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Abstract
We present improved results for approximating maximum-weight independent set (MaxIS) in the
CONGEST and LOCAL models of distributed computing. Given an input graph, let n and ∆ be
the number of nodes and maximum degree, respectively, and let MIS(n,∆) be the running time of
finding a maximal independent set (MIS) in the CONGEST model. Bar-Yehuda et al. [PODC 2017]
showed that there is an algorithm in the CONGEST model that finds a ∆-approximation for MaxIS
in O(MIS(n,∆) logW ) rounds, where W is the maximum weight of a node in the graph, which can
be as large as poly(n). Whether their algorithm is deterministic or randomized that succeeds with
high probability depends on the MIS algorithm that is used as a black-box. Our results:
1. A deterministic O(MIS(n,∆)/ε)-round algorithm that finds a (1 + ε)∆-approximation for MaxIS

in the CONGEST model.
2. A randomized (poly(log logn)/ε)-round algorithm that finds, with high probability, a (1 + ε)∆-

approximation for MaxIS in the CONGEST model. That is, by sacrificing only a tiny fraction
of the approximation guarantee, we achieve an exponential speed-up in the running time over
the previous best known result.

3. A randomized O(logn · poly(log logn)/ε)-round algorithm that finds, with high probability, a
8(1 + ε)α-approximation for MaxIS in the CONGEST model, where α is the arboricity of the
graph. For graphs of arboricity α < ∆/(8(1 + ε)), this result improves upon the previous best
known result in both the approximation factor and the running time.

One may wonder whether it is possible to approximate MaxIS with high probability in fewer than
poly(log logn) rounds. Interestingly, a folklore randomized ranking algorithm by Boppana implies a
single round algorithm that gives an expected ∆-approximation in the CONGEST model. However,
it is unclear how to convert this algorithm to one that succeeds with high probability without
sacrificing a large number of rounds. For unweighted graphs of maximum degree ∆ ≤ n/ logn, we
show a new analysis of the randomized ranking algorithm, which we combine with the local-ratio
technique, to provide a O(1/ε)-round algorithm in the CONGEST model that, with high probability,
finds an independent set of size at least n

(1+ε)(∆+1) . This result cannot be extended to very high
degree graphs, as we show a lower bound of Ω(log∗ n) rounds for any randomized algorithm that
with probability at least 1 − 1/ logn finds an independent set of size Ω(n/∆). This lower bound
holds even for the LOCAL model. The hard instances that we use to prove our lower bound are
graphs of maximum degree ∆ = Ω(n/ log∗ n).
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1 Introduction and Related Work

In this work we study the problem of approximating Maximum Independent Set (MaxIS) in
distributed models. An independent set in a network is a subset of the nodes such that no
two nodes in the subset are adjacent. In unweighted graphs, a maximum independent set is
an independent set of maximum size. In weighted graphs, a maximum-weight independent
set (MaxIS) is an independent set of maximum total weight, where by total we mean the
sum of weights of nodes in the independent set.

The major two models of distributed graph algorithms are the LOCAL and CONGEST
models. In the LOCAL model [19], there is a synchronized communication network of n
computationally-unbounded nodes, where each node has a unique O(logn)-bit identifier.
In each communication round, each node can send an unbounded-size message to each of
its neighbors. The task of the nodes is to compute some function of the network (e.g., its
diameter, the value of a maximum independent set, etc.), while minimizing the number of
communication rounds. The CONGEST model [21] is similar to the LOCAL model, where
the only difference is that the message-size is bounded by O(logn) bits.

The problem of approximating MaxIS has been studied in both the LOCAL and CON-
GEST models [2, 7, 9, 11,15,16,18]. In unweighted graphs, one can find a ∆-approximation
for MaxIS by finding a maximal independent set (MIS). In recent years, our understand-
ing of the complexity of MIS has been substantially improving [6, 12, 13, 23], leading to
a recent remarkable breakthrough by Rozhon and Ghaffari [23], where they show a de-
terministic poly(logn)-round algorithm for finding an MIS, even in the CONGEST model.
This result also implies a randomized algorithm that finds an MIS with high probability in
O(log ∆) + poly(log logn) rounds, in the CONGEST model1 [10, 13,14,23].

In a weighted graph, an MIS doesn’t necessarily constitute a ∆-approximation for MaxIS.
For the weighted case, Bar-Yehuda et al. [4] showed a ∆-approximation algorithm in the
CONGEST model that takes O(MIS(n,∆) · logW ) rounds, where MIS(n,∆) is the running
time for finding an MIS in graphs with n nodes and maximum degree ∆, and W is the
maximum weight of a node in the graph (which can be as high as poly(n)). Whether their
algorithm is deterministic or randomized that succeeds with high probability depends on the
MIS algorithm that is used as a black-box.

In this work we present faster algorithms compared to [4], by paying only a (1 + ε)
multiplicative overhead in the approximation factor. Our main result (Theorem 2) is a
randomized algorithm that achieves an exponential speed-up compared to [4]. One of the
ingredients to prove our main result is an improved algorithm for the deterministic case
(Theorem 1). Our results:

1 We say that an algorithm succeeds with high probability if it succeeds with probability 1− 1/nc for an
arbitrary constant c > 1.
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I Theorem 1. There is an O(MIS(n,∆)/ε)-round algorithm in the CONGEST model that
finds a (1 + ε)∆-approximation for maximum-weight independent set. Whether the algorithm
is deterministic or randomized, depends on the MIS algorithm that is run as a black-box.

I Theorem 2. There is a randomized (poly(log logn)/ε)-round algorithm in the CONGEST
model that finds, with high probability, a (1 + ε)∆-approximation for maximum-weight
independent set.

Using the algorithm from Theorem 2, we can also get an improved approximation
algorithm for a wide range of arboricity. Let α be the arboricity of the input graph. For
graphs of arboricity α ≤ ∆/(8(1 + ε)), Theorem 3 improves upon [4] in both the running
time and approximation factor.

I Theorem 3. There is a randomized O(logn · poly log logn/ε)-round algorithm in the
CONGEST model that finds, with high probability, an 8(1 + ε)α-approximation for maximum-
weight independent set.

A discussion on the folklore randomized ranking algorithm. A folklore randomized ranking
algorithm by Boppana yields a single round algorithm in the CONGEST model that returns a
solution with an expected approximation factor ∆ + 1.2 In this ranking algorithm, each node
v picks a number rv uniformly at random in [0, 1]. If rv > ru for any neighbor u of v, then v
joins the independent set. Since every node joins the independent set with probability at least
1/(∆ + 1), the expected weight of the independent set is at least w(V )/(∆ + 1), where w(V )
is the total weight of nodes in the graph. Recently, Boppana et al [8] showed that the ranking
algorithm even returns a (∆ + 1)/2-approximation in expectation. However, algorithms that
work well in expectation don’t necessarily work well with good probability. In fact, for the
folklore randomized ranking algorithm, it is not very hard to construct examples in which
the variance of the solution is very high, in which case the algorithm doesn’t return the
expected value with high probability. In this work we prove the following stronger hardness
result (Theorem 4). Our lower bound in Theorem 4 holds only under the assumption that
the nodes don’t know the exact value of n, but only a polynomial upper bound on it. We
emphasize this because some algorithms in the LOCAL and CONGEST models assume the
knowledge of n (our algorithms in this work don’t need this assumption).

I Theorem 4. If the nodes don’t know the exact value of n, but only a polynomial upper
bound on it, then any algorithm that finds an independent set of size Ω(n/∆) in unweighted
graphs, with success probability p ≥ 1 − 1/ logn must spend Ω(log∗ n) rounds, even in the
LOCAL model.

Interestingly, this hardness result applies for graphs of maximum degree ∆ = Ω(n/ log∗ n).
One may wonder whether we can extend the lower bound for much smaller maximum degree
graphs. We rule out this possibility, with the following theorem. The proof of Theorem 5
relies on a novel idea for analyzing the classical ranking algorithm using martingales, and
the local-ratio technique, on which we elaborate in the technical overview.

I Theorem 5. For unweighted graphs of maximum degree ∆ ≤ n/ logn, there is an O(1/ε)-
round algorithm in the CONGEST model that finds, with high probability, an independent set
of size at least n

(1+ε)(∆+1) .

2 To the best of our knowledge, this ranking algorithm has first appeared in the book of Alon and
Spencer [1] and is due to Boppana (see also the references for this algorithm in [8]).
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Further Related Work. Ghaffari et al. [15], showed that there is an algorithm for the
LOCAL model that finds a (1 + ε)-approximation for MaxIS in O(poly(logn/ε)) rounds,
for a constant ε. The results in [11, 18] give a lower bound of Ω(log∗ n) rounds for any
deterministic algorithm that returns an independent set of size at least n/ log∗ n on a cycle,
and a randomized O(1)-round algorithm for O(1)-approximations in planar graphs, in the
LOCAL model. The results by [7, 16] give fast algorithms for approximating MaxIS in
unweighted graphs, where the approximation guarantees are only in expectation.

Road-map. In Section 2 we provide a technical overview. Section 3 contains some basic
definitions and useful inequalities. The technical heart of the paper starts in Section 4, where
we prove our first two results (Theorems 1 and 2). Due to space limitations, we defer the
rest of our proofs to the the full version [17].

2 Technical Overview

Results for weighted graphs. Our first two results (Theorems 1 and 2) share a similar
proof structure. First, we show that there are fast algorithms for O(∆)-approximation.
Then we use the local-ratio technique [3] to prove a general boosting theorem that takes a
T -round algorithm for O(∆)-approximation, and use it as a black-box to output a (1 + ε)∆-
approximation in O(T/ε) rounds. An overview of the local-ratio technique and the boosting
theorem is provided in Section 2.2. The key ingredient to show a fast O(∆)-approximation
algorithm is a new weighted sparsification technique, where we show that it suffices to find an
independent set of a good approximation in a sparse subgraph. An overview of the weighted
sparsification technique is provided in Section 2.1.

Our improved approximation algorithm for low-arboricity graphs (Theorem 3) uses
Theorem 2 as a black-box, where the main technical ingredient is the local-ratio technique.
An overview of this algorithm is also provided in Section 2.2.

Results for unweighted graphs. Our upper bound for unweighted graphs of maximum
degree ∆ ≤ n/ logn (Theorem 5) has a similar two-step structure as the first two results.
We first show an O(∆)-approximation algorithm, and then we use the local-ratio technique
to boost the approximation factor. For the O(∆)-approximation part, we show that running
the classical one-round ranking algorithm (that was used by [8]) for c rounds already returns
an O(∆)-approximation for unweighted graphs of maximum degree ∆ ≤ n/ logn, with
probability ≈ 1 − 1/nc. The main technical ingredient for showing this result is a new
analysis of the classical ranking algorithm using martingales. An overview of this result is
provided in Section 2.3. Finally, in Section 2.4, we provide an overview of the lower bound
result (Theorem 4).

2.1 Weighted Sparsification for O(∆)-Approximation
A good way to understand the O(∆)-approximation algorithm is to first consider the un-
weighted case. Let G = (V,E) be an unweighted graph. We can find an O(∆)-approximation
for MaxIS in G as follows. First, we sample a sparse subgraph H of G with the follow-
ing properties. (1) The maximum degree ∆H of H is small (O(logn)). (2) The ratio
between the number of nodes (nH) and the maximum degree of H is at least as in G,
up to a constant multiplicative factor. That is, nH/∆H = Ω(n/∆). Since any MIS in
H has size at least nH/∆H = Ω(n/∆), it suffices to find an MIS in H, which takes
MIS(nH ,∆H) ≤ MIS(n, logn) rounds (recall that MIS(n,∆) is the running time of finding
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an MIS in graphs of n nodes and maximum degree ∆). By the recent breakthrough of
Rozhon and Ghaffari [23], MIS(n, logn) = O(log logn) + poly(log logn) = poly log logn
rounds. Furthermore, sampling a subgraph with the aforementioned properties is almost
trivial. Each node joins H with probability min{logn/∆, 1}, independently. It is not very
hard to show, via standard Chernoff (Fact 1) and Union Bound arguments, that H has the
desired properties. While this approach is straightforward for the unweighted case, it runs
into challenges when trying to apply it for the weighted case, as we explain next.

The challenge in weighted graphs. Perhaps the first thing that comes into mind when
trying to extend the sampling technique to weighted graphs is to try to sample a sparse
subgraph H with the following properties. (1) The maximum degree ∆H = O(logn). (2)
The ratio between the total weight in H and the max degree of H is the same as in G, up to a
constant multiplicative factor. That is w(VH)/∆H = Ω(w(V )/∆), where w(VH) is the total
weight of nodes in H and w(V ) is the total weight of nodes in G. However, this approach
runs into two challenges. The first challenge is that in the weighted case, an MIS doesn’t
necessarily constitute a ∆-approximation for MaxIS. Therefore, even if we are able to sample
a subgraph H with the desired properties, running an MIS algorithm on H might result
in an independent set of a very small weight. To overcome this challenge, we show a very
simple MIS(n,∆)-round algorithm that finds an O(∆)-approximation. This algorithm runs
an MIS algorithm on the subgraph induced by nodes that are relatively heavy, compared to
their neighbors. Specifically, a node is considered relatively heavy compared to its neighbors,
if it is of weight at least Ω(1/∆)-fraction of the sum of weights of its neighbors. It is not very
hard to show that this algorithm returns an independent set of total weight Ω(w(V )/∆),
where w(V ) is the total weight of nodes in the graph. The proof of this argument is provided
in Section 4.1.

Furthermore, another challenge is that the same sampling procedure doesn’t work for the
weighted case. In particular, if we sample each node with probability p = min{(logn)/∆, 1},
then light-weight nodes will have the same probability of joining H as heavy-weight nodes.
Intuitively, we need to take the weights into account. For this, we boost the sampling
probability of a node v by an additive factor of w(v) logn/w(V ), where w(v) is the weight of
v and w(V ) is the total weight of nodes in the graph. In order to show that the sampled
subgraph has the desired properties, it doesn’t suffice to use standard Chernoff and Union-
Bound arguments. Instead, we present a more involved analysis that uses Bernstein’s
inequality (Fact 2). Observe that the nodes don’t know the value w(V ). Therefore, we define
a notion of weighted degree of a node, which is the sum of weights of its neighbors. We show
that it suffices for a node v to use the maximum weighted degree in its neighborhood, instead
of w(V ). The full argument is provided in Section 4.2.

2.2 Boosting the Approximation Factor using Local-Ratio
A useful technique for approximation algorithms is the local-ratio technique [3]. In recent
years, the local-ratio technique has been found to be very useful for the distributed setting [4,5],
and the ∆-approximation algorithm of [4] also uses this technique. In this work we use
local-ratio to boost the approximation guarantee for MaxIS. We start with stating the
local-ratio theorem for maximization problems. Here, we state it specifically for MaxIS.
Given a weighted graph Gw = (V,E,w), where w is a node-weight function w : V → R, we
say that an independent set I ⊆ V is r-approximate with respect to w if it is r-approximate
for the optimal solution in Gw.

DISC 2020
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I Theorem 6 (Theorem 9 in [3]). Let Gw = (V,E,w) be a weighted graph. Let w1 and w2 be
two node-weight functions such that w = w1 + w2. If an independent set I is r-approximate
with respect to w1 and with respect to w2 then it is r-approximate with respect to w as well.

Theorem 6 already gives a simple linear-time sequential algorithm for ∆-approximation
for MaxIS, as follows. Pick an arbitrary node v of positive weight, push it onto a stack, and
reduce the weight of any node in the inclusive neighborhood of v (v and its neighbors) by
w(v). Continue recursively on the obtained graph, until there are no nodes of positive weight.
When there are no remaining nodes of positive weight, pop out the stack, and construct an
independent set I greedily, as follows. For each node v that is popped out from the stack,
add v to I, unless it already contains a neighbor of v.

The reason that this simple algorithm gives a ∆-approximation is as follows. Consider
the first iteration, when the algorithm picks an arbitrary node v, pushes it onto a stack,
and reduces the weight of any node in the inclusive neighborhood of v by w(v). This first
iteration implicitly defines two weight functions: the reduced weight function w1, and the
residual weight function w2, where w = w1 + w2. That is, the reduced weigh of a node u in
the first step is w1(u) = w(v) if it belongs to the inclusive neighborhood of v, and w1(u) = 0
otherwise. The residual weight of a node u is the remaining weight w2(v) = w(v)− w1(v).
To prove that the algorithm returns a ∆-approximation, we can assume by reverse induction
that I is a ∆-approximation with respect to the residual weight function w2. Furthermore,
the independent set is constructed in a way such that it must contain at least one node in the
inclusive neighborhood of v, where the weight of this node with respect to w1 is w(v). Since
the degree of v is at most ∆, and the value of the optimal solution with respect to w1 is at
most ∆w(v), it follows that I is also ∆-approximation with respect to the reduced weight
function w1. Hence, by the local-ratio theorem, the independent set is also a ∆-approximation
with respect to w = w1 + w2.

One can extend this idea, and rather than picking a single node in each step, the algorithm
can pick an arbitrary independent set I ′, push all the nodes in I ′ onto a stack, and perform
local weight reductions in the inclusive neighborhood of any node in I ′. The algorithm
continues recursively on the obtained graph after the weight reductions, until there are no
remaining nodes of positive weight. Then, the algorithm constructs an independent set I by
popping out the stack and adding nodes in the stack to I greedily. Using a similar local-ratio
argument, one can show that this algorithm also returns a ∆-approximation for MaxIS. The
idea of picking an independent set rather than a single node in each step was used by [4] to
show a ∆-approximation algorithm in O(MIS(n,∆) logW ) rounds.

In this work, we prove a simple yet powerful property about the local-ratio technique.
Specifically, we show that the total weight of the independent set I that is constructed in
the pop-out stage (with respect to the original input weight function w), is at least the total
weight of the nodes in the stack (with respect to the residual weight function at the time
they were pushed onto the stack). That is, let S be set of nodes that are pushed onto the
stack. For v ∈ S, let wiv be the residual weight of v at the time it was pushed onto the stack.
We prove that w(I) ≥

∑
v∈S wiv . We refer to this property as the stack property.

The stack property allows us to show a general boosting theorem, as follows. We use the
local-ratio algorithm described above, where in each step we pick an independent set I ′ that
is (c∆)-approximation for MaxIS, for some constant c > 1. Hence, intuitively, after ≈ c/ε

steps, the total weight in the stack should be at least OPT (Gw)
(1+ε)∆ , where OPT (Gw) is the value

of an optimal solution in the input graph Gw.
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Low-arboricity graphs. Moreover, the stack property allows us to show an improved ap-
proximation algorithm for low-arboricity graphs, as follows. In each step, we run a (1 + ε)∆-
approximation algorithm on the subgraph induced by the nodes of degree at most 4α, where
α is the arboricity of the graph. We push the nodes in the resulting independent set I ′ onto
the stack, and perform local weight reduction in the neighborhoods of the nodes in I ′. Then,
we delete all the nodes of degree at most 4α, and continue recursively on the resulting graph.
Finally, we construct an independent I by popping out the stack greedily. By a standard
Markov argument, after logn push steps, the graph becomes empty. Furthermore, since in
each step the algorithm finds a (1 + ε)4α approximation in the subgraph induced by the
nodes of degree at most 4α, and this independent set is pushed onto the stack, we are able
to use the stack property to show that the constructed independent set I is roughly of the
same approximation for Gw.

2.3 Analysis of the Ranking Algorithm using Martingales
In this section we provide an overview of our result for unweighted graphs of maximum
degree ∆ ≤ n/ logn (Theorem 5). First, we find an O(∆)-approximation, and then we use
the boosting theorem to get a (1 + ε)∆-approximation. To find an O(∆)-approximation, we
use the classical ranking algorithm. Recall that in the ranking algorithm, each node v picks
a number rv uniformly at random in [0, 1]. If rv > ru for any neighbor u of v, then v joins
the independent set. Let I be the independent set that is returned by the ranking algorithm.
The crux of the analysis is in using concentration inequalities to get a high-probability lower
bound on the number of nodes in I. However, it is unclear how to make this approach work,
as the random variables Xv = 1v∈I are not independent. While these random variables are
not independent, one can obtain a weaker result in this direction. Specifically, for graphs
of maximum degree at most n1/3/poly(logn), one can get a useful bound on the maximum
dependency among these variables. In particular, one can show that each Xv is dependent on
at most (n1/3/poly(logn))2 = n2/3/poly(logn) other Xus, which makes it possible to show
concentration using the bounded dependence Chernoff bound given in [22]. However, it is
unclear how to use this approach for higher degree graphs.

The main idea of our approach is to view the ranking algorithm from a sequential
perspective. Instead of picking ranks for the nodes and including a node in I if its rank
is higher than that of its neighbors, we draw nodes v from V uniformly at random one at
a time and add v to I if it is not adjacent to any previously drawn node. We show that
the resulting independent set is identical in distribution to the independent set produced by
the ranking algorithm. Note that this is not the same as a sequential greedy algorithm for
maximal independent set, which would add v to I if it is not adjacent to any node in I (a
weaker condition). The sequential perspective of the ranking algorithm allows us to think
about the size of I incrementally. One could directly show concentration if the family of
random variables {It}t was a martingale. However, this is not the case, as |It+1| ≥ |It| so it
is not possible for expected increments to be 0. Instead, we create a martingale by shifting
the increments so that they have mean 0. More formally, let It be the independent set I
after the first t nodes have been drawn. Let vt be the tth node drawn. The random variable

Yt = |It| − |It−1| − Pr[vt ∈ I|It−1]

has mean 0 conditioned on It−1. Therefore, the Yts are increments for the martingale
Xt =

∑t
i=1 Yt. Using Azuma’s Inequality, one can show that Xt concentrates around its

mean, which is 0. To lower bound the size of the obtained independent set I, one therefore
just needs to get a lower bound on the sum of the increment probabilities Pr[vt ∈ I|It−1].

DISC 2020
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This can be lower bounded by 1/2 when t = o(n/∆) because when a node is drawn, it
eliminates at most ∆ other nodes from inclusion into I. But when t = Θ(n/∆), the sum
of these probabilities is already 1/2(Θ(n/∆)) = Θ(n/∆), so the independent set is already
large enough, as desired. The reason that this technique works for ∆ ≤ n/ logn is that the
success probability is roughly exponential in n/∆. Hence, by having ∆ ≤ n/ logn, we get a
high probability success, as desired.

2.4 An Overview of the Lower Bound
In oder to prove out lower bound (Theorem 4), we use a cycle of cliques graph. We reduce
the problem of finding an MIS in a cycle to the problem of finding an independent set of size
Ω(n/∆) in a cycle of cliques. We use Naor’s lower bound [20] for finding an MIS in a cycle,
which holds even against randomized algorithms. We start by stating Naor’s lower bound.

I Theorem 7 (Lower bound for the cycle [20]). Any randomized algorithm in the LOCAL
model for finding a maximal independent set that takes fewer than 1

2 (log∗ n) − 4 rounds,
succeeds with probability at most 1/2, even for a cycle of length n.

A good way of understanding our reduction from Naor’s lower bound is to first consider
the following failed attempt for deterministic algorithms.

Failed Attempt 1. Let A be a deterministic algorithm for approximate MaxIS. Suppose
that it takes T (n) rounds in graphs of n nodes. We can use A to find a maximal independent
set in a cycle C of n nodes, as follows. We start by running A on C to produce an independent
set I. Since C is a cycle, there is a natural clockwise ordering for the nodes of I. Between
any two consecutive nodes of I, there may be nodes along the cycle that are not adjacent
to a node in I. We informally call these nodes the “gaps” between consecutive nodes in I.
We can obtain a maximal independent set in C by “filling in” the gap between every two
consecutive nodes in I with a maximal independent set (sequentially). To bound the runtime
of this algorithm, we need to bound the maximum length of a gap.

One can attempt to bound the length of these gaps using what is called an indistin-
guishability argument. From a local perspective, the nodes cannot distinguish between C
and a path of length ω(T (n)). Hence, one can show that if there is a gap of length ω(T (n)),
then A doesn’t return the required approximation on a path of length ω(T (n)). As a result,
filling in the gaps between nodes in I takes O(T (n)) rounds. Therefore, by running A on C
and then filling in the gaps sequentially, we get an MIS in O(T (n)) rounds. By Linial’s lower
bound [19], we have that T (n) = Ω(log∗ n).

However, this argument fails for two reasons. First, this indistinguishability argument
does not work. In the LOCAL model, we assume that the ID of each vertex is a number
from 1 to poly(n). However, this is not the case for subpaths of C with length O(T (n)),
since poly(n) >> poly(T (n)). Therefore, the approximation guarantee of A does not need
to apply to short subpaths of C, meaning that there may be large gaps in the independent
set output by applying A on C.

Second, our goal is to show a lower bound for randomized algorithms. The main issue
when running a randomized algorithm on a cycle is that the maximum length of a gap
between two consecutive nodes in the independent set can be larger than O(T (n)). This is
because randomized algorithms that succeed with high probability can fail with probability
1/ poly(n), where n is the number of nodes in the graph. Hence, A can fail on a path of
length O(T (n)) with probability 1/ poly(T (n)) which is non-negligible when T (n)� n. In
particular, since there are Ω(|C|/T (n)) = Ω(n/T (n)) subpaths of length O(T (n)) in C, it
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is likely that A fails on at least one of these subpaths. If on the other hand the number of
nodes in the O(T (n))-radius neighborhood of a node was larger, then one could hope to get
around this issue, as it would amplify the “local” success probability in the neighborhood of
a node.

Successful Attempt 2. Instead of running A on C, we run it on a cycle of cliques C1, which
is obtained from C as follows. Each node v ∈ C is replaced with a clique of size ≈ 2|C|,
denoted by D(v), where every two adjacent cliques are connected by a bi-clique. By running
A on C1 instead of C, it boosts the success probability of A in a small-radius neighborhood
of any given node. As a result, a small-radius neighborhood of any node in C1 must contain
a node in the independent set. Using the independent set I1 that was found in C1, we can
map it to an independent set I in C, as follows. Every v ∈ C joins I if and only if I1 contains
a node in D(v). Due to the approximation guarantee of A in C1, we can prove that the
maximum distance between two consecutive nodes in I1 is small and therefore, the maximum
length of a gap in I is small. Finally, we can run a greedy sequential MIS algorithm to
fill the gap between every two consecutive nodes in I and find an MIS in C. Hence, if we
can find an approximate-MaxIS in C1 in o(log∗ |C1|) rounds, then we can find an MIS in C
in o(log∗(2|C|)) = o(log∗ |C|) rounds, contradicting Naor’s lower bound (Theorem 7). An
illustration of the reduction with all the steps is provided.

This approach deals with the two issues found in our first reduction attempt, because the
size of C1 is bounded by a polynomial of the size of each clique (the first issue) and the large
size of each clique ensures that the algorithm succeeds with high probability (the second
issue).

3 Preliminaries

Some of our proofs use the following standard probabilistic tools. An excellent source for the
following concentration bounds is the book by Alon and Spencer [1]. These bounds can also
be found in many lecture notes about basic tail and concentration bounds.

I Fact 1 (Multiplicative Chernoff Bound). Let X1, ..., Xn be independent random variables
taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the sum’s expected
value. Then for any 0 ≤ ε ≤ 1, it holds that:

Pr[|X − µ| ≥ εµ] ≤ 2 exp
(
− ε2

2 + ε
µ

)
I Fact 2 (Bernstein’s Inequality). Let X1, ..., Xn be independent random variables such that
∀i,Xi ≤ M . Let X denote their sum and let µ = E[X] denote the sum’s expected value.
Then for any positive t, it holds that:

Pr[|X − µ| ≥ t] ≤ 2 exp
(
− t2/2
Mt/3 +

∑n
i=1 Var(Xi)

)
I Fact 3 (One-sided Azuma’s Inequality). Suppose {Xi : i = 0, 1, 2, . . .} is a martingale and
that |Xi −Xi−1| ≤ ci almost surely. Then, for all positive integers N and all positive reals t,

Pr[XN −X0 ≤ −t] ≤ exp
(
− t2

2
∑N
i=1 c

2
i

)
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Assumptions. In all of our upper and lower bounds, we don’t assume that the nodes have
any global information. In particular, they don’t know n or ∆. The only information that
each node has before the algorithm starts is its own identifier, and some polynomial upper
bound on n (Since the nodes can send c logn bits in each round to each of their neighbors,
naturally, they know some polynomial upper bound on n).

Some notations. The input graph is denoted by Gw = (V,E,w), where V is the set of
nodes, E is the set of edges, and w is the weight function. The reason that we choose to add
the weight function in a subscript is that some parts of the analysis deal with graphs that
have the same sets of nodes and edges as the input graph, but a different weight function.
Hence, such a graph will be denoted by Gw′ = (V,E,w′), to indicate that it is the same as
the input graph, but with weight function w′ rather than w.

We denote by N+(v) the inclusive neighborhood of v, which consists of N(v)∪{v}, where
N(v) is the set of neighbors of v. Furthermore, we denote by deg(v) = |N(v)| the number
of neighbors of a node v. Finally, we denote by w(V ′) the total weight of nodes in V ′ ⊆ V .
That is, w(V ′) =

∑
v∈V ′ w(v).

4 A (1 + ε)∆-Approximation Algorithm

In this section we prove Theorems 1 and 2.

I Theorem 1. There is an O(MIS(n,∆)/ε)-round algorithm in the CONGEST model that
finds a (1 + ε)∆-approximation for maximum-weight independent set. Whether the algorithm
is deterministic or randomized, depends on the MIS algorithm that is run as a black-box.

I Theorem 2. There is a randomized (poly(log logn)/ε)-round algorithm in the CONGEST
model that finds, with high probability, a (1 + ε)∆-approximation for maximum-weight
independent set.

Theorems 1 and 2 share a similar proof structure. First, we present algorithms for
O(∆)-approximation in Sections 4.1 and 4.2. Then, by using a general boosting theorem, we
get (1 + ε)∆-approximation algorithms.

4.1 An O(MIS(n,∆))-Round Algorithm for O(∆)-Approximation
In this section we show a very simple O(MIS(n,∆))-round algorithm that finds an O(∆)-
approximation for MaxIS.

I Theorem 8. Given a weighted graph Gw = (V,E,w), there is an O(MIS(n,∆))-round
algorithm that finds an independent set of weight at least w(V )

4(∆+1) , in the CONGEST model.
Whether the algorithm is deterministic or randomized depends on the MIS algorithm that is
used as a black-box.

Algorithm For every v ∈ V , let δ(v) be the maximum degree of a node in the inclusive
neighborhood of v. That is, δ(v) = max{deg(u) | u ∈ N+(v)}. A node v is called good if
w(v) ≥ 1

2(δ(v)+1)
∑
u∈N+(v) w(u). The algorithm finds a maximal independent set I in the

subgraph induced by the set of good nodes. We prove the following lemma.

I Lemma 9. w(I) ≥ w(V )/4(∆ + 1)
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Proof. Let Vgood be the set of good nodes, and let V = V \ Vgood. Observe that,∑
v∈V

w(v) ≤
∑
v∈V

1
2(δ(v) + 1)

∑
u∈N+(v)

w(u) ≤
∑
v∈V

deg(v) + 1
2(deg(v) + 1)w(v) = w(V )/2

⇒
∑
v∈I

w(v) ≥
∑
v∈I

1
2(δ(v) + 1)

∑
u∈N+(v)

w(u) ≥
∑
v∈I

1
2(∆ + 1)

∑
u∈N+(v)∩Vgood

w(u)

≥ 1
2(∆ + 1)

∑
v∈Vgood

w(v) ≥ w(V )/4(∆ + 1)

as desired. Since the value of an optimal solution in Gw is at most w(V ), the algorithm
returns an O(∆)-approximation for MaxIS. J

Success with high probability. Given a graph of n nodes, an algorithm that finds a maximal
independent set in the graph with high probability is an algorithm that succeeds with
probability at least 1 − 1/nc for some constant c > 1. In the algorithm above, the black
box can be a randomized algorithm that is run on a subgraph H = (VH , EH) of Gw. Since
nH = |VH | is potentially much smaller than n, one may wonder whether the algorithm
above actually succeeds with high probability with respect to n. The main idea is to use
an algorithm that is intended to work for graphs with n nodes, rather than nH nodes. We
prove the following lemma, whose proof is by a simple padding argument that is deferred to
the full version [17].

I Lemma 10. Let A be an MIS(n,∆)-round algorithm that finds a maximal independent set
with success probability p in a graph of n nodes and maximum degree ∆. Let H = (VH , EH)
be a graph of nH ≤ n nodes with (c logn)-bit identifiers, for some constant c, and let ∆H

be the maximum degree in H. There is an O(MIS(n,∆H))-round algorithm A′ that finds a
maximal independent set in H with success probability p.

4.2 A poly(log logn)-Round Algorithm for O(∆)-Approximation
In this section we show a poly(log logn)-round algorithm that finds an O(∆)-approximation.

I Theorem 11. Given a weighted graph Gw = (V,E,w), there is a constant c > 1 and a
poly(log logn)-round algorithm in the CONGEST model that finds, with high probability, an
independent set of weight at least w(V )

c∆ .

Our algorithm has the following two-step structure.

1. First, we sample a sparse subgraph Hw = (VH , EH , w) of Gw with the following two
properties:
a. The maximum degree ∆H of Hw is at most O(logn).
b. w(VH)/∆H = Ω(w(V )/∆). That is, the ratio between the total weight and maximum

degree in Hw is at least, up to a constant factor, as in Gw.
2. Then, we use Theorem 8 to find an independent set in Hw of size at least w(VH)

4(∆H+1) = w(V )
c∆ ,

for some constant c > 1, in O(MIS(n,∆H)) = O(MIS(n, logn)) = poly(log logn) rounds.

The first step: sampling a subgraph with the desired properties. Recall that w(N(v)) is
the sum of weights of the neighbors of v, which we call the weighted degree of v. For each
node v ∈ V , let wmax(v) = max{w(N(u)) | u ∈ N+(v)}. It is useful to think about wmax(v)
as the maximum weighted degree of a node in the inclusive neighborhood of v. We sample a

DISC 2020
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subgraph Hw = (VH , EH , w), as follows. Let λ ≥ 1 be a constant to be chosen later. Recall
that δ(v) is the maximum degree of a node in the inclusive neighborhood of v. Each node
v ∈ V joins VH with probability

p(v) = λ logn · ( 1
δ(v) + w(v)

wmax(v) )

Where if p(v) ≥ 1, then v joins H deterministically. In Lemma 12, we show that
the maximum degree of Hw is ∆H = O(logn). In Lemma 16, we show that w(VH) =
Ω(min{w(V ), w(V ) logn/∆}).

I Lemma 12. The maximum degree ∆H in Hw is O(logn), with high probability.

Proof. Let V + = {v ∈ V | p(v) ≥ 1}. We show that each node u has at most O(logn)
neighbors in V + ∩ VH , and at most O(logn) neighbors in (V \ V +) ∩ VH . Let NH(v) be the
set of neighbors of v in H.
1. For every v ∈ V , |NH(v) ∩ V +| ≤ 2λ logn: Assume towards a contradiction that there

are more than 2λ logn nodes in NH(v) ∩ V +. Since each node v ∈ V + has p(v) ≥ 1, it
holds that∑

u∈N(v)∩V +

p(u) ≥
∑

u∈NH(v)∩V +

p(u) > 2λ logn

On the other hand,∑
u∈N(v)∩V +

p(u) ≤
∑

u∈N(v)

p(u) =
∑

u∈N(v)

λ logn · ( 1
δ(v) + w(v)

wmax(v) )

Since deg(v) = |N(v)| and w(N(v)) =
∑
u∈N(v) w(u) are lower bounds on δ(v) and

wmax(v), respectively, we have that∑
u∈N(v)

λ logn · ( 1
δ(u) + w(u)

wmax(u) ) ≤
∑

u∈N(v)

λ logn · ( 1
deg(v) + w(u)

w(N(v)) ) = 2λ logn

which is a contradiction.
2. |NH(v) ∩ (V \ V +)| ≤ 2λ logn: Observe that the expected number of neighbors of v in

NH(v) ∩ (V \ V +) is∑
u∈N(v)

p(u) ≤ 2λ logn

Since |NH(v) ∩ (V \ V +)| is a sum of independent random variables, one can apply
Chernoff’s bound (Fact 1) to achieve that this number concentrates around its expectation
with high probability.

By applying a standard Union-Bound argument over all the nodes, we conclude that the
maximum degree in Hw is ∆H = O(logn) with high probability. J

The rest of this section is devoted to the task of proving that w(VH) = Ω(min{w(V ),
w(V ) logn/∆}). This is proved in Lemma 16. First, we start by proving a slightly weaker
lemma, that assumes that for all v ∈ V , p(v) ≤ 1.

I Lemma 13. Assume p(v) ≤ 1, for all v ∈ V . It holds that w(VH) = Ω(w(V ) logn/∆),
with high probability.
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Main idea of the proof of Lemma 13. Let w1 ≥ w2 ≥ ... ≥ wn be a sorting of the weights
of nodes in V in a decreasing order (where ties are broken arbitrarily). Let Vhigh = {u ∈ V |
w(u) ∈ {w1, ..., w∆}}, and let Vlow = V \ Vhigh = {u ∈ V | w(u) ∈ {w∆+1, ..., wn}}. That is,
Vhigh contains the ∆ heaviest nodes, and Vlow contains all the other nodes. The proof is
split into the following two cases that are proven separately in Claims 14 and 15.
1. w(Vhigh) ≥ w(V )/2: In this case, at least half of the total weight is distributed among

high-weight nodes. Intuitively, we need to make sure that we get many of these high-weight
nodes. Since the number of high-weight nodes that are sampled is a sum of independent
random variables, we are able to use Chernoff’s bound to prove that many of them are
sampled, with high probability. The full proof for this case is presented in Claim 14.

2. w(Vlow) ≥ w(V )/2: In this case, at least half of the total weight is distributed among
low-weight nodes. Therefore, it is sufficient to show that w(VH) = Ω(w(Vlow) logn/∆).
The key property here is that we can bound the maximum weight of a node in Vlow by
w(V )/∆. We show how to use this property together with Bernstein’s inequality to prove
Lemma 13 for this case. The full proof for this case is presented in Claim 15.

B Claim 14. Assume that for all v ∈ V , p(v) ≤ 1. Let Vhigh = {u ∈ V | w(u) ∈ {w1, ..., w∆}}.
If w(Vhigh) ≥ w(V )/2, then w(VH) = Ω(w(V ) logn/∆), with high probability.

Proof. Let S = {v ∈ Vhigh | w(v) ≥ w(V )/4∆}. We start by showing that at least a constant
fraction of the total weight in Gw is distributed among nodes in S. Let S = Vhigh \ S, we
start by showing that w(S) ≤ w(V )/4:

w(S) ≤
∑
v∈S

w(v) ≤
∑
v∈S

w(V )
4∆ ≤ w(V )

4

where the last inequality holds because |S| ≤ |Vhigh| = ∆. Therefore, w(S) = w(Vhigh \
S) = w(Vhigh) − w(V (S)) ≥ w(V )/4. Next, we show that |S ∩ VH | = Ω(logn), by using
Chernoff’s bound. Let xv be a {0, 1} random variable indicating whether v ∈ VH , and let
X =

∑
v∈S xv. We show that the expectation of X is at least c logn/4.

E[X] =
∑
v∈S

E[xv] =
∑
v∈S

p(v) =
∑
v∈S

λ logn · ( 1
δ(v) + w(v)

wmax(v) )

≥
∑
v∈S

w(v)λ logn
w(V ) ≥ λ logn

w(V ) ·
∑
v∈S

w(v) = w(S)λ logn
w(V ) ≥ λ logn

4

Furthermore, sine X is a sum of independent {0, 1} random variables with expectation
Ω(logn), by applying Chernoff’s bound (Fact 1), we conclude that there are at least Ω(logn)
nodes in S ∩ VH , with high probability. Since each node in S has weight at least w(V )/4∆,
this implies that the total weight in VH is w(VH) ≥ w(S ∩ VH) = Ω(w(V ) logn/∆), with
high probability, as desired. C

B Claim 15. Assume that for all v ∈ V , p(v) ≤ 1. Let Vlow = {v ∈ V | w(v) ∈
{w∆+1, ..., wn}}. If w(Vlow) ≥ w(V )/2, then w(VH ∩ Vlow) = Ω(w(V ) logn/∆), with high
probability.

Proof. Let xv be a {0, 1} random variable indicating whether v ∈ VH , let yv = xv ·w(v), and
let Y =

∑
v∈Vlow

yv. We prove the following 3 properties:
1. E(Y ) ≥ w(V )λ logn

2∆ : this is because
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E[Y ] =
∑

v∈Vlow

p(v) · w(v) =
∑

v∈Vlow

λ logn · ( 1
δ(v) + w(v)

wmax(v) ) · w(v)

≥
∑

v∈Vlow

w(v)λ logn
∆ = w(Vlow)λ logn

∆ ≥ w(V )λ logn
2∆

where the last equality holds since w(Vlow) ≥ w(V )/2.
2. For any v ∈ Vlow, it holds that w(v) ≤ w(V )/∆: Recall that {w1, · · · , wn} is an ordering

of the weight of nodes by a decreasing order. Hence, for any j, it holds that

wj · j ≤
j∑
i=1

wj ≤ w(V )

where the first inequality holds because wj is the minimum among {w1, ..., wj}. Hence,
since each node v ∈ Vlow has weigh wj where j > ∆, we have that w(v) ≤ w(V )/∆ for
any v ∈ Vlow.

3. It holds that
∑
v∈Vlow

E[y2
v ] ≤ w(V ) · E[Y ]/∆: First, observe that∑

v∈Vlow

E[y2
v ] ≤ max{w(v) | v ∈ Vlow} ·

∑
v∈Vlow

E[yv] = max{w(v) | v ∈ Vlow} · E[Y ]

≤ w(V ) · E[Y ]
∆

where the last inequality holds by the second property.

By proving these three properties, we have satisfied all the prerequisites of Bernstein’s
inequality. A direct application of the inequality yields:

Pr
[
|Y − E[Y ]| ≥ E[Y ]/2

]
≤ 2 exp

(
− E[Y ]2/8
M · E[Y ]/6 +

∑
v∈Vlow

Var(yv)

)
By the second and third properties, we have that∑

v∈Vlow

Var(yv) =
∑

v∈Vlow

E(y2
v)− E[yv]2 ≤

∑
v∈Vlow

E(y2
v) ≤ w(V ) · E[Y ]

∆

⇒Pr
[
|Y − E[Y ]| ≥ E[Y ]/2

]
≤ 2 exp

(
− E[Y ]2/8
w(V )·E[Y ]

6∆ + w(V )·E[Y ]
∆

)
≤ 2 exp

(
−6∆ · E[Y ]/8

7w(V )

)

Furthermore, by the first property, we have that

E[Y ] ≥ w(V )λ logn/2∆

⇒2 exp
(
−6∆ · E[Y ]/8

7w(V )

)
≤ 2 exp

(
−6w(V )λ logn

56w(V )

)
= 2 exp

(
−6λ logn

56 )
)

Finally, choosing λ = 112/6 implies that:

Pr
[
|Y − E[Y ]| ≥ E[Y ]/2

]
≤ 1
n2 log e <

1
n2

as desired. Furthermore, we can boost the success probability to 1−1/nk for any constant
k > 1, by setting λ = 112k

3 .
C
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Having proved claims 14 and 15, this finishes the proof of Lemma 13. Lemma 13 makes
the assumption that p(v) ≤ 1 for all v ∈ V . We remove this assumption in the proof of the
following lemma.

I Lemma 16. It holds that w(VH) = Ω(min{w(V ), w(V ) logn/∆}), with high probability.

Proof. Let V + = {u ∈ V | p(w) ≥ 1}. The proof is split into two cases:
1. w(V +) ≥ w(V )/2: Since all the nodes in V + join VH deterministically, this implies that

w(VH) ≥ w(V +) ≥ w(V )/2.
2. w(V +) < w(V )/2: This implies that w(V \ V +) ≥ w(V )/2. Since each node w ∈ V \ V +

has p(w) < 1, we can apply Lemma 13 directly on the nodes in V \ V + to conclude that
w(VH) = Ω(w(V \V +) logn/∆) = Ω(w(V ) logn/∆), with high probability, as desired. J

Now we are ready to finish the proof of Theorem 11.

Proof of Theorem 11. Since both Lemma 12 and 16 above hold with high probability, we
can apply another standard Union-Bound argument to conclude that both of them hold with
high probability (simultaneously). Hence, by running the algorithm from Section 4.1 on Hw,
we get an independent set of weight Ω(w(VH)/∆H) = Ω(min{w(V ), w(V ) logn/∆}/∆H) =
Ω(w(V )/∆), in MIS(n,∆H) = MIS(n, logn) = poly(log logn) rounds, with high probability,
as desired. J
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