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Abstract
Graph-modification problems, where we add/delete a small number of vertices/edges to make
the given graph to belong to a simpler graph class, is a well-studied optimization problem in all
algorithmic paradigms including classical, approximation and parameterized complexity. Specifically,
graph-deletion problems, where one needs to delete at most k vertices to place it in a given non-trivial
hereditary (closed under induced subgraphs) graph class, captures several well-studied problems
including Vertex Cover, Feedback Vertex Set, Odd Cycle Transveral, Cluster Vertex
Deletion, and Perfect Deletion. Investigation into these problems in parameterized complexity
has given rise to powerful tools and techniques. While a precise characterization of the graph classes
for which the problem is fixed-parameter tractable (FPT) is elusive, it has long been known that if
the graph class is characterized by a finite set of forbidden graphs, then the problem is FPT.

In this paper, we initiate a study of a natural variation of the problem of deletion to scattered
graph classes where we need to delete at most k vertices so that in the resulting graph, each
connected component belongs to one of a constant number of graph classes. A simple hitting set
based approach is no longer feasible even if each of the graph classes is characterized by finite
forbidden sets. As our main result, we show that this problem (in the case where each graph class has
a finite forbidden set) is fixed-parameter tractable by a O∗(2kO(1)

)1 algorithm, using a combination
of the well-known techniques in parameterized complexity – iterative compression and important
separators. Our approach follows closely that of a related problem in the context of satisfiability
[Ganian, Ramanujan, Szeider, TAlg 2017], where one wants to find a small backdoor set so that the
resulting CSP (constraint satisfaction problem) instance belongs to one of several easy instances
of satisfiability. While we follow the main idea from this work, there are some challenges for our
problem which we needed to overcome.

When there are two graph classes with finite forbidden sets to get to, and if one of the forbidden
sets has a path, then we show that the problem has a (better) singly exponential algorithm and a
polynomial sized kernel. We also design an efficient FPT algorithm for a special case when one of
the graph classes has an infinite forbidden set. Specifically, we give a O∗(4k) algorithm to determine
whether k vertices can be deleted from a given graph so that in the resulting graph, each connected
component is a tree (the sparsest connected graph) or a clique (the densest connected graph).
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18:2 Deletion to Scattered Graph Classes

1 Introduction

Graph modification problems, where we want to modify a given graph by adding/deleting
vertices/edges to obtain a simpler graph are well-studied problems in algorithmic graph
theory. Starting from the classical work of Lewis and Yannakakis [12] (see also [20]) who
showed the problem NP-complete for the resulting simpler graph belonging to any non-
trivial (the graph property is true for infinitely many graphs and false for infinitely many
graphs) hereditary graph class (closed under induced subgraphs), the complexity of the
problem has been studied in several algorithmic paradigms including approximation and
parameterized complexity. Specifically, deleting at most k vertices to a fixed hereditary graph
class is an active area of research in parameterized complexity over the last several years
yielding several powerful tools and techniques. Examples of such problems include Vertex
Cover, Cluster Vertex Deletion, Feedback Vertex Set and Chordal Vertex
Deletion.

It is well-known that any hereditary graph class can be described by a forbidden set
of graphs, finite or infinite, that contains all minimal forbidden graphs in the class. In
parameterized complexity, it is known that the deletion problem is fixed-parameter tractable
(FPT) as long as the resulting hereditary graph class has a finite forbidden set [3]. This
is shown by an easy reduction to the Bounded Hitting Set problem. This includes, for
example, deletion to obtain a split graph or a cograph. We also know FPT algorithms for
specific graph classes defined by infinite forbidden sets like feedback vertex set and odd cycle
transversal [6]. While the precise characterization of the class of graphs for which the deletion
problem is FPT is elusive, there are graph classes for which the problem is W-hard [10,13].

Recently, some stronger versions have also been studied, where the problem is to delete at
most k vertices to get a graph such that every connected component of the resulting graph is
at most ` edges away from being a graph in a graph class F (see [16–18]). Some examples of
F that have been studied in this stronger version include forest, pseudo-forest or bipartite.
Our results: In this paper, we address the complexity of a very natural variation of the
graph deletion problem, where in the resulting graph, each connected component belongs to
one of finitely many graph classes. For example, we may want the connected components of
the resulting graph to be a clique or a biclique (a complete bipartite graph). It is known
that cliques forbid exactly P3s, the induced paths of length 2, and bicliques forbid P4 and
triangles. So if we just want every connected component to be a clique or every connected
component to be a biclique, then one can find appropriate constant sized subgraphs in the
given graph and branch on them (as one would in a hitting set instance). However, if we
want each connected component to be a clique or a biclique, such a simple approach by
branching over P3, P4, or K3 would not work. Notice that triangles are allowed to be present
in clique components and P3s are allowed to be present in biclique components. It is not
even clear that there will be a finite forbidden set for this resulting graph class.

Our main result of the paper shows this deletion problem, when there are a constant
number of graph classes each characterized by a finite forbidden set for the resulting graph
is fixed-parameter tractable using the well-known techniques in parameterized complexity
– iterative compression and important separators. Specifically the problem we show to be
fixed-parameter tractable is the following.

(Π1, Π2, . . . , Πd) Vertex Deletion Parameter: k

Input: An undirected graph G = (V,E), an integer k, and d graph classes Π1, . . . ,Πd

described by finite forbidden sets F1, . . . ,Fd respectively.
Question: Is there a subset Z ⊆ V (G), |Z| ≤ k such that every connected component
of G− Z is in at least one of the graph classes Π1, . . . ,Πd?
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Several natural graph classes forbid induced paths of certain lengths. We can develop
a much better algorithm in that case. More specifically, when there are only two graph
classes for the connected components of the resulting graph to be placed, and if one of
them has a path as a forbidden subgraph, then we show that the problem has a polynomial
kernel, an efficient O∗(ck) algorithm and a c-approximation algorithm where c depends on
the maximum size of the graphs in the forbidden set. Finally we also look at the problem
for the specific case when one of the resulting graph classes has an infinite forbidden set.
Specifically, we look at the problem of deleting a small number of vertices so that each
connected component of the resulting graph is a tree (the sparsest connected graph) or a
clique (the densest connected graph), and give an O∗(4k) algorithm.

Previous Work. While there has been a lot of work on graph deletion and modification
problems, one work that comes close to ours is the work by Ganian, Ramanujan and Szeider [9]
where they consider the parameterized complexity of finding strong backdoors to a scattered
class of CSP instances. In fact, in their conclusion, they remark that

“graph modification problems and in particular the study of efficiently computable
modulators to various graph classes has been an integral part of parameterized
complexity and has led to the development of several powerful tools and techniques.
We believe that the study of modulators to “scattered graph classes” could prove
equally fruitful and, as our techniques are mostly graph based, our results as well
as techniques could provide a useful starting point towards future research in this
direction”.

Our work is a starting point in addressing the parameterized complexity of the problem they
suggest.

Our Techniques. We now give a brief summary of the main FPT algorithm described in
Theorem 3.3. We reduce the problem (Π1,Π2, . . . ,Πd) Vertex Deletion to Disjoint
(Π1,Π2, . . . ,Πd) Vertex Deletion Compression (Disjoint (Π1,Π2, . . . ,Πd)-VDC for
short) using the standard technique of iterative compression. In Disjoint (Π1,Π2, . . . ,Πd)-
VDC, we can assume that a (Π1,Π2, . . . ,Πd)-modulator W of the graph of size k− i is also
given to us as input for some i ≤ k (i is the number of vertices from the modulator we have
guessed to be in the solution) and the aim is to check if there is a (Π1,Π2, . . . ,Πd)-modulator
of the graph of size k − i− 1 disjoint from W . This is formally described in Subsection 3.1.

In Subsection 3.2, we give an FPT algorithm for Disjoint (Π1,Π2, . . . ,Πd)-VDC in the
special case when the solution that we are looking for leaves W in a single component. The
algorithm uses the technique of important separators [15].

Finally in Subsection 3.3, we handle general instances of Disjoint (Π1,Π2, . . . ,Πd)-VDC.
We focus on instances where the solution separates W . We guess W1 ⊂ W as the part of
W that occurs in some single connected component after deleting the solution. Since, the
solution separates W , we know that it contains a W1− (W \W1) separator X. The algorithm
uses the technique of important separator sequences [14]. Informally, an important separator
sequence partitions the graph into slices with small boundaries which allows us to look for
solutions local to the slices. The algorithm guesses the integer ` which is the size of the part
of the solution present in the graph containing W1 after removing X. The algorithm then
constructs the important separator sequence corresponding to ` and finds the separator P
furthest from W1 in the sequence such that there is a (Π1,Π2, . . . ,Πd)-modulator of size ` in
the graph containing W1 after removing P . If separator X either intersects P or dominates
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the other, then a recursive smaller instance is easily constructable. In the case when the two
separators are incomparable, the algorithm identifies a set of vertices Y that is reachable
from W1 after deleting P . The algorithm then constructs a graph gadget of kO(1) vertices
whose appropriate attachment to the boundary P of the graph G[Y ] gives a graph G′ which
preserves the part of the solution of G present in G[Y ]. Since this part of the solution is
strictly smaller in size, the algorithm can find the solution for G by recursively finding the
solution in G′.

While the main techniques for a good part follow from the paper by Ganian, Ramanujan
and Szeider [9], the problem has its own challenges. The paper by Ganian, Ramanujan and
Szeider worked on strong backdoors to a scattered class of CSPs. The authors create an
variable-constraint incidence graph based on the CSP and focus on “forbidden sets” with
respect to a set of variables S which is a set of constraints C such that there is an assignment
of S on which for every CSP class, one of the constraints under this assignment does not
belong to this class. We identify an equivalent notion of forbidden set in our problem as
a subset of vertices C such that for every finite forbidden graph class, there is a subset of
C such that the graph induced on the subset belongs to a forbidden member of this class.
Since the forbidden set is identified by a collection of finite subgraphs here, instead of a set
of constraint vertices in the CSP case where the graph properties are not relevant, there are
more difficulties arising from it. For example, the CSP result uses a connecting gadget that
adds extra vertices and edges to preserve connectivity of some subsets. They manage this by
associating tautological constraints to these extra vertices which can go into any of the CSP
classes. But adding new vertices and edges can create new subgraphs which could be a finite
forbidden subgraph, in our case. Due to this, we had to come up with an algorithm avoiding
any use of connecting gadgets. Another difficulty is in creating the smaller graph instance
G′ using gadgets as described in the previous paragraph where we could recursively solve the
instance. In the CSP case, identifying the set of vertices that need to be preserved in the
smaller instance was easier as the forbidden sets were a set of constraint vertices. In our case,
this gets more complicated as we deal with forbidden sets involving subgraphs. Specifically
this results in a more complex marking procedure in Lemma 3.17 to prove its third claim.

2 Preliminaries

Graph Theory. For ` ∈ N, we use P` to denote the path on ` vertices. We use standard
graph theoretic terminology from Diestel’s book [8]. A tree is a connected graph with no
cycles. A forest is a graph, every connected component of which is a tree. A paw is a graph
G with vertex set V (G) = {x1, x2, x3, x4} and edge set E(G) = {x1x2, x2x3, x3x1, x3x4}. A
graph is a block graph if all its biconnected components are cliques. For a set X ⊆ G, we
use G[X] to denote the graph induced on the vertex set X and we use G −X (or G \X)
to denote the graph induced by the vertex set V (G) \X. We say that a subset Z ⊆ V (G)
disconnects a subset S ⊆ V (G) if there exists v, w ∈ S with v 6= w such that v and w occur
in different connected components of the graph G \ Z.

I Definition 2.1. Let G be a graph and disjoint subsets X,S ⊆ V (G). We denote by RG(X,S)
the set of vertices that lie in the connected component containing X in the graph G \ S. We
denote RG[X,S] = RG(X,S) ∪ S. Finally we denote NRG(X,S) = V (G) \ RG[X,S] and
NRG[X,S] = NRG(X,S) ∪ S. We drop the subscript G if it is clear from the context.

I Definition 2.2 ([15]). Let G be a graph and X,Y ⊆ V (G).
A vertex set S disjoint from X and Y is said to disconnect X and Y if RG(X,S)∩Y = φ.
We say that S is an X − Y separator in the graph G.
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An X − Y separator is minimal if none of its proper subsets is an X − Y separator.
An X − Y separator S1 is said to cover an X − Y separator S with respect to X if
R(X,S) ⊂ R(X,S1).
Two X − Y separators S1 and S2 are said to be incomparable if neither covers the other.
In a set H of X − Y separators, a separator S is said to be component-maximal if there
is no separator S′ in H which covers S. Component-minimality is defined analogously.
An X − Y separator S1 is said to dominate an X − Y separator S with respect to X if
|S1| ≤ |S| and S1 covers S with respect to X.
We say that S is an important X − Y separator if it is minimal and there is no X − Y
separator dominating S with respect to X.

For the basic definitions of Parameterized Complexity, we refer to [6].

3 Deletion to d finite scattered classes

I Definition 3.1. We call a set Z a (Π1, Π2, . . . , Πd)-modulator if every connected
component of G \ Z is in one of the graph classes Πi for i ∈ d.

Organization of the section. This section is divided into three subsections. In the first
section, we use iterative compression to transform the (Π1,Π2, . . . ,Πd) Vertex Deletion
problem into a compressed version of the problem named Disjoint (Π1,Π2, . . . ,Πd)-VDC.
In the second section, we give an algorithm for Disjoint (Π1,Π2, . . . ,Πd)-VDC for the
special case of having a non-separating solution which we will define later. Finally in
the third section, we give a general algorithm for Disjoint (Π1,Π2, . . . ,Πd)-VDC and
subsequently (Π1,Π2, . . . ,Πd) Vertex Deletion using the algorithm in the second section
as a subroutine.

3.1 Iterative Compression
We use the standard technique of iterative compression to transform the (Π1,Π2, . . . ,Πd)
Vertex Deletion problem into the following problem Disjoint (Π1,Π2, . . . ,Πd) Vertex
Deletion Compression(Disjoint (Π1,Π2, . . . ,Πd)-VDC) such that an FPT algorithm
with running time O∗(f(k)) for the latter gives a O∗(2k+1f(k)) time algorithm for the former.
The details are moved to the full version.

Disjoint (Π1, Π2, . . . , Πd)-VDC Parameter: k

Input: A graph G, an integer k, finite forbidden sets F1,F2, . . . ,Fd for graph classes
Π1,Π2, . . . ,Πd and a subset W of V (G) such that W is a (Π1,Π2, . . . ,Πd)- modulator
of size k + 1.
Question: Is there a subset Z ⊆ V (G) \W, |Z| ≤ k such that Z is a (Π1,Π2, . . . ,Πd)-
modulator of the graph G?

3.2 Finding non-separating solutions
In this section, we focus on solving instances of Disjoint (Π1,Π2, . . . ,Πd)-VDC which have
a non-separating property defined as follows.

I Definition 3.2. Let (G, k,W ) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC and Z
be a solution for this instance. Then Z is called a non-separating solution if W is contained
in a single connected component of G \Z and separating otherwise. If an instance has only
separating solutions, we call it a separating instance. Otherwise, we call it non-separating.

IPEC 2020



18:6 Deletion to Scattered Graph Classes

We begin the description of the algorithm with the following reduction rule.

I Reduction Rule 1. If a connected component of G belongs to some graph class Πi, then
remove all the vertices of this connected component.

I Lemma 3.3 (?2). Reduction rule 1 is safe.

We now develop the following notion of forbidden sets which can be used to identify if a
connected component of a graph belongs to any of the classes Πi for i ∈ [d].

I Definition 3.4. We say that a subset of vertices C ⊆ V (G) is a forbidden set of G if C
occurs in a connected component of G and there exists a subset Ci ⊆ C such that G[Ci] ∈ Fi
for all i ∈ [d] and C is a minimal such set.

Clearly if a connected component of G contains a forbidden set, then it does not belong
to any of the graph classes Πi for i ∈ [d]. We note that even though the forbidden set C is
of finite size, the lemma below rules out the possibility of a simple algorithm involving just
branching over all the vertices of C.

I Lemma 3.5 (?). Let G be a graph and C ⊆ V (G) be a forbidden set of G. Let Z be a
(Π1,Π2, . . . ,Πd)-modulator of G. Then Z disconnects C or Z ∩ C 6= ∅.

We now have the following lemma on important separators which is helpful in our
algorithm to compute non-separating solutions.

I Lemma 3.6 ( [4]). For every k ≥ 0 and subsets X,Y ⊆ V (G), there are at most 4k
important X−Y separators of size at most k. Furthermore, there is an algorithm that runs in
O(4kkn) time that enumerates all such important X−Y separators and there is an algorithm
that runs in nO(1) time that outputs one arbitrary component-maximal X − Y separator.

We now have the following lemma which connects the notion of important separators
with non-separating solutions of our problem.

I Lemma 3.7 (?). Let (G, k,W ) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC obtained
after exhaustively applying Reduction Rule 1 and Z be a non-separating solution. Let v be a
vertex such that Z is a {v} −W separator. Then there is a solution Z ′ which contains an
important v −W separator of size at most k in G.

We use the above lemma along with Lemma 3.6 to obtain our algorithm for non-separating
instances. The algorithm finds a minimal forbidden set C in polynomial time which is finite.
Then it branches on the set C and also on v −W important separators of size at most k of
G for all v ∈ C.

I Lemma 3.8. Let (G, k,W ) be a non-separating instance of Disjoint (Π1,Π2, . . . ,Πd)-
VDC. Then it can be solved in 2O(k)nO(1) time where |V | = n.

Proof. We first apply Reduction Rule 1 exhaustively. If the graph is empty, we return YES.
Else, there is a connected component of G which does not belong to any graph classes Πi

for i ∈ [d]. Therefore, there exists a forbidden set C ⊆ V (G) of G present in this connected
component. We find C by checking for each graph class Πi, if a graph in Fi exists as an
induced subgraph in a any connected component X of G, take the union of these vertices
and make it minimal by removing vertices and seeing if the set still remains forbidden. We

2 The proofs of theorems and lemmas marked (?) are moved to the full version due to lack of space.
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branch in |C|-many ways by going over all the vertices v ∈ C and in each branch, recurse
on the instance (G− v, k − 1,W ). Then for all v ∈ C, we branch over all important v −W
separators X of size at most k in G and recurse on instances (G \X, k − |X|,W ).

We now prove the correctness of the algorithm. Let Z be a solution of the instance. From
Lemma 3.5, we know that a forbidden set C of G is disconnected by Z or Z ∩C 6= φ. In the
latter case, we know that Z contains a vertex x ∈ C giving us one of the branched instances
obtained by adding x into the solution.

Now we are in the case when C is disconnected by Z. Since Reduction rule 1 is applied
exhaustively, the connected component containing C also contains some vertices in W . Since
Z is a non-separating solution, W goes to exactly one connected component of G \ Z and
there exists some non-empty part of C that is not in this component. Hence, there exists
some vertex x ∈ C that gets disconnected from W by Z. From Lemma 3.7, we know that
there is also a solution Z ′ which contains an important x−W separator of size at most k
in G. Since we have branched over all such x−W important separators, we have correctly
guessed on one such branch.

We now bound the running time. Since |C| = O(d), any forbidden set in G can be
obtained via brute force in nO(d) time. For each i ∈ [k], we know that there are at most 4i
important separators of size 1 ≤ i ≤ k which can be enumerated using Lemma 3.6 in O(4i ·i·n)
time. For the instance (G, k,W ), if we branch on v ∈ C , k drops by 1 and if we branch on a
v−W separator of size i, k drops by i. Hence if T (k) denotes the time taken for the instance

(G, k,W ), we get the recurrence relation T (k) = O(d)T (k − 1) +
k∑
i=1

4iT (k − i) upon solving

with taking into account that d is a constant, we get that T (k) = 2O(k)nO(1). J

3.3 Solving general instances
We now solve general instances of Disjoint (Π1,Π2, . . . ,Πd)-VDC using the algorithm
for solving non-separating instances as a subroutine. We first focus on solving separating
instances of Disjoint (Π1,Π2, . . . ,Πd)-VDC. We guess a subset W1 ⊂W such that for a
solution Z, W1 is exactly the intersection of W with a connected component of G \ Z. For
W2 = W \W1, we are looking for a solution Z containing a W1 −W2 separator. Formally,
let W = W1 ]W2 be a set of size k+ 1 which is a (Π1,Π2, . . . ,Πd)-modulator. We look for a
set Z ⊆ V (G) \W of size at most k such that Z is a (Π1,Π2, . . . ,Πd)-modulator, Z contains
a minimal (W1,W2)-separator X and W1 occurs in a connected component of G \ Z.

From here on, we assume that the separating instance (G, k,W ) of Disjoint (Π1,Π2, . . . ,

Πd)-VDC is represented as (G, k,W1,W2) where W = W1 ] W2 . We branch over all
partitions of W into W1 and W2 which adds a factor of 2k+1 to the running time. We now
introduce the notion of tight separator sequences and t-boundaried graphs which are used to
design the algorithm.

3.3.1 Tight Separator Sequences
We first look at a type of W1 −W2 separators where the graph induced on the vertices
reachable from W1 satisfy the property as defined below.

I Definition 3.9. Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC.
We call a W1−W2 separator X in G `-good if there exists a set K of size at most ` such that
K ∪X is a (Π1,Π2, . . . ,Πd)-modulator for the graph G[R[W1, X]]. Else we call it `-bad.

I Lemma 3.10 (?). Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC
and let X and Y be disjoint W1 −W2 separators in G such that X covers Y . If X is `-good,
then Y is also `-good.

IPEC 2020



18:8 Deletion to Scattered Graph Classes

I Definition 3.11. Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC
and let X and Y be W1−W2 separators in G such that Y dominates X. Let ` be the smallest
integer i for which X is i-good. If Y is `-good, then we say that Y well-dominates X. If
X is `-good and there is no Y 6= X which well-dominates X, then we call X `-important.

The following lemma allows us to focus on solutions containing an `-important W1 −W2
separator for some appropriate value of `.

I Lemma 3.12. Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC and
Z be a solution. Let P ⊆ Z be a non-empty minimal W1 −W2 separator in G and let P ′
be a W1 −W2 separator in G well-dominating P . Then there is also a solution Z ′ for the
instance containing P ′.

Proof. Let Q = Z ∩ R[W1, P ]. Note that Q is a (Π1,Π2, . . . ,Πd)-modulator for the
graph G[R[W1, P ]]. Let Q′ ⊇ P ′ be a smallest (Π1,Π2, . . . ,Πd)- modulator for the graph
G[R[W1, P

′]] extending P ′. We claim that Z ′ = (Z \Q)∪Q′ is a solution for (G, k,W1,W2).
Since P ′ well-dominates P , |Z ′| ≤ |Z|. We now show that Z ′ is a (Π1,Π2, . . . ,Πd)-modulator.
Suppose not. Then there exists a forbidden subset C present in a connected component X of
G \ Z ′.

We first consider the case when X is disjoint from the set Z \ Z ′. Then there is a
component H in G \Z which contains X and hence C, contradicting that Z is a solution. We
now consider the case when X intersects Z \ Z ′. By definition of Z ′, X is contained in the
set R(W1, P

′). Since Z ′ \Q′ is disjoint from R(W1, P
′) and is separated from R(W1, P

′) by
just P ′, we can conclude that X and hence C is contained in a single connected component
of G[R[W1, P

′]] \Q′. But this contradicts that Q′ is not a (Π1,Π2, . . . ,Πd)-modulator in the
graph G[R[W1, P

′]]. J

We now define the notion of tight separator sequence. It gives a natural way to partition
the graph into parts with small boundaries. This helps us focus our problem on local parts
of the graph which eases the task of solving it.

I Definition 3.13. An X − Y tight separator sequence of order k of a graph G with
X,Y ⊆ V (G) is a set H of X − Y separators such that every separator has size at most k,
the separators are pairwise disjoint, for any pair of separators in the set, one covers another
and the set is maximal with respect to the above properties.

I Lemma 3.14 (?). Given a graph G, disjoint vertex sets X,Y and integer k, a tight
separator sequence H of order k can be computed in |V (G)|O(1) time.

3.3.2 Boundaried graphs
I Definition 3.15. A t-boundaried graph G be a graphs with t distinguished labelled
vertices. We call the set of labelled vertices ∂(G) the boundary of G and the vertices in
∂(G) terminals. Let G1 and G2 be two t-boundaried graphs with the graphs G1[∂(G1)] and
G2[∂(G2)] being isomorphic. Let µ : ∂(G1)→ ∂(G2) be a bijection which is an isomorphism
of the graphs G1[∂(G1)] and G2[∂(G2)]. We denote the graph G1 ⊗µ G2 as a t-boundaried
graph obtained by the following gluing operation. We take the union of graphs G1 and G2
and identify each vertex x ∈ ∂(G1) with vertex µ(x) ∈ ∂(G2). The t-boundary of the new
graph is the set of vertices obtained by unifying.

I Definition 3.16. A t-boundaried graph with an annotated set is a t-boundaried graph
with a second set of distinguished but unlabelled vertices disjoint from the boundary. The set
of annotated vertices is denoted by ∆(G).
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Figure 1 The graph G′ obtained by gluing some Ĝ ∈ H to G[R[W1, P ]].

We now prove the following crucial lemma for giving the algorithm for solving separating
instances of Disjoint (Π1,Π2, . . . ,Πd)-VDC. Suppose we are looking at an instance of
Disjoint (Π1,Π2, . . . ,Πd)-VDC which has a solution Z. We know that the solution Z

contains a minimal W1 −W2 separator Q which is incomparable to a given `-good W1 −W2
separator P in G. Then some part of Z, say K, lies in the set R[W1, Q]. We show that by
carefully replacing parts outside of R[W1, P ] with a small gadget, we can get a smaller graph
G′ which preserves the part of K inside the set R[W1, P ]. Also we show that there is some
part of K lying outside the set R[W1, P ] and hence the size of the solution in G′ is strictly
smaller than in G.

The gadget is loosely speaking a set obtained by a marking procedure which preserves
all possible types of forbidden sets in the original graph. Let us look at a forbidden set C
and a subset Ci ⊆ C such that G[Ci] = Hi ∈ Fi. Let us look at the subset C ′i ⊆ Ci that
lies outside R(W1, P ), the corresponding graph being an induced subgraph of Hi. For all
i ∈ [d] and all possible induced subgraphs of Hi, we mark sets of vertices outside R(W1, P )
such that there is a corresponding forbidden set C in the graph G whose intersections with
NR[W1, P ] are exactly these graphs. Let G′ be the graph formed by removing the unmarked
vertices outside R(W1, P ). For any forbidden set C in G, we can replace parts of Ci outside
R(W1, P ) with the corresponding marked vertices and get a forbidden set C ′ in graph G′.
This allows us to focus on the smaller graph G′ and use the solution in G′ to construct a
solution in G.

I Lemma 3.17 (?). Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC
and let Z be a solution. Let Q ⊆ Z be a minimal W1 −W2 separator in the graph G. Let
K = Z ∩R[W1, Q] with ` = |K \Q|. Let P be a minimal W1 −W2 separator in G which is
disjoint from K and incomparable to Q. Let Qr = Q∩R(W1, P ) and Qnr = Q\Qr. Similarly,
let P r = P ∩R(W1, Q) and Pnr = P \ P r. Let Kr = K ∩R[W1, P ]. Let G1 = G[R[W1, P ]]
be a boundaried graph with P r as the boundary.

Then there exists a |P r|-boundaried graph Ĝ which is kO(1) in size with an annotated set
of vertices, and a bijection µ : ∂(Ĝ)→ P r such that the glued graph G′ = G1 ⊗µ Ĝ has the
following properties (see Figure 1).
1. The set W1 is a (Π1,Π2, . . . ,Πd)-modulator for the graph G′.
2. The set Qr is a |Kr \Qr|-good W1 − Pnr separator in the graph G′ \∆(Ĝ).
3. For any Q′ which is a W1 − Pnr separator in G′ \∆(Ĝ) well-dominating Qr in G′, the

set Q′ ∪Qnr well dominates the W1 −W2 separator Q in G.
4. There is a a family H of boundaried graphs with an annotated set of vertices such that H

contains Ĝ, has size bounded by 2kO(1) and can be computed in 2kO(1)
nO(1).
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3.3.3 Algorithm for general instances
The following lemma focuses on the particular case whenW1 andW2 are already disconnected
in G.

I Lemma 3.18 (?). Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC
where W1 and W2 are in distinct components of G. Let Z be its solution such that W1 exactly
occurs in a connected component of G\Z. Also let R(W1) be the set of vertices reachable from
W1 in G. Let Z ′ = Z ∩R(W1). Then (G[R(W1)], |Z ′|,W1) is a non-separating YES-instance
of Disjoint (Π1,Π2, . . . ,Πd)-VDC and conversely for any non-separating solution Z ′′ for
(G[R(W1)], |Z ′|,W1), the set Ẑ = (Z \ Z ′) ∪ Z ′′ is a solution for the original instance such
that W1 exactly occurs in a connected component of G \ Z ′′.

We have the following reduction rule.

I Reduction Rule 2. Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC
where W1 and W2 are disconnected in G. Compute a non-separating solution Z ′ for the
instance (G′, k′,W1) where G′ = G[R(W1)] and k′ is the least integer i ≤ k for which
(G′, i,W1) is a YES-instance. Delete Z ′ and return the instance (G \ Z ′, k − |Z ′|,W2).

The safeness of Reduction Rule 2 comes from Lemma 3.18. The running time for the
reduction is 2O(k)nO(1) which comes from that of the algorithm in Lemma 3.8. Henceforth,
we assume that Reduction Rule 2 is no longer applicable. We know that every solution Z of
(G, k,W1,W2) contains an `-good non-empty W1 −W2 separator X in the graph G. Let us
denote Main-Algorithm(G, k,W1,W2) as the main algorithm procedure. We now describe
a subroutine Branching-Set((G, k,W1,W2), λ, `) which is used in Main-Algorithm where
0 ≤ ` ≤ k and 1 ≤ λ ≤ k.

I Lemma 3.19. Let (G, k,W1,W2) be an instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC and
let 0 ≤ ` ≤ k and 1 ≤ λ ≤ k. There is an algorithm Branching-Set((G, k,W1,W2), λ, `)
that returns a set R containing at most 2kO(1) vertices such that for every solution Z of the
given instance containing an `-important W1 −W2 separator X of size at most λ in G, the
set R intersects Z.

Proof. Since Reduction Rule 2 is applied exhaustively, there is a W1−W2 path in the graph
G. If there is no W1 −W2 separator of size λ in the graph G, we declare the tuple invalid.
Else we execute Lemma 3.14 to obtain a tight W1 −W2 separator sequence I of order λ. We
then partition I into `-good and `-bad separators. For this we need a procedure to check
whether a given separator P is `-good or not. If both λ, ` < k, we do so by recursively calling
the main algorithm procedure Main-Algorithm(G[R[W1, P ]], `,W1, P ). The recursive call
is possible as ` is strictly less than k. We note that since λ ≥ 1, the cardinality of P is
non-zero. From the definition of `-good separators, we can conclude that ` < k as the solution
set in G[R[W1, P ]] is at most k and it contains non-empty set P as its subset.

Let P1 be component maximal among all the good separators in I if any exists and P2
be component minimal among all the bad separators in I if any exists. We set R := P1 ∪ P2.
For i ∈ {1, 2}, we do the following.

We execute the algorithm of Lemma 3.17, Claim 4 to compute a family H of boundaried
graphs with an annotated set of vertices. Then for every choice of P ri ⊆ Pi, for every instance
Ĝ ∈ H with |P ri | terminals and every possible bijection δ : ∂(Ĝ) → P ri , we construct the
glued graph GP r

i
,δ = G[R[W1, Pi]]⊗δ Ĝ, where the boundary of G[R[W1, Pi]] is P ri .We then

recursively call Branching-Set((GP r
i
,δ \ S̃, k − j,W1, Pi \ P ri ), λ′, `′) for every 0 ≤ λ′ < λ,

1 ≤ j ≤ k−1 and 0 ≤ `′ ≤ `, where S̃ is the set of annotated vertices in Ĝ. We add the union
of all the vertices returned by these recursive instances to R and return the resulting set.
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Figure 2 The case where X is incomparable with P1.

This completes the description of the algorithm. We now proceed to the proof of
correctness.
Correctness: We prove by induction on λ. We first consider the base case when λ = 1 where
there is a W1 −W2 `-good separator X ⊆ Z of size one. Since X has size one, it cannot
be incomparable with the separator P1. Hence either X is equal to P1 or is covered by P1.
In either case, we are correct as P1 is contained in R. We now assume that the algorithm
correctly runs for all tuples where λ < λ̂ for some λ̂ ≥ 2. We now look at the case when the
algorithm runs on a tuple with λ = λ̂.

Let Z be a solution for the instance containing an `-important separator X. If X intersects
P1 ∪ P2 we are done as R intersects X. Hence we assume that X is disjoint from P1 ∪ P2.
Suppose X is covered by P1. Then we conclude that P1 well-dominates X contradicting that
X is `-important.

By Lemma 3.10, since X is `-good and P2 is not, X cannot cover P2. Suppose X covers
P1 and itself is covered by P2. Then X must be contained in the maximal tight separator
sequence I contradicting that P1 is component maximal.

Finally we are left with the case where X is incomparable with P1 or P2 if P1 does not
exist. Without loss of generality, assume X is incomparable with P1. The argument in the
case when P1 does not exist follows by simply replacing P1 with P2 in the proof.

Let K ⊆ Z be a (Π1,Π2, . . . ,Πd)-modulator for the graph G[R[W1, X]] extending X. If
P1 ∩K is empty, we have that P1 ∩ Z is empty. Since P1 is contained in R, the algorithm is
correct as R intersects Z. Hence assume that P1 and K are disjoint.

Let Xr = R(W1, P1) ∩ X and Xnr = X \ Xr. Similarly, define P r1 = R(W1, X) ∩ P1
and Pnr1 = P1 \ P r1 . Since X and P1, the sets Xr, Xnr, P r1 and Pnr1 are all non-empty. Let
Kr = K ∩R(W1, P1). If there is a vertex in P r1 that is not in the same connected component
as W1 in G \ Z, then as X separates P r1 from W2, we can conclude that R contains a vertex
which is separated from W by Z implying that the algorithm is correct. Hence assume that
P r1 is contained in the same connected component as W1 in the graph G \ Z.

We observe that the sets defined above satisfy the conditions for Lemma 3.17 with P = P1
and Q = X. Therefore there exists a |P r1 |-boundaried graph Ĝ with an annotated set S̃ and an
appropriate bijection µ : ∂(Ĝ)→ P r1 with the properties claimed in the statement of Lemma
3.17. Now consider the recursive instance 〈(GP r

i
,δ \ S̃, k1,W1, P

nr
i ), λ′, `′〉 where GP r

i
,δ is the

graph obtained by gluing together G[R[W1, P1]] and Ĝ via a bijection µ , λ′ = |Xr|, k1 = |Kr|
and `′ = |Kr|.

To apply induction hypothesis on the above tuple, we first show that the tuple is valid.
We show this by showing that (GP r

i
,δ \ S̃, k1,W1, P

nr
1 ) is a valid instance of Disjoint

(Π1,Π2, . . . ,Πd)-VDC. For this we need that W1 ∪ Pnr1 is a (Π1,Π2, . . . ,Πd)-modulator for
the graph GP r

i
,δ \ S̃ which is true from Lemma 3.17, Claim 1. Hence the tuple is valid and

we can apply the induction hypothesis.
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Since X is `-important, from Lemma 3.17, Claims 2 and 3, it follows that Xr must also
be k1-important in the graph GP r

i
,δ \ S̃. By induction hypothesis, the tuple returns a set R′

which intersects Kr. Since Kr ⊆ Z, we can conclude that R′ intersects Z as well.
Bounding the set R: We have the value of λ dropping at every level of the search tree.
Since λ ≤ k, the depth of the search tree is bounded by k. The number of branches at each
node is at most k3 · k! · 2kO(1) (k3 for choice of λ′, j and `′, k! for the choice of the bijection
δ and 2kO(1) for the size of H). Since, at each internal node, we add at most 2k vertices
(corresponding to P1 ∪ P2), we can conclude that the size of R is bounded by 2kO(1) . J

We now describe the details of Main-Algorithm procedure.

I Lemma 3.20. There is a procedure Main-Algorithm that given an instance (G, k,W1,W2)
of Disjoint (Π1,Π2, . . . ,Πd)-VDC, runs in 2kO(1)

nO(1) and either computes a solution for
the instance containing a W1 −W2 separator or concludes that no such solution exists.

Proof. Initially, if Reduction Rule 2 is applicable (this is the case when the size of the
minimum cut λ in G is zero), we use it to reduce the instance. Hence we can assume that
the W1 −W2 separator is non-empty. For every 0 ≤ `′ ≤ k and 1 ≤ λ′ ≤ k, we invoke the
algorithm Branching-Set((G, k,W1,W2), λ′, `′) from Lemma 3.19 to compute a set Rλ′,`′ .
We define R as the union of the sets Rλ′,`′ for all possible values of λ′ and `′. After this,
we simply branch on every vertex v of R adding v to the solution creating a new instance
(G − v, k − 1,W1,W2) of Disjoint (Π1,Π2, . . . ,Πd)-VDC. If k < 0, we return NO. If
Reduction Rule 2 applies, we use it to reduce the instance. If this results in a non-separating
instance with W = W1 ∪W2, we apply the algorithm in Lemma 3.8 to solve the instance.
Else we recursively run Main-Algorithm on the new instance.

We now bound the running time T (k) for Main-Algorithm. The depth of the branching
tree is bounded by k and the branching factor at each node is |R| ≤ 2kO(1) . The time taken
at each node is dominated by the time taken for the procedure Branching-Set. Let Q(k)
denote the time taken for Branching-Set. We have T (k) = 2kO(1)

T (k − 1) +Q(k). Let us
focus on the search tree for Branching-Set. In Lemma 3.19, we proved that the depth
of the tree is bounded by k and the branching factor is bounded by 2kO(1) . The time spent
at each node is dominated by algorithm of Lemma 3.17 and that of the sub-instances of
Main-Algorithm called at the node with strictly smaller values of k which is bounded by
2kO(1)

nO(1) +T (k−1). Hence overall we have Q(k) = 2kO(1)
Q(k−1) + 2kO(1)

nO(1) +T (k−1).
Substituting Q(k) in the recurrence relation for the running time of Main-Algorithm and

simplifying, we have T (k) =
k∑
i=1

2ikO(1)
nO(1)T (k − i) ≤ k · 2k·kO(1)

nO(1)T (k − 1) on solving

we get T (k) = 2kO(1)
nO(1).

The correctness follows from the correctness of Lemma 3.19, of Reduction Rule 2 and
Lemma 3.8. J

I Lemma 3.21. Disjoint (Π1,Π2, . . . ,Πd)-VDC can be solved in 2kO(1)
nO(1) time.

Proof. Let (G, k,W ) be the instance of Disjoint (Π1,Π2, . . . ,Πd)-VDC. We first apply
Lemma 3.8 to see if there is a non-separating solution for the instance. If not, we branch over
all W1 ⊂W and for each such choice of W1, apply Lemma 3.20 to check if (G, k,W1,W2 =
W \W1) has a solution containing a W1 −W2 separator. The correctness and running time
follows from those of Lemma 3.8 and Lemma 3.20. J



A. Jacob, D. Majumdar, and V. Raman 18:13

I Theorem 3.22. (Π1,Π2, . . . ,Πd) Vertex Deletion can be solved in 2kO(1)
nO(1) time.

Proof. As mentioned in Section 3.1, the time taken to solve (Π1,Π2, . . . ,Πd) Vertex
Deletion is 2k+1 · 2kO(1)

nO(1) = 2kO(1)
nO(1). J

4 Finite Forbidden Set with Paths

We observe that several natural graph classes (like cluster graphs, edgeless graphs, P5-free
graphs) contain a path in their forbidden sets. In this section, we develop significantly faster
FPT algorithms for the vertex deletion problem if each connected component of the resulting
graph belongs to one of two graph classes and the forbidden set of one of them contains a
path.

Deletion to Π1 and Π2 with Path
Input: An undirected graph G, and an integer k. Furthermore, for a fixed i, an induced
path Pi is a forbidden set for Π1.
Goal: Does G have a set S of at most k vertices such that every connected component
of G− S is either in Π1 or in Π2?

Let F1 and F2 be the finite forbidden sets for the graph classes Π1 and Π2 respectively.
Let d1 be the size of a maximum sized finite forbidden set in F1 and d2 be the size of a
maximum sized forbidden set in F2. We first recall the graph operation called gluing that
was defined in Section 3.3. We spell it out for our purpose.

Gluing Operation. Let G1 and G2 be graphs with H being an induced subgraph of both
of them. Let S1 ⊆ V (G1) and S2 ⊆ V (G2) be such that G1[S1] = G2[S2] = H. Let f
be an automorphism of H, i.e. an isomorphism from H onto H, that maps vertices of
H to vertices of H. We define a collection of graphs G ∈ Glue(G1, G2, H, S1, S2, f) with
V (G) = V (G1)∪V (G2) \S2 whose edge set E(G) is as follows. We treat V (G) as containing
all vertices of G1, and containing vertices of V (G2) \ S2. I.e. we identify vertices of S1 and
S2 using the function f .

(1) For any pair u, v of vertices in V (G1) in V (G), we add an edge if and only if
uv ∈ E(G1), (2) for any pair u, v of vertices in V (G2) \ S2, we add an edge if and only if
uv ∈ E(G2), (3) for a pair u, v of vertices where u ∈ S1 and v ∈ V (G2) \ S2, we add the
edge if and only if f(u)v ∈ E(G2), (4) for a pair u, v of vertices where u ∈ V (G1) \ S1 and
v ∈ V (G2) \ S2, we have two choices. In the first choice, we add edge uv to G. In the second
choice, we do not add edge uv to G.

Note that this construction provides a collection of graphs based on the last bullet point
above, even for a fixed f , and for a fixed S1 and S2. Now towards the deletion algorithm
for two classes where one of them contains a path, we first construct the following family of
graphs from F1 and F2.

Construction of a new family F from F1 and F2. For every F1 ∈ F1, F2 ∈ F2, we
construct a collection of graph F ′ by Glue(F1, F2, S1, S2, H, f) for every graph H which is
a subgraph of both F1 and F2 and for every subsets S1 and S2 of vertices of F1 and F2
respectively such that F1[S1] = H = F2[S2] and for every automorphism f of H. In addition,
we construct F ′′,F ′′′ as follows. The set F ′′ contains all graphs formed by disjoint union of
F1 ∈ F1, F2 ∈ F2 and some subset of edges between them. The set F ′′′ contains all graphs
formed by disjoint union of F1 ∈ F1, F2 ∈ F2 and a path P of length at most i (with i− 1
additional vertices) starting from a vertex in F1 and ending at a vertex in F2. We denote
F = F ′ ∪ F ′′ ∪ F ′′′.
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I Lemma 4.1 (?). Let Π1,Π2 be two graph classes such that a graph G1 ∈ Π1 has no induced
subgraph from F1, and a graph G2 ∈ Π2 has no induced subgraph from F2. Let d1 be the
maximum number of vertices in any graph in F1 and d2 be the maximum number of vertices
in any graph in F2. Furthermore let F1 contains a path of length i. Construct the set F
from F1 and F2 as described by “gluing operation” just before the lemma. Let Π be a class of
graphs such that G ∈ Π if and only if G has no induced subgraph present in F . Then, every
connected component of G is either in Π1 or in Π2 if and only if G ∈ Π. Furthermore, the
maximum number of vertices in a set in F is at most d1 + d2 + i.

I Theorem 4.2 (?). Let d1 be the maximum size of an obstruction in F1 and d2 be the
maximum size of an obstruction in F2 for Deletion to Π1 and Π2 with Path problem.
Then, Deletion to Π1 and Π2 with Path admits (d1 + d2 + i)knO(1) time algorithm. It
also admits (d1 + d2 + i) factor approximation algorithm, and a polynomial sized kernel.

Proof (Sketch). Given an instance (G, k) of Deletion to Π1 and Π2 with Path problem,
we use “gluing operation” described above to construct a finite obstruction family F . From
Lemma 4.1, all obstructions in F have size at most d1 + d2 + i. We can prove that Π1 or Π2
Deletion is an instance of an implicit ˆd1 + d+ 2 + i-Hitting Set problem [5]. We can find
induced graph H in G which is isomorphic to any forbidden set in F in polynomial time. By
branching over the vertices of H we get an FPT algorithm running in time (d1 +d2 + i)knO(1).
We can get a d1 + d2 + i factor approximation algorithm by greedily adding all vertices of H
to the solution as usually done in implicit (d1 + d2 + i)-Hitting Set problems. We can use
Sunflower Lemma [5,7] to get a polynomial kernel for Π1 or Π2 Deletion. J

5 Deletion to Trees and Cliques

In this section, we consider the problem when Π1 is the set of all cliques, and Π2 is the set
of all trees. That is, the problem is to delete k vertices so that in the resulting graph, each
connected component is a tree or a clique.

Trees and Cliques Deletion Set Parameter: k

Input: An undirected graph G, and an integer k
Question: Does G have a set S of at most k vertices such that every connected
component of G− S is either a tree or a clique?

We call a subset S ⊆ V (G) a trees-and-cliques deletion set if G \ S is such that every
connected component of G− S is either a tree or a clique. Note that when each component
is a tree, the deletion problem is precisely the Feedback Vertex Set problem, with the
resulting class of all acyclic graphs which have the set of all cycles as the (infinite) forbidden
set. This has an FPT algorithm with the best runtime O∗(3.618k) [11]. See also [19] for
the special deletion problem where we want the resulting graph to be a tree. When each
connected component is a clique, the deletion problem is precisely the Cluster Vertex
Deletion problem, with the resulting class of cluster graphs contains the graphs forbidding
P3s, paths on three vertices. For our problem, as the forbidden set for one of the graph
classes is infinite, the fixed-parameter tractability does not follow from our Theorem 3.22 or
Theorem 4.2.

In this section, we describe a O∗(4k) time algorithm for Trees and Cliques Deletion
Set problem. Recall that a block graph is a graph whose biconnected components are cliques.
If every connected component of a graph is a tree or a clique, then clearly it is a block graph.
First, we precisely characterize such block graphs whose components are trees or cliques.
Recall that a paw is a graph on 4 vertices that contains a triangle and the fourth vertex is
adjacent only to one vertex of the triangle. We have the following two lemmas.
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I Lemma 5.1. Let G be a block graph. Then, G is paw-free if and only if every connected
component of G is either a tree or a clique.

Proof. Suppose that every connected component of G is either a tree or a clique. As a
paw has a cycle and is not a clique, G can not contain a paw. Conversely suppose G does
not contain a paw, but one of its components C, is neither a tree or a clique. Then, the
component must have a cycle, and a nonadjacent pair of vertices. But as G is a block graph,
every biconnected component of G, and hence of C must be a clique. As C is not a clique,
C has at least two biconnected components B1 and B2 that are cliques intersecting at a
(cut) vertex. Let B1 be the component containing a cycle. Then B1 contains a triangle, B2
contains an edge, and B1 and B2 share a vertex. This triangle and the edge form a paw,
which is a contradiction. J

I Lemma 5.2 ([2]). A graph G is a block graph if and only if it has no induced cycles of
length at least four and no induced D4 (i.e., K4 − e, or a diamond).

The following corollary follows from the above lemmas.

I Corollary 5.3. Every connected component of a graph G is either a tree or a clique if and
only if it has no cycle of length at least four or a diamond or paw as induced subgraphs.

Now, we will first focus on the following restricted version of Trees and Cliques
Deletion Set problem where we assume that the graph has no C4 (a cycle of length four),
D4 or a paw as an induced subgraph.

Restricted Trees and Cliques Deletion Set Parameter: k

Input: A connected undirected graph G without C4, D4 and paw as induced subgraphs,
and an integer k
Question: Does G have a set S of at most k vertices such that every connected
component of G− S is either a tree or a clique?

Now we give a fixed-parameter tractable algorithm for Restricted Trees and Cliques
Deletion Set. We have the following lemma from [1].

I Lemma 5.4 ([1]). Let G be a graph that does not contain C4 or D4 as an induced subgraph.
Then (1) any pair of maximal cliques of G intersects in at most one vertex, and (2) the
number of maximal cliques in G is at most n2.

Let C denote the set of all maximal cliques of G. A vertex v ∈ V (G) is called external if
it is part of at least two maximal cliques of C. We construct an auxiliary bipartite graph
Ĝ from G with V (Ĝ) = V (G) ] VC where VC has a vertex vc for every c ∈ C. In the graph
Ĝ, we add an edge from a vertex v ∈ V (G) to a vertex vc ∈ VC if and only if v is one of
the external vertices of the clique c ∈ C. We prove the following lemma which is similar to
Lemma 7 in [1].

I Lemma 5.5 (?). Let G be a graph without C4, D4 and paw as induced subgraphs and
S ⊆ V (G). Then S is a trees-and-cliques deletion set of G if and only if Ĝ \ S is acyclic.

Now we consider the weighted feedback vertex set problem

Weighted Feedback Vertex Set Parameter: k

Input: A weighted undirected graph G = (V,E) with w : V (G)→ N, and an integer k.
Question: Find a set S ⊆ V (G) of minimum weight that contains at most k vertices.

that has an O∗(3.618k) algorithm [1].
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Hence to solve the Restricted Trees and Cliques Deletion Set, we can simply
form the auxiliary graph as described in Lemma 5.5. Then we define a weight function on
the vertices of Ĝ as those vertices of G taking weight 1, and those vertices of the maximal
cliques taking value k + 1. Then we apply the algorithm for weighted feedback vertex set
to check whether the minimum weight of, a feedback vertex set of (the weighted graph) Ĝ
containing at most k vertices, is at most k. Thus we have

I Lemma 5.6. Restricted Trees and Cliques Deletion Set can be solved in O∗(3.618k)
time.

Now by branching on vertices of C4s, D4s and paws and then applying the algorithm of
Lemma 5.6, we obtain the following theorem.

I Theorem 5.7. Given a graph G on n vertices, we can determine in O∗(4k) time whether
G has at most k vertices whose deletion results in a graph where every connected component
is a tree or a clique.

Proof. Let S ⊆ V (G) be a set of vertices such that every connected component of G − S
is either a tree or a clique. Observe that G − S cannot contain a C4, diamond or paw as
induced subgraph. Hence, S must intersect all induced C4, all induced diamonds and all
induced paws in G. As long as we find a set of four vertices A such that G[A] induces a C4,
or a paw, or a diamond, we branch on every vertex v ∈ A, and solve recursively the instance
(G − {v}, k − 1). If one of these branches returns a solution X, we return X ∪ {v} as a
solution of G. Otherwise, we return that (G, k) is a no-instance. After G has no four vertices
that induces a diamond, or a C4, or a paw, then, we do not make any further recursive
call. We invoke Lemma 5.6 to apply the algorithm for Restricted Trees and Cliques
Deletion Set and return the output of the algorithm. Since, the algorithm for Restricted
Trees and Cliques Deletion Set takes O∗(3.618k) time and we branch on at most k
C4, diamonds and paws, our algorithm takes O∗(4k) time. This completes the proof. J

6 Conclusion

We have initiated a study on vertex deletion problems to scattered graph classes and showed
that when there are a finite number of graph classes each characterized by a finite forbidden
set, the problem is fixed-parameter tractable. The existence of a polynomial kernel for this
case is a natural open problem. Other open problems include obtaining improved algorithms
at least for special cases of finite classes and investigating other scattered graph classes when
some of them have infinite forbidden sets.
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