
PACE Solver Description:
Sallow: A Heuristic Algorithm for Treedepth
Decompositions
Marcin Wrochna
University of Oxford, UK
mwrochna@gmail.com

Abstract
We describe a heuristic algorithm for computing treedepth decompositions, submitted for the PACE
2020 challenge. It relies on a variety of greedy algorithms computing elimination orderings, as well
as a Divide & Conquer approach on balanced cuts obtained using a from-scratch reimplementation
of the 2016 FlowCutter algorithm by Hamann & Strasser [2].

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics of
computing → Solvers; Mathematics of computing → Graph theory

Keywords and phrases treedepth, decomposition, heuristic, weak colouring numbers

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.36

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.07050.

Supplementary Material Code: http://doi.org/10.5281/zenodo.3870565.

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532,
PI: Stanislav Živný).

Acknowledgements The author is very grateful to the PACE 2020 organizers at the University of
Warsaw, organizers of past editions, and the OPTIL.io team at the Poznań University of Technology
for making this challenge possible.

1 Orderings and elimination

We start by recalling a few useful notions and facts (experts will recognize we are essentially
describing the well-known statement that td(G) = wcol∞(G), see e.g. [3, Lemma 6.5]).

Treedepth has many equivalent definitions. Small treedepth can be certified as usual by a
treedepth decomposition (also known as a Trémaux tree) – it suffices to specify the parent of
each vertex in the tree. A corresponding ordering is any linear ordering of vertices such that
parents come before children – it can be obtained from a parent vector by any topological
sorting algorithm, for example. In turn, any linear ordering of vertices can be turned into a
treedepth decomposition by an elimination process: repeatedly remove the last vertex in the
ordering and turn its neighbourhood into a clique. The parent of the removed vertex is set
to the latest vertex in the neighbourhood.

It is easy to check this results in a new valid treedepth decomposition. Moreover, turning
a decomposition into an ordering and back cannot increase the depth. To see this, observe
that by induction, at any point in the elimination process, the neighbourhood of the removed
vertex consists only of its ancestors (in the original decomposition), because all later vertices
were removed, hence all introduced edges are still in the ancestor-descendant relationship. In
particular the new parent of each vertex is an ancestor in the original decomposition.

A more static look at the elimination process is through strongly and weakly reachable
vertices. Fix a vertex v. A vertex x is in the neighbourhood of v at the moment v is
eliminated if and only if x is earlier in the ordering and can be reached, in the original

© Marcin Wrochna;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 36; pp. 36:1–36:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9346-2172
mailto:mwrochna@gmail.com
https://pacechallenge.org/2020
https://pacechallenge.org/2020
https://doi.org/10.4230/LIPIcs.IPEC.2020.36
https://arxiv.org/abs/2006.07050
http://doi.org/10.5281/zenodo.3870565
https://pacechallenge.org/2020
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 PACE: Sallow: A Heuristic Algorithm for Treedepth Decompositions

graph, via a path whose internal vertices are later than v in the ordering (= have been
eliminated). We say x is strongly reachable from v (in the given graph and ordering). So this
neighbourhood is the set of strongly reachable vertices (in the graph G with ordering L),
usually denoted SReach∞[G,L, v]. Similarly x is weakly reachable from v if x is earlier and
can be reached via a path whose internal vertices are later than x (instead of “later than v”).
Equivalently, this relation is the transitive closure of strong reachability. The set of weakly
reachable vertices is denoted WReach∞[G,L, v] – it is equal to the set of ancestors of v in
the treedepth decomposition obtained by elimination.

To give some context, the maximum size of SReach∞[G,L, v] over vertices v is the strong
∞-colouring number of (G,L) and its minimum over all orderings L is equal to tw(G) + 1 [1,
Theorem 3.1]. The maximum size of WReach∞[G,L, v] over vertices v (hence the depth of
the resulting treedepth decomposition) is the weak ∞-colouring number of (G,L) and its
minimum over all orderings L is equal to td(G). The ∞ here is customary because using
paths of length at most k <∞ leads to other notions important in sparse graph theory, see
e.g. [6].

A third, more efficient look at the elimination process comes from the observation that
descendants of v, in the resulting treedepth decomposition, are exactly vertices reachable in
the subgraph induced by vertices later than or equal to v (in the ordering). We can thus
define a building process on an ordering as follows: we process vertices starting from the
last, maintaining connected components of the subgraph induced by vertices processed so far.
This is sufficient to build the same treedepth decomposition, without changing the graph:
we maintain the treedepth decomposition of the subgraph induced by processed vertices
(using a parent vector) and represent each component by the root of the corresponding tree
(equivalently, the earliest vertex of the component). When processing a vertex v, for each
neighbour y later than v in the ordering, to update components we only have to merge y’s
component with v (initially a singleton). To update the decomposition, we find the root of
y’s component and make it a child of v, which thus becomes the new root. Thus y’s parent
is the latest weakly reachable vertex, as expected.

In other words, the building process consider vertices in the same order as the elimination
process. However, in the elimination process we maintain a graph on unprocessed vertices
and when eliminating the next vertex, we replace its neighbourhood by a clique, which
is somewhat costly. Instead, in the building process we maintain a graph on more and
more processed vertices (hence the name), or rather a structure to represent its connected
components.

2 Greedy algorithms

The above processes suggest simple heuristics: we can start with vertices ordered decreasingly
by any notion of centrality (e.g., the degree in the original graph), since we expect higher
vertices in optimal treedepth decompositions to be more “central”. Moreover, we can update
this “centrality score” of unprocessed vertices on the fly: we maintain a heap of unprocessed
vertices with the minimum score at the top, popping and processing a vertex until the heap
is empty.

By elimination

In the elimination process, we update the score of a vertex v based on a linear combination of:
1. its height (1+max height of neighbours eliminated so far; once we decide to eliminate v this
becomes the height of the subtree rooted at v in the resulting decomposition); 2. its degree (in
the partially eliminated graph; once we decide to eliminate v this becomes |SReach∞[G,L, v]|
in the resulting ordering); 3. some initial, static score.

M. Wrochna 36:3

Consider a graph with n vertices, m edges, and suppose we stop when unable to obtain
a decomposition of depth better than d. In the elimination process, we can then assume
that the neighbourhood of every vertex at every step is smaller than d. Simulating it then
requires Θ(nd2) time in many cases: e.g. if most vertices have a neighbourhood of size Θ(d)
at the time they are processed (as in Kd,n), ensuring that this neighbourhood becomes a
clique takes Θ(d2) time. This bound is also sufficient; to do the simulation we maintain
neighbourhood lists of the partially eliminated graph as std::vectors sorted by vertex name
(not by the ordering we’re about to compute), so that the union of neighbourhoods can be
computed by merge-sort (when turning v’s neighbourhood into a clique). Note however that
we cannot compute parents on the fly, since the ordering of unprocessed vertices is not yet
decided; we do this in a second pass, using the faster building approach once the ordering is
fixed. See Algorithm 1 in the full version.

The memory requirement is Θ(nd) in the worst case and this cannot be improved to
O(m), because a random 3-regular graph on d vertices will have, after eliminating half of its
vertices, a clique on Θ(d) vertices and Θ(d2) edges (due to its expansion properties). This
means memory usage can also be prohibitive for large graphs with expected treedepth d

much larger than the average degree.

By building

The Θ(nd2) time and Θ(nd) space bound of the elimination process can be prohibitive
for huge graphs of large treedepth. Instead, the building process can be simulated in
O(min(m · α(n), nd)) time and O(m) space by maintaining components with the classic
union-find data structure (where α is the inverse Ackerman function [5] and the latter bound
follows from the fact that for each vertex, its pointer in the structure only goes up the tree).
We note that this also allows to check the correctness of a treedepth decomposition (by
replacing the assignment parent[y] := v with whatever the original parent was and checking
it is a descendant of v) in the same running time; this can be significantly faster than the
straightforward O(md) method when d is large.

The details are similar as in Algorithm 1, see Algorithm 2 in the full version. One change
is that g[v] does not represent the neighbourhood of a vertex after elimination; instead,
it represents the graph after contracting processed components. For a root vertex r of
a component C (starting from singleton components), g[r] stores the neighbours of that
component. For a non-root vertex g[v] is cleared: this guarantees that the total size never
increases. This also means the α part of the score is less meaningful; using α · |g[x]| below
would be the same as α · |NG(x)| (the original degree, since x is not processed yet). Instead
we use α ·max(|g[x]|, |g[v]|) as a slightly better heuristic. This does result in noticeably worse
results compared to the elimination version.

Moreover, we maintain a union-find structure with pointers ancestor[v]. We decided
not to balance unions by size or rank, instead of opting for a simpler and more natural
choice: ancestor[v] is always some ancestor in the treedepth decomposition computed so far
(ancestor[v] is ⊥ for unprocessed vertices) – we expect these to be shallow anyway.

Fast versions with lookahead

In Algorithm 2 the cost of computing g[v] is still significant (though much lower compared to
the elimination version). A super-fast version can be obtained by removing g[v]; however the
height of unprocessed vertices cannot be maintained exactly then. In that case the heap is
useless and we can simply do the building process with a fixed ordering by initial score.

IPEC 2020

https://arxiv.org/abs/2006.07050
https://arxiv.org/abs/2006.07050

36:4 PACE: Sallow: A Heuristic Algorithm for Treedepth Decompositions

However, we can significantly improve this super-fast version with a simple lookahead.
Instead of processing the last unprocessed vertex, we check the last ` unprocessed vertices,
compute what their height would be at this point, and choose the minimum height. For
` = 2 this is almost as fast as a DFS; for ` = 64 this is still faster than other versions and
results in significantly better depth than DFS, often giving a reasonable ballpark estimate.
Nevertheless we essentially always use the full version of Algorithm 2 as well, unless we know
that the super-fast estimates are good enough (e.g. in recursive runs where other branches
are already deeper).

A similar idea can be used to get the best of the elimination and building versions. The
problem with the building version is that we do not have access to the degree of a vertex
after eliminations, for evaluating the heuristic score. A work-around is to do this evaluation
exactly (by computing unions of neighbourhoods) for a few vertices close to the top of the
heap. In fact, a re-evaluation can only increase the score, pushing a vertex down, so it
suffices to re-evaluate and update the top vertex of the heap some constant ` number of times
(completely forgetting the computed unions of neighbourhoods afterwards). We can stop as
soon as the top vertex stays at the top after re-evaluation, so even high constants ` turn out
to be quite affordable. For ` = 1024, this results in an algorithm that seems just as good as
greedy by elimination, yet avoids the heavy memory usage in huge graphs of large treedepth.

3 Divide & Conquer

The other main component of the submitted algorithm is to divide & conquer: find a possibly
small balanced cut, remove it, recurse into connected components, and output a treedepth
decomposition with the cut arranged in a line above the recursively obtained decompositions.
To find balanced cuts we use the FlowCutter algorithm submitted for the PACE 2016
challenge by Ben Strasser. It is a crucial part here as well, but the idea and details are
already very well described in a paper by Hamman and Strasser [2] (see also some further
details in [4]).

A final feature is that of cutoffs. A bad cutoff d means we abandon any attempt that
won’t lead to a decomposition of depth strictly smaller than d. A good cutoff d means we
return as soon as it can output a decomposition of depth at most d. We use e.g. the best
know decomposition’s depth as a bad cutoff and the maximum depth in sibling branches
computed so far as a good cutoff.

Further ideas and details are deferred to the full version (arXiv:2006.07050).

References
1 Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded

decomposability – a survey. BIT Numerical Mathematics, 25(1):2–23, 1985. doi:10.1007/
BF01934985.

2 Michael Hamann and Ben Strasser. Graph bisection with pareto optimization. ACM Journal
of Experimental Algorithmics, 23, 2018. doi:10.1145/3173045.

3 Jaroslav Nešetřil and Patrice Ossona de Mendez. Bounded height trees and tree-depth. In
Sparsity, pages 115–144. Springer, 2012. doi:10.1007/978-3-642-27875-4_6.

4 Ben Strasser. Computing tree decompositions with flowcutter: PACE 2017 submission. CoRR,
abs/1709.08949, 2017. arXiv:1709.08949.

5 Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984. doi:10.1145/62.2160.

6 Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and
Sebastian Siebertz. On the generalised colouring numbers of graphs that exclude a fixed minor.
Eur. J. Comb., 66:129–144, 2017. doi:10.1016/j.ejc.2017.06.019.

https://arxiv.org/abs/2006.07050
https://doi.org/10.1007/BF01934985
https://doi.org/10.1007/BF01934985
https://doi.org/10.1145/3173045
https://doi.org/10.1007/978-3-642-27875-4_6
http://arxiv.org/abs/1709.08949
https://doi.org/10.1145/62.2160
https://doi.org/10.1016/j.ejc.2017.06.019

	Orderings and elimination
	Greedy algorithms
	Divide & Conquer

