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Abstract
In the presented paper, we study the Length-Bounded Cut problem for special graph classes as
well as from a parameterized-complexity viewpoint. Here, we are given a graph G, two vertices s
and t, and positive integers β and λ. The task is to find a set F of edges of size at most β such that
every s-t-path of length at most λ in G contains some edge in F .

Bazgan et al. [Networks, 2019] conjectured that Length-Bounded Cut admits a polynomial-
time algorithm if the input graph G is a proper interval graph. We confirm this conjecture by
providing a dynamic-programming based polynomial-time algorithm. Moreover, we strengthen
the W[1]-hardness result of Dvořák and Knop [Algorithmica, 2018] for Length-Bounded Cut
parameterized by pathwidth. Our reduction is shorter, and the target of the reduction has stronger
structural properties. Consequently, we give W[1]-hardness for the combined parameter pathwidth
and maximum degree of the input graph. Finally, we prove that Length-Bounded Cut is W[1]-hard
for the feedback vertex number. Both our hardness results complement known XP algorithms.
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1 Introduction

The study of network flows and, in particular, the Edge Disjoint Paths (EDP) problem
began in the 1950s with the work of Ford and Fulkerson [11] and has constituted a prominent
research subarea in graph algorithms since then. In the EDP problem, we are given a graph G,
two vertices s and t, called source and target, and a positive integer β. The question is
whether there is a collection of at least β edge-disjoint s-t-paths in G. It is worth pointing
out that nowadays there are many more efficient algorithms (than the one of Ford and
Fulkerson [11]) for finding a maximum flow in a given graph (see e.g. [8, 20]). A natural
counterpart of EDP is the Edge Cut problem, where the task is to resolve whether there is a
set of at most β edges F such that there is no s-t-path in the graph G−F . There is a strong
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dual relationship between EDP and Edge Cut in the sense that, if both problems admit a
solution for a given β, then the value of β is optimal, that is, it is not possible to find β + 1
edge disjoint s-t-paths and the removal of any set of β − 1 edges leaves s and t in the same
connected component. Consequently, both problems admit an efficient (polynomial-time)
algorithm, since one can also construct the set of cut edges from a maximum flow. Quite
naturally, there are many variants of the above described network flow/cut problems such as
e.g. multicommodity flows/cuts, unsplittable flows and the related cut problem (see e.g. [21]
for further examples and exact definitions). Unlike the basic variant of EDP and Edge Cut,
it is not always the case that the flow and the cut belong to the same complexity class. As
we shall see, Length-Bounded Cut is in fact harder than the respective flow problem.

In this paper, we continue the study of the so-called Length-Bounded Cut problem,
which is the cut problem related to the variant of EDP where an additional bound λ is given
and the sought collection of s-t-paths can only contain paths with at most λ edges. To the
best of our knowledge, this problem has been introduced by Adámek and Koubek [1] and
the Length-bounded Cut problem is formally defined as follows.

Input: An undirected graph G = (V,E), two vertices s, t, and two positive integers β, λ.
Question: Is there a subset F ⊆ E with |F | ≤ β such that there is no s-t-path of length at

most λ in G− F?

Length-Bounded Cut

If in the above definition one plugs in λ = |V |, then one is left with the Edge Cut problem;
a polynomial-time-solvable problem. Length-Bounded Cut is also solvable in polynomial
time if λ ≤ 3 [19]. However, Baier et al. [2] showed that the Length-Bounded Cut problem
is NP-hard already for λ = 4. On the other hand, the related Length-Bounded Flow
problem, where we restrict the flow to paths of length at most λ, can be solved in polynomial
time via a reduction to linear programming [2, 19, 18].

Length-Bounded Cut originated in telecommunications area and network design. See
e.g. the work of Huygens et al. [14, 15] (and references therein) for possible applications; for
further applications see e.g. the work of Gouveia et al. [13].

Before we give an overview of our results, we discuss the related work focusing on
parameterized algorithms and algorithms for special graph classes.

1.1 Related Work
The result of Baier et al. [2] in fact gives NP-hardness for Length-Bounded Cut for each
constant λ ≥ 4. Thus, in order to obtain tractability results, one has to either consider
a different parameterization or combine λ with some other parameter. The first study
of Length-Bounded Cut from the viewpoint of parameterized complexity was done by
Golovach and Thilikos [12]. They showed that Length-Bounded Cut is in FPT for the
combined parameter β + λ. It is worth noting that parameterization only by β leads to
W[1]-hardness [12]. Later, Fluschnik et al. [10] proved that it is unlikely that a polynomial
kernel in β+λ exists. Dvořák and Knop [9] considered structural parameters for the Length-
Bounded Cut problem. They showed that it is W[1]-hard when parameterized by the
pathwidth of the input graph while it is fixed-parameter tractable when parameterized by the
treedepth of the input graph. It is worth pointing out that Length-Bounded Cut is one of
just a few problems with such a parameterized dichotomy. Kolman [17] gave an O (λτ · |G|)-
time algorithm for Length-Bounded Cut, where τ is the treewidth of G. Furthermore,
Length-Bounded Cut is in FPT for the parameter λ if G is planar [17] (it remains
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Figure 1 Known parameterized complexity results for Length-Bounded Cut. An edge between
two parameters A and B (where A is above B) indicates that B is upper-bounded by A, that
is, there is a computable function f such that f(A(x)) ≥ B(x) for each instance x. A red box
indicated para-NP-hardness (NP-hardness for constant parameter values), a yellow box indicates
W[1]-hardness, and a green box indicates containment in FPT. Except for feedback vertex number,
all W[1]-hardness results are complemented by known XP-algorithms. Our results are marked by ∗

and proven in Theorems 2 and 10.

NP-complete even in this case [10]). Bazgan et al. [3] studied both restrictions on special
graph classes as well as structural parameterizations for Length-Bounded Cut. They
provided an XP algorithm for the maximum degree of the input graph G and FPT algorithms
for the parameters feedback edge number and vertex deletion distance to cluster graphs.
Furthermore, they showed para-NP-hardness for the parameters diameter, degeneracy, and
vertex deletion distance to bipartite graphs. An overview over the parameterized complexity
landscape of Length-Bounded Cut is given in Figure 1. Furthermore, Bazgan et al. [3]
present a polynomial-time algorithm for co-graphs while showing NP-completeness even if
the input is restricted to bipartite graphs or split graphs.

1.2 Our Contribution
In this paper, we mainly continue the study of Length-Bounded Cut for special graph
classes and from the viewpoint of parameterized complexity. Bazgan et al. [3] conjectured
that Length-Bounded Cut can be solved in polynomial time on proper interval graphs
which we confirm here: We give a dynamic-programming based algorithm in Theorem 13.

We show that the Length-Bounded Cut problem is W[1]-hard for the feedback vertex
number in Theorem 10; thus, closing one of the gaps left by Bazgan et al. [3]. Furthermore,
together with the result of Bazgan et al. [3] this yields a structural parameter dichotomy,
since they provided an FPT algorithm for the feedback edge number.

Last but not least, we show in Theorem 2 that Length-Bounded Cut is W[1]-hard
for the combined parameter pathwidth and maximum degree of the input graph G. This
is a nontrivial strengthening of the reduction provided by Dvořák and Knop [9], where the
degree cannot be bounded by a function of the parameter. Furthermore, our reduction
implies that assuming ETH, there is no f(k) · no(k)-time algorithm for Length-Bounded
Cut, where k is pathwidth of the input graph (whereas the reduction of Dvořák and Knop
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refutes only f(k) · n
√
k-time algorithms). This implies that the algorithm of Kolman [17]

with running-time nk+1 is (nearly) optimal (such a bound can be obtained using the trivial
bound λ ≤ n). Moreover, this hardness result constitutes a natural counterpart of the known
XP algorithm for the parameter maximum degree [3].

Proofs omitted due to space restrictions can be found in the full version [4].

1.3 Preliminaries
For a given positive integer a, we use [a] to denote the set {1, 2, . . . , a}. We use standard
graph notation. Given a graph G = (V,E), a source s, and a target t, a λ-cut is a set F of
edges such that a shortest s-t-path in G− F is of length at least λ+ 1. We identify specific
paths by just some of their vertices, e.g. we denote by a-b-c-path a path that starts in a,
then continues by some shortest a-b-path and ends with some shortest b-c path. The shortest
paths between two consecutive vertices in our identifiers (a-b and b-c in our example) will
always be unique (that is, there is exactly one shortest path between a and b, and exactly one
between b and c). We use G[X] to denote the subgraph of G induced by a set X of vertices
in a graph G and G−X to denote G[V \X]. An interval graph is a graph G = (V,E) such
that each vertex v can be represented by an interval [bv, fv] such that two vertices u,w are
adjacent in G if and only if [bu, fu] ∩ [bw, fw] 6= ∅. If a graph admits such a representation
fulfilling additionally that there are no two vertices v and w such that [bv, fv] ⊆ [bw, fw], then
this graph is a proper interval graph. Equivalently, a proper interval graph can be defined as
an interval graph where each interval has length 1, i.e., bv + 1 = fv for each vertex v (see
e.g. [5]).

A parameterized problem is a tuple (L, κ), where L is a language (in our case Length-
Bounded Cut) and κ is a parameter.

A parameterized problem (L, κ) is fixed-parameter tractable (or FPT for short) if there is
an algorithm deciding each instance of it in f(k) · poly(n) time, where f is some computable
function, k is the the value of the parameter κ of the input instance, and n is the input size.
To show that some parameterized problem is presumably not FPT, one regularly uses the
standard complexity assumption that FPT 6= W[1] and shows that a problem is W[1]-hard.
To show W[1]-hardness for some problem P with respect to some parameter κ, we use
many-one reductions which ensure that the parameter of the output problem is bounded by
a function of the parameter of the input problem. In this work we consider the parameters
pathwidth, maximum degree and feedback vertex number. The pathwidth of a graph is
closely related to the treewidth. The only difference between the two concepts is that a
path decomposition is restricted to a collection of paths as underlying graphs for the bags as
opposed to forests for tree decompositions. Formally, it is defined as follows.

I Definition 1. A path decomposition of a graph G = (V,E) consists of a path P = (W,F )
and a function π : W → 2V such that⋃

x∈W π(x) = V ,
for each edge {v, w} ∈ E, there exists an x ∈W such that v, w ∈ π(x), and
for each v ∈ V , we have that {x ∈W | v ∈ π(x)} induces a connected subgraph in P .

The width of a path decomposition is maxx∈W |π(x)| − 1.
The pathwidth of a graph G is the minimum width of a path decomposition of G.

The maximum degree of a graph is the maximum number of incident edges to any single
vertex in the graph. The feedback vertex number is the size of a minimum feedback vertex set,
i.e., the minimum number of vertices one needs to delete from the graph to obtain a forest.
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The Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [16] asserts that
there is no 2o(m) algorithm solving the Satisfiability problem, where m is the number
of clauses. It is worth noting that assuming ETH, there is no f(k) · no(k) time algorithm
solving k-(Multicolored) Clique [6], where f is a computable function, n the number
of vertices and k is the size of the clique we are looking for. For further notions related to
parameterized complexity and ETH, we refer the reader to the textbook by Cygan et al. [7].

2 W[1]-Hardness for Pathwidth and Maximum Degree

In this section, we prove that Length-Bounded Cut is W[1]-hard with respect to the
combined parameter pathwidth plus maximum degree. We describe our reduction from the
W[1]-hard Clique problem (i.e., the problem of deciding whether a given graph contains a
clique of size k) parameterized by solution size k.

Let (G = (V,E), k) be an instance of Clique parameterized by solution size k and n := |V |.
Let index : V → [n] be a bijection that assigns each vertices in V a number from {1, 2, . . . , n}
and let vertex : [n] → V be the inverse of index. We order the edges E = {e1, e2, . . . , em}
lexicographically by their endpoints, that is, for ei = {vi, wi} and ei+1 = {vi+1, wi+1} with
vj < wj for j ∈ {i, i+ 1}, we have either index(vi) < index(vi+1), or index(vi) = index(vi+1)
and index(wi) < index(wi+1). We assume without loss of generality that m ≥ n as we can
otherwise remove all connected components which are trees (possibly returning true if k ≤ 2).

Let η := 4m. We construct a Length-Bounded Cut instance (H, s, t, β, λ) as follows.
We set the budget β of edges to delete to 2k+2k(k−1) = 2k2 and the length λ := 8η+2n+1.
The graph H will consist of vertex-selection gadgets, incidence-checking gadgets, connectivity
paths, and the vertices s and t, which are not contained in any gadget. We describe the
gadgets now; the full proof is deferred to the full version [4] due to space constraints.

I Theorem 2. Length-Bounded Cut parameterized by the combined parameter pathwidth
plus maximum degree is W[1]-hard. Assuming the ETH, Length-Bounded Cut cannot be
solved in f(

√
∆(G) + pw(G)) · no(

√
∆(G)+pw(G)) time for any computable function f , where

pw(G) is the pathwidth of G and ∆(G) is the maximum degree of G.

Vertex-Selection Gadgets (see Figure 2). Our reduction will produce k vertex-selection
gadgets A1, . . . , Ak. The gadget Aj looks as follows:

We start with two paths uj0, . . . , ujn and `j0, . . . , `jn of length n (an “upper” and a “lower”
path). We add a ujp−1-ujp-path U jp of length 2η+ p, an `jp−1-`jp-path Ljp of length 2η− p, and
a ujp-`jp-path of length 2η for every p ∈ [n]. Finally, we add two paths of length η+ 2 between
the source s and the first vertex `j0 of the lower path and two paths of length two between s
and the first vertex uj0 of the upper path.

The main idea of this gadget is that if exactly two edges {ujp−1, u
j
p} and {`

j
p−1, `

j
p} (both

with the same p ∈ [n]) are removed, then the distance between s and ujn and between s

and `jn encodes the selected vertex.

Incidence-Checking Gadgets (see Figure 3). For each pair (Ai, Aj) with i < j of vertex-
selection gadgets, we add an incidence-checking gadget Ii,j . This gadget verifies that the
two vertices selected by Ai and Aj share an edge.

Starting at uin and `in, we add a gadget similar to the vertex-selection gadget. More
precisely, we have two paths ai,j0 , . . . , ai,jn and bi,j0 , . . . , bi,jn . The vertex uin is connected to ai,j0
by two paths of length 4η. The vertex `in is connected to bi,j0 by two paths of length 2. For
each p ∈ {0, 1, . . . , n}, there is an ai,jp -bi,jp -path of length 4η, an ai,jp−1-ai,jp -path of length 2η−p

ISAAC 2020
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λ− (4η + n+ 2)

Sj,i1

λ− (3η + n+ 2)

S̄i,j2

s

uj0 uj1 uj2 uj3 uj4 uj5

2
2

2η + 1
U j1

2η + 2
U j2

2η + 3
U j3

2η + 4
U j4

2η + 5
U j5

`j0 `j1 `j2 `j3 `j4 `j5

η + 2
η + 2

2η − 1

Lj1

2η − 2

Lj2

2η − 3

Lj3

2η − 4

Lj4

2η − 5

Lj5

2η 2η 2η 2η 2η 2η

Figure 2 An example of a vertex-selection gadget with n = 5. An edge with a number x on it
corresponds to a path of length x. The connectivity paths Sj,i

1 and S̄j,i
2 are dashed (and all other

connectivity paths are not drawn for the simplicity of the picture).

and a bi,jp−1-bi,jp -path of length 2η + p. Furthermore, there are two ai,jn -t-paths of length
two, and two bi,jn -t-paths of length 3η. Next we add two paths ci,j0 , . . . , ci,jm and di,j0 , . . . , di,jm
of length m. The vertex ci,j0 is connected to ujn by two parallel paths of length 3η. The
vertex di,j0 is connected to `jn by two paths of length η. For each p ∈ [m], let ep = {vp, wp}
with index(vp) < index(wp), there is an ci,jp -di,jp -path of length 2η, and an ci,jp−1-ci,jp -path of
length 2η− index(wp), and a di,jp−1-di,jp -path of length 2η+ index(wp). Furthermore, there are
two ci,jn -t-paths of length η + n−m+ 2, and two di,jn -t-paths of length 2η + n−m+ 2.

For each p ∈ {0, 1, . . . , n− 1}, let q be zero if p = 0, and otherwise maximum such that eq
is incident to vertex(p). We add an ai,jp -ci,jq -path of length 2η, an ai,jp -di,jq -path of length 3η,
a bi,jp -ci,jq -path of length 3η and a bi,jp -di,jq -path of length 2η.

Assuming that the vertices vi and vj have been selected in the vertex-selection gad-
gets Ai and Aj , respectively, there is only one possible way to cut all s-t-paths through Ii,j
of length at most λ by adding at most four edges from Ii,j to the cut. The respect-
ive edges are {ai,jindex(vi)−1, a

i,j
index(vi)}, {b

i,j
index(vi)−1, b

i,j
index(vi)}, {c

i,j
p−1, c

i,j
p }, and {di,jp−1, d

i,j
p }

for ep = {vi, vj}. In particular, if vi and vj are not adjacent, then any λ-cut must con-
tain at least five edges from Ii,j .

Connectivity Paths. For each vertex uin of a vertex-selection gadget Ai, we add three
parallel paths T i1, T i2, and T i3 of length λ− (n+ 2) to t. Similarly, we add for each i ∈ [k]
three parallel paths T̄ i1, T̄ i2, and T̄ i3 from vertex `in, of length λ− (η+2+n) to t (see Figure 3).
For each (i, j) ∈ [n]2, we add five parallel paths Si,jq from s to uin of length λ− (4η + n+ 2),
and five parallel paths S̄i,jq from s to `in of length λ− (3η + n+ 2) (see Figure 2).

These connectivity paths ensure that there is no solution in which less than two edges
from a vertex-selection gadget or less than four edges from an edge gadget are removed. This
together with the budget β implies that every solution removes exactly two edges from each
vertex-selection gadget and exactly four edges from each incidence-checking gadget.
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2η 2η 2η

3η 3η 3η3η 3η 3η2η 2η 2η
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t
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n

`i
n
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2 ai,j

3
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4η

4η

2η − 1 2η − 2
2η − 3
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0 bi,j

1 bi,j
2 bi,j

3

2

2

3η

3η
2η + 1

2η + 2
2η + 3

4η 4η4η 4η4η 4η

ci,j
0 ci,j

1 ci,j
2 ci,j

3 ci,j
4 ci,j

5
2η − u1 2η − u2

2η − u3 2η − u4 2η − u5

di,j
0 di,j

1 di,j
2 di,j

3 di,j
4 di,j

5

uj
n

`j
n

3η

3η

η

η

2η + n−m+ 2
2η + n−m+ 2

2η + u1 2η + u2 2η + u3 2η + u4 2η + u5

2η 2η 2η 2η 2η 2η

η + n−m+ 2

η + n−m+ 2

Figure 3 An example of an incidence-checking gadget Ii,j . An edge with a number x on it
corresponds to a path of length x. Paths between a, b-vertices and c, d-vertices are dotted and
colored to be better distinguishable from other paths. Connectivity paths T i

1 , T j
1 , T̄ i

1 , and T̄ j
1 are

dashed and connectivity paths T i
2 , T i

3 , T j
2 , T

j
3 , T̄ i

2 , T̄ i
3 , T̄ j

2 , and T̄
j
3 are not shown for the sake of

readability.

3 W[1]-Hardness for Feedback Vertex Number

In this section, we prove that Length-Bounded Cut is W[1]-hard with respect to the
feedback vertex number. We present a parameterized reduction from Multicolored Clique
parameterized by solution size. In the Multicolored Clique problem, the input consists of
a k-partite graph G = (V1 ]V2 ] . . .]Vk, E) and an integer k, and the question is whether G
contains a clique of size k.

After we present the reduction, we show its correctness and finally analyze its running
time and the size of the feedback vertex number in the resulting instance.

3.1 The Reduction
We describe our reduction for a given instance (G = (V,E), k) of Multicolored Clique
and call the resulting graph H = (VH , EH). Let V = V1 ] V2 ] . . . ] Vk be the k-partition
of G. We assume that all Vi contain the same number of vertices; this can be achieved by
adding isolated vertices. We define ν := |Vi|. We assume that the vertices of each Vi are
numbered from 1 to ν, and that this numbering is given via a function index : V → [ν] and
for each i ∈ [k], a function vertexi : [ν]→ Vi such that vertexi(index(v)) = v for every v ∈ Vi
and index(vertexi(x)) = x for all x ∈ [ν].

We start by adding for each Vi a specific vertex-selection gadget that is explained below.
Second, we add for each i ∈ [k], each j ∈ [k] \ {i}, and each edge between Vi and Vj an edge
gadget (which is also described below). We then set λ := ν+2n and β := 2k(ν−1)m+m−

(
k
2
)
,

where n and m denote the number of vertices and the number of edges of G, respectively.
We remark that n = kν.

ISAAC 2020
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i

s̄3,1
i

s̄4,1
i

n
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n

c1,1i
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c3,1i
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t2,1i
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t̄4,1i
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n
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n

c̄1,1i
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Figure 4 An example of a vertex-selection gadget for ν = 4 and m = 1. Shortcut edges cj,1
i

or c̄j,1
i are drawn in dashed blue. For m > 1, the gadget contains m copies of this picture, sharing

the vertices s, t, ui, and `i.

Inside each vertex selection gadget, any λ-cut of size β contains exactly 2(ν − 1) edges
(as we shall see), selecting a vertex from Vi. Furthermore, for each pair of vertex-selection
gadgets, any λ-cut of size at most β will contain an edge from each edge gadget for which
the endpoints of this edge are not the two vertices selected by the vertex-selection gadgets.

Vertex-Selection Gadgets (see Figure 4). Each vertex selection gadget Ai starts in s and
ends in t. It has two “middle vertices” ui and `i. Between s and ui (`i), there is a path Sj,pi
(S̄j,pi ) of length n+j for each 1 ≤ j ≤ ν and 1 ≤ p ≤ m, and a path T j,pi (T̄ j,pi ) of length n+j
between ui (`i) and t for each 1 ≤ j ≤ ν and 1 ≤ p ≤ m.

Finally, we add “shortcut edges”. From the second vertex sj,pi (i.e., the vertex adjacent
to s) of each path Sj,pi , we add an edge cj,pi to the second to last vertex s̄ν−j,pi (i.e. the
vertex adjacent to `i) of S̄ν−j,pi for every 1 ≤ j < ν and p ∈ [m]. Similarly, from the second
vertex t̄ν−j,pi (i.e., the vertex adjacent to `i) of the path T̄ ν−j,p, we add an edge c̄j,pi to
the second to last vertex tj,pi (i.e., the vertex adjacent to t) of T j,pi for every 1 ≤ j < ν

and p ∈ [m].
The idea behind these gadgets is that for each Si and each j ∈ [ν − 1], the cut F has to

contain an edge of every s-ui-path of length at most n+ j, or an edge of every ui-t-path of
length at most ν − j + n and an analogous statement holds for `i. The distance between s
and ui and the distance between s and `i then again encodes the selected vertex.

Edge Gadgets (see Figure 5). For each edge e = {vi, vj} with vi ∈ Vi and vj ∈ Vj , we add
a vertex ve. This vertex ve is connected to t by an edge. We add a path from ui to ve of
length n+ ν − index(vi), a path from `i to ve of length n+ index(vi), a path from uj to ve of
length n+ ν − index(vj) and a path from `j to ve of length n+ index(vj). We say for any
edge e ∈ E, that the edge gadget containing ve is corresponding to e.

The union of all edge gadgets for edges between Vi and Vj verifies that the two vertices
selected by Ai and Aj share an edge similar to the incidence-checking gadgets in Section 2.
This is done as follows. We can remove one edge from all but

(
k
2
)
edge gadgets. When
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ui

`i
uj

`j

ve
t

n+ ν − index(vi)
n+ index(vi)

n+ ν − index(vj)
n+ index(vj)

Figure 5 An example of an edge gadget for the edge {vi, vj}, where vi belongs to Vi and vj

belongs to Vj .

deleting an edge from an edge gadget, one can always guarantee that no path of length λ
uses this gadget. For each gadget that is not modified by the solution, there is a path of
length λ using this gadget if and only if at least one of the two respective vertices was not
selected. Hence, there is a solution if and only if there is a set {v1, . . . , vk} of k vertices with
vi ∈ Vi such that G[{v1, . . . , vk}] contains

(
k
2
)
edges, that is, a multicolored clique of size k.

3.2 Proof of Correctness
We first show how to construct a λ-cut F of size β from a clique {c1, . . . , ck} with ci ∈ Vi
in G. For each vertex selection gadget, we add

the first edge of all s-ui-paths of length at most n + index(ci) − 1 (i.e., {{s, sj,pi } : j ≤
index(ci)− 1, 1 ≤ p ≤ m}),
the last edge of all s-`i-paths of length at most n + ν − index(ci) (i.e., {{s̄j,pi , `i} : j ≤
ν − index(ci), 1 ≤ p ≤ m}),
the last edge of all ui-t-paths of length at most n + ν − index(ci) (i.e., {{tj,pi , t} : j ≤
ν − index(ci), 1 ≤ p ≤ m}), and
the first edge of all `i-t-paths of length at most n + index(ci) − 1 (i.e., {{`i, t̄j,pi } : j ≤
index(ci)− 1, 1 ≤ p ≤ m}) to F .

For each edge e not corresponding to an edge inside the clique {c1, . . . , ck}, we add the
edge {ve, t} to F . First, we show that F contains exactly β edges.

I Lemma 3. We have |F | = β = 2k(ν − 1)m+m−
(
k
2
)
.

Proof. The cut F contains 2(ν − 1)m edges from each of the k vertex selection gadgets,
and one edge for each of the m −

(
k
2
)
edge gadgets not corresponding to an edge of the

form {ci, cj}. Thus, we have |F | = 2(ν − 1)mk +m−
(
k
2
)

= β. J

It remains to show that any s-t-path in H −F has length at least λ+ 1. We do so by first
showing that each s-ui-path has length at least n+ index(ci), and each s-`i-path has length
at least n+ ν − index(ci). Afterwards, we also bound the length of an ui-t- and an `i-t-path
from below. Before we can show the main results, we first need an auxiliary lemma:

I Lemma 4. Any s-ui-path (s-`i-, ui-t-, or `i-t-path) in H − F has length at least n.

Proof. We only prove the lemma for s-ui- and s-`i-paths; for the ui-t- and `i-t-paths, the
statement can be proven analogously.

We prove the lemma by contradiction. To this end, let v ∈ {ui, `i : i ∈ [k]} be the vertex
closest to s in H − F among all vertices in {ui, `i : i ∈ [k]}, and assume that the distance
from s to v is d < n. Let P be an s-v-path of length d.

By the choice of v, no vertex from {ui, `i : i ∈ [k]} is an interior vertex of P . Thus, P
has to be of the form s-sj,pi -cj,pi -s̄ν−j,pi -`i (in particular, we have v = `i), as all paths Sj,pi
and S̄j,pi are of length at least n+ 1.

However, by the construction of F , either the edge {s, sj,pi } (if j < index(ci)) or the
edge {s̄ν−j,pi , `i} (if j ≥ index(ci)) is contained in F , a contradiction. J
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We can now analyze the length of all s-ui- and s-`i-paths in H − F .

I Lemma 5. Any s-ui-path in H − F has length at least n + index(ci), and any s-`i-path
has length at least n+ ν − index(ci) + 1.

Proof. We first show that we only need to consider s-ui- and s-`i-paths containing no vertex
from {uj , `j : j ∈ [k]} as an interior vertex. To see this, first note that the only connections
between a vertex from {ui, `i} to a vertex from {uj , `j : j ∈ [k] \ {i}} in G−{s} are through
an edge gadget and thus of length at least 2n or through t and thus by Lemma 4 of length
at least 2n. Also any ui-`i-path is of length at least n (as any path leaving ui starts with
a path of at least n− 1 vertices of degree two). Thus, any s-`i- or s-ui-path containing ui
or `i as an interior vertex is of length at least 2n > n+ max{index(ci), ν − index(ci) + 1} by
Lemma 4.

We first consider paths not containing shortcut edges. Any s-ui-path not containing a
shortcut edge is of the form s-Sj,pi -ui. By the construction of F , such a path has length at
least n+ index(ci). Any shortest s-`i-path not containing a shortcut edge is of the form s-S̄j,pi -
`i. By the construction of F , such a path has length at least n+ν−index(ci)+1. Now, consider
an s-v-path P with v ∈ {ui, `i} containing a shortcut edge cj,pi for some j ∈ [ν−1] and p ∈ [m].
By the construction of F , we have that either {s, sj,pi } (if j ≤ index(ci)− 1) or {s̄ν−j,pi , `i}
(if j ≥ index(ci)) is contained in F . Thus, F has to be of the form s-S̄ν−j,pi -cj,pi -Sj,pi -ui and
has length (n+ ν − j − 1) + 1 + (n+ j − 1) = 2n+ ν − 1 > n+ index(ci). J

Analogously, we can also show the following bound for all ui-t- and `i-t-paths in H − F .

I Lemma 6. Any ui-t-path in H−F has length at least n+ν−index(ci)+1, and each `i-t-path
has length at least n+ index(ci).

The correctness of the forward direction now easily follows.

I Lemma 7. If G contains a clique of size k, then H contains a λ-cut of size β.

Proof. By Lemma 3, we have |F | = β, so it suffices to show that F is a λ-cut. Consider any s-
t-path P in H −F . Then P passes through a vertex ui or `i for some i ∈ [k], as any s-t-path
in H passes through a vertex of the form uj or `j . If P passes through ui, then we get by
Lemma 5 and 6 that the length of P is at least n+ index(ci) + n+ ν − index(ci) + 1 = λ+ 1.
If P passes through `i, then we get by Lemma 5 and 6 that the length of P is at
least n+ ν − index(ci) + 1 + n+ index(ci) = λ+ 1. J

Due to space constraints, the backward direction is proven in the full version [4].

3.3 Feedback Vertex Number
It remains to analyze the time required to compute the reduction and to show that the
feedback vertex number of H is bounded in terms of k. We start with the running time.

I Observation 8. The given reduction of Multicolored Clique parameterized by solution
size k to Length-Bounded Cut parameterized by feedback vertex number can be computed
in O(k ·m · n) time.

Last but not least, we need to analyze the feedback vertex number of H. We do this by
simply giving a feedback vertex set of size O(k).

I Lemma 9. The set X := {s, t} ∪ {ui, `i : i ∈ [k]} is a feedback vertex set in H.
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Proof. Note that all vertices from VH \X are contained in a path Si,jp , S̄i,jp , T i,jp , or T̄ i,jp or
contained in an edge gadget. All edges from the graph H −X not contained in one of these
paths or an edge gadget are the shortcut edges ci,jp and c̄i,jp .

Thus, there are only three kinds of different connected components in H −X, and all of
them are trees:

Clearly, edge gadgets are trees.
Components of the form {Sj,pi , cj,pi , S̄ν−j,p} or {T j,pi , c̄j,pi , T̄ ν−j,p} with 1 ≤ j ≤ ν − 1 are
paths.
Components of the form Sν,pi , T ν,pi , S̄ν,pi , and T̄ ν,p are paths. J

Combining Lemmata 7 and 9 with Observation 8 and the backwards direction yields our
desired main result.

I Theorem 10. Length-Bounded Cut parameterized by feedback vertex number k is
W[1]-hard. Assuming ETH, it cannot be solved in f(k) · no(k) time for any computable
function f .

4 Polynomial-Time Algorithm on Proper Interval Graphs

In this section, we present a polynomial-time algorithm for Length-Bounded Cut on
proper interval graphs. The algorithm is a dynamic program that stores for each vertex v
and each possible distance d (2 ≤ d ≤ λ) the minimal size of a cut that makes each vertex in
a particular subset of vertices including v have distance at least d from s.

Observe that we can assume without loss of generality that bs ≤ bt as we can otherwise
“mirror” the graph by setting bv = −fv and fv = −bv for each vertex v ∈ V . It is folklore
that one can assume that all b-values are distinct, that is, |{bv | v ∈ V }| = |V |. We now sort
all the vertices in V \ {s, t} by their respective b-value in increasing order and rename the
vertices such that vi is the ith vertex in this order. Thus, we have V = {s, t}∪{v1, . . . , vn−2},
and bvi

< bvi+1 for all i ∈ [n − 3]. We first show that we can safely ignore all vertices v
with fv < bs or ft < bv. It is worth pointing out that the following lemma holds for interval
graphs in general.

I Lemma 11. Let I = (G = (V,E), s, t, β, λ) be an instance of Length-Bounded
Cut where G is an interval graph and bs < bt. Let L = {u ∈ V | fu < bs}
and R = {u ∈ V | ft < bu}. Then, I ′ = (G[V \ (L ∪R)], s, t, β, λ) is an equivalent instance
of Length-Bounded Cut.

Proof. Let I, I ′, G, s, t, β, λ, L, and R be as defined above. We first show that IL = (G[V \
R], s, t, β, λ) is an equivalent instance. The argumentation for then removing L from IL
to obtain the equivalent instance I ′ is analogous and hence skipped here. First observe
that s, t /∈ L ∪ R and hence IL and I ′ are instances of Length-Bounded Cut. Observe
that deleting vertices from any input graph cannot decrease the distance between any pair of
vertices and hence if I is a yes-instance, then so is IL. Hence it remains to show that if IL is
a yes-instance, then so is I. Assume towards a contradiction that this is not the case and
hence IL is a yes–instance and I is a no-instance. Then there is a set FL of β edges in G[V \R]
such that the distance between s and t in GL = (V \R,E \ (FL ∪ {{u, v} ∈ E | u ∈ R})) is
at least λ+ 1. Since I is a no-instance, there is a path P of length at most λ between s and t
in G∗ = (V,E \FL). As GL and G∗ only differ in R, each path of length at most λ between s
and t in G∗ contains at least one vertex from R. We show that degG(t) ≤ |FL| and hence
there is an s-t-cut of size at most β in G and thus I is a yes-instance. This contradicts the
assumption that I is a no-instance and hence finishes the proof that IL is equivalent to I.
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We start by giving some basic notation for the proof to come. We use sets of vertices that
have a certain distance from s in some subgraphH of G. To this end, we defineXp

H = {u ∈ V |
distH(s, u) = p} for each distance p. Analogously, we define X≤pH = {u ∈ V | distH(s, u) ≤ p}
and X≥pH = {u ∈ V | distH(s, u) ≥ p}.

Let d = distG∗(s, t) and let t′ be the vertex in P with maximum bt′ . Since P contains a
vertex from R, it holds that bt′ > ft and hence t′ /∈ NG(t). Since t′ is on a shortest s-t-path
inG∗ and t′ /∈ NG(t) it holds that t′ ∈ X≤d−2

G∗ . Now consider the setK of vertices that are part
of a shortest s-t′-path in G∗ and that are neighbors of t in G. By construction K ⊆ X≤d−3

G∗

and for each y ∈ [bt, ft] there is a vertex v ∈ K with y ∈ [bv, fv]. We next show that |FL| ≥
degG(t). To this end, consider any vertex u ∈ NG(t). If u ∈ X≤d−2

G∗ , then it holds
that {u, t} ∈ FL. Otherwise we have u ∈ X≥d−1

G∗ . Observe that for each u ∈ NG(t) it holds by
definition that [bu, fu] ∩ [bt, ft] 6= ∅ and hence there is a vertex v ∈ K with {u, v} ∈ E.
Since distG∗(s, u) ≥ d − 1 > d − 3 + 1 ≥ distG∗(s, v) + 1 it holds that {u, v} ∈ FL.
As K ∩ X≥d−1

G∗ = ∅, it is then easy to verify that β = |FL| ≥ degG(t) and hence there
is a trivial s-t-cut of size β in G that just removes all incident edges of t. This contradicts
the assumption that I is a no-instance and thus concludes the proof. J

Using Lemma 11, we assume that there is no vertex v with fv < bs or bv > ft. We next
show that there always exists a solution in which the distance from s to vj is non-decreasing
in j. The proofs of the following results can be found in the full version [4].

I Lemma 12. Let G = (V,E) be a proper interval graph such that there is no vertex v
with ft < bv or bs > fv and let F be a set of edges. Let d be the distance from s to t

in (V,E \ F ). Then, there is a set F ′ of edges with |F ′| ≤ |F | such that for G′′ = (V,E \ F ′)
it holds that distG′′(s, t) ≥ d and for each vi, vj ∈ V \ {s, t} with bvi

< bvj
it holds

that distG′′(s, vi) ≤ distG′′(s, vj).

Using this, we are now able to state a dynamic program to show that Length-Bounded
Cut can be solved in polynomial time on proper interval graphs. The dynamic program
stores for each vertex v and each possible distance d the minimal size of a cut that makes
each vertex u with bu ≥ bv have distance at least d from s.

I Theorem 13. Length-Bounded Cut can be solved in O(n3 ·m) time if the input graph
is a proper interval graph.

Proof sketch. We assume that there is no s-t-cut of size at most β in the input graph G as
this case can easily be detected in O(n ·m) time [11] and the answer for Length-Bounded
Cut is then always yes. This implies that degG(s),degG(t) > β. Furthermore, by Lemma 11
we can assume that there is no vertex v with fv < bs or bv > ft. By Lemma 12 we can
assume that we search for a solution in which for all vi, vj ∈ V \ {s, t} with bvi

< bvj
it

holds that dist(s, vi) ≤ dist(s, vj). Hence, we construct a table T which stores for each
vertex vi ∈ V \ {s, t} and each possible distance d ∈ {2, . . . , λ} the minimum number of
edges that have to be deleted from G − {t} to ensure that all vertices vj ∈ V \ {s, t}
with bvj

≥ bvi
have distance at least d from s, and furthermore, dist(s, vk) ≤ dist(s, v`)

holds for all k ≤ ` ≤ i. Observe that dist(s, s) = 0 in any graph and since we are looking
for a solution in which dist(s, t) > λ, we search for a solution in which all neighbors u
of t satisfy dist(s, u) ≥ λ. In the last step we then try all neighbors of t to be the last
vertex before t in a shortest s-t-path to find an optimal solution. To avoid confusion
recall that all vertices except for s and t are labeled by v1, v2, . . . , vn−2. We initialize T
by setting T [vi, 2] = |{vj | bvj ≤ fs ∧ j ≥ i}| for all vi with bvi ≤ fs and T [v`, 2] = 0 for
all vertices v` that are not adjacent to s as any non-neighbor w of s has distance at least
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two from s, and bw > fs. We further initialize T [v1, d] = deg(s) for all d ≥ 3. We also
store for each table entry T [vi, d] with d ≥ 2 in a second table S[vi, d] the vertex vj with
maximum bvj

-value such that all edges {v`, vr} with ` < j and r ≥ i are contained in a
minimal cut (a set of edges to delete from G) guaranteeing that each vertex vr′ with r′ ≥ i
has distance at least d from s. We initialize S[vi, 2] = 1 for all vi and S[v1, d] = 1 for all d > 2
as we only delete edges incident to s in these cases. For increasing values of d, we iterate
over all vertices vi ∈ V \ {s, t, v1} in order of bvi

and compute

T [vi, d] = min
j≤i
{T [vj , d− 1] + C[S[vj , d− 1], vj , vi]}, and

S[vi, d] = argmin
j≤i

{T [vj , d− 1] + C[S[vj , d− 1], vj , vi]},

where C[vh, vi, vj ] is a function that represents, for each triple (vh, vi, vj) with h < i < j of
vertices, the size of a minimal cut (the number of edges to delete from G) to ensure that
there is no edge between a vertex v` with h ≤ ` < i and a vertex vr with r ≥ j. For technical
reasons, we exclude s here and hence the formal definition is

C[vh, vi, vj ] = |{{v`, vr} ∈ E | h ≤ ` < i ∧ r ≥ j ∧ v` 6= s 6= vr}| .

The vertex vh will only be used to avoid double counting. The correctness and running time
of the algorithm is proven in the full version [4]. J

5 Conclusion

In this paper, we studied Length-Bounded Cut with respect to feedback vertex number,
the combined parameter pathwidth plus maximum degree and the special case when the input
graph is a proper interval graph. We showed that it is W[1]-hard with respect to the feedback
vertex number and polynomial-time solvable on proper interval graphs. The latter confirms a
conjecture by Bazgan et al. [3] and both fill-in gaps in their hierarchies for Length-Bounded
Cut from a parameterized respectively graph-classes point of view. Natural next steps
include the remaining open questions in these hierarchies. In particular, interval graphs are
the last remaining graph class in their graph-class hierarchy for Length-Bounded Cut.
We conjecture that it should be possible to extend Theorem 13 to also work on interval
graphs. Lastly, we showed that Length-Bounded Cut is W[1]-hard with respect to the
combined parameter pathwidth and maximum degree. This combines two results by Dvořák
and Knop [9] and Bazgan et al. [3]. It strengthens the former, which states that the problem
is W[1]-hard with respect to the parameter pathwidth, and complements the latter, which
shows that the problem is in XP for the parameter maximum degree. The question whether
it is FPT or W[1]-hard for the parameter maximum degree was left open by Bazgan et al. [3].
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