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Abstract
A mixed dominating set is a set of vertices and edges that dominates all vertices and edges of a
graph. We study the complexity of exact and parameterized algorithms for MDS, resolving some
open questions. In particular, we settle the problem’s complexity parameterized by treewidth and
pathwidth by giving an algorithm running in time O∗(5tw) (improving the current best O∗(6tw)),
and a lower bound showing that our algorithm cannot be improved under the SETH, even if
parameterized by pathwidth (improving a lower bound of O∗((2− ε)pw)). Furthermore, by using a
simple but so far overlooked observation on the structure of minimal solutions, we obtain branching
algorithms which improve the best known FPT algorithm for this problem, from O∗(4.172k) to
O∗(3.510k), and the best known exact algorithm, from O∗(2n) and exponential space, to O∗(1.912n)
and polynomial space.
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1 Introduction

Domination problems in graphs are one of the most well-studied topics in theoretical computer
science. In this paper we study a variant called Mixed Dominating Set: we are given a
graph G = (V,E) and are asked to select D ⊆ V and M ⊆ E such that |D∪M | is minimized
and the set D ∪M dominates V ∪ E, where a vertex dominates itself, its neighbors, and its
incident edges and an edge dominates itself, its endpoints, and all edges with which it shares
an endpoint.

Mixed Dominating Set is a natural variation of domination in graphs as it can be
seen as a mix between four standard problems: Dominating Set, where vertices dominate
vertices; Edge Dominating Set, where edges dominate edges; Vertex Cover, where
vertices dominate edges; and Edge Cover, where edges dominate vertices. In Mixed
Dominating Set we are asked to select vertices and edges in a way that dominates all
vertices and edges. As only the last of these four problems is in P, it is not surprising that
Mixed Dominating Set is NP-hard. We are therefore motivated to study approximation,
exponential-time and parameterized algorithms for this problem, and indeed this has been
the topic of several recent papers. On the approximation algorithms side, the problem is
well-understood: Hatami [9] gave a 2-approximation algorithm, while more recently Dudycz
et al. [5] showed that (under the UGC) no algorithm can achieve a ratio better than 2 for
Edge Dominating Set. As we explain (Proposition 1) this hardness result easily carries
over to Mixed Dominating Set, thus essentially settling the problem’s approximability.
Hence, in this paper we focus on parameterized and exact algorithms.
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Mixed Dominating Set has recently been the focus of several works in this context.
With respect to the natural parameter (the size k of the solution), an O∗(7.465k)1 algorithm
was given by Jain et al. [12], more recently improved to O∗(4.172k) by Xiao and Sheng [26].
With respect to treewidth and pathwidth, Jain et al. gave algorithms running in O∗(6tw)
time and O∗(5pw) time, improving upon the O∗(3tw2) time algorithm of [24]. Furthermore,
Jain et al. showed that no algorithm can solve the problem in O∗((2 − ε)pw) time under
the Set Cover Conjecture. These works observed that it is safe to assume that the optimal
solution has a nice structure: the selected edges form a matching whose endpoints are disjoint
from the set of selected vertices. This observation immediately gives an O∗(3n) algorithm
for the problem, which was recently improved to O∗(2n) by Madathil et al. [18] by using a
dynamic programming approach, which requires O∗(2n) space.

Our results

The state of the art summarized above motivates two basic questions: first, can the gap in
the complexity of the problem for treewidth and pathwidth and the gap between the lower
and upper bound for these parameters be closed, as explicitly asked in [12]; second, can we
solve this problem faster than the natural O∗(2n) barrier? We answer these questions and
along the way obtain an improved FPT algorithm for parameter k. Specifically we show:

(i) Mixed Dominating Set can be solved in O∗(5tw) time. Somewhat surprisingly, this
result is obtained by combining observations that exist in the literature: the equivalence
of Mixed Dominating Set to Distance-2-Dominating Set [18]; and the algorithm of
Borradaile and Le for this problem [3].

(ii) Mixed Dominating Set cannot be solved in time O∗((5− ε)pw), under the SETH.
This is our main result on this front, and shows that our algorithm for treewidth and the
algorithm of [12] for pathwidth are optimal.

(iii) Mixed Dominating Set can be solved in time O∗(1.912n) and O∗(3.510k), in both
cases using polynomial space. In order to obtain these algorithms we refine the notion of
nice mixed dominating set which was used in previous algorithms. In particular, we show
that a mixed dominating set with the minimum number of vertices has the property that
any selected vertex has at least two private neighbors. This allows us to speed up branching
on low-degree vertices.

Other related work

The notion of Mixed Dominating Set was first introduced in 1977 by Alavi. et al [1],
and has been studied extensively in graph theory [2, 6,21,23]. See the chapter in [10] for a
survey on the Mixed Dominating Set problem. The computational complexity of Mixed
Dominating Set was first studied in 1993 by Majumbar [19], where he showed that the
problem is NP-complete. The problem remains NP-complete on split graphs [27] and on
planar bipartite graphs of maximum degree 4 [20]. Majumbar [19], Lan and Chang [16],
Rajaati et al. [25] and Madathil et al. [18] showed that the problem is polynomial-time solvable
on trees, cacti, generalized series-parallel graphs and proper interval graphs, respectively.

1 O∗ notation suppresses polynomial factors in the input size.
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2 Preliminaries

We assume familiarity with the basics of parameterized complexity (e.g. treewidth, pathwidth,
and the SETH), as given in [4]. Let G = (V,E) be a graph with |V | = n vertices and
|E| = m edges. For u ∈ V , N(u) denotes the set of neighbors of u, d(u) = |N(u)| and
N [u] = N(u) ∪ {u}. For U ⊆ V and u ∈ V , we note NU (u) = N(u) ∩ U and use dU (u) to
denote |NU (u)|. Furthermore, for U ⊆ V we denote N(U) = ∪u∈UN(u). For an edge set
E′, we use V (E′) to denote the set of endpoints of E′. For V ′ ⊆ V , we use G[V ′] to denote
the subgraph of G induced by V ′. A mixed dominating set of a graph G = (V,E) is a set
of vertices D ⊆ V and edges M ⊆ E such that (i) all vertices of V \ (D ∪ V (M)) have a
neighbor in D (ii) all edges of E \M have an endpoint in D ∪ V (M).

We note that the minimization problem Mixed Dominating Set is harder than the
more well-studied Edge Dominating Set (EDS) problem, in a way that preserves most
parameters and the size of the optimal solution. Hence, essentially all hardness results for
the latter problem, such as its inapproximability [5] or its W[1]-hardness for clique-width [7],
carry over to Mixed Dominating Set.

I Proposition 1. There is an approximation and parameter-preserving reduction from Edge
Dominating Set to Mixed Dominating Set.

Proof. Given an instance G = (V,E) of EDS we seek a set M of k edges such that all edges
have an endpoint in V (M). We add a new vertex u connected to all of V and attach to u
|V |+ 2 leaves. The new graph has a mixed dominating set of size k + 1 if and only if G has
an edge dominating set of size k. J

We now define a restricted notion of mixed dominating set.

I Definition 2. A nice mixed dominating set of a graph G = (V,E) is a mixed dominating set
D∪M which satisfies the following: (i) D∩V (M) = ∅; (ii)M is a matching; (iii) for all u ∈ D
there exist at least two private neighbors of u, that is, two vertices v1, v2 ∈ V \ (D ∪ V (M))
with N(v1) ∩D = N(v2) ∩D = {u}.

We note that a mixed dominating set that satisfies the first two properties of Definition 2
was called special mds in [18]. The notion of nice mds was implicit also in the algorithms
of [12,26], with the key difference that these algorithms do not use the fact that every vertex
of D must have at least two private neighbors, that is, two neighbors which are dominated
only by this vertex.

Let us now prove that restricting ourselves to nice solutions does not change the value
of the optimal. The idea behind the proof is to reuse the arguments of [18] to obtain an
optimal solution satisfying the first two properties; and then while there exists u ∈ D with
at most one private neighbor, we replace it by an edge while maintaining a valid solution
satisfying the first two properties.

I Lemma 3. For any graph G = (V,E) without isolated vertices, G has a mixed dominating
set D ∪M of size at most k if and only if G has a nice mixed dominating set D′ ∪M ′ of
size at most k.

Proof. One direction is trivial, since any nice mixed dominating set is also by definition a
mixed dominating set. For the other direction, we first recall that it was shown in [18] that
if a graph has a mixed dominating set of size k, then it also has such a set that satisfies the
first two conditions of Definition 2. Suppose then that D ∪M is such that D ∩ V (M) = ∅
and M is a matching.

IPEC 2020
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We will now edit this solution so that we obtain the missing desired properties, namely the
fact that all vertices of D have two private neighbors. Our transformations will be applicable
as long as there exists a vertex u ∈ D without two private neighbors, and will either decrease
the size of the solution, or decrease the size of D, while maintaining a valid solution satisfying
the first two properties of Definition 2. As a result, applying these transformations at most
n times yields a nice mixed dominating set.

Let I = V \ (D ∪ V (M)). If there exists u ∈ D with exactly one private neighbor, let v
be this private neighbor. We set D′ := D \ {u} and M ′ := M ∪ {(u, v)} to obtain another
solution. This solution is valid because N(u) \ {v} is dominated by (D ∪M) \ {u}, otherwise
u would have more than one private neighbor.

Let us now consider a vertex u ∈ D with no private neighbor. Note that for such a vertex
u, its neighborhood (which is non-empty, since G has no isolated vertices) is dominated by
(D ∪M) \ {u}, because otherwise u would have at least one private neighbor. If there exists
v ∈ N(u) ∩ I, set D′ := D \ {u} and M ′ := M ∪ {(u, v)} to obtain another feasible solution.

Now consider a vertex u ∈ D with no private neighbor for which N(u) ∩ I = ∅. We have
N(u) ⊆ D ∪ V (M), which implies that the neighborhood of u and all the edges incident
on u are dominated by (D ∪M) \ {u}. If there exists v ∈ N(u) ∩ D, remove u from the
solution to get a better solution. Now consider a vertex u ∈ D with no private neighbor
for which N(u) ⊆ V (M). If there exists v ∈ N(u) with (v, w) ∈ M such that there exists
z ∈ N(w)∩ I, set D′ := D \ {u} and M ′ := (M \ {(v, w)})∪{(u, v), (w, z)} to obtain another
feasible solution. If for all v ∈ N(u) with (v, w) ∈M , we have N(w) ⊆ D ∩ V (M), pick such
a vertex v and set D′ := (D \ {u}) ∪ {v} and M ′ := M \ {(v, w)} to get a better solution.
We repeat these modifications until we obtain the claimed solution. J

In the remainder, when considering a mixed dominating set D∪M of a graph G = (V,E),
we will associate with it the partition V = D∪P∪I where P = V (M) and I = V \(D∪P ). We
will call this a nice mds partition. It is not hard to see that the following properties follow from
the definition: (i) G[P ] has a perfect matching (ii) I is an independent set (iii) D dominates I
(iv) each u ∈ D has two private neighbors v1, v2 ∈ I, that is, N(v1) ∩D = N(v2) ∩D = {u}.

We also note the following useful relation.

I Lemma 4. For any graph G = (V,E) and any nice mds partition V = D ∪ P ∪ I of G,
there exists a minimal vertex cover C of G such that D ⊆ C ⊆ D ∪ P .

Proof. Since I is an independent set of G, D ∪ P is a vertex cover of G and hence contains
some minimal vertex cover. We claim that any such minimal vertex cover C ⊆ D∪P satisfies
D ⊆ C. Indeed, for each u ∈ D there exist two private neighbors v1, v2 6∈ D ∪ P . Hence, if
u 6∈ C, the edge (u, v1) is not covered, contradiction. J

3 Treewidth

We begin with an algorithm for Mixed Dominating Set running in time O∗(5tw). We
rely on three ingredients: (i) the fact that Mixed Dominating Set on G is equivalent
to Distance-2-Dominating Set on the incidence graph of G [18] ; (ii) the standard fact
that the incidence graph of G has the same treewidth as G ; (iii) and an O∗(5tw) algorithm
(from [3]) for Distance-2-Dominating Set.

I Theorem 5. There is an O∗(5tw)-time algorithm for Mixed Dominating Set in graphs
of treewidth tw.
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The main result of this section is a lower bound matching Theorem 5. We prove that,
under SETH, for all ε > 0, there is no algorithm for Mixed Dominating Set with complexity
O∗((5 − ε)pw). The starting point of our reduction is the problem q-CSP-5 [15]. In this
problem we are given a Constraint Satisfaction (CSP) instance with n variables and m
constraints. The variables take values in a set of size 5, say {0, 1, 2, 3, 4}. Each constraint
involves at most q variables and is given as a list of acceptable assignments for these variables.
The following result was shown in [15] to be a natural consequence of the SETH.

I Lemma 6 (Theorem 2 of [15]). If the SETH is true, then for all ε > 0, there exists a q
such that n-variable q-CSP-5 cannot be solved in time O∗((5− ε)n).

Note that in [15] it was shown that for any alphabet size B, q-CSP-B cannot be solved in
time O∗ ((B − ε)n) under the SETH, but for our purposes only the case B = 5 is relevant for
two reasons: because this corresponds to the base of our target lower bound ; and because
in our construction we will represent the B = 5 possible values for a variable with a path
of five vertices in which there exists exactly five different ways of selecting one vertex and
one edge among these five vertices. Our plan is therefore to produce a polynomial-time
reduction which, given a q-CSP-5 instance with n variables, produces an equivalent Mixed
Dominating Set instance whose pathwidth is at most n + O(1). Then, the existence
of an algorithm for the latter problem running faster than O∗ ((5− ε)pw) would give an
O∗ ((5− ε)n) algorithm for q-CSP-5, contradicting the SETH.

Before giving the details of our reduction let us sketch the basic ideas, which follow
the pattern of other SETH-based lower bounds which have appeared in the literature
[8,11,13,14,17]. The constructed graph consists of a main selection part of n paths of length
5m, divided into m sections. Each path corresponds to a variable and each section to a
constraint. The idea is that the optimal solution will follow for each path a basic pattern of
selecting one vertex and one edge among the first five vertices and then repeat this pattern
throughout the path (see Figure 1). There are 5 natural ways to do this, so this can represent
all assignments to the q-CSP-5 instance. We will then add verification gadgets to each
section, connected only to the vertices of that section that represent variables appearing in
the corresponding constraint (thus keeping the pathwidth under control), in order to check
that the selected assignment satisfies the constraint.

The main difficulty in completing the proof is showing that the optimal solution has
the desired form, and in particular, that the pattern that is selected for a variable is kept
constant throughout the construction. This is in general not possible to prove, but using a
technique introduced in [17], we work around this difficulty by making polynomially many
copies of our construction, gluing them together, and arguing that a large enough consistent
copy must exist.

Construction
We are given a q-CSP-5 instance ϕ with n variables x1, . . . , xn taking values over the set
{0, 1, 2, 3, 4}, and m constraints c0, . . . , cm−1. For each constraint we are given a set of at
most q variables which are involved in this constraint and a list of satisfying assignments
for these variables. Without loss of generality, we make the following assumptions: (i) each
constraint involves exactly q variables, because if it has fewer variables, we can add to it new
variables and augment the list of satisfying assignments so that the value of the new variables
is irrelevant (ii) all constraints have lists of satisfying assignments of size C = 5q − 1; note
that this is an upper bound on the size of the list of satisfying assignments, and for each
constraint which has fewer we add several copies of one of its satisfying assignments to its list
(so the list may repeat an assignment). We define two “large” numbers F = (3n+ 1)(2n+ 1)
and A = 20 and we set our budget to be k = 8AFmn+ 2Fmn+ 2Fmq(C − 1) + n+ 1.

IPEC 2020
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(a)

(b)

(c)

(d)

(e)

Figure 1 Main part of the construction with the five possible configurations. Filled vertices are
in D, thick edges are in M .

We now construct our graph as follows:

1. We construct a vertex s and attach to it two leaves s1, s2.
2. For i ∈ {1, . . . , n} we construct a path on 5Fm vertices: the vertices are labeled ui,j , for

j ∈ {0, 1, . . . , 5Fm− 1} and for each i, j the vertex ui,j is connected to ui,j+1. We call
these paths the main part of our construction.

3. For each j ∈ {0, 1, . . . , Fm− 1}, let j′ = j mod m. We construct a checker gadget Hj as
follows (see Figure 2):

a. For each satisfying assignment σ in the list of the constraint cj′ , we construct an
independent set Zσ,j of size 2q (therefore, C such independent sets). The 2q vertices
are partitioned so that for each of the q variables involved in cj′ we reserve two vertices.
In particular, if xi is involved in cj′ we denote by z1

σ,j,i, z
2
σ,j,i its two reserved vertices

in Zσ,j .
b. For each i ∈ {1, . . . , n} such that xi is involved in cj′ , for each satisfying assignment σ

in the list of cj′ , if σ sets xi to value α ∈ {0, 1, 2, 3, 4} we add the following edges:
i. (ui,5j+α, z1

σ,j,i) and (ui,5j+α, z2
σ,j,i).

ii. Let β = (α + 2) mod 5 and γ = (α + 3) mod 5. We add the edges (ui,5j+β , z1
σ,j,i)

and (ui,5j+γ , z2
σ,j,i).

c. For all assignments σ 6= σ′ of cj′ , add all edges between Zσ,j and Zσ′,j .
d. We construct an independent set Wj of size 2q(C − 1)
e. Add all edges between Wj and Zσ,j , for all assignments σ of cj′ .
f. For each w ∈Wj , we construct an independent set of size 2k + 1 whose vertices are all

connected to w and to s.

4. We define the consistency gadget Qi,j , for i ∈ {1, . . . , n} and j ∈ {0, . . . , Fm− 1} which
consists of (see Figure 2):

a. An independent set of size 8 denoted Ai,j .
b. Five independent sets of size 2 each, denoted Bi,j,0, Bi,j,1, . . . , Bi,j,4.
c. For each `, `′ ∈ {0, . . . , 4} with ` 6= `′ all edges from Bi,j,` to Bi,j,`′ .
d. For each ` ∈ {0, . . . , 4} all possible edges from Bi,j,` to Ai,j .
e. For each a ∈ Ai,j , 2k + 1 vertices connected to a and to s.
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xi

Qi,jQi,j

Bi,j,2

Bi,j,0 Bi,j,4

Bi,j,1 Bi,j,3

Ai,j

s
s1s2

HjHj

Zσ1,j Zσ2,j

..

.
ZσC ,j

. . .Wj

. . .

s
s1 s2

x2

x1

Figure 2 (Double edges between two sets of vertices represent all edges between the two sets.)
Left: Checker gadget Hj connected to the main part. Here we have considered an instance where
the clause cj′ has only two variables, x1 and x2. Moreover, only the independent set Zσ1,j is shown
connected to the main part. The possible assignment σ1 of cj′ is (x1 = 0, x2 = 2). We have supposed
that this assignment is satisfiable, and we have have marked the corresponding mixed dominating
set: filled vertices are in D, thick edges are in M . Right: Checker gadget Qi,j connected to the
main part, that is to the path corresponding to the variable xi. Only the independent sets Bi,j,1
and Bi,j,3 are shown connected to the main part. We have supposed that the assignment (xi = 3) is
satisfiable, and we have marked the corresponding mixed dominating set: filled vertices are in D,
thick edges are in M .

f. For each ` ∈ {0, . . . , 4} both vertices of Bi,j,` are connected to ui,5j+`.
g. For each ` ∈ {0, . . . , 4} let `′ = (`+ 2) mod 5 and `′′ = (`+ 3) mod 5. One vertex of

Bi,j,` is connected to ui,5j+`′ and the other to ui,5j+`′′ .

5. For each i ∈ {1, . . . , n} and j ∈ {0, . . . , Fm − 1} construct A copies of the gadget Qi,j
and connect them to the main part as described above.

This completes the construction. The target mds size is k, as defined above. We now
argue that the reduction is correct and G has the desired pathwidth.

I Lemma 7. If ϕ is satisfiable, then there exists an mds in G of size at most k.

Proof. Assume that ϕ admits some satisfying assignment ρ : {x1, . . . , xn} → {0, 1, 2, 3, 4}.
We construct a solution as follows:

1. For each i ∈ {1, . . . , n} let α = ρ(xi). For each j ∈ {0, . . . , Fm − 1}, we select in the
dominating set the vertex ui,5j+α.

2. Let U ′ be the set of vertices ui,j of the main part which were not selected in the previous
step and which do not have a neighbor selected in the previous step. We add to the
solution all edges of a maximum matching of G[U ′], as well as all vertices of U ′ left
unmatched by this matching.

IPEC 2020



9:8 New Algorithms for Mixed Dominating Set

3. For each j ∈ {0, . . . , Fm− 1}, G contains a gadget Hj . Consider the constraint cj′ for
j′ = j mod m. Let σ be an assignment in the list of cj′ that agrees with ρ (such a σ must
exist, since the constraint is satisfied by ρ). We add to the solution the edges of a perfect
matching from Wj to

⋃
σ′ 6=σ Zσ′,j .

4. For each j ∈ {0, . . . , Fm− 1} and i ∈ {1, . . . , n} we have added to the graph A copies of
the consistency gadget Qi,j . For each copy we add to the solution a perfect matching
from Ai,j to

⋃
` 6=ρ(xi) Bi,j,`.

5. We set s ∈ D.

Let us first argue why this solution has size at most k. In the first step we select Fnm
vertices. In the second step we select at most Fnm+n elements. To see this, note that if ui,j
is taken in the previous step, then ui,j+5 is also taken (assuming j + 5 < 5Fm), which leaves
two adjacent vertices (ui,j+2, ui,j+3). These vertices will be matched in G[U ′] and in our
solution. Note that, for a variable xi, if ρ(xi) 6= 2, then at most one vertex is left unmatched
by the matching taken, so the cost for this variable is at most Fm+ 1. If ρ(xi) = 2, then at
most two vertices are left matched by the matching taken, so the cost for this variable is at
most (Fm− 1) + 2. Furthermore, for each Hj we select |Wj | = 2q(C − 1) edges. For each
copy of Qi,j we select 8 edges, for a total cost of 8AFmn. Taking into account s, the total
cost is at most Fnm+ n+ Fnm+ 2Fmq(C − 1) + 8AFmn+ 1 = k.

Let us argue why the solution is feasible. First, all vertices ui,j and all edges connecting
them to each other are clearly dominated by the first two steps of our selection. Second, for
each Hj , the vertex s together with the endpoints of selected edges form a vertex cover of
Hj , so all internal edges are dominated. Furthermore, s dominates all vertices which are
not endpoints of our solution, except Zσ,j , where σ is the selected assignment of cj′ , with
j′ = j mod m. We then need to argue that the vertices of Zσ,j and the edges connecting it
to the main part are covered.

Recall that the 2q vertices of Zσ,j are partitioned into pairs, with each pair z1
σ,j,i, z

2
σ,j,i

reserved for the variable xi involved in cj′ . We now claim that z1
σ,j,i, z

2
σ,j,i are dominated

by our solution, since we have selected the vertex ui,5j+α, where α = ρ(xi). Furthermore,
ui,5j+β , ui,5j+γ , where β = (a+ 2) mod m, γ = (a+ 3) mod m, belong in U ′ and therefore
the edges incident to them are covered. Finally, to see that the Qi,j gadgets are covered,
observe that for each such gadget only 2 vertices of some Bi,j,` are not in P . The common
neighbor of these vertices is in D, and their other neighbors in the main part are in P . J

The idea of the proof of the next Lemma is the following: by partitioning the graph into
different parts and lower bound the cost of these parts, we prove that if a mixed dominating
set in G has not the same form as in Lemma 7 in a sufficiently large copy, then it has size
strictly greater than k, enabling us to produce a satisfiable assignment for ϕ using the mixed
dominating set which has the desired form.

I Lemma 8. If there exists a mixed dominating set in G of size at most k, then ϕ is
satisfiable.

Proof. Suppose that we are given, without loss of generality (Lemma 3), a nice mixed
dominating set of G of minimum cost. We therefore have a partition of V (G) into V =
D ∪ P ∪ I, and a perfect matching M of G[P ]. Before proceeding, let us define for a set
S ⊆ V (G) its cost as cost(S) = |S ∩D| + |S∩P |

2 . Clearly, cost(V (G)) ≤ k and for disjoint
sets S1, S2 we have cost(S1 ∪ S2) = cost(S1) + cost(S2). Our strategy will therefore be to
partition V into different parts and lower bound their cost.



L. Dublois, M. Lampis, and V. T. Paschos 9:9

First, we give some notations. Consider some j ∈ {0, . . . , Fm − 1} and i ∈ {1, . . . , n}:
recall that we have constructed A copies of the gadget Qi,j , call them Q1

i,j , . . . , Q
A
i,j ;

also let Si,j = {ui,5j , ui,5j+1, . . . , ui,5j+4}. Now, for some j ∈ {0, . . . , Fm − 1}, let Sj =
Hj ∪

⋃
i∈{1,...,n}

(
Si,j ∪

⋃
r∈{1,...,A}Q

r
i,j

)
.

B Claim 9. cost(Sj) ≥ 2q(C − 1) + 2n+ 8An.

Proof. We begin with some easy observations. First, it must be the case that s ∈ D. If not,
either s1 or s2 are in D, which contradicts the niceness of the solution.

Consider some j ∈ {0, . . . , Fm− 1} and i ∈ {1, . . . , n}. We will say that, for 1 ≤ r ≤ A,
Qri,j is normal if we have the following: Qri,j ∩D = ∅ and there exists ` ∈ {0, . . . , 4} such
that Qri,j ∩ P = Ai,j ∪

⋃
`′ 6=`Bi,j,`′ . In other words, Qri,j is normal if locally the solution has

the form described in Lemma 7.
We now observe that for all i, j, r we have cost(Qri,j) ≥ 8. To see this, observe that if

there exists a ∈ Ai,j ∩ I, then the 2k + 1 neighbors of a must be in D ∪ P , so the solution
cannot have cost k. Hence, Ai,j ⊆ D ∪ P . Furthermore, the maximum independent set of⋃
`∈{0,...,4}Bi,j,` is 2, so |(

⋃
`∈{0,...,4}Bi,j,`) ∩ (D ∪ P )| ≥ 8. Following this reasoning we also

observe that if Qri,j is not normal, then we have cost(Qri,j) > 8. In other words, 8 is a lower
bound for the cost of every copy of Qi,j , which can only be attained if a copy is normal.

Consider some j ∈ {0, . . . , Fm − 1} and i ∈ {1, . . . , n} and suppose that none of the
A copies of Qi,j is normal. We will then arrive at a contradiction. Indeed, we have
cost(

⋃
r Q

r
i,j) ≥ 8A + A/2 ≥ 8A + 10. We create another solution by doing the following:

take the five vertices ui,5j , ui,5j+1, . . . , ui,5j+4, and take in all Qi,j a matching so that Qi,j is
normal. This has decreased the total cost, while keeping the solution valid, which should not
be possible.

We can therefore assume from now on that for each i, j at least one copy of Qi,j is normal,
hence, there exists ` ∈ {0, . . . , 4} such that Bi,j,` ⊆ I in that copy.

Recall that Si,j = {ui,5j , ui,5j+1, . . . , ui,5j+4}. We claim that for all i ∈ {1, . . . , n}, j ∈
{0, . . . , Fm − 1}, we have cost(Si,j) ≥ 2. Indeed, if we consider the normal copy of Qi,j
which has Bi,j,` ⊆ I, the two vertices of Bi,j,` have three neighbors in Si,j , and at least one
of them must be in D.

In addition, we claim that for all j ∈ {0, . . . , Fm− 1} we have cost(Hj) ≥ 2q(C− 1). The
reasoning here is similar to Qi,j , namely, the vertices of Wj cannot belong to I (otherwise we
get 2k+ 1 vertices in D ∪P ); and from the 2qC vertices in

⋃
σ Zσ,j at most 2q can belong to

I.
We now have the lower bounds we need: cost(Sj) ≥ 2q(C − 1) + 2n+ 8An. C

Now, if for some j we have cost(Sj) > 2q(C − 1) + 2n + 8An we will say that j is
problematic.

B Claim 10. There exists a contiguous interval J ⊆ {0, . . . , Fm−1} of size at least m(3n+1)
in which all j ∈ J are not problematic.

Proof. Let L ⊆ {0, . . . , Fm− 1} be the set of problematic indices. We claim that |L| ≤ 2n.
Indeed, we have cost(V (G)) = 1 +

∑
j∈{0,...,Fm−1} cost(Sj) ≥ 1 + Fm(2q(C − 1) + 2n +

8An) + |L|/2 = k − n+ |L|/2. But since the total cost is at most k, we have |L|/2 ≤ n.
We will now consider the longest contiguous interval J ⊆ {0, . . . , Fm− 1} such that all

j ∈ J are not problematic. We have |J | ≥ Fm/(|L|+ 1) ≥ m(3n+ 1). C

Before we proceed further, we note that if j is not problematic, then for any i ∈ {1, . . . , n},
all edges of M which have an endpoint in Si,j , must have their other endpoint also in the
main part, that is, they must be edges of the main paths. To see this note that if j is not
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9:10 New Algorithms for Mixed Dominating Set

problematic, all Qi,j are normal, so there are 8 vertices in Ai,j ∩ P which must be matched
to the 8 vertices of (

⋃
`Bi,j,`) ∩ P . Similarly, in Hj the 2q(C − 1) vertices of Wj ∩ P must

be matched to the 2q(C − 1) vertices of (
⋃
σ Zσ,j) ∩ P , otherwise we would increase the cost

and j would be problematic.
Consider now a non-problematic j ∈ J and i ∈ {1, . . . , n} such that cost(Si,j) = 2. We

claim that the solution must follow one of the five configurations below (see also Figure 1):

(a) ui,5j ∈ D and (ui,5j+2, ui,5j+3) ∈M .
(b) ui,5j+1 ∈ D and (ui,5j+3, ui,5j+4) ∈M .
(c) ui,5j+2 ∈ D, (ui,5j+4, ui,5j+5) ∈M , and (ui,5j−1, ui,5j) ∈M .
(d) ui,5j+3 ∈ D and (ui,5j , ui,5j+1) ∈M .
(e) ui,5j+4 ∈ D and (ui,5j+1, ui,5j+2) ∈M .

Indeed, it is not hard to see that these configurations cover all the cases where exactly
one vertex of Si,j is in D and exactly two are in P . This is a condition enforced by the fact
that one of the Qi,j copies is normal, and that cost(Si,j) = 2.

B Claim 11. There exists a contiguous interval J ′ ⊆ {0, . . . , Fm− 1} of size at least m in
which all j ∈ J ′ are not problematic and for all j1, j2 ∈ J ′, Si,j1 and Si,j2 are in the same
configuration.

Proof. Given the five configurations, we now make the following simple observations, where
statements apply for all i ∈ {1, . . . , n} and j such that j, j + 1 ∈ J :

If Si,j is in configuration (a), then Si,j+1 is also in configuration (a).
If Si,j is in configuration (c), then Si,j+1 is also in configuration (c).
If Si,j is in configuration (d), then Si,j+1 is in configuration (d) or (a).
If Si,j is in configuration (b), then Si,j+1 is in configuration (b), (d), or (a).

For the first claim, we note that in configuration (a) vertex ui,5j+4 is not dominated,
forcing the selection of ui,5j+5 ∈ D. The second claim is obtained by the observation that
all edges of M in this area of the graph must be edges of the path and a parity argument.
The third claim is based on the fact that in configuration (d) the edge (ui,5j+4, ui,5j+5)
must be covered by placing ui,5j+5 in D ∪ P . Finally, configuration (b) cannot be followed
by configuration (c), again for parity reasons, nor by configuration (e), because the vertex
ui,5j+5 would be uncovered.

We will now say for some i ∈ {1, . . . , n}, j ∈ J , that j is shifted for variable i if j + 1 ∈ J
but Si,j and Si,j+1 do not have the same configuration. We observe that there cannot exist
distinct j1, j2, j3, j4 ∈ J such that all of them are shifted for variable i. Indeed, if we draw a
directed graph with a vertex for each configuration, and an arc (u, v) expressing the property
that the configuration represented by v can follow the one represented by u, if we take into
account the observations above, the graph will be a DAG with maximum path length 3.
Hence, a configuration cannot shift 4 times, as long as we stay in J (the part of the graph
where the minimum local cost is attained everywhere).

By the above, the number of shifted indices j ∈ J is at most 3n. Hence, the longest
contiguous interval without shifted indices has length at least |J |/(3n+ 1) ≥ m. Let J ′ be
this interval. C

We are now almost done: we have located an interval J ′ ⊆ {0, . . . , Fm − 1} of length
at least m where for all i ∈ {1, . . . , n} and all j1, j2 ∈ J ′ we have the same configuration in
Si,j1 and Si,j2 . We now extract an assignment from this in the natural way: if ui,5j+` ∈ D,
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for some j ∈ J ′, ` ∈ {0, . . . , 4}, then we set xi = `. We claim this satisfies ϕ. Consider a
constraint cj′ of ϕ. There must exist j ∈ J ′ such that j′ = j mod m, because |J ′| ≥ m

and J ′ is contiguous. We therefore check Hj , where there exists σ such that Zσ,j ⊆ I (this
is because j is not problematic, that is, Hj attains the minimum cost). But because the
vertices and incident edges of Zσ,j are dominated, it must be the case that the assignment
we extracted agrees with σ, hence cj′ is satisfied. J

We now show that the pathwidth of G is at most n+O(1).

I Lemma 12. The pathwidth of G is at most n+O(q5q).

Proof. We will show how to build a path decomposition. First, we can add s to all bags, so
we focus on the rest of the graph. Second, after removing s from the graph, some vertices
become leaves. It is a well-known fact that removing all leaves from a graph can only increase
the pathwidth by at most 1. To see this, let G′ be the graph obtained after deleting all
leaves of G and suppose we have a path decomposition of G′ of width w. We obtain a path
decomposition of G by doing the following for every leaf v: find a bag of width at most w
that contains the neighbor of v and insert after this bag, a copy of the bag with v added.
Clearly, the width of the new decomposition is at most w + 1. Because of the above we will
ignore all vertices of G which become leaves after the removal of s.

For all j ∈ {0, . . . , Fm−1}, we will denote Sj = Hj∪
⋃
i∈{1,...,n}

(
Si,j ∪

⋃
r∈{1,...,A}Q

r
i,j

)
,

where Si,j = {ui,5j , . . . , ui,5j+4}, and Q1
i,j , . . . , Q

A
i,j are the A copies of the gadget Qi,j . We

will show how to build a path decomposition of G[Sj ] with the following properties:

The first bag of the decomposition contains vertices ui,5j , for all i ∈ {1, . . . , n}.
The last bag of the decomposition contains vertices ui,5j+4, for all i ∈ {1, . . . , n}.
The width of the decomposition is n+O(q5q).

If we achieve the above then we can obtain a path decomposition of the whole graph:
indeed, the sets Sj partition all remaining vertices of the graph, while the only edges not
covered by the above decompositions are those between ui,5j+4 and ui,5(j+1). We therefore
place the decompositions of Sj in order, and then between the last bag of the decomposition
of Sj and the first bag of the decomposition of Sj+1 we have 2n “transition” bags, where in
each transition step we add a vertex ui,5(j+1) in the bag, and then remove ui,5j+4.

Let us now show how to obtain a decomposition of G[Sj ], having fixed the contents of
the first and last bag. First, Hj has order O(q5q), so we place all its vertices to all bags. The
remaining graph is a union of paths of length 4 with the Qi,j gadgets attached. We therefore
have a sequence of O(n) bags, where for each i ∈ {1, . . . , n} we add to the current bag the
vertices of Si,j , then add and remove one after another whole copies of Qi,j , then remove
Si,j except for ui,5j+4. J

We are now ready to present the main result of this section. By putting together Lemmas
7, 8, 12 and the negative result for q-CSP-5 (Lemma 6), we get the following Theorem:

I Theorem 13. Under SETH, for all ε > 0, no algorithm solves Mixed Dominating Set
in time O∗((5− ε)pw), where pw is the input graph’s pathwidth.

Proof. Fix ε > 0 and let q be sufficiently large so that Lemma 6 is true. Consider an instance
ϕ of q-CSP-5. Using our reduction, create an instance (G, k) of Mixed Dominating Set.
Thanks to Lemma 7 and Lemma 8, we know that ϕ is satisfiable if and only if there exists a
mixed dominating set of size at most k in G.
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Suppose there exists an algorithm which solves Mixed Dominating Set in time O∗((5−
ε)pw). With this algorithm and our reduction, we can determine if ϕ is satisfiable in time
O∗((5−ε)pw), where pw = n+O(q5q) = n+O(1), so the total running time of this procedure
is O∗((5− ε)n), contradicting the SETH. J

4 Exact Algorithm

In this section, we describe an algorithm for the Mixed Dominating Set problem running
in time O∗(1.912n). Let us first give an overview of our algorithm. Consider an instance
G = (V,E) of the Mixed Dominating Set problem and fix, for the sake of the analysis, an
optimal solution which is a nice mixed dominating set. Such an optimal solution must exist
by Lemma 3, so suppose it gives the nice mds partition V = D ∪ P ∪ I.

By Lemma 4, there exists a minimal vertex cover C of G for which D ⊆ C ⊆ D ∪P . Our
first step is to “guess” C, by enumerating all minimal vertex covers of G. This decreases our
search space, since we can now assume that vertices of C only belong in D ∪ P , and vertices
of V \ C only belong in P ∪ I.

For our second step, we branch on the vertices of V , placing them in D, P , or I. The
goal of this branching is to arrive at a situation where our partial solution dominates V \ C.
The key idea is that any vertex of C that may belong in D must have at least two private
neighbors, hence this allows us to significantly speed up the branching for low-degree vertices
of D. Finally, once we have a partial solution that dominates all of V \ C, we show how to
complete this optimally in polynomial time using a maximum matching computation.

We now describe the three steps of our algorithm in order and give the properties we are
using step by step. In the remainder we assume that G has no isolated vertices (since these
are trivially handled). Therefore, by Lemma 3 there exists an optimal nice mds. Denote the
corresponding partition as V = D ∪ P ∪ I.

Step 1. Enumerate all minimal vertex covers of G. For each such vertex cover C we execute
the rest of the algorithm. In the end output the best solution found.

Thanks to Lemma 4, there exists a minimal vertex cover C with D ⊆ C ⊆ D ∪ P . Since
we will consider all minimal vertex covers, in the remainder we focus on the case where the
set C considered satisfies this property. Let Z = V \ C. Then Z is an independent set of G.
We now get two properties we will use in the branching step of our algorithm:

1. For all u ∈ C, u can be either in D or in P , because C ⊆ D ∪ P .
2. For all v ∈ Z, v can be either in P or in I, because D ⊆ C.

Step 2. Branch on the vertices of V as described below.
The branching step of our algorithm will be a set of Reduction and Branching Rules over

the vertices of C or Z. In order to describe a recursive algorithm, it will be convenient to
consider a slightly more general version of the problem: in addition to G, we are given three
disjoint sets Df , Pf , P

′
f ⊆ V , and the question is to build a nice mds partition V = D∪P ∪ I

of minimum cost which satisfies the following properties: Df ⊆ D ⊆ C, Pf ⊆ P ∩ C, and
P ′f ⊆ P ∩ Z. Clearly, if Df = Pf = P ′f = ∅ we have the original problem and all properties
are satisfied. We will say that a branch where all properties are satisfied is good, and our
proof of correctness will rely on the fact that when we branch on a good instance, at least
one of the produced branches is good. The intuitive meaning of these sets is that when we
decide in a branch that a vertex belongs in D or in P in the optimal partition we place it
respectively in Df , Pf or P ′f (depending on whether the vertex belongs in C or Z).
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We now describe a series of Rules which, given an instance of Mixed Dominating Set
and three sets Df , Pf , P

′
f , will recursively produce subinstances where vertices are gradually

placed into these sets. Our algorithm will consider the Reduction and Branching Rules in
order and apply the first Rule that can be applied. Note that we say that a vertex u is
decided if it is in one of the sets Df ⊆ D, Pf ⊆ P , or P ′f ⊆ P . All the other vertices are
considered undecided.

Throughout the description that follows, we will use U to denote the set of undecided
vertices which are not dominated by Df , that is, U := V \ (Df ∪ Pf ∪ P ′f ∪ (N(Df ) ∩ Z)).
We will show that when no rule can be applied, U is empty, that is, all vertices are decided
or dominated by Df . In the third step of our algorithm we will show how to complete the
solution in polynomial time when U is empty. Since our Rules do not modify the graph, we
will describe the subinstances we branch on by specifying the tuple (Df , Pf , P

′
f ).

To ease notation, let UC = U ∩C and UZ = U ∩Z. Recall that for u ∈ V , we use dUC
(u)

and dUZ
(u) to denote the size of the sets N(u) ∩ UC = NUC

(u) and N(u) ∩ UZ = NUZ
(u),

respectively.

Reduction Rule (R1): If there exists u ∈ UC such that dUZ
(u) ≤ 1, then put u in Pf , that

is, recurse on the instance (Df , Pf ∪ {u}, P ′f ).
Reduction Rule (R2): If there exists v ∈ UZ such that dUC

(v) = 0, then put u in P ′f , that
is, recurse on the instance (Df , Pf , P

′
f ∪ {v}).

Branching Rule (B1): If there exists u ∈ UC such that dUZ
(u) ≥ 4, then branch on the

following two subinstances: (Df ∪ {u}, Pf , P ′f ) and (Df , Pf ∪ {u}, P ′f ).
Note that we may now assume that all vertices of UC have dUZ

∈ {2, 3}. The following
two rules eliminate vertices u ∈ UC with dUZ

(u) = 2.
Branching Rule (B2.1): If there exists u1, u2 ∈ UC such that dUZ

(u1) = 3, dUZ
(u2) = 2, and

NUZ
(u1)∩NUZ

(u2) 6= ∅ then branch on the following instances: (Df ∪{u1}, Pf ∪{u2}, P ′f )
and (Df , Pf ∪ {u1}, P ′f ).

Branching Rule (B2.2): If there exists u ∈ UC with dUZ
(u) = 2 we branch on the instances

(Df ∪ {u}, Pf , P ′f ) and (Df , Pf ∪ {u}, P ′f ).
We now have that all vertices u ∈ UC have dUZ

(u) = 3. Let us now branch on vertices of
UZ to ensure that these also do not have too low degree.

Branching Rule (B3.1): If there exists v ∈ UZ with dUC
(v) = 1 let NUC

(v) = {u}. We
branch on the instances (Df ∪ {u}, Pf , P ′f ) and (Df , Pf ∪ {u}, P ′f ).

Branching Rule (B3.2): If there exists v ∈ UZ with dUC
(v) = 2 let NUC

(v) = {u1, u2}. We
branch on the instances (Df ∪ {u1}, Pf , P ′f ), (Df ∪ {u2}, Pf ∪ {u1}, P ′f ), and (Df , Pf ∪
{u1, u2}, P ′f ).
If we cannot apply any of the above Rules, for all u ∈ UC we have dUZ

(u) = 3 and for all
v ∈ UZ we have dUC

(v) ≥ 3. We now consider three remaining cases: (i) there exists a
C4 made up of two vertices of UC and two vertices of UZ (ii) there exists a vertex v ∈ UZ
with dUC

(v) = 3 (iii) everything else.
Branching Rule (B4): If there exist u1, u2 ∈ UC and v1, v2 ∈ UZ with (ui, vj) ∈ E for all

i, j ∈ {1, 2}, then we branch on the instances (Df ∪ {u1}, Pf ∪ {u2}, P ′f ) and (Df , Pf ∪
{u1}, P ′f ).

Branching Rule (B5): If there exists v ∈ UZ with dUC
(v) = 3, let NUC

(v) = {u1, u2, u3}
and for i ∈ {1, 2, 3} let Xi = {w ∈ UC \{u1, u2, u3} | N(w)∩N(ui)∩(UZ \{v}) 6= ∅}, that
is, Xi is the set of vertices of UC that share a neighbor with ui in UZ other than v. Then
we branch on the following 8 instances: (i) the instance (Df , Pf ∪ {u1, u2, u3}, P ′f ∪ {v}}
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(ii) for i ∈ {1, 2, 3}, we produce the instances (Df ∪{ui}, Pf ∪({u1, u2, u3}\{ui}), P ′f ) (iii)
for i, j ∈ {1, 2, 3}, with i < j we produce the instances (Df ∪ {ui, uj}, Pf ∪ ({u1, u2, u3} \
{ui, uj}) ∪Xi ∪Xj , P

′
f ) (iv) we produce the instance (Df ∪ {u1, u2, u3}, Pf ∪X1 ∪X2 ∪

X3, P
′
f ).

Branching Rule (B6): Consider u ∈ UC and let NUZ
(u) = {v1, v2, v3}. We branch on

the following instances: (Df , Pf ∪ {u}, P ′f ), (Df ∪ {u}, Pf ∪ NU1(v1) \ {u}, P ′f ), and
(Df ∪ {u}, Pf ∪ (NU1(v2) ∪NU1(v3)) \ {u}, P ′f ).

Our algorithm applies the above Rules in order as long as possible. Before proceeding to
explain what happens when no Rule is applicable, let us first establish two useful correctness
properties. We will say that a tuple (Df , Pf , P

′
f ) is good if Df ⊆ D, Pf ⊆ P ∩ C, and

P ′f ⊆ P \ C.

I Lemma 14. If we apply the first Rule that can be applied on an instance characterized by
a good tuple, then we produce at least one instance characterized by a good tuple.

Proof. We consider the Rules in order. For Reduction Rule 1, observe that all neighbors of
u in U1 cannot be private neighbors of u since UC ⊆ C ⊆ D ∪ P , and because dUZ

(u) ≤ 1,
the vertex u can have at most one private neighbor, so it must be the case that u ∈ P . For
Reduction Rule 2, v must be dominated, but it has no neighbor in UC , so it must be the
case that v ∈ P . Branching Rule B1 is trivially correct from C ⊆ D ∪ P .

Branching Rule B2.1 is correct because if u1 ∈ D, then u2 cannot have two private
neighbors and it is forced to be in P . Branching Rule B2.2 is trivially correct again from
C ⊆ D ∪ P .

Again, from C ⊆ D ∪ P , Branching Rule B3.1 is trivially correct. Branching rule B3.2 is
correct since we have the three following cases: u1 ∈ D ; or u1 ∈ P and u2 ∈ D ; or u1 and
u2 ∈ P .

Branching Rule B4 is correct because if u1 ∈ D, then u2 cannot have two private neighbors
since dUZ

(v) = 3.
Branching Rule B5 is correct since we have the following cases: all vertices u1, u2 and

u3 are in P ; or exactly one of them is in D ; or exactly two of them are in D ; or all of
them are in D. Note first that u1, u2 and u3 only share v as neighbor in UZ since Branching
Rule B4 is not triggered. In the first case, v has to be dominated so it must be the case
that v ∈ P . In the second case, the two vertices not in D necessarily are in P . In the third
case, since ui and uj share v as common neighbor and both have exactly three neighbors in
UZ , the vertices of Xi and Xj have to be in P because otherwise ui and uj do not have two
private neighbors. In the last case, and for the same reason, the vertices of X1, X2, and X3
have to be in P .

Finally, Branching Rule B6 is correct because if u ∈ D, then either v1 is one of its private
neighbors, or both v2 and v3 are its private neighbors. J

I Lemma 15. If none of the Rules can be applied then U = ∅.

Proof. Observe that by applying rules R1, B1, B2.2, B6, we eventually eliminate all vertices
of UC , since these rules alone cover all the cases for dUZ

(u) for any u ∈ UC . So, if none of
these rules applies, UC is empty. But then applying R2 will also eliminate UZ , which makes
all of U empty. J

Step 3. When U is empty, reduce the problem to Maximum Matching.
We now show how to complete the solution in polynomial time.
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I Lemma 16. Let (Df , Pf , P
′
f ) be a good tuple such that no Rule can be applied. Then it is

possible to construct in polynomial time a mixed dominating set of size |D|+ |P |
2 .

Proof. Because no Rule can be applied, by Lemma 15 we have U = V \ (Df ∪ Pf ∪ P ′f ∪
(N(Df ) \ C)) = ∅.

Let M be a maximum matching of G[Pf ∪ P ′f ]. Then, we claim that |D| + |P |/2 ≥
|Df |+ |Pf ∪P ′f | − |M |. First, |D| ≥ |Df | because Df ⊆ D. We now claim that P \ (Pf ∪P ′f )
is an independent set. Indeed, P \ (Pf ∪ P ′f ) is a set of undecided vertices, and because U
is empty, the only undecided vertices are those in Z ∩N(Df ), which is an independent set.
Consider now a perfect matchingM ′ of G[P ], and letM ′′ be the set of edges of that matching
that have both endpoints in Pf ∪ P ′f . Clearly, |M ′′| ≤ |M |. Let P ′ = (Pf ∪ P ′f ) \ V (M ′′).
By the definitions of M ′, M ′′, P ′, and the fact that P \ (Pf ∪ P ′f ) is an independent set, we
have: |P |/2 = |M ′| = |M ′′|+ |P ′|. By this, we get: |P |/2 = |M ′′|+ |Pf ∪ P ′f | − |V (M ′′)| =
|Pf ∪ P ′f | − |M ′′| ≥ |Pf ∪ P ′f | − |M |. By summing this last inequality with |D| ≥ |Df |, we
get: |D|+ |P |/2 ≥ |Df |+ |Pf ∪ P ′f | − |M |.

We will now show how to construct a valid mixed dominating set of size |Df |+ |Pf ∪P ′f |−
|M | in polynomial time, where again M is a maximum matching of G[Pf ∪ P ′f ]. Specifically,
we select all vertices of Df , all edges of M , and an edge incident on each unmatched vertex
of Pf ∪ P ′f . The size of such a solution is |Df |+ |M |+ (|Pf ∪ P ′f | − 2|M |), which is equal to
the bound we promised.

To conclude, let us explain why the solution we have produced is a valid mixed dominating
set (even though it is not necessarily a nice mds). First, the solution we produced puts all
vertices of C in D ∪ P , therefore, since C is a vertex cover, all edges are covered. Second,
since all Rules were exhaustively applied, our tuple gives U = ∅, which implies that all
vertices of Z are either in N(Df ) or in P ′f , therefore dominated. J

We give a small overview of the analysis of the running time of our exact algorithm. First,
enumerating all minimal vertex covers takes times at most O∗(3n/3), which is also an upper
bound on the number of such covers [22]. Moreover, we observe that we can decide if a Rule
applies in polynomial time, and the algorithm of Lemma 16 runs in polynomial time. We
therefore only need to bound the number of subinstances the branching step will produce, as
a function of n.

We define our measure of progress as the size of the set {u ∈ UC | dUZ
(u) ≥ 2} ∪ {v ∈

UZ | dUC
(v) ≥ 1}. In other words, we count the undecided vertices of UC that have at least

two undecided, non-dominated vertices in Z, and the undecided, non-dominated vertices
of Z that have at least one undecided neighbor in C. This is motivated by the fact that
undecided vertices that do not respect these degree bounds are eliminated by the Reduction
Rules and hence do no affect the running time. Let l denote the number of vertices that we
counted according to this measure. Clearly, we have l ≤ n.

Of all the above rules, the worst case is given by Branching Rule B5, which leads to a
complexity of 1.3252l. Taking into account the cost of enumerating all minimal vertex covers
and the fact that l ≤ n, the running time of our algorithm is O∗(3n/3 ·1.3252n) = O∗(1.912n).

I Theorem 17. Mixed Dominating Set can be solved in time O∗(1.912n) and polynomial
space.
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5 FPT Algorithm

In this section we describe an algorithm for k-Mixed Dominating Set running in time
O∗(3.510k), where k is the value of the optimal solution. Our algorithm is based on a
branching procedure very similar to the one used in [26], which runs in time O∗(4.172k). We
only sketch the different branching rules and explain, on a high level, how the notion of nice
dominating sets allows us to obtain the improved running time.

We fix for the analysis an optimal nice mds and its partition V = D ∪ P ∪ I. The
branching algorithm will gradually build two sets Df , Pf which are the vertices decided to
be in D,P respectively. Let U = V \ (Df ∪ Pf ) be the set of undecided vertices. As noted
in [26], a basic branching algorithm considers for each u ∈ U the cases u ∈ Df , u ∈ Pf ,
and all partitions of NU (u) into Df , Pf . This leads to a performance similar to that of [12]
(O∗(7.465k)). The key idea of [26] is to identify the importance of the set U∗ = U \N(Df )
of undecided, undominated vertices. Branching on U∗ is faster because we no longer need to
consider the case N(u) ⊆ Pf . Once U∗ = ∅, the problem becomes much easier.

Our improvement is based on the fact that (by Lemma 3) each u ∈ D has two private
neighbors. This speeds up branching on U∗, as we have: (i) if dU∗(u) < 2, then the branch
u ∈ Df need not be considered (ii) if dU∗(u) = 2 then in the branch where u ∈ Df we may
assume that the two vertices v1, v2 ∈ N(u)∩U∗ are private neighbors of u, so their undecided
neighbors are automatically placed in Pf (iii) if dU∗(u) > 3, for the branch where u ∈ Df we
can consider sub-branches where we decide which are the private neighbors of u, placing the
neighbors of these vertices in Pf . A key element of our analysis is that, because we have sped
up the branching on low-degree (dU∗(u) ≤ 2) vertices, in subsequent branches we are allowed
to assume that all neighbors of u have several undecided neighbors, increasing the profit of
guessing that v is a private neighbor of u. Using these ideas we speed up the branching on
U∗ and the remainder of the algorithm follows along similar lines to [26].

I Theorem 18. k-Mixed Dominating Set can be solved in time O∗(3.510k).
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