
The Asymmetric Travelling Salesman Problem
In Sparse Digraphs
Łukasz Kowalik
Institute of Informatics, University of Warsaw, Poland
kowalik@mimuw.edu.pl

Konrad Majewski
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Poland
km371194@students.mimuw.edu.pl

Abstract
Asymmetric Travelling Salesman Problem (ATSP) and its special case Directed Hamil-
tonicity are among the most fundamental problems in computer science. The dynamic programming
algorithm running in time O∗(2n) developed almost 60 years ago by Bellman, Held and Karp, is
still the state of the art for both of these problems.

In this work we focus on sparse digraphs.
First, we recall known approaches for Undirected Hamiltonicity and TSP in sparse graphs

and we analyse their consequences for Directed Hamiltonicity and ATSP in sparse digraphs,
either by adapting the algorithm, or by using reductions. In this way, we get a number of running
time upper bounds for a few classes of sparse digraphs, including O∗(2n/3) for digraphs with both
out- and indegree bounded by 2, and O∗(3n/2) for digraphs with outdegree bounded by 3.

Our main results are focused on digraphs of bounded average outdegree d. The baseline for
ATSP here is a simple enumeration of cycle covers which can be done in time bounded by O∗(µ(d)n)
for a function µ(d) ≤ (dde!)1/dde. One can also observe that Directed Hamiltonicity can be solved
in randomized time O∗((2− 2−d)n) and polynomial space, by adapting a recent result of Björklund
[ISAAC 2018] stated originally for Undirected Hamiltonicity in sparse bipartite graphs. We
present two new deterministic algorithms for ATSP: the first running in time O(20.441(d−1)n) and
polynomial space, and the second in exponential space with running time of O∗(τ(d)n/2) for a
function τ(d) ≤ d.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases asymmetric traveling salesman problem, Hamiltonian cycle, sparse graphs,
exponential algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.23

Related Version A full version of the paper is available at [27], https://arxiv.org/abs/2007.12120.

Funding Łukasz Kowalik: Supported by ERC Starting Grant TOTAL (Grant Agreement No 677651).

Acknowledgements The authors thank the reviewers for careful reading and useful comments.

1 Introduction

In the Directed Hamiltonicity problem, given a directed graph (digraph) G one has to
decide if G has a Hamiltonian cycle, i.e., a simple cycle that visits all vertices. In its weighted
version, called ATSP, we additionally have integer weights on edges w : E → Z, and the
goal is to find a minimum weight Hamiltonian cycle in G.

The ATSP problem has a dynamic programming algorithm running in time and space
O∗(2n) due to Bellman [2] and Held and Karp [23]. Gurevich and Shelah [22] obtained
the best known polynomial space algorithm, running in time O(4nnlogn). It is a major

© Łukasz Kowalik and Konrad Majewski;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7546-2969
mailto:kowalik@mimuw.edu.pl
https://orcid.org/0000-0002-3922-7953
mailto:km371194@students.mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.IPEC.2020.23
https://arxiv.org/abs/2007.12120
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

open problem whether there is an algorithm in time O∗((2 − ε)n) for an ε > 0, even for
the unweighted case of Directed Hamiltonicity. However, there has been a significant
progress in answering this question in variants of Directed Hamiltonicity. Namely,
Björklund and Husfeldt [6] showed that the parity of the number of Hamiltonian cycles
in a digraph can be determined in time O(1.619n) and Cygan, Kratsch and Nederlof [13]
solved the bipartite case of Directed Hamiltonicity in time O(1.888n), which was later
improved to O∗(3n/2) = O(1.74n) by Björklund, Kaski and Koutis [9].

Table 1 Running times (with polynomial factors omitted) of algorithms for undirected graphs.
Rows marked with denote exponential space algorithms, rows marked with denote Monte Carlo
algorithms.

Graph class Undirected Hamiltonicity Travelling Salesman Problem

general 1.66n [3] 2n [2, 23]
4nnlog n [22]

bipartite 1.42n [3] 2n [2, 23]
4n [29]

∆ = 3 1.16n [13] 1.22n [11]
1.24n [33] 1.24n [33]

∆ = 4 1.51n [13]+[17] 1.63n [11]+[17]
1.59n [8] 1.70n [34]

∆ = 5 1.63n [8] 1.88n [11]+[17]
2.35n [35]

any ∆ (2− ε′∆)n [7]

avgdeg ≤ d 1.12dn [13]+[25] 1.14dn [11]+[25]
2(1−εd)n [15]

bipartite
(2− 21−d)n/2 [4]

avgdeg ≤ d

pathwidth 3.42pw [13] 4.28pw [11]

treewidth 4tw [14] 9.56tw [11]

Undirected graphs. Even more is known in the undirected setting, where the problems
are called Undirected Hamiltonicity and TSP. Björklund [3] shows that Undirected
Hamiltonicity can be solved in time O(1.66n) in general and O∗(2n/2) = O(1.42n) in the
bipartite case. Very recently, Nederlof [28] showed that the bipartite case of TSP admits
an algorithm in time O(1.9999n), assuming that square matrices can be multiplied in time
O(n2+o(1)). Finally, there is a number of results for Undirected Hamiltonicity and
TSP restricted to graphs that are somewhat sparse. An early example is an algorithm of
Eppstein [16] for TSP in graphs of maximum degree 3, running in time O∗(2n/3) = O(1.26n).
This result has been later improved and generalized to larger values of maximum degree, we
refer the reader to Table 1 for details (∆ denotes the maximum degree). Perhaps the most
general measure of graph sparsity is the average degree d. Cygan and Pilipczuk [15] showed
that whenever d is bounded, the 2n barrier for TSP can be broken, although only slightly.
More precisely, they proved the bound O∗(2(1−εd)n), where εd = 1/(22d+1 · 20d · ee20d). We

Ł. Kowalik and K. Majewski 23:3

note that although their result was stated for undirected graphs, the same reasoning can be
made for digraphs of average total degree (sum of indegree and outdegree). For small values
of d, more significant improvements are possible. Namely, by combining the algorithms for
Undirected Hamiltonicity and TSP parameterized by pathwidth [11, 13] with a bound
on pathwidth of sparse graphs [25] we get the upper bound of O(1.12dn) and O(1.14dn),
respectively. For Undirected Hamiltonicity, if the input graph is additionally bipartite,
Björklund [4] shows the O∗((2− 21−d)n/2) upper bound.

Table 2 Running times (with polynomial factors omitted) of the algorithms for directed graphs.
We preserve the notation from Table 1. By ∆+ we denote maximum outdegree and ∆ denotes
maximum total degree. Treewidth refers to the underlying undirected graph.

Graph class Directed Hamiltonicity Asymmetric Travelling
Salesman Problem

general 2n [1, 24,26] 2n [2, 23]
4nnlog n [22]

bipartite 1.74n [9] 2n [2, 23]
4n [29]

(2, 2)-graphs 1.26n (Corollary 2.6) 1.26n (Corollary 2.6)

∆+ = 3 1.74n (Corollary 2.8) 1.74n (Corollary 2.8)

∆ = 3 1.13n (Corollary 2.7) 1.13n (Corollary 2.7)

any ∆ (2− 2−∆/2)n (Theorem 2.10) (2− ε′∆)n [7]

average µ(d)n (Corollary 2.4) µ(d)n (Corollary 2.4)
outdeg ≤ d 20.441(d−1)n (Theorem 1.1) 20.441(d−1)n (Theorem 1.1)√

τ(d)
n

(Theorem 1.2)
√
τ(d)

n
(Theorem 1.2)

(2− 2−d)n (Theorem 2.10) 2(1−ε2d)n [15]
2(1−Ω(1/d))n [5]

treewidth 6tw [14]

Directed sparse graphs: hidden results. The goal of this paper is to investigate Directed
Hamiltonicity and ATSP in sparse directed graphs. Quite surprisingly, not much results in
this topic are stated explicitly. In fact, we were able to find just a few references of this kind:
Björklund, Husfeldt, Kaski and Koivisto [7] describe an algorithm for digraphs with total
degree bounded by D that works in time O∗((2−ε′D)n), for ε′D = 2− (2D+1−2D−2)1/(D+1).
Second, Cygan et al. [14] describe an algorithm for Directed Hamiltonicity running in time
6tnO(1), where t is the treewidth of the input graph. Finally, Björklund and Williams [10] show
a deterministic algorithm which counts Hamiltonian cycles in directed graphs of average degree
d in time 2n−Ω(n/d) and exponential space. Very recently, Björklund [5], using a different
approach, obtained the same running time for the decision Directed Hamiltonicity
problem, but lowering the space to polynomial, at the cost of using randomization. The
authors of these two works have not put an effort to optimize the constants hidden in the Ω
notation. By following the analysis in each of these papers as-is, we get the saving term in the
exponent at least n/(111d) (for a faster, randomized algorithm) and n/(500d), respectively.

However, one cannot say that nothing more is known, because many results for undirected
graphs imply some running time bounds in the directed setting. We devote the first part of
this work to investigating such implications. In some cases, the implications are immediate.

IPEC 2020

23:4 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

For example, Gebauer [20, 21] shows an algorithm running in time O∗(3n/2) = O∗(1.74n)
that solves TSP in graphs of maximum degree 4. It uses the meet-in-the-middle approach
and can be sketched as follows: guess two opposite vertices of the solution cycle, generate
a family of paths of length n/2 from each of them (of size at most 3n/2) and store one of
the families in a dictionary to enumerate all complementary pairs of paths in time O∗(3n/2).
This algorithm, without a change, can be used for ATSP in digraphs of maximum outdegree
3, with the same running time bound (see Theorem 2.8).

The other implications that we found rely on a simple reduction from ATSP to a variant of
TSP in bipartite undirected graphs (see Lemma 2.1): replace each vertex v of the input digraph
G by two vertices vout, vin joined by an edge of weight 0, and for each edge (u, v) ∈ E(G)
create an edge uoutvin of the same weight. Then find a lightest Hamiltonian cycle that contains
the matching M = {voutvin | v ∈ V (G)}. By applying this reduction to a digraph with both
outdegrees and indegrees bounded by 2, which we call a (2, 2)-graph, and using Eppstein’s
algorithm [16] we get the running time of O∗(2n/3) = O∗(1.26n), see Corollary 2.6. Another
consequence is an algorithm running in time O∗(2n/6) for digraphs of maximum total degree
3, see Corollary 2.7. These two simple classes of digraphs were studied by Plesník [30], who
showed that Directed Hamiltonicity remains NP-complete when restricted to them.

We can also apply the reduction to an arbitrary digraph of average outdegree d. A naive
approach would be then to enumerate all perfect matchings in the bipartite graph induced by
edges {uoutvin | (u, v) ∈ E(G)}. Indeed, each such matching corresponds to a cycle cover in
the input graph, so we basically enumerate cycle covers and filter-out the disconnected ones.
Thanks to Bregman-Minc inequality [12] which bounds the permament in sparse matrices
the resulting algorithm has running time O∗(µ(d)n), where

µ(d) = (bdc!)
bdc+1−d
bdc (dde!)

d−bdc
dde ≤ (dde!)1/dde.

See Corollary 2.4 for details.
Yet another upper bound for digraphs of average outdegree d is obtained by using the

reduction described above and next applying Björklund’s algorithm for sparse bipartite
graphs [4] with a slight modification to force the matching M in the Hamiltonian cycle (see
Theorem 2.10). The resulting algorithm has running time O∗((2− 2−d)n).

Directed sparse graphs: main results. The simple consequences that we describe above
are complemented by two more technical results.

The first algorithm runs in polynomial space and realizes the following idea. Assume
d < 3. Then many of the vertices of the input graph have outdegree at most 2, and we can
just branch on vertices of outdegree at least 3, and solve the resulting (2, 2)-graph using
the fast O∗(2n/3)-time algorithm mentioned before. This idea can be boosted a bit in the
case when the initial branching is too costly, i.e., there are many vertices of high outdegree:
then we observe that in such an unbalanced graph one can apply the simple cycle cover
enumeration which then runs faster than in graphs of the same density but with balanced
outdegrees. After a technical analysis of the running time we get the following theorem.

I Theorem 1.1. ATSP restricted to digraphs of average outdegree at most d can be solved
in time O∗(2α(d−1)n) and polynomial space, where α = 7

12 −
1

12(log2 3−1) < 0.44088.

The second algorithm generalizes Gebauer’s meet-in-the-middle approach to digraphs of
average outdegree d. (We note that it uses exponential space.)

Ł. Kowalik and K. Majewski 23:5

I Theorem 1.2. ATSP restricted to digraphs of average outdegree at most d can be solved
in time O∗(τ(d)n/2) and the same space, where

τ(d) = bdcbdc+1−d(bdc+ 1)d−bdc ≤ d

1 2 3 4 5

1.00

1.25

1.50

1.75

2.00

2.25

2.50
enumcc
Björklund
branch+
mim

2.0 2.2 2.4 2.6 2.8 3.0

1.4

1.5

1.6

1.7

1.8

1.9

Figure 1 Comparison of the running times of algorithms for solving ATSP (enumcc, branch+,
mim) and Directed Hamiltonicity (Björklund) in sparse digraphs. Horizontal axis: average degree
d, vertical axis: base b from the running time bound of the form O∗(bn).

Which algorithm is the best? Figure 1 compares four algorithms for solving ATSP and
Directed Hamiltonicity in digraphs of average outdegree d described above:

enumcc: enumerating cycle covers (Corollary 2.4),
Björklund: adaptation of Björklund’s bipartite graphs algorithm (Theorem 2.10),
branch+: branching boosted by enumerating cycle covers (Theorem 1.1).
mim: meet in the middle (Theorem 1.2),

The choice of the best (in terms of the asymptotic worst-case running time) algorithm
depends on d, on whether we can afford exponential space, and on whether we solve ATSP
or just Directed Hamiltonicity. We can conclude the following.

ATSP in polynomial space: for d < 2.746 use branch+, for d ∈ [2.746, 8.627] use
enumcc, and for d > 8.627 use the general algorithm of Gurevich and Shelah [22].
ATSP in exponential space: for d < 2.398 use branch+, for d ∈ [2.398, 3.999] use mim,
and for d > 3.999 use the algorithm of Cygan and Pilipczuk [15].
Directed Hamiltonicity in polynomial space: for d < 2.746 use branch+, for
d ∈ [2.746, 3.203] use enumcc, for d > 3.203 use Björklund, and for sufficiently large d use
the algorithm of Björklund [5].
Directed Hamiltonicity in exponential space: for d < 2.398 use branch+, for
d ∈ [2.398, 3.734] use mim, for d > 3.734 use Björklund, and for sufficiently large d use the
algorithm of Björklund and Williams [10].

IPEC 2020

23:6 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

2 Reductions from undirected graphs

The objective of this section is to recall two reductions from the ATSP to the (forced) TSP.
Then, we will discuss existing methods of solving Undirected Hamiltonicity and TSP,
and present their implications for corresponding problems in directed graphs. The summary
of this section is presented in Tables 1 and 2.

2.1 General reductions
We recall that in the Forced Travelling Salesman Problem [16, 31, 33, 34], we are
given an undirected graph G, a weight function w : E(G)→ Z, and a subset F ⊆ E(G). We
say that a Hamiltonian cycle H is admissible, if F ⊆ H. The goal is to find an admissible
Hamiltonian cycle of the minimum total weight of the edges (or, report that there is no
such cycle). Moreover, we define the Bipartite Forced Matching TSP (BFM-TSP) as
a special case of the Forced TSP, where graph G is bipartite, and the edges of F form
a perfect matching in G.

The following lemma provides the relationship between the BFM-TSP and the ATSP.

I Lemma 2.1. For every instance (G,w) of ATSP, where G is a digraph on n vertices, there
is an equivalent instance (Ĝ, ŵ,M) of BFM-TSP such that Ĝ is a graph on 2n vertices.

Moreover, if both outdegrees and indegrees of G are bounded by D, then Ĝ has maximum
degree D. Similarly, if G has average outdegree d, then Ĝ has average degree d+ 1.

Proof. The proof is based on the folklore reduction from ATSP to TSP. Let (G,w) be
an instance of ATSP. Let V out = {vout | v ∈ V (G)} and V in = {vin | v ∈ V (G)}. We define
Ĝ as a bipartite graph on the vertex set V (Ĝ) = V out ∪ V in with edges E(Ĝ) = {uoutvin |
(u, v) ∈ E(G)} ∪M , where M is the perfect matching M = {vinvout | v ∈ V (G)}. The edges
of E(Ĝ) \M inherit the weight from G, i.e. for (u, v) ∈ E(G) we set ŵ(uoutvin) = w(uv).
Edges of M have weight 0. It is easy to see that the instance has the desired properties
(deferred to the full version due to space constraints). J

Lemma 2.1 implies, in particular, that if there is an algorithm for BFM-TSP running in
time O∗(f(n)), then there is an algorithm for ATSP running in time O∗(f(2n)).

2.2 Enumerating cycle covers
Let (Ĝ, ŵ,M) be an instance of BFM-TSP, and letM be a family of all perfect matchings
in Ĝ−M . We observe that every cycle cover in Ĝ which contains all edges of M is of the
form M ∪M ′, where M ′ ∈ M. Hence, our goal is to find a matching M ′ ∈ M such that
M ∪M ′ is a Hamiltonian cycle in Ĝ, and the weight of M ′ is minimum possible. One way
to do it is to list all the perfect matchings M ′ ∈M, and choose the best one among these
which form with M a Hamiltonian cycle in Ĝ. We will investigate the complexity of such
an approach in sparse graphs.

It is known that all perfect matchings in bipartite graph Ĝ can be listed in time |M|nO(1)

and polynomial space [18]. Hence, it is enough to provide a bound on the size ofM in sparse
graphs. We start with recalling a classic result of Bregman.

I Theorem 2.2 (Bregman-Minc inequality [12,32]). Let A be an n× n binary matrix, and let
ri denote the number of ones in the i-th row. Then

perA ≤
n∏
i=1

(ri!)1/ri .

Ł. Kowalik and K. Majewski 23:7

I Corollary 2.3. ATSP restricted to digraphs of outdegree bounded by D can be solved in
time (D!)n/DnO(1) and polynomial space.

Proof. Given an instance (G,w) of ATSP, we use Lemma 2.1 to obtain an equivalent
instance (Ĝ, ŵ,M) of BFM-TSP. Then, H := Ĝ −M is a bipartite graph on V out ∪ V in,
and all vertices of V out in H have degree at most D. Since the number of perfect matchings
coincides with the permanent of the adjacency matrix, and vertex degrees correspond to
the number of ones in the corresponding rows, by Theorem 2.2, there are at most (D!)n/D
perfect matchings in H. Hence, according to our initial observation, the instance (Ĝ, ŵ,M)
can be solved in time (D!)n/DnO(1). J

To the best of our knowledge, Corollary 2.3 provides the fastest polynomial space algorithm
for D ∈ {3, 4, . . . , 8}. The Bregman-Minc inequality is also useful for digraphs with bounded
average outdegree.

I Corollary 2.4 (♠1). ATSP restricted to digraphs of average outdegree d can be solved in
time µ(d)nnO(1) and polynomial space, where

µ(d) = (bdc!)
bdc+1−d
bdc (dde!)

d−bdc
dde

In particular, for integral values of d, the running time is bounded by (d!)n/dnO(1).

2.3 Branching algorithms

One of the most common techniques which is used for solving NP-hard problems in sparse
graphs is branching (bounded search trees). It is based on optimizing exhaustive search
algorithms by bounding the size of the recursion tree. In case of TSP, the first result of this
kind is due to Eppstein [16], and can be stated as follows.

I Theorem 2.5 ([16]). Forced TSP restricted to subcubic graphs can be solved in time
2(n−|F |)/3nO(1) and polynomial space.

I Corollary 2.6. ATSP restricted to digraphs with all out- and indegrees at most 2 can be
solved in time O∗(2n/3) and polynomial space.

Proof. Let (G,w) be an instance of ATSP, where G is a digraph with all out- and indegrees
at most 2. We apply Lemma 2.1 to obtain an equivalent instance (Ĝ, ŵ,M) of BFM-TSP.
We know that Ĝ has 2n vertices, and is subcubic. Moreover, (Ĝ, ŵ,M) is an instance of
Forced TSP with |M | = n forced edges. Hence, we can use Theorem 2.5 to solve it in time
O∗(2(2n−n)/3) = O∗(2n/3). J

By combining a simple reduction implicit in a paper of Plesník [30] with Corollary 2.6 we
obtain the following.

I Corollary 2.7 (♠). ATSP restricted to digraphs of maximum total degree 3 can be solved
in time O∗(2n/6) and polynomial space.

1 Proofs marked by ♠ are omitted due to space constraints and can be found in the full version of the
paper [27].

IPEC 2020

23:8 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

2.4 Meet in the middle technique
Gebauer [20] shows an algorithm for undirected graphs of maximum degree 4 by using so-
called meet in the middle technique, which can be easily applied in digraphs with outdegrees
bounded by D to get the following result.

I Theorem 2.8 ([20]). ATSP restricted to digraphs with outdegrees bounded by D can be
solved in time O∗(Dn/2) and exponential space.

2.5 Algebraic methods
Björklund [4] shows the following result.

I Theorem 2.9 ([4]). There is a Monte Carlo algorithm which solves Undirected Hamil-
tonicity restricted to bipartite graphs of average degree at most d in time O∗((2− 21−d)n/2)
and polynomial space.

It turns out that the proof of Theorem 2.9 can be modified to get the following Theorem.
The idea is to use the reduction of Lemma 2.1 to get a sparse bipartite graph and modify
the construction of Theorem 2.9 so that a relevant forced matching is a part of the resulting
Hamiltonian cycle.

I Theorem 2.10. There is a Monte Carlo algorithm which solves Directed Hamiltonicity
restricted to digraphs of average outdegree at most d in time O∗((2− 2−d)n) and polynomial
space.

Proof. We assume that the reader is familiar with the proof of Theorem 2.9. We apply
Lemma 2.1 and we get a bipartite undirected graph Ĝ = (I ∪ J, Ê) and a perfect matching
F ⊆ Ê. Recall that Ĝ has 2n vertices and average degree at most d + 1. The goal is to
decide whether Ĝ has a Hamiltonian cycle H that contains F .

Similarly as in [4] we define a polynomial matrix M with rows indexed by the vertices of
I, and columns indexed by the vertices of J , as follows.

M(a, x, z)i,j =
{∑

k∈I\{i} zi,jzj,k(aj,k + xk) when ij ∈ F ,
zi,jzj,k(aj,k + xk) when ij 6∈ F , but jk ∈ F .

These polynomials have three types of variables: xi for every i ∈ I, aj,i for every edge
ji ∈ Ê, j ∈ J , i ∈ I. The third type of variable is somewhat special. Pick a fixed edge
e∗ = i∗j∗ ∈ F . For every edge ij ∈ Ê \ {e∗} there is one variable with two names zi,j and
zj,i; there are also two different variables zi∗,j∗ and zj∗,i∗ . Then we define a polynomial over
a large enough field of characteristic two:

φ =
∑

x∈{0,1}n/2

det(M(a, x, z))

Now we should prove that thanks to cancellation in a field of characteristic two, φ =∑
H∈H

∏
ij∈H zi,j , where H is the set of all Hamiltonian cycles in Ĝ which contain F .

Björklund (Lemma 3 in [4]) shows this equality for the original polynomial using three
observations: 1) after cancellation, the surviving terms do not contain a-variables, 2) each
surviving term corresponds to a unique cycle cover in the graph, and 3) terms corresponding
to non-Hamiltonian cycle covers pair-up and cancel-out, because if we reverse the lexico-
graphically first cycle that does not contain e∗, then we get exactly the same term (and if we
reverse a Hamiltonian cycle we get a different term, because of the asymmetry in defining z
variables). The arguments used in [4] for proving 1)-3) still hold for the new polynomial,
essentially for the same reasons.

Ł. Kowalik and K. Majewski 23:9

The second ingredient of Björklund’s construction is an upper bound on probability that
none of the columns ofM(a, x, z) is identically zero, where x ∈ {0, 1}n/2 is a fixed assignment,
z is the vector of all zi,j variables, and a ∈ {0, 1}n/2 is a random assignment. The calculation
relies on the observation that if for a vertex j ∈ J we have aj,i + xi ≡ 0 (mod 2) for all
ij ∈ Ê, then the column of j is identically zero. Note that this observation still holds for our
new design. It follows that the probability bounds derived in [4] apply also in our case.

The third ingredient is efficient identification of assignments x ∈ {0, 1}n/2, for which
det(M(a, x, z)) is non-zero (for fixed, random, values of a). This is done by creating a
Boolean variable wv corresponding to every variable xv and building a CNF formula such
that its satisfying assignments correspond to a superset of all assignments of xv variables
that result in non-zero det(M(a, x, z)). Again, the fact that the resulting formula is in CNF
follows from the fact that the j-th column is non-zero if for some i ∈ I we have aj,i + xi ≡ 1
(mod 2), which is also true in our design. Finally, Björklund [4] shows how to enumarate all
satisfying assignments of the CNF formula efficiently, what is not altered in any way by our
changes in the design of polynomial φ. J

3 Polynomial space algorithm

This section is devoted to the proof of Theorem 1.1. We begin with introducing some
additional notions, then we provide a branching algorithm which will be later used as
a subroutine, and finally we describe and analyse an algorithm for digraphs of average
outdegree at most d.

3.1 Preliminaries
Interfaces and switching walks. Let G be a directed graph (digraph). For a vertex v a set
I in
v of all incoming edges to v or a set Iout

v of all outgoing edges from v will be called an interface
of v. We define the type of an interface of v so that type(I in

v) = in and type(Iout
v) = out.

Consider a sequence of distinct edges π = e1, . . . , ek in G such that if we forget about
the orientation of edges, then we get a walk v1, . . . , vk+1 in the underlying undirected graph,
where for i = 1, . . . , k edge ei is an orientation of vivi+1. Assume additionally that for
every i = 2, . . . , k either both edges ei−1 and ei enter vi or both leave vi, in other words,
the orientation of edges on the walk alternates. Now, let I1, . . . , Ik+1 be the consecutive
interfaces visited by π, i.e., for every j = 1, . . . , k + 1 we have that Ij is an interface of
vj and for every j = 1, . . . , k, we have ej ∈ Ij ∩ Ij+1. If |I1|, |Ik| > 2 and |Ij | = 2, for
j = 2, . . . , k − 1, the sequence π will be called a switching walk. Similarly, if |Ij | = 2 for
j = 1, . . . , k, and v1 = vk+1, i.e., the walk v1, . . . , vk+1 is closed, then π will be called
a switching circuit. In both cases, length of π is defined as k. The sequence v1, . . . , vk+1 is
called the vertex sequence of π. Abusing the notation slightly, we will refer to π as a set,
when it is convenient. The motivation for introducing the notions of switching walks and
circuits is given by the following lemma.

I Lemma 3.1. Let π = {e1, . . . , ek} be a switching walk or a switching circuit in a digraph G.
Let H ⊆ E(G) be a Hamiltonian cycle in G. Then, H ∩ π = {e2i−1 | i = 1, . . . , bk+1

2 c}, or
H ∩ π = {e2i | i = 1, . . . , bk2 c}.

Proof. Let us assume that π is a switching walk. (For a switching circuit the proof is
analogous.) Consider two consecutive edges ei, ei+1 ∈ π. By the definition of a switching
walk, there is a vertex v with an interface I of size 2 such that I = {ei, ei+1}. Since the cycle
H passes through v, we obtain that H must contain exactly one of the edges ei and ei+1,
and the lemma easily follows. J

IPEC 2020

23:10 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

In some cases it is convenient to study switching walks and circuits in the language of
an auxiliary bipartite graph. Let V out = {vout | v ∈ V (G)} and V in = {vin | v ∈ V (G)}.
The interface graph of G is the bipartite graph IG such that V (IG) = V out ∪ V in and
E(IG) = {uoutvin | (u, v) ∈ E(G)}. Clearly, there is a one-to-one correspondence between
interfaces in G and vertices of IG, and the degree of a vertex in IG is the size of the
corresponding interface. Moreover, if π = e1, . . . , ek is a switching walk in G with a vertex
sequence v1, . . . , vk+1 and interface sequence I1, . . . , Ik+1, then π corresponds to a simple
path I(π) = v

type(I1)
1 , . . . , v

type(Ik+1)
k+1 in G with endpoints of degree larger than 2, and all inner

vertices of degree 2. Similarly, a switching circuit π corresponds to a simple cycle I(π) in IG
with all vertices of degree 2 in IG, i.e., I(π) forms a connected component in IG. Observe
that both in the case of path and cycle above, the edges I(π) are exactly the edges of IG
corresponding to the edges of π. Using the equivalence described in this paragraph, the
following lemma is immediate.

I Lemma 3.2. Edges of every digraph can be uniquely partitioned into switching walks and
circuits. Moreover, the partition can be computed in linear time.

Proof. Let G be a digraph. Recall that by the definition of IG, there is a one-to-one
correspondence between edges of G and edges of IG. It is clear that edges of IG can
be uniquely partitioned into (1) cycles with all vertices of degree 2 and (2) paths with
both endpoints of degree at least 3 and all inner vertices of degree 2. The corresponding
switching circuits and switching walks form the desired partition of E(G). An algorithm
which constructs the partition is straightforward. J

3.2 Branching subroutine
Let us consider a digraph G. By ti(G) we will denote the number of vertices of G with
outdegree equal to i. Let k = n− t1(G) be the number of vertices of G with outdegree at
least 2, and let s1, . . . , sk be the sequence of these outdegrees. Then, let us denote the sum∑k
i=1(si − 2) by S(G). An analogous sum for indegrees will be denoted by S−(G). Note that

if G has no vertex of out- or indegree 1, then by the handshaking lemma S(G) = S−(G).

I Theorem 3.3. ATSP can be solved in time O∗(2(n−t1(G))/3 + βS(G)) and polynomial space,
where β = log2 3− 1 < 0.585.

Proof. The idea behind this algorithm is to branch on interfaces of size greater than 2,
reducing the initial problem to the case of (2, 2)-graphs, and then to apply Corollary 2.6.
A detailed description is presented in Pseudocode 1. Our algorithm consists of two functions:
AtspBranching(G,weight) – the main one, which solves ATSP in G, and an auxiliary function
AtspForcedEdge(G,weight, e) that returns the minimum weight of a Hamiltonian cycle H
in G such that e ∈ H (or ∞ if there is no such cycle). Note that AtspForcedEdge modifies
the input digraph G, and calls AtspBranching on the new digraph G′. We observe that every
Hamiltonian cycle in G′ of weight w corresponds to a Hamiltonian cycle in G of weight
w + weight(e) and containing edge e, and vice versa.

Given a digraphG with a function weight : E(G)→ Z, AtspBranching starts by considering
a number of trivial cases (a)− (c), where either G has only 2 vertices, or there is a vertex with
out- or indegree at most 1. Next, we apply Lemma 3.2 to decompose E(G) into switching walks
and circuits, and we deal with a situation when there is a switching walk π = (e1, . . . , e2k) of
even length in G (cases (d)− (e) in Pseudocode 1). Denote by I, respectively I ′, the interface
which π starts, respectively ends, at. Consider a Hamiltonian cycle H in G. By Lemma 3.1
we obtain that either e1 ∈ H ∩ π, or e2k ∈ H ∩ π. We consider the following two cases.

Ł. Kowalik and K. Majewski 23:11

Algorithm 1 AtspBranching(G,weight).

Input: G – a digraph on n ≥ 2 vertices,
weight – a function E(G)→ Z

Output: the minimum weight of a Hamiltonian cycle in G,
or ∞ if there is no such cycle

Function AtspForcedEdge(G,weight, e):
Let e = (u, v)
G1 ← G with removed edges of the form (v, u), (u, x) and (x, v) for x ∈ V (G)
G′ ← G1 with contracted vertices u and v
weight′ ← weights of E(G′) inherited from G appropriately
return weight(e) + AtspBranching(G′,weight′)

Function AtspBranching(G,weight):
if G has exactly two vertices u and v then (a)

return weight((u, v)) + weight((v, u)) if (u, v), (v, u) ∈ E(G), or ∞ otherwise
if there is an empty interface in G i.e. a vertex of out- or indegree 0 then (b)

return ∞
if there is an interface I = {e} of size 1 then (c)

return AtspForcedEdge(G,weight, e)
Use Lemma 3.2 to partition E(G) into switching walks and circuits
if there is a switching walk π which begins and ends at the same interface I then (d)

G′ ← G with removed edges of I \ π
return AtspBranching(G′,weight)

if there is a switching walk π of even length then (e)
Let π = (e1, . . . , e2k)
return min(AtspForcedEdge(G,weight, e1),AtspForcedEdge(G,weight, e2k))

if there is no interface of size at least 3 then (f)
Apply Corollary 2.6 to G and return the weight of the solution, or ∞

else (g)
Let I = {e1, . . . , es} be an out-interface of size s ≥ 3
result←∞
for i = 1, . . . , s do

result← min(result,AtspForcedEdge(G,weight, ei))
return result

If I = I ′, then we have H ∩ I ∈ {e1, e2k}, and thus all edges of I \π can be safely removed
as they cannot be extended to a Hamiltonian cycle in G. This is realized in step (d) of
the pseudocode. Note that if a switching walk π starts and ends at the same interface,
then it must be of even length, since orientation of edges on π alternates.

If I 6= I ′, we branch by guessing if e1 ∈ H ∩π, or e2k ∈ H ∩π (step (e) of the pseudocode).

If none of the above cases holds, we check whether all interfaces consist of at most 2 edges
(cases (f)− (g) in Pseudocode 1). If so, then G is a (2, 2)-graph, and we can solve ATSP for
G by applying Corollary 2.6. If not, we choose an out-interface I of size at least 3, and we
branch on it, by guessing which of the edges of I to pick as a part of a Hamiltonian cycle.
Note that since G has no interface of size 1, then it has an interface of size at least 3 if and
only if it has an out-interface of size at least 3.

IPEC 2020

23:12 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

Time complexity analysis. We begin with providing a few simple facts concerning the
properties of our algorithm.

B Claim 3.4 (♠). During execution of algorithm AtspBranching, the value of S(G) cannot
increase.

B Claim 3.5 (♠). During execution of algorithm AtspBranching, graph G is simple, i.e. does
not contain two edges of the same head and tail.

B Claim 3.6. Let π = (e1, . . . , ek) be a switching walk in G. Assume that during the run of
our algorithm we decided to take an edge e1 by calling AtspForcedEdge(G,weight, e1). Then,
by exhaustively applying rule (c) of AtspBranching to the resulting digraph, we will remove
from G all edges of the form e2i, and contract all edges of the form e2i+1. An analogous
statement can be made if we start with discarding edge e1 instead of contracting it.

Denote f(n, S) = 2n/3+βS , where β is the constant from Theorem 3.3. We need to prove
that the running time of our algorithm is bounded by f(n− t1(G), S(G))nO(1). We proceed
by induction on t1(G) + S(G).

If t1(G) > 0, then our algorithm starts by choosing edges which form interfaces of size 1,
what leads to a digraph with at most max(2, n− t1(G)) vertices. Hence, by the induction
hypothesis the running time is bounded by f(n− t1(G), S(G))nO(1).

In what follows we assume t1(G) = 0. If G satisfies condition (a) or (b), then our algorithm
runs in polynomial time. Similarly, we can assume that G does not satisfy conditions (c)
and (d), as applying the corresponding reductions exhaustively takes only polynomial time
and does not increase the value of S(G), according to Claim 3.4.

From now on, we assume that conditions (a)− (d) do not hold for G. If S(G) = 0, then
our algorithm executes the algorithm from Corollary 2.6 and therefore its running time is
bounded by O∗(2n/3), as desired. Now, assume S(G) > 0. It remains to analyse cases (e)
and (g) of AtspBranching.

Case (e). Let us assume that there is a switching walk π = (e1, . . . , e2k) of even length
in G which starts at interface I of size s ≥ 3, and ends at interface I ′ 6= I of size s′ ≥ 3. Let
G′ be a digraph obtained from G by running AtspForcedEdge(G,weight, e1) and exhaustively
applying rules (a)− (d) to the resulting digraph.

Since edge e1 is contracted in AtspForcedEdge, we have |V (G′)| ≤ |V (G)| − 1. We claim
that S(G′) ≤ S(G)− 2. Assume type(I) = type(I ′) = out. By Claim 3.6, for all i = 1, . . . , k,
edge e2i−1 was contracted, and edge e2i was removed. We observe that contracting edge e1
results in removing interface I from the graph, and discarding edge e2k decreases the size
of I ′ by 1. By Claim 3.4 operations performed on edges e2, . . . , e2k−1 do not increase the
value of S(G). Hence, S(G)− S(G′) ≥ (s− 2) + 1 ≥ 2, as desired. If type(I) = type(I ′) = in,
then by the same reasoning, we obtain S−(G′) ≤ S(G)− 2 but since there are no interfaces
of size 1 in G′, we have S(G′) = S−(G′), and the claim follows.

Hence, by the induction hypothesis, the running time of our algorithm applied to G′ is
bounded by f(n−1, S(G)−2). To obtain the desired bound for digraphG we need to show that
2f(n−1, S(G)−2) ≤ f(n, S(G)), or, equivalently log2(2f(n−1, S(G)−2)) ≤ log2 f(n, S(G)).
We obtain

log2(2f(n− 1, S(G)− 2)) = 1 + n−1
3 + β(S(G)− 2) = n

3 + βS(G) + 2
3 − 2β

≤ n
3 + βS(G) = log2 f(n, S(G)).

Ł. Kowalik and K. Majewski 23:13

Case (g). Now, we assume that G does not satisfy conditions (a)− (f). Let I be an out-
interface of size s ≥ 3, and consider an edge e ∈ I. Let G′ be a digraph obtained from G after
choosing edge e by running AtspForcedEdge(G,weight, e), and let G′′ be a digraph obtained
from G′ by the subsequent exhaustive application of rules (a)− (d) by AtspBranching. Define
∆n = |V (G)| − |V (G′′)|, and ∆S = S(G)− S(G′′).

B Claim 3.7. It holds that ∆n ≥ 1, ∆S ≥ s− 2 ≥ 1, and ∆n+ ∆S ≥ s+ 1.

Proof. For a digraph G we denote n(G) = |V (G)|. First, we analyse a direct impact of
calling AtspForcedEdge(G,weight, e). All edges of I are removed from G, hence by Claim 3.4
we have ∆S ≥ S(G) − S(G′) ≥ s − 2 ≥ 1. Moreover, edge e gets contracted, and thus
∆n ≥ n(G)−n(G′) = 1. We are left with proving that (n(G′)−n(G′′))+(S(G′)−S(G′′)) ≥ 2,
since then we will have ∆n+ ∆S ≥ s+ 1.

Let π be the switching walk which starts with edge e. Let e′ be the last edge of π (it is
possible that π has length 1 and e′ = e). We recall that at step (g) every switching walk in G
is of odd length. Take an in-interface I ′ such that e′ ∈ I ′. By the definition of switching walk,
|I ′| ≥ 3, so let e′, e′1, e′2 be three different edges of I ′. For j = 1, 2 denote by πj the switching
walk which ends with edge e′j . Let ej be the first edge of πj , and let Ij be an out-interface
such that ej ∈ Ij .

Let F,R ⊆ E(G) be edges of G which correspond to the edges that were taken (and
hence, contracted) and removed, respectively, during the run of our algorithm which leads
from digraph G to digraph G′′. We have e ∈ F . By Claim 3.6 applied to π, we obtain e′ ∈ F .
Therefore, e′1, e′2 ∈ R, and again by Claim 3.6 applied to π1 and π2, we obtain e1, e2 ∈ R.
Now, we consider a few cases.

If I, I1, I2 are pairwise different out-interfaces, then during processing of digraph G′ we
removed edges e1, e2 from different out-interfaces of size at least 3. Therefore, S(G′)−
S(G′′) ≥ 2.
If I = I1 = I2, then among switching walks π, π1, π2 there are least two of length
greater than 1 (hence, of length at least 3), because otherwise the graph is not simple,
contradicting Claim 3.5. Let us assume that these are walks π and π1 (the other cases
are analogous). Then, by Claim 3.6, during processing of digraph G′ we contracted edge
e′ and the second edge of π1. Therefore, n(G′)− n(G′′) ≥ 2.
If I1 = I2 6= I, or I = I1 6= I2, or I = I2 6= I1, then at least one switching walk
among π, π1, π2 is of length at least 3, and there is another interface apart from I that
gets smaller. Hence, we obtain in a similar way as before that n(G′′)− n(G′) ≥ 1, and
S(G′′)− S(G′) ≥ 1. C
Since ∆S ≥ 1, we have S(G′′) < S(G), and thus by the induction hypothesis the running

time of our algorithm applied to G′′ is bounded by f(n(G′′), S(G′′)) = f(n−∆n, S(G)−∆S).
In step (g) of AtspBranching we branch into s such subcases, hence we need to prove that
s·f(n−∆n, S(G)−∆S)) ≤ f(n, S(G)). We will show the equivalent log2(s·f(n−∆n, S(G)−
∆S)) ≤ log2 f(n, S(G)). Indeed,

log2(s·f(n−∆n, S(G)−∆S))
= log2 s+ n−∆n

3 + β(S(G)−∆S)
= n

3 + βS(G) + log2 s− ∆n
3 − β∆S

≤ n
3 + βS(G) + log2 s− s+1−∆S

3 − β∆S (Claim 3.7)
= n

3 + βS(G) + log2 s− s+1
3 − (β − 1

3)∆S
≤ n

3 + βS(G) + log2 s− s+1
3 − (β − 1

3)(s− 2) (Claim 3.7)

IPEC 2020

23:14 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

= n
3 + βS(G) + log2 s− 1− β(s− 2)

≤ n
3 + βS(G) (4)

= log2 f(n, S(G)).

where inequality (4) follows from the fact that the function x 7→ log2 x−1
x−2 is decreasing

on [3,∞), and thus it can be bounded by the value at x = 3 which is equal to β. Consequently,
the inequality log2 s ≤ 1 + β(s− 2) holds for s ≥ 3. J

3.3 General algorithm
The idea behind our general algorithm is to run in parallel two algorithms: our branching
algorithm from Theorem 3.3 (which we will refer to as Algorithm a©), and enumerating
cycle covers from Subsection 2.2 (Algorithm b©) . We finish when one of these algorithms
terminates. Our goal is to prove that the time complexity of such an approach is bounded
by O∗(2α(d−1)n) if we apply it to digraphs of average outdegree at most d, where α is the
constant from Theorem 1.1. (Note that when implementing this algorithm, one may also
compare the values of n3 + βS(G) and α(d− 1)n, and, depending on the result, run either
Algorithm a©, or Algorithm b©.) For the time complexity analysis, see the full version.

4 Exponential space algorithm

In this section we establish Theorem 1.2.
Let G be a digraph with n vertices and m = dn edges. For simplicity, we assume in this

section that n is even, for otherwise we can pick an arbitrary vertex v, and split it into two
vertices vin and vout with edges inherited from v appropriately and with one additional edge
(vin, vout) – this operation adds one vertex to the graph but does not increase the average
outdegree. We will say that a simple path P in G is (l,D)-light if the length of P is l, and
the sum of outdegrees of inner vertices of P is bounded by D. For a vertex v ∈ V (G), and
positive integers l, D, by Pv,l,D we will denote the family of all (l,D)-light paths in G which
start at vertex v.

Our algorithm relies on the following two lemmas.

I Lemma 4.1. Let H be a Hamiltonian cycle in G. Then, the edges of H can be partitioned
into two (n/2, m/2)-light paths.

I Lemma 4.2. For a digraph G, a vertex v, and integers l, D, the family Pv,l,D can be
computed in time τ(D/(l − 1))l−1nO(1) where the function τ is defined as in Theorem 1.2.

Before we proceed to the proofs of above lemmas, let us see how to derive Theorem 1.2 from
them. Given a digraph G, the algorithm starts by iterating over all pairs of distinct vertices
u1 and u2. For each such a pair we use Lemma 4.2 to obtain the families P1 = Pu1,n/2,m/2
and P2 = Pu2,n/2,m/2. By filtering them, we may assume that all paths from P1 end
at u2, and all paths from P2 end at u1. Next, we create a dictionary D with an entry
{key : V (P1), value : weight(P1)} for every path P1 ∈ P1. (In case there is more than one path
on the same set of vertices we keep only one entry with the minimum weight.) Then, we iterate
over all paths P2 ∈ P2, and we look up in D a subset V ′(P2) := (V (G) \ V (P2)) ∪ {u1, u2}.
For every hit we calculate the sum: weight(P2) + D[V ′(P2)], and we return the minimum of
these values.

Ł. Kowalik and K. Majewski 23:15

Algorithm 2 GeneratePaths(G, path, l, D).

Input: G – a digraph,
path – a sequence of vertices forming a path in G,
l, D – positive integers

Output: A collection of all simple paths of the form: path#(v1, . . . , vl) such that∑l−1
i=1 outdeg(vi) ≤ D

u← the last vertex on path;
for vertex v1 such that (u, v1) ∈ E(G) and v1 6∈ path do

if l = 1 then
print path#v1;

else if outdeg(v1) + (l − 2) ≤ D then (X)
GeneratePaths(G, path#v1, l − 1, D − outdeg(v1));

The correctness of this procedure is a direct corollary from Lemma 4.1. Moreover, the
running time of the algorithm is dominated, up to a polynomial factor, by the running time
of the algorithm from Lemma 4.2, which in our case is bounded by

τ

(m
2

n
2 − 1

)n/2−1
nO(1) = τ

(
d

1− 2
n

)n/2−1
nO(1) = τ(d)n/2nO(1)

where the last equality follows from the fact that when d is fixed, then for sufficiently large n
we have bd/(1− 2

n)c = bdc. Note that we implement the dictionary D as a balanced tree, so
each lookup takes time O(log |D|) = O(n).

Proof of Lemma 4.1. Let k = n/2, and let d0, d1, . . . , d2k−1 be the outdegrees of consecutive
vertices on H. Denote Si = di + di+1 + . . .+ di+k−1. (In this proof indices are understood
modulo 2k.) We need to prove that for some index j both expressions Sj−dj and Sj+k−dj+k
do not exceed m/2.

Let Ri := Si − Si+k. We observe that Rk = Sk − S0 = −R0. Hence, there exists
an index j ∈ {0, . . . , k − 1} such that Rj · Rj+1 ≤ 0. Without loss of generality, we may
assume that Rj ≤ 0 (equivalently, Sj ≤ Sj+k), for otherwise we can just shift all indices by k.
Then, Rj+1 ≥ 0 (equivalently, Sj+1+k ≤ Sj+1). Thus we obtain

Sj − dj ≤ Sj ≤ 1
2 (Sj + Sj+k) = m

2

Sj+k − dj+k ≤ Sj+k+1 ≤ 1
2 (Sj+k+1 + Sj+1) = m

2 .

This ends the proof. J

Before we proceed to the proof of Lemma 4.2, we state a technical lemma.

I Lemma 4.3 (♠). Let a1, . . . , ak be integers with an average bounded by ā. Then, a1·. . .·ak ≤
τ(ā)k.

Proof of Lemma 4.2. We apply a simple branching procedure which starts at vertex v, and
at each step guesses the next vertex on a path by considering all reasonable possibilities.
A detailed description of the algorithm can be found in Pseudocode 2. (To compute the
family Pv,l,D we call the function GeneratePaths with the arguments (G, {v}, l, D).) Note
that before appending a vertex to the current path we check whether the sum of outdegrees
on the new path is not too large (line marked with (X) in the Pseudocode). More precisely,
we check whether appending a sequence of vertices of outdegree 1 to the new path would
give us a correct (l,D)-path.

IPEC 2020

23:16 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

The correctness of such a procedure is straightforward. It remains to estimate its time
complexity. Let T (G) be a search tree representing execution of this algorithm. We claim that
T (G) contains at most τ(D/(l − 1))l−1n leaves, where τ(d) = bdcbdc+1−d(bdc+ 1)d−bdc ≤ d

We will say that a directed rooted tree T has the property (?) if for any path u0, . . . , uh
from the root of T to some leaf uh we have h ≤ l, and the sum

∑h−1
i=1 outdeg(ui) is bounded

by D− (l− h). From the description of the algorithm we see that T (G) has the property (?).
Indeed, let u0, . . . , uh be a path from the root to a leaf in T (G). Before the algorithm entered
the vertex uh−1 the following condition was checked:

outdeg(uh−1) + (l − (h− 2)− 2) ≤ D −
h−2∑
i=1

outdeg(ui)

which is equivalent to
∑h−1
i=1 outdeg(ui) ≤ D − (l − h). Hence it is enough to prove the

following claim. (A similar statement appears in the work of Gebauer [19].)

B Claim 4.4. Any tree T with the property (?) has at most τ(D/(l − 1))l−1n leaves.

Given a tree T with the property (?) we modify it so that the property (?) is preserved
and the number of leaves in it does not increase. First, we may assume that all leaves in T
are at depth exactly l. Indeed, let u0, . . . , uh be a path from the root of T to some leaf uh
at depth h < l. Then, we may append to it a path uh, uh+1, . . . , ul – this operation does not
change the number of leaves, and the property (?) is preserved because

l−1∑
i=1

outdeg(ui) =
h−1∑
i=1

outdeg(ui) + (l − h) ≤ D

Next, we modify T iteratively. Let T1 := T . At i-th step, for i = 1, . . . , l− 1, we consider
the family Si of all subtrees in Ti with a root at depth i. Let Si ∈ Si be a subtree with the
maximum number of leaves. We create a tree Ti+1 by substituting in Ti all subtrees from Si
with Si. We observe that for every i = 1, . . . , l − 1 tree Ti has depth l, the number of leaves
in Ti is bounded by the number of leaves in Ti+1, and all vertices in Ti at the same depth
j ≤ i − 1 have the same outdegree. Combining the latter property with the fact that the
condition (?) holds for leaves in the subtree Si, we obtain inductively that every tree Ti still
has the property (?).

Now, we consider the tree Tl. For i = 0, . . . , l− 1 let di be the outdegree of any vertex at
depth i in Tl. Then we may bound the number of leaves in Tl by

d0 ·
l−1∏
i=1

di ≤ n

(∑l−1
i=1 di
l − 1

)l−1

≤ n
(

D

l − 1

)l−1

To obtain a tighter bound on the size of Tl we observe that in the above estimation we
obtain an equality only if di = D/(l − 1) for i = 1, . . . , l − 1. However, this is impossible
unless expression D/(l − 1) is integral. After applying Lemma 4.3 we get the tighter bound
which proves the claim of Lemma 4.2. J

References
1 Eric T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path problem. Inf. Process.

Lett., 47(4):203–207, September 1993. doi:10.1016/0020-0190(93)90033-6.
2 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.

ACM, 9(1):61–63, January 1962. doi:10.1145/321105.321111.

https://doi.org/10.1016/0020-0190(93)90033-6
https://doi.org/10.1145/321105.321111

Ł. Kowalik and K. Majewski 23:17

3 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund. Exploiting sparsity for bipartite hamiltonicity. In Wen-Lian Hsu, Der-
Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms and
Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 3:1–3:11, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ISAAC.2018.3.

5 Andreas Björklund. An asymptotically fast polynomial space algorithm for hamiltonicity
detection in sparse directed graphs, 2020. arXiv:2009.11780.

6 Andreas Björklund and Thore Husfeldt. The parity of directed Hamiltonian cycles. In FOCS,
pages 727–735. IEEE Computer Society, 2013.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling
salesman problem in bounded degree graphs. ACM Trans. Algorithms, 8(2):18:1–18:13, 2012.
doi:10.1145/2151171.2151181.

8 Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting trees with
few leaves. SIAM J. Discret. Math., 31(2):687–713, 2017. doi:10.1137/15M1048975.

9 Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed hamiltonicity and out-
branchings via generalized laplacians. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages
91:1–91:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ICALP.2017.91.

10 Andreas Björklund and Ryan Williams. Computing permanents and counting Hamiltonian
cycles by listing dissimilar vectors. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
25: 1–25: 14. Schloss Dagstuhl - Leibniz Center for Computer Science, 2019. doi:10.4230/
LIPIcs.ICALP.2019.25.

11 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

12 Lev Meerovich Brègman. Some properties of nonnegative matrices and their permanents.
Doklady Akademii Nauk, 211(1):27–30, 1973.

13 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3), March 2018. doi:10.1145/3148227.

14 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

15 Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of bounded
average degree. Inf. Comput., 243:75–85, 2015. doi:10.1016/j.ic.2014.12.007.

16 David Eppstein. The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl.,
11(1):61–81, 2007. doi:10.7155/jgaa.00137.

17 Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On two techniques
of combining branching and treewidth. Algorithmica, 54(2):181–207, 2009. doi:10.1007/
s00453-007-9133-3.

18 Komei Fukuda and Tomomi Matsui. Finding all the perfect matchings in bipartite graphs.
Applied Mathematics Letters, 7(1):15–18, 1994.

19 Heidi Gebauer. How many Hamilton cycles and perfect matchings are there? Master’s thesis,
ETH Zürich, March 2007.

IPEC 2020

https://doi.org/10.1137/110839229
https://doi.org/10.4230/LIPIcs.ISAAC.2018.3
http://arxiv.org/abs/2009.11780
https://doi.org/10.1145/2151171.2151181
https://doi.org/10.1137/15M1048975
https://doi.org/10.4230/LIPIcs.ICALP.2017.91
https://doi.org/10.4230/LIPIcs.ICALP.2017.91
https://doi.org/10.4230 / LIPIcs.ICALP.2019.25
https://doi.org/10.4230 / LIPIcs.ICALP.2019.25
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1145/3148227
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1016/j.ic.2014.12.007
https://doi.org/10.7155/jgaa.00137
https://doi.org/10.1007/s00453-007-9133-3
https://doi.org/10.1007/s00453-007-9133-3

23:18 The Asymmetric Travelling Salesman Problem in Sparse Digraphs

20 Heidi Gebauer. On the number of Hamilton cycles in bounded degree graphs. In Robert
Sedgewick and Wojciech Szpankowski, editors, Proceedings of the Fifth Workshop on Analytic
Algorithmics and Combinatorics, ANALCO 2008, San Francisco, California, USA, January
19, 2008, pages 241–248. SIAM, 2008. doi:10.1137/1.9781611972986.8.

21 Heidi Gebauer. Finding and enumerating Hamilton cycles in 4-regular graphs. Theor. Comput.
Sci., 412(35):4579–4591, 2011. doi:10.1016/j.tcs.2011.04.038.

22 Yuri Gurevich and Saharon Shelah. Expected computation time for Hamiltonian path problem.
SIAM J. Comput., 16(3):486–502, June 1987. doi:10.1137/0216034.

23 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
In Proceedings of the 1961 16th ACM National Meeting, ACM ’61, page 71.201–71.204, New
York, NY, USA, 1961. Association for Computing Machinery. doi:10.1145/800029.808532.

24 Richard M. Karp. Dynamic programming meets the principle of inclusion and exclusion. Oper.
Res. Lett., 1(2):49–51, April 1982. doi:10.1016/0167-6377(82)90044-X.

25 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. A bound on the pathwidth
of sparse graphs with applications to exact algorithms. SIAM J. Discret. Math., 23(1):407–427,
2009. doi:10.1137/080715482.

26 Samuel Kohn, Allan Gottlieb, and Meryle Kohn. A generating function approach to the traveling
salesman problem. In Proceedings of the 1977 Annual Conference, ACM ’77, page 294–300, New
York, NY, USA, 1977. Association for Computing Machinery. doi:10.1145/800179.810218.

27 Łukasz Kowalik and Konrad Majewski. The asymmetric travelling salesman problem in sparse
digraphs, 2020. arXiv:2007.12120.

28 Jesper Nederlof. Bipartite TSP in o(1.9999n) time, assuming quadratic time matrix multipli-
cation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 40–53. ACM,
2020. doi:10.1145/3357713.3384264.

29 Mohd Shahrizan Othman, Aleksandar Shurbevski, and Hiroshi Nagamochi. Polynomial-space
exact algorithms for the bipartite traveling salesman problem. IEICE Trans. Inf. Syst.,
101-D(3):611–612, 2018. doi:10.1587/transinf.2017FCL0003.

30 Ján Plesník. The NP-completeness of the Hamiltonian cycle problem in planar digraphs
with degree bound two. Inf. Process. Lett., 8(4):199–201, 1979. doi:10.1016/0020-0190(79)
90023-1.

31 Frank Rubin. A search procedure for Hamilton paths and circuits. J. ACM, 21(4):576–580,
October 1974. doi:10.1145/321850.321854.

32 Alexander Schrijver. A short proof of Minc’s conjecture. Journal of combinatorial theory,
Series A, 25(1):80–83, 1978.

33 Mingyu Xiao and Hiroshi Nagamochi. An exact algorithm for TSP in degree-3 graphs via
circuit procedure and amortization on connectivity structure. Algorithmica, 74(2):713–741,
2016. doi:10.1007/s00453-015-9970-4.

34 Mingyu Xiao and Hiroshi Nagamochi. An improved exact algorithm for TSP in graphs of maxi-
mum degree 4. Theory Comput. Syst., 58(2):241–272, 2016. doi:10.1007/s00224-015-9612-x.

35 Norhazwani Md Yunos, Aleksandar Shurbevski, and Hiroshi Nagamochi. An improved-time
polynomial-space exact algorithm for TSP in degree-5 graphs. J. Inf. Process., 25:639–654,
2017. doi:10.2197/ipsjjip.25.639.

https://doi.org/10.1137/1.9781611972986.8
https://doi.org/10.1016/j.tcs.2011.04.038
https://doi.org/10.1137/0216034
https://doi.org/10.1145/800029.808532
https://doi.org/10.1016/0167-6377(82)90044-X
https://doi.org/10.1137/080715482
https://doi.org/10.1145/800179.810218
http://arxiv.org/abs/2007.12120
https://doi.org/10.1145/3357713.3384264
https://doi.org/10.1587/transinf.2017FCL0003
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1145/321850.321854
https://doi.org/10.1007/s00453-015-9970-4
https://doi.org/10.1007/s00224-015-9612-x
https://doi.org/10.2197/ipsjjip.25.639

	Introduction
	Reductions from undirected graphs
	General reductions
	Enumerating cycle covers
	Branching algorithms
	Meet in the middle technique
	Algebraic methods

	Polynomial space algorithm
	Preliminaries
	Branching subroutine
	General algorithm

	Exponential space algorithm

