
A Faster Subquadratic Algorithm for the Longest
Common Increasing Subsequence Problem
Anadi Agrawal
Institute of Computer Science, University of Wrocław, Poland

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland

Abstract
The Longest Common Increasing Subsequence (LCIS) is a variant of the classical Longest Common
Subsequence (LCS), in which we additionally require the common subsequence to be strictly increasing.
While the well-known “Four Russians” technique can be used to find LCS in subquadratic time, it
does not seem directly applicable to LCIS. Recently, Duraj [STACS 2020] used a completely different
method based on the combinatorial properties of LCIS to design an O(n2(log log n)2/ log1/6 n) time
algorithm. We show that an approach based on exploiting tabulation (more involved than “Four
Russians”) can be used to construct an asymptotically faster O(n2 log log n/

√
log n) time algorithm.

As our solution avoids using the specific combinatorial properties of LCIS, it can be also adapted for
the Longest Common Weakly Increasing Subsequence (LCWIS).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Longest Common Increasing Subsequence, Four Russians

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.4

1 Introduction

In the well-known Longest Common Subsequence problem we aim to find the length of the
longest subsequence common to two strings A[1..n] and B[1..n]. A textbook exercise is to find
it in O(n2) time [17], and using the so-called “Four Russians” technique this has been brought
down to O(n2/ log2 n) for constant alphabets [17] and O(n2(log logn)2/ log2 n) [5] or even
O(n2 log logn/ log2 n) [11] for general alphabets. Recently, there was some progress in provid-
ing explanation for why a strongly subquadratic O(n2−ε) time algorithm is unlikely [1,7], and
in fact even achieving O(n2/ log7+ε n) would have some exciting unexpected consequences [2].
Other problems for which this technique has lead to subquadratic algorithms include Boolean
matrix multiplication [3] and regular expression matching [6, 14]. Interestingly, for the
well-known all-pairs shortest paths (APSP) problem, a long line of work brought nontrivial
polylogarithmic improvements over the classical O(n3) solution, until Williams designed an
O(n3/2Ω(

√
logn)) time algorithm [18].

In this paper we consider a problem related to LCS defined as follows:

Problem: Longest Common Increasing Subsequence (LCIS)
Input: integer sequences A[1..n] and B[1..n]
Output: largest ` such that there exist indices i1 < . . . < i` and j1 < . . . < j` with the
property that (i) A[ik] = B[jk], for every k = 1, . . . , `, and (ii) A[i1] < . . . < A[i`].

While this is less obvious than for LCS, LCIS can be also solved in O(n2) time [19]
(and in linear space [16]), and it can be proved that a strongly subquadratic algorithm
would refute SETH [10] (although faster algorithms are known for some special cases [13]).
However, as opposed to LCS, the usual “Four Russians” approach, that roughly consists in

© Anadi Agrawal and Paweł Gawrychowski;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 A Faster Subquadratic Algorithm for the LCIS Problem

partitioning the DP table into blocks of size logn× logn, does not seem directly applicable
to LCIS. Very recently, Duraj [9] used a completely different approach based on some nice
combinatorial properties specific to LCIS to design a subquadratic O(n2(log logn)2/ log1/6 n)
time algorithm. This brings the challenge of determining if 1/6 is the right exponent, or
maybe we can shave more than that from the time complexity?

Our contribution. We design a faster subquadratic O(n2 log logn/
√

logn) time algorithm
for LCIS. Interestingly, instead of using the combinatorial properties of LCIS as in the
previous work, we apply a technique based on exploiting tabulation (but differently than
in the classical “Four Russians” approach). This allows our algorithm to be modified to
solve the Longest Common Weakly Increasing Subsequence (LCWIS) problem (for which
an O(n2−ε) time algorithm is also known to refute SETH [15]). This does not seem to be
the case for Duraj’s approach based on bounding the number of so-called significant symbol
matches, that for LCWIS might be Ω(n2). Throughout the paper we assume that A and
B are of the same length, and the goal is to calculate the length of LCIS. However, the
algorithm can be easily modified to avoid this assumption and recover the subsequence itself.

Overview of the paper. Our algorithm is based on combining two different procedures. By
appropriately selecting the parameters, the overall complexity becomes O(n2 log logn/

√
logn)

as explained in Section 5.
The first procedure described in Section 3 works fast when there are only few distinct

elements in both sequences. We start with a solution based on dynamic programming working
in O(t · n2) time, where t is the number of distinct elements in both sequences. Then, we
exploit tabulation to decrease its running time to O(t · n2/ logn).

The second procedure described in Section 4 is efficient when there are not too many
matching pairs, that is, pairs (i, j) such that A[i] = B[j]. The main idea is to calculate,
for every such pair, LCIS of A[1..i] and B[1..j] that ends with A[i] = B[j]. This is done by
applying an appropriate dynamic predecessor structure. This roughly follows the ideas of
Duraj, except that instead of using van Emde Boas trees we notice that, in fact, one can
plug in any balanced search trees with efficient split/merge.

In Section 6 we explain the necessary modification required to adapt our solution for
LCWIS.

2 Preliminaries

We work with sequences consisting of integers. For such a sequence A, we write A[i] to
denote the i-th element, and A[1..i] to denote the prefix of length i. |A| is the length of A.

Let σ be the sequence consisting of all distinct integers present in A and B, arranged
in the increasing order, and cnt(v) be the total number of occurrences of σ[v] in A and B.
Without loss of the generality we can assume that σ[v] = v, and write v instead of σ[v].

We call a pair of indices (x, y) a matching pair when A[x] = B[y]. Further, we call it a
v-pair when A[x] = B[y] = v.

We write LCIS(i, j) to denote LCIS(A[1..i], B[1..j]), that is, the longest increasing
common subsequence of A[1..i] and B[1..j]. We write LCIS→(i, j) to denote the longest
increasing common subsequence of A[1..i] and B[1..j] which includes both A[i] and B[j] (so
in particular, A[i] = B[j]).

Throughout the paper, log x denotes log2 x.

A. Agrawal and P. Gawrychowski 4:3

3 First Solution (Few Distinct Elements)

In this section we describe an algorithm for finding LCIS in O(|σ| · n2/ logn) time.
Let dpv[i][j] denote the largest possible length of a sequence C such that:

1. C is an increasing common subsequence of A[1..i] and B[1..j],
2. C consists of elements not larger than v.
Then, our goal is to compute dp|σ|[n][n].

All |σ| ·n2 entries in dp can be calculated in O(1) time each using the following recurrence:

dpv+1[i][j] =
{
dpv[i− 1][j − 1] + 1, if A[i] = B[j] = v + 1,
max{dpv[i][j], dpv+1[i− 1][j], dpv+1[i][j − 1]}, otherwise.

In order to decrease the time we will speed up calculating dpv+1 from dpv. Because calculating
dpv+1 only requires the knowledge of dpv, we will only keep the current dpv and update all
of its entries to obtain dpv+1.

I Lemma 1. 0 ≤ dpv[i][j]− dpv[i][j − 1] ≤ 1 and 0 ≤ dpv[i][j]− dpv[i− 1][j] ≤ 1.

Proof. A subsequence of B[1..(j−1)] is still a subsequence of B[1..j], so dpv[i][j−1] ≤ dpv[i][j].
Consider a sequence C corresponding to dpv[i][j], and let C ′ be C without the last element.
Because C is a subsequence of B[1..j], C ′ is a subsequence of B[1..(j − 1)]. So, C ′ is an
increasing subsequence of A[1..i] and B[1..(j−1)], hence |C ′| ≤ dpv[i][j−1]. As |C| = |C ′|+1,
we conclude that dpv[i][j] ≤ dpv[i][j − 1] + 1. The second part of the lemma follows by a
symmetrical reasoning. J

Instead of maintaining dpv, we keep another table dp′v[i][j] = dpv[i][j] − dpv[i][j − 1]
(where dpv[i][j] = 0 for j < 1). Due to Lemma 1, each entry of dp′v is either 0 or 1. This
allows us to store each row of dp′v by partitioning it into O(n/b) blocks of length b, with every
block represented by a bitmask of size b saved in a single machine word, where b = α logn

for some constant α ≤ 1 to be fixed later. By definition, dpv[i][j] =
j∑

k=1
dp′v[i][k]. In addition

to dp′v, we store the value of dpv[i][j] for every block boundary, so O(n2/b) values overall.
This will allow us later to recover any dpv[i][j] in constant time by retrieving the value at
the appropriate block boundary and adding the number of 1s in a prefix of some bitmask.
We preprocess such prefix sums for every possible bitmask in O(2b · b) time and space. To
implement updates efficiently we also need the following lemma1.

I Lemma 2. 0 ≤ dpv+1[i][j]− dpv[i][j] ≤ 1

Proof. Because allowing using more elements cannot decrease the length, dpv[i][j] ≤
dpv+1[i][j]. Let C be a sequence corresponding to dpv+1[i][j], and let C ′ be C without
the last element. Because C is strictly increasing, the elements of C ′ are not larger than v,
so |C ′| ≤ dpv[i][j]. Then, using |C ′|+ 1 = |C| we obtain that dpv+1[i][j]− 1 ≤ dpv[i][j]. J

We now describe how to obtain the table storing the values of dp′v+1 by modifying
the table storing the values of dp′v. To this end, we use the recursion for dpv+1[i][j] and
process the rows one-by-one. We start by copying the corresponding i-th row of dp′v, and
then update the entries going from left to right. In the j-th step, we would like to have
correctly determined the values of dp′v+1[i][1], dp′v+1[i][2], . . . , dp′v+1[i][j] that together encode

1 This lemma does not hold for LCWIS.

I S A AC 2 0 2 0

4:4 A Faster Subquadratic Algorithm for the LCIS Problem

the values of dpv+1[i][1], dpv+1[i][2], . . . , dpv+1[i][j]. However, during this process we are no
longer guaranteed that dpv+1[i][j] ≤ dpv+1[i][j + 1], To overcome this issue, we immediately
propagate each value to the right: after increasing dpv+1[i][j] (by one due to Lemma 2) we
also increase every dpv+1[i][k] equal to the original value of dpv+1[i][j], for all k > j. This
translates into setting dp′v+1[i][j] to 1 and setting dp′v+1[i][k] to 0, for the smallest k > j

such that dp′v+1[i][k] = 1, if such k exists. To implement this efficiently, we maintain k while
considering j = 1, 2, . . . , n in O(n) overall time. The details of this procedure are shown in
Algorithm 1.

Algorithm 1 Calculate the i-th row of dp′
v+1.

1: procedure CalculateRow(v, i)
2: ptr ← 1
3: cur value← 0
4: prv value← 0
5: prv phase← 0
6: for j = 1..n do
7: dp′v+1[i][j] = dp′v[i][j]
8: for j = 1..n do
9: if ptr ≤ j then ptr ← j + 1

10: while ptr ≤ n and dp′v+1[i][ptr] = 0 do
11: ptr ← ptr + 1
12: cur value← cur value+ dp′v+1[i][j]
13: . cur value =

∑j
j′=1 dp

′
v+1[i][j′] = max{dpv[i][j], dpv+1[i][j − 1]}

14: . prv phase = dpv[i− 1][j − 1]
15: if A[i] = B[j] = v + 1 and cur value = prv phase then
16: dp′v+1[i][j]← 1
17: cur value← cur value+ 1
18: if ptr ≤ n then dp′v+1[i][ptr]← 0
19: prv phase← prv phase+ dp′v[i− 1][j]
20: prv value← prv value+ dp′v+1[i− 1][j]
21: . prv value = dpv+1[i− 1][j]
22: if cur value < prv value then
23: cur value← prv value

24: dp′v+1[i][j]← 1
25: if ptr ≤ n then dp′v+1[i][ptr]← 0

We speed up Algorithm 1 by a factor of b by considering whole blocks of dp′v+1
instead of single entries. Consider a single block of dp′v+1 consisting of the values of
dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b− 1], and assume that they have been already
partially updated by propagating the maximum. To calculate their correct values we need
the following information:
1. dp′v[i− 1][j], dp′v[i− 1][j + 1], . . . , dp′v[i− 1][j + b− 1],
2. dp′v+1[i− 1][j], dp′v+1[i− 1][j + 1], . . . , dp′v+1[i− 1][j + b− 1],
3. dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b− 1],
4. dpv[i− 1][j − 1],
5. dpv+1[i− 1][j − 1],
6. dpv+1[i][j − 1],
7. for which indices j, j + 1, . . . , j + b− 1 we have A[i] = B[j] = v + 1.

A. Agrawal and P. Gawrychowski 4:5

In fact, we can rewrite the procedure so that instead of the values dpv[i− 1][j − 1], dpv+1[i−
1][j − 1], dpv+1[i][j − 1] only the differences dpv+1[i − 1][j − 1] − dpv[i − 1][j − 1] and
dpv+1[i][j − 1]− dpv+1[i− 1][j − 1] are needed. By Lemma 1 and Lemma 2, both differences
belong to {0, 1}, so the whole information required for calculating the correct values consists
of 4b+ 2 bits. Blocks dp′ are already stored in separate machine words, and we can prepare,
for every v, an array with the j-th entry set to 1 when B[j] = v, partitioned into n/b blocks
of length b, where each block is saved in a single machine word, in O(|σ| · n) time. This
allows us to gather all the required information in constant time and use a precomputed
table of size O(24b+2) that stores a single machine word encoding the correct values in a
block for every possible combination. Additionally, the table stores the number of 1s to the
right of the block that should be changed to 0. The table can be prepared in O(24b+2 · b)
time by a straightforward modification of Algorithm 1. Now we can update a whole block in
constant time by retrieving the precomputed answer, but then we still might need to remove
some 1s on its right. Instead of removing them one-by-one we work block-by-block. In more
detail, we maintain a pointer to the nearest block that might contain a 1. Let the number of
1s there be ` and the number of 1s that still need to be removed be s. As long as s > 0, we
remove min{`, s} leftmost 1s from the current block in constant time using a precomputed
table of size O(2b · b), decrease s by min{`, s}, and move to the next block. This amortises
to constant time per block over the row.

We set b = logn
5 as to make the required preprocessing o(n). Then, the overall complexity

of the algorithm becomes O(|σ| · n2/ logn).

4 Second Solution (Rare Elements)

In this section we describe an algorithm for solving LCIS inO(
|σ|∑
v=1

(cnt(v))2(1+log2(n/cnt(v))))
time.

For every matching pair (x, y), we will compute LCIS→(x, y), called the result for (x, y).
The algorithm proceeds in phases corresponding to the elements of σ, and in the v-th
step computes the results for all v-pairs. During this computation we maintain, for every
r = 1, 2, . . . , n, a structure D(r) that allows us to quickly determine, given any (x, y), if there
exists an already processed matching pair (x′, y′) with result r such that x′ < x and y′ < y.
Each D(r) is implemented using the following lemma.

I Lemma 3. We can maintain a set of points S ⊆ [n]× [n] under inserting a batch of u ≤ n
points in amortised O(u(1 + log n

u)) time and answering a batch of q ≤ n queries of the form
“given (x, y), is there (x′, y′) ∈ S such that x′ < x and y′ < y” in O(q(1 + log n

q)) time.

Proof. We first describe a slower solution that achieves the claimed bounds only for q = u = 1,
and then extend it to larger values of q and u. For the latter, we could have also used
balanced search trees with dynamic finger property, such as the level linked (2,4)-trees [12].
However, this results in a somewhat complicated solution, and we opt for a self-contained
description. We also note that the related question of implementing basic operations on two
sets of size n and m, where m ≤ n, in time O(m log(n/m)) goes back to the work of Brown
and Tarjan [8].

We observe that if the current S contains two distinct points (xi, yi) and (xj , yj) with
xi ≤ xj and yi ≤ yj then there is no need to keep (xj , yj). Thus, we keep in S only points
that are not dominated. Let (x1, y1), . . . , (xk, yk) be these points arranged in the increasing
order of x coordinates (observe that we cannot have two non-dominated points with the
same x coordinate). So, x1 < x2 < . . . < xk, where k ≤ n, and because the points are not

I S A AC 2 0 2 0

4:6 A Faster Subquadratic Algorithm for the LCIS Problem

dominated also y1 > y2 > . . . > yk. We store the x coordinates in a BST. This clearly allows
us to answer a single query (x, y) in O(logn) time by locating the predecessor of x. To
insert a point (x, y), we first check that it is not dominated by locating the predecessor of x.
Then, we might need to remove some of the subsequent x coordinates that correspond to
points that are dominated by (x, y). This can be efficiently implemented by maintaining a
doubly-linked list of all points, and linking each x coordinate with its corresponding point.
Insertion takes O(logn) time plus another O(logn) for every removed point, so O(logn)
amortised time, and a query concerning (x, y) reduces to finding the predecessor of x among
the xis in O(logn) time.

We first explain how to process a batch of q queries. We first sort them inO(q(1+log(n/q)))
time using radix sort with base q. We use a BST that allows split and merge in O(log s)
time, where s is the number of stored elements, for example AVL trees. Additionally, we
store the size of the subtree in every node. Then we have the following easy proposition.

I Proposition 4. We can split BST into at most b smaller BSTs containing Θ(s/b) elements
each in O(b(1 + log s

b)) time.

Proof. As long as there is a BST of size at least 2s/b we split it into two BSTs of
(roughly) equal sizes. Assuming for simplicity that both s and b are powers of 2, this takes
O(

∑log b−1
i=0 2i log(s/2i)) overall time, which can be bounded by calculating

∫ b
1 log(s/x)dx =

O(b(1 + log(s/b))). J

We split the BST into at most q smaller BSTs containing Θ(s/q) elements each, where s
is the number of stored elements, using Proposition 4. Because queries are sorted, we can
determine for each of them the relevant BST by a linear scan, and then query the relevant
BST in O(1 + log(s/q)) time, so O(q(1 + log n

q)) overall.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

Figure 1 Processing a batch of 3 insertions, with the already existing and new points denoted by
circles and squares, respectively.

We now explain how to process a batch of u insertions. We start with determining which
of the new points are dominated by the already stored points in O(u(1 + log(s/u)) time
using the above method. This also allows us to determine, for each new point (x, y), the
range of already stored points (xi, yi), (xi+1, yi+1), . . . , (xj , yj) that should be removed from
the structure because of inserting (x, y). See Figure 1. This takes additional O(`) time by
traversing the doubly-linked list, where ` is the number of points to be removed. As in a

A. Agrawal and P. Gawrychowski 4:7

query, we split the BST into at most u smaller BSTs containing Θ(s/u) elements each, and
merge a sorted list of new points with the list of smaller BSTs in O(u(1 + log(s/u))) time.
Then, each range of the points that should be removed is either fully contained in a single
smaller BSTs, or consists of a prefix of a smaller BST, then a range of full smaller BSTs,
and finally a suffix of a smaller BSTs. By splitting a smaller BST in O(log(s/q)) time and
assigning a single credit to every stored element, we can hence implement all deletions in
O(u(1 + log(s/u))) time. Finally, we insert each new point into the appropriate smaller
BST. This might take more than O(log(s/u)) time per element if there are more than s/u

insertions to the same smaller BST. In such case, we build an AVL tree containing all these
` ≥ s/u new points in O(`) time, and then insert the Θ(s/q) already existing points there in
O(s/q log `) = O(` log(s/q)) time, and discard the smaller BST. Finally, we merge the BSTs
into pairs, quadruples, and so on. By the calculation from the proof of Proposition 4 this
also takes O(u(1 + log(u/b))) time. J

Lemma 3 is already enough to binary search for the result of (x, y) in O(log2 n) time due
to the following property.

I Lemma 5. Consider any r and an already processed matching pair (x′, y′) with result r.
Then either r = 1 or there exists an already processed matching pair (x′′, y′′) with result r− 1
such that x′′ < x′ and y′′ < y′.

Proof. Assume that r ≥ 2 and consider a sequence C which realises the result for (x′, y′).
Then C[1..|C| − 1] is an increasing subsequence of both A[1..(x′ − 1)] and B[1..(y′ − 1)].
Let A[x′′] and B[y′′] be its last elements in A and B, respectively. Then x′′ < x′, y′′ < y′,
and A[x′′] = B[y′′], so (x′′, y′′) is a matching pair, and because C is strictly increasing this
matching pair must have been already processed. J

However, our goal is to spend O(1 + log2(n/cnt(v))) time per every (x, y). We exploit
the following property.

I Lemma 6. Consider two v-pairs (x, y1) and (x, y2), where y1 < y2. The result for (x, y2)
is at least as large as for (x, y1).

Proof. Consider a sequence C which realises LCIS→(x, y1). Then, replacing y1 with y2 we
obtain a valid candidate for the value of LCIS→(x, y2). J

Consider all v-pairs with the same x coordinate (x, y1), (x, y2), . . . , (x, ycnt(v)). We binary
search for the result of (x, yi) for i = cnt(v), . . . , 2, 1. By Lemma 6, in the i-th step we can
start with the result found in the (i+ 1)-th step. Using exponential search [4], by convexity
of the log function the overall complexity becomes O(cnt(v)(1 + log(n/cnt(v)))). This is still
too slow, as every step involves a separate invocation of Lemma 3 and takes O(logn) time.
To obtain the final speed up, we process all x coordinates x1, x2, . . . , xcnt(v) together. The
high level idea is to synchronise all exponential searches and exploit the possibility of asking
a batch of queries.

We start with modifying the proof of Lemma 3 to allow for more general queries: given x,
we want to find the smallest y such that there exists (x′, y′) ∈ S with x′ < x and y′ < y

(or detect that there is none). The modification is straightforward and does not increase
the time complexity. Now we can restate processing all pairs with the same x coordinates.
We start with a counter c initially set to n and i set to cnt(v). As long as i ≥ 1, we use
exponential search starting at c to find the result for (x, yi). Let c′ be the found result. We
use the modified Lemma 3 to determine the smallest y such that c′ is the result for (x, y) and
then keep decreasing i as long as i ≥ 1 and yi > y. Then, we decrease c′ by 1 and repeat.

I S A AC 2 0 2 0

4:8 A Faster Subquadratic Algorithm for the LCIS Problem

We further reformulate processing all pairs with the same x coordinate. Consider a
conceptual complete binary tree on n leaves (without losing generality, n is a power of 2).
Every node corresponds to an interval [a, b], and by querying such a node we will understand
querying structure D(a) with the current (x, yi). Consider the leaf corresponding to c.
Calculating c′ with exponential search can be phrased as starting at the leaf corresponding
to c and going up as long as the query at the current node fails (we only need to ask a query
if the previous node was the right child of the current node; otherwise, we can immediately
jump to the nearest ancestor with such property). After having reached the first ancestor
for which the query succeeds, we descend from its left child to the leaf corresponding to c′
by repeating the following step: if querying the right child of the current node succeeds we
descend to the right child, and otherwise we descend to the left child. See Figure 2.

Figure 2 Exponential search for the next node phrased as traversing the binary tree.

Now we are able to synchronize the exponential searches as follows. We traverse the
conceptual complete binary tree recursively: to traverse the subtree rooted at node u with
children u` and ur we (i) visit u, (ii) recursively traverse the subtree rooted at ur, (iii) visit
u again, (iv) recursively traverse the subtree rooted at u`. Thus, every node is visited twice.
We claim that when visiting the nodes of the conceptual complete binary tree using this
strategy, for any x coordinate we are always able to wait till we encounter the node that
should be queried next. This is formalised in the following lemma.

I Lemma 7. Let the result for (x, yi+1) be c and the result for (x, yi) be c′ < c. All queries
necessary to calculate c′ can be answered during the traversal after the second visit to c and
before the second visit to c′.

Proof. The calculation consists of two phases. First, we need to ascend from the leaf
corresponding to c, reaching its first ancestor u at which the query fails. Recall we only need
to ask queries if the previous node is the right child of the current node. For each such node
v we will be able to use second visit to v in the traversal. Thus, we will process all such
queries after the second visit to u. Then, we need to descend from the left child of u. In
every step, we query the right child vr of the current node v, and continue either in the left
or in the right subtree of v. To this end, we use the first visit to vr in the traversal. J

For each x coordinate, by convexity of the log function, we need to query at most
O(cnt(v)(1+log(n/cnt(v)))) nodes of the conceptual binary tree. Denoting by qu the number
of queries to a node u, we thus have

∑
u qu = s = O(cnt(v)2(1 + log(n/cnt(v)))). Invoking

Lemma 3, the total time to answer all these queries is
∑
u qu(1 + log(n/qu)). By convexity

of the function f(x) = x log(n/x), this is maximised when all qus are equal, but there are
only n of them, making the total time :∑

u

qu(1 + log(n/qu)) ≤ s(1 + log(n2/s)) ≤ s(1 + log(n2/cnt(v)2))

= O(cnt(v)2(1 + log(n/cnt(v)))2).

A. Agrawal and P. Gawrychowski 4:9

5 Combining Solutions

Let c be a parameter to be fixed later. We call v frequent if n
c < cnt(v), and rare otherwise.

We partition the sequence σ into fragments. Each fragment is either a single frequent
element or a maximal range of rare elements. By definition of a frequent element and
maximality of fragments consisting of rare elements, we have O(c) fragments. We maintain
the dpv table as in the first solution, but we only update it after having processed a whole
fragment. So, when considering a fragment starting at v we only assume that the values
of dpv−1 can be accessed in constant time. For a fragment consisting of a single frequent
element, we proceed exactly as in the first solution. In the remaining part of the description
we describe how to process a fragment consisting of rare elements v, v + 1,

We consider all v′-pairs, for v′ = v, v + 1, We will compute LCIS→(x, y) for each
such matching pair (x, y), and store it in the appropriate structure D(r) implemented as
described in Lemma 3. To compute the values of LCIS→(x, y) for all v′-pairs, we use parallel
exponential search as in the second solution with the following modification. To check if
LCIS→(x, yi) > r, we need to consider two possibilities for the corresponding sequence C
ending at A[x] = B[yi] = v′:
1. If C[|C| − 1] belongs to the same fragment then it is enough to check if D(r) contains a

pair (x′, y′) with x′ < x and y′ < yi.
2. Otherwise, it is enough to check if dpv−1[x][yi] ≥ r.
Additionally, after having found c′ we need to keep decreasing i as long as i ≥ 1 and the
answer for (x, yi) is c′, and this needs to be tested in constant time per each such i. We
again need to consider two possibilities, and either compare yi with the value of y′ found by
querying D(c′ − 1) with x, or test if dpv−1[x][yi] ≥ r in constant time. Overall, this incurs
only additional constant time per every step of the exponential search for every considered
matching pair.

After having considered all v′-pairs for the last element v′ in the current fragment, we
need to compute dpv′ from dpv−1 and the calculated values of LCIS→. Of course, we want
to operate on dp′v′ and dp′v−1 instead of dpv′ and dpv−1. This is done row-by-row. The i-th
row is computed in two steps.

First, we need to set dpv′ [i][j] = max{dpv′ [i− 1][j], dpv−1[i][j]} for every j = 1, 2, . . . , n.
This is done by processing whole blocks in constant time and precomputing the result for
every possible combination of the following information:
1. dp′v′ [i− 1][j], dp′v′ [i− 1][j + 1], . . . , dp′v′ [i− 1][j + b− 1],
2. dp′v−1[i][j], dp′v−1[i][j + 1], . . . , dp′v−1[i][j + b− 1],
3. dpv′ [i− 1][j − 1],
4. dpv−1[i][j − 1].
This can be preprocessed in O(4b · b2) time after observing that, as in the first solution, only
the difference dpv′ [i− 1][j− 1]− dpv−1[i][j− 1] is relevant and, additionally, it can be capped
at b (if it is bigger than b then we can set it to b). The time is O(n/b).

Second, we need to consider the values of LCIS→(i, j) computed for the current fragment.
If the result computed for a matching pair (i, j) is r then we need to update dpv[i][j′] =
max{dpv[i][j′], r}, for every j′ ≥ j. This can be done by simultaneously scanning all such
js and the blocks. By maintaining the maximum r, we can update the value of dpv[i][j] at
the beginning of the block. Then, we consider all other j′s belonging to the same block,
and consider its corresponding result r′. If dpv[i][j′] ≥ r′ then this result is irrelevant, and
otherwise we must increase some of the values in the block by 1 (as dpv[i][j′−1] is assumed to
have been already updated and due to Lemma 1). As in the first solution, this is implemented
by setting dp′v[i][j′] = 1 and changing the nearest 1 into 0. Overall, the time is bounded by
the number of considered matching pairs plus additional O(n/b) time.

I S A AC 2 0 2 0

4:10 A Faster Subquadratic Algorithm for the LCIS Problem

We set b = logn
5 so that the preprocessing time is o(n). For each frequent element we

spend O(n2/b) time, so O(n2/b · c) overall. For each fragment consisting of rare elements, the
time is O(cnt(v)2 log2(n/cnt(v))) for every v to compute the results, and then O(n2/b) plus
the number of results. Using cnt(v) ≤ n/c, where c is sufficiently large, and calculating the
derivative of f(x) = x log2(n/x) we upper bound cnt(v) log2(n/cnt(v)) ≤ n/c · log2 c for every
rare v, so the overall time is O(n2/b · c+ n/c · log2 c

∑
v cnt(v)) = O(n2/b · c+ n2/c · log2 c).

Choosing c =
√

logn log logn we obtain an algorithm working in O(n2 log logn/
√

logn)
time.

6 Longest Common Weakly Increasing Subsequence

In this section we explain how to modify the algorithm to solve the weakly increasing version
of the problem. We adapt both solutions without changing their complexity as explained
below, and then combine them using the same threshold for the frequent/rare elements to
arrive at O(n2 log logn/

√
logn) complexity.

6.1 First solution
We define dp as in the algorithm for LCIS. It can be calculated using the following recurrence
(slightly different than for LCIS):

dpv+1[i][j] =
{
dpv+1[i− 1][j − 1] + 1, if A[i] = B[j] = v + 1,
max{dpv[i][j], dpv+1[i− 1][j], dpv+1[i][j − 1]}, otherwise.

The proof of Lemma 1 still holds, so we can store a table dp′ and retrieve any value of dp
from dp′ in constant time.

Algorithm 1 stays essentially the same so we skip a detailed explanation. The speed up is
implemented by considering whole blocks of dp′v+1 instead of single entries. Consider a single
block of dp′v+1 consisting of the values of dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b− 1],
and assume that they have been already partially updated by propagating the maximum.
To calculate their correct values we need the following information:
1. dp′v+1[i− 1][j], dp′v+1[i− 1][j + 1], . . . , dp′v+1[i− 1][j + b− 1],
2. dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b− 1],
3. dpv+1[i− 1][j − 1],
4. dpv+1[i][j − 1],
5. for which indices j, j + 1, . . . , j + b− 1 we have A[i] = B[j] = v + 1.
Once again we can rewrite the procedure so that instead of the values dpv+1[i − 1][j − 1]
and dpv+1[i][j − 1] only the difference dpv+1[i][j − 1] − dpv+1[i − 1][j − 1] is needed. By
Lemma 1, the difference belongs to {0, 1}, so the whole information required for calculating
the correct values consists of 3b+ 1 bits. This allows us to update the whole table in O(n2/b)
as for LCIS.

We set b = logn
4 as to make required preprocessing o(n). Overall complexity of the

algorithm becomes O(|σ|n2/ logn).

6.2 Second solution
Calculating the result for each v-pair consists of two phases. In the first phase, for each
v-pair (x, y), we calculate the result assuming that all previous elements in the subsequence
are strictly smaller than v. In the second phase, we calculate the result assuming that the

A. Agrawal and P. Gawrychowski 4:11

previous element is also equal to v. The first phase can be implemented exactly as for LCIS
in O(cnt(v)2(1 + log2(n/cnt(v)))) time. We now focus on explaining how to implement the
second phase. Let prevA[x] denote the greatest x′ fulfilling A[x′] = A[x], if there is no such
then prevA[x] = 0. Similarly we define prevB[y], both arrays can be prepared in negligible
O(n logn) time.

We analyze all v-pairs in the increasing order of rows and columns. Consequently, when
analysing a pair (x, y), for all other v-pairs with x′ ≤ x, y′ ≤ y we have already correctly
calculated LCWIS→(x′, y′). The proof of Lemma 6 still holds for LCWIS, and implies that
among all other v-pairs (x′, y′) such that x′ ≤ x and y′ ≤ y the pair (prevA[x], prevB [y]) has
the largest result. We can calculate LCWIS→(x, y) as the maximum of the result computed
in the first phase and LCWIS→(prevA[x], prevB [y]) + 1.

The second phase takes only O(cnt(v)2) time, so the overall complexity remains
O(cnt(v)2(1 + log2(n/cnt(v)))).

7 Conclusions

The O(n2 log logn/
√

logn) complexity does not seem to be right answer yet, at least for
LCIS. It seems to us that one can apply the combinatorial bound of Duraj on the number of
significant pairs, and combine it with our approach, to achieve an even better complexity.
However, as this does not seem to result in a clean bound of (say) O(n2/ logn) yet, we leave
determining the exact complexity for future work.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In 56th FOCS, pages 59–78, 2015.
2 Amir Abboud and Karl Bringmann. Tighter connections between formula-SAT and shaving

logs. In 45th ICALP, pages 8:1–8:18, 2018.
3 Vladimir Arlazarov, Yefim Dinitz, M. A. Kronrod, and Igor Faradžev. On economical

construction of the transitive closure of an oriented graph. Doklady Akademii Nauk, 194:487–488,
1970.

4 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Inf. Process. Lett., 5(3):82–87, 1976.

5 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theor.
Comput. Sci., 409(3):486–496, 2008.

6 Philip Bille and Mikkel Thorup. Faster regular expression matching. In 36th ICALP, pages
171–182, 2009.

7 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In 56th FOCS, pages 79–97, 2015.

8 Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. ACM, 26(2):211–226,
1979.

9 Lech Duraj. A sub-quadratic algorithm for the longest common increasing subsequence
problem. In 37th STACS, pages 41:1–41:18, 2020.

10 Lech Duraj, Marvin Künnemann, and Adam Polak. Tight conditional lower bounds for longest
common increasing subsequence. Algorithmica, 81(10):3968–3992, 2019.

11 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for
sequence similarity problems. Discret. Appl. Math., 212:96–103, 2016.

12 Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists. Acta
Informatica, 17:157–184, 1982.

I S A AC 2 0 2 0

4:12 A Faster Subquadratic Algorithm for the LCIS Problem

13 Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms for
computing longest common increasing subsequences. J. Discrete Algorithms, 9(4):314–325,
2011.

14 Eugene W. Myers. A four Russians algorithm for regular expression pattern matching. J.
ACM, 39(2):430–448, 1992.

15 Adam Polak. Why is it hard to beat O(n2) for longest common weakly increasing subsequence?
Inf. Process. Lett., 132:1–5, 2018.

16 Yoshifumi Sakai. A linear space algorithm for computing a longest common increasing
subsequence. Inf. Process. Lett., 99(5):203–207, 2006.

17 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974.

18 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018.

19 I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing a
longest common increasing subsequence. Inf. Process. Lett., 93(5):249–253, 2005.

	Introduction
	Preliminaries
	First Solution (Few Distinct Elements)
	Second Solution (Rare Elements)
	Combining Solutions
	Longest Common Weakly Increasing Subsequence
	First solution
	Second solution

	Conclusions

