PACE Solver Description: Computing Exact
Treedepth via Minimal Separators

Zijian Xu
The University of Tokyo, Japan
xuzijian@ms.k.u-tokyo.ac.jp

Dejun Mao
The University of Tokyo, Japan
maodejun001@is.s.u-tokyo.ac.jp

Vorapong Suppakitpaisarn
The University of Tokyo, Japan
vorapong@is.s.u-tokyo.ac.jp

—— Abstract

This is a description of team xuzijian629’s treedepth solver submitted to PACE 2020. As we use a
top-down approach, we enumerate all possible minimal separators at each step. The enumeration

is sped up by several novel pruning techniques and is based on our conjecture that we can always
have an optimal decomposition without using separators with size larger than treewidth. Although
we cannot theoretically guarantee that our algorithm based on the unproved conjecture can always
give an optimal solution, it can give optimal solutions for all instances in our experiments. The
algorithm solved 68 private instances and placed 5th in the competition.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms
Keywords and phrases Treedepth, Minimal Separators, Experimental Algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.31

Supplementary Material The solver submitted to the competition is available at https://doi.org/
10.5281/zenodo.3870624 and the repository is https://github.com/xuzijian629/pace2020.

1 Preliminaries

1.1 Notations

In this paper, G denotes undirected unweighted graph. V or V(G) denote the vertex set. We
use n and m for the number of nodes and edges, respectively. The treewidth and treedepth of
G are expressed as tw(G) and td(G), respectively. N(v) or Ng(v) denote the open neighbors.
For a vertex set S C V, G[S] is the subgraph induced by S. We use G\S for the graph
obtained from G by removing S, that is, G\S = G[V'\S]. Also, we use C(G) to denote the
connected components of G. S is called an a-b separator if a,b € V are not connected in
G\S. An a-b separator is called minimal if none of its proper subset is an a-b separator.
Finally, S is called a minimal separator if S is a minimal a-b separator for some a,b € V.

1.2 Computing Treedepth via Minimal Separators

The recursive formula we use for computing treedepth is a variant of the following theorem.

» Theorem 1 ([4]).

V| if G is complete
td(G) = 1
(©) min (|S| + max td(H)) otherwise M)
SeA HEC(G\S)

where Ag is a collection of all minimal separators of G.

© Zijian Xu, Dejun Mao, and Vorapong Suppakitpaisarn;

37 licensed under Creative Commons License CC-BY
15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 31; pp. 31:1-31:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:xuzijian@ms.k.u-tokyo.ac.jp
mailto:maodejun001@is.s.u-tokyo.ac.jp
mailto:vorapong@is.s.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.IPEC.2020.31
https://doi.org/10.5281/zenodo.3870624
https://doi.org/10.5281/zenodo.3870624
https://github.com/xuzijian629/pace2020
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2

PACE Solver Description: Computing Exact Treedepth via Minimal Separators

Algorithm 1 MINDEGREE and MINFILL.

Require: graph G

Ensure: upper bound of treewidth ub

H: =G

while G is not empty do
v := a vertex with minimum degree (MINDEGREE)/with minimum fill (MINFILL)
F :={(a,b) | a,b € Ng(v) and (a,b) ¢ E(G)}
add edges in F' to both G and H
remove v from G

end while

assert H is a chordal completion of G

ub := treewidth of H

The bottleneck of computing treedepth by Theorem 1 is the computation of Ag, since a
graph may have an exponential number of minimal separators with respect to n.

To calculate an optimal treedepth decomposition from Equation (1), the authors begin
by finding the set Ag. Then, for each minimal separator S € Ag and for each connected
component H € C(G\S), they recursively calculate td(H). By that, they can obtain a set

S* € arg mln |S] + u I(I;l(aé(\ . td(H)). An optimal treedepth decomposition obtained from
€

the algorlthm is a tree which:

1. the top of the tree is a simple path consisting of all nodes in S*;

2. the bottom end of the simple path have several branches, each of the branches is connected
to the root of an optimal treedepth decomposition for H € C(G\S), which can be computed
recursively by the same algorithm.

2 Conjecture

In order to reduce the amount of the minimal separators that we have to enumerate, we
conjectured that it suffices to enumerate minimal separators that have size at most treewidth.
Formally,

» Conjecture 2. Let A, be a set of separators no larger than p, i.e. AL, :={S € A:|S| <p}.
Define td®P)(G) as follows:

V| if G is complete
tdP(G) = 2
(@) min (|S| td(H)) otherwise @)
SeAY, HEC(G\S)

Then, for any graph G and for any p > tw(G), td®)(G) = td(G).

It is known that we can efficiently calculate an upper bound of treewidth, denoted by
tw(G) by taking the minimum of MINDEGREE heuristic and MINFILL heuristic (Algorithm 1).

Then, if the conjecture is correct, we can replace the set S* in the previous section with

S € arg mln |S] + rél(aé(\ td(H)). By that, our search space size is reduced from |Ag|
He

to 'Agﬂ(G)‘, and we can significantly speed up the algorithm.

Z. Xu, D. Mao, and V. Suppakitpaisarn

Correctness of the Conjecture and Solver

We cannot prove the correctness of Conjecture 2 for general graphs. Hence, we cannot
theoretically guarantee that our solver based on the conjecture can always give an optimal
solution. However, for all public and private instances we could solve, the solutions were
optimal. Some theoretical aspects of this conjecture are discussed in [§].

3 Pruning Rules

In addition to the conjecture in the previous section, we speed up our solvers using several

pruning rules.

Our solver handles the decision version of the treedepth problem. It computes solve(G, k),
checking if td(G) < k, for k = 1,2,.... When G is separated by a minimal separator S,
solve(G, k) recursively checks solve(H, k — |S]) for each connected component H € C(G\S).
If we have a method to efficiently calculate a lower bound of td(H) for each H, we can
immediately return false if the lower bound is larger than k — |S|. We can significantly
prune the search space if the lower bound is tight. Therefore, we use several lower bounds of
td(H) in our solvers.

We compute the following six lower bounds from the first one. The first two lower bounds
are usually not as effective as others, but the computation is much simpler.

Simple Bound. Consider a treedepth decomposition T such that it has k leaves and the depth
is d. If T' is a treedepth decomposition of G, then G may have at most (k —1)(n — k/2)
edges. The maximum case is obtained when all k leaves are at depth d and for 1 <17 < d—1,
there is only one node at depth i. Therefore, we have the following lower bound for
treedepth:

» Proposition 3. Let k' be the smallest integer k such that m < (k —1)(n — k/2), then

td(G) > K.

Maximum Degree Bounds [7].
> Proposition 4. Let b > 0 be the mazimum degree of G. Then, td(G) > Ib(n), where

Ib(n) = 0 ifn=20
" 1+1([(n—1)/b]) otherwise.

Degeneracy Bound. Let G be a graph. The degeneracy of G is defined as the maximum of
minimum degrees among all subgraphs. Degeneracy is a lower bound of treewidth [2] and
can be computed in linear time [6] and often works as the most effective bound especially
for small graphs. Since td(G) > tw(G) + 1, degeneracy plus one is a lower bound of
treedepth.

Path-length Bound [7]. Let P be a path in G. Then, td(G) > [log,(|P| + 1)], where |P| is
the number of nodes in the path P.

Contraction Degeneracy Bound [3, 5]. Contraction degeneracy is a stronger lower bound
of treewidth, compared to degeneracy. However, since its computation takes time, we use
this bound only when degeneracy is slightly smaller than k in solve(G, k). The algorithm
is described in Algorithm 2.

Pruning by Blocks. We observed that the above lower bounds can effectively prune our

search only when n is as small as 100. For larger n, we introduce a novel pruning heuristic.

As a preprocessing, we take various induced subgraphs of the input graph. These
subgraphs are called blocks. Let Blocks[i] be the collection of blocks with size i. For each
1 in ascending order, we compute the exact treedepth of the induced subgraphs and sort

31:3

IPEC 2020

31:4 PACE Solver Description: Computing Exact Treedepth via Minimal Separators

Algorithm 2 Contraction Degeneracy Heuristic [3, 5].

Require: graph G
Ensure: lower bound of treewidth [
1: b:=0
2: while G has more than one vertices do
v := a vertex with minimum degree
b < max(lb, degree(v))
u:= a vertex in N(v) such that |N(u) N N(v)| is minimum
contract (u,v)
: end while

them in descending order of treedepth. In solve(H,k — |S|), we scan each blocks from
smaller ¢ and then from larger treedepth, and, if there is a block B C H and V/(B)NS =0
such that td(B) > k — |S|, we can immediately return false.

Block Selection in Preprocessing

To obtain various blocks, we need a quick randomized heuristic. We combine the following
two partitioning heuristics to recursively decompose the input graph.

Partitioning Heuristic 1. Select two random vertices u and v in G and divide V(G) into
two groups, denoted U and V. A node v’ is put in U if the shortest path length from v’
to u is smaller than the shortest path length from v’ to v. Otherwise v’ is put in V. We
then consider G[U] and G[V] as two blocks in the preprocessing process.

Partitioning Heuristic 2. A small vertex separator S is computed by [1]. We then consider
each of the components of G\S as blocks.

To compute exact treedepth for the elements in Blocks|i], Blocks[j] for j < ¢ is used for
pruning. The preprocessing is terminated either if it finishes the computation for all blocks
or it exceeded the time limit for preprocessing. This pruning was so effective that it allows
us to solve almost 20 public instances which we could not solve without it.

—— References

1 Haeder Y Althoby, Mohamed Didi Biha, and André Sesbotié. Exact and heuristic methods for
the vertex separator problem. Computers & Industrial Engineering, 139:106135, 2020.

2 Hans L Bodlaender and Arie MCA Koster. Treewidth computations ii. lower bounds. Inform-
ation and Computation, 209(7):1103-1119, 2011.

3 Hans L Bodlaender, Arie MCA Koster, and Thomas Wolle. Contraction and treewidth lower
bounds. In Furopean Symposium on Algorithms, pages 628—639. Springer, 2004.

4 Dariusz Dereniowski and Adam Nadolski. Vertex rankings of chordal graphs and weighted
trees. Information Processing Letters, 98(3):96-100, 2006.

5 Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. arXiv preprint,
2012. arXiv:1207.4109.

6 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417-427, 1983.

7 James Trimble. An algorithm for the exact treedepth problem. arXiv preprint, 2020. arXiv:
2004.08959.

8 Zijian Xu and Vorapong Suppakitpaisarn. On the size of minimal separators for treedepth
decomposition, 2020. arXiv:2008.09822.

http://arxiv.org/abs/1207.4109
http://arxiv.org/abs/2004.08959
http://arxiv.org/abs/2004.08959
http://arxiv.org/abs/2008.09822

	Preliminaries
	Notations
	Computing Treedepth via Minimal Separators

	Conjecture
	Pruning Rules

