire to inform every v of the edges in its b g20c hop-neighborhood. Node v now
knows all the nodes u in this neighborhood, as well as the hop-distance to each of them. Node
v sends a message to each such u which is at most b g20c − 1 hops away from it, and requests
that u send to v all its incident edges in the graph. Notice that all these edges are exactly
all the edges contained in the b g20c hop-neighborhood of v, and since this neighborhood is a
tree, v is the target of at most O(n) messages. As before, this shows that Corollary 10 may
be invoked in order to deliver all these messages in O(1) rounds.

3.3 Phase II: Neighborhood Doubling
The key procedure in this phase (formally stated above as Theorem 12) is an O(1) round
algorithm which doubles the radius of the hop-neighborhood known to each node, until the
nodes know a neighborhood large enough in order to approximate the girth up to an additive
value of 1. The algorithm works along the following lines. Denote by Fa(v), the nodes which
are exactly at distance a from v – we refer to these as the front-line nodes. Each nodes v
initially knows Na(v), and at once attempt to learn all of

⋃
u∈Fa(v)(Na(u) \Na(v)), in an

efficient manner. If this step succeeds, then all the nodes reach State 1, and halt. Otherwise,
they coordinate to increase the radii of the neighborhoods which they know by as much as
possible in O(1) rounds, and ultimately arrive at State 2, and halt.

Halting at State 1. Let v ∈ V and u ∈ Fa(v). Node u aims to send to node v the edges in
Na(u) \Na(v). Notice that node u can locally compute these edges as follows. It observes
the first node w on the path between v, u. Since Na(u) is a tree, for every node w′ ∈ Na(u),
there is exactly one simple path, pu,w′ , which u sees to w′. Notice that w′ ∈ Na(v) if and
only if pu,w′ passes through w. Thus, node u knows exactly which edges it desires to send to
node v. However, before sending them, it first sends to node v the value |Na(u) \Na(v)|.

We now shift back to the perspective of node v. It computes and broadcasts an upper
bound on |

⋃
u∈Fa(v)(Na(u) \Na(v))|, by calculating

∑
u∈Fa(v) |Na(u) \Na(v)|. If all nodes

broadcast values which are at most n− 1, then by Corollary 10, it is possible in O(1) rounds
to perform all the routing requests and have each node double the radius of the neighborhood
which it knows. At this point, the nodes collectively reach State 1 and halt.

Otherwise, at least one node reported a value greater than or equal to n. This implies
that for some node v, there is a cycle in N2a(v), since at least two nodes u, u′ ∈ Fa(v) have
simple paths in their a hop-neighborhoods to the same node w. In this case, the nodes
proceed to a second part of the algorithm, which eventually leads to halting at State 2.

Halting at State 2. Our goal, at this stage, is to determine the largest possible value
i′ ∈ {1, . . . , a− 1}, such that for every node v,

∑
u∈Fa(v) |Ni′(u) \Na(v)| < n. Once this is

achieved, then the algorithm can complete in a similar manner to that above. To see this,
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assume that we have this maximal value i′. Therefore, all nodes v can learn Na+i′(v) in
O(1) rounds, similarly to above. If any cycle is seen, then g is outputted and the algorithm
halts. Otherwise, due to the definition of i′, there must exist some node v′ such that∑
u∈Fa(v′) |Ni′+1(u) \ Na(v′)| ≥ n. This implies that there is a cycle in Na+i′+1(v′), and

therefore 2a+ 2i′ < g ≤ 2a+ 2i′ + 2. As such, a+ i′ = (2a′ + 2i′ + 2)/2− 1 ≥ dg/2e − 1, and
we may halt at State 2.

We now show how to find i′. This is trivially possible to accomplish in O(a) rounds –
each node u simply sends to v the values {|N1(u) \Na(v)|, . . . , |Na−1(u) \Na(v)|}, node v
locally computes the a − 1 different sums, and broadcasts them. However, this does not
suffice for our goal of an O(1) round algorithm, as a can be logarithmic in n. Instead,
let every node v broadcast |Fa(v)|, and denote by v′ the node with maximal |Fa(v′)|, and
write d = bn/|Fa(v′)|c. For every node v and u ∈ Fa(v), node u sends to v the values
{|N1(u) \Na(v)|, . . . , |Nd(u) \Na(v)|}, node v computes the d different sums of these values
from all u ∈ Fa(v), and broadcast them. Notice that this takes O(1) rounds, using Corollary 10
as each node wants to receive at most O(n) messages. Notice that it is now possible in O(1)
rounds to compute min{i′, d} – either i′ ≤ d, and thus min{i′, d} = i′ and we can compute
it, or, min{i′, d} = d. If we show that g ≤ 2a+ 2d, then if all v learn Na+min{i′,d}(v), this
would suffice in order to either find the exact girth or halt at State 2, as required.

We claim that g ≤ 2a + 2d. To see this, assume that g > 2a + 2d. Since g > 2a + 2d,
there are no cycles in Na+d(v′). Combining this with the fact that we assume the minimal
degree in G to be at least 2, we can see that for all j 6= j′ ∈ {1, . . . , d}, it holds that
|Fa+j(v′)| ≥ |Fa+j−1(v′)|, and Fa+j(v′)∩Fa+j′(v′) = ∅. Thus, in Na+d(v′) there are at least
(d+ 1) · |Fa(v′)| = (bn/|Fa(v′)|c+ 1) · |Fa(v′)| > n nodes, a clear impossibility. As we have
arrived at a contradiction, we get that g ≤ 2a+ 2d, as required.

4 Subgraph Listing in the Congested Clique Model

We show an efficient “sparsity-aware” algorithm to list subgraphs in the Congested Clique
model. Our main result is the following theorem, which is proven in the following sections.

I Theorem 2. Given a graph G with n nodes and m edges and a graph H with p ≤ logn
nodes and k edges, let m̃ = max{m,n1+1/p}. There exists a deterministic Congested
Clique algorithm that terminates in O( km̃

n1+2/p + p) rounds and lists all instances of H in G.

As mentioned in the introduction, we can combine this result with known bounds on the
number of edges in graphs without specific subgraphs, to achieve fast subgraph detection
results. First, by combining Theorem 2 with Lemma 7, we immediately get Corollary 3: If
the graph contains more than 17kn1+1/k edges (which can be checked in a single round),
then by Lemma 7 we can safely output that there must exist a cycle of length 2k. Otherwise,
plugging p = 2k and m = 17kn1+1/k in Theorem 2 gives that we can detect (and even list,
in this case) the existence of a cycle of length 2k within O(k2) rounds. Next, by combining
Theorem 2 with Lemma 8, we can get the following result:

I Proposition 13. Given a graph G with n nodes, m edges and an unknown girth g such
that g > ` for some known `, and defining f(x) = n1/b(x−1)/2c−2/(2·b(x−1)/2c+1), there is
a deterministic Õ(min{f(g), f(2 · b(` + 1)/2c + 1)}) round algorithm in the Congested
Clique model which outputs g.

Proposition 13 first shows that the exact girth can be computed in Õ(f(g)) rounds – a
polynomial improvement over the state-of-the-art for all graphs with g ≥ 5. Moreover, if it is
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known that the graph has girth greater than `,1 then the round complexity is additionally
guaranteed to be Õ(f(2 · b(`+ 1)/2c+ 1)). For instance, for any odd value ` = 2r− 1 we get
the upper bound Õ(n1/r−2/(2r+1)). Taking r = 2 gives Corollary 4 stated in the introduction,
which improves upon the state-of-the-art for triangle free graphs.

We note that more claims can be shown using bounds for the Túran numbers of various
other graphs – for example, for detection of Ks,t (complete bipartite graph with s nodes on
one side and t on the other) for certain values of s, t.

4.1 Partition trees
We introduce the notion of partition trees, as a fundamental tool for subgraph listing in the
deterministic Congested Clique model. Partition trees are a deterministic load-balancing
mechanism that evenly divides the work of checking whether any copies of a subgraph are
present. In prior work, randomized load-balancing was used for this purpose, but this incurs
logarithmic factors which we cannot tolerate here. Throughout this section, given a subgraph
with p nodes, we frequently refer to the value x = n1/p. We assume that x is an integer,
because p ≤ logn implies x ≥ 2, and so it is possible to round x to an integer without
affecting the round complexity or correctness.

We start with Definition 14, which defines a p-partition tree, which is a tree structure in
which every node represents a partition of the graph G. Then, in Definition 15, we define
an H-partition tree, in which we require certain conditions on the number of edges between
parts of a p-partition, based on the subgraph H of p nodes which we will want to list.

I Definition 14 (p-partition tree, Figure 1). Let G = (V,E) be a graph with n nodes and
m edges, and let p ≤ logn. A p-partition tree T = TG,p is a tree of p layers (depth p− 1),
where each non-leaf node has at most x = n1/p children. Each node in the tree is associated
with a partition of V consisting of at most x parts.

We inductively denote all partitions associated with nodes in T as follows. The partition
associated with the root r of T is called the root partition, and is denoted by P∅. Given a
node with a partition denoted by P(`1,...,`i−1), the partition associated with its jth child, for
0 ≤ j ≤ x− 1, is denoted P(`1,...,`i−1,j).

The at most x parts of each partition P(`1,...,`i) are denoted by U(`1,...,`i),j , for 0 ≤ j ≤ x−1.
For each 0 ≤ j ≤ x− 1, the part U(`1,...,`i−1),`i

is called the parent of the part U(`1,...,`i−1,`i),j ,
also denoted as U(`1,...,`i−1),`i

= parent(U(`1,...,`i−1,`i),j).

𝑈𝑈∅,1𝑃𝑃∅ 𝑈𝑈∅,0 𝑈𝑈∅,2

𝑃𝑃1 𝑈𝑈1,0 𝑈𝑈1,2𝑈𝑈1,1𝑃𝑃0 𝑈𝑈0,0 𝑈𝑈0,2𝑈𝑈0,1 𝑃𝑃2 𝑈𝑈2,0 𝑈𝑈2,2𝑈𝑈2,1

𝑃𝑃02 𝑈𝑈02,0 𝑈𝑈02,2𝑈𝑈02,1𝑃𝑃01 𝑈𝑈01,0 𝑈𝑈01,2𝑈𝑈01,1𝑃𝑃00 𝑈𝑈00,0 𝑈𝑈00,2𝑈𝑈00,1

𝑥𝑥 = 𝑛𝑛1/𝑝𝑝

Figure 1 A partial illustration of a partition tree with p, x = 3.

I Definition 15 (H-partition tree). Let G = (V,E) be a graph with n nodes and m edges, and
let H be a graph with p ≤ logn nodes, {z0, . . . , zp−1}, and denote di = |{{zi, zt} ∈ EH | t < i}|

1 It is possible to phrase a slightly stronger result which does not require a lower bound on the girth, but
rather that for a specific k, which depends on the sparsity of the graph, there will not be any cycles of
length 2k + 1.
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for each 0 ≤ i ≤ p− 1, x = n1/p and m̃ = max{m,nx}. A H-partition tree T = TG,H is a
p-partition tree with the following additional constraints, for some constants c1, c2. .
1. for every part U = U(`1,...,`i−1,`i),j, it holds that |E(U, V )| ≤ c1m/x+ n, and
2. for every part Ui = U(`1,...,`i−1,`i),j, and all of its ancestor parts Ut = parent(Ut+1) for

t = i− 1, . . . 0, it holds that
∑
t<i,{zi,zt}∈EH

|E(U,Ut)| ≤ c2dim̃/x2 + n,

Notice that in Definition 15, we define m̃ as an upper bound on m, the number of edges
in the input graph. This is done as if the graph is too sparse, we use a slightly higher
bound on the number of edges in order to make decisions regarding the constraints on the
partitions. We note that m̃ is purely a technicality – we do not require that there be at least
this many edges in the graph. In the following two theorems we show that we can construct
an H-partition tree and use it to efficiently perform H-listing.

I Theorem 16. Let G = (V,E) be a graph with n nodes, and let H be a graph with p ≤ logn
nodes. There exists a deterministic Congested Clique algorithm that completes in O(1)
rounds and constructs an H-partition tree T , such that T is known to all nodes of G – that
is, all nodes know all the partitions making up T .

Given an H-partition tree, we can list all instances of H in G.

I Theorem 17. Let G = (V,E) be a graph with n nodes, let H be a graph with p ≤ logn
nodes and k edges, and denote x = n1/p and m̃ = max{m,nx}. There exists a deterministic
Congested Clique algorithm that completes in O( km̃

n1+2/p + p) rounds and lists all instances
of H in G, given an H-partition tree T that is known to all nodes.

Thus, Theorems 16 and 17 directly imply Theorem 2.

Proof sketch of Theorem 16. We construct a set of preliminary partitions in O(1) rounds,
and show that it is possible to construct the entire partition tree using only this set of
partitions. By ensuring that these partitions are globally known, each node computes the
entire tree locally. The root partition, denoted as R, only needs to adhere to the condition
on the number of edges that touch each part, which is easily obtained by grouping nodes in
any arbitrary order until the total number of edges exceeds the threshold.

Then, for every set of 1 ≤ ` ≤ p− 1 parts of R, denoted {Qj0 , . . . , Qj`−1}, we construct
a partition M{j0,...,j`−1} of G with at most x parts. That is, we construct (x/2 + 1)p−1 ≤
xp−1 = n/x additional different partitions. When constructing the partition M{j0,...,j`−1}, we
maintain three conditions. Primarily, we maintain Condition 1; that is, for every part N =
N{j0,...,j`−1},k it holds that |E(N,V )| ≤ c1m/x+ n. Furthermore, similarly to Condition 2,
we ensure that for each part, N = N{j0,...,j`−1},k,

∑
0≤i<` |E(N,Qji

)| ≤ c2`m̃/x2 +n. Lastly,
we ensure that M{j0,...,j`−1} is a refinement of R.

To build the partitions and to be able to make each partition known to all nodes, we
assign each partition with a set of x nodes that are called the builder nodes. Since we have
n/x partitions, we can do this in a mutually disjoint manner. Finally, we show that each
node can internally construct the entire partition tree from the set of all partitions that we
created, because for every node in the partition tree we can always find the needed partition
among the partitions M that we created. To see why, note first that all partitions satisfy
Condition 1. Second, every partition in the tree has to satisfy Condition 2. Intuitively,
this holds since the corresponding parts in the condition are parts in the root partition R,
because we made sure that each partition is a refinement of R. Thus, for every set of at most
p ancestor parts, we can always find among the partitions M that we created, a partition
which corresponds to that set of ancestor parts with respect to Condition 2. J
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Proof sketch of Theorem 17. Denote by {z0, . . . , zp−1} the nodes of H, and denote di =
|{{zi, zt} ∈ EH | t < i}| for each 0 ≤ i ≤ p− 1. We assign each leaf of the H-partition tree T
to x different nodes. Note that there are xp−1 leaves, which is at most n/x due to our choice
of x = n1/p. We abuse the notation and denote a node in T with the same notation as we
use for the partition that is associated with it. Each leaf P(`1,...,`p−1) is thus assigned to x
different nodes, and each part U(`1,...,`p−1),j in each leaf partition is assigned to a different
node. For each node v ∈ V , we denote by Uv,p−1 the part of the leaf partition that it is
assigned to. Then, inductively, for every i = p− 2, . . . 0, we denote Uv,i = parent(Uv,i+1).
Note that for all v ∈ V we have that Uv,0 is a part in the root partition.

We now let each node v ∈ V learn all edges in
⋃
t<i s.t. {zi,zt}∈EH

E(Uv,i, Uv,t) and list
all the instances of H it sees. We prove that all instances of H in G are indeed listed by this
approach, and that learning the required edges by all nodes takes O( km̃

n1+2/p + p) rounds. J

5 Detecting Even Cycles and Computing the Girth in Congest

In this section we sketch our Congest algorithms for finding small even cycles and for
computing the girth. Both algorithms use the same high-level idea for quickly finding a cycle
of a given length; we begin with a high-level overview of this technique, and then give more
details for the girth algorithm and the even-cycle detection algorithm.

5.1 Finding Cycles

Suppose we want to check if the graph contains a copy of the `-cycle, C`. To simplify the
exposition, let us assume that ` is even, ` = 2k (the odd case is handled in our exact girth
algorithm, below). We partition copies of C2k in the graph into two types:

Light cycles. A cycle u0, . . . , u2k−1 is called light if deg(ui) ≤ n1/k for each i ∈ [2k]. To
find light 2k-cycles, we “deactivate” all nodes with degree greater than n1/k, and consider
the subgraph G′ induced by the nodes with degree at most n1/k. In G′, we simultaneously
start a depth-k BFS from all nodes, by having each node of G′ send out a BFS token that
is forwarded up to k hops by all the nodes of G′ that receive it. When all BFS instances
are completed, node uk receives the BFS token of node u0 from two of its neighbors, and
announces that it has found a 2k-cycle. All BFS instances complete in O(k ·n(k−1)/k) rounds,
as the i-neighborhood of any node in G′ is of size at most ni/k for each i ∈ [k].

We must be careful to avoid “false positives”, which might occur if u0’s token travels to
uk by paths that are not vertex-disjoint; in this case, even though uk receives u0’s token
from two neighbors, the graph might not contain a 2k-cycle – it contains some smaller cycle.
In our C2k algorithm, since we are interested in constant (and very small) k, we resolve this
issue using color coding [1], which incurs a multiplicative factor of kO(k) in the running time.
In our exact girth algorithm, we cannot afford to use color coding, because we must consider
cycles of super-constant length; however, here we can argue that by the time we search for
`-cycles, we have already ruled out the existence of `′-cycles for all `′ < `, and therefore no
“false positives” can occur.

Heavy cycles. A cycle u0, . . . , u2k−1 is called heavy if it contains some node ui with
deg(ui) > n1/k. Assume that u0 is a node with the highest degree in the cycle, so that
deg(u0) > n1/k. To detect a heavy cycle, we exploit the fact that a randomly-sampled node
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s in the graph will be a neighbor of u0 with probability Ω(n1−1/k).2 If we start a depth-k
BFS from every neighbor of s, that would include u0, and we could then detect the cycle by
having node uk receive u0’s token from its two neighbors uk−1, uk+1. There are two issues
with this approach:

As in the case of light cycles, a cycle of length < 2k could cause a “false positive”. We
avoid this the same way we did above, using color-coding (for C2k-detection) or the fact
that there are no smaller cycles (for computing the girth).
Starting a BFS from every neighbor of s could be too expensive: s could have high degree,
and starting a BFS from many nodes at the same time could cause high congestion. We
resolve this issue by:

(I) First checking whether or not s itself participates in a 2k-cycle, by starting a k-round
BFS from s (using color-coding if necessary); and

(II) Proving that if s does not participate in a 2k-cycle, then w.h.p., it suffices for each
cycle node to forward a constant number of BFS tokens, in order for uk to receive the
BFS token of u0 from both uk−1 and uk+1. For the girth this is straightforward, but
for C2k-detection it is more involved.

Together, we see that each time we sample a uniformly-random graph node, we can check in
constant time whether it participates in or is adjacent to a 2k-cycle. Since deg(u0) > n1/k,
after O(n1−1/k) iterations we are guaranteed to find the cycle with high probability. We now
give more details for each algorithm.

5.2 Computing the Girth
To compute the girth of the graph, we consider each length ` = 1, 2, . . . , logn sequentially,
and search for `-cycles in the graph using the framework described above. Each iteration
takes ` · n1−1/b`/2c rounds. By itself, this approach would have superlinear running time in
graphs with high girth. In order to cap the running time at O(n) rounds we run in parallel
the linear-time all-pairs shortest path (APSP) algorithm of [16]. If the APSP algorithm
terminates first, we use the results of APSP to compute the exact girth, and halt. Altogether,
if the graph has girth g, then we terminate after O(min

{
g · n1−1/bg/2c, n

}
) rounds.

Let us instantiate the cycle-finding framework above for the case where we know the
graph does not contain `′-cycles for any `′ < `, and want to check if the graph contains an
`-cycle. Each time we start a BFS, we let it proceed to depth d`/2e, with the BFS token
storing how many hops (edges) it has traveled; a node u detects an `-cycle if it receives the
BFS token of some node v from two distinct neighbors w,w′ ∈ N(u), with the token having
travelled d`/2e hops to reach w and b`/2c hops to reach w′. We must address the following
concerns:

“False positives”. Suppose that node ud`/2e receives the BFS token of node u0 from
its two neighbors ud`/2e−1 and ud`/2e+1, with the token having traveled d`/2e hops to
reach ud`/2e−1, and b`/2c hops to reach ud`/2e+1. Let u0 = v0, v1, . . . , vd`/2e = ud`/2e and
u0 = w0, w1, . . . , wb`/2c = ud`/2e be the paths along which u0’s token traveled to ud`/2e, and
assume for the sake of contradiction that these paths contain some shared node vi = wj ,

2 We cannot actually sample one random node in the Congest model, but we can simulate this by
assigning each node a random priority from the range [n3], so that w.h.p. the priorities are unique.
Then we have the smallest-priority node “kill off” all its competitors in a neighborhood whose size
matches the running time of the algorithm. This has the same effect as sampling one uniform node.
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where i, j > 0 and either i < d`/2e or j < b`/2c (or both). Then, taking a lexicographically-
smallest pair (i, j) such that vi = wj , we see that the graph contains a simple cycle
u0, v1, . . . , vi = wj , wj−1, . . . , u0 of length at most i+ j < `, contradicting our assumption
that the graph is free of cycles of length less than `.

Thus, the paths through which u0’s token reaches ud`/2e must be node-disjoint (except
their shared endpoints), which means there is a simple `-cycle in the graph.

Congestion. suppose we have sampled a neighbor s ∈ N(u0), and verified that s does not
participate in an `-cycle. We now initiate a BFS from every neighbor of s (including u0), and
claim that u0’s BFS token is received by each cycle node u1, . . . , u`−1 before any other BFS
tokens are received: thus, it suffices to have each node forward one token only, and discard
all tokens received afterwards. This claim is easily proven by induction on the distance of ui
from u0: essentially, if some neighbor u′0 of s is able to “overtake” u0’s BFS token and arrive
at some cycle node ui first (or at the same time), and if ui is the nearest such node to u0,
then we get a cycle of length at most ` that passes through s. But we already verified that
s does not participate in an `-cycle, and that the graph contains no smaller cycles, so this
cannot happen.

5.3 2k-Cycle Detection
The details and especially the correctness proof of our 2k-cycle detection algorithm are
more complex, so we give here a high-level overview of the ideas, and defer the details
to the full version. For the sake of symmetry, we represent the nodes of a 2k-cycle as
u0, u1, . . . , uk = u−k, u−(k−1), . . . , u−1, so that the two paths leading from u0 to uk are given
by u0, u1, . . . , uk and u0, u−1, . . . , u−k = uk. We use the same high-level framework for
cycle-detection described above, but add the following ingredients.

Color coding [1]: to avoid small cycles leading to “false positives”, we assign to each node
u ∈ V a random color, c(u) ∈ {−(k − 1), . . . , k}. Whenever we carry out a BFS, only nodes
with color 0 may initiate a BFS, and a node u with color c(u) = b · i, where b ∈ {−1,+1} and
i ∈ {0, . . . , k − 1} is only allowed to forward BFS tokens to nodes with color b · (i+ 1). This
ensures that if node uk receives the BFS token of u0 from its neighbors uk−1 and u−(k−1),
then the token was carried along two paths that are node-disjoint, implying the presence of a
simple 2k-cycle. Since nodes choose their colors independently, the probability that a given
cycle is “colored correctly” (i.e., c(ui) = i for each i) is (1/2k)2k, a constant. We repeat each
step of the algorithm sufficiently many times to ensure that if a 2k-cycle exists, it is colored
correctly at least once w.h.p, and then our color-coded BFS finds it.

Limiting congestion: When we search for heavy cycles, we sample a uniformly random
node s, check if it is part of a 2k-cycle, and if not, we start a color-coded BFS from each
0-colored neighbor of s. There can be many such neighbors, potentially leading to congestion;
however, we show that if the cycle is colored correctly, it suffices for each node with color
i ∈ [2k] to forward a constant number Tk(i) of BFS tokens.

Our main concern is that the node s that we sampled is “bad”, in the sense that it has
many short node-disjoint paths to some cycle node ui. If we sample such a “bad neighbor”
of u0, its 0-colored neighbors could initiate many BFS instances, which would then reach ui
and cause congestion. See Figure 2a for an illustration.

To bound the probability that we hit a “bad neighbor”, we first rule out any neighbor
of u0 that itself participates in a 2k-cycle. Next, we argue that if s has many node-disjoint
paths to some cycle node ui, such that the path nodes are colored 0, 1, . . . , i (so that a
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(a) A “bad neighbor” s ∈ N(u0).
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(b) “Shared paths”: the edges of the 10-cycle
are indicated by double lines.

Figure 2 Illustrations for the proof sketch of the 2k-cycle algorithm.

BFS can be initiated by the first path node and flow across the path), then we can charge
these paths against the degree of ui, as each path ends at a different neighbor of ui. Since
deg(u0) ≥ deg(ui), this means only a small constant fraction of u0’s neighbors have many
such disjoint paths. When we sample a random node, we are unlikely to hit a “bad neighbor”.
(We are not worried about non-disjoint paths, as they do not contribute any “new” BFS
tokens; see full version for details).

The problem with this argument is that if different neighbors of u0 share paths to ui, we
might be overcounting when we charge each path against the degree of ui. Our solution is to
show that there is “not too much” sharing, otherwise a 2k-cycle appears – and since we only
consider neighbors of u0 that are not on a 2k-cycle, we know that this is impossible.

In Figure 2b, we show an example of one situation that must be ruled out (among others):
consider k = 5 (i.e., 10-cycles), and suppose that two distinct neighbors s, s′ ∈ N(u0) each
have at least 10 node-disjoint paths with the “right colors”, 0-1, to u2. Suppose further that
one of these paths is shared, as shown in the figure. In addition, node s′ has at least one
additional path (the rightmost path in the figure), which must exist because s′ has at least
10 node-disjoint paths to u2 (so at least one of these paths avoids all the other nodes shown
in the figure). We see that there is a 10-cycle involving nodes s and s′; since we only consider
neighbors of u0 that do not themselves participate in a 10-cycle, this situation cannot arise.

6 Sketch of the Ω(n1/2+α)-Round Barrier on Lower Bounds for
C6-Detection in Congest

We prove that any lower bound on C6-detection of the form Ω(n1/2+α), where α > 0, would
imply new and powerful circuit lower bounds (namely, a superlinear lower bound on the
number of wires in a circuit of polynomial depth). To show this, we first show that C6-
detection reduces to finding a directed triangle; this means that lower bounds on C6-detection
imply lower bounds on finding directed triangles. Next, we follow the same proof from [10]
(which was given there for undirected triangles) to show that a lower bound of the form
Ω(nα) on finding directed triangles would imply new circuit lower bounds.

The main idea of the reduction from 6-cycles to directed triangles is as follows. First, we
eliminate all vertices with degree ≥

√
n, by calling the heavy-cycle subroutine of our new

C6-detection algorithm for O(
√
n logn) iterations. Each iteration requires constant time,

and after O(
√
n logn) iterations, if there is a cycle containing a node with degree >

√
n, we

will find one w.h.p.: w.h.p at least one iteration samples a node that is a neighbor of the
cycle node that has degree >

√
n. Following this step, we “erase” all vertices with degree

≥
√
n from the graph, together with all their edges. Let G′ be the resulting graph.
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Next, each vertex of G′ chooses a random color c(u) ∈ [6], and we simulate an algorithm
for finding directed triangles on the directed graph H = (V,EH), where (u, v) ∈ EH iff
c(v) = c(u) + 2 mod 6 and there is a path u,w, v in G′ with c(w) = c(v) + 1 mod 6. It
holds that any directed triangle in H corresponds to a well-colored simple 6-cycle in G′, and
vice-versa. Since G′ can simulate one round in H using

√
n rounds (as G′ has maximum

degree
√
n), if we can find a directed triangle in O(nα) rounds in H, then we can find a 6-cycle

in O(n1/2+α) rounds in G′. Thus, intractability results for 6-cycles imply intractability for
directed triangles, and following [10,11] we show this would imply new circuit lower bounds.
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