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—— Abstract

The FEEDBACK VERTEX SET problem is undoubtedly one of the most well-studied problems in
Parameterized Complexity. In this problem, given an undirected graph G and a non-negative integer
k, the objective is to test whether there exists a subset S C V(@) of size at most k such that G — S
is a forest. After a long line of improvement, recently, Li and Nederlof [SODA, 2020] designed a
randomized algorithm for the problem running in time ©@*(2.7%)!. In the Parameterized Complexity
literature, several problems around FEEDBACK VERTEX SET have been studied. Some of these
include INDEPENDENT FEEDBACK VERTEX SET (where the set S should be an independent set in G),
ALMOST FOREST DELETION and PSEUDOFOREST DELETION. In PSEUDOFOREST DELETION, each
connected component in G — S has at most one cycle in it. However, in ALMOST FOREST DELETION,
the input is a graph G and non-negative integers k,¢ € N, and the objective is to test whether
there exists a vertex subset S of size at most k, such that G — S is £ edges away from a forest. In
this paper, using the methodology of Li and Nederlof [SODA, 2020], we obtain the current fastest
algorithms for all these problems. In particular we obtain following randomized algorithms.

1. INDEPENDENT FEEDBACK VERTEX SET can be solved in time O*(2.7%).

2. PsEuDO FOREST DELETION can be solved in time O*(2.85%).

3. ALMOST FOREST DELETION can be solved in O*(min{2.85" - 8.54°, 2.7% - 36.61¢, 3% - 1.78}).
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Improved FPT Algorithms for Deletion to Forest-Like Structures

1 Introduction

FEEDBACK VERTEX SET (FVS) is a classical NP-complete problem and has been extensively
studied in all subfields of algorithms and complexity. In this problem we are given an
undirected graph G and a non-negative integer k as input, and the goal is to check whether
there exists a subset S C V(G) (called feedback vertex set or in short fvs) of size at most k
such that G — S is a forest. This problem originated in combinatorial circuit design and found
its way into diverse applications such as deadlock prevention in operating systems, constraint
satisfaction and Bayesian inference in artificial intelligence. We refer to the survey by Festa
et al. [14] for further details on the algorithmic study of feedback set problems in a variety
of areas like approximation algorithms, linear programming and polyhedral combinatorics.
FVS has been extensively studied in Parameterized Algorithms. FVS has played a pivotal
role in the development of the field of Parameterized Complexity. The earliest known FPT
algorithms for FVS go back to the late 80s and the early 90s [4, 13] and used the seminal Graph
Minor Theory of Robertson and Seymour. These algorithms are quite impractical because of
large hidden constants in the run-time expressions. Raman et al. [31] designed an algorithm
with running time O*(2O(k10g log k)) which basically branched on short cycles in a bounded
search tree approach. For FVS, the first deterministic O*(c¥) algorithm was designed only in
2005; independently by Dehne et al. [12] and Guo et al. [16]. It is important to note here that
a randomized algorithm for FVS with running time O*(4%) was known in as early as 1999 [3].
The deterministic algorithms led to the race of improving the base of the exponent for FVS
algorithms and several algorithms [6, 7, 8, 9, 17, 22, 23], both deterministic and randomized,
have been designed. Until few months ago the best known deterministic algorithm for FVS
ran in time O*(3.619%) [22], while the Cut & Count technique by Cygan et al. [9] gave the best
known randomized algorithm running in time O*(3*). However, just in the last few months
both these algorithms have been improved; Iwata and Kobayashi [17, IPEC 2019] designed the
fastest known deterministic algorithm with running time 0*(3.460%) and Li and Nederlof [23,
SODA 2020] designed the fastest known randomized algorithm with running time O*(2.7%).
The success on FVS has led to the study of many variants of FVS in literature such as
CoNNECTED FVS [9, 28], INDEPENDENT FVS [1, 24, 27], SIMULTANEOUS FVS [2, 32],
SuBser FVS [11, 18, 19, 20, 26], PSEUDOFOREST DELETION [5, 29], GENERALIZED
PSEUDOFOREST DELETION [29], and ALMOST FOREST DELETION [30, 25].

1.1 OQur Problems, Results and Methods

In this paper we study three problems around FVS, namely, INDEPENDENT FVS, ALMOST
FOREST DELETION, and PSEUDOFOREST DELETION. We first define the generalizations of
forests that are considered in these problems. We say that a graph F' is an ¢-forest, if we can
delete at most £ edges from F' to get a forest. That is, F' is at most ¢ edges away from being
a forest. On the other hand, a pseudoforest is an undirected graph, in which every connected
component has at most one cycle. Now, we are ready to define our problems.

Independent FVS (IFVS): Given a graph G and a non-negative integer k, does there exist
a fvs S of size at most k, that is also an independent set in G7

Almost Forest Deletion (AFD): Given a graph G and two non-negative integers k and ¢,
does there exists a vertex subset S of size at most k such that G — S is an ¢-forest?

Pseudoforest Deletion (PDS): Given a graph G and a non-negative integer k, does there
exists a vertex subset S of size at most k such that G — S is a pseudoforest?
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Given an instance of FVS, by subdividing every edge we get an instance of INDEPENDENT
FVS, showing that it generalizes FVS. On the other hand setting £ = 0 in ALMOST FOREST
DELETION results in FVS. The best known algorithms for INDEPENDENT FVS, ALMOST
FOREST DELETION, and PSEUDOFOREST DELETION are O*(3.619%) [24], O*(5F4%) [25], and
O*(3%) [5], respectively. Our main objective is to improve over these running times for the
corresponding problems. In a nutshell our paper is as follows.

Motivated by the methodology developed by Li and Nederlof [23] for FVS, we
relook at several problems around FVS, such as INDEPENDENT FVS, ALMOST
FOREST DELETION, and PSEUDOFOREST DELETION, and design the current fastest
randomized algorithm for these problems. Our results show that the method of Li
and Nederlof [23] is extremely broad and should be applicable to more problems.

. J

To achieve improvements and tackle INDEPENDENT F'VS and ALMOST FOREST DELETION
at once, we propose a more generalized version of the ALMOST FOREST DELETION problem.

s )

RESTRICTED INDEPENDENT ALMOST FOREST DELETION (RIAFD) Parameter: k and ¢
Input: A graph G, a vertex set R C V(G), and integers k and ¢

Question: Does there exist a vertex set S C V(G) of size at most k that does not
contain any element from R, that is also an independent set in G, and G — S is an
{-forest?

\. J

Setting £ = 0, R = @ we get the INDEPENDENT F'VS problem. A simple polynomial time
reduction, where we subdivide every edge and add all the subdivision vertices to R, yields
an instance of RIAFD, given an instance of ALMOST FOREST DELETION. The reduction
leaves £ and k unchanged.

It is worth mentioning lower bounds for the above problems. Assuming the Ezponential
Time Hypothesis to be true, we know that no algorithm running in time 2°(%) exists for either
of PDS or RIAFD (for a fixed ¢). To describe our results, we first summarize the method
of Li and Nederlof [23] (for FVS) which we adopt accordingly. The main observation guiding
the method is the fact that after doing some simple preprocessing on the graph, we can
ensure that a large fraction of edges are incident on every solution to the problem. This leads
to two-step algorithms, one for the dense case and the other for the sparse case. In particular,
if we are aiming for an algorithm with running time O*(a*), then we do as follows.

Dense Case: In this case, the number of edges incident to any FVS is superlinear(in k), and

we select a vertex into our solution with probability at least é
Sparse Case: Once the dense case is done, we know that we have selected vertices, say k1,

with probability (i)kl. Now, we know that the number of edges incident to an FVS

of the graph is O(k) and the existence of solution S of size at most k, implies that
the input graph has treewidth at most k + 1. Now, using this fact and the fact that
deleting the solution leaves a graph of constant treewidth, we can actually show that
graph has treewidth (1 — Q(1))k = vk. This implies that if we have an algorithm on
graphs of treewidth (tw) with running time S*¥, such that 87 < «, then we get the
desired algorithm with running time O* (o).

So a natural approach for our problems which are parameterized by the solution size is to
devise an algorithm using another algorithm parameterized by treewidth with an appropriate

base in the exponent, along with probabilistic reductions with a good success probability.

34:3
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However, to get the best out of methods of Li and Nederlof [23], it is important to have
an algorithm parameterized by treewidth with an appropriate base in the exponent that is
based on the Cut & Count method [10]. However, for all the algorithms for problems we
consider, only non Cut & Count algorithms were known. Thus, our first result is as follows.

» Theorem 1.1. There exists an O* (3“") time Monte-Carlo algorithm that given a tree
decomposition of the input graph of width tw solves the following problems:

1. RESTRICTED-INDEPENDENT ALMOST FOREST DELETION in exponential space.

2. PSEUDOFOREST DELETION in exponential space.

Note that a yes-instance of RIAFD has treewidth k£ + ¢ + 1. Thus as our first result, we
design a randomized algorithm based on Theorem 1.1 and iterative compression with running
time O* (3% - 3%) for RIAFD. This yields O*(3*) and O*(3% - 3°) running time algorithms for
INDEPENDENT FVS and ALMOST FOREST DELETION, respectively, which take polynomial
space (though, these do not appear in literature). Next, we devise probabilistic reduction
rules to implement the first step in the method of Li and Nederlof [23]. We analyze these
rules by modifying the analysis of their lemmas to get an O*(2.85% - 8.54¢) time algorithm
that takes polynomial space, and an O*(2.7F - 36.61¢) time algorithm that takes exponential
space for solving RIAFD. All these algorithms while progressively improving the dependence
on k slightly, significantly worsen the dependence on ¢. Therefore, to obtain an algorithm
with an improved dependence on ¢ we describe a procedure to construct a tree decomposition
of width k + =2:5¢ + O(log(¢)) given a riafd-set of size k. This procedure when combined
with an iterative compression routine yields an O*(3" - 1.78¢) algorithm for RIAFD. This
brings us to the following result.

» Theorem 1.2. There exist Monte-Carlo algorithms that solve RIAFD problem in
1. 0*(3F - 3% time and polynomial space.

2. 0*(2.85F - 8.54%) time and polynomial space.

3. O*(2.7% - 36.61%) time and exponential space.

4. O*(3%-1.78%) time and exponential space.

As a corollary to Theorem 1.2, we get the following result about INDEPENDENT FVS.

» Theorem 1.3. There exist Monte-Carlo algorithms that solve INDEPENDENT FVS in:
1. O*(3%™) time, given a tree decomposition of width tw.

2. 0*(2.85%) time and polynomial space

3. O*(2.7%) time and exponential space

Although we have a deterministic O*(3*) algorithm for PSEUDOFOREST DELETION given
by Bodlaender et al. [5] which runs in exponential space, to make use of the techniques from
[23] we develop our Cut & Count algorithm which has the same asymptotic running time.
This requires some work to apply Cut & Count here. However, even with our Cut & Count
algorithm, we cannot make full use of the methods of Li and Nederlof [23] and only get the
following improvement.

» Theorem 1.4. There exists a Monte-Carlo algorithm that solves PSEUDOFOREST DELETION
in O*(2.85%) time and polynomial space.

Due to paucity of space we prove only Theorem 1.2 (2) and (4) in this paper. The reader
is referred to the full version of the paper [15] for the details that have been skipped due to
paucity of space.
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2 Preliminaries

For a set A, (A) denotes the set of all partitions of A into three subsets.

Let G(V,E) or G = (V, E) be an undirected graph, where V is the set of vertices and E
is the set of edges. We also denote V(G) to be the vertex set and E(G) to be the edge set
of graph G. Also, |[V| =n and |E| = m. For a vertex subset S C V(G), G[S] denotes the
subgraph induced on the vertex set S. For S,T C V, E[S, T] denotes the edges intersecting
both S and T. For a vertex subset V', the graph G — V'’ denotes the graph G[V \ V’]. For
an edge subset E’, the graph G — E’ denotes the graph G’ = (V, E\ E’). For a vertex v € V,
deg(v) denotes the degree of the vertex, i.e., the number of edges incident on v. For a vertex
subset S C V(G), deg(S) = }_,cgdeg(v). Given an edge e = (u,v), the subdivision of the
edge e is the addition of a new vertex between u and v, i.e. the edge e is replaced by two
edges (u,w) and (w,v), where w is the newly added vertex. Here, w is called a “subdivision
vertex”.

» Definition 2.1. A tree decomposition of a graph G = (V, E) is a pair T = ({B; | « €
I}, T =(I,F)) where T a tree and {B, | x € I} is a collection of subsets (called bags) of V,
such that

1. U Bo =V

2. For all (u,v) € E there is an x € I with {u,v} C B,

3. Forallv €V, the set of nodes {x € I |v C B} forms a connected subtree in T = (V, I)
The width of the tree decomposition ({By | x € I}, T = (I, F)) T is mazyer |Bz| — 1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all tree decompositions

of G.

We sometimes abuse notation and use tw(T) to denote the width of the tree decomposition
T. For the definition above, if there are parallel edges or self loops we can just ignore them,
i.e., a tree decomposition of a graph with parallel edges and self loops is just the tree
decomposition of the underlying simple graph (obtained by keeping only one set of parallel
edges and removing all self loops).

There is also the notion of a nice tree decomposition, which is used in this paper. In
literature, there are a few variants of this notion that differ in details. We use the one with
introduce edge nodes and root bag and leaf bags of size zero. A nice tree decomposition is
a tree decomposition ({B, | x € I},T = (I, F)) where T is rooted tree and the nodes are
one of the following five types. With each bag in the tree decomposition, we also associate a
subgraph of G; the subgraph associated with bag x is denoted G, = (V,,, E,). We give each
type together with how the corresponding subgraph is formed.

Leaf nodes z. x is a leaf of T'; |B,| = 0 and G, = (&, @) is the empty graph.
Introduce vertex nodes . z has one child, say y. There is a vertex v with B, = B,U{v},

v ¢ By, and G, = (V, U{v}, Ey), i.e, G, is obtained by adding an isolated vertex v to G,.

Introduce edge nodes z. = has one child, say y. There are two vertices v,w € By,
B, = By and G, = (V,, E, U {(v,w)}), i.e., G, is obtained from G, by adding an edge
between these two vertices in B,. If we have parallel edges, we have one introduce edge
node for each parallel edge. A self loop with endpoint v is handled in the same way, i.e.,
there is an introduce edge node with v € B, and G, is obtained from Gy by adding the
self loop on wv.

Forget vertex nodes . x has one child, say y. There is a vertex v such that B, = B, \{v}
and G, and G, are the same graph.

34:5
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Join nodes x. x has two children, say y and z. B, = By = B,, V; NV, = B, and
E,NE, =@. G, = (V,UV,,E,UE,), i.e., G, is the union of G, and G, where the
vertex set B, is the intersection of the vertex sets of these two graphs.

In this paper, we will be dealing with randomized algorithms with one-sided error-
probability, i.e. only false negatives are possible. The success-probability of an algorithm is
the probability that the algorithm finds a solution, given that at least one such solution exists.
We define high-probability to be probability at least 1 — ﬁ or sometimes 1 — ‘x%, where |z|
is the input size and c is a constant. Given an algorithm with constant success-probability,
we can boost it to high-probability by performing O*(1) independent trials. We cite the

following folklore observation:

» Lemma 2.2 (Folklore, [23]). If a problem can be solved with success probability + and in
expected time T, and its solutions can be verified for correctness in polynomial time, then it
can be also solved in O*(S - T) time with high probability.

We will use the following notion of separation in a graph from [23]:

» Definition 2.3 (Simple Separator, [23]). Given a graph G(V,E), a partition (A,B,S) €
(V(G)) of V' is a separation if there are no edges between A and B.

A B-separator for a graph G(V, E) is a set of vertices whose removal from G leaves no
connected component of size larger than Wi vertices, where 8 > 0 is some constant. Thus, a
[B-separator is a balanced separator of the graph. More generally, one can define a 3-separator
with respect to a weight function on the vertices. We now give a method to construct a
B-separator of a graph G given a tree decomposition (Lemma 2.4) and its proof can be found

in the full version of the paper [15].

» Lemma 2.4. Given a graph G(V, E) on n vertices with vertex weights w(v) and its tree
decomposition T of width tw, for any 5 > 0, we can delete a set S of B(tw + 1) vertices so
that every connected component of G — S has weight at most % in polynomial time.

In [23], the authors presented a method involving randomized reductions and small
separators to get faster randomized algorithms for FVS. It turns out that this method can
be generalized to work for a certain set of “vertex-deletion problems”. We will now describe
the basic structure of this method and will follow this outline wherever this method is used
in the rest of the paper.

Throughout this outline, assume that we are working on some vertex-deletion problem P.
Let G(V, E) be the graph involved in a given instance of P. A valid solution S C V is a set
of vertices of G which solves the given problem instance of P.

The method is divided into two cases: A dense case and a sparse case.

Dense Case. The algorithm goes into this case when for a given problem all the existing
solution sets are of high average degree. In formal terms, every set S C V of size k which is
a valid solution of the given instance satisfies deg(S) > ¢ - k, where ¢ = O(1).

To handle this case, a vertex v € V is sampled randomly based on a weight function w(v)
which depends on deg(v), deletes v and makes appropriate updates to the parameters. In
this paper, we use w(v) = deg(v) — 2 for all the problems discussed. This process acts like a
probabilistic reduction rule for the problem as it may fail with certain probability.
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Sparse Case. The algorithm goes into this case when for a given problem there exists a
solution set which has low average degree. In formal terms, there exists a vertex subset
S C V of size k which is a valid solution of the given instance and satisfies deg(S) < c¢- k,
where ¢ = O(1). Due to this reason, the number of edges in the given graph can be bounded,
thus the input graph G is sparse.

The proof for the small separator lemma in [23] doesn’t require the remaining graph, i.e.
the graph obtained by deleting the solution set, to be a forest only. As long as there is a
good [-separator of the graph G — S, the proof works. Lemma 2.4 helps to construct such a
B-separator of size S(tw + 1) for a graph with given tree decomposition of width tw.

The small separator helps to construct a tree decomposition of small width, given a
solution set with bounded degree. The idea suggested in [23] was to use iterative compression
techniques to construct a solution utilizing the small separator. This also requires solving
a bounded degree version of the problem, which can be done using Cut & Count based
algorithms. Specific details for each problem will be explained in the corresponding sections
in due course.

3 Proofs of Theorem 1.2 (2) and (4)

We use the method of [23] using the outline described in Section 2. We use the term riafd-set
for a solution to the given instance of RIAFD and the term afd-set for a solution to the
given instance of AFD. Following is a simple reduction rule for RIAFD.

» Definition 3.1 (Reduction 1). Apply the following rules exhaustively, until the remaining

graph has minimum vertex degree at least 2:

1. Delete all vertices of degree at most one in the input graph.

2. If k =0 and G is not an {-forest, then we have a no instance. If k > 0 and G is an
{-forest, we have a yes instance.

3.1 Dense Case

Now we give a probabilistic reduction for RIAFD that capitalizes on the fact that a large
number of edges are incident to the riafd-set. In particular, for a yes instance we focus on
obtaining a probabilistic reduction that succeeds with probability strictly greater than 1/3
so as to achieve a randomized algorithm running in time O*(3 — ¢)¥ with high probability.

» Definition 3.2 (Reduction 2 (P)). Assume that Reduction 1 does not apply and G has a

vertex of degree at least 3. Sample a vertex v € V' proportional to w(v) := (deg(v) — 2) if

v ¢ R, else w(v) := 0. That is, select each vertex with probability :)((5)). Delete v and add its

neighbours to R. Decrease k by 1.
> Claim 3.3. Let F be an afd-set of (G, k, /). Denote F := V(G) \ F. We have that,

deg(F) < deg(F)+2(|[F| — 1 +¢).

Proof. Notice that deg(F) = [2E[F,F]| + |E[F, F]|. As G[F] is an (-forest, |E[F,F]| <
|F| — 1+ ¢. Also, |E[F, F]| < deg(F). Therefore,

deg(F) < 2(|F| — 1+ ¢) + deg(F). <

» Lemma 3.4. Given a graph G, if there exists a riafd-set F' of size k such that deg(F') >
%(k—kﬁ), then success of Reduction 2, which is essentially sampling a vertex v € F', occurs
with probability at least 31

—€°
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Proof. Let FF C V(G) be a riafd-set of G of size exactly k. For Reduction 2 to succeed with
e 1 w(F) 1

probability at least 3=, o > 5

The value of w(F') can be rewritten as,

we need

w(F) =Y (deg(v) — 2) = deg(F) — 2k.
veF

By Claim 3.3 (as riafd-set is also an afd-set),

w(F) < Z(deg(v) —2) =deg(F) — 2|F| < deg(F)+2(|F| —1+¢) — 2|F| < deg(F) + 2¢.

veF
w(F) _ deg(F)—2k 2(k+¢) (€20 2(k+0)
Theref — =1- SN [l S
eI, w(F) ~ deg(F)+2¢ deg(F)+2¢ — deg(F)
Hence, we need 1—M > 1 < deg(F) > 4_2€(k+€). <

deg(F) — 2—¢ 1—ce¢

3.2 Sparse Case

For the sparse case, we first construct a small separator. Due to the presence of two variables
(k and £), we have to modify the small separator lemma in [23] with a bivariate analysis.
Also, though we are discussing RIAFD, we will show how to construct a small separator
assuming that we are given an afd-set, as a riafd-set is also an afd-set.

Small Separator. The main idea, as presented in [23], is to convert an afd-set with small
average degree into a good tree decomposition. In particular, suppose a graph G has an
afd-set F' of size k with deg(F) < d(k + £), where d = O(1). We show how to construct a
tree decomposition of width (1 —Q(1))k + (2 — Q(1))£. Note that d is not exactly the average
degree of F. This definition helps us to bound the width of the tree decomposition well.

Before constructing this separator, we will first see a construction of a S-separator of an
{-forest. We could use Lemma 2.4, but the size of the separator obtained would be ¢ - o(k)
which is huge (treewidth < £). We now give a method to construct a S-separator of size
l+o(k).

» Lemma 3.5. Given an (-forest T(V, E) on n vertices with verter weights w(v), for any
B >0, we can delete a set S of B+ £ vertices in polynomial time so that every connected
component of T — S has total weight at most %

Proof. Construct some spanning tree for each connected component of T, call this resulting
forest T". Let X be the set of remaining edges which are not in T”. For each edge in X,
delete one vertex from T”. As | X| < ¢, we will delete at most £ vertices. The resulting graph
will still be a forest, call it T".

Now, root every component of the forest T at an arbitrary vertex. Iteratively select a
bag = of maximal depth whose subtree has total weight more than %, add all vertices in
B, to S and then remove x and its subtree. The subtrees rooted at the children of v have
total weight at most “’TV), since otherwise, v would not satisfy the maximal depth condition.

Moreover, by removing the subtree rooted at v, we remove at least % total weight, and

this can only happen S times. Thus, we delete at most 3 + £ vertices overall. <
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With the help of Lemma 3.5, we will now proceed to the small separator lemma.

» Lemma 3.6 (Small Separator). Given an instance (G, k,{) and an afd-set F' of G of size
k, define d := dekgif), and suppose that d = O(1). There is a randomized algorithm running
in expected polynomial time that computes a separation (A, B,S) of G such that:

1. [ANF|,|BNF|>2"%—o(1)(k+1¢)—¢

2. 15 <A+4o)(k+¢)—|ANF|—-|BNF]|

Proof. The proof will be similar to [23, Lemma 4]. First, we fix a parameter € := (k+¢) =001

throughout the proof. Apply Lemma 3.5 to the ¢(-forest G — F' with 5 = e(k + £) and vertex
v weighted by |E[v, F]|. Let S. be the output. Observe that:

|Se| <+ e(k+£) =L+ o(k+ 1),
and every connected component C' of G — F — S, satisfies,

|E[F,F]| _ deg(F) _dk+¢) d
EICFI< 000 Schr0 S s <

Now form a bipartite graph H, as in [23], i.e., on the vertex bipartition F & R, where
F is the afd-set, and there are two types of vertices in R, the component vertices and the
subdivision vertices. For every connected component C' in G — F — S, there is a component
vertex v in R that represents that component, and it is connected to all vertices in F
adjacent to at least one vertex in C. For every edge e = (u,v) in E[F, F|, there is a vertex
Ve in R with v and v as its neighbours. Observe that:

(R| < |E[F, F]| + 2| BIF, F)| = deg(F)

every vertex in R has degree at most g

the degree of a vertex v € F in H is at most deg(v).
The algorithm that finds a separator (A, B, S) works as follows. For each vertex in R, color
it red or blue uniformly and independently at random. Every component C' in G — F — S,
whose vertex v¢ is colored red is added to A in the separation (A, B, S), and every component
whose vertex vg is colored blue is added to B. Every vertex in F' whose neighbors are all
colored red joins A, and every vertex in F' whose neighbors are all colored blue joins B. The
remaining vertices in F', along with the vertices in S¢, comprise S. It is easy to see that
(A, B, S) is a separation.

We now show with good probability both conditions (1) and (2) hold. The algorithm can
then repeat the process until both conditions hold.

> Claim 3.7.  With probability at least (1 — ﬁ) condition (1) holds for (A, B, S).

Proof. Firstly, notice that F' has at most e(k + £) vertices with degree at least g. These can
be ignored as they affect condition (1) only by an additive e(k + ¢) = o(k + ¢) factor. Let F’
be the vertices with degree at most %. Now, consider the intersection graph I on vertices of
F' formed by connecting two vertices if they share a common neighbour (in R). Since every

vertex in F’ and all the component vertices have degree at most g, the maximum degree

-\ 2 -\ 2
of Iis at most ( ¢) . Color the vertices of F’ with () + 1 colors such that the vertices
€ €

of the same color class form an independent set in I, using the standard greedy algorithm.

Note that, within each color class, the outcome of each vertex whether it joins A, B or S is
independent across vertices.
Let F/ be the set of vertices colored i. If |F}| < k%9, then this color class can be ignored

N2
since the sum of all such |F}| is at most ((d) + 1> k99 = o(k) and this affects condition (1)

€
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by an additive o(k) factor. Henceforth, assume |F}| > k%9, Each vertex v € F] has at most
deg(v) neighbours in H. So, it can join A with an independent probability of 279¢9(*)_ Let
X; = |F/ N Al, then by Hoeffding’s inequality 2,

|Fi]

?

( 0.8)2 E16 1
Pr[X; < E[X;] — k0'8] <2-exp|—-2- <2-exp (—2 . > <

for large enough k.
By a union bound over all the < k%1 such color classes with |F]| > k%9, the probability
that [F] N A| > E[|F] N A|] — k°® for each F} is 1 — 7. In this case,

FRAl = Y (BIF NAL- k)
i:| F{|>k0-9

Z Z (Tdeg(v)) _ 01 08

i:|Fi’|Zk0-9 vEF]

¢
= Z 9~ deg(v) 220 — 0 —o(k)
=1

veF’

v

_deg(F')
> ([F'[+0)-2 T — £ —o(k),
where the last inequality follows from convexity of the function 27%. Recall that |F’| >
k — o(k + ), and observe that 22 < 49U _ 7 gince the vertices in F \ F’ are vertices

[FI+f = "k+e
with degree greater than some threshold. Thus,

IFAA > (k+0—olk+10) 279 — 1 —o(k) > (Q_d—0(1)> (k+0)— ¢,
proving condition (1) for A. The argument for |B N F| is symmetric. <
> Claim 3.8.  With probability at least 1 — o7y condition (2) holds for (4, B, S).

Proof. Note that at most ¢ 4+ o(k 4 1) vertices in S are from S, and the other vertices in S
are from the set F'\ ((FFNA)U (F N B)) which has size k — |ANF| — |BN F|. Thus, the
overall size of S < (14+0(1))(k+£¢)—|ANF|—|BNF)| <

This completes the proof. <

» Lemma 3.9. Let G be a graph and F be a afd-set of G of size k, and define d := dc;ﬁgi?)'
There is a randomized algorithm that, given G_and F, computes a tree decomposition of
G of width at most (1 — 274+ o(1))k + (2 — 279 + 0(1))¢, and runs in polynomial time in

expectation.

Proof. Compute a separation (A, B, .S) following Lemma 3.6. Conditions (1) and (2) can be
checked easily in polynomial time, so we can repeatedly compute a separation until they both
hold. Notice that G[AU S| — (F U S) is a forest, as S, includes the ¢ vertices corresponding
to the £ extra edges of the ¢-Forest G — F. Thus, (AN F)U S is a fvs of AU S. The size of
this fvs is,

(ANF)US| = |[ANF|+]8] < (1+0(1))(k+£)—|BAF| < (1—-2"%+0(1))k+(2—2 %+ 0(1))L.

2 We use the notation exp(x) to denote the function e®.
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Therefore, we can compute a tree decomposition of G[A U S| of width (1 —27¢+0o(1))k +
(2 — 274 + 0(1))¢ as follows: start with a tree decomposition of width 1 of the forest
G[AUS] — (FUS), and then add all vertices in (AN F)U S to each bag. Call this tree
decomposition of G[A U S] as T;. Similarly, compute a tree decomposition of G[B U S| in
the same way, call it Ts.

Since there is no edge connecting A to B, we can construct the tree decomposition T of
G by simply adding an edge between an arbitrary node from Ty and Ts. It is evident from
the construction procedure that T is a valid tree decomposition of G and it takes polynomial
time to compute it. |

As we are in the sparse case, there exists a riafd-set F' of size k with bounded degree,
i.e., deg(F) < dk. We call this bounded version of the problem BRIAFD. As we saw, the
small separator helps in constructing a tree decomposition of small width, but requires that
we are given an afd-set of size k and bounded degree. To attain this, we use an Iterative
Compression based procedure which at every iteration constructs a riafd-set of size at most &k
with bounded degree and uses it to construct the small separator. Using this small separator
we construct a tree decomposition of small width and run a Cut & Count based procedure to
solve bounded RIAFD problem for the current induced subgraph, i.e, get a riafd-set of size at
most k with bounded degree. Further, we make use of the observation that since each bag of
the tree decomposition consists primarily of vertices from the given afd-set, as seen in proof
of Lemma 3.9, if we fix the states of these vertices in the Cut & Count algorithm, then there
exists only a constant number of vertices in each bag for which we need to compute all states,
and hence reduces the space requirement considerably from exponential (corresponding to
all states of tw number of vertices in each bag) to polynomial space (corresponding to all
states of constant number of vertices in each bag). Due to paucity of space, the details of
the algorithm are deferred to the full version of the paper [15]. We state the result here.

» Lemma 3.10. There is an algorithm RIAFD_IC1 that solves BRIAFD in O*(3(1’272+°(1))’“-

3(2_2%“‘0(1))5) time and polynomial space.

3.3 Combining dense and sparse cases: Algorithm for RIAFD

Having described the Dense and the Sparse Cases, we now combine them to give the final
randomized algorithm. Now, we give the Algorithm RIAFD1(G, k, £), which is the complete
randomized algorithm combining the Dense and the Sparse Cases (small separator).

» Lemma 3.11. Fiz the parameter € € (0,1) and d := 222, let ¢, := ma:c{?) — 6,317275}

1—e

3 —k
and cg := 3272 . Then RIAFD1(G, R, k,£) succeeds with probability at least % and has
O* (3°+0) expected running time.

Proof. We will focus on running time for each iteration of the outer loop. The computation
till line 6 takes n®™) time. For each k” € (0,%'], Line 7 is executed with probability
3-(1-2Dk" . 3-(2-2¢ a1 takes time (9*(3(1_25'*‘0(1))’“” . 3(2_22'*“)(1))4). So, in expectation,
the total computation cost of Line 7 is O*(3°*+9) per value of k", and also O*(3°(k+0)
overall. Note here that for all values of € € (0,1), ¢x > 2 and ¢; > 1.
Now, we prove that RIAFD1(G, k, ¢) succeeds with probability e
calculations, we replace k&’ with k. Moreover, as each iteration is an independent trial, k is an
upper bound for any &’ that succeeds. We use Induction on k. The statement is trivial when
k = 0, since no probabilistic reduction is used and hence it succeeds with probability 1. For

. For simplicity of
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Algorithm 1 RIAFD1(G, R,k ).

Input :Graph G = (V, E), a set R, two parameters k < n and £ < m
Output : Either output a riafd-set F' of size at most k, or (possibly incorrectly)
conclude that one does not exist (Infeasible)

1 begin
2 for 0 <k <kdo
3 Exhaustively apply Reduction 1 to (G, R, k', £) to get vertex set F’ and the
instance (G', R, k", )
4 d+ (4—2¢)/(1—¢)
5 Flip a coin with Heads probability 3-(1—2k" . 3=(2-2")¢
6 if coin flipped Heads then
7 | F « RIAFD_IC1(G',R.k" L, d)
8 else
9 Apply Reduction 2 to (G', R, k", ¢) to get vertex v € V and instance
(GN, R K" — 1,@)
10 F « RIAFDI(G",R", K" — 1, &) U{v}
11 if FUF’ is not Infeasible then
12 ‘ return F'U F’
13 return Infeasible

the inductive step, consider an instance RIAFD1(G, k + 1,¢). Let (G', k", ¢) be the reduced
instance after Line 3. Suppose that every riafd-set F' of G of size k" satisfies the condition
deg(F) < dk"; here, we only need the existence of one such F. In this case, if Line 7 is
executed, then it will correctly output a riafd-set ' of size at most k", with high probability
by Lemma 3.10. This happens with probability at least

_ _ &t
VeV S S S v
3 3 (1 o ) = Cp o 2 A .

as desired.

Otherwise, suppose that the above condition doesn’t hold for every riafd-set F' of G’ of
size k. This means that there exists a riafd-set F' of size k" such that deg(F) > dk”. In this
case, by Lemma 3.4, Reduction 2 succeeds with probability at least ﬁ This is assuming,

of course, that Line 7 is not executed, which happens with probability 1 — c,;k“ . CZZ >

1-— c;k >1-27% >1- ﬁ, since ¢; > 1 and ¢, > 2. By Induction, the recursive call on
— (k" —1) —¢

Line 10 succeeds with probability at least % So, the overall probability of success
is at least,

(1 1>~ 1 .c;““"‘”-cze>(kﬂ_1)~l Gt Mt Gt
3—e¢€ -

K (k" —1) K)o (-1 kT k]

as desired. |

To optimize for c, we set € ~ 0.155433, giving ¢ < 2.8446 and ¢, < 8.5337. The-
orem 1.2 (2) now follows by combining Lemma 3.11 and Lemma 2.2.
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3.4 Improving the Dependence on ¢

In this subsection, we will try to reduce the dependence on ¢ in the Cut & Count algorithm.
To achieve this, we will construct a tree decomposition with reduced dependence on £
(Lemma 3.13). We use the following result to prove Lemma 3.13.

» Proposition 3.12 ([21, Theorem 4.7]). Given a graph G(V,E), we can obtain a tree
decomposition of G of width at most |E|/5.769 + O(log(|V|)) in polynomial time.

» Lemma 3.13. Given a graph G(V, E) with tw(G) > 2 and a riafd-set F' of size k, there
exists a tree decomposition of width k + z2z5¢ + O(log({)) for G and it can be constructed in

polynomial time.

Proof. Given G(V, E) with n vertices and m edges, we define the graph G'(V', E’) := G[V\ F].
G’ is an (-forest from the definition of riafd-set. We apply the following reduction rules
exhaustively on G':

Ry: If there is a v € V' with deg(v) = 0, then remove v.

Ry: If there is a v € V' with deg(v) = 1, then remove v.

Ry: If there is a v € V' with deg(v) = 2, then contract v, i.e. remove v and insert a new

edge between its two neighbors, if no such edge exists.

For the safeness of the above reduction rules refer to [21]. Let the reduced graph be
called G (V" E"). Tt is trivial to see that after applying these rules the G we get is also an
¢-Forest. Therefore, after removing at most ¢ edges from G”, we are left with at most |V"| —1
edges (since the remaining graph is a forest). Therefore, we get that |E”| < |V"|4+£—1. Since
the degree of each vertex in G” is at least 3, |E”| > 3|V"|/2. Therefore, 1.5|V"| < |[V"|+(—1
from which we obtain the bounds |V"| < 2¢ and |E”| < 3¢. Proposition 3.12 implies that,
G” has a tree decomposition of width at most =2:5¢ + O(log(¢)) which can be computed in
polynomial time.

> Claim 3.14 ([21, Lemma 4.2]). Given a connected graph G, with tw(G) > 2 and let G’ be
a graph obtained from G by applying Ry, R; and Ry then tw(G) = tw(G’)

Also, from proof of Lemma 4.2 of [21], it’s easy to see that this also works on graphs which
might not be connected. Given these facts, we see that we can obtain a tree decomposition
of G’ with width at most =2:5¢ + O(log(¢)) in polynomial time from the tree decomposition
of G”’. Now to get the tree decomposition of the given graph instance G, add F (of size k
which we removed) to all the bags of the tree decomposition of G’. This finally gives the

required tree decomposition of G of width at most k + =—2¢ + O(log(¢)). <

We combine the treewidth bound that can be obtained from Lemma 3.13 with Iterative

Compression, together with the 3" algorithm to obtain an O*(3%1.78¢) algorithm for RIAFD.

We now describe the working of the routine RIAFD_IC3. The iterative compression
routine proceeds as follows. We start with an empty graph, and add the vertices of G

one by one, while always maintaining an riafd-set of size at most k in the current graph.

Maintaining an RIAFD for the current graph helps us utilize Lemma 3.13 to obtain a small

tree decomposition (of size k + =25 4+ O(log(¢))). Then we can add the next vertex in the

ordering to all the bags in the tree decomposition to get a new riafd-set of size k in O*(3*W).

If we are unable to find such an riafd-set in a particular iteration, we can terminate the
algorithm early.
Now we restate Theorem 1.2 (4) and prove it.

» Theorem 1.2 (4). RIAFD_IC3 solves RIAFD problem in time O*(3%1.78%) and ezponential
space with high probability.
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Algorithm 2 RIAFD_IC3(G, R, k,¥).

Input :Graph G = (V, E), a set R and parameters k < n and £ = O(n?)
Output: A RIAFD F of size at most k or Infeasible

1 begin

2 Order the vertices V' arbitrarily as (vq,ve, ..., v,)

3 F+go

4 fori=1,2,...,ndo

5 T < Compute the tree decomposition of G [{v1,...,v;—1}] by Lemma 3.13
6 Add v; to all bags of T

7 F + a riafd-set of G [{v1,...,v;}] with parameters k and ¢, computed using

RIAFDCutandCount on T

8 if F is Infeasible then
return Infeasible
10 return F'
Proof. Suppose that there exists a riafd-set F'™* of size at most k. Let (v1,v2,...,v,) be the

ordering from Line 2, and define V; := {vy,...,v;}. We note that F* NV; is an RTIAFD of
G [Vi] so RIAFD problem on Line 7 will be feasible in each iteration (and will be computed
correctly with high probability in every iteration). Therefore, with high probability, an
RIAFD is returned successfully (by union bound).

We now bound the running time. On Line 5, the current set F is a riafd-set of G [V;], so
Lemma 3.13 guarantees a tree decomposition of width at most k+ =2 ¢+O(log(¢)) and adding
v; to each bag on Line 6 increases the width by at most one. By the Cut & Count algorithm
for RIAFD from Theorem 1.1, Line 6 runs in time O*(3(k+ﬁ”0(log“)))) = O*(S(IH%E))
(since £ = O(|V|?) for non-trivial instance). This gives the desired time of O*(3¥1.78¢)
on simplification. The space bound follows directly from the description of RIAFD_IC3,
Lemma 3.13 and the space bound of the Cut & Count algorithm. |

4 Conclusion

In this paper, we applied the technique of Li and Nederlof [23] to other problems around
the FEEDBACK VERTEX SET problem. The technique of Li and Nederlof is inherently
randomized, and it uses the Cut & Count technique, which is also randomized. Designing
matching deterministic algorithms for these problems, as well as for FEEDBACK VERTEX
SET, is a long standing open problem. However, there is a deterministic algorithm for
PSEUDOFOREST DELETION running in time O*(3%) [5]. So obtaining a deterministic algorithm
for PSEUDOFOREST DELETION running in time O*(c*) for a constant ¢ < 3 is an interesting
open question. Further, can we design an algorithm for PSEUDOFOREST DELETION running
in time O*(2.7%), by designing a different Cut & Count based algorithm for this problem?
Finally, could we get a O*(ck2o(z)) algorithm for ALMOST FOREST DELETION, for a constant
¢ possibly less than 37
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