
Brief Announcement: Distributed Graph Problems
Through an Automata-Theoretic Lens
Yi-Jun Chang
ETH Zürich, Switzerland
yi-jun.chang@eth-its.ethz.ch

Jan Studený
Aalto University, Finland
jan.studeny@aalto.fi

Jukka Suomela
Aalto University, Finlad
jukka.suomela@aalto.fi

Abstract
We study the following algorithm synthesis question: given the description of a locally checkable
graph problem Π for paths or cycles, determine in which instances Π is solvable, determine what
is the locality of Π, and construct an asymptotically optimal distributed algorithm for solving Π
(in the usual LOCAL model of distributed computing). To answer such questions, we represent Π
as a nondeterministic finite automaton M over a unary alphabet, and identify polynomial-time-
computable properties of automatonM that capture the locality and solvability of problem Π.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Models of computation; Theory of computation → Distributed algorithms

Keywords and phrases Algorithm synthesis, locally checkable labeling problems, LOCAL model,
locality, distributed computational complexity, nondeterministic finite automata

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.41

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.07659.

1 Introduction

Key Questions: Solvability and Locality. When we encounter a new graph problem Π that
we would like to solve in a distributed or parallel setting, there are three basic questions we
would like to answer:
1. Is Π always solvable, or at least solvable in all but finitely many counterexamples?
2. Is Π solvable locally: if I am a node in the middle of a large graph, can I choose my own

part of the solution based on the information in my own local neighborhood?
3. If Π is locally solvable, how do we find an efficient algorithm for solving it?
Locality is a powerful property: in many setting a problem can be solved efficiently if and only
if it is highly local. For the sake of concreteness, in this work we will discuss deterministic
distributed algorithms in the usual LOCAL model of computing, in which efficient solvability
is equivalent to locality, but we emphasize that our work has direct implications also in other
models of distributed computing (e.g. CONGEST) and also in models of parallel computing
(e.g. PRAM and MPC), especially for the upper bounds.

Focus and Prior Work. We will focus on LCL problems. These are graph problems in which
solutions are labelings of nodes and/or edges that can be verified locally: if a solution looks
feasible in all constant-radius neighborhoods, then it is also globally feasible [4]. Simple
examples of LCL problem are finding a proper 3-coloring and finding maximal independent
set of a given graph.

© Yi-Jun Chang, Jan Studený, and Jukka Suomela;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 41; pp. 41:1–41:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0109-2432
mailto:yi-jun.chang@eth-its.ethz.ch
https://orcid.org/0000-0002-9887-5192
mailto:jan.studeny@aalto.fi
https://orcid.org/0000-0001-6117-8089
mailto:jukka.suomela@aalto.fi
https://doi.org/10.4230/LIPIcs.DISC.2020.41
https://arxiv.org/abs/2002.07659
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Brief Announcement: Distributed Graph Problems

Given the description of an LCL problem, ideally we would like to understand its solvability
and locality in a fully automatic fashion, and synthesize efficient distributed and parallel
algorithms for the problem, in the broadest possible setting. Unfortunately, in the case of
general graphs this is an undecidable problem [3, 4], and even if we only consider labeled
paths and cycles, the task is known to be at least PSPACE-hard [1]. On the other hand,
the distributed complexity of LCLs on unlabeled directed cycles (consistently oriented cycles)
has a simple graph-theoretic characterization [3]. In this work we seek to find the broadest
possible setting in which solvability and locality can be decided efficiently.

Contributions. We show how to automatically answer questions related to both solvability
and locality of any given LCL problem both in directed cycles and paths and in undirected
cycles and paths. We show that all such questions are not only decidable but they are in NP
or co-NP, and almost all such questions are in P, with the exception of a couple of specific
questions that are NP-complete or co-NP-complete. We give a uniform automata-theoretic
formalism that enables us to study such questions, leveraging prior work on automata theory.

2 Automata Representation

Node-Edge-Checkable Formalism. There are many equivalent ways to represent LCL prob-
lems (e.g., listing all feasible constant-radius neighborhoods [4]), but the following formal-
ism [2] is convenient for us: we interpret each edge as a pair of ports, and the task is to label
the ports, subject to constraints on nodes and edges. Note that one can easily use port labels
and node and edge constraints to encode e.g. vertex coloring and edge coloring, and indeed
the formalism is expressive enough to encode any LCL problem on paths and cycles, modulo
local preprocessing and postprocessing.

Formally, an LCL problem Π in the node-edge-checkable formalism is a tuple Π = (Γ, Cedge,

Cnode, Cstart, Cend) consisting of a finite set Γ of output labels, an edge constraint Cedge ⊆ Γ× Γ
(that captures feasible labelings of edges), a node constraint Cnode ⊆ Γ× Γ (that captures
feasible labelings of the internal nodes of cycles and paths), and start and end constraints
Cstart ⊆ Γ and Cend ⊆ Γ (that capture feasible labelings at the endpoints of paths). We
say that Π is symmetric if Cedge and Cnode are symmetric relations and Cstart = Cend; such a
problem is well-defined also for undirected paths and cycles.

Automata Representation. We will represent a node-edge-checkable problem Π as a non-
deterministic finite automaton MΠ over unary alphabet Σ = {o}. We identify the states of
an automaton with the edge constraints and the transitions with the node constraints. More
precisely, the set of states is Cedge, there is a transition from state ab to state cd whenever
bc ∈ Cnode, state ab ∈ Cedge is a starting state whenever a ∈ Cstart, and state ab ∈ Cedge is
an accepting state whenever b ∈ Cend. Note that there can be multiple starting states; the
automaton can choose the starting state nondeterministically.

Classification of States. We classify the states as follows; we say that state ab ∈ Cedge is:
Repeatable if there is a walk ab ab inMΠ.
Flexible if for all sufficiently large k there is a walk ab ab of length exactly k inMΠ.
Mirror-flexible if for all sufficiently large k there are walks ab ab, ab ba, ba ab,
and ba ba of length exactly k inMΠ.
A loop if there is a state transition ab→ ab inMΠ.
A mirror-flexible loop if ab is both a mirror-flexible state and a loop.

Y.-J. Chang, J. Studený, and J. Suomela 41:3

Table 1 Classification of LCL problems in cycles and paths into types A–K, and the implied
characteristics (solvability and locality) for each type.

Type definition: A B C/D E F/G H/I J/K
· symmetric problem yes yes yes/no yes yes/no yes/no yes/no
· repeatable state yes yes yes yes yes yes no
· flexible state yes yes yes yes yes no no
· loop yes yes yes no no no no
· mirror-flexible state yes yes no yes no no no
· mirror-flexible loop yes no no no no no no

Number of instances:
· solvable cycles ∞ ∞ ∞ ∞ ∞ ∞ 0
· solvable paths ∞ ∞ ∞ ∞ ∞ ∞ <∞
· unsolvable cycles 0 0 0 <∞ <∞ ∞ ∞
· unsolvable paths <∞ <∞ <∞ <∞ <∞ hard ∞

Locality:
· directed cycles O(1) O(1) O(1) Θ(log∗ n) Θ(log∗ n) Θ(n) —
· directed paths O(1) O(1) O(1) Θ(log∗ n) Θ(log∗ n) Θ(n) O(1)
· undirected cycles O(1) Θ(log∗ n) Θ(n)† Θ(log∗ n) Θ(n)† Θ(n)† —
· undirected paths O(1) Θ(log∗ n) Θ(n)† Θ(log∗ n) Θ(n)† Θ(n)† O(1)†

† = assuming a symmetric problem (otherwise it is not well-defined on undirected cycles and paths)

3 Results

Our main result is the classification presented in Table 1. Given any LCL problem Π, we
can first construct the automatonMΠ, and determine if the problem is symmetric and if it
contains loops or repeatable, flexible, or mirror-flexible states. Based on these properties, we
can then use the table to classify the problem into types A–K. In the full version of this
work, we show that we can determine the type of any given problem in polynomial time.

Now once we know the type of the problem, we can use Table 1 to directly answer all
questions related to solvability and locality of Π in both undirected and directed cycles
and paths, with only one exception: the only case which cannot be efficiently answered is
deciding the number of unsolvable instances for problems of types H–I; we show that this
question is NP-complete. In the full version, we prove that the classification is correct, and
we show also how our work connects to prior work on the existence of synchronizing words
for nondeterministic automata.

References
1 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka

Suomela. The Distributed Complexity of Locally Checkable Problems on Paths is Decidable.
In Proc. PODC, 2019. doi:10.1145/3293611.3331606.

2 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proc. DISC,
2020.

3 Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric R J
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proc. PODC, 2017. doi:10.1145/3087801.3087833.

4 Moni Naor and Larry Stockmeyer. What Can be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

DISC 2020

https://doi.org/10.1145/3293611.3331606
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1137/S0097539793254571

	Introduction
	Automata Representation
	Results

