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Abstract
In this paper, we consider the parameterized complexity of the following scheduling problem. We
must schedule a number of jobs on m machines, where each job has unit length, and the graph
of precedence constraints consists of a set of chains. Each precedence constraint is labelled with
an integer that denotes the exact (or minimum) delay between the jobs. We study different cases;
delays can be given in unary and in binary, and the case that we have a single machine is discussed
separately. We consider the complexity of this problem parameterized by the number of chains, and
by the thickness of the instance, which is the maximum number of chains whose intervals between
release date and deadline overlap.

We show that this scheduling problem with exact delays in unary is W [t]-hard for all t, when
parameterized by the thickness, even when we have a single machine (m = 1). When parameterized
by the number of chains, this problem is W [1]-complete when we have a single or a constant number
of machines, and W [2]-complete when the number of machines is a variable. The problem with
minimum delays, given in unary, parameterized by the number of chains (and as a simple corollary,
also when parameterized by the thickness) is W [1]-hard for a single or a constant number of machines,
and W [2]-hard when the number of machines is variable.

With a dynamic programming algorithm, one can show membership in XP for exact and
minimum delays in unary, for any number of machines, when parameterized by thickness or number
of chains. For a single machine, with exact delays in binary, parameterized by the number of chains,
membership in XP can be shown with branching and solving a system of difference constraints. For
all other cases for delays in binary, membership in XP is open.
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1 Introduction

In this paper, we study a problem in the field of parameterized complexity of scheduling
problems. Here, we look at scheduling jobs with precedence constraints with exact or
minimum delays, and assume that all jobs have unit length. We study one of the simplest
types of precedence constraint graphs: we assume that the precedences form a collection of
disjoint chains. Chains have a release date and deadline. It is not hard to see (by a simple
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4:2 Parameterized Complexity of Scheduling Chains of Jobs with Delays

reduction from 3-Partition) that this problem is NP-hard, even when all delays are 0. In
this paper, we study the parameterized complexity of the problem, and look at two different
parameters: the number of chains, and the thickness of the instance – that is, the maximum
number of chains that have overlapping intervals from release time to deadline. We look at
different variants: a constraint gives an exact bound or a lower bound on the delay between
successive jobs; we can have one, a constant, or a variable number of machines, and the
delays can be encoded in unary or binary. If delays are given in unary, then each of the
studied variants belongs to XP, and is hard for W [1] (or classes higher in the W -hierarchy).
For one variation (see below), we also show membership in XP when delays are given in
binary. We call the studied problems Chain Scheduling with Exact Delays and Chain
Scheduling with Minimum Delays, for details see Section 2.

1.1 Related literature
Looking at variants of scheduling problems with special attention to parameters (like the
number of available machines) is a common approach in the rich field of study of scheduling
problems. Studying such parameterizations using techniques and terminology from the field
of parameterized algorithms and complexity was pioneered in 1995 [3], but recently receives
growing attention, e.g. [2, 11, 14].

The scheduling of chains of jobs (without delays) was studied by Woeginger [17] and
Bruckner [5], who gave respectively a 2-approximation algorithm, and a linear time algorithm
for two machines. General precedence graphs with delays between jobs were studied already
in 1992 by Wikum et al. [16]; this was followed by a large body of literature, studying
different variations and approaches, including theoretical and experimental studies.

Cieliebak et al. [6] considered scheduling jobs with release dates and deadlines, under
several parameterizations, one being the height, which is similar to the parameter called
thickness in this paper – the height of an instance is the maximum number of jobs that have
mutually overlapping intervals from release date to deadline. Several additional, and stronger
results on this problem were obtained by van Bevern et al. [15], including a proof that for
each fixed looseness λ > 0, the problem to schedule jobs with release dates and deadlines
on a given number of machines is W [1]-hard, where λ is the maximum ratio between the
difference of release date and deadline and the duration of jobs. This latter result is related
to ours: where we have W [t]-hardness for all t or W [2]-hardness for chains of jobs with exact
or minimum delays, respectively, parameterized by thickness, the result by van Bevern et
al. [15] gives W [1]-hardness for single jobs, i.e., chains of size one.

A special case of chains of jobs is the case where we have coupled jobs, i.e., each chain
consists of two jobs. Bessy and Giroudeau [2] consider the parameterized complexity of
scheduled jobs with compatibility constraints, where jobs can be executed in the idle time of
another pair of coupled jobs when they are compatible.

A survey of parameterized algorithms for scheduling with a number of interesting open
problems was given by Mnich and van Bevern [13].

1.2 Our results
In this paper, we give a number of hardness results, which are summarized in Table 1. All
variants are already hard when the (exact or minimum) delays are given in unary. We also
give the following algorithmic results:

With a dynamic programming algorithm, one can show that the Chain Scheduling
with Exact Delays and Chain Scheduling with Minimum Delays belong to XP,
when delays are given in unary, and parameterized by either thickness or number of
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Table 1 Hardness results for different variants of the problem. Exact and minimum delays are
given in unary. (*) = W [1]-hardness follows from [15].

parameter exact delays minimum delays
Single machine thickness W [t]-hard for all t W [1]-hard

chains W [1]-complete W [1]-hard
Constant number thickness W [t]-hard for all t W [1]-hard
of machines chains W [1]-complete W [1]-hard
Variable number thickness W [t]-hard for all t (*) W [2]-hard (*)
of machines chains W [2]-complete W [2]-hard

chains, for any number of machines. Our algorithm is similar to an algorithm by Cieliebak
et al. [6], for a related problem – they consider the problem where each job has a release
date and deadline, and show that this problem belongs to XP when we use the maximum
number of jobs whose intervals between release date and deadline mutually overlap.
Combining branching with solving a set of difference constraints shows XP-membership
of Chain Scheduling with Exact Delays when parameterized by the number of
chains, for the case of one machine, when delays are given in binary.

For all other cases, the membership in XP when delays are given in binary is open.

1.3 Organization of this paper
In Section 2, we give a number of preliminary definitions. Section 3 gives hardness proofs
for Chain Scheduling with Exact Delays when parameterized by the thickness. The
complexity of Chain Scheduling with Exact Delays parameterized by the number of
chains is established in Section 4; a relatively simple modification then gives hardness for
the corresponding problems with minimum delays. Section 5 gives our algorithmic results
(membership in XP). Some conclusions are given in Section 6.

2 Preliminaries

We first describe the problems we study in more details. We have a number of identical
machines m. In the paper, we study separately the cases that we have a single machine
(m = 1), the number of machines is some fixed constant, or the number of machines is
variable.

On these machines, we must schedule n jobs. Each job has unit length. On the set of
jobs, we have a collection of precedence constraints. Each precedence constraint is an ordered
pair of jobs (j, j′): it tells that job j′ cannot be started before job j is completed. We say
that j is a direct predecessor of j′, and j is a predecessor of j′ if there is a directed path from
j to j′ in the graph formed by the precedence constraints; j′ then is a successor of j.

The precedence constraints have associated with them a delay, denoted lj,j′ : each delay is
a non-negative integer. We study two variations of the problem: exact delays and minimum
delays. If we consider exact (resp. minimum) delays, then if a constraint (j, j′) has delay
lj,j′ , then job j′ must be started exactly (resp. at least) lj,j′ time steps after job j was
finished. That is: when job j starts at time t, then job j′ starts at time exactly (resp. at
least) t+ lj,j′ + 1. (Note that jobs run directly after each other, only if the delay is 0.) It is
allowed to schedule a job on a different machine than its predecessor – thus, we do not need
to specify on which machine a job is running, but only ensure that at each time step, the
number of scheduled jobs is at most the number of available machines.

IPEC 2020



4:4 Parameterized Complexity of Scheduling Chains of Jobs with Delays

In this paper, we consider the case that the graph of the precedence constraints consists
of a set of chains. I.e., each job has at most one direct predecessor and at most one direct
successor. Chains are the maximal sets of jobs that are predecessors or successors of each
other.

Each chain C has a release date rC and a deadline dC . We have that the first job in the
chain cannot start before time rC and the last job in the chain should be completed at or
before time dC .

In this paper, we consider the following two parameterizations of the problem. The first
is the number of chains, denoted by c. The second is the thickness, denoted by τ , defined
as follows. We say that two chains overlap, when their intervals [rC , dC) have a non-empty
intersection. We define the thickness τ to be the maximum size of a collection of chains that
mutually overlap. That is, for any time t, there are at most τ chains C for which we have
that rC ≤ t and dC > t.

Chain Scheduling with Exact Delays is the problem where we are given as input
the set of jobs with chains of precedence constraints, delays for each precedence constraint,
release dates and deadlines of chains, and number of machines, and ask whether there exists
a schedule that fulfills all the demands: at each time step, the number of jobs scheduled is at
most the number of machines; jobs in a chain are not scheduled before the release date or
after the deadline, and for each precedence constraint (j, j′) the delay between j and j′ is
exactly lj,j′ .

As said, we study several variants of this problem: delays can be given in unary or binary,
the number of machines can be 1, fixed or variable, and we can parameterize by the number
of chains or by thickness. If we require that the stated delays are lower bounds, we obtain
the Chain Scheduling with Minimum Delays problem: here, when we have a precedence
constraint (j, j′) with delay lj,j′ , we must have that job j′ starts at least lj,j′ time steps after
job j is finished.

For the W [t]-hardness proofs, we use fpt-reductions from the following version of the
Satisfiability problem. A Boolean formula is said to be t-normalized, if it is the conjunction
of the disjunction of the conjunction of . . . of literals, with t alternations of AND’s and OR’s.

The following parameterized problem was considered by Downey and Fellows [8].

Weighted t-Normalized Satisfiability
Given: A t-normalized Boolean formula F and a positive integer k ∈ N.
Parameter: k
Question: Can F be satisfied by setting exactly k variables to true?

I Theorem 2.1 (Downey and Fellows [8, 9]). For every t ≥ 2, Weighted t-Normalized
Satisfiability is W [t]-complete.

For the W [1]- and W [2]-completeness results, we use reductions from Independent
Set and Dominating Set. It is know that Independent Set is W [1]-complete [9] and
Dominating Set is W [2]-complete [8].

3 Parameterization by thickness

In this section, we look at the Chain Scheduling with Exact Delays problem, when
parameterized by the thickness τ . We will show, for several variations, that the problem is
hard for the class W [t], for all integers t.
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3.1 Parallel machines

We consider the version with m parallel machines, where m is part of the input. The delays
are assumed to be exact.

We will give a reduction from Weighted t-Normalized Satisfiablity. Assume we
have a t-normalized Boolean formula F and an integer k. Let t′ be the number of “levels” of
disjunction. Notice that t′ = bt/2c. We assume the variables of F to be x0, . . . , xn−1.

We make an instance of the Chain Scheduling with Exact Delays problem, with
m = k + t′ machines and thickness τ = 2k + t′.

An element of the formula is either a literal, or a disjunction or conjunction of smaller
elements. We will first assign to each element F ′ an interval size s(F ′), and then we assign
to each element F ′ an integer interval with length s(F ′).

The interval size of a literal (i.e., a formula of the form xi or ¬xi) is 2n. The interval size
of a conjunction is the sum of the size of the terms, i.e., s(F1 ∧ F2 ∧ · · · ∧ Fq) =

∑q
i=1 s(Fi).

For each disjunction F ′ of q terms, its interval size is 2q + 1 times the maximum size of its
terms: define smax(F ′) = max1≤i≤q s(Fi), and then s(F1∨F2∨· · ·∨Fq) = (2q+ 1) ·smax(F ′).

To each element F ′ of F we assign an integer interval [`(F ′), r(F ′)] with s(F ′) = r(F ′)−
`(F ′). We will do this top-down: first we assign an interval to F , then we define a subinterval
for every term of F , etc.

To F , we assign the interval [n, n+ s(F )]. To elements of a conjunction and disjunction,
we assign subintervals of the intervals assigned to the conjunction of disjunction, in such a
way that these intervals have the same nesting as the elements in the formula.

Consider an element F ′ that is the conjunction F1 ∧ F2 ∧ · · · ∧ Fq. Then assign F1 the
interval [`(F ′), `(F ′) + s(F1)]; F2 the interval [`(F ′) + s(F1), `(F ′) + s(F1) + s(F2)], etc. I.e.,
Fi is assigned the interval [`(F ′) +

∑i−1
j=1 s(Fj), `(F ′) +

∑i
j=1 s(Fj)].

Suppose an element F ′ is the disjunction F1 ∨ F2 ∨ · · · ∨ Fq. The construction is similar
to that of conjunctions, but now we assign each term the same length interval and keep
unused intervals between the terms. Recall that smax(F ′) = max1≤i≤q s(Fi). Assign to Fi

the interval [`(F ′) + (2i− 1) · smax(F ′), `(F ′) + 2i · smax(F ′)].
Note the nesting of intervals, and that we assigned to each element an interval equal to

its size. Also note that we can compute all intervals and sizes in polynomial time in the size
of the input instance.

We now can describe the jobs, precedence constraints, and release dates and deadlines.
For each i, 1 ≤ i ≤ k, we start a chain ci. Each of those chains starts with a job and

then a delay of n− 1. The first job of the chain is released at time 0. We will add jobs and
specify delays between jobs in the chain such that the total processing time including the
delay times is n+ s(F ) + 1. Set the deadline of those chains to 2n+ s(F ), so that the first
job can start at times 0, 1, . . . , n− 1.

These chains reflect the variables that are set to true; more precisely, when the first job
of one of the chains starts at a time i, then this corresponds to setting xi to true. We call
these the true variable chains.

To prevent two chains selecting the same variable, we add m− 1 chains, each with n jobs
with delay 0, release date 0 and deadline n. We call those chains fill chains. Those chains
have to be scheduled from time 0 until time n. This implies that at each time 0, 1, . . . , n− 1
at most one other job can be scheduled, thus at most one true variable chain starts. Hence,
the true variable chains select exactly k variable to be set to true.

We will now extend the true variable chains. Consider the timesteps in the interval
[n, n+ s(F )] from left to right.

IPEC 2020
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︷ ︸︸ ︷ ︷ ︸︸ ︷n− 1− i i

n
xi

¬xi

Figure 1 The variable gadgets.

For each timestep that we encounter that is not part of an interval that corresponds to a
literal, we add a delay of 1 at the end of the chain.
For each interval [`(F ′), r(F ′)] that corresponds to a positive literal xi, we add the
following gadget to the chain: n− 1− i jobs with delay 0, then a delay of 1, then i jobs
with delay 0 and then a delay of n. (See Figure 1.) Notice that no job is scheduled from
`(F ′) + n− 1 until `(F ′) + n if the chain starts at time i, and there is a job scheduled at
this time otherwise.
For each element F ′ of F that is a negative literal ¬xi, we make the following gadget: a
delay of n− 1− i, a job, then a delay of i, and then a delay of n. (See Figure 1.) Notice
that a job is scheduled from `(F ′) + n− 1 until `(F ′) + n if the chain starts at time i,
and there is no job scheduled at this time otherwise.

Add one job at the end of the chain. Notice that the total processing time of those chains is
indeed n+ s(F ) + 1.

To check whether variables are true, we add some chains that consist of a single job. We
call those chains variable check chains.

For each element F ′ of F that consists of a single positive literal (i.e., is of the form xi),
we make a chain with one job, that is released at time `(F ′) + n− 1 and has deadline
`(F ′) + n.
For each element F ′ of F that consists of a single negative literal (i.e., is of the form ¬xi),
we make k chains with one job, release date `(F ′) + n− 1 and deadline `(F ′) + n.

The intuition behind this construction is as follows: suppose that we have k machines. For
each element F ′ of F that is of the form xi, there is one job scheduled from `(F ′) + n− 1
until `(F ′) + n. So for at least one of the true variable chains, we need that no job of this
chain to be scheduled from `(F ′) + n− 1 until `(F ′) + n. This means that one of the true
variable chains starts at time i. For each element F ′ of F that is of the form ¬xi, there are k
jobs scheduled from `(F ′) + n− 1 until `(F ′) + n. So for none of the true variable chains we
can schedule a job of this chain from `(F ′) + n− 1 until `(F ′) + n. This means that none of
the true variable chains starts at time i. The other t′ machines take care of the disjunctions.

For each element F ′ = F1 ∨ F2 ∨ · · · ∨ Fq of F that is a disjunction, we make one chain.
This chain has 3 · smax(F ′) jobs with delay 0. The chain will be released at time `(F ′) and
has deadline r(F ′). We call those chains disjunction chains. Notice that for every element
F ′ of F that is a literal, there are exactly t′ disjunction chains that overlap the interval
[l(F ′), r(F ′)], that is, there are exactly t′ disjunction chains C with release time at most
l(F ′) and deadline at least r(F ′).

We now have specified all jobs and the machines they run on. Note that the thickness of
this construction is at most 2k + t′.

I Example 3.1. Figure 2 shows an example of this construction for the formula (x0 ∨¬x1 ∨
x2) ∧ (¬x0 ∨ x1) and k = 1. The intervals that correspond to the literals are indicated. The
interval that corresponds to the first disjunction x0 ∨ ¬x1 ∨ x2 is [3, 45], and the interval
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0 10 20 30 40 45

45 50 60 70 78

x0 ¬x1 x2

¬x0 x1

true variable chain

variable check chains

disjunction chains

Figure 2 An example of the construction of Section 3 for the formula (x0 ∨ ¬x1 ∨ x2) ∧ (¬x0 ∨ x1)
and k = 1. A feasible solution is shown which corresponds to setting x2 to true.

[45, 75] is assigned to the second disjunction ¬x0 ∨ x1. The figure shows a feasible solution
of the scheduling problem, that corresponds to setting x2 to true, and x0 and x1 to false.
The term x2 satisfies the first disjunction, and the term ¬x0 satisfies the second disjunction.

B Claim 3.2. If F is satisfiable by setting exactly k variables to true, then the constructed
instance of the Chain Scheduling with Exact Delays problem has a solution.

Proof. Suppose F is satisfiable by making variables xi1 , . . . , xik
true. For each j, with

1 ≤ j ≤ k, we let one true variable chain start at time ij .
First we introduce a notion satisfying, intuitively, this will be the elements that make F

true. We define this top-down. First we call F satisfying. For each element F ′ of F : for a
satisfying conjunction, all its terms are satisfying, for a satisfying disjunction, at least one of
its terms is satisfied, we fix one of them and call it satisfying.

For each disjunction F ′ = F1 ∨ · · · ∨ Fq, consider the disjunction chain C associated with
this element. If F ′ is not satisfying, then start this chain C arbitrarily, say at its release
time. If F ′ is satisfying, let Fj be its term that is satisfying. Now, start this chain C at time
`(F ′) + (2j − 2)smax(F ′), where smax(F ′) is again the maximum over the terms Fi of their
interval size s(Fi).

To check that this is a feasible schedule, we have to check that we never use more than m
machines. For most timesteps this is straightforward, see [4] for the details. The interesting
timesteps are the timesteps from l(F ′) + n− 1 to l(F ′) + n for some satisfying literal, since
at those times a variable check chain and t′ disjunction chains are scheduled. Since F is true
and F ′ is satisfying, we know that the literal F ′ is set to true (resp. false). It follows that
the corresponding true variable chain has no job starting at time l(F ′) + n− 1. Feasiblity
follows, for details see the full version [4]. C

B Claim 3.3 (See [4]). Suppose the Chain Scheduling with Exact Delays problem has
a solution, then F can be satisfied by setting exactly k variables to true.

IPEC 2020



4:8 Parameterized Complexity of Scheduling Chains of Jobs with Delays

We now have shown:

I Theorem 3.4. The Chain Scheduling with Exact Delays problem, parameterized
by the thickness τ , is W [t]-hard for all t ∈ N.

3.2 Single machine
Again, assume the delays are exact. We now show that the problem stays hard when there is
only one machine.

I Theorem 3.5. The Chain Scheduling with Exact Delays problem, parameterized
by the thickness τ , is W [t]-hard for all t ∈ N, when only 1 machine is available.

Let τ be the thickness of the original instance. Notice that we may assume that τ ≥ m
without loss of generality. The main idea of the reduction is to replace each time step on
m machines by τ time steps on a single machine. Every chain will be assigned a number
i ∈ {0, 1, . . . , τ − 1} and its jobs will be scheduled at times i (mod τ), this will make sure
that at every timestep only one job is scheduled. For every interval [iτ, (i + 1)τ ], we will
have τ −m chains that have one job; this ensures that in that interval at most m jobs of an
original chain are scheduled. We now proceed with the formal description.

We reduce from the case with m machines (Theorem 3.4). Suppose we have an instance
with m machines. For every interval [iτ, (i+ 1)τ ], we add τ −m additional chains, with a
single job, release date iτ and deadline (i+ 1)τ . We call those chains extra.

We copy the chains from the given instance, except that:
If a chain has release date α, then it now has release date α · τ .
If a chain has deadline β, then it now has deadline β · τ .
Every delay d is replaced by a delay τd+ τ − 1.

We call these chains regular.

B Claim 3.6. Suppose we have a solution for the constructed instance with one machine.
Then we have a solution for the original instance with m machines.

Proof. For each regular chain, let it start at time bt/τc, when its copy in the constructed
instance starts at time t. This implies that for every job in the chain it will start at time
bt/τc, when its copy in the constructed instance starts at time t. We know that for each
time interval [tτ, (t+ 1)τ ], τ −m steps are used for extra jobs, so m time steps are available
for jobs of regular chains. Thus, at every time step t in the original instance, at most m jobs
are scheduled. C

B Claim 3.7. Suppose we have a solution for the original instance with m machines. Then
we have a solution for the constructed instance with 1 machine.

Proof. We start with assigning a number 0, 1, . . . , τ − 1 to every chain such that for every
time step all the chains that overlap this time step have different number. We denote this
assignment by c. We can do this as follows: go through time 0, 1, 2, . . ., and every time a
chain is released, assign a number that is currently unused, if a deadline passes, the number
of the corresponding chain becomes available again. We can do this with τ numbers, since
by definition for every timestep there are at most τ chains that overlap this timestep.

For every regular chain C, let C start at time tτ + c(C), where t is the starting time of the
corresponding original chain. Then chains of thickness number c(C) only have jobs starting
at times t with t ≡ c(C) (mod τ). For every time t, all jobs that are scheduled to start
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at time t in the original instance, will now be scheduled in the interval [tτ, (t+ 1)τ ] in the
constructed instance. Those jobs are in different chains and those chains are assigned different
numbers. Thus those jobs are scheduled at different times in the constructed instance.

In the original instance, at each time t at most m chains have a job scheduled to start
at t, so, in the constructed instance, for each interval [tτ, (t+ 1)τ ], at most m regular chains
have a job scheduled in this interval. Thus, we can schedule the τ −m extra chains in this
time interval at the time steps where no job of a regular chain is scheduled. C

As the reduction can be carried out in polynomial time, Theorem 3.5 follows from the
reduction and Theorem 3.4.

3.3 Constant number of parallel machines
We can easily reduce the single machine instance to an instance with a constant number m
of parallel machines. Let T be the maximum deadline of all chains. Introduce m− 1 new
chains with T jobs each and 0 delays. The m − 1 new machines will be processing those
m− 1 new chains, while the original machine processes the original chains. We conclude the
following result.

I Theorem 3.8. The Chain Scheduling with Exact Delays problem with a fixed
number of machines, parameterized by the thickness τ , is W [t]-hard for all t ∈ N.

3.4 Minimum delays
The proof above seems not to be modifiable to the Chain Scheduling with Minimum
Delays problem. In Section 4.4, we show that Chain Scheduling with Minimum Delays,
parameterized by the number of chains is W [1]-hard when m = 1, and W [2]-hard when the
number of machines m is variable. As the thickness is at most the number of chains, it
follows that Chain Scheduling with Minimum Delays, parameterized by the thickness is
W [1]-hard for one machine, and W [2]-hard for a variable number of machines. Membership
in W [1] or W [2] is open, however.

4 Parameterization by the number of chains

We now give the complexity results when we use the number of chains as the parameter.
In Sections 4.1, 4.2, and 4.3, we consider Chain Scheduling with Exact Delays, with
the number of machines respectively 1, a constant, or variable. In Section 4.4, we consider
Chain Scheduling with Exact Delays.

4.1 Single machine
In this section, we consider the variant where the number of chains c is a parameter, and
there is one machine available. We assume that the delays are exact.

I Theorem 4.1. The Chain Scheduling with Exact Delays problem, parameterized
by the number of chains c is W [1]-complete, when there is one machine.

Theorem 4.1 is proven by two reductions: from and to Independent Set with standard
parameterization.

I Lemma 4.2. The Chain Scheduling with Exact Delays problem with one machine,
parameterized by the number of chains c, is W [1]-hard.

IPEC 2020
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v2

v1

v3

Figure 3 An example graph G. If we pick p = 3, the corresponding Golomb ruler is {0, 7, 13}.

Proof. A set of integers S is said to be a Golomb ruler if all differences a− b of two elements
a, b ∈ S are unique, that is, s1 − s2 6= s3 − s4 for s1, s2, s3, s4 ∈ S with s1 6= s2 and s3 6= s4.

Erdös and Turán [10] gave the following explicit construction of a Golumb ruler. Let
p > 2 be a prime number. Then the set {2pk + (k2 mod p) | k ∈ {0, 1, . . . , p − 1}} is a
Golomb ruler with p elements. We can build a Golumb ruler of size n in O(n

√
n) time:

with help of the Sieve of Eratosthenes, we find a prime number p between n and 2n (such
a number always exist, by the classic postulate of Bertrand (see [1])), and then follow the
Erdös-Turán-construction with this value of p, and take the first n elements of this set.
Notice that the elements in this set are smaller than 4n2.

Suppose we have an input of independent set G = (V,E) and k. Assume V =
{v1, . . . , vn} and let m be the number of edges. First, build a Golumb ruler Sn of size n.
Denote the elements by s1 ≤ s2 ≤ · · · ≤ sn. Notice that s1 = 0. Write c0 = sn + 1.

We will construct an instance of Chain Scheduling with Exact Delays.
We will make k + 1 chains. We call one chain the start time forcing chain, the other k

chains are the vertex selection chains.
The start time forcing chain has release date 1, deadline c0 and total execution time

(including delays) c0 − 1. I.e., it must start at time 1. The chain will have a job starting at
every time in [1, c0 − 1] except the times s2, s3, . . . , sn, there, it has a delay of 1.

The vertex selection chains have release date 0. They have deadline c0 + T − 1 and
total execution time T , where T = (m · k(k − 1))(2c0 + 1) + 1. So, they can start at times
0, 1, . . . , c0 − 1. The vertex selection chains start with a job and then a delay of c0 − 1. Note
that as a result of this, in order not to conflict with the start time forcing chain, they have
to start at an element of Sn.

Now, for each edge vi, vj ∈ E, and each ordered pair of vertex selection chains Ca, Cb

with a, b ∈ {1, 2, . . . , k} we dedicate an interval Ivi,vj ,Ca,Cb
of 2c0 + 1 time steps. More

precisely, we have m · k(k − 1) intervals [c0 + α(2c0 + 1), c0 + (α + 1)(2c0 + 1)] for α =
0, 1, . . . ,m · k(k − 1) − 1. And to each interval we assign a unique label Ivi,vj ,Ca,Cb

where
vivj ∈ E and a, b ∈ {1, 2, . . . , k}. In the interval Ivi,vj ,Ca,Cb

we will check whether the chains
Ca and Cb did not select the edge vivj , that is, whether Ca does not start at si or Cb does
not start at sj .

We will now extend the vertex selection chains. Consider the interval [c0, c0 + (m · k(k −
1))(2c0 + 1)] from left to right. For each interval Ivi,vj ,Ca,Cb

that we encounter, we extend
the vertex selection chains as follows.

For each chain C, with C 6= Ca, C 6= Cb, add a delay of 2c0 + 1.
Add the following gadget to the chain Ca: a delay of c0 − si, a job, and then a delay of
c0 + si.
Add the following gadget to the chain Cb: a delay of c0 − sj , a job, and then a delay of
c0 + sj .

Add one job at the end of all chains. See Figures 3, 4, and 5 for an example of the construction
and a feasible schedule.

We claim that there is a feasible schedule, if and only if G has an independent set of size
at least k.
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c0 c0

c0 − s2 c0 + s2

Figure 4 The part of the chains Ca and Cb for the interval Iv1,v2,Ca,Cb for the graph in Figure 3.

Iv1,v2,Ca,Cb
Iv1,v2,Cb,Ca Iv2,v3,Ca,Cb

Iv2,v3,Cb,Ca

Figure 5 The instance of the scheduling problem constructed from the graph in Figure 3 and
k = 2, and a feasible schedule for this instance.

B Claim 4.3. If G has an independent set of size at least k, then there is a feasible schedule.

Proof. Suppose vi1 , . . . , vik
form an independent set in G. Let the vertex selection chain Ca

start at times sia for a = 1, 2, . . . , k.
Notice that for the first c0 time steps, at most one machine is used. The same holds for

the last c0 time steps. We show that this is a feasible scheduling by contradiction. Suppose
that there are two machines needed at some time step β, and that β is in the interval
I = Ivi,vj ,Ca,Cb

for checking whether the chains Ca and Cb do not select the edge vivj . Write
I = [`(I), r(I)]. Notice that the job of Ca in the interval I starts at time `(I) + c0 − si + sia

.
Furthermore, the job of Cb in the interval I starts at time `(I) + c0 − sj + sib

. Thus,
`(I) + c0 − si + sia

= β = `(I) + c0 − sj + sib
. Equivalently, sia

− si = sib
− sj . Since Sn is

a Golomb ruler, it follows that either sia
= si and sib

= sj or sia
= sib

and si = sj .
In the first case, sia

= si and sib
= sj , we see that vi = via

and vj = vib
. But there is no

edge viavib
, since via and vib

are in an independent set. This yields a contradiction.
In the second case, sia = sib

and si = sj , we see that via = vib
, but this yields a

contradiction with the fact that the vertices of the independent set are distinct.
We conclude that this schedule always uses at most one machine. C

B Claim 4.4. If there is a feasible schedule, then G has an independent set of size at least k.

Proof. Suppose that there is a feasible schedule. Notice that the time of the first step of a
vertex selection chains must be an element of Sn, otherwise the job conflicts with the start time
forcing chain. Now, set W = {vi | there is a vertex selection chain that starts at time si}.
Notice that |W | = k, as otherwise two vertex selection chains start at the same time, and
conflict with each other for their first job.

We prove that W is an independent set by contradiction. Suppose that there exists
an edge vivj , with vi, vj ∈ W . Let Ca be the chain that starts at si and Cb the chain
that starts at sj . Now consider the interval I = Ivi,vj ,Ca,Cb

, and write I = [`(I), r(I)]. By
the construction of the chains, it follows that Ca starts its job of the interval I at time
`(I) + c0 − si + si = `(I) + c0. The job of Cb in the interval starts at time `(I) + c0 as well.
This yields a contradiction. We conclude that W is an independent set. C

This shows that the Chain Scheduling with Exact Delays problem with a single
machine, parametrized by the number of chains, is W [1]-hard. J

I Lemma 4.5 (See [4, Lemma 4.5]). The Chain Scheduling with Exact Delays problem
with one machine, parameterized by the number of chains c is in W [1].
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4.2 Constant number of parallel machines

If we assume that there are m machines, but m is considered to be a constant (i.e., not a
fixed parameter; m is part of the problem description), then the problem is W [1]-complete.

I Theorem 4.6. The Chain Scheduling with Exact Delays problem with m machines,
parameterized by the number of chains, is W [1]-complete.

Hardness follows easily from the case that m = 1: add m − 1 chains with maximum
length that consist of jobs with 0 delay. Membership follows by formulating the problem
as a Weighted CNF-SAT problem, where we have a variable for each chain C and each
time t that it can start and clauses that check that we never use more than m machines. For
details see the full version [4].

4.3 Variable number of parallel machines

The main result of this section is the following theorem.

I Theorem 4.7. The Chain Scheduling with Exact Delays problems with a variable
number of machines, parameterized by the number of chains c, is W [2]-complete.

The proof can be found in the full version [4]. Hardness is shown by a reduction from
Dominating Set; membership by a reduction to Threshold Dominating Set.

4.4 Minimum delays

With a simple modification, the hardness proofs for exact delays in unary can be modified to
hardness proofs for minimum delays (still in unary). The modification consists of taking a
number of copies of the instance, as described below.

Suppose we have an instance for Chain Scheduling with Exact Delays with c chains
and m machines. We build an instance for Chain Scheduling with Minimum Delays.
The intuition behind the construction is the following: we build cT + 1 identical copies of
the original instance after each other. Here, T is the maximum deadline of all chains in the
Chain Scheduling with Exact Delays instance. The delay between two copies of a
chain C is T − `C , where `C is the minimum duration of C. So there will be at least T time
units between the execution of a job in copy i and the same job in copy i+ 1. Each copy is
executed in its own slot of T consecutive time steps, in the same way as a solution of the
original instance. The release date of the new chain will stay rC , while we set the deadline
as cT 2 + dC .

Suppose we have a solution of the new instance. Every new chain has a minimum
duration of cT 2 + `C . Thus, the total slack in a chain, i.e., the sum of the differences
between the scheduled delay time and the stated minimum delay, cannot be larger than
cT 2 + dC − rC − cT 2− lC = dC − rC − lC . Notice that this is at most T . Thus, for one chain,
we have at most T copies where there is a pair of successive jobs with delays not equal to
the minimum delay. As we have c chains, and cT + 1 copies, there must be at least one copy
where each pair of successive jobs of all chains has delay equal to the minimum delay. This
copy gives a solution of the original instance.

See Figure 6 for an illustration, and [4, Section 4.4] for more details.
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Figure 6 Construction in Section 4.4: copy every instance, the blue arrows are the delays between
two copies of a chain, the red dashed line represent the interval from release date until deadline.
The example shows the construction with three copies.

5 XP algorithms

In this section, we give two positive results. First, we show membership in XP for all
studied variants, when delays are given in unary, with a relatively straightforward dynamic
programming algorithm (Theorem 5.2; the proof can be found in the full version [4]). Then,
in the case of one machine, we show that Scheduling with Exact Delays is in XP, when
parameterized by the number of chains, even when delays are given in binary. For a related,
earlier result, see [6].

I Lemma 5.1. Given an instance of Chain Scheduling with Exact Delays or Chain
Scheduling with Minimum Delays, one can build in polynomial time an equivalent
instance, where all release dates and deadlines of chains are nonnegative integers, bounded
by cn(D + 1), where c is the number of chains, n the number of jobs, and D the maximum
delay between two successive jobs in a chain. In addition, for each chain C, we have
dC − rC ≤ n(D + 1).

I Theorem 5.2. Chain Scheduling with Exact Delays and Chain Scheduling with
Minimum Delays belong to XP, when delays are given in unary, and parameterized by the
number of chains or thickness, for any number of machines.

The algorithm uses dynamic programming: we compute for each time step a table of
states of partial solutions; the state tells for each chain what is the last job of the chain that
is executed and at what time step this job was executed. For details, see the full version [4].

I Theorem 5.3. Chain Scheduling with Exact Delays with m = 1, parameterized by
the number of chains, with delays in binary belongs to XP.

Proof. Suppose we have chains C1, . . . , Cc. Suppose chain Ci has jobs ji,1, ji,2, . . ., ji,`i
,

with ji,a directly preceding ji,a+1; we write the exact delay of this constraint as li,a. Write
s(i, a) =

∑a−1
b=1 (li,b + 1). Note that ji,a has to be scheduled exactly s(i, a) time steps after

ji,1 starts.
For each chain Ci, we take a variable xi that denotes the time that the first job of Ci is

scheduled.

B Claim 5.4. Variables x1, x2, . . . , xc give a valid schedule, if and only if the following
constraints are fulfilled.
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1. For each i, xi ≥ rCi
.

2. For each i, xi + s(i, `i) < dCi .
3. For each i and i′ with i 6= i′, and each j, j′ with 1 ≤ j ≤ `i, 1 ≤ j′ ≤ `i′ , we have

xi + s(i, j) 6= xi′ + s(i′, j′).

The conditions state that chains do not start before the release date (1), do not finish
after the deadline (2), and that no pair of jobs are scheduled at the same time (3). More
details in [4].

The first step of the algorithm is to compute for each pair i, i′ with i 6= i′ a set
U(i, i′) = {s(i′, j′)− s(i, j) | 1 ≤ j ≤ `i, 1 ≤ j′ ≤ `i′}. Note that each of these sets has size
O(n2), or more precisely, is at most the product of the sizes of the two chains. Now, sort
each set U(i, i′).

Suppose U(i, i′) = {a1, a2, . . . , ar} with a1 < a2 < · · · < ar. Condition 3 of Claim 5.4 for
the pair i, i′ can be expressed as

(xi − xi′ < a1) ∨ (a1 < xi − xi′ < a2) ∨ (a2 < xi − xi′ < a3) ∨ · · ·
· · · ∨ (ar−1 < xi − xi′ < ar) ∨ (ar < xi − xi′)

Our algorithm now branches on these O(n2) possibilities. For each of the O(c2) pairs of
chains, we have O(n2) branches, which gives a total of O(nO(c2)) subproblems.

Each of these subproblems asks to solve a set of inequalities. These inequalities are of the
form xi − xi′ < a or xi ≥ a (Condition 1 of Claim 5.4) or xi ≤ a (Condition 2 of Claim 5.4),
for some integers a. As we work with integers and look for integer solutions, we reformulate
constraints of the form xi − xi′ < a as xi − xi′ ≤ a − 1. We now have a system of linear
inequalities which can be solved in polynomial time with text book (shortest paths) methods,
see e.g., [7, Section 24.4]. If at least one of the subproblems has a solution, then this solution
gives starting times for the chains that gives a valid schedule; otherwise, there is no valid
schedule.

We have O(nO(c2)) branches, each taking polynomial time, and this gives a running time
of O(nO(c2)). J

6 Conclusions

In this paper, we have shown a number of results on the parameterized complexity of Chain
Scheduling with Exact Delays and Chain Scheduling with Minimum Delays. In a
few cases, we obtained W [1]-completeness or W [2]-completeness; in the other cases, we only
showed hardness results, often together with XP-membership. We expect that the problems,
parameterized by the thickness do not belong to W [P ] – for the same “compositionality”
reason as why one can believe that Graph Bandwidth does not belong to W [P ]: see
the discussion in [12, Section 4]. The machinery to prove such results currently is not
available, but we conjecture that also the variants with minimum delays inhibit some form
of compositionality and do not belong to W [P ].

We end this paper with mentioning some open problems. In this paper, we proved for
the case that delays are given in binary, for only one of the cases membership in XP. What
is the complexity of the other cases when delays are given in binary? Also, an interesting
question is to study the variant where we have maximum delays, with all of its subcases.

Another open problem is whether the results where we prove W [t]-hardness for all t
can be improved to W [SAT ]-hardness. Our current constructions give instances that grow
exponentially with the nesting depth of conjunctions and disjunctions. We currently do not
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know how to avoid this exponential blowup, so it appears that possible W [SAT ]-hardness
proofs for Chain Scheduling with Exact Delays parameterized by thickness need
different techniques.
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