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Abstract
We present nearly optimal distributed algorithms for fundamental reachability problems in planar
graphs. In the single-source reachability problem given is an n-vertex directed graph G = (V, E)
and a source node s, it is required to determine the subset of nodes that are reachable from s in
G. We present the first distributed reachability algorithm for planar graphs that runs in nearly
optimal time of Õ(D) rounds, where D is the undirected diameter of the graph. This improves the
complexity of Õ(D2) rounds implied by the recent work of [Li and Parter, STOC’19].

We also consider the more general reachability problem of identifying the strongly connected
components (SCCs) of the graph. We present an Õ(D)-round algorithm that computes for each node
in the graph an identifier of its strongly connected component in G. No non-trivial upper bound for
this problem (even in general graphs) has been known before.

Our algorithms are based on characterizing the structural interactions between balanced cycle
separators. We show that the reachability relations between separator nodes can be compressed due
to a Monge-like property of their directed shortest paths. The algorithmic results are obtained by
combining this structural characterization with the recursive graph partitioning machinery of [Li
and Parter, STOC’19].
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1 Introduction

Reachability problems in directed graphs are among the most fundamental graph problems,
and as such receive quite a lot of attention in various computational settings. In this
paper, we consider two canonical reachability problems for the family of planar graphs. In
the single-source reachability problem, given a digraph G = (V,E) and a source vertex s,
it is required to identify the set of vertices reachable from s. In the strong connectivity
identification problem, given a digraph G = (V,E), it is required to identify the strongly
connected components of G.

Throughout this paper, we consider the standard CONGEST model of distributed com-
puting [34]. In this model, the network is abstracted as an n-vertex graph G = (V,E),
with one processor on each vertex. Initially, these processors only know their incident edges
in the graph, and the algorithm proceeds in synchronous communication rounds over the
graph G = (V,E). In each round, vertices are allowed to exchange O(logn) bits with their
neighbors and perform local computation. We follow the standard assumption that the
communication graph is bidirectional1.

1 This is the common assumption in the setting of distributed graph algorithms for directed graphs,
cf. [9, 5].
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38:2 Distributed Planar Reachability in Nearly Optimal Time

The single-source reachability problem along with its cousin the single-source shortest
path (SSSP) problem are among the most actively studied problems in the CONGEST model
[6, 33, 17, 27, 22, 7, 10, 15, 5, 25, 23]. In their seminal work, Das-Sarma et al. [6] showed
a lower bound of Ω(D +

√
n/ logn) rounds for the single-source reachability problem for

general n-vertex graphs with undirected diameter D. Nanongkai [33] gave the first non-
trivial upper bound of O(D +

√
nD) rounds for the problem. Shortly after, Ghaffari and

Udwani [17] improved the round complexity to O(D +
√
nD1/4) rounds. This remained the

state-of-the-art, and many efforts went into providing an SSSP algorithm with a matching
round complexity. Very recently, Jambulapati, Liu and Sidford [25] gave an improved bound
of Õ(

√
n+ n1/3+o(1) ·D2/3) rounds2 for the single-source reachability problem.

In a recent work, Forster and Nanongkai [10], building on prior works of Gabow [11] and
Klein and Subramanian [26], have established a strong connection between the problems of
approximate SSSP in directed graphs and exact SSSP in undirected graphs. Specifically,
they gave a quite general transformation that converts an approximate SSSP solution into
an exact one, based on the recursive scaling approach [11, 26]. For the reduction to hold, the
approximate SSSP algorithm is required to work for directed graphs, even if the initial input
graph is undirected. This further strengthens the motivation for understanding reachability
problems in the distributed setting.

In this work, we provide the first reachability algorithms for the family planar graphs
which has been studied thoroughly in the distributed setting. The primary motivation for
studying this family is two-fold. First, planar graphs are ubiquitous in real life communication.
Secondly, this graph family escapes the well-known lower bound of Ω(D +

√
n)-rounds by

Das Sarma et al. [35], giving the hope to solve many of the classical global graph problems
in optimal time of O(D) rounds. The area of distributed planar algorithms for global graph
problems was introduced in a sequence of two works of Ghaffari and Haeupler [13, 14]. In their
work, they introduced the useful notion of low-congestion shortcuts which provide a unified
framework for solving global problems in the CONGEST model. Using this machinery, [14]
presented improved algorithms for the minimum spanning tree and minimum-cut problems.
Low-congestion shortcuts and their algorithmic applications have been further studied in
[19, 20, 21, 28, 18]. An additional key algorithmic tool for planar graphs is given by the notion
of balanced separators [30]. Ghaffari and Parter [16] presented a distributed construction of
balanced cycle separators in the nearly optimal time of Õ(D) rounds.

The most relevant work to our paper is by Li and Parter [29] that presented poly(D)
algorithms for distance computation in planar graphs. In their work, they introduced a very
useful tool that allows one to efficiently apply a divide and conquer based approach using the
balanced cycle separator of [16]. Specifically, as already observed in [16], the key limitation
of applying the cycle separator algorithm in a recursive manner is rooted in the fact that
the diameter of the graphs, obtained throughout the recursive process might be very large
(e.g., once the cycle separator is removed). This ultimately leads to a large cycle separator,
which increases the round complexity of the algorithm. To mitigate this technicality, [29]
presented the notion of bounded diameter decomposition (BDD). Roughly speaking, the BDD
is recursive decomposition of the graph in a balanced manner, in a way that guarantees that
(i) the diameter of each subgraph is Õ(D) and (ii) all subgraphs at the same recursion layer
are nearly edge disjoint. Using the BDD, [29] showed a poly(D, 1/ε)-round algorithm for
computing a (1+ε) approximation of the diameter in weighted graphs; and Õ(D2) algorithms
for computing the exact distance labels and SSSP trees. Very recently, Abboud, Cohen-Addad

2 The Õ notation hides poly logarithmic factors in the number of vertices n.
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and Klien [1] showed that the exact computation of the weighted diameter requires Ω(n)
rounds, even if the underlying unweighted diameter is constant. This demonstrates a gap
between the problem of exact SSSP and diameter computation in weighted planar graphs.

Finally, another line of research related to our work is given by the metric compression
schemes for planar graphs. Abboud et al. [2] gave an efficient (centralized) compression
scheme to encode the S×S distances in a unweighted undirected graphs. Using the unit-Monge
property, they showed that the S × S distances can be encoded in O(min{|S|2,

√
|S|n}) bits.

In this paper we consider directed graphs, and aimed at compressing reachability information
in the distributed setting. Nevertheless, the heart of our compression technique is inspired by
that of [2] and shares several technical similarities. That is, the directed paths in our work
have a Monge-like property in a similar manner to the unweighted undirected shortest paths
of [2]. Whereas the Monge property has been heavily utilized in many centralized algorithms
for planar graphs [8, 32, 31, 24, 3, 4], our paper shows that it is also useful in the distributed
setting.

1.1 Our Results
We present distributed algorithms for several fundamental graph problems in directed planar
graphs. Starting with the single-source reachability problem, we provide an improved
algorithm for computing reachability labels of size Õ(D) bits within Õ(D) rounds. Given
the labels of any vertex pair u and v, one determine if there is a directed path from u to v in
G and vice-versa. Given these labels, the single source reachability problem can be solved by
broadcasting the Õ(D)-bit label of the source to the entire network.

I Theorem 1. [Reachability Labels and Single Source Reachability] There exists a randomized
distributed algorithm that for every D-diameter planar digraph computes Õ(D)-bit reachability
labels within Õ(D) rounds, w.h.p.3 This yields a single-source reachability algorithm with
Õ(D) rounds.

We then turn to consider the generalization of the problem to multiple sources S. A
direct application of Thm. 1 gives an Õ(|S|D)-round solution. We then show that when
the S sources lie (not necessarily consecutively) on the boundary of a single face, the
round complexity can be improved to Õ(D + |S|) rounds. This variant becomes useful for
the identification of the strongly connected components of G, as will be explained next.
Throughout the paper we use the notion of virtual edges. These are edges (u, v) that are
not in G but their addition to G preservers its planarity. In the distributed setting, the
endpoints of the virtual edges know their incident virtual edges and their (combinatorial)
embedding in the planar graph.

I Lemma 2. [Multi-Source Reachability] Let S be a collection of source vertices lying on a
boundary of a single face of a planar graph G (possibly with one virtual edge). Then, there
exists a randomized distributed algorithm that computes the S × V reachability in Õ(D + |S|)
rounds w.h.p.

Finally, we have almost all the necessary ingredients to identify the strongly connected
components (SCCs) of the graph. To the best of our knowledge, there are no non-trivial
algorithms for this problem, even for general graphs. One of the challenges in handling

3 As usual, w.h.p. refers to success guarantee of 1− 1/nc for any given constant c, where n is the number
of vertices.
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38:4 Distributed Planar Reachability in Nearly Optimal Time

this task is the following. When applying a recursive graph partitioning to the input graph,
the SCCs of G are not necessarily extensions of the SCCs of the descendent subgraphs in
this recursion. That is, the directed path P1, P2 from u to v and from v to u can become
intact in different levels of the recursive partitioning. For that purpose, we designed a more
delicate recursive scheme based on the multi-source reachability algorithm of Lemma 2. Our
algorithm has a nearly optimal round complexity, which matches also the complexity of
connectivity identification in undirected graphs by [14].

I Lemma 3. [Strong Connectivity Decomposition] There exists a randomized algorithm that
computes the strongly connected components (SCCs) of a planar graph G within Õ(D) rounds,
w.h.p.

Weighted Digraphs. We also consider reachability problems in weighted digraphs such as
computing the directed SSSP tree. While our compression scheme cannot be extended to
incorporate distances, we observe that the SSSP algorithm of [29] designated for undirected
graphs, can in fact be easily adapted to the digraphs as well. We also show an algorithm for
computing the divide minimum-weight directed cycle within Õ(D2) rounds. We have:

I Lemma 4 (Directed MSSP and Minimum Directed Girth). Given a weighted planar digraph
G = (V,E,w), there are randomized algorithms that w.h.p. compute (1) an exact MSSP
w.r.t a subset of sources S ⊆ V within Õ(D2 +D · |S|) rounds, and (2) a minimum weighted
directed cycle within Õ(D2) rounds.

The most intriguing open question left by our work concerns the computation of SSSP in
o(D2) rounds. We hope that our nearly optimal solution for the single-source reachability
problem will serve the first step in that direction.

1.2 Technical Overview
Our algorithms are based on several existing tools by [16, 29] as well as several new tools, on
which we elaborate more.

1.2.1 Balanced Separators and Bounded Tree Decompositions [16, 29]
A balanced separator of a planar graph G is a subset of vertices S ⊆ V (G) whose removal
breaks G into components of size at most 2/3n. The celebrated result of Lipton and Tarjan
[30] demonstrates the existence of a balanced cycle separator of size O(D) for every planar
graph with undirected diameter D. More generally, their proof shows that given a spanning
tree T in G, there exist two tree paths in G plus one additional edge4 (possibly not in G)
that form a balanced cycle separator C for G. Ghaffari and Parter [16] gave an Õ(D)-round
randomized algorithm for computing these separators for biconnected planar graphs. This
was later generalized for any planar graphs by [29]. In what follows, we denote the cycle
separator of G by sep(G).

Li and Parter [29] introduced the notion of bounded-diameter decomposition (BDD) of a
D-diameter graph G. Viewed on the high-level, the BDD algorithm recursively applies the
separator algorithm of [16] to decompose the graph into smaller and “almost” edge-disjoint
subgraphs with bounded diameters. This recursive decomposition is represented by a tree T ,
where each vertex of this tree, denoted as a bag, corresponds to subgraphs G′ of G. We refer

4 Adding that extra edge to G preserves its planarity. We refer to that edge as a virtual edge.
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to the bags by their corresponding subgraphs. The root bag corresponds to G and the leaf
bags correspond to subgraphs of G of size O(D logn). The child bags of each bag G′ ⊆ G
are defined based on the cycle separator sep(G′) of G′. In an ideal scenario, the separator
decomposes G′ into two child bags G′in and G′out that are embedded in the interior and the
exterior of the cycle sep(G′), respectively. The actual algorithm is more involved as it needs
to satisfy several constraints to guarantee the efficiency of the distributed computation inside
these bags. Due to these complications, the BDD algorithm might define several child bags
G′1, . . . , G

′
` rather than just two.

The bounded diameter decomposition has several useful properties. The tree T has a
logarithmic depth, as the child bags are defined based on balanced separators. The leaf
bags contain O(D logn) vertices. In addition, in every level i of the tree T , all the bags of
that level are nearly edge-disjoint which allows one to work on all subgraphs of the same
level in parallel. An important property of the decomposition is its diameter preserving:
the diameter of each bag G′ is bounded by O(D logn). Consequently, the separator size
is bounded by |sep(G′)| = O(D logn) for every bag G′. This property is crucial for the
efficiency of divide-and-conquer based computations in G. Another useful property of the
BDD algorithm is the following. For every bag G′, each separator vertex u ∈ sep(G′) appears
on at most three child bags of G′. Every other vertex belongs to a unique child bag. Keeping
these properties in mind, we are now ready to highlight the key algorithmic ideas in our
constructions.

1.2.2 New Approach for Reachability Labels via Reachability Preservers
At the heart of the single-source reachability algorithm lies an algorithm that computes short
reachability labels for all the vertices in the graph. In the centralized setting, Thorup [36]
gave an ingenious (centralized) technique to compute reachability labels of Õ(1) bits. These
labels are designed based on applying various reachability computations on a modified graph
Ĝ obtained from G. Since in our setting we use the labels for the purpose of computing
reachability, we will be using instead the labeling scheme by Gavoille et al. [12]. Although
the latter labels have Õ(D) bits, their distributed computation is more natural, and as we
will see can be done in Õ(D) rounds.

High-level description the distributed label computation. Our algorithm applies two
recursive phases. The first phase of the algorithm computes in a bottom-up manner a
succinct reachability preserver for the separator vertices. The second phase computes the
reachability labels by applying a top-down recursion. Interestingly, the second phase requires
no communication, and can be applied locally at each vertex based on their local knowledge
on the BDD, and the reachability preservers constructed in the first phase.

For our recursive framework to hold, we introduce the notion of extended separator set
that contains the separator vertices of G′, as well as the separator vertices of all the ancestor
bags of G′ in the BDD tree. That is, letting anc(G′) be these ancestor bags of G′, then the
extended separator set, denoted by, sep+(G′) is the union of sep(G′′) for every G′′ ∈ anc(G′)
and the vertices of sep(G′). The important observation is that since the depth of the BDD
tree is logarithmic, the extended separator set of each bag G′ is bounded by Õ(D). The
main technical part of the algorithm is in the computation of the reachability preservers
with respect to the extended separator sets. For a given sub-graph G′ ⊆ G and a subset of
vertices S′, a reachability preserver H(S′, G′) is a graph whose vertex set is S′ and for every
s, s′ ∈ S′, the edge (s, s′) is in H(S′, G′) iff there exists a directed path from s to s′ in G′.
Our goal is to compute for every bag G′, a reachability preserver H(G′) = H(sep+(G′), G′)
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38:6 Distributed Planar Reachability in Nearly Optimal Time

that captures the reachability relations between the vertices of sep+(G′) in the graph G′. In
the output format, it is required for every vertex u to learn the preserver H(sep+(G′), G′)
for every bag G′ that contains u.

The preservers of the bags G′ are built in a bottom-up manner, and their efficient
computation is based on being able to locally compress the reachability information of the
sep+(G′) vertices. The leaf bags of the BDD contain just O(D logn) vertices and thus, every
vertex can collect its leaf bag information and locally compute the preserver H(G′). Then, in
every independent step of the recursion we are given a bag G′ with child bags G′1, . . . , G′`. By
the induction, the vertices of G′j have already computed the preservers H(G′j) for every j. It
is then required to compute H(G′) within Õ(D) rounds. For every child bag G′j , let Ĥ(G′j)
be the preserver H(G′j) induced on the vertices of sep+(G′)∩ V (G′j). We then show that the
preserver H(G′) can be obtained by computing the sep+(G′)× sep+(G′) reachability in the
union of the graphs

⋃
j Ĥ(G′j). Thus, the computation of the preserver H(G′) boils down

into the following task for every child G′j :

Every vertex in sep+(G′) ∩ V (G′j) is required to send its incoming and outgoing
neighbors5 in the graph Ĥ(G′j) to all vertices in G′.

Since each vertex in sep+(G′) ∩ V (G′j) might have Ω(D) neighbors in Ĥ(G′j), sending these
neighbors, explicitly, leads to a total of |sep+(G′)∩V (G′j)| ·Ω(D) = Ω(D2) bits of information.
Our key observation is that the information on the incoming and outgoing neighbors in the
graph Ĥ(G′j) can be compressed into just Õ(1) bits! Using this compression scheme, the
entire information on the edges of Ĥ(G′j), for every child bag G′j , can be encoded in Õ(D)
bits, in total. We also show that the encoding has a nice structure that allows all vertices in
G′ to locally decode it, reconstruct the graphs Ĥ(G′j), and consequently compute the desired
preserver H(G′).

Once the labels are computed, the single-source reachability is computed within extra
Õ(D) rounds, by sending the label of s to all the vertices.

Strongly Connected Components (SCCs) Identification. The most challenging reacha-
bility problem studied in this paper concerns the identification of the strongly connected
components in G. The main obstacle for identifying these components in a divide-and-conquer
based approach is rooted in the fact that the SCC of G are not necessarily extensions of the
SCC of its child components G′. That is, it might be the case that u, v ∈ G′ do not belong to
the same SCC in G′, although they belong to the same SCC in G. Our approach for solving
this problem in the nearly optimal time of Õ(D) rounds is based on the following steps. First,
for every bag G′ the vertices compute the reachability preservers H(G′) that describe the
reachability in G′ between all pairs of vertices in sep+(G′). Next, we use the multi-source
reachability algorithm to compute the {u}× sep(G′) reachability for every vertex u and every
bag G′ that computes u. The separator vertices sep(G′) play the role of the multiple sources
S. We will use here the fact that the sep(G′) vertices lie on a face (in fact, an almost-face)
in both6 G′in and G′out. This allows us to safely apply the multi-source algorithm w.r.t the
vertices of sep(G′) in both G′in and G′out. The output of these two computations can be
combined to obtain the reachability from u to the sep+(G′) vertices in G′. The algorithm

5 For a directed graph H and a vertex u, the incoming (outgoing) neighbors of u are all vertices v such
that (v, u) ∈ H (resp., (u, v) ∈ H).

6 Recall that G′in and G′out are the subgraphs that embedded in the interior (reps., exterior) of the cycle
separator sep(G′).
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then applies a top-down recursive procedure whose goal is to let each vertex u ∈ G′ to learn
the reachability relations in G, rather than in G′. That is, at the end of this procedure, each
vertex u ∈ G′ learns (i) a reachability preserver for the sep+(G′)× sep+(G′) reachability in
G; and (ii) its reachability in G to the sep(G′) vertices.

1.3 Preliminaries and Tools
Graph Notation. For a graph G = (V,E) and a subset of vertices X ⊆ V , let G[X] be the
induced subgraph on X. Throughout, we assume that the communication graph G = (V,E)
is connected (in the undirected sense) and has (undirected) diameter D. Otherwise, our
algorithms can be applied on each (undirected) connected component of G. For a directed
graph G = (V,E), a subgraph G′ ⊆ G and u, v ∈ V , we say that u �G′ v if there is a
directed path from u to v in G′. We denote by u v a directed path from u to v. The set of
vertices that have a directed path to a vertex u will be denoted by the incoming vertices to
u. The outgoing vertices of u are defined in an analogous manner. Let Nin(u,G), Nout(u,G)
be the set of incoming (resp., outgoing) neighbors of u in G. When G is clear form the
context, we may simply write Nin(u) and Nout(u). Throughout, we use the notion of
combinatorial embedding where each vertex knows the clockwise orientation of its neighbors.
This embedding can be computed in Õ(D) rounds [13].

I Definition 5 (Reachability Preservers). Given a directed graph G = (V,E), a subgraph G′
and S ⊆ V , the reachability preserver for S in the subgraph G′, denoted by H(S,G′), is a
graph with a vertex set S that captures the S×S reachability in G′. That is, V (H(S,G′)) = S

and for every u, v ∈ S ∩G′, (u, v) ∈ H(S,G′) iff u �G′ v.

I Definition 6 (Almost-Faces). For a planar graph G = (V,E), an almost-face is a subset
of edges E′ in G such that there exists a planar graph G′ = (V,E ∪ E′′) where E′ ∪ E′′ is a
face in G′. That is, a set of edges E′ is almost-face if one can add edges to the planar graph
between the endpoints of E′ to make it a face.

We will use the fact that an almost-face has either an empty interior or exterior in the planar
embedding. Our reachability algorithms make an extensive use of several distributed tools
designed for undirected planar graphs. Interestingly, despite the fact that our goal is to
compute reachability information, we will still be using useful procedures for undirected graphs
such as the computation of the cycle separator, and the bounded diameter decomposition of
the (underlying undirected) input graph.

Distributed Cycle Separators. For a graph G = (V,E), a subset of vertices S ⊆ V is
a balanced separator if the removal of S breaks G into connected components that are
constant factor smaller than the number of vertices in G. For a graph G and a spanning
tree T ⊆ G, a balanced cycle separator S is a cycle formed by two tree-paths π(x, y) and
π(y, z) (where possibly z = y) plus an additional edge (x, z) which is not necessarily in G
(which we call a virtual edge). This cycle defines two regions in G, the region inside the cycle
and the region outside, where the number of vertices in both these regions is bounded by
2n/3. For biconnected graphs, [16] gave a randomized algorithm for computing a balanced
cycle separator in Õ(D) rounds. Recently, [29] extended it to general planar graphs (i.e.,
1-connected). We therefore have:

I Lemma 7. [16, 29] Given a D-diameter planar graph G and a spanning tree T ⊆ G, there
exists a randomized algorithm that is Õ(D) rounds w.h.p. computes a balanced cycle separator
that consists of two tree paths of T plus one additional edge (which might be not in G).

DISC 2020



38:8 Distributed Planar Reachability in Nearly Optimal Time

Bounded Diameter Decomposition. For an undirected graph G of diameter D, a bounded
diameter decomposition is a recursive balanced decomposition of the vertices into subgraphs of
bounded diameter. The decomposition is represented by a tree T , whose vertices, denoted as
bags7, correspond to subgraphs in G. This decomposition should satisfy two crucial properties.
First, the diameter of each bag is bounded by O(D logn) which enables the computation of
the O(D logn)-size cycle separator in a recursive manner. The second property is that each
edge e belongs to at most two subgraphs in each recursion level. This allows one to work
on all subgraphs of the same level simultaneously. Each bag G′ in the decomposition has
a topological closure O(G′) that might contain only vertices that appear on the separator
of the ancestor bags of G′ in the BDD tree T . An additional useful property of the BDD
that will be heavily exploited by our algorithms is that each vertex of G′ appears on at most
three child bags of G′.

We will use the following notation for a BDD tree T . Let anc(G′) be the set of ancestor
bags of G′ on T , and let sep(G′) be the cycle separator of G′ obtained by the algorithm of
Lemma 7. We slightly override notation by sometimes treating sep(G′) as the the set of cycle
edges, and sometime as the set of separator vertices. Note that one of the edges of the cycle
separator might not be in G. We refer to edges not in G by virtual edges. These virtual
edges can be safely added to the graph without breaking planarity, and are used mainly for
analysis purposes. The cycle separator sep(G′) defines two regions interior and exterior to
the cycle. In the BDD tree, G′ has exactly one internal child bag G′in which is embedded in
the interior of sep(G′), however G′ might have several external child bags (i.e., the lie in the
exterior of sep(G′)). Handling these many external child bags leads to several challenges in
our arguments. In the full paper we provide a formal definition of the BDD.
I Theorem 8 (Bounded diameter decomposition for planar graphs, [29]). Let G = (V,E) be an
unweighted planar graph with diameter D. There is a randomized distributed algorithm that
w.h.p. computes the recursive partitioning of G represented by a tree T of height O(logn)
within Õ(D) rounds. In particular, every bag X ∈ VT has a unique ID and every vertex
knows the IDs of all the bags that contain it.

2 Nearly Optimal Reachability in Õ(D) Rounds

[29] presented an Õ(D2) round algorithm for computing (exact) distance labels in undirected
graphs. Just like our reachability labels, their labels are also based on the labeling scheme of
Gavoille et al. [12]. In the algorithm of [29] the labels are computed in a recursive manner,
where in each step of the recursion the distance labels of the separator vertices sep(G′)
are broadcast over G′ for every bag G′ in the BDD. Since every label has Õ(D) bits and
|sep(G′)| = Õ(D), this led to a round complexity of Õ(D2) rounds. The key contribution
in this section is in providing an algorithm for computing the reachability labels without
explicitly sending the labels of the separator vertices. In our algorithm, the separator
vertices compress their reachability information into Õ(1) bits which will allow the vertices
to reconstruct the label information.

For a given bag G′ in the BDD tree T , let anc(G′) be the ancestor bags of G′ in T .
Define the extended separator vertices of G′ by

sep+(G′) = sep(G′) ∪
⋃

G′′∈anc(G′)

sep(G′′) .

7 We note that the BDD construction has no relation to the tree decomposition of bounded treewidth
graphs. The term bags is used in [29] to denote the vertices of the BDD.
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Observe that |sep+(G′)| = Õ(D) since the height of the BDD is logarithmic and the separator
of each bag is of size O(D logn). The key computational step is the computation of the
reachability preservers H(sep+(G′), G′) for every bag G′ in the BDD tree (see Def. 5). Using
this information, the vertices will be able to compute the reachability labels with no further
communication. The structure of this section is as follows. In Sec. 2.1, we provide the basic
characterization for compressing the reachability information between separator vertices.
Then in Sec. 2.2 we describe the algorithm for computing the labels. The single-source
reachability algorithm follows immediately given these labels.

Remark. Note that in the sep+(G′) definition, we do not restrict the separator ver-
tices sep(G′′) for G′′ ∈ anc(G′) to be included in V (G′). However, by the definition of
H(sep+(G′), G′), only vertices of sep+(G′) ∩ V (G′) are included. We still choose to define it
in this way for the purpose of the future sections, in which it will be important to take into
account the sep+(G′) vertices that are not in V (G′).

2.1 Distributed Compression of Reachability Information
The efficient computation of the reachability preservers are based on several structural
claims that allow the vertices in the extended separator sets to compress their reachability
information. The lemmas provided in this section are built upon several properties of the
BDD algorithm, and in particular to the way in which the child bags of a given bag G′ are
defined. While the proof arguments contain the necessary details, it will be recommended
for the reader to go through the short description of the BDD algorithm to be provided
in the full paper and in [29]. The arguments in this subsections have two parts. In the
first part we show that the extended separator set sep+(G′) lie on a collection of O(logn)
almost-faces in G′. In the second part we show that the reachability information of vertices
lying on two faces can be compressed efficiently. Putting these two parts together imply that
the compression of the reachability information of the sep+(G′)× sep+(G′) pairs. The next
lemma shows that the separator vertices of all the ancestor bags of a bag G′ lie on O(logn)
almost-faces in G′. The main challenge arises in the case where the BDD algorithm defines
several external child bags throughout the decomposition (i.e., bags that are embedded in
the exterior of the cycle separator). Recall that by virtual edge we refer to edges not in G
but whose addition to G preserve its planarity. In our algorithms, the vertices know their
incident virtual edges and their combinatorial embedding.

I Lemma 9. The separator vertices of anc(G′) lie on a collection O(logn) almost-faces
in G′. On each such face, the separator vertices lie consecutively. In addition each such
almost-face has O(logn) virtual edges (i.e., that are not in G).

Proof. For every level-j bagG′, we will prove by induction on i ∈ {1, . . . , j} that the separator
vertices S[j−1,j−i] of all its ancestor bags of G′ in levels j − 1, . . . , j − i lie consecutively on
at most i almost-faces of G′.
Base case: For every bag G1 with a parent bag G2, we show that the vertices of sep(G2) ∩

V (G1) lie consecutively on a single almost-face of G1 that has at most one virtual edge.
Recall that the cycle separator sep(G2) is defined by two shortest paths and one additional
edge e′, possibly not in G. For the sake of showing that the separator vertices lie on an
almost-face, we assume w.l.o.g. that sep(G2) forms a cycle in G. We now distinguish
between two cases. The first case is where sep(G2) intersects the topological closure
O(G2) in at most a single segment. In this case, G2 has exactly two child bags G2,in and
G2,out that lie in the interior (resp., exterior) region defined by sep(G2). We then have
that the vertices of sep(G2) define the topological closure of G2,in and an internal face in
G2,out, so the claim holds.
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Next, consider the case where sep(G2) intersects with the topological closure O(G2) in at
least two non-consecutive segment. In this case, the BDD algorithm defines several bags
in the exterior of the cycle sep(G2), one bag per connected region of O(G2) \ O(G2,in).
The vertices of sep(G2) will appear on the topological closure (and thus on the outer face)
of these bags in a consecutive manner. To see this, consider a clockwise walk along the
cycle sep(G2) and observe that any pair of non-continuous intersection points with the
topological closure O(G2) defines a bag that is connected in (G2 ∪ sep(G2)) \ O(G2,in).
For these bags, it is easy to see that the vertices of sep(G2) lie consecutively on their
topological closure. Finally, since the cycle sep(G2) contains at most one virtual edge,
there exists at most one bag that might not be connected in G2 \ O(G2,in) (although
connected in (G2 ∪ sep(G2)) \ O(G2,in) due to the virtual edge on sep(G2)). The BDD
algorithm splits this bag into two connected components. This breaks sep(G2) into two
segments each will be on the topological closure of their bags. The induction base holds.

Inductive Step: Assume that the claim holds for each level-j bag G′ w.r.t all the separator
vertices of its ancestor bags in levels j − 1, . . . , j − i. We will prove the claim for all
ancestor bags in levels j − 1, . . . , j − i− 1. Consider a directed path Gj−i−1, . . . , Gj of
length i in the BDD tree, that starts at a level-(j − i− 1) bag Gj−i−1 and ends at a level
j bag Gj .
By the induction assumption, we assume that the vertices of

⋃j−2
k=j−i−1 sep(Gk) lie

consecutively on at most i − 1 almost-faces f1, . . . , fi−1 in Gj−1. The cycle separator
sep(Gj−1) might have several types of interaction with each face fj′ (e.g., containment,
with or without intersection, etc.). See Fig. 1 for an illustration of the below mentioned
cases. The simpler case is where fj′ is embedded in the interior of the cycle sep(Gj−1).

𝐺𝑜𝑢𝑡
′

𝑓
𝐺𝑖𝑛
′

𝐺𝑜𝑢𝑡
′

𝐺𝑖𝑛
′

𝑓

𝐺𝑜𝑢𝑡
′

𝐺𝑖𝑛
′

𝑥

𝑦
𝑓𝑗′

𝑝1

𝑝ℓ

Figure 1 (1) The face f is strictly embedded in the interior of the cycle sep(G′). In case where
vertices of f appear also in the external bags of G′, it must be that these vertices are contained in
sep(G′). (2) f = O(G′), that is, all vertices of f are lying on the topological closure. Note that as f

is a topological face, it holds that if all vertices of f are on the topological closure then necessarily
f = O(G′). In the case where one of the regions is not connected in G′, the segment of f is split into
two consecutive segments, each appearing on the topological closure one child bag. This property
follows by a simple path-crossing argument. Let (x, y) be the virtual edge on sep(G′), in this case
we will have one bag containing x and the other bag containing y. For example, if p1 is connected in
G′ to y, it must also hold that all other vertices pi≥1 are connected to y. This is because any path
from pi to x would intersect the path connecting p1 and y. (3) In the last case, f is fully contained
in one of the regions enclosed by the topological closure and the cycle separator. The case where the
vertices embedded in this region are not connected in G′ is further illustrated in Fig. 2.

The induction step then holds for Gj−1,in w.r.t the separator vertices on fj′ . Letting
Gj−1,out = Gj−1 \ O(Gj−1,in), then since fj′ is embedded in the interior of the cycle
defined by sep(Gj−1), we get that fj′ ∩ V (Gj−1,out) ⊂ sep(Gj−1). By the induction
assumption, the vertices of sep(Gj−1) lie consecutively on the external bags of Gj−1. We
therefore have that the vertices of fj′ ∪ sep(Gj−1) lie consecutively in the external bags
of Gj−1. From now on, assume that that fj′ is embedded in the exterior of the cycle
sep(Gj−1).
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Case 1: sep(Gj−1) and O(Gj−1) have at most one mutual segment. In this case Gj−1
has exactly two child bags in the BDD, namely, Gj−1,in and Gj−1,out. Since sep(Gj−1)
and fj′ are cycles, it holds that fj′ is either fully contained in Gj−1,in or Gj−1,out.
In the case where fj′ ⊂ Gj−1,out, we have that fj′ ∩ Gj−1,in ⊂ sep(Gj−1) and since
sep(Gj−1) forms an almost-face in Gj−1,in it holds that (fj′ ∪ sep(Gj−1))∩Gj−1,in forms
an almost-face in both Gj−1,in. The argument works in a symmetric manner in case
where fj′ ⊂ Gj−1,in.

Case 2: sep(Gj−1) and O(Gj−1) have more than two mutual segments. This is the most
involved case in the BDD algorithm where an external child bag is defined for each region
enclosed by sep(Gj−1) and the topological closure O(Gj−1). There are two sub-cases.
Case 2.1: all the vertices of fj′ are embedded on O(Gj−1). Note that since fj′ is an

almost-face, it holds that in this case fj′ = O(Gj−1). For example, this case always
occur for the interior child in the BDD algorithm whose topological closure is defined
by the separator of its parent bag. In this case, the boundary might be split in a
consecutive manner to several child bags. See middle figure of Fig. 1. There might
be at most one child bag that would be disconnected into two components. We claim
that the segment of fj′ will be decomposed into two consecutive segments, one per
component. To see this, let (x, y) be the virtual edge on sep(Gj−1), and let p1, . . . , pk

be the vertices on fj′ lying on the topological closure from left to right, also in this
ordering x appears to the left of y. Observe that if p1 is in the component of y then
all other vertices pi for i ≥ 2 must be in the component of y, as otherwise their path
to x must intersect with the path connecting y and p1. See Fig. 1(2). Let ` be the
maximum index such that p` is in the component of x. By the same argument (of
crossing paths) it holds that all vertices pi for i ∈ {1, . . . , `} must be in the component
of x as well. Thus the segment of fj′ is cut into two consecutive segments appearing
on the topological boundary of two child bags.

Case 2.2: fj′ has at least one vertex that is not on O(Gj−1). In this case, as fj′ is
an almost-face, fj′ is fully embedded in one of the regions enclosed by the topological
boundary O(Gj−1) and the cycle separator sep(Gj−1). See Fig. 1(1,3) and Fig. 2 for
an illustration. Since sep(Gj−1) contains at most one virtual edge, there exists at most
one region, such that the set of vertices embedded in this region are not connected in
Gj−1 (although connected in Gj−1 ∪ sep(Gj−1) due to the virtual edge). The BDD
algorithm splits this region into two regions such that all vertices embedded in those
regions are now connected in G. Specifically, letting (x, y) be the virtual edge on
sep(Gj−1), then one region is connected in G to x and other is connected to y. We
next claim that by the Monge-like property, the separator vertices that by induction
assumption lie consecutively the face fj′ are divided into at most two consecutive
segments. Note that if fj′ contains at most one virtual edge, then all vertices in fj′

are connected in Gj−1, and thus fully contained in one of the external child bags.
So it remains to consider the case where fj′ contains at least two virtual edges. Let
σ1, . . . , σ` be the segments of fj′ ordered in a clockwise manner obtained by removing
the virtual edges on that face. By the Monge property it then holds that for any pair
of non-neighboring segments σj and σj+k that are connected to x, it must hold that all
the vertices on the intermediate segments σj+1, . . . , σj+k−1 are connected to x as well.
We then have that the vertices of f ′j can be divided into two segments [x1, x2] and
[y1, y2], where all vertices on the segment [x1, x2] (resp., [y1, y2]) are connected to x
(resp., y) and (x1, y1), (x2, y2) are virtual edge on f ′j . We can then add a virtual edge
(x1, x2) and (y1, y2) and omit the virtual edges (x1, y1), (x2, y2). This defines two new
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almost-faces fj′
1
and fj′

2
that cover all the vertices on fj′ , each is fully contained in a

unique external child bag of Gj−1. (Note that one of the virtual edges (x1, y1), (x2, y2)
might form a multiple edge in case where [y1, y2] is simply an edge.) See Fig. 2 for an
illustration.

𝑦1

𝑥 𝑦

𝑥1
𝑥2

𝑦2

𝑥

𝑦

𝑓𝑗′

𝑆𝑒𝑝(𝐺𝑗−1)

Figure 2 Left: The subgraph Gj−1, the topological closure of Gj−1, namely, O(Gj−1) is shown
in black, and the cycle separator sep(Gj−1) is in blue. The face fj′ is fully contained in a region
whose induced subgraph (i.e., on the vertices embedded in this region) is not connected in Gj−1.
Right: Zoom into this region. The red edges indicate virtual edges. The virtual edge (x, y) lies on
the boundary of a connected region in O(Gj−1) \ O(Gj−1,in). The removal of (x, y) partitions the
vertices embedded in this region into two components, one rooted at x and the other rooted at y. By
the Monge property the set of vertices on the face fj′ that are connected to x lies on a consecutive
segment of the face. This allows us to re-define two almost-faces each will be fully contained in a
unique child bag of Gj−1.

Finally, it is easy to see by induction on i that each level-i bag contains at most i virtual
edges, since each separator sep(G′j′) adds at most one virtual edge to its descendent bags in
the BDD tree. Also, since the face split (as described above) occurs only when the almost-face
has at least two virtual edges, the number of virtual edges is kept. J

Monge-Like Properties of Reachability between Faces. Our compression scheme of the
reachability information is based on the well known Monge properties. We begin with
encoding the reachability relations between disjoint sets of vertices on a single face, then
encoding the reachability between all-pairs on a face, and finally encoding the reachability
between vertices on two faces. The next auxiliary lemmas are modifications of Lemmas 2.1,
2.2 and 2.4 in [2]. In [2] the goal was to encode distances in unweighted graphs, whereas
here our goal is to encode reachability information. This leads to small modifications both in
the statements of the lemmas as well as in the arguments.

I Lemma 10. [Analogue of Lemma 2.1, [2]] Let C = (v1, v2, . . . , v|C|) be the cyclic walk of
a face partitioned into two parts C1 = (v1, v2, . . . , v`) and C2 = (v`+1, v`+2, . . . , v|C|). Then,
for any subsets C ′1 ⊆ C1 and C ′2 ⊆ C2 the reachability relations between C ′1 × C ′2 can be
encoded using Õ(|C ′1|+ |C ′2|) bits.

I Lemma 11. [Analogue of Lemmas 2.2, [2]] Let C = (v1, . . . , v|C|} be the cycle walk of a
face of a planar graph. Then, all reachability relations for a subset C ′ = (vq1 , . . . , vqs

) can be
encoded in Õ(|C ′|) bits.

I Lemma 12. [Analogue of Lemmas 2.4 in [2]] Let Cin = (v1, . . . , vq) and Cext = (u1, . . . , u`)
be the cyclic walk of two faces of a planar graph. Then, the reachability relations between any
subsets C ′in ⊆ Cin and C ′ext ⊆ Cext can be encoded with Õ(|C ′in|+ |C ′ext|) bits8.

8 In Lemma 2.3 of [2], it is required that C′ext is a prefix of Cext. For our purposes, as we care for
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The algorithmic implication: We are next ready to state the algorithmic implication of
the structural properties provided above, which will be extensively used in our algorithms.
We need the following notation. Let u be a vertex and f be a face in G′. Let V (f) be the set
of vertices on the boundary of f . A vertex u ∈ G′ is incoming-active w.r.t f if there exists
some vertex s ∈ V (f) ∩ sep+(G′) satisfying that s �G′ u. Otherwise, the vertex is incoming-
inactive. The notions of outgoing-active and outgoing-inactive are defined accordingly. For
two faces f1 and f2 in a subgraph G′, let Ain(f1, f2, G

′) be the set of incoming-active vertices
in sep+(G′) ∩ V (f1) w.r.t. f2 formally defined as follow:

Ain(f1, f2, G
′) = {u ∈ sep+(G′)∩V (f1) | ∃v ∈ sep+(G′)∩V (f2) satisfying v �G′ u} . (1)

The set of outgoing-active vertices Aout(f1, f2, G
′) is defined analogously. These definitions

are analougoes when the faces are almost-faces. Throughout, because of the symmetry
between computing the incoming vertices and the outgoing vertex, w.l.o.g., when saying
active vertices we mean outgoing-active vertices.

I Lemma 13. Let G′ be bag with a child bag G′j in the BDD tree, and let f ′1,j , . . . , f
′
k,j be

the almost-faces of G′j on which the vertices of sep+(G′) ∩ V (G′j) are lying. Assume that all
vertices of G′ know: (1) the ordering of the sep+(G′)∩V (G′j) vertices on the f ′i,j faces, (2) the
set of incoming-active Ain(f ′i1,j , f

′
i2,j , G

′
j) and outgoing-active Aout(f ′i1,j , f

′
i2,j , G

′
j) vertices

for every pair of almost-faces f ′i1,j , f
′
i2,j, i1, i2 ∈ {1, . . . , k}. Then, every vertex u ∈ f ′i2,j can

encode the set of all its outgoing vertices from sep+(G′) ∩ V (f ′i1,j) using Õ(1) bits.

2.2 The Single Source Reachability Algorithm
The reachability algorithm has two phases. The first phase computes, in a top-bottom
manner, a reachability preserver H(G′) = H(sep+(G′), G′) for every bag G′ where (u, v) ∈
H(G′) iff u �G′ v, for every u, v ∈ sep+(G′) . At the end of this phase, each vertex u knows
the preserver H(G′) for every bag G′ containing u. The second phase is performed locally
at each vertex, and does not require any communication. Each vertex u will compute in a
top-down manner a reachability label LG(u) of Õ(D) bits, such that given a label LG(v)
it can determine the u-v reachability in G. Thus, by letting the source vertex s send its
reachability label, all vertices can determine their reachability to s.

Step 1: Computing the Reachability Preservers
The reachability preservers are computed in a bottom-up manner on the BDD tree of
depth d = O(logn). Starting from the leaf level, in every independent level i ∈ {1, . . . , d} of
the recursion, the goal is to compute the reachability preserver H(G′) = H(sep+(G′), G′) for
a level-(d− i+ 1) bag G′ given the reachability preservers of its child bags. Note that the
reachability preserver H(G′) of each bag is computed based on the reachability in G′ rather
than G. Our observations for every bag G′ and its child bags G′1, . . . , G′k, are as follows:

I Observation 14. (1) sep+(G′) ⊆
⋃`

j=1 sep+(G′j). (2) For every s1, s2 ∈ sep+(G′) such
that s1 �G′ s2 it holds that s1 �⋃

j
Ĥ(G′

j
) s2 where Ĥ(G′j) = {(u, v) ∈ H(G′j) | u, v ∈

sep+(G′) ∩ V (G′j)}, i.e., Ĥ(G′j) = H(G′j)[sep+(G′)].

reachability rather than distances, C′ext can be an arbitrary subset of Cext.
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Proof. (1) follows by the definition of the set sep+(·) sets. To see (2), it is sufficient to prove
that for every s1, s2 ∈ sep+(G′) such that s1 �G′ s2 but (s1, s2) /∈

⋃
j Ĥ(G′j), it holds that

s1 �⋃
j

Ĥ(G′
j
) s2.

Let P be the directed path from s1 to s2 in G′. Since
⋃

j G
′
j = G′, the path P can

be decomposed into sub-paths P = P1 ◦ P2 . . . ◦ P` such that endpoints of all these paths
Pk are in sep+(G′) (in fact, for k ∈ {2, . . . , ` − 1} both endpoints are in sep(G′)). In
addition, letting s1,k, s2,k be the endpoint of Pk, then there exists a child bag G′jk

such
that Pk ⊆ G′jk

. Therefore, (s1,k, s2,k) ∈ Ĥ(G′jk
) for every k ∈ {1, . . . , `}. Concluding that

s1 �⋃
j

Ĥ(G′
j
) s2. J

For a child bag G′j of G′, let f1,j , . . . , f`,j be the almost-faces of G′j on which the vertices of
sep+(G′) ∩ V (G′j) are embedded. The vertices of G′ are then required to know the following
for every bag G′j for j ∈ {1, . . . , k}:

(I1) The orientation of the vertices of sep+(G′) ∩ V (G′j) on the almost-faces f1,j , . . . , f`,j .
(I2) The active incoming and outgoing sets Ain(fi1,j , fi2,j , G

′
j) and Aout(fi1,j , fi2,j , G

′
j)

for every i1, i2 ∈ {1, . . . , `} (see Eq. (1) to recall the definition of these sets).
By Lemma 13, each vertex u ∈ sep+(G′)∩V (G′j) can compress its {u}×sep+(G′) reachability
in the G′j subgraph using Õ(1) bits. As each vertex in G′ appears on at most three child
bags, all the vertices of sep+(G′) can send the compression of their sep+(G′) reachability
in every child bag G′j within Õ(D) rounds. As a result, all vertices of G′ know the graph
Ĥ(G′j) = H(G′j)[sep+(G′)] for every child bag G′j . Finally, each vertex u computes the
desired preserver H(G′) by locally computing sep+(G′)× sep+(G′) reachability in the union
of graphs

⋃
j Ĥ(G′j). The correctness of this step follows by Obs. 14(2). This completes the

description of the algorithm. We next show that all vertices in G′ can learn the required
information (I1) and (I2) within Õ(D) rounds.

B Claim 15. (I1, I2) can be obtained in Õ(D) rounds;

Proof. By Lemma 9, the vertices of sep+(G′) lie consecutively on O(logn) almost-faces in G′j .
Note by the proof of Lemma 9, the vertices also know their incident virtual edges on these
faces. Each vertex u ∈ sep+(G′) ∩ V (G′j) simply sends its edges on these faces. Since each
vertex belongs to at most three child bags, and since there are O(logn) faces, each vertex in
sep+(G′) sends Õ(1) bits. Since the vertices of sep+(G′) lie consecutively on those faces, by
knowing all their edges on the faces, the vertices can decide a fixed orientation (i.e., increasing
clock-wise ordering from the largest vertex ID. To see (I2), since all vertices of G′j know
the subgraph H(G′j), and as sep+(G′j) ⊆ sep+(G′), they know their incoming and outgoing
vertices from sep+(G′) in G′j . In addition, all vertices know (I1), that is, a fixed ordering of
the sep+(G′) vertices on O(logn) faces. Therefore each vertex u ∈ f ′i1,j can send a message
containing the indicators of all other faces f ′i2,j for which u ∈ Ain(fi1,j , fi2,j , G

′
j) and in the

same manner the list of faces for which u ∈ Aout(fi1,j , fi2,j , G
′
j). This message has O(logn)

bits, and since each u in G′ belongs to at most three child bags, the entire information on all
Ain(fi1,j , fi2,j , G

′
j) and Aout(fi1,j , fi2,j , G

′
j) can be delivered in Õ(D) rounds. C

We therefore have the following.

I Lemma 16. Given a BDD tree T for a planar graph G, there exists a randomized algorithm
that computes for each bag G′ ∈ T the reachability preserver H(G′) = H(sep+(G′), G′), where
each vertex u knows the preserver edges H(G′) for every bag G′ containing u.



M. Parter 38:15

Step 2: (Locally) Computing the Reachability Labels. We next show that given that
each vertex u knows the reachability preservers H(G′) = H(sep+(G′), G′) for every bag G′
that contains u, it can locally compute its reachability label LG(u) of Õ(D) bits, without
any additional communication. We follow the same recursive scheme of the labels by [12, 29]
with one key difference as will be explained soon. The label LG(u) of each vertex u /∈ sep(G)
consists of three fields: (i) lists of incoming and outgoing vertices to v from sep+(G):
In(u,G) = {v ∈ sep+(G) | v �G u} and Out(u,G) = {v ∈ sep+(G) | u �G v} , (ii) the
identifier of G’s child bag that contains u, and (iii) the (recursive) label LG′(u) where G′ is
the child component of G that contains u in the BDD decomposition. Since u /∈ sep(G), there
exists exactly one such bag. Denoting the first two fields in the label by L̂G(u), the label u
consists of k = O(logn) sub-labels LG(u) = L̂G0(u) ◦ L̂G1(u) . . . ◦ L̂Gk

(u). For u ∈ sep(G)
the label LG(u) contains only the first field (i). The key difference compared to [12, 29]
is that each vertex u keeps the information in each sub-label L̂G′(u) with respect to the
extended-separator set sep+(G′) rather than the separator set sep(G′). As will see, this
adaptation is critical for our scheme to go through.

We focus on a vertex u and explain how it can compute its label in a bottom-up manner
on the BDD tree. To avoid cumbersome notation for a leaf bag G′, let sep(G′) = V (G′). Let `
be the minimum value i ∈ {0, . . . , d} satisfying that u ∈ sep(G′) for some i-level bag G′. Note
that by definition of the BDD, u belongs to exactly one bag in each of the levels i ∈ {0, . . . , `}.
Let G = G0, G1, . . . , G` be the unique bags that contain u in level i ∈ {1, . . . , `}.

We start with the base case of computing the label LG`
(u). There are two cases.

If ` = d, then Gd is a leaf bag, and u knows the entire leaf bag information from the
graph H(Gd). Otherwise, if ` ≤ d − 1, then u ∈ sep(G`). In this case, the label LG`

(u)
should contain the lists In(u,G`) and Out(u,G`) which can be obtained directly from the
preserver H(G`). Assume that u has locally computed the labels LG`

(u), . . . , LGi+1(u).
We now explain how it can compute the label LGi

(u). Observe that the label LGi
(u)

has the form LGi
(u) = L̂Gi

(v) ◦ LGi+1(v). Therefore, it is sufficient to compute the sets
In(u,Gi) and Out(u,Gi). By the sub-label L̂Gi+1(u) of the LGi+1(u) label, u knows the
sets In(u,Gi+1), Out(u,Gi+1). The sets In(u,Gi), Out(u,Gi) are then obtained by locally
computing the reachability of u w.r.t the sep(Gi) vertices in the graph

H(Gi, u) = H(sep+(Gi), Gi)∪{(u, v) | v ∈ Out(u,Gi+1)}∪ {(v, u) | v ∈ In(u,Gi+1)} .

We next show that for every v ∈ sep+(Gi) such that v �Gi
u, it holds that v �H(Gi,u) u,

and thus v ∈ In(u,Gi) as desired. The same argument will apply to the Out(u,Gi) set. Let
P be a directed v  u path in Gi. If P ⊆ Gi+1, then since v ∈ sep+(Gi+1), by induction
assumption, v ∈ In(u,Gi+1) and thus (v, u) ∈ H(Gi, u). Otherwise, P must contain at least
one vertex from sep(Gi). Let s∗ be the last vertex (closest to u) from sep(Gi) on P . Then,
by the selection of s∗, P [s∗, u] ⊂ Gi+1. By induction assumption, as s∗ ∈ sep+(Gi+1), it
holds that s∗ ∈ In(u,Gi+1) and thus (s∗, u) ∈ H(Gi, u). In addition, since v, s∗ ∈ sep+(Gi),
we have that (v, s∗) ∈ H(Gi). Overall, there is a directed path (v, s∗) ◦ (s∗, u) in H(Gi, u),
and thus v ∈ In(u,Gi). The claim follows. This completes the Õ(D)-round algorithm for
computing the the reachability labels. By broadcasting the reachability label of the source
vertex s, we also solve the single-source reachability problem, and establish Thm. 1. The
multi-source reachability algorithm and the algorithms for weighted digraphs are deferred to
the full version.
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