
A Polynomial Kernel for Funnel Arc Deletion Set
Marcelo Garlet Milani
Technische Universität Berlin, Chair of Logic and Semantics, Germany
m.garletmillani@tu-berlin.de

Abstract
In Directed Feedback Arc Set (DFAS) we search for a set of at most k arcs which intersect
every cycle in the input digraph. It is a well-known open problem in parameterized complexity to
decide if DFAS admits a kernel of polynomial size. We consider C-Arc Deletion Set (C-ADS), a
variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it
into a digraph of a class C. In this work, we choose C to be the class of funnels. Funnel-ADS is
NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k. So far no
polynomial kernel for this problem was known. Our main result is a kernel for Funnel-ADS with
O(k6) many vertices and O(k7) many arcs, computable in O(nm) time, where n is the number of
vertices and m the number of arcs of the input digraph.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases graph editing, directed feedback arc set, parameterized algorithm, kernels,
funnels

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1911.05520.

Acknowledgements We thank the referees for their numerous helpful comments.

1 Introduction

In graph editing problems, we are given a (directed or undirected) graph G and a number
k, and we search for a set of at most k vertices, edges or arcs whose removal or addition
produces a graph with a desired property. There are several variants of these problems, and
in this paper we consider the problem of removing arcs from a digraph in order to obtain a
digraph in a given class C. When C is the class of all directed acyclic graphs (DAGs), the
problem is called Directed Feedback Arc Set (DFAS). If we remove vertices instead of
arcs, the problem is called Directed Feedback Vertex Set (DFVS).

There are simple reductions between DFAS and DFVS. We can reduce DFAS to DFVS
by taking the line digraph of the input. Removing a vertex from the reduced instance
corresponds to removing an arc from the input instance and vice versa. For a reduction in
the other direction, we split each vertex v into two vertices, say, vo and vi, connect them
with an arc (vi, vo) and shift all outgoing arcs of v to vo and all incoming arcs to vi. In
the context of parameterized complexity, such reductions are called parameterized as the
parameter k is preserved. Hence, parameterized results are often stated for DFVS.

In a breakthrough paper it was proven that there is an algorithm for DFVS with running
time 4kk! · nO(1) [4], showing that the problem is fixed-parameter tractable (FPT) with
respect to k. After obtaining an FPT result, it is natural to ask if the problem also admits a
polynomial kernel, that is, if there is a polynomial-time algorithm which reduces the input
instance to an instance of size at most O(kc) for some constant c. Such an algorithm is called
a kernelization algorithm.

© Marcelo Garlet Milani;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8398-4751
mailto:m.garletmillani@tu-berlin.de
https://doi.org/10.4230/LIPIcs.IPEC.2020.13
https://arxiv.org/abs/1911.05520
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 A Polynomial Kernel for Funnel Arc Deletion Set

The existence of a polynomial kernel for DFVS is a fundamental open question in the
field of parameterized complexity. One approach towards solving this question is to consider
different parametrizations or restrictions of the input digraph. By considering progressively
smaller parameters or more general digraph classes, one can hope to eventually close the gap
between the restricted cases and the general case of DFVS.

On tournaments, DFVS admits a polynomial kernel [1]; this was extended to generaliza-
tions of tournaments as well [3]. When parameterized by solution size k and the size ` of a
treewidth η-modulator, DFVS admits a kernel of size (k · `)O(η2) [10].

One can also restrict the output instead, that is, we can consider C-Vertex Deletion
Set (C-VDS) or C-Arc Deletion Set (C-ADS), where, for a fixed digraph class C, we
search for a set of at most k vertices (arcs) whose removal turns the input into a digraph in
C. Unlike DFVS and DFAS, C-VDS and C-ADS can belong to different complexity classes
depending on C: While Out-Forest-ADS can be solved in polynomial time, Out-Forest-
VDS is NP-hard [12]. Further, note that even if C′ ⊆ C, a polynomial kernel for C-ADS does
not immediately imply a polynomial kernel for C′-ADS, and the implication also does not
work in the other direction. Indeed, while the problem is trivial when C is the class of all
independent sets or the class of all digraphs, it is NP-hard if C is the class of DAGs, which
contains all independent sets and is a subclass of all digraphs. In a sense, the complexity
landscapes of C-ADS and C-VDS are much more fine-grained than the landscape of DFVS,
and may allow for smaller steps towards more general results.

Out-Forest-ADS and Pumpkin-ADS can be solved in polynomial time [12], while
Out-Forest-VDS and Pumpkin-VDS are NP-hard and admit polynomial kernels [2, 12]
of size O(k2) and O(k3), respectively [2]. Fη-VDS admits a polynomial kernel for constant
η, where Fη is the class of all digraphs with (undirected) treewidth at most η [10].

In this work we consider Funnel-ADS and provide a polynomial kernel with O(k6)
vertices and O(k7) arcs. A digraph is a funnel if it is a DAG and every source to sink path
has an arc which is not in any other source to sink path. Funnel-ADS is NP-hard even if the
input is DAG, but it can be solved in O(3k · (n+m)) time [11], where k is the solution size.
Out-forests and pumpkins are also funnels, but there are also dense funnels like complete
bipartite digraphs (where all arcs go from the first partition to the second but not back).

Our results rely on characterizations for funnels based on forbidden subgraphs and on
a “labeling” of the vertices [11]. We believe the techniques used here can be generalized to
other digraph classes which are also similarly characterized, and hope they provide further
insight about the classes C for which C-ADS admits a polynomial kernel.

2 Preliminaries

A (partial) function f : A → B is a set of tuples (a, f(a)) ∈ A × B where for every a ∈ A
there is at most one b ∈ B with (a, b) ∈ f (that is, f(a) = b). We write Dom(f) for the set
of values a ∈ A for which f is defined. Hence, ∅ is the undefined function, and f ′ ⊇ f if
f ′(x) = f(x) for every x ∈ Dom(f). All our functions are partial, that is, Dom(f) is not
necessarily A.

A parameterized language L is fixed-parameter tractable with respect to the parameter
k if there is some algorithm with running time f(k) · nO(1) deciding whether (x, k) ∈ L,
where f is some computable function, n = |x| and k is the parameter (refer to [5, 6] for an
introduction to parameterized complexity). We say that L admits a problem kernel if there
is a polynomial-time algorithm which transforms an instance (x, k) into an instance (x′, k′)
such that (x, k) ∈ L if and only if (x′, k′) ∈ L, k′ ≤ k and |x′| ≤ f(k) for some computable
function f . If f is a polynomial, we say that L admits a polynomial kernel with respect to k.

M.Garlet Milani 13:3

u1 u2

v0 v1

w1w2

Figure 1 D1, a forbidden subgraph for funnels.

When describing a kernelization algorithm, it is common to define reduction rules. These
rules have a condition and an effect, and we say that a reduction rule is applicable if the
condition is true. The effect of the reduction rule produces a new instance (x′, k′) of the
problem, and a rule is said to be safe if (x′, k′) ∈ L if and only if the original instance is in L.
We refer the reader to [8, 9] for surveys on kernelization and to [7] for a book on the topic.

We only consider directed graphs (digraphs) without loops or parallel arcs (but we allow
arcs in opposite directions) in this paper. Let D be a digraph. The set of arcs of D is
denoted by A(D), and its set of vertices is V (D). The set of outneighbors (inneighbors) in
D of a vertex v ∈ V (D) is denoted by outD(v) (inD(v)); the outdegree (indegree) of v is
outdegD(v) = |outD(v)| (indegD(v) = |inD(v)|). If the digraph D is clear from context, we
omit it from the index. For a set U ⊆ V (D) we write out(U) for the set {out(u) | u ∈ U} \U
(and analogously for in(U)). A vertex v is a source if indeg(v) = 0, and it is a sink if
outdeg(v) = 0. We write H ⊆ D if H a subgraph of D; the subgraph of D induced by U is
given by D[U]. We write D−X for the operation of deleting a set of vertices or arcs X from
D. Similarly, we add a set of arcs or vertices to D with D +X.

A directed acyclic graph (DAG) is a digraph which does not contain any directed cycle.
A digraph D is a funnel if D is a DAG and for every path P from a source to a sink of D
of length at least one there is some arc a ∈ A(P) such that for any different path Q from
a (possibly different) source to a sink we have a 6∈ A(Q). We repeat below several known
characterizations for funnels, as they are particularly useful for our results.

I Theorem 1 ([11], Theorem 1). Let D be a DAG. The following statements are equivalent.
a. D is a funnel.
b. V (D) can be partitioned into two sets F and M such that: (1) F induces an out-forest;

(2) M induces an in-forest; and (3) (M × F) ∩A(D) = ∅.
c. No digraph in F = {Di | i ∈ {0, 1, . . . }} is contained in D as a (not necessarily induced)

subgraph, where (see Figure 1 for an example)
V (Dk) = {u1, u2, w1, w2} ∪ {vi | 0 ≤ i ≤ k}, and
A(Dk) = {(u1, v0), (u2, v0), (vk, w1), (vk, w2)} ∪ {(vi, vi+1) | 1 ≤ i ≤ k − 1}

d. D does not contain D0 as a butterfly minor.

The digraphs in F are called forbidden subgraphs for funnels. For a digraph D we define
a labeling as a function ` : V (D) → {F,M}. We say that ` is a funnel labeling for D if
Dom(`) = V (D), the set F = {v ∈ V (D) | `(v) = F} induces an out-forest in D, the set
M = {v ∈ V (D) | `(v) = M} induces an in-forest in D and (M × F) ∩ A(D) = ∅. Due to
Theorem 1(b), a digraph D is a funnel if and only if there exists a funnel labeling for D.

In the feedback arc set problem, we are given a digraph D and a k ∈ N as an input, and
we search for a set S ⊆ A(D) such that D − S is a DAG and |S| ≤ k. We consider a variant
of this problem where we want D−S to be a funnel instead, which is formally defined below.

Funnel Arc Deletion Set (FADS)
Input A digraph D and a number k ∈ N.

Question Is there a set S ⊆ A(D) with |S| ≤ k such that D − S is a funnel?

IPEC 2020

13:4 A Polynomial Kernel for Funnel Arc Deletion Set

To make better use of Theorem 1(b), we consider a more general problem in which some
vertices might already be labeled with F or M, and the funnel we obtain in the end must
respect this labeling. Formally, the problem is defined as follows.
Funnel Arc Deletion Labeling (FADL)

Input A digraph D, a labeling ` : V (D)→ {F, M} and a number k ∈ N.
Question Are there a set S ⊆ A(D) and a labeling ˆ̀⊇ ` such that ˆ̀ is a funnel labeling

for D − S and |S| ≤ k?
We say that (D, `, k) is the input instance and (S, ˆ̀) is a solution for the input instance.

This more general version of the problem allows us to decide which label a vertex will take
and encode this in the instance itself. While technically not necessary, using FADL instead
of FADS simplifies the kernelization algorithm and also the proofs. Due to space constraints,
proofs marked with (?) are deferred to the full version of the paper.

3 Basic reduction rules

We construct our kernelization algorithm by defining a series of reduction rules and then
showing that, if no reduction rule is applicable, the input size is bounded in a polynomial
of k. Our strategy is to partition the vertex set into labeled and unlabeled vertices, then
bound the number of unlabeled vertices (Section 3.1) and use this to bound the number of
labeled vertices (Section 3.2) as well. In this section we define some reduction rules which are
useful both in Section 3.1 as well as in Section 3.2. For brevity, we assume that a reduction
rule is no longer applicable to the input instance after it has been defined.

Let (D, `, k) be the input instance. From Theorem 1(c) we can see that a funnel has
no vertex v with indeg(v) > 1 and outdeg(v) > 1. Further, indeg(v) ≤ 1 if `(v) = F, and
outdeg(v) ≤ 1 if `(v) = M. Hence, by simply counting the number of vertices disrespecting
each case, we can obtain a lower bound for the number of arcs that need to be removed from
D in order to obtain a funnel. As removing one arc changes the degree of two vertices, we
obtain a bound of at most 2k such vertices. The safety of the following reduction rule follows
easily from Theorem 1.

I Reduction Rule 1 (Lower Bound). Let VI ⊆ V (D) be the set of vertices with indegree greater
than one, let VO be the set of vertices with outdegree greater than one and let VX = VO ∩ VI .
Output a trivial “no” instance if∑

u∈VO,`(u)=M

(outdeg(u)− 1) +
∑

u∈VI ,`(u)=F

(indeg(u)− 1)+

∑
u∈VX ,u 6∈Dom(`)

(min{indeg(u), outdeg(u)} − 1) > 2k.

The following reduction rule is based on [11], with some modifications since the original
reduction rule is applied as an intermediate step in an FPT algorithm and is not safe for
kernelization. For certain vertices it is possible to optimally decide which label they should
receive in an optimal solution. For example, vertices with outdegree greater than k + 1 can
always be labeled with F, as otherwise we would need to remove at least k+ 1 of its outgoing
arcs, which is not possible.

I Reduction Rule 2 (Set Label). Let v ∈ V (D) be an unlabeled vertex.
Set `(v) := F if at least one of the following is true: (1) indeg(v) = 0; (2) v has a

single inneighbor u and `(u) = F; (3) there are at least indeg(v) + 1 vertices u ∈ out(v) with
`(u) = M or `(u) = F ∧ indeg(u) = 1; or (4) outdeg(v) > k + 1.

M.Garlet Milani 13:5

Figure 2 A digraph which is not a funnel. Removing the arcs (v, u) and (u, w) results in a funnel.

v u w

Set `(v) := M if at least one of the following is true: (1) outdeg(v) = 0; (2) v has a
single outneighbor u and `(u) = M; (3) there are at least outdeg(v) + 1 vertices u ∈ in(v)
with `(u) = F or `(u) = M ∧ outdeg(u) = 1; or (4) indeg(v) > k + 1.

Proof of safety of Set Label (RR 2). Clearly, a solution for the reduced instance is also a
solution for the original instance. For the other direction, we consider only the case where we
set `(v) := F, as the other case is symmetric. Let `r be the labeling obtained by the reduction
rule. Let (S, ˆ̀) be a solution for the original instance. We set ˆ̀

r := ˆ̀ and ˆ̀
r(v) := F. If

ˆ̀(v) = F, then clearly (S, ˆ̀
r) is a solution for the reduced instance. So assume ˆ̀(v) = M.

This implies that outdeg(v) ≤ k + 1, as otherwise |S| > k.
If indeg(v) = 0, or indeg(v) = 1 and there is some u ∈ in(v) with `(u) = F, then ˆ̀

r is
clearly also a funnel labeling for D − S.

Let U = {u ∈ out(v) | `(u) = M or `(u) = F ∧ indeg(u) = 1}. If |U | ≥ indeg(v) + 1, we
construct an Sr from S as follows. We add all incoming arcs of v to Sr and remove from
Sr all outgoing arcs (v, u) where u ∈ U . Since ˆ̀(v) = M, at least outdeg(v)− 1 ≥ indeg(v)
many outgoing arcs of v are in S. Hence, we remove at least indeg(v) arcs from S and add
at most indeg(v). Thus, |Sr| ≤ |S|.

The digraph D − Sr does not contain cycles, as all incoming arcs of v were removed, so
any cycle in D − Sr is also in D − S, which is a funnel. To see that ˆ̀

r is a funnel labeling of
D − Sr, first note that we can always keep arcs (v, u) in D − Sr where `(u) = M. We can
also keep arcs (v, u) in D − Sr where `(u) = F and indeg(u) = 1. As v has no incoming arcs
in D − Sr, it lies in an out-forest. Hence, ˆ̀

r is a funnel labeling of D − Sr. J

Replacing an arc in a funnel by a directed path cannot create any cycles nor any forbidden
subgraph for funnels. The next reduction rule reverses this operation: We can contract
certain paths where all vertices have in- and outdegree one to a single arc. However, we
cannot replace any such path: In the example in Figure 2, if we remove u and add the arc
(v, w), then the size of an optimal solution set decreases by one. Some cases where contracting
an arc is safe are identified below.

I Reduction Rule 3 (Dissolve Vertex) (?). Let u, v, w be a path such that the following is
true: (1) v, u ∈ Dom(`) implies `(v) = `(u); and (2) v, w ∈ Dom(`) implies `(v) = `(w).

If indeg(v) = outdeg(v) = 1 and (indeg(w) = 1 ∨ outdeg(u) = 1), delete the vertex v and
add the arc (u,w).

3.1 Bounding the number of unlabeled vertices
From Lower Bound (RR 1) we know there are few vertices with both in- and outdegree
greater than one. In this section we bound the number of unlabeled vertices by considering
the remaining unlabeled vertices, that is, vertices v with indeg(v) ≤ 1 or outdeg(v) ≤ 1. Our
strategy is to group such vertices into subgraphs of D with specific properties which we
define later, and then develop reduction rules to both bound the maximum number of such
subgraphs and also their size in any “yes” instance of FADL.

IPEC 2020

13:6 A Polynomial Kernel for Funnel Arc Deletion Set

Figure 3 Example application of Shift Neighbors (RR 4).

u v w

x

u v w

x

Even if the previous reduction rules are not applicable, there can still exist some “large”
subgraph H ⊆ D for which there is a “small” set S ⊆ A(D) such that the weakly-connected
component of H is a funnel in D − S. Our goal is to bound the size of such subgraphs H.

We first define a specific type of subgraph of D which behaves like a funnel in the sense
that the degrees of the vertices match Theorem 1(b). We call such subgraphs local funnels
and formally define them below.

I Definition 2. An induced subgraph H ⊆ D is a local funnel in D if H is a funnel, H
has only one source and its vertex set can be partitioned into F]M = V (H) such that
indegD(v) ≤ 1 for all v ∈ F ; outdegD(v) ≤ 1 for all v ∈M ; and (M × F) ∩A(H) = ∅.

Unlike local funnels, we might still have to remove many arcs from an induced funnel in D,
as it can have, for example, several vertices v with indegD(v) > 1 and outdegD(v) > 1. Our
goal is to bound the size of each unlabeled local funnel (that is, each local funnel where
none of the vertices have a label) and the number of unlabeled local funnels in D. We start
by “pushing” as many vertices as we can to the neighborhood of the roots of the in- and
out-forests of a local funnel. Consider for example a path u, v, w as in Figure 3, whose
vertices have indegree one but can have higher outdegree. Intuitively, a cycle containing v
and x must also contain u. To destroy this cycle, we can remove the unique incoming arc of
u, as this will potentially destroy further cycles that contain u but not v. Hence, replacing
the arc (v, x) with (u, x) in this case does not change the size of the solution.

By moving vertices in an out-tree towards its root s, we increase the outdegree of s. If the
outdegree of s increases beyond k + 1, we can apply Set Label (RR 2) to s, giving it a label.
By further applying Set Label (RR 2) to the neighbors of s which are in its out-tree, we can
label the entire tree. As we are only considering unlabeled local funnels in this section, we
can use the idea above to limit the branching of any in- or out-tree of an unlabeled local
funnel.

We provide here a somewhat more general reduction rule which can also be applied if
some vertices are labeled. Later, this reduction rule will again be useful to bound the number
of labeled vertices. However, we need to carefully consider the possible labels of the vertices,
as in some cases the rule would not be safe.

I Reduction Rule 4 (Shift Neighbors). Let u, v, w be a path.
If indeg(u) = indeg(v) = indeg(w) = 1, (u,M) 6∈ `, (v,M) 6∈ ` and there is an x ∈
out(v) \ out(u) with w 6= x, then remove the arc (v, x) and add the arc (u, x).
If outdeg(u) = outdeg(v) = outdeg(w) = 1, (v,F) 6∈ `, (w,F) 6∈ ` and there is an
x ∈ in(v) \ in(w) with u 6= x, then remove the arc (x, v) and add the arc (x,w).

Before proving that Shift Neighbors (RR 4) is safe, we need two simple observations
about certain cases where we can safely exchange two arcs or add an arc.

I Observation 3 (?). Let H be a funnel with funnel labeling ` and let x, u, v ∈ V (H) such
that (v, x) ∈ A(H), (u, x) 6∈ A(H) and at least one of the following is true: (1) `(u) = F;
or (2) `(u) = M = `(v) and outdegH(u) = 0. Let H ′ = H − (v, x) + (u, x). Then ` is also
a funnel labeling for H ′ if H ′ is a DAG.

M.Garlet Milani 13:7

I Observation 4 (?). Let H be a DAG and x, u, v ∈ V (H) such that {u} = in(v). Then
H + (u, x) contains a cycle if and only if H + (v, x) contains a cycle.

Proof of safety of Shift Neighbors (RR 4). Consider the case where indeg(u) = indeg(v) =
indeg(w) = 1, (u,M) 6∈ `, (v,M) 6∈ ` and there is an x ∈ out(v) \ out(u) with w 6= x. The
other case follows analogously. Let (D′, `, k) be the reduced instance and (Sr, ˆ̀

r) be a solution
for it. We construct a solution (S, ˆ̀) for the input instance (D, `, k).

First observe that, if (u, x) ∈ Sr, we can replace it with (v, x) in S, which means that
D′ − Sr and D − S are isomorphic. By setting ˆ̀ := ˆ̀

r, we obtain the desired solution. If
(u, x) 6∈ Sr, we consider the following cases.

Case 1: ˆ̀
r(v) = F. We set ˆ̀ := ˆ̀

r and S := Sr. Let D? = D − S. Clearly, D? =
D′ − Sr − (u, x) + (v, x). As u is the only inneighbor of v, from Observation 4 we know D?

is a DAG. From Observation 3, we know that ˆ̀= ˆ̀
r is a funnel labeling for D?.

Case 2: ˆ̀
r(v) = M = ˆ̀

r(u). If D′−Sr + (u, v) is a DAG, we can assume that (u, v) 6∈ Sr,
implying (u, x) ∈ Sr (which was already considered).

If D′−Sr+(u, v) is not a DAG, then it contains a cycle with v and u, implying (u, v) ∈ Sr.
In particular, indegD′−Sr

(v) = 0. We set ˆ̀ := ˆ̀
r and ˆ̀(v) := F. Clearly, ˆ̀ is a funnel labeling

for D′ − Sr. From Observation 3 we have that ˆ̀ is a funnel labeling for D − Sr as well.
Case 3: ˆ̀

r(v) = M and ˆ̀
r(u) = F. We set ˆ̀ := ˆ̀

r, ˆ̀(v) := F and S := Sr. As {u} = inD(v)
and ˆ̀

r(u) = F, ˆ̀ is a funnel labeling for D′ − Sr. Let D? = D − S.
From Observation 4 we know D? = D′ − Sr − (u, x) + (v, x) is a DAG since D′ − Sr is a

DAG. Hence, from Observation 3 we obtain that (Sr, ˆ̀) is a solution for the input instance.
In all cases a solution for the reduced instance implies a solution for the original instance.

Now assume there is a solution (S, ˆ̀) for the original instance. We show that there is
solution (Sr, ˆ̀

r) for the reduced instance. As in the previous direction, if (v, x) ∈ S, we can
replace it with (u, x) and obtain the desired solution. So assume (v, x) 6∈ S.

If (u, v) ∈ S, let S1 = S ∪ {(y, u)}, where {y} = in(u). Clearly, ˆ̀ is a funnel labeling for
D − S1. We set ˆ̀

r := ˆ̀ and ˆ̀
r(u) := F. As indegD−S1(u) = 0, ˆ̀

r is also a funnel labeling
for D − S1. From Observation 3 we know that ˆ̀

r is a funnel labeling for D1 = D′ − S1.
Since indegD1(v) = 0 = indegD1(u) and ˆ̀

r(u) = F, we have that ˆ̀
r is a funnel labeling for

D1 + (u, v). Hence, (S \ {(u, v)}, ˆ̀
r) is a solution for the reduced instance.

In the following we consider the remaining cases where {(u, v), (v, x)} ∩ S = ∅. Note
that the case ˆ̀(u) = M and ˆ̀(v) = F does not happen under this assumption.

Case 1: ˆ̀(v) = F = ˆ̀(u). We set ˆ̀
r := ˆ̀ and Sr := S. Clearly, D′−Sr = D−S− (v, x) +

(u, x). From Observation 4 there is no cycle in D − S + (u, x) and, hence, D′ − Sr is a DAG.
Thus, from Observation 3 we have that ˆ̀

r is a funnel labeling for D′ − Sr.
Case 2: ˆ̀(v) = M = ˆ̀(u). Since (v, x) 6∈ S, we have (v, w) ∈ S and ˆ̀(x) = M. Further,

we know that D′ − S is a DAG due to Observation 4. Let S1 = S ∪ {(u, v)}. Clearly, ˆ̀ is a
funnel labeling for D − S1, and D′ − S1 is also a DAG. From Observation 3 we have that ˆ̀
is a funnel labeling for D′ − S1.

We set ˆ̀
r := ˆ̀ and ˆ̀

r(v) := F. Since indegD′−S1(w) = 0 = indegD′−S1(v), we have
that ˆ̀

r is a funnel labeling for D′ − S1 + (v, w), regardless of the label of w. By setting
Sr := (S \ {(v, w)})∪ {(u, v)}, we get that ˆ̀

r is a funnel labeling for D′−Sr and |Sr| ≤ |S|.
Case 3: ˆ̀(v) = M and ˆ̀(u) = F. Let Sr = S and ˆ̀

r = ˆ̀. Since (u, v) 6∈ Sr, from
Observation 4 we know that D − Sr − (v, x) + (u, x) is a DAG. From Observation 3 we have
that ˆ̀

r is a funnel labeling for D′ − Sr.
In all cases we found a solution (Sr, ˆ̀

r) for the reduced instance, concluding the proof. J

IPEC 2020

13:8 A Polynomial Kernel for Funnel Arc Deletion Set

It is not always possible to exhaustively apply Shift Neighbors (RR 4): If u, v, w forms a
cycle, we would shift x indefinitely through this cycle. To prevent this from happening, we
need the following reduction rule:

I Reduction Rule 5 (Break Cycle). Let C be a cycle in D. If every vertex in C has indegree
(outdegree) one and either every vertex in C is unlabeled or every vertex in C is labeled with
F (M), then delete one arc of C and decrease k by one.

Proof of safety of Break Cycle (RR 5). Let (v, u) be the arc removed by the reduction
rule. Clearly, a solution for the reduced instance together with the arc (v, u) is a solution
for the original instance. Let (S, ˆ̀) be a solution for the original instance, and assume that
(v, u) 6∈ S. Let (w, x) be an arc of C contained in S. Without loss of generality, we assume
that (w, x) is the only incoming arc of x. The case where it is the only outgoing arc of w
follows analogously.

We can assume that ˆ̀(v) = F for all v ∈ V (C): If they were not labeled by ` when the
rule was applied, then by repeatedly applying Set Label (RR 2) (starting with x) we can
label them with F. Because indegD(v) = 1 for every v ∈ C, it follows that C is the only
cycle in D using the arc (w, x). Hence, D′ = D − S + (w, x)− (v, u) is a DAG. Further, as
ˆ̀(w) = ˆ̀(x) = F, it is easy to see that ˆ̀ is a funnel labeling for D′. J

If Shift Neighbors (RR 4) is not applicable, then many vertices in a long path P in a
local funnel must share a common out- or inneighbor w. However, from Set Label (RR 2) we
know that w receives a label if it has too many neighbors. The next and final reduction rule
needed for bounding the number of unlabeled vertices exploits this property and allows us to
label some vertex u in P if its predecessor v in P is adjacent to a labeled vertex w.

I Reduction Rule 6 (Labeled Neighbor). Let (v, u) be an arc between unlabeled vertices.
Set `(u) := F if indeg(u) = indeg(v) = 1 and ∃w ∈ out(v) : `(w) = M. Set `(v) := M if
outdeg(u) = outdeg(v) = 1 and ∃w ∈ in(u) : `(w) = F.

Proof of safety of Labeled Neighbor (RR 6). Assume, without loss of generality, that the
first case of the rule was applied. The proof for the second case follows analogously (note that
it is not possible for both cases to be applied simultaneously). Let (D, `r, k) be the reduced
instance. First note that `r ⊇ `, which means that a solution for the reduced instance is
already a solution for the original instance. Hence, it suffices to show that a solution (S, ˆ̀)
for the original instance implies a solution (Sr, ˆ̀

r) for the reduced instance.
If ˆ̀(u) = F, we set ˆ̀

r := ˆ̀ and Sr := S and we are done. So assume that ˆ̀(u) = M.
Case 1: (v, u) ∈ S. We set Sr := S, ˆ̀

r := ˆ̀ and ˆ̀
r(u) := F. As indegD−S(u) = 0, we

know that ˆ̀
r is also a funnel labeling for D − S.

Case 2: (v, u) 6∈ S and ˆ̀(v) = F. We set Sr := S, ˆ̀
r := ˆ̀ and ˆ̀

r(u) := F. As
ˆ̀
r(v) = F = ˆ̀

r(u), we may keep the arc (v, u) and ˆ̀
r is a funnel labeling for D − Sr.

Case 3: (v, u) 6∈ S and ˆ̀(v) = M. Then (v, w) ∈ S. We set ˆ̀
r := ˆ̀, ˆ̀

r(u) := F, ˆ̀
r(v) := F,

Sr := (S \ {(v, w)}) ∪ {(y, v)}, where y is the unique inneighbor of v.
The digraph D − Sr is a DAG: if it has a cycle, the cycle would have to use the arc

(v, w), yet indegD−Sr
(v) = 0, a contradiction. We now argue that ˆ̀

r is a funnel labeling
for D − Sr. Since indegD−Sr

(v) = 0, indegD−Sr
(u) = 1 and ˆ̀

r(u) = F, the vertex v is the
unique inneighbor of u in the out-forest of the funnel D− Sr. Finally, as ˆ̀

r(w) = M, the arc
(v, w) is allowed in the funnel. Hence, ˆ̀

r is a funnel labeling for D− Sr. In all cases we find
a solution (ˆ̀

r, Sr) for the reduced instance, concluding the proof. J

M.Garlet Milani 13:9

I Lemma 5. Let s be some source (sink) of some unlabeled local funnel H in the reduced
digraph D. Let P1, P2, . . . Pa be a sequence of paths in H starting (ending) at s such that
indeg(u) ≤ 1 (outdeg(u) ≤ 1) for each u in each Pi, and V (Pj) 6⊆ V (Pi) for all 1 ≤ i, j ≤ a
where i 6= j. Let E be the set of end (start) points of all Pi. Then all of the following hold.
(1) outdeg(u) > 1 (indeg(u) > 1) for any inner vertex u of any Pi.
(2) out(

⋃a
i=1 V (Pi) \ E) ⊆ out(s) (in(

⋃a
i=1 V (Pi) \ E) ⊆ in(s)),

(3) V (Pi) ∩ V (Pj) = {s} for each 1 ≤ i, j ≤ a where i 6= j, and
(4) a ≤ k + 1 and |V (Pi)| ≤ k + 2 for each 1 ≤ i ≤ a.

Proof. We consider the case where s is a source of H. The other case follows analogously.
Let u be some inner vertex of some Pi and w the unique outneighbor of u in Pi. By

assumption on Pi, we have indegD(w) = 1. As Dissolve Vertex (RR 3) is not applicable, we
have that outdeg(u) > 1 (proving (1)). In particular, u has some outneighbor x not in Pi.

Let v be the inneighbor of u in Pi. Since indegD(v) = indegD(u) = indegD(w) = 1 and
Shift Neighbors (RR 4) is not applicable, we have x ∈ outD(v). By repeating this argument
to the predecessors of u in Pi, we prove (2) (and also that a ≤ k + 1, as outdegD(s) ≤ k + 1
due to Set Label (RR 2)).

Assume there are two paths Pi and Pj intersecting at more than one vertex. Let u
be the last vertex of the intersection. Note that, if u is the last vertex of Pi or Pj , then
one path has to contain the other. Hence, u has two outneighbors wi and wj lying on Pi
and Pj , respectively, and wi 6= wj . But due to (2), we have wi, wj ∈ outD(s), implying
indegD(wi) > 1 and indegD(wj) > 1, a contradiction to our assumptions on Pi and Pj
(proving (3)).

Let v1, v2, . . . , vm be the sequence of vertices of a path Pi. From (1) we know that there
is some w ∈ outD(vm−1) outside of Pi. We also have w ∈ outD(vj) for all 1 ≤ j ≤ m − 1,
implying indegD(w) ≥ m− 1. If m− 1 > k + 1, then `(w) = M, as Set Label (RR 2) is not
applicable. However, as indegD(vm−1) = 1 = indegD(vm−2), w ∈ outD(vm−2) and Labeled
Neighbor (RR 6) is not applicable, we have `(vm−1) = F, a contradiction to the assumption
that H is unlabeled. Hence, m− 1 ≤ k + 1, implying |V (Pi)| ≤ k + 2 (proving (4)). J

I Lemma 6 (?). Let H be an unlabeled local funnel in D. Then |V (H)| ∈ O(k3).

We conclude by bounding the number of maximal vertex-disjoint unlabeled local funnels
in D. Since we can always partition unlabeled vertices with in- or outdegree at most one into
local funnels, by bounding the number of local funnels in such a partitioning, together with
the bound on the size of each local funnel, we obtain a bound for the number of unlabeled
vertices with in- or outdegree at most one.

Let H = {H1, H2, . . . Ha} be a set of maximal vertex-disjoint unlabeled local funnels in
D (in this context, maximal means that Hi ∪Hj is not a local funnel for any two distinct
Hi, Hj ∈ H). Let si be the unique source of Hi for each i. We now show that, if there is a
solution removing at most k arcs, then |H| is “small”. By contraposition this means that, if
|H| is “large”, then we have a “no” instance and can stop the kernelization process.

We start with the simple observation that cycles intersecting inside a local funnel must
also intersect outside it.

I Observation 7 (?). Let Ci and Cj be two distinct cycles inD such that V (Ci)∩V (Cj) ⊆ H`

for some H` ∈ H. Then V (Ci) ∩ V (Cj) = ∅.

We partition the set of maximal unlabeled local funnels H into three sets (1) F = {Hi ∈
H | there is some v ∈ V (Hi) with outdegD(v) > 1}; (2) M = {Hi ∈ H | indegD(si) > 1};
and (3) X = {Hi ∈ H | indegD(si) = 1 and ∀v ∈ V (Hi) : outdegD(v) = 1}.

IPEC 2020

13:10 A Polynomial Kernel for Funnel Arc Deletion Set

I Lemma 8. If there is a solution (S, ˆ̀) for (D, `, k), then |X | ≤ 2k2.

Proof. Let Hi ∈ X and u be the unique inneighbor of si. Note that outdegD(si) = 1. As
Dissolve Vertex (RR 3) is not applicable, we have that outdegD(u) > 1 and indegD(w) > 1,
where w is the unique outneighbor of si.

Case 1: u ∈ Dom(`). Then `(u) = M since Set Label (RR 2) is not applicable. As
outdeg(u) > 1, each Hj ∈ X with sj ∈ outD(u) requires one more arc of u to be in S.

Case 2: u 6∈ Dom(`). If indegD(u) = 1, then there is some vi ∈ V (Hi) such that
(vi, u) ∈ A(D), otherwise Hi would not be maximal. Hence, there is a cycle Ci containing
u, si and vi. If there is any other Hj ∈ X with sj ∈ outD(u) and with some vj ∈ V (Hj) such
that (vj , u), then the cycle Cj containing u, sj and vj is arc-disjoint to the cycle Ci due to
Observation 7. Thus, S must contain at least one arc of each such Cj , implying there are at
most k local funnels Hj that fall into this case.

If indegD(u) > 1, one arc of u is in S as outdegD(u) > 1. Further, outdegD(u) ≤ k. This
means that there are at most k local funnels Hj ∈ X with sj ∈ outD(u). As there can be at
most 2k such vertices u, we have that there are at most 2k2 local funnels Hj ∈ X which fall
into this case. In the worst case, we have |X | ≤ max{k + 1, 2k2} ≤ 2k2. J

I Lemma 9 (?). If there is a solution (S, ˆ̀) for (D, `, k), then |F| ≤ 2k2 + 3k.

I Lemma 10 (?). If there is a solution (S, ˆ̀) for (D, `, k), then |M| ≤ k2 + 2k.

From Lemmas 8 to 10, we easily obtain a bound for the number of vertices in unlabeled
local funnels. Together with the fact that Lower Bound (RR 1) is not applicable, we obtain
a bound for the number of unlabeled vertices in D.

I Lemma 11 (?). Let D be a reduced digraph. Then there are O(k5) vertices v ∈ V (D) with
v 6∈ Dom(`) and indeg(v) = 1 ∨ outdeg(v) = 1.

3.2 Bounding the number of labeled vertices
In Section 3.1 we exploited the property that unlabeled vertices have bounded degree, and
that we can label them if their neighborhood has some special structure captured by the
reduction rules. For the labeled vertices, however, we can apply neither of those strategies.
Instead, we first exploit the fact that we know the label of a vertex and use this to decide if
an arc is never in an optimal solution or if it is always in an optimal solution.

Arcs from M to F vertices clearly need to be removed. We show that we can also ignore
arcs from F to M vertices, that is, we can remove them without changing k.

I Reduction Rule 7 (Remove Arcs) (?). Let (v, u) ∈ A(D). If `(v) = F and `(u) = M,
remove (v, u). If `(v) = M and `(u) = F, remove (v, u) and decrease k by 1.

We now identify certain vertices that can be removed safely. Clearly, sources and sinks
cannot be in any cycle in D. By carefully considering the neighborhood of a source or sink v,
we can also prove that v is not “relevant” for any forbidden subgraph for funnels in D.

I Reduction Rule 8 (Sources and Sinks) (?). Let v ∈ V (D) be a labeled vertex where
out(v) ∪ in(v) ⊆ Dom(`). Remove v if one of the following holds.
1. indeg(v) = 0 and no u ∈ out(v) exists with `(u) = F and indeg(u) > 1, or
2. outdeg(v) = 0 and no u ∈ in(v) exists with `(u) = M and outdeg(u) > 1.

M.Garlet Milani 13:11

Having exhaustively applied Reduction Rules 7 and 8, we can bound the number of
labeled vertices in D. Since Lower Bound (RR 1) is not applicable, we already have a bound
for the number of vertices v with `(v) = F ∧ indeg(v) > 1 or `(v) = M ∧ outdeg(v) > 1.
Hence, we only need to consider vertices in the set L = {v ∈ Dom(`) | `(v) = F ∧ indeg(v) ≤
1 or `(v) = M ∧ outdeg(v) ≤ 1}.

To bound |L|, we exploit the bound on the number of unlabeled vertices from Lemma 11
and also the fact that such vertices have small degree as Set Label (RR 2) is not applicable.
We first partition L into two subsets L1 = {v ∈ L | in(v)∪out(v) 6⊆ Dom(`)} and L2 = L\L1.

I Lemma 12 (?). |L1| ∈ O(k6).

I Lemma 13. |L2| ∈ O(k).

Proof. Let VF = {v | `(v) = F} and LF = VF ∩ L2. The case for the vertices labeled with M
follows analogously.

Since Remove Arcs (RR 7) is not applicable, we have `(u) = F for all u ∈ out(LF)∪ in(LF).
Let

R1 = {u ∈ VF | indeg(u) > 1}, R2 = {u ∈ LF | indeg(u) ≤ 1, out(u) ∩ R1 6= ∅} and
R3 = {u ∈ LF | indeg(u) ≤ 1, out(u) ∩R1 = ∅}.

Note that L2 = R2 ∪R3 and R1 ∩ L2 = ∅.
A solution set S ⊆ A(D) must contain at least indeg(v)− 1 many incoming arcs of v for

every v ∈ R1. As each u ∈ R2 has some v ∈ R1 as outneighbor, we have |R2| ≤ 2k.
Let v ∈ R3. We claim that v can reach some vertex of R2. Since Sources and Sinks

(RR 8) is not applicable and out(v) ∩R1 = ∅, we have indeg(v) = 1 and outdeg(v) ≥ 1. This
means that, if we successively follow the outneighbors of v, we reach a vertex of R2 or find a
cycle C using only vertices of R3. However, as Break Cycle (RR 5) is not applicable, such a
cycle C cannot exist: every vertex v ∈ R3 has indeg(v) = 1 and `(v) = F, implying we could
apply Break Cycle (RR 5) to C. Hence, every vertex of R3 can reach some u ∈ R2.

We greedily construct vertex-disjoint paths P1, P2, . . . , Pa ending in R2 whose inner
vertices lie in R3. For a vertex v ∈ R3 take an arbitrary u ∈ R2 such that v can reach u.
Consider a path P from v to u. If none of its vertices lie in any already constructed Pi, we
just take the path P into our set of paths. Otherwise, assume that P intersects some Pi at
w and let w be the first such vertex in P . Since the indegree of any vertex in R3 ∪R2 is at
most one, we know that w is the starting point of Pi. Hence, we can obtain a path Pj by
taking the path from v to w in P and then concatenating Pi. As w is the first vertex of P
intersecting any other path, we get that Pj only intersects Pi. By replacing Pi with Pj , we
obtain a path that also contains v. We repeat this process until we covered all v ∈ R3.

Since |R2| ≤ 2k, we have a ≤ 2k. We now prove that |V (Pi)| ≤ 4 for any Pi in our set of
vertex-disjoint paths. Note that indeg(u) ≤ 1 for any vertex u ∈ V (Pi).

Since Dissolve Vertex (RR 3) is not applicable, any inner vertex u of Pi has outdeg(u) > 1.
Let w be the successor of u in Pi. As Shift Neighbors (RR 4) is not applicable, we have
that indeg(w) > 1 or v ∈ out(u) where v is the unique inneighbor of u. If indeg(w) > 1, then
u ∈ R2 and is the endpoint of Pi, a contradiction to the assumption that u is an inner vertex
of Pi. Otherwise, we know that u 6∈ out(w) as indeg(u) = 1. If u is the only inner vertex
of Pi, then |V (Pi)| ≤ 3. Otherwise, its successor w in Pi is an inner vertex of Pi (since v is
the starting point of Pi, and so v 6∈ out(u)). Hence, we can apply the same argumentation
to w and conclude that it has some outneighbor x with indeg(x) > 1, implying x ∈ R2 and
|V (Pi)| ≤ 4.

Since |V (Pi)| ≤ 4 and a ≤ 2k, we have that |L2| ≤ 6k. Because L2 = R2 ∪R3, we have
that |L2| ≤ 8k ∈ O(k), as desired. J

I Lemma 14. Let (D, `, k) be an FADL instance where Reduction Rules 1 to 8 are not
applicable. Then |V (D)| ∈ O(k6) and |A(D)| ∈ O(k6).

IPEC 2020

13:12 A Polynomial Kernel for Funnel Arc Deletion Set

Proof. As Lower Bound (RR 1) is not applicable, there are at most 2k vertices v with
indeg(v) > 1 and outdeg(v) > 1, and also at most 2k many vertices v with `(v) = F ∧
indeg(v) > 1 or `(v) = M ∧ outdeg(v) > 1. From Lemma 11 we know there are O(k5) many
unlabeled vertices v ∈ V (D) with indeg(v) ≤ 1 or outdeg(v) ≤ 1. Finally, due to Lemmas 12
and 13 there are O(k6) vertices v with `(v) = F ∧ indeg(v) ≤ 1 or `(v) = M ∧ outdeg(v) ≤ 1.
As any vertex in D falls into one of these groups, we have |V (D)| ∈ O(k6).

As Remove Arcs (RR 7) is not applicable, there is no arc (v, u) where v, u ∈ Dom(`) and
`(v) 6= `(u). Since there are O(k5) many unlabeled vertices and every unlabeled vertex has in-
and outdegree at most k + 1, there are O(k6) arcs (v, u) where v 6∈ Dom(`) or u 6∈ Dom(`).

Now let (v, u) be some arc where v, u ∈ Dom(`). Note that `(v) = `(u).
Case 1: v, u ∈ L. Then outdeg(v) = 1 (if `(v) = M) or indeg(u) = 1 (if `(u) = F). Thus,

there can be at most |L| ∈ O(k6) many arcs (v, u) where v, u ∈ L.
Case 2: v, u 6∈ L. As Lower Bound (RR 1) is not applicable, there can be at most 2k

such vertices. Thus, there are at most 4k2 arcs between labeled vertices not in L.
Case 3: Exactly one of v, u is in L.
Case 3.1: v 6∈ L ∧ `(v) = F or u 6∈ L ∧ `(u) = M. Then indeg(u) = 1 or outdeg(v) = 1.

Hence, there can be at most |L| ∈ O(k6) such arcs.
Case 3.2: v 6∈ L ∧ `(v) = M or u 6∈ L ∧ `(u) = F. If v 6∈ L, then at least half of its

outgoing arcs need to be in a solution set. Similarly, if u 6∈ L, at least half of its incoming
arcs need to be in a solution set. Hence, there can be at most 2k many arcs falling into
this case. By adding all cases together, we obtain that |A(D)| ∈ O(k6), concluding the
proof. J

4 Computing the Kernel

In Sections 3.1 and 3.2 we defined the reduction rules for the kernelization process and
showed that, if none of the reduction rules are applicable to a digraph D, then the size of
D is polynomially bounded on k. To conclude the proof that FADS admits a polynomial
problem kernel, we show that it is possible to apply all reduction rules in O(nm) time and
also reduce the FADL instance back into an FADS instance.

I Lemma 15 (?). We can exhaustively apply Reduction Rules 1 to 8 in O(nm) time to an
FADL instance (D, `, k), where n = |V (D)| and m = |A(D)|.

I Theorem 16. FADS admits a kernel with O(k6) vertices and O(k7) arcs which can be
computed in O(nm) time, where n = |V (D)|, m = |A(D)| and D is the input digraph.

Proof. We start by reducing the FADS instance into an FADL instance (D, `, k) by adding
an empty labeling `. Using Lemma 15, we can exhaustively apply all reduction rules to
(D, `, k) in O(nm) time.

From Lemma 14 we know |V (D)| ∈ O(k6) and |A(D)| ∈ O(k6). We now reduce the
FADL instance back into an FADS instance (D′, k) in order to obtain a kernel for the
original problem. We first set D′ := D and add k + 2 vertices f1, f2, . . . , fk+2 and k + 2
vertices m1,m2, . . . ,mk+2 to D′. Let v ∈ Dom(`). If `(v) = F, we add the arc (v, fi) for
each 1 ≤ i ≤ k + 2. If `(v) = M, we add the arc (mi, v) for each 1 ≤ i ≤ k + 2.

Trivially, a solution for the FADL instance is also a solution for the FADS instance. It
is also easy to see that, if there is some arc set Sr ⊆ A(D′) and some funnel labeling ˆ̀

r for
D′ − Sr such that `(v) 6= ˆ̀

r(v) for some v ∈ Dom(`), then |Sr| > k. Hence, a solution for
(D′, k) implies a solution for (D, `, k).

We added 2k + 4 vertices and O(k7) many arcs to D′, and so |V (D′)| ∈ O(k6) and
|A(D′)| ∈ O(k7), thus concluding the proof. J

M.Garlet Milani 13:13

5 Conclusion

The kernelization algorithm provided in this paper heavily relies on the characterizations
of Theorem 1 for funnels. Both the characterization by forbidden subgraphs as well as
the labeling characterization allowed us to derive reduction rules based only on “local”
substructures as the degree or neighborhood of a vertex. In a sense, this “locality” property
saved us from computing any set of vertex-disjoint local funnels, despite the fact that the
results and reduction rules from Section 3.1 heavily rely on local funnels.

The polynomial kernels for Out-Forest-VDS and Pumpkin-VDS due to [12] also
rely on “localized” forbidden substructures. We consider that generalizing these results to
larger digraph classes of unbounded treewidth, but which are characterized by forbidden
substructures, to be a very interesting direction for future research.

Further, it would also be interesting to decide if Funnel-VDS admits a polynomial
kernel or not (it is in FPT with respect to the solution size [11]), especially since a kernel for
this problem would require considerably different ideas from the ones presented in this paper,
as it is no longer clear how to exploit the vertex labeling in the vertex-deletion setting.

References
1 Faisal N Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of Computer and

System Sciences, 76(7):524–531, 2010.
2 Akanksha Agrawal, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Kernels for deletion

to classes of acyclic digraphs. Journal of Computer and System Sciences, 92:9–21, 2018.
3 Jørgen Bang-Jensen, Alessandro Maddaloni, and Saket Saurabh. Algorithms and kernels for

feedback set problems in generalizations of tournaments. Algorithmica, 76(2):320–343, 2016.
4 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter

algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM), 55(5):21,
2008.

5 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

6 Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

7 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

8 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of EATCS, 2(113),
2014.

9 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization–preprocessing with a
guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129–161. Springer,
2012.

10 Daniel Lokshtanov, MS Ramanujan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Wannabe bounded treewidth graphs admit a polynomial kernel for dfvs. In Workshop on
Algorithms and Data Structures, pages 523–537. Springer, 2019.

11 Marcelo Garlet Millani, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Efficient
algorithms for measuring the funnel-likeness of DAGs. In Jon Lee, Giovanni Rinaldi, and
A. Ridha Mahjoub, editors, Combinatorial Optimization, pages 183–195, Cham, 2018. Springer
International Publishing.

12 Matthias Mnich and Erik Jan van Leeuwen. Polynomial kernels for deletion to classes of
acyclic digraphs. Discrete Optimization, 25:48–76, 2017.

IPEC 2020

	Introduction
	Preliminaries
	Basic reduction rules
	Bounding the number of unlabeled vertices
	Bounding the number of labeled vertices

	Computing the Kernel
	Conclusion

