The PACE 2020 Parameterized Algorithms and
Computational Experiments Challenge: Treedepth

Yukasz Kowalik

Institute of Informatics, University of Warsaw, Poland
kowalik@mimuw.edu.pl

Marcin Mucha
Institute of Informatics, University of Warsaw, Poland
mucha@mimuw.edu.pl

Wojciech Nadara

Institute of Informatics, University of Warsaw, Poland
w.nadara@mimuw.edu.pl

Marcin Pilipczuk
Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

Manuel Sorge
Institute of Informatics, University of Warsaw, Poland
manuel.sorge@mimuw.edu.pl

Piotr Wygocki
Institute of Informatics, University of Warsaw, Poland
p-wygocki@mimuw.edu.pl

—— Abstract

This year’s Parameterized Algorithms and Computational Experiments challenge (PACE 2020) was
devoted to the problem of computing the treedepth of a given graph. Altogether 51 participants
from 20 teams, 12 countries and 3 continents submitted their implementations to the competition.

In this report, we describe the setup of the challenge, the selection of benchmark instances and
the ranking of the participating teams. We also briefly discuss the approaches used in the submitted
solvers and the differences in their performance on our benchmark dataset.

2012 ACM Subject Classification Theory of computation — Graph algorithms analysis; Theory of
computation — Parameterized complexity and exact algorithms

Keywords and phrases computing treedepth, contest, implementation challenge, FPT
Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.37

Funding This work has been supported by the ERC Starting Grant TOTAL, Grant Agreement No
677651 (L.K., M.M), the ERC Starting Grant CUTACOMBS, Grant Agreement No 714704 (W.N.,
M.P., M.S.) and by the Polish National Science Center Grant PRELUDIM 2018/29/N/ST6,/00676
(P.W.). The publication of proceedings of PACE 2020 has been supported by the University of
Warsaw and the European Research Council (ERC) via European Union’s Horizon 2020 research
and innovation programme Grant Agreement no. 714704.

Acknowledgements The PACE challenge was supported by Networks [35] and University of Warsaw.
The prize money (4000€) was given through the generosity of Networks [35]. We are grateful to
the whole optil.io team, led by Szymon Wasik, and especially to Jan Badura for the fruitful
collaboration and for hosting the competition at optil.io on-line judge system. Special thanks go
to Felix Reidl, who designed the eye-catching PACE 2020 poster.

© Lukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and Piotr
5v Wygocki;

licensed under Creative Commons License CC-BY
15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 37; pp. 37:1-37:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


https://orcid.org/0000-0002-7546-2969
mailto:kowalik@mimuw.edu.pl
mailto:mucha@mimuw.edu.pl
mailto:w.nadara@mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
mailto:manuel.sorge@mimuw.edu.pl
mailto:p.wygocki@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.IPEC.2020.37
https://www.optil.io
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2

PACE 2020

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) is an
annually held algorithm engineering competition conceived in Fall 2015 to deepen the
relationship between parameterized algorithms and practice.

So far, four iterations of PACE were organized. In each iteration, one or two NP-hard
computational problems were chosen and the goal was to prepare an implementation which is
able to solve (either exactly or approximately) challenging instances from various application
domains in a decent time. The problems included treewidth [12,13], minimum feedback vertex
set [12], minimum fill-in [13], Steiner tree [7], vertex cover [16], and hypertree width [16].
These challenges have a significant impact on the research community. Indeed, according
to Google Scholar previous PACE reports are cited more than 90 times, in particular by
research articles based on concrete implementations competing in previous editions of PACE,
published in conferences like ALENEX, SEA, WADS, and ESA (where the best paper award
was given in 2017 to a PACE-related work of H. Tamaki [50]).

In this article, we report on the fifth iteration of PACE. The topic of PACE 2020 was
computing the treedepth of a graph (see Section 2 for a definition). The challenge was
partitioned into two tracks. In the exact track, the implementations were supposed to return
only optimal solutions and the goal was to maximize the number of solved instances (with
total computation time as a tiebreaker). In the heuristic track, the implementations were
supposed to solve larger instances than in the exact track, but non-optimal solutions were
allowed and the goal was to provide solutions which are, on average, better than the solution
of others.

The PACE 2020 challenge was announced on 25th October 2019. On December 16th
public instances were made available and beginning from 13th March 2020 it was possible
to test solutions on the public instances via the optil.io platform, which provided also a
provisional ranking. The final version of the submissions was due on 1st June 2020. The
results were announced on 24th June 2020. The award ceremony is going to take place during
the International Symposium on Parameterized and Exact Computation (IPEC 2020) which
was supposed to take place in Hong Kong, but due to the COVID-19 pandemic will be held
online.

For the first time, short descriptions of the top five solvers in each track are contained as
standalone documents in the proceedings of IPEC. Some of them will likely inspire or evolve
into research papers. Indeed, at the moment of writing this report, we were already able to
identify two such cases, see [53] and [62].

2 Computing Treedepth: Theory and Practice

Treedepth plays a major role in structural graph theory, in particular, the theory of sparse
graph classes [31-33]. It is more restrictive than its more well-known counterparts treewidth
and pathwidth, but still graphs of bounded treedepth form quite a rich family of graphs.

Definition

Remarkably, treedepth admits a number of equivalent definitions. Probably the best known
is the one using embeddings into a rooted forest. A rooted forest is a graph whose every
connected component is a tree with a designated root and the depth of a rooted forest is the
maximum number of vertices on a root-to-leaf path. For a graph G, a treedepth decomposition
of G consists of a rooted forest F' and a bijection ¢ : V(G) — V(F) such that for every
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Figure 1 The thick gray tree on the right is an exemplary treedepth decomposition (aka elimination
tree) of the graph on the left. Note that all graph edges go bottom-up in the tree.

w € E(G), ¢(u) and ¢(v) are in descendant-ancestor relation in F. The depth of a treedepth
decomposition (F, ¢) is the depth of F' and the treedepth of a graph G, denoted td(G), is the
minimum possible depth of its treedepth decomposition.

A basic but important observation about treedepth is that if (F,¢) is a treedepth
decomposition of a graph G and T is a tree in F with root r, then removing ¢~!(r) from
G disconnects vertices whose images under ¢ are in different subtrees of T' rooted in the
children of r. This leads to the following equivalent recursive definition of treedepth:

0 if V(G) =19,
td(G) = ¢ 14+ min,ey () td(G — {v}) if G is connected,
maxcece(a) td(C) if G is disconnected.

Here, cc(G) denotes the family of connected components of G.

The above definition can be also interpreted as a game between two players, say Breaker
and Chooser. The arena of the game is an induced subgraph of the input graph G, initially
the whole graph G. At each round, Breaker first deletes a vertex of the current graph,
and then Chooser restricts the arena to one of the connected components of the current
graph. The game ends when the current graph becomes empty; Breaker wants to end the

game in the minimum number of rounds, and Chooser in the maximum number of rounds.

It is immediate from the above recursive definition of treedepth that, if both players play
optimally, the game will end in exactly td(G) rounds.

Because of the above definition and the intuition of treedepth as an “elimination game”,
where one can pay 1 to delete a vertex from the graph and then recurse independently
over connected components, treedepth decompositions are sometimes called also elimination
forests (or elimination trees if G is not connected).

Two related equivalent definitions of treedepth come from the theory of sparse graph
classes. Let G be a graph. A function a : V(G) — N is a centered coloring if for every
connected subgraph H of G, H contains a vertex of unique color, i.e., there is ¢ € N with
la=1(i) N V(H)| = 1. Furthermore, « is a vertez ranking if this unique color i is actually
equal to max{a(v) | v € V(H)}. In the context of a centered coloring, the values a(v) are
called colors and in the context of a vertex ranking, they are called ranks. It is not difficult to
see that the minimum number of colors used for a centered coloring of G and the minimum
number of ranks used for a vertex ranking are both equal and equal to the treedepth of G.

Algorithms

From the theory point of view, the complexity of computing or approximating treedepth is
much less understood than for treewidth.
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The recursive definition of treedepth can be also interpreted as a recipe for a dynamic
programming algorithm computing the treedepth of G. This yields a very simple 2" - n©(1)-
time algorithm.

Reidl et al. [37] described a dynamic programming algorithm that, given a graph G and a
tree decomposition of G' of width ¢, finds td(G) in time 20¢4(G)1)pO1)  One can pipeline this
algorithm with an approximation algorithm for treewidth, say constant-factor approximation
algorithm running in time 29w (@)pOM) [38] where tw(G) denotes the treewidth of G,
obtaining an exact algorithm running in time 2€td(@t(G)pO0() " This is the state-of-the-art
as far as parameterized exact algorithms for treedepth (in theory) are concerned.

For practical approaches to computing treedepth exactly, we mention a work by Ganian,
Lodha, Ordyniak, and Szeider [18] that experimented with encoding computing treedepth as
SAT instances and using SAT solvers.

For approximation, a folklore observation (see [26] for a full proof) is that given a graph
G and a tree decomposition of G of width ¢ with tree T', one can in polynomial time find a
treedepth decomposition of G of depth at most (¢ + 1)td(T). Since every tree decomposition
of G can be simplified to use O(|V(G)|) nodes in its tree and every tree T has treedepth
td(T') < logy(|V(T)| + 1) (which is easy to deduce from the recursive formula mentioned
earlier), we obtain

td(G) < (tw(G) +1) - O(logy (V(G)])-

Combining the above with known treewidth approximation algorithms, one can obtain a
polynomial-time O(tw(G)? log tw(G))-approximation for treedepth. The study of forbidden
structures characterizations for treedepth led to an improved approximation guarantee of
O(tw(@) log®? tw(@)) [9,26]. Obtaining a constant-factor approximation for treedepth
running in time say 2°t4(G)pOM) remains a challenging open problem.

3 The challenge setup

For each track, the PC selected 200 instances. The instances in each track were ordered
lexicographically by non-decreasing (n, m) where n is the number of vertices and m is the
number of edges. The odd-numbered instances were known to the participants five months
before the submission deadline. The even-numbered instances were used to create the official
ranking and they were secret until the results of the challenge were announced.

Both in the testing phase and for the final evaluation, the implementations were run for
30 minutes per instance using the optil.io on-line judge system [57]. For each instance,
the available memory was limited to 8 GB.

In the exact track, the contestants were ranked by the number of instances solved and
the total time required for the solved instances as a tiebreaker. Submissions for the exact
track were supposed to be based on a provably optimal algorithm, although it was not a
formal requirement. Instead, if a submission halted on some instance within the allotted time
and output a solution that was worse than the best-known solution (from the PC’s solver,
other participants, or the way in which the instance was generated) then the submission was
disqualified.

In the heuristic track, the goal was to maximize the total score and the score for a single
instance for an implementation which returned a result of value d was determined by the
formula 100 - min /d, where min is the best (though not necessarily optimal) value obtained
by any participating team. The reasons for selecting the formula were a) it does not award
minor (say, additive) improvements too much (as compared to, e.g., ranking-based methods)
and b) the score is within (0, 100] always, so one very bad result does not make the submission
to lose (as it could happen, say, for the inverse d/ min).
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Figure 2 Distribution of origin categories of the test instances (both public and private).
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Figure 3 Distribution of origin categories, sizes, densities, and (a bound on) treedepth of the
private test instances in the heuristic track. Colors correspond to the origin categories as in Figure 2.

Similarly as for previous editions of PACE, we required that the source code must be
published in a public repository and available under an open source license. Following
PACE 2019 we also allowed for external dependencies such as ILP, SAT, and treewidth
solvers, provided that they were also open source.

4 Selection of the instances

All public and private instances used for PACE 2020 are available at a public repository at
the address https://github.com/lkowalik/Treedepth-PACE-2020-instances. The set
of collected instances contains graphs coming from various applications and graphs generated
using a few generators. They can be divided into the following categories (see also Figure 2
for the distribution):

= biology: Graphs coming from applications in biology, biochemistry, and medicine.

Downloaded from BioGRID [42], SNAP [63], ginsim.org [30], KEGG [24], STRING [48],
and network repository [34].
= computer science: Control-flow graphs of C functions and graphs originating from

register allocation for variables in real codes, created for DIMACS Coloring Challenge
1992-1993.
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Figure 4 Distribution of sizes in the instance sets.

= generated: Graphs obtained from Python’s networkx generators: expanders, grids,
random cubic graphs, Waxman graphs (random geometric graphs).

= infrastructure: Mostly road graphs obtained from open street maps; also power grid
networks (from network repository [34]) and public transport graphs contributed by
Johannes Fichte for PACE 2016.

= named: Small named graphs like the Petersen graph, the flower snark, etc., originating
from SageMath.

= planted: Random trees and cycles of cliques polluted with random edges that go bottom-
up in the optimal treedepth decomposition. These instances were needed for testing
correctness of treedepth solvers, because the generator was able to compute the optimum
treedepth in polynomial time.

= social: Social networks originating from interactions between people, animals, or fictional
characters.

Figures 4, 3, and 5 show the distribution of instance sizes and other characteristics
depending on track.

5 Participants

There were 15 and 10 teams that officially submitted a solution to the exact and heuristic
track, respectively. Five teams participated in both tracks, which gives 20 distinct teams.
However, there were 38 more optil.io users that submitted a solution to the server during
the testing phase (but none of them would be ranked in the top five solves for any track).
The 20 teams represented three continents and 12 countries (see Table 1).

6 Exact Track

The results of the Exact Track are as follows.

1. James Trimble (University of Glasgow) solved 78 instances in 6502.97 seconds
github.com/jamestrimble/pace2020-treedepth-solvers [54,55]

2. Tuukka Korhonen (University of Helsinki) solved 77 instances in 5599.64 seconds
github.com/Laakeri/pace2020-treedepth-exact [28,29]
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Table 1 A sorted table of the 20 participating teams’ countries.

Country Number of teams

Germany
Netherlands
Japan

United Kingdom
Brazil

Finland

France

India

Kosovo

Poland

Russia

=R = = R = = =N N R

Ukraine

Ruben Brokkelkamp, Mees de Vries, Raymond van Veneti€¢, Jan Westerdiep (Centrum
Wiskunde & Informatica (CWI), University of Amsterdam, Korteweg-de Vries Institute
for Mathematics, University of Amsterdam) solved 72 instances in 3149.56 seconds
github.com/mjdv/tdULL [8,11]

Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienobst (Institute for Theor-
etical Computer Science at Universitéit zu Liibeck, Institute for IT Security at Universitét
zu Liibeck, Institut fiir Epidemiologie at Universitéit Kiel) solved 72 instances in 4267.56
seconds

github.com/maxbannach/PID-Star [2,4]

. Dejun Mao, Vorapong Suppakitpaisarn, Zijian Xu (The University of Tokyo) solved 68

instances in 8794.42 seconds

github.com/xuzijian629/pace2020 [60,61]

Narek Bojikian, Alexander van der Grinten, Falko Hegerfeld, Laurence Alec Kluge, Stefan
Kratsch (Humboldt-Universitédt zu Berlin) solved 64 instances in 4514.95 seconds
github.com/PACE-Challenge-Hu-Berlin/PACE-Challenge-2020 [6]

Tom van der Zanden (Maastricht University) solved 44 instances in 6304.91 seconds
github.com/TomvdZanden/BasicTreedepthSolver

Dmitry Sayutin (ITMO University) solved 37 instances in 11465.50 seconds
github.com/cdkrot/pace2020-sat-dp-solver [39]

Philip de Bruin, Erik Jan van Leeuwen (Utrecht University) solved 27 instances in 4470.34
seconds

github.com/PhiliPdB/treedepth-exact [10]

Jun Kawahara, Toshiki Saitoh, Akira Suzuki, Toshiyuki Takase, Katsuhisa Yamanaka
(Kyoto University, Kyushu Institute of Technology, Tohoku University, Iwate University)
solved 6 instances in 198.43 seconds

github.com/toshimaru0123/pace-2020/ [25]

Blend Arifaj, Ardit Baloku, Blend Berisha, Edon Gashi, Endrit Méziu, Kadri Sylejmani
(University of Prishtina) solved 0 instances in 0.00 seconds
github.com/ksylejmani/treedepth-iterated-local-search
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The following teams submitted a solver, but, as described in the rules, it was disqualified
because of at least one suboptimal solution. The number of solved instances reported below
refers to the instances for which neither the PC nor any of the submitted solvers were able
to produce a better solution.

Miguel Bosch Calvo, Giorgia Carranza Tejada, Dominik Jeurissen, Steven Kelk, Zhuoer
Ma, Alexander Reisach, Borislav Slavchev (Maastricht University) solved 79 instances in
138250.66 seconds

github.com/CommanderCero/Treedepth-Pace-2020

Sylwester Swat (Poznann University Of Technology) solved 74 instances in 128578.34
seconds

github.com/swacisko/pace-2020 [46]

Marcelo Garlet Milani (Technische Universitidt Berlin) solved 40 instances in 1469.06
seconds

gitlab.tu-berlin.de/mgmillanil/treedepth-pace20 [19]

Oleg Evseev, Igor Kozin, Alexander Zemlyanskiy (Zaporizhzhya National University)
solved 8 instances in 241.10 seconds

github.com/oevseev97/pace-2020 [17]

6.1 Details of the solvers

The participants in the exact track used approaches that broadly fell into two categories:
bottom-up and top-down.

Bottom-up approaches

In the bottom-up approach, the participants tried to find elimination trees for depths
k=1,2,3,... until they succeeded.

The bottom-up approach is to build minimum-depth elimination trees for induced sub-
graphs of the input graph iteratively from smaller depths to larger depths. Herein, a data
structure keeps track of all the vertex sets S for which an elimination tree of G[S] has been
computed already. Then, in iterations over the data structure it is tested for which of the
subgraphs in the data structure their elimination trees can be combined into an elimination
tree of appropriate depth for the union of the subgraphs.

The bottom-up approach is akin to the positive-instance driven approach to dynamic pro-
gramming [52]. Therein the goal is to avoid unnecessary work that is done in straightforward
dynamic programs by carrying the dynamic program out in a forward-looking way. In the
usual backward-looking approach we define a signature for subsolutions and we iterate over
all signatures that are possible and, for each of them, check whether it is realized by some
subsolution, by looking at signatures that are smaller in some well-defined sense and have
been computed earlier. In the positive-instance driven way, instead, we directly generate
from all the subsolutions that have been generated so far subsolutions which are larger in a
well-defined sense. This intuitively avoids checking many signatures if there are only a few
possible subsolutions.

The bottom-up approach was used by Trimble (1st place), Bannach et al. (4), Bojikian
et al. (6), and van der Zanden (7). All the teams used a number of tricks to speed-up
the basic approach and it seems that the winner collected most of them. Perhaps most
obviously, many teams used known preprocessing rules [18,27]. Both Trimble and Bannach
et al. observed that the algorithm spends more and more time as k (the upper bound on
the depth) grows, simply because then there are more partial solutions to consider. Both
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teams came up with the following remedy. First, they run a fast heuristic that computes a
treedepth decomposition of some depth ¢. Then the original exact algorithm follows, with
k=1,...,t — 1. The hope is that the optimum depth is actually ¢t and then we save on
the (dominating) time needed for the last iteration. Other speed-ups involved pruning some
subsolutions to consider, for example using a domination rule of Ganian et al. [18, Lemma
4.1], or the observation that for a subsolution X all neighbors N(X) must be ancestors in
the final elimination tree, so we can discard it when its treedepth plus |N(X)| exceeds the
target bound k.

Top-down approaches

In the top-down approach, we try to build an optimal elimination tree from the root to the
leaves. In this approach, it is useful to observe that, barring the trivial case of cliques, the
top vertices of the elimination tree can be chosen to be an inclusion-wise minimal separator
of the input graph [14]. Hence, a natural idea is to enumerate all such separators, branch
into all possibilities of taking such a separator for the top vertices of the elimination tree,
and recurse into doing the same for each remaining connected component.

The top-down approach was taken by Korhonen (2nd place), Brokkelkamp et al. (3), Mao
et al. (5), de Bruin and van Leeuwen (9) and Kawahara et al. (10), though the latter two
teams did not use the minimal separators.

Generating minimal separators turned out to be a quite time consuming part of the
approach, so different teams used different methods to cope with this issue. Brokkelkamp
et al. used the standard minimal separators listing algorithm of Berry et al. [5]. Korhonen
used an approach by Tamaki [51]. His algorithm solves the decision problem beginning with
high upper bound on the treedepth k, e.g., k = n, and then improves k until possible. For
enumerating minimal separators, first a fast heuristic algorithm [51, Section 4.3] is used,
which may not find all the separators (but usually does so). It may happen that this already
results in an improved upper bound for the treedepth. Otherwise, the algorithm is run for the
second time, this time using a slower, but exact algorithm [51, Section 4.2] for the separator
enumeration. Finally, Mao et al. used the space-efficient minimal separator listing algorithm
of Takata [49]. Moreover, they skip separators of a size larger than the treewidth of the
current graph, since they conjecture that this does not change the resulting treedepth. (Note
that the correctness of their algorithm relies on this conjecture.)

Most of the top-down solvers used memoization, i.e., storing upper or lower bounds for
subproblems to avoid repeated computation.

Another common technique used by all best solvers using the top-down approach is
branch-and-bound, i.e., pruning the branching tree by using lower and upper bounds for
the treedepth of subproblems. The combined arsenal of lower bound techniques includes
memoized lower bounds for subgraphs, finding a long path or cycle, clique minors, and
degeneracy. Korhonen used an interesting upper bound technique. It begins by finding
a chordal completion of the graph. A fast heuristic upper bound algorithm is run on the
resulting graph, in particular, utilizing the fact that chordal graphs have only a linear number
of minimal separators.

Surprisingly, at least according to the submitted descriptions, it seems that only Korhonen
applies preprocessing. Namely, he compresses induced subtrees connected to the rest of the
graph by a single vertex (using the linear time algorithm for trees of Schéffer [40]) and also
generalizes the shared neighborhood rule of Kobayashi and Tamaki [27, Lemma 6].
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Table 2 Differences between the top five teams in the exact track (columns contain instances).

Name 068 074 084 088 090 094 108 112 120 148 150 174 180 182 186
Trimble v v v v v v v Y v v v v
Korhonen v v v/ v v v v vV v
Brokkelkamp et al. v v v v v Y
Bannach et al. v v v v v v
Mao et al. v v
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Figure 5 Instances of the exact track: number of edges vs. vertices (left) and (an upper bound
on) treedepth vs. vertices (right). Crosses denote instances that were not solved by any team.

Other approaches

The solver of Sayutin used the standard O*(2") dynamic programming for small n and the
SAT-encoding of Ganian et al. [18]. The solver of Milani implemented the 20 (td(G)tw(G),O)
algorithm using dynamic programming over tree decomposition [37] of Reidl et al. The
disqualified solvers of Calvo et al. and Swat used heuristic methods (they were written mainly
for the heuristic track).

6.1.1 Summary

The top ranked solvers used an impressive number of new and existing ideas. It should be
noted that, when properly optimized, both bottom-up and top-down approaches seem to
give similar results. Indeed, the solver of Trimble solved just one instance more than the
one of Korhonen. This is in strong contrast with exact treewidth computation, where the
bottom-up positive-instance driven approach outperforms other known methods (see [13,52]).

6.2 A closer look at the results of the exact track

Altogether 81 out of the 100 private instances were solved by the participants, which means
that the winning team has not solved three instances solved by others. Table 2 shows the
differences between the top five teams in the exact track (a common subset of 66 tests was
solved by all of them). The participants managed to solve all the tests with less than 80
vertices. The smallest treedepth of an unsolved instance was at most 17 (a 170-vertex road
network), i.e., we computed an upper bound of 17 by a heuristic solver. The largest treedepth
of a solved instance was 83 (the 100-vertex Hall-Janko graph). The plots in Figure 5 present
solved and unsolved instances divided into categories.
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Figure 6 Running times of the five top solvers in the exact track. For each solver, all the instances

solved by it were sorted by the running time.

It might be also interesting to look at the running times of the solvers. The plot in

Figure 6 suggests that the top solvers needed substantial time only for a small fraction of
solved instances.

7

Heuristic Track

The results of the Heuristic Track are as follows.

10.

. Sylwester Swat (Poznari University Of Technology) scored 9710.94 points

github.com/swacisko/pace-2020 [46,47]

. Ben Strasser scored 9684.10 points

github.com/ben-strasser/flow-cutter-pace20 [44,45]

Marcin Wrochna (University of Oxford) scored 9591.21 points
github.com/marcinwrochna/sallow [58,59]

James Trimble (University of Glasgow) scored 9447.96 points
github.com/jamestrimble/pace2020-treedepth-solvers [54,56]

. Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienobst (Institute for Theor-

etical Computer Science at Universitéit zu Liibeck, Institute for IT Security at Universitét
zu Liibeck, Institut fiir Epidemiologie at Universitit Kiel) scored 8935.63 points
github.com/maxbannach/Fluid [1,3]

Stéphane Grandcolas (LIS) scored 8880.58 points
gitlab.lis-lab.fr/stephane.grandcolas/treedepth-sga/-/tree/master/pace-2020 [22]
Miguel Bosch Calvo, Giorgia Carranza Tejada, Dominik Jeurissen, Steven Kelk, Zhuoer
Ma, Alexander Reisach, Borislav Slavchev (Maastricht University) scored 6320.19 points
github.com/CommanderCero/Treedepth-Pace-2020

Gabriel Duarte, Uéverton Souza, Samuel Silva (Fluminense Federal University) scored
5068.50 points

github.com/SamuelEduardoSilva/pace-2020 [15]

Aman Singal (Indian Institute of Technology Dharwad) scored 4254.87 points
github.com/AmanSingal/pace-2020-submissionl [41]

Oleg Evseev, Igor Kozin, Alexander Zemlyanskiy (Zaporizhzhya National University)
scored 1071.72 points

github.com/oevseev97/pace-2020 [17]
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7.1 Details of the solvers

In the heuristic track, similarly as in the exact track, it was not sufficient to come up with
a single good idea. All the top solvers used a portfolio of many approaches. This was also
forced by the test dataset in which number of vertices varied from 100 to 2000000 and
treedepth ranged from 7 to up to 150000. Clearly, in very large graphs the time limit allows
only for simple and fast heuristics, while in small and medium instances one can try also
more time consuming and possibly more meaningful computation. In contrast to the exact
track, here one can try several approaches and output the best result, and this property
was frequently used. Again, the most natural classification of methods is bottom-up and
top-down processing.

Bottom-up heuristics

The basic scheme of a bottom-up heuristic is to find a so-called elimination order, as follows.
Pick a vertex v in G (which minimizes some heuristic score), remove v from the graph
and connect its remaining neighbors into a clique, obtaining graph G’. Put v in the end
of the ordering and find the rest of the ordering recursively. In the resulting treedepth
decomposition, the neighbor of v in G’ which is the latest in the order becomes v’s parent.

In the classic application of the above strategy [21] we always choose a vertex v of
minimum degree in the current graph. In the context of treedepth, this is a meaningful
measure, because it is a lower bound on the number of ancestors of v. However, one should
also take into account the height of v, defined as the maximum of the heights of its eliminated
neighbors plus 1, which represents the depth of the subtree rooted at v if it is eliminated at
the given moment. Strasser (place 2) and Wrochna (3) used a linear combination of these
two values as the vertex score. Wrochna designed also a few increasingly faster and more
approximate versions of this approach.

Top-down heuristics

Treedepth can be defined by removing one vertex and recursing to connected components
of what remained. However, it is a pretty rare case that by removing just one vertex we
get a nice partition into many connected components. If we “unravel” this recursion we
may come to a conclusion that it is good to think about removing at once whole sets of
vertices that are in some way good separators. Ideally, we would like to drive our search of
separators by breaking the graph into components with smaller treedepth, but we do not
have the desired knowledge about the treedepth of subgraphs, so we need to measure the
complexity of subproblems in a different way, for example, by the number of their vertices
or edges or some other measure that is easily computed. In theory, approaches driven by
an assumption that the treedepth and, say, the number of vertices are closely related can
be easily fooled by some hand-crafted instances, but our test dataset was not constructed
in such a way, as it contained mostly instances from real-life applications. This motivates
an approach where we search for some balanced vertex cuts in our heuristic solver. More
precisely, we would like these cuts to be both relatively small and partitioning our graph into
components which are significantly smaller than the original graph. This general approach is
usually called nested dissection [20].

The participants used various approaches for extracting balanced separators. The most
common approach was FlowCutter [23,43], used in particular by all three top solvers. It
uses a maximum flow algorithm to find a minimum cut, and then refines the balance of the
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Table 3 Top five solvers. The first column is the number of instances solved not worse than any
other team. The second column is the number of instances solved better than any other team.

Name The best (with ties) Single best (no ties)
Swat 51 22
Strasser 47 8
Wrochna 46 7
Trimble 32 1
Bannach et al. 10 0

cut by subsequent flow computations. As a result it identifies a family of cuts with good
trade-offs between the size of the cut and its balance. Frequently, the teams used more than
one strategy to find separators. For example the winning solver of Swat uses four more
ad-hoc separator-finding heuristics, based on articulation points, BFS, and flows. Strasser (2)
proposes a local-search heuristic that starts from a cut and improves its size and balance step
by step. Bannach et al. (5) use two strategies: an ad-hoc greedy algorithm and a community
detection heuristic [36].

The solver of Strasser detects whether the graph passed to the recursive procedure is a
clique or a tree and, if so, computes the optimal treedepth (for trees using Schiffer [40]).

Most of the teams just run the whole algorithm from scratch several times, every time
using a different balanced separator approach, or different parameters, or a different random
seed. However, the winning solver of Swat uses deviating scheme. It always computes many
separators, next chooses five of them using a separator scoring function, then attempts to
further improve each of the five separators, to finally choose the best of them and recurse.

We also note that Calvo et al. (7), Duarte et al. (8), and Singal (9) used the top-down
approach based on removing single vertices (instead of separators), for example, with high
centrality measures. However, there was a significant gap between the scores of these solvers
and approaches that applied removing separators (1-6), at least as one of the options in their
portfolio.

Preprocessing and postprocessing

A Dbit surprisingly, very few teams used preprocessing. However, Swat (1), Trimble (4), and
Grandcolas (6) apply post-processing to see if the resulting tree can be easily improved.

7.2 A closer look at the results of the heuristic track

A closer look at the results obtained by the teams at particular tests shows that there was no
single team that dominated the others, in particular each of the top four teams has solved at
least one instance better than all the others (see Table 3). However, the depths returned by
the winning solver of Swat were always within the ratio of 1.13 to the output of any other
solver, see Figures 7 and 8. (In Table 3 and Figures 7 and 8 we take into account all the
submissions to optil.io, including the teams who have not made an official submission
to PACE.)
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Figure 7 Comparison of the five top solvers in the heuristic track: how many tests they solved
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Figure 8 Comparison of the three top solvers in the heuristic track. A bar for team « for test 4
represents the ratio of the depth of the elimination tree for instance i found by a to the best depth
found by of any other team for i. In particular no bar means that the team has found the minimum.
The gray curve represents size of the tests (in the number of vertices), in the logarithmic scale.

8 PACE organization

The Program Committee of PACE 2020 consisted of Lukasz Kowalik (chair), Marcin Mucha,
Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge and Piotr Wygocki, all from University of
Warsaw. During the organization of PACE 2020 the Steering Committee was as follows.

Edouard Bonnet ENS Lyon

Holger Dell Saarland Informatics Campus
Johannes Fichte Technische Universitat Dresden
Markus Hecher Technische Universitdt Wien

Bart M. P. Jansen (chair) Eindhoven University of Technology
Petteri Kaski Aalto University

Christian Komusiewicz Philipps-Universitdt Marburg
Florian Sikora Paris-Dauphine University

In October 2020, Lukasz Kowalik, Marcin Pilipczuk, and Manuel Sorge have joined the SC,
while Christian Komusiewicz, Florian Sikora, and Petteri Kaski left.
The Program Committee of PACE 2021 will be chaired by André Nichterlein (TU Berlin).
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9

Conclusion

We thank all the participants for their impressive work and look forward to the next PACE.

We welcome anyone who is interested to add their name to the mailing list on the

website https://pacechallenge.org/ to receive PACE updates and join the discussion. The
updates appear also at Twitter at https://twitter.com/pace_challenge. In particular,
plans for PACE 2021 will be posted there.
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