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Abstract
This paper introduces Tweed-Plus, a heuristic solver for the treedepth problem. The solver uses two
well-known algorithms to create an initial elimination tree: nested dissection (making use of the
Metis library) and the minimum-degree heuristic. After creating an elimination tree of the entire
input graph, the solver continues to apply nested dissection and the minimum-degree heuristic to
parts of the graph with the aim of replacing subtrees of the elimination tree with alternatives of
lower depth.
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1 Introduction

A treedepth decomposition of graph G = (V, E) is a rooted forest F with node set V , such
that for every edge {u, v} ∈ E we have either that u is an ancestor of v in F or v is an
ancestor of u in F . The depth of a treedepth decomposition is the maximum number of
vertices in a path from the root to a leaf. For example, if G is the graph at the left of Figure 1
then each of the two trees in the figure is a treedepth decomposition of G; the first has depth
5 and the second has depth 4.
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Figure 1 A graph G and two treedepth decompositions of G.

In his PhD dissertation, Fernando Sánchez Villaamil suggests as future work the following
strategy for reducing the depth of a treedepth decomposition. “It would be possible to throw
away a part of the decomposition and compute a new treedepth decomposition for this part
of the graph. . . . This suggests a straightforward way of using different heuristics on different
parts of the graph.” ([5], page 118)
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This paper introduces the heuristic solver Tweed-Plus, which seeks to find a treedepth
decomposition of low depth for a given connected graph. The solver’s overall strategy is
exactly the one proposed by Sánchez Villaamil, with the parts of the decomposition that are
thrown away and replaced being subtrees.

I will use the term subtree replacement to denote this process of replacing a subtree
of a treedepth decomposition with a new decomposition of the corresponding part of the
input graph. To give an example of this process, let G be the graph in Figure 1, and let
T0 and T1 be the two treedepth decompositions of G shown beside it. To transform T0
into T1, the subtree rooted at vertex 4 – which has vertex set {4, 5, 6} – is replaced with a
different tree on the same set of vertices; moreover, this tree is a treedepth decomposition
of the subgraph of G induced by {4, 5, 6}. In general, the process of subtree replacement
is as follows. First, a subtree T rooted at some non-root vertex v is removed from the
initial treedepth decomposition. Next, a new forest T ′ on the vertex set of T is found; this
forest must be a treedepth decomposition of the subgraph of G induced by the vertex set of
T . Finally, each root of T ′ is made a child of the vertex that was v’s parent in the initial
treedepth decomposition.

The algorithm described in this paper depends on the fact, formalised in the following
proposition, that the process of subtree replacement maintains the treedepth decomposition
property.

I Proposition 1. Let F0 be a treedepth decomposition of a graph G, and let F1 be the result
of applying a subtree replacement to F0. Then F1 is also a treedepth decomposition of G.

Proof. Let {u, v} be an edge in G. Without loss of generality, assume that u is an ancestor of
v in F0. There are three cases. We show that in each one, u and v have an ancestor-descendant
relationship in F1; thus, F1 is a treedepth decomposition of G.

Case 1: Neither u nor v is in the replaced part of the decomposition. The path between
u and v in the decomposition is not changed by the subtree replacement. Therefore u

remains an ancestor of v in F1.

Case 2: Vertex v is in the replaced part of the decomposition, but u is not. Let w be the
parent in F0 of the root of the replaced subtree. In F1, vertex u remains either equal to w

or an ancestor of w, since both u and w are in the unchanged part of the decomposition.
There must also be a path from w to v in F1. Therefore u is an ancestor of v in F1.

Case 3: Both u and v are in the replaced part of the decomposition. By the definition of
subtree replacement, the new part of the decomposition is itself a treedepth decomposition
of part of G containing u, v, and an edge between these two vertices. Therefore, either u

is an ancestor of v in F1 or vice versa. J

If a subtree replacement replaces a subtree with a forest of strictly smaller depth, we call
this replacement a subtree improvement.

Tweed-Plus makes use of two solvers – which will be referred to as the sub-solvers – each
of which is itself a heuristic for the treedepth problem. The first sub-solver is a a variant
of the well-known minimum-degree heuristic; the second is a small wrapper around the
Metis library [2]. The overall strategy of the Tweed-Plus solver is to generate an initial
treedepth decomposition of the input graph using one of the sub-solvers, then to make
repeated additional calls to the sub-solvers with the aim of making subtree improvements.
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2 The Sub-Solvers

Recall that each sub-solver called by Tweed-Plus is itself a heuristic algorithm for finding a
treedepth decomposition. Both of the sub-solvers produce an elimination tree of the input
graph. This is valid because every elimination tree is also a treedepth decomposition ([4],
chapter 6). Note that the Tweed-Plus algorithm’s overall strategy would still produce valid
treedepth decompositions even if a different collection of sub-solvers were used, some or all
of which produced treedepth decompositions that were not also elimination trees.

To give one of the several equivalent definitions, an elimination tree of connected graph
G is any tree created by the following procedure. Visit the vertices of G one by one. On
visiting vertex v, carry out the following two steps. First, modify G by adding all of the
edges required to make the set of unvisited neighbours of v a clique. Second, find the set of
visited neighbours of v that do not yet have a parent in the elimination tree, and make v the
parent in the tree of each member of this set.

The first sub-solver uses the well-known minimum-degree heuristic [1], which constructs
an elimination tree using the process described in the definition above. At each step, one
of the vertices of minimum degree in the current graph is selected at random to be visited.
Unlike the standard version of the algorithm, my implementation includes edges incident
to previously-visited vertices in the degree calculation. (I have not carried out a rigorous
investigation into the effect of this change.) Another small tweak is that on some calls to the
minimum-degree algorithm, degrees are divided by a small integer and rounded down, in
order to enlarge the set of “minimum degree” vertices that may be chosen.

The second sub-solver calls the Metis library [2] which constructs an elimination tree in a
top-down fashion by nested dissection (a recursive process of finding small vertex separators
to partition the graph). The Metis library returns an ordering of vertices for the elimination
tree; the sub-solver simply constructs an elimination tree using this ordering.

3 The Tweed-Plus Algorithm

Let G be the input graph. The Tweed-Plus algorithm performs the following steps. First,
one of the sub-solvers is called to produce an initial treedepth decomposition T of G. (Since
G is assumed to be connected, T must be a tree rather than a forest composed of multiple
trees.) Following this, the algorithm finds a subtree T ′ of T that contains a leaf of maximum
depth in T ; the subtree T ′ is a candidate for subtree improvement. One of the sub-solvers
is then called in an attempt to find a replacement for T ′ that has lower depth. If such a
subtree is found, this is used to replace T ′ in the overall decomposition T .

The algorithm periodically discards T completely, computes a new initial treedepth de-
composition, and again carries out the process of attempted subtree improvements. Whenever
the current decomposition has lower depth than any decomposition previously found, this
decomposition is recorded as the incumbent best solution.

The algorithm as implemented is intended to be run for 30 minutes, as this is the time limit
of the PACE Challenge. Two minutes before this time limit is reached, the best treedepth
decomposition found so far is reloaded from memory, and additional subtree improvements
are attempted until the time limit is reached. This simple strategy of returning to the best
solution found so far for a final, relatively long improvement phase appears to be useful in
some cases. For example, it brings the best depth found down from 138 to 135 on PACE
Challenge public instance 069; no other solver entered into the challenge gives as good a
result on this instance.
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There are many small details of the algorithm that have not yet been described: How are
candidate subtrees for improvement chosen? How many attempts at improvement are carried
out before beginning with a new initial decomposition? When is each sub-solver used? Each
of these decisions was made by hand-tuning to the PACE Challenge public instances, and
further improvements are without doubt possible. To give a sketch of the choices made: Both
sub-solvers are used (in different iterations) for producing an initial decomposition, and both
are also used for attempting subtree improvements. Candidate subtrees for improvement
always contain the lowest-indexed vertex of maximum depth, and have depth ranging from 1
to one less than the depth of the full treedepth decomposition. On early iterations, subtree
improvements are not attempted at all; on later iterations, an increasing number of attempts
at subtree improvements are made.

4 Implementation details

The Tweed-Plus algorithm is implemented in C. Two different representations of vertex
neighbourhoods are used in an effort to save memory and reduce run time: small adjacency
lists (up to 32 vertices) are stored as unsorted lists, while larger adjacency lists are stored as
bitsets. Nevertheless, the implementation of the minimum-degree heuristic lacks many of the
improvements that have been proposed in the literature [1].

The solver uses code from Nauty 2.6r12 [3] for the bitset data structure and random number
generator (the latter of which is based in turn on code by Donald Knuth).1 Metis 5.1.0 [2] is
used to find a nested dissection ordering.2

5 Conclusion

This paper has briefly introduced the Tweed-Plus solver, which uses a portfolio of heur-
istic treedepth algorithms both for constructing an initial solution and for seeking subtree
improvements. An interesting direction for future research would be to add several of the
leading solvers from the PACE 2020 heuristic track as additional sub-solvers.
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