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Abstract
In this paper, we present primal-dual algorithms for online problems with non-convex objectives.
Problems with convex objectives have been extensively studied in recent years where the analyses rely
crucially on the convexity and the Fenchel duality. However, problems with non-convex objectives
resist against current approaches and non-convexity represents a strong barrier in optimization
in general and in the design of online algorithms in particular. In our approach, we consider
configuration linear programs with the multilinear extension of the objectives. We follow the
multiplicative weight update framework in which a novel point is that the primal update is defined
based on the gradient of the multilinear extension. We introduce new notions, namely (local)
smoothness, in order to characterize the competitive ratios of our algorithms. The approach leads to
competitive algorithms for several problems with convex/non-convex objectives.
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1 Introduction

In the paper, we consider problems of minimizing the total cost of resources used to satisfy
online requests. One phenomenon observed in various situations, known as the economy of
scale, consists of sub-linear growth of cost in the amount of used resources. This happens in
many scenarios in which one gets a discount when buying resources in bulk. A representative
setting is the extensively-studied domain of sub-modular optimization. Another phenomenon,
known as the diseconomy of scale, is that the cost grows super-linearly in the quantity of
resources used. An illustrative example for this phenomenon is the energy cost of computation
where the cost grows super-linearly as a function of speeds. The diseconomy of scale has
been widely studied in the domain of convex optimization [5]. However, in many settings,
the costs are the mix of both phenomena and the objective functions are indeed non-convex.
Non-convex objective functions appear in various problems, ranging from scheduling, sensor
energy management, to influence and revenue maximization, and facility location. For
example, in scheduling of malleable jobs on parallel machines, the cost grows as a non-convex
function [15] which is due to the parallelization and the synchronization. Besides, in the
practical aspect of facility location, the facility costs to serve clients are rarely constant or
simply a convex function of the number of clients. The costs would initially increase fast until
some threshold on the number of clients, then become more stable before quickly increase
again as the number of clients augments. This behaviour of cost functions widely happens
in economy. Such situations call for the design of algorithms with performance guarantee
for non-convex objective functions. In this paper, we consider problems in which the cost
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increases arbitrarily with the amount of used resources. We measure the performance of
an algorithm by the competitive ratio. Specifically, an algorithm is r-competitive if for any
instance, the ratio between the cost of the algorithm and that of an optimal solution is at
most r.

1.1 An Optimization Problem and Primal-Dual Approach
We first consider the following problem and illustrate our primal-dual approach based on
configuration LPs.

Optimization Problem. There is a set of resources E and requests arrive online. At the
arrival of request i, a set of feasible strategies (actions) Si to satisfy request i is revealed.
Each strategy sij ∈ Si consists of a subset of resources in E . Each resource e is associated to
an arbitrary non-negative non-decreasing cost function fe : 2E → R+; the cost induced by
resource e depends on the set of requests using e and fe(∅) = 0. The cost of a solution is the
total cost of resources, i.e.,

∑
e fe(Ae) where Ae is the set of requests using resource e. The

goal is to design an algorithm that upon the arrival of each request, selects a feasible strategy
for the request while maintaining the cost of the overall solution as small as possible.

Primal-Dual Approach. We consider an approach based on linear programming for the
problem. The first crucial step for any LP-based approach is to derive a LP formulation
with reasonable integrality gap, which is defined as the ratio between the optimal integer
solution of the formulation and the optimal solution without the integer condition. As
the cost functions are non-linear, it is not surprising that the natural relaxation suffers
from large integrality gap. Consider the following simple (offline) setting. Given a graph
consisting of only two nodes s, t and m parallel edges between s and t. There is a single
request with the demand of routing from s to t. In this setting, an edge corresponds to
a resource and a strategy is a path connecting s to t which is also an edge (among m

given edges). For every edge e, the cost function fe(xe) = x2
e where xe is the quantity

of flow passing through edge e. The most natural formulation of the problem would be:
min

∑m
e=1 x

2
e such that

∑m
e=1 xe = 1, xe ∈ {0, 1}. By relaxing the integrality constraint of

xe, the fractional optimum has value 1/m (by routing xe = 1/m through each of m edges)
whereas the integer optimum is 1. So the integrality gap is arbitrarily large for a very simple
offline setting. We resolve this issue by a new formulation in form of a configuration LP. We
start with a natural formulation and systematically strengthen the natural formulations by
introducing an exponential number of new variables and new constraints connecting new
variables to original ones. Consequently, the new formulation, in form of a configuration LP,
significantly reduces the integrality gap.

The configuration LPs have been used mostly in offline settings and the approach is to
round an optimal fractional solution to an integer one and bound the approximation ratio.
The first encountered difficulty of this approach is that a configuration LP has exponential
size, so one has to look for a separation oracle in order to compute an optimal fractional
solution. Finding separation oracles is in general far from trivial and it represents an obstacle
in using configuration LP to design performant algorithms. Besides, many rounding schemes
are intrinsically offline and it is not suitable in online setting where input is released in
pieces.

To overcome these difficulties, we consider a primal-dual approach with configuration LPs.
First, primal-dual is particularly appropriate since one does not have to compute an optimal
fractional solution that needs the full information on the instance. Second, in our approach,
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the dual variables of the configuration LP have intuitive meanings and the dual constraints
indeed guide the decisions of the algorithm. The key step in the approach is to show that
the constructed dual variables constitute a dual feasible solution. In order to prove the dual
feasibility, we define a notion of smoothness of functions. This definition is inspired by the
smoothness framework introduced by Roughgarden [22] in the context of algorithmic game
theory to characterize the price of anarchy for large classes of games. The smoothness notion
allows us not only to prove the dual feasibility but also to establish the competitiveness of
algorithms in our approach. We characterize the performance of algorithms using the notion
of smoothness in a similar way as the price of anarchy characterized by the smoothness
argument [22]. Through this notion, we show an interesting connection between online
algorithms and algorithmic game theory.

I Definition 1. Let N be a set of requests. A set function f : 2N → R+ is (λ, µ)-smooth if
for any set A = {a1, . . . , an} ⊆ N and any collection B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ B ⊆ N , the
following inequality holds:

∑n
i=1
[
f
(
Bi ∪ ai

)
− f

(
Bi
)]
≤ λf

(
A
)

+ µf
(
B
)
.

Intuitively, given a (λ, µ)-smooth function, the quantity λ
1−µ measures how far the function

is from being linear. If a function is linear then it is (1, 0)-smooth. Informally, the inequality
in the definition of smoothness means the following. Imagine that Bi is the current solution
of an algorithm at step i. Then, if the total marginal increase by following a strategy ai
at step i (the left-hand side) can be bounded by a combination of the algorithm cost (the
second term of the right-hand side) and the cost of an adversary (potentially the set of all
strategies ai’s), then the algorithm is competitive (again, the competitive ratio depends on λ
and µ). We say that a set of cost functions {fe : e ∈ E} is (λ, µ)-smooth if every function fe
is (λ, µ)-smooth.

I Theorem 2. Assume that all resource cost functions are (λ, µ)-smooth for some parameters
λ > 0, µ < 1. Then there exists a greedy λ

1−µ -competitive algorithm for the general problem.

Applications. We show the applicability of the theorem by deriving competitive algorithms
for several problems in online setting, such as Minimum Power Survival Network
Routing, Vector Scheduling, Energy-Efficient Scheduling, Prize Collecting
Energy-Efficient Scheduling, Non-Convex Facility Location. We mention in the
following the energy-efficient scheduling problem and refer the reader to the full paper for
other applications.

In Online Energy-Efficient Scheduling, one has to process jobs on unrelated
machines without migration with the objective of minimizing the total energy. No result has
been known for this problem for parallel machine environments. Among others, a difficulty
is the construction of a formulation with bounded integrality gap. We notice that for this
problem, Gupta et al. [13] gave a primal-dual competitive algorithm for a single machine.
However, their approach cannot be used for unrelated machines due to the large integrality
gap of their formulation. For this problem, we present competitive algorithms for arbitrary
cost functions beyond the convexity property. Note that the convexity of the cost functions
is a crucial property employed in previous works. If the cost functions have typical form
f(x) = xα then the competitive ratio of our algorithm is O(αα) and this is optimal up to a
constant factor for all the problems above.

1.2 Primal-Dual Approach for Covering Problems
Covering Problems. Let E be a set of n resources and let f : {0, 1}n → R+ be an arbitrary
monotone cost function. Let xe ∈ {0, 1} be a variable indicating whether resource e is
selected. The covering constraints

∑
e ai,exe ≥ 1 for every i are revealed one-by-one and

ISAAC 2020
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at any step, one needs to maintain a feasible integer solution x. The goal is to design an
algorithm that minimizes f(x) subject to the online covering constraints and xe ∈ {0, 1} for
every e.

Approach and Contribution. We extend our primal-dual approach to study the covering
problems. Very recently, Azar et al. [2] have presented a general primal-dual framework when
function f is convex and its gradient is monotone on every coordinate (so a subclass of convex
functions). The framework is indeed inspired by the Buchbinder-Naor framework [7] for linear
objectives and is along the line of current results for convex objectives [9, 3, 19, 13, 14, 10, 2].
A common point of those works is that they rely crucially on the convexity of cost functions
and Fenchel duality.

We overcome the obstacle of non-convexity (and also for general convexity without the
property that the gradient is monotone on every coordinate) by a considering configuration
LP and the multilinear extension of function f . Given f : {0, 1}n → R+, its multilinear
extension F : [0, 1]n → R+ is defined as F (x) :=

∑
S

∏
e∈S xe

∏
e/∈S(1 − xe) · f(1S) where

1S is the characteristic vector of S (i.e., the eth-component of 1S equals 1 if e ∈ S and
equals 0 otherwise). An alternative way to define F is to set F (x) = E

[
f(1T )

]
where T is a

random set such that a resource e appears independently in T with probability xe. Note
that F (1S) = f(1S).

Having inspired by the approach for the optimization problem in the previous section,
we introduce the notion of locally-smooth for minimization problems and characterize the
competitive ratio using the local smoothness’ parameters. Given two vectors x and y in
[0, 1]n, let x ∨ y be the vector such that its component at coordinate e′ is max{xe′ , ye′}.

I Definition 3. Let E be a set of n resources. A differentiable function F : [0, 1]n → R+ is
(λ, µ)-min-locally-smooth if for any set S ⊆ E, and for all vectors xe ∈ [0, 1]n where e ∈ E,
the following inequality holds:∑

e∈S
∇eF (xe) ≤ λF

(
1S
)

+ µF
(
x
)

(1)

where x :=
∨
e∈S xe, meaning that xe′ = maxe{xee′} for every coordinate e′.

If the gradient ∇F (x) is non-decreasing on every coordinate, we only need a simpler
version. We say that a differentiable function F : [0, 1]n → R+ with monotone gradient is
(λ, µ)-min-locally-smooth if for any set S ⊆ E , and for any vector x ∈ [0, 1]n, the following
inequality holds.∑

e∈S
∇eF (x) ≤ λF

(
1S
)

+ µF
(
x
)

(2)

Let us explain intuitively the local smoothness by considering Inequality (2). Assume that
x is the current solution of an algorithm. Then, if the local increase of the objective function
F (the left-hand side) at the current solution in any direction (including the direction chosen
by an adversary) can be bounded by a combination of the current cost (the second term of
the right-hand side) and the cost of an adversary (the first term of the right-hand side), then
the algorithm is competitive. The competitive ratio will be determined as a function of λ
and µ.

Building upon the primal-dual framework in [2, 7], we present a competitive algorithm
for the fractional covering problem.
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I Theorem 4. Let F be the multilinear extension of the objective cost f and d be the maximal
row sparsity of the constraint matrix, i.e., d = maxi |{aie : aie > 0}|. Assume that F is(
λ, µ

ln(1+2d2)
)
-min-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists a

O
(

λ
1−µ · ln d

)
-competitive algorithm for the fractional covering problem.

Our algorithm, as well as the one in [2] for convex with monotone gradients and the recent
algorithm for `k-norms [20], are extensions of the Buchbinder-Naor primal-dual framework
[7]. A distinguishing point of our algorithm compared to the ones in [2, 20] relies on the
multiplicative update, which is crucial in online primal-dual methods. The approaches in
[2, 20] use the gradient ∇f(x) at the current primal solution x to define a multiplicative
update for the primal. In our approach, we multiplicatively update the primal by some
parameter related to the gradient of the multilinear extension ∇F (x). This parameter is
always maintained to be at least ∇F (x) and in case ∇F (x) is non-decreasing, the parameter
is indeed equal to ∇F (x). This multiplicative update, together with the configuration LPs
and the notion of local smoothness, enable us to derive a competitive algorithm for convex
objective functions whose gradients are not necessarily monotone and more generally, for
non-convex objectives. Moreover, other advantage of our approach are: (i) it avoids the
cumbersome technical details in the analysis as well as in the assumptions of objective
functions; (ii) it reduces the analysis of bounding the competitive ratios to determining the
local-smoothness parameters.

Applications. Specifically, we apply our algorithm to the following classes of functions. First,
for the class of non-negative polynomials of degree k, the algorithm yields a O

(
(k log d)k

)
-

competitive fractional solution that matches a result in [2]. Second, beyond convexity, we
consider a natural class of non-convex cost functions which represent a typical behaviour
of resources in serving demand requests. Non-convexity represents a strong barrier in
optimization in general and for the design of algorithms in particular. We show that our
algorithm is competitive for this class of functions.

1.3 Primal-Dual Algorithm for Packing Problems
Packing Problems. Let E be a set of n resources and let f : {0, 1}n → R+ be an arbitrary
monotone function. Let xe ∈ {0, 1} be a variable indicating whether resource e is selected.
The packings constraints

∑
e bi,exe ≤ 1 for every i are given in advance and resources e are

revealed online one-by-one. At any time, one needs to maintain a feasible integer solution
x. The goal is to design an algorithm that maximizes f(x) subject to the online packing
constraints and xe ∈ {0, 1} for every e.

We follow the primal-dual approach to design competitive algorithms for fractional packing
problems. We introduce an appropriate notion of smoothness for maximization problems.
We notice that this notion is different to that for minimization problems. On one hand, it is
due to different natures of minimization and maximization problems. On the other hand, in
non-convex problems only weak duality holds while strong duality does not. So informally,
there is no symmetry between primal and dual. Specifically, in linear programming, the dual
of the dual is the primal while this property does not hold in non-convex settings.

I Definition 5. A differentiable function F : [0, 1]n → R+ is (λ, µ)-max-locally-smooth if
for any set S ⊂ E, and for any vectors xe ∈ [0, 1]n, the following inequality holds:∑

e∈S
∇eF (xe) ≥ λF

(
1S
)
− µF

(
x
)
.

where x :=
∨
e∈S xe, meaning that xe′ = maxe{xee′} for any coordinate e′.

ISAAC 2020
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Similar to the approach for covering constraints, the max-local-smoothness notion allows
us to prove the dual feasibility and also to establish the competitiveness of algorithms, which
is determined in terms of the max-locally-smoothness parameters.

I Theorem 6. Let F be the multilinear extension of the objective cost f . Denote the
row sparsity d := maxi |{bie : bie > 0}| and ρ := maxi maxe,e′:bie′>0 bie/bie′ . Assume that
F is (λ, µ)-max-locally-smooth for some parameters λ > 0 and µ. Then there exists a
O
( 2 ln(1+dρ)+µ

λ

)
-competitive algorithm for the fractional packing problem.

Note that when f is a linear function, the smooth parameters are λ = 1 and µ = 0. In this
case, the performance guarantee is the same (up to a constant factor) as that of maximizing
a linear function under packing constraints [7] and therefore asymptotically optimal.

Applications. We consider applications to online submodular maximization problems. Sub-
modular functions are interesting since they are neither convex nor concave. Besides,
submodular maximization constitutes a major research agenda in optimization, machine
learning and has been widely studied. However, in the online adversarial setting, not much
has been known especially for submodular maximization with constraints. Designing com-
petitive algorithms for online submodular maximization has been identified as an important
direction in the recent survey [17]. Buchbinder and Naor [8] have studied the online problem
of maximizing the sum of weighted rank functions subject to matroid constraints. The
objective here is a particular submodular function. The authors give an algorithm with
competitive ratio depending logarithmically on the numbers of elements and on weighted
rank functions. In another approach, Buchbinder et al. [6] have considered submodular
optimization with preemption, where one can reject previously accepted elements, and have
given constant competitive algorithms for unconstrained and knapsack-constraint problems.

We show that there exists an algorithm that yields competitive fractional solutions
for online submodular maximization under packing constraints. The competitive ratio is
O
(
log(1 + dρ)

)
which is independent of the submodular objective. Note that using the

online contention resolution rounding schemes [12], one can obtain randomized algorithms for
several specific constraint polytopes, for example, knapsack polytopes, matching polytopes
and matroid polytopes.

1.4 Related work
In this section we summarize related work to our approach. The related work of each specific
problem/application will be given in the corresponding section.

In our approach, a crucial element to characterize the performance of an algorithm is the
smoothness property of functions. The smooth argument is introduced by Roughgarden [22] in
the context of algorithmic game theory and it has successfully characterized the performance
of equilibria (price of anarchy) in many classes of games such as congestion games, etc [22].
This notion inspires the definition of smoothness in our paper.

Primal-dual methods have been shown to be powerful tools in online computation. Buch-
binder and Naor [7] presented a primal-dual method for linear programs with packing/covering
constraints. Their method unifies several previous potential-function-based analyses and
give a principled approach to design and analyze algorithms for problems with linear re-
laxations. Convex objective functions have been extensively studied in online settings in
recent years, in areas such as energy-efficient scheduling [1, 21, 9, 16, 3], paging [19], network
routing [13], combinatorial auctions [4, 14], matching [10]. Recently, Azar et al. [2] gave an
unified framework for covering/packing problems with convex objectives whose gradients
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are monotone. Consequently, improved algorithms have been derived for several problems.
The above approaches rely crucially on the convexity of cost functions. Specifically, the
construction of dual programs is based on convex conjugates and Fenchel duality for primal
convex programs. Very recently, Nagarajan and Shen [20] have considered objective functions
as the sum of `k-norms. This class of functions does not fall into the framework developped
in [2] since the gradients are not necessarily monotone. Nagarajan and Shen [20] proved that
the algorithm presented in [2] yields a nearly tight O

(
log d+ log max aij

min aij

)
-competitive ratio

where aij ’s are entries in the covering matrix. Using these approaches, it is not clear how to
design competitive algorithms for non-convex functions or even for other convex functions
whose gradient is not necessarily monotone on every coordinate. A distinguishing point of
our approach is that it gives a framework to study non-convex cost functions.

2 Primal-Dual Algorithm for the optimization problem

Recall that the problem consists of a set of resources E and requests which arrive online. At
the arrival of request i, a set of feasible strategies (actions) Si to satisfy request i is revealed.
Each strategy sij ∈ Si consists of a subset of resources in E . Each resource e is associated to
a non-negative non-decreasing arbitrary cost function fe : 2E → R+ and the cost induced by
resource e depending on the set of requests using e. The cost of a solution is the total cost of
resources, i.e.,

∑
e fe(Ae) where Ae is the set of requests using resource e. The goal is to

design an algorithm that upon the arrival of each request, selects a feasible strategy while
maintaining the cost of the overall solution as small as possible.

Formulation. We consider the formulation for the resource cost minimization problem
following the configuration LP construction in [18]. We say that A is a configuration
associated to resource e if A is a subset of requests using e. Let xij be a variable indicating
whether request i selects strategy (action) sij ∈ Si. For configuration A and resource e,
let zeA be a variable such that zeA = 1 if and only if for every request i ∈ A, xij = 1
for some strategy sij ∈ Si such that e ∈ sij and for every request i /∈ A, xij = 0 for
any strategy sij ∈ Si such that e ∈ sij . In other words, zeA = 1 iff the set of requests
using e is exactly A. We consider the following formulation and the dual of its relaxation.

min
∑
e,A

fe(A)ze,A∑
j:sij∈Si

xij = 1 ∀i

∑
A:i∈A

zeA =
∑

j:e∈sij

xij ∀i, e

∑
A

zeA = 1 ∀e

xij , zeA ∈ {0, 1} ∀i, j, e, A

max
∑
i

αi +
∑
e

γe

αi ≤
∑

e:e∈sij

βie ∀i, j

γe +
∑
i∈A

βie ≤ fe(A) ∀e,A

In the primal, the first constraint guarantees that request i selects some strategy sij ∈ Si.
The second constraint ensures that if request i selects strategy sij that contains resource e
then in the solution, the set of requests using e must contain i. The third constraint says
that in the solution, there is always a configuration associated to resource e.

ISAAC 2020
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Algorithm. We first interpret intuitively the dual variables, dual constraints and derive
useful observations for a competitive algorithm. Variable αi represents the increase of the
total cost due to the arrival of request i. Variable βi,e stands for the marginal cost on resource
e if request i uses e. By this interpretation, the first dual constraint clearly indicates the
behaviour of an algorithm. That is, if a new request i is released, select a strategy sij ∈ Si
that minimizes the marginal increase of the total cost. Therefore, we deduce the following
greedy algorithm.

Let A∗e be the set of current requests using resource e. Initially, A∗e ← ∅ for every e. At
the arrival of request i, select strategy s∗ij that is an optimal solution of

min
∑
e∈sij

[
fe(A∗e ∪ i)− fe(A∗e)

]
over sij ∈ Si. (3)

Although computational complexity is not a main issue for online problems, we notice that
in many applications, the optimal solution for this mathematical program can be efficiently
computed (for example when fe’s are convex and Si can be represented succinctly in form of
a polynomial-size polytope).

Dual variables. Assume that all resource cost fe are (λ, µ)-smooth for some fixed parameters
λ > 0 and µ < 1. We are now constructing a dual feasible solution. Define αi as 1/λ times
the optimal value of the mathematical program (3). Informally, αi is proportional to the
increase of the total cost due to the arrival of request i. Note that this increase is also called
marginal cost due to request i. For each resource e and request i, define

βi,e := 1
λ

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
where A∗e,≺i is the set of requests using resource e (due to the algorithm) prior to the arrival
of i. In other words, βij equals 1/λ times the marginal cost of resource e if i uses e. Finally,
for every resource e define the dual variable γe := −µλfe(A

∗
e) where A∗e is the set of all

requests using e (at the end of the instance).

I Lemma 7. The dual variables defined as above are feasible.

Proof. The first dual constraint follows immediately from the definitions of αi, βi,e and the
decisions by the algorithm. Specifically, the right-hand side of the constraint represents 1/λ
times the increase cost if the request selects a strategy sij . This is larger than 1/λ times the
minimum increase cost optimized over all strategies in Si, which is αi.

We now show that the second constraint holds. Fix a resource e and a configuration A.
The corresponding constraint reads

− µ

λ
fe(A∗e) + 1

λ

∑
i∈A

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
≤ fe(A)

⇔
∑
i∈A

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
≤ λfe(A) + µfe(A∗e).

This inequality is due to the definition of (λ, µ)-smoothness for resource e. Hence, the second
dual constraint follows. J

I Theorem 2. Assume that all resource cost functions are (λ, µ)-smooth for some parameters
λ > 0, µ < 1. Then there exists a greedy λ

1−µ -competitive algorithm for the general problem.
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Proof. By the definitions of dual variables, the dual objective is∑
i

αi +
∑
e

γe =
∑
e

1
λ
fe(A∗e)−

∑
e

µ

λ
fe(A∗e) = 1− µ

λ

∑
e

fe(A∗e)

Besides, the cost of the solution due to the algorithm is
∑
e fe(A∗e). Hence, the competitive

ratio is at most λ/(1− µ). J

Applications. Despite the simplicity of the algorithm, Theorem 2 yields optimal competitive
ratios for several problems. Among others, we give optimal algorithms for energy efficient
scheduling problems (in unrelated machine environment) and the facility location with
client-dependent cost problem. Prior to our work, no competitive algorithm has been known
for the problems. The proofs are now reduced to computing smooth parameters λ, µ that
subsequently imply the competitive ratios. We refer the reader to the full paper for the
details about those applications.

3 Primal-Dual Framework for Covering Problems

Formulation. We say that S ⊂ E is a configuration if 1S corresponds to a feasible solution.
Let xe be a variable indicating whether the resource e is used. For configuration S, let zS be a
variable such that zS = 1 if and only if xe = 1 for every resource e ∈ S, and xe = 0 for e /∈ S.
In other words, zS = 1 iff 1S is the selected solution to the problem. For any subset A ⊂ E ,
define ci,A = max{1 −

∑
e′∈A ai,e′ ; 0} and ai,e,A := min{ai,e; ci,A}. Denote bi,e,A = ai,e,A

ci,A

where ci,A > 0. We consider the following formulation and the dual of its relaxation.

min
∑
S

f(1S)zS∑
e/∈A

bi,e,A · xe ≥ 1 ∀i, A ⊂ E

∑
S:e∈S

zS = xe ∀e∑
S

zS = 1

xe, zS ∈ {0, 1} ∀e, S

max
∑
i,A

αi,A + γ

∑
i

∑
A:e/∈A

bi,e,A · αi,A ≤ βe ∀e

γ +
∑
e∈S

βe ≤ f(1S) ∀S

αi ≥ 0 ∀i

In the primal, the first constraints are knapsack-constraints of the form
∑
e/∈A ai,e,A ·xe ≥

ci,A corresponding to the given polytope. Intuitively, this constraint imposes the quantities of
xe’s to be chosen, assuming if a set of resources A is selected, in order to satisfy the original
constraint. Note that it is sufficient to consider only constraints with ci,A > 0. The second
constraint ensures that if a resource e is chosen then the selected solution must contain e.
The third constraint says that one solution (configuration) must be selected.

Algorithm. Assume that function F (·) is
(
λ, µ

4 ln(1+2d2)
)
–min-locally smooth. Let d be

the maximal number of positive entries in a row, i.e., d = maxi |{aie : aie > 0}|. Denote
∇eF (x) = ∂F (x)/∂xe. Consider Algorithm 1 which follows the scheme in [2] but is more
subtle due to the fact that the gradient is not necessarily monotone on every coordinate. In
the algorithm, the current dual variable α increases at constant rate (Step 7) and the update
of dual variables β’s is shown in Step 9. We note an subtle point here: if βe < 1

λ∇eF (x)
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then set βe = 1
λ∇eF (x); otherwise if βe > 1

λ∇eF (x) then we do not set βe as 1
λ∇eF (x).

So two invariants during the execution of the algorithm are that βe ≥ 1
λ∇eF (x) and βe is

non-decreasing. The primal update rule follows a multiplicative increase where the increasing
rate of xe is inversely proportional to βe (Step 10). Finally, using the same idea as in [2],
some dual variables α will be decreased in order to maintain the feasibility of our dual
solution.

Algorithm 1 Algorithm for Covering Constraints.
1: Initially, set A∗ ← ∅. Intuitively, A∗ consists of all resources e such that xe = 1.
2: All primal and dual variables are initially set to 0.
3: At every step, always maintain zS =

∏
e∈S xe

∏
e/∈S(1− xe).

4: Upon the arrival of primal constraint
∑
e ak,exe ≥ 1 do the following.

5: while
∑
e/∈A∗ bk,e,A∗xe < 1 simultaneously do # Increase primal, dual

variables
6: Let τ be the current time in the execution of the algorithm.
7: Increase τ at rate 1 and increase αk,A∗ at rate 1

λ·ln(1+2d2) .
8: for e /∈ A∗ such that bk,e,A∗ > 0 simultaneously do
9: if βe < 1

λ∇eF (x) then βe ← 1
λ∇eF (x).

10: Increase xe according to the following function ∂xe

∂τ ←
bk,e,A∗ ·xe+1/d

λ·βe
.

11: end for
12: if xe = 1 then update A∗ ← A∗ ∪ {e}.
13: while

∑k
i=1
∑
A:e/∈A bi,e,A · αi,A > βe for some e /∈ A∗ do # Decrease dual

variables
14: for (m∗e, A) such that bm∗e ,e,A = maxi{bi,e,A|∀A : e /∈ A,∀1 ≤ i ≤ k : αi,A > 0} do
15: Increase αm∗e ,A continuously at rate − bk,e,A∗

bm∗e ,e,A
· 1
λ·ln(1+2d2) .

16: end for
17: end while
18: end while

Dual variables. Variables αi,A and βe have been constructed in the algorithm. Let x be
the current solution of the algorithm. Define γ = − µ

4λ·ln(1+2d2)F (x). Note that due to the
algorithm, βe ≥ 1

λ · ∇eF (x).
The following lemma gives a lower bound on x-variables. Remark that the monotonicity

of the gradient on every coordinate is crucial in the analysis of [2], in particular to prove the
bounds on x-variables. However, in our approach that property is not needed.

I Lemma 8. Let e be an arbitrary resource. At any moment during the execution of the
algorithm where the kth request has been released , it always holds that

xe ≥
1

max bi,e,A · d

[
exp
(

ln(1 + 2d2)
βe

·
∑
A:e/∈A

∑
i

bi,e,A · αi,A
)
− 1
]

where max bi,e,A := max{bi,e,A > 0|∀A : e /∈ A,∀1 ≤ i ≤ k : αi,A > 0}.

Proof. Fix a resource e. We prove the lemma by induction. At the beginning of the instance,
while no request has been released yet, both sides of the lemma are 0. Assume that the
lemma holds until the arrival of the kth request. Consider a moment τ during the execution
of the algorithm and let A∗ be the current set of resources e′ such that xe′ = 1. If at time τ ,
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xe = 1 then by the algorithm, the set A∗ has been updated so that e ∈ A∗. The increasing
rates of both sides in the lemma inequality are 0. In the remaining, assume that xe < 1.
Recall that by the algorithm, βe ≥ 1

λ∇eF (x). We consider two cases βe > 1
λ∇eF (x) and

βe = 1
λ∇eF (x).

Case 1: βe > 1
λ

∇eF (x). In this case, by the algorithm, the value of βe remains unchanged
at time τ (Step 9), i.e., ∂βe

∂τ = 0. Hence, the derivative of the right hand side of the
lemma inequality according to τ is∑

i

∂αi,A∗

∂τ
· bi,e,A∗

max bi,e,A · d
· ln(1 + 2d2)

βe
· exp

(
ln(1 + 2d2)

βe
·
∑
A:e/∈A

∑
i

bi,e,Aαi,A

)
≤ bk,e,A∗ · xe + 1/d

λ · βe
= ∂xe

∂τ

In the inequality, we use the induction hypothesis; ∂αk,A∗

∂τ > 0 and ∂αi,A∗

∂τ ≤ 0 for i 6= k

and ∂βe

∂τ = 0; and the increasing rate of αk,A∗ according to the algorithm. So the rate
in the left-hand side is always larger than that in the right-hand side. Moreover, at
some steps in the algorithm, α-variables might be decreased while the x-variables are
maintained monotone. Hence, the lemma inequality holds.

Case 2: βe = 1
λ

∇eF (x). In this case, by the algorithm, 1
λ∇eF (x) is locally non-decreasing

at τ (since otherwise, by Step 9, βe is not maintained to be equal to 1
λ∇eF (x)). Therefore,

∂βe

∂τ ≥ 0 and so ∂
( 1
βe

)
/∂τ ≤ 0. Hence, the derivative of the right hand side of the lemma

inequality according to τ is upper bounded by∑
i

∂αi,A∗

∂τ
· bi,e,A∗

max bi,e,A · d
· ln(1 + 2d2)

βe
· exp

(
ln(1 + 2d2)

βe
·
∑
A:e/∈A

∑
i

bi,e,Aαi,A

)
which is bounded by ∂xe

∂τ by the same argument as the previous case. The lemma
follows. J

I Lemma 9. The dual variables defined as above are feasible.

Proof. As long as a primal covering constraint is unsatisfied, the x-variables are always
increased. Therefore, at the end of an iteration, the primal constraint is satisfied. Consider
the first dual constraint. The algorithm always maintains that

∑
i

∑
A:e/∈A bi,e,Aαi,A ≤ βe

(strict inequality happens only if xe = 1). Whenever this inequality is violated then by
the algorithm, some α-variables are decreased in such a way that the increasing rate of∑
i

∑
A:e/∈A bi,e,Aαi,A is at most 0. Hence, by the definition of β-variables, the first dual

constraint holds.
Consider the second dual constraint. Let x be the current solution of the algorithm. By

the algorithm, for each fixed resource e, βe = 1
λ∇eF (ye) for some ye where yee′ ≤ xe′ for

every resource e′. (Since at some moment, the algorithm increases xe without increasing
βe for some e.) Moreover, y :=

∨
e ye ≤ x (meaning that ye′ ≤ xe′ for every e′). By

definitions of dual variables, the second dual constraint (after rearranging terms) reads:
1
λ

∑
e∈S ∇eF (ye) ≤ F (1S) + µ

4λ·ln(1+2d2)F (x). Besides, as F is monotone, F (x) ≥ F (y). So
in order to prove the second dual constraint, it is sufficient to prove that: 1

λ

∑
e∈S ∇eF (ye) ≤

F (1S) + µ
4λ·ln(1+2d2)F (y). This inequality is exactly the

(
λ, µ

4 ln(1+2d2)
)
-min-local smoothness

of F . Hence, the lemma follows. J

I Theorem 4. Let F be the multilinear extension of the objective cost f and d be the maximal
row sparsity of the constraint matrix, i.e., d = maxi |{aie : aie > 0}|. Assume that F is(
λ, µ

ln(1+2d2)
)
-min-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists a

O
(

λ
1−µ · ln d

)
-competitive algorithm for the fractional covering problem.
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Proof. We will bound the increases of the cost and the dual objective at any time τ in the
execution of Algorithm 1. Let A∗ be the current set of resources e such that xe = 1. The
derivative of the objective with respect to τ is:∑

e

∇eF (x) · ∂xe
∂τ

=
∑

e:bk,e,A∗>0
xe<1

∇eF (x) · bk,e,A
∗ · xe + 1/d
λ · βe

≤
∑

e:bk,e,A∗>0

(
bk,e,A∗ · xe + 1

d

)
≤ 2. (4)

The first inequality follows ∇eF (x) ≤ λ · βe. The second inequality is due to the definition
of d and the fact that

∑
e/∈A∗ bk,e,A∗ · xe ≤ 1 always holds during the algorithm.

For a time τ , let U(τ) be the set of resources e such that
∑
i

∑
A:e/∈A bi,e,Aαi,A = βe and

bk,e,A∗ > 0. Note that |U(τ)| ≤ d by definition of d. As long as
∑
e/∈A∗ bk,e,A∗xe < 1, by

Lemma 8, we have for every e ∈ U(τ),

1
bk,e,A∗

> xe ≥
1

max bi,e,A · d

[
exp
(

ln(1 + 2d2)
)
− 1
]
.

Therefore, bk,e,A∗

maxi bi,e,A
≤ 1

2d .
We are now bounding the increase of the dual at time τ . The derivative of the dual with

respect to τ is:

∂D

∂τ
=
∑
i

∑
A

∂αi,A
∂τ

+ ∂γ

∂τ
=
∑
i

ci,A∗ ·
∂αi,A∗

∂τ
+ ∂γ

∂τ

= 1
λ · ln(1 + 2d2)

(
1−

∑
e∈U(τ)

bk,e,A∗

bm∗e ,e,A

)
− µ

4λ · ln(1 + 2d2)
∑
e

∇eF (x) · ∂xe
∂τ

≥ 1
λ · ln(1 + 2d2)

(
1−

∑
e∈U(τ)

1
2d

)
− µ

2λ · ln(1 + 2d2) ≥
1− µ

2λ · ln(1 + 2d2) .

The third equality holds since αk,A∗ is increased and other α-variables in U(τ) are decreased.
The first inequality uses the fact that bk,e,A∗

maxi bi,e,A∗
≤ 1

2d and Inequality (4). The last inequality
holds since |U(τ)| ≤ d. Hence, the competitive ratio is O

(
λ

1−µ · ln d
)
. J

Applications
In this section, we are interested in deriving fractional solutions for different classes of
objective function. Rounding schemes (in order to obtain integral solution) for concrete
problems are problem-specific and are not the emphasized points here. (Note that several
rounding techniques have been shown for different problems, for example in [2] for polynomials
with non-negative coefficients, or using online contention resolution schemes for submodular
functions [12].)

Polynomials with non-negative coefficients. Let g` : R → R for 1 ≤ ` ≤ L be degree-k
polynomials with non-negative coefficients and the cost function f : {0, 1}n → R+ defined
as f(1S) =

∑
` b`g`

(∑
e∈S ae

)
where ae ≥ 0 for every e and b` ≥ 0 for every 1 ≤ ` ≤ L.

The multilinear extension F (of function f) is ((k ln k)k−1, k−1
k ln d )-min-locally-smooth. So our

algorithm yields the competitive ratio O
(
(k ln d)k

)
. This result recovers the one proved in

[2] for this class of cost functions. Note that Azar et al. [2] gave randomized algorithms for
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several problems by rounding their fractional solutions. As one can approach a multilinear
extension of any function up to a high precision [23], applying the same rounding schemes
in [2] for the corresponding problems based on our fractional solutions, one can obtain
randomized algorithms with similar bounds as in [2].

Beyond convex functions. Consider the following natural cost functions which represent
more practical costs when serving clients as mentioned in the introduction (the cost initially
increases fast then becomes more stable before growing quickly again). Let g : R → R
be a non-convex function defined as g(y) = yk if y ≤ M1 or y ≥ M2 and g(y) = g(M1)
if M1 ≤ y ≤ M2 where M1 < M2 are some constant parameters. The cost function
f : {0, 1}n → R+ defined as f(1S) = g

(∑
e∈S ae

)
where ae ≥ 0 for every e. For this

function f , the multilinear extension F is also ((k ln k)k−1, k−1
k ln d )-min-locally-smooth. Hence,

our algorithm is O
(
(k ln d)k

)
-competitive for minimizing the non-convex objective function

defined above under covering constraints.

4 Primal-Dual Framework for Packing Problems

Formulation. We say that S ⊂ E is a configuration if 1S corresponds to a feasible solution.
Let xe be a variable indicating whether the resource e is used. For configuration S, let zS be
a variable such that zS = 1 if and only if xe = 1 for every resource e ∈ S, and xe = 0 for
e /∈ S. In other words, zS = 1 iff 1S is the selected solution of the problem. We consider the
following formulation and the dual of its relaxation.

max
∑
S

f(1S)zS∑
e

bi,e · xe ≤ 1 ∀i∑
S:e∈S

zS = xe ∀e∑
S

zS = 1

xe, zS ∈ {0, 1} ∀e, S

min
∑
i

αi + γ∑
i

bi,e · αi ≥ βe ∀e

γ +
∑
e∈S

βe ≥ f(1S) ∀S

αi ≥ 0 ∀i

In the primal, the first constraints represent the given polytope. Note that the box
constraint xe ≤ 1 is included among these constraints. The second constraint ensures that if
a resource e is chosen then the selected solution must contain e. The third constraint says
that one solution (configuration) must be selected.

Algorithm. Assume that function F (·) is (λ, µ)-max-locally smooth. Let d be the max-
imal number of positive entries in a row, i.e., d = maxi |{bie : bie > 0}|. Define ρ =
maxi maxe,e′:bie′>0 bie/bie′ . Denote ∇eF (x) = ∂F (x)/∂xe. In the algorithm, at the arrival
of a new resource e, while ∇eF (x) > 0 (i.e., one can still improve the cost by increasing
xe) and

∑
i bi,eαe ≤

1
λ∇eF (x), the primal variable xe and dual variables αi’s are increased

by appropriate rates. We will argue in the analysis that the primal/dual solutions re-
turned by the algorithm are feasible. Recall that by definition of the multilinear extension,
∇eF (x) = E

[
f
(
1R∪{e}

)
− f

(
1R
)]

where R is a random subset of resources N \ {e} such
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that e′ is included with probability xe′ . Therefore, during the iteration of the while loop
with respect to resource e, only xe is modified and xe′ remain fixed for e′ 6= e, so ∇eF (x) is
constant during the iteration.

Algorithm 2 Algorithm for Packing Constraints.
1: All primal and dual variables are initially set to 0.
2: At every step, always maintain zS =

∏
e∈S xe

∏
e/∈S(1− xe).

3: Upon the arrival of new resource e.
4: while

∑
i bi,eαi ≤

1
λ∇eF (x) and ∇eF (x) > 0 do

5: Increase τ at rate 1 and increase xe at rate 1
∇eF (x)·ln(1+dρ) .

6: for i such that bi,e > 0 simultaneously do
7: Increase αi according to the following function ∂αi

∂τ ←
bi,e·αi

∇eF (x) + 1
dλ

8: end for
9: end while

Dual variables. Variables αi’s are constructed in the algorithm. Let x be the current
solution of the algorithm and let xe be the solution after the while loop with respect to
resource e. Define γ = µ

λF (x) where x and βe = 1
λ · ∇eF (xe). Note that by the observation

above, during the while loop with respect to resource e, βe = 1
λ · ∇eF (x).

The following lemma gives a lower bound on α-variables.

I Lemma 10. At any moment during the execution of the algorithm, it always holds that
for every i

αi ≥
∇eF (x)

maxe′ bi,e′ · dλ

[
exp
(

ln
(
1 + dρ

)
·
∑
e′

bi,e′ · xe′
)
− 1
]
.

I Lemma 11. The dual variables defined as above are feasible.

I Theorem 6. Let F be the multilinear extension of the objective cost f . Denote the
row sparsity d := maxi |{bie : bie > 0}| and ρ := maxi maxe,e′:bie′>0 bie/bie′ . Assume that
F is (λ, µ)-max-locally-smooth for some parameters λ > 0 and µ. Then there exists a
O
( 2 ln(1+dρ)+µ

λ

)
-competitive algorithm for the fractional packing problem.

Applications to online submodular maximization
Consider a online submodular maximization subject to packing constraints. We incorporate
additional constraints xe ≤ 2/3 (instead of box constraint xe ≤ 1) for every e. Note that
given a feasible solution x to the original problem, the solution 2

3 x also satisfies the original
contraints since they are packing constraints. The advantage of adding these new constraints,
as shown below, is that we can bound the smooth parameters while loosing only a constant
factor in the competitive ratio. We are now determining smooth parameters of the multilinear
extension F .

I Lemma 12. Let f be an arbitrary submodular function. Then, the multilinear extension
F is (1,1)-smooth if f is monotone and is (1/3, 1)-smooth if f is non-monotone.

Proof. For arbitrary submodular function f , it holds that [11, Lemma III.5] for any vector y
and any subset S, F

(
1S∨y

)
≥ (1−maxe ye)F (1S). Moreover, if f is monotone, F

(
1S∨y

)
≥

F (1S).
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Consider arbitrary vectors xe and let x =
∨
e xe. As F is the linear extension of a

submodular function, ∇eF (xe) ≥ ∇eF (x) = E
[
f
(
1R∪{e}

)
− f

(
1R
)]

where R is a random
subset of resources N \ {e} such that e′ is included with probability xe′ . Therefore, for any
subset S,

F (x) +
∑
e∈S
∇eF (xe) ≥ F (x) +

∑
e∈S

E
[
f
(
1R∪{e}

)
− f

(
1R
)]

= E
[
f(1R) +

∑
e∈S

[
f
(
1R∪{e}

)
− f

(
1R
)]]
≥ E

[
f(1R∪S)

]
= F

(
1S ∨ x

)
≥

{
F (1S) if f monotone,
(1−maxe xe)F (1S) otherwise

≥

{
F (1S) if f monotone,
1/3 · F (1S) otherwise

where the second inequality is due to the submodularity of f , and the last inequality holds
since xe ≤ 2/3 for every e. The lemma follows. J

The previous lemma and Theorem 6 lead to the following result.

I Proposition 13. Algorithm 2 yields a O
(
ln(1 + dρ)

)
-competitive fractional solution for

maximizing (arbitrary) submodular functions under packing constraints.

One can derive online randomized algorithms for specific problems by rounding the
fractional solutions. For example, using the online contention resolution rounding schemes [12],
one can obtain randomized algorithms for several specific constraint polytopes, for example,
knapsack polytopes, matching polytopes and matroid polytopes.

5 Conclusion

In the paper, we have presented and systematically used a primal-dual framework to design
competitive algorithms for problems with non-convex objective. Determining competitive
ratios for several problems are now reduced to computing parameters of corresponding
smoothness notions. We hope that the primal-dual approach based on configuration LPs,
as well as smoothness notions, would provide useful tools to study non-linear/non-convex
problems in different contexts. One interesting open question is to prove lower bounds for
the considered problems in terms of smooth parameters.
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