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Abstract
We investigate relations among the size, depth and energy of threshold circuits computing the n-
variable parity function PARn, where the energy is a complexity measure for sparsity on computation
of threshold circuits, and is defined to be the maximum number of gates outputting “1” over all
the input assignments. We show that PARn is hard for threshold circuits of small size, depth and
energy:

If a depth-2 threshold circuit C of size s and energy e computes PARn, it holds that 2n/(e loge n) ≤
s; and
if a threshold circuit C of size s, depth d and energy e computes PARn, it holds that
2n/(e2e+d loge n) ≤ s.

We then provide several upper bounds:
PARn is computable by a depth-2 threshold circuit of size O(2n−2e) and energy e;
PARn is computable by a depth-3 threshold circuit of size O(2n/(e−1) + 2e−2) and energy e; and
PARn is computable by a threshold circuit of size O((e + d)2n−m), depth d + O(1) and energy
e + O(1), where m = max(((e− 1)/(d− 1))d−1, ((d− 1)/(e− 1))e−1).

Our lower and upper bounds imply that threshold circuits need exponential size if both depth and
energy are constant, which contrasts with the fact that PARn is computable by a threshold circuit
of size O(n) and depth 2 if there is no restriction on the energy. Our results also suggest that any
threshold circuit computing the parity function needs depth to be sparse if its size is bounded.
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1 Introduction

Logic circuit is a traditional computational model consisting of a number of basic computa-
tional elements, called gates. In the standard type of logic circuits, a gate computes AND,
OR or NOT function. A threshold circuit is a logic circuit consisting of gates computing
linear threshold functions: a gate g with n input variables has weights w1, w2, . . . , wn with a
threshold t, and computes g(x) = sig(

∑n
i=1 wixi − t) for x = (x1, x2, . . . , xn) ∈ {0, 1}n.

Threshold circuits are well-studied in the literature, and are known to have large expressive
power: a single threshold gate is able to compute the majority function which the standard
logic circuit of constant depth needs an exponential size to compute [9, 30], and threshold
circuits of polynomial size (i.e., polynomial number of gates) and constant depth can compute
basic arithmetic functions such as addiction, multiplication and division [22]. In fact, proving
a limit of polynomial-size and constant-depth threshold circuits is one of the cutting-edge
open problems in circuit complexity (See, for example, the paper [3]). Although several
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super-polynomial lower bounds are known for restricted settings [1, 7, 8, 10, 21], we can not
even rule out the possibility that every decision problem in EXPNP is solvable by a threshold
circuit of polynomial size and just depth 2.

Besides the considerable interest in circuit complexity, biology also motivates research of
threshold circuits, since a threshold gate is traditionally considered to be a simple theoretical
model of a biological neuron in the brain [17, 20]. The goal of this line of the research is to
understand how the brain smoothly carry out tough computational tasks. We focus on the
following interesting property that a biological neuron possesses: a neuron consumes more
energy to emit a spike than not to emit a spike, and consequently their computation results
from a relatively small number of simultaneously active neurons out of a large population in
the nervous system [6, 16, 19], which implies that neural networks acquire the principles of
computation with sparse activity. This may not be a burden on the brain, since machine
learning techniques inspired by this property, such as sparse coding or sparse autoencoder,
pushes recent progress of deep learning method [11, 15, 18].

The above observations address a natural question: What computational tasks are carried
out by threshold circuits with sparse activity? In this paper, we employ a complexity measure
for sparsity of computation, called energy complexity, and investigate the computational
power of threshold circuits of small energy complexity. For a threshold circuit C, the energy
of C is defined to be the maximum number of gates outputting “1” (i.e., emitting a spike) in
C, where the maximum is taken over all the input assignments to C [27] (Energy complexity
of the standard logic circuits is also studied in the literature. See [5, 23] and their references).

In the previous research, it turns out that the energy complexity relates to other major
complexity measures such as size and depth. In particular, it is known that, if a n-variable
Boolean function f has very high communication complexity (more formally, if f has bounded-
error communication complexity Ω(n+ log δ) to compute correctly with probability 1/2 + δ

for any δ, 0 < δ < 1/2), it holds that s = 2Ω(n/ed) for size s, depth d and energy e of any
threshold circuit computing f [28]. Thus, any threshold circuit of constant depth and energy
no(1) requires an exponential size to compute f .

However, we believe that such a relation among the size, depth and energy is more
universal, and exists independently of communication complexity. In this paper, as a first
step towards finding such a relation, we focus on the n-variable parity function PARn which
is a representative of low communication complexity Boolean functions.

Threshold circuits computing PARn have been studied in terms of either bounded depth
or bounded energy (See Table 1). For bounded-depth circuits, it is shown that any threshold
circuit of depth d has size (n/2)1/2(d−1) to compute PARn [12]. An upper bound O(dn1/(d−1))
shows that these lower bounds are almost tight [22]. Moreover, any depth-2 threshold circuit
needs size Ω(

√
n) [14] and constant-depth circuits needs sublinear-size even to approximate

the function [4]. For bounded-energy circuits, it is known that, in the case of energy e = 1,
any threshold circuit needs size 2n−1 to compute PARn no matter how large depth of the
circuit is [25], and in the case where e ≥ 2 there is a lower bound Ω(n1/e) on the size of
threshold circuit of energy e [29]. Upper bounds 2n−1 for e = 1 [26] and O(en1/(e−1)) for
e ≥ 2 given in [25] show that these lower bounds are also almost tight.

However, the lower bounds given in [4, 12, 14] for bounded-depth circuits are based on
random restriction, and symmetrically handle the outputs 0 and 1 of a gate, and seems
independent of energy complexity. Also, the proofs given in [24, 29] for energy-bounded
circuits are independent of depth. Thus we cannot directly apply the techniques to such a
situation that both depth and energy are bounded. In fact, these results do not rule out
the possibility that PARn is computable by a threshold circuit of size O(

√
n), depth 2 and

energy 2, while, by looking into the construction of circuits given in [22, 24], we find the
circuits need large energy to have small depth, and large depth to have small energy.
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Table 1 Lower and upper bounds on the size of threshold circuits C computing the n-variable
parity function, where d and e are depth and energy of C, respectively. In the bottom upper bound,
m = max(((e− 1)/(d− 1))d−1, ((d− 1)/(e− 1))e−1).

Lower Bounds Upper Bounds

Bounded Depth
d = 1 not computable [20, 22]

2 ≤ d (n/2)1/2(d−1) [12] O(dn1/(d−1)) [22]

Bounded Energy
e = 1 2n−1 [24] 2n−1 + 1 [26]

2 ≤ e Ω(n1/e) [29] O(en1/(e−1)) [25]

Bounded Depth d = 2 2n/(e loge n) [Ours] O(e2n−2e) [Ours]

and d = 3
2n/(e2e+d loge n) [Ours]

O(2e−2 + 2n/(e−1)) [Ours]

Bounded Energy 4 ≤ d O((e + d)2n−m) [Ours]

In this paper, we show that there actually exists a relation among all the size, depth and
energy of threshold circuits computing the parity function. More formally, we show that,
for any depth-2 threshold circuit of size s and energy e, it holds that 2n/(e loge n) ≤ s. For
3 ≤ d, we prove that, for any threshold circuit of size s, depth d and energy e, it holds that
2n/(e2e+d loge n) ≤ s. These imply that a threshold circuit of constant depth and energy e
requires an exponential size to compute PARn. Our proofs are based on a combination of
depth and energy reduction. We first show that, if a threshold gate g outputs one for many
input assignments, we can deterministically fix part of input variables so that the output of
g become constant one. This statement plays key role in showing that there exists a partial
input assignment which reduce either depth by one or energy by one. Since any threshold
gate cannot compute the parity function of two variables, we can deduce that threshold
circuits of small depth and energy requires large size.

In addition, we provide several upper bounds on the size of threshold circuits computing
the parity function. We prove that the n-variable parity function is computable by a circuit
of size O(e2n−2e), depth 2 and energy e; a circuit of size O(2n/(e−1) + 2e−2), depth 3 and
energy e; and a circuit of size O((e+ d)2n−m), depth d+O(1), and energy e+O(1), where
m = max(((e− 1)/(d− 1))d−1, ((d− 1)/(e− 1))e−1).

Although there is much room between our lower and upper bounds, these results imply
that the size, depth and energy of threshold circuits computing the parity function are
definitely involved. In particular, PARn is hard for threshold circuits of small size, depth and
energy. Our results also suggest that any threshold circuit needs depth to be sparse even for
computing the parity function if its size is bounded, which may shed light on computation of
neural networks with sparse activity.

The rest of the paper is organized as follows. In Section 2, we define threshold circuits,
and give several propositions used in the following sections. In Section 3, we prove lower
bounds for depth-2 and depth-d circuits. In Section 4, we construct depth-2, depth-3 and
depth-d circuits of small energy. In Section 5, we conclude with some remarks.

2 Preliminaries

In this section, we define some terms, and introduce several propositions. Throughout the
paper, we denote by [n] = {1, 2, . . . , n} for any positive integer n. For a set I of Boolean
input variables, we may denote by {0, 1}I a set of the 2|I| input assignments for I. For a set
S, we denote by |S| its cardinality. For a Boolean vector a, we denote by |a| the hamming
weight of a (i.e., the number of ones in a).

ISAAC 2020
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In Section 2.1, we define threshold circuits, and show propositions on bounded-depth or
bounded-energy circuits. In Section 2.2, we give Sauer’s lemma that we will use to prove
lower bounds.

2.1 Threshold Circuits
A threshold gate g is a logic gate computing a linear threshold function of an arbitrary integer
n of inputs, which is identified by weights w1, w2, . . . , wn for the n input variables and a
threshold t. We define the output g(x) of g as

g(x) = sig
(

n∑
i=1

wixi − t

)
=

 1 if
z∑

i=1
wixi ≥ t;

0 otherwise.

A threshold circuit C is a feedforward circuit consisting of threshold gates, and is expressed
by a directed acyclic graph. Let n be the number of inputs to C, then C has n input nodes
of in-degree 0, each of which corresponds to one of the n input variables x1, x2, . . . xn, while
the other nodes correspond to threshold gates. The inputs to a gate g in C consists of the
inputs x1, x2, . . . xn and the outputs of the gates directed to g.

We define the size s of a circuit C as the number of gates in C. Let g1, g2, . . . , gs be the
gates in C where the gates are numbered in the topological order on the underlying directed
acyclic graph of C. We call gs the top gate of C, and regard the output gs(x) of gs as the
output C(x) of C, that is, C(x) = gs(x) for every input x ∈ {0, 1}n. A threshold circuit C
computes a Boolean function f : {0, 1}n → {0, 1} if C(x) = f(x) for every x ∈ {0, 1}n. We
say that a gate gi, 1 ≤ i ≤ s, is in the l-th layer of a circuit C if there are l gates (including
gi) on the longest path from an input node to gi in the underlying graph. The depth d of C
is the number of gates on the longest path to the top gate gs. We define the energy e of C as

e = max
x∈{0,1}n

s∑
i=1

gi(x).

We may assume throughout the paper that 1 ≤ s, d, e.
For every x = (x1, x2, . . . , xn) ∈ {0, 1}n, the n-variable parity function PARn is defined

to be

PARn(x) =
{

1 if
∑n

i=1 xi is odd;
0 if

∑n
i=1 xi is even.

For a Boolean function f of n variables, we define S0(f) = {x ∈ {0, 1}n | f(x) = 0} and
S1(f) = {x ∈ {0, 1}n | f(x) = 1}. Clearly, |S0(PARn)| = |S1(PARn)| = 2n−1.

The following exponential lower bound is known for threshold circuits of arbitrary depth
and energy one.

I Theorem 1. If a threshold circuit of size s and energy one computes PARn (or its
complement), then it holds that 2n−1 ≤ s.

The lower bound in Theorem 1 is tight even for depth-2 circuits, as follows.

I Theorem 2. PARn is computable by a threshold circuit of size 2n−1 + 1, depth 2 and
energy one.

We also use the following two constructions for PARn.
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I Theorem 3. For every positive integer d < logn, PARn is computable by a threshold
circuit C of size at most (d− 1)dn1/(d−1)e+ 1 and depth d. (In addition, the energy of C is
same as its size.)

I Theorem 4. For every positive integer e < logn, PARn is computable by a threshold
circuit of size (e− 1)dn1/(e−1)e+ 1 and energy e. (In addition, the depth of C is same as its
size.)

In these statements, we removed asymptotic notations from the original ones to refine the
bounds.

2.2 Sauer’s Lemma
For S ⊆ {0, 1}n and I ⊆ [n], we define a projected set SI of S on I as

SI = {a ∩ I | a ∈ S}

where we consider a as the characteristic vector of a subset of [n], and denote by a ∩ I the
intersection of the subset and I. If |SI | = 2|I|, we say that S shatters I. The VC dimension
of S is the largest cardinality of I that C shatters. The following lemma is known as Sauer’s
lemma, and state that |S| is bounded by its VC dimension (See, for example, Theorem 3.6
in [2] and its proof).

I Lemma 5. Let S ⊆ {0, 1}n and d be the VC dimension of S. Then

|S| ≤
d∑

i=0

(
n

i

)
≤ nd.

The lemma immediately implies a lower bound on the largest cardinality of such I.

I Corollary 6. Let S ⊆ {0, 1}n. Then, there exists I such that S shatters I, and

log |S|
logn ≤ |I|.

3 Lower Bounds

In this section, we provide lower bounds for threshold circuits computing the parity function.
In Section 3.1, we introduce a lemma which is simple, but useful for obtaining lower bounds
of small-energy threshold circuits. We then give a lower bound for depth-2 circuits. In
Section 3.2, using the bound for depth-2 circuits, we obtain a lower bound for depth-d circuits
for d ≥ 3.

3.1 Depth-2 Circuits
The following lemma implies that if a threshold gate outputs one for a large number of input
assignments, we can deterministically fix a proper subset of variables so that g outputs one
for all the remaining input assignments. Similarly to S1(f) for a Boolean function f , we
define S1(g) = {x ∈ {0, 1}n | g(x) = 1} for a threshold gate g of n input variables.

I Lemma 7. Let g be a threshold gate with n input variables. Then there exists I ⊆ [n] and
an input b ∈ {0, 1}[n]\I such that, by fixing the variables for [n]\I to b, g outputs one for
every a ∈ {0, 1}I and

log |S1(g)|
logn ≤ |I|.

ISAAC 2020



54:6 Size, Depth and Energy of Threshold Circuits Computing Parity Function

Proof. Corollary 6 implies that there exists a set I ⊆ [n] such that S1(g) shatters I and
log |S1(g)|

logn ≤ |I|. (1)

Thus, it suffices to show that there exists an input assignment in {0, 1}[n]\I that force the
output of g to be constant one.

Let w1, w2, . . . , wn be the weights and t be the threshold of g. Since S1(g) shatters I, for
each a ∈ {0, 1}I , there exists b ∈ {0, 1}[n]\I such that (a,b) ∈ S1(g). Let

a∗ = arg min
a∈{0,1}I

∑
i∈I

wiai,

and b∗ be its counterpart: (a∗,b∗) ∈ S1(g). Clearly,∑
i∈I

wia
∗
i ≤

∑
i∈I

wiai

for every a ∈ {0, 1}I , and hence we have not only (a∗,b∗) ∈ S1(g) but also

(a,b∗) ∈ S1(g)

for every a ∈ {0, 1}I . Thus, by fixing [n]\I to b∗, g outputs one for every a ∈ {0, 1}I , as
desired. J

Using Lemma 7, we provide a lower bound on the size of depth-2 threshold circuits
computing PARn and its complement. In the proof, we show that any circuit C computing
the parity function contains a gate outputting ones for many input assignments, which
implies that we can reduce energy of C by fixing some of input variables. Thus, Theorem 1
guarantees that C has exponential size if e is small.

I Theorem 8. If a depth-2 threshold circuit of size s and energy e computes PARn (or its
complement), then it holds that

n

e loge n
≤ log s.

Proof. We prove the theorem for PARn, since the other case is similar. Our proof is by
induction on the energy. Theorem 1 implies the base case where circuits have energy one.
Suppose e ≥ 2. We assume for the induction hypothesis that every depth-2 threshold circuit
of size s and energy e− 1 satisfies

n

(e− 1) loge−1 n
≤ log s.

Let C be a depth-2 circuit of size s and energy e, and G be a set of the gates in the first
layer of C. We prove that there exists a gate in the first layer that outputs one for many
input assignments:

B Claim 9. There exists g ∈ G such that 2n/(4n5s) ≤ S1(g).

Proof. Consider an error-correcting code S ⊆ {0, 1}n of minimal distance five: each pair
of vectors in S has mutual hamming distance at least or equal to five. It is known that
there exists such S satisfying 2n/n5 ≤ |S| (See Theorem 17.2 in [13]). Then we make a new
set T from S by applying the following procedure to every vector a ∈ S: If |a| is odd, flip
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an element in a. Note that if two vectors have distance five, exactly one of them has an
odd number of its weight. Thus, T is an error-correcting code of minimal distance four.
Furthermore, we have T ⊆ S0(PARn), and

2n/n5 ≤ |S| = |T |. (2)

Let

U = {a ∈ T | There exists g ∈ G such that g(a) = 1 }.

If |T |/2 ≤ |U |, the pigeonhole principle implies the claim, since |G| < s. Thus, it suffices to
verify the other case.

Suppose |T |/2 > |U |. Let U ′ = T\U , then no gate in G outputs one for every a ∈ U ′,
and Eq. (2) implies that 2n/(2n5) ≤ |U ′|. Consider an arbitrary pair (a,b) ∈ U ′ × U ′ such
that a 6= b. Let i∗ ∈ [n] be an index such that ai∗ 6= bi∗ . From a (resp., b), we obtain a′
(resp., b) such that all the elements in a′ (respectively, b′) are same as a (resp., b) except
that the i∗-th element is flipped. Without loss of generality, we assume that ai∗ = 1 and
bi∗ = 0. Note that a′,b′ ∈ S1(PARn). We below show that a gate g ∈ G outputs one for at
least one of a′ and b′.

Suppose for the sake of contradiction that no gate in G outputs one for both of a′ and b′.
Let w1, w2, . . . , wn and t be the weights for the input variables and the threshold of the top
gate of C. By the assumption, no gate in G outputs one for a,b,a′ and b′. Thus, on the
one hand, we have a,b ∈ T ⊆ S0(PARn), and hence

n∑
i=1

wiai < t and
n∑

i=1
wibi < t. (3)

On the other hand, since we flipped the elements, we have a′,b′ ∈ S1(PARn), and hence
n∑

i=1
wia
′
i =

n∑
i=1

wiai − wi∗ ≥ t and
n∑

i=1
wib
′
i =

n∑
i=1

wibi + wi∗ ≥ t. (4)

The sum of the two inequalities in (3) contradicts the counterpart in (4).
We then make |U ′|/2 disjoint pairs of (a,b). Note that different (a,b)s yield different

(a′,b′)s, since T is an error -correcting code of minimal distance four. Thus, there are at least
|U ′|

2 ≥ 2n/(4n5)

input assignments for which a gate in G outputs one. Thus, the pigeonhole principle implies
the claim. C

Lemma 7 and the claim imply that, by fixing an appropriate set of input variables, we can
obtain a threshold circuit C ′ of size s−1 and e−1 that computes PARn′ (or its complement)
where

n′ ≥ n− (log s+ 5 logn+ 2)
logn .

Thus, by the induction hypothesis, we have
n− (log s+ 5 logn+ 2)

logn · 1
(e− 1) loge−1 n

≤ n′

(e− 1) loge−1 n′
≤ log(s− 1) < log s.

Since it holds that log s+ 5 logn+ 2 ≤ loge n · log s for sufficiently large n, we have
n

e loge n
≤ log s,

as desired. J

ISAAC 2020
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3.2 Depth-d Circuits
Based on the idea used for proving Theorem 1, we provide a lower bound for threshold
circuits of depth d and energy e. Our proof is by induction on the depth and energy: we
show that we can decrease either depth or energy of a given circuit by fixing part of input
variables.

I Theorem 10. If a threshold circuit of size s, depth d and energy e computes PARn (or its
complement), then it holds that

n

e2e+d loge n
≤ log s.

Proof. We prove the theorem for PARn, since the other case is similar. Our proof is by
induction on the energy and depth. Theorem 1 implies the base case where circuits have
energy one, and Theorem 8 implies the base case where circuit have depth 2. We here assume
that for every threshold circuit of size s, depth d− 1 and energy e, it holds that

n

e2e+d−1 loge n
≤ log s, (5)

and for every threshold circuit of size s, depth d and energy e− 1, it holds that
n

(e− 1)2e+d−1 loge−1 n
≤ log s. (6)

Let C be a circuit of size s, depth d, energy e. We denote by G a set of the gates in the
first layer of C. We show that we can reduce either depth or energy by fixing some of the
input variables.

Consider the set {0, 1}n of input assignments as A × B such that A = B = {0, 1}n/2.
Note that any input assignment can be considered as an element (a,b) ∈ A×B. For every
a ∈ A, we define Ba as

Ba = {(a,b) | b ∈ B}.

We say that Ba is clean if no gate in G outputs one for every input assignment (a,b) ∈ Ba.
Consider the following two cases:
(i) There exists a∗ such that Ba∗ is clean.

In this case, by fixing A to a∗, we can safely remove all the gates in G, and obtain a
circuit C ′ that computes PARn/2. Thus, by Eq. (5), we have

n

e2e+d loge n
= n/2
e2e+d−1 loge n

≤ log s

as desired.
(ii) For every a ∈ A, Ba is not clean.

In this case, for every a ∈ A, there exists b ∈ B such that some gate g ∈ G1 outputs one.
Thus, since |G| < s, the pigeonhole principle implies that there exists g ∈ G such that

2n/2

s
≤ S1(g).

Similarly to the case of depth-2 circuits, Lemma 7 implies that by fixing an appropriate set
of input variables, we can obtain a threshold circuit C ′ of size s− 1 and e− 1 that computes
PARn′ where

n′ ≥ n/2− log s
logn .
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Thus, by the induction hypothesis, it holds that

n/2− log s
logn · 1

(e− 1)2e+d−1 loge−1 n
≤ n′

(e− 1)2e+d−1 loge−1 n
≤ log(s− 1) < log s.

Since we have 2 log s ≤ 2e+d loge n log s, it holds that

n

e2e+d loge n
≤ log s,

as desired. J

4 Upper Bounds

In this section, we show upper bounds on the size of threshold circuits computing the parity
function. In Section 4.1, we give depth-2 circuits. In Section 4.2, we show a better upper
bound for depth-3 circuits. In Section 4.3, using the same idea given in Section 4.1, we
provide circuits of depth d for d ≥ 4.

4.1 Depth-2 Circuits
Before we give a construction of depth-2 circuits, we prove the following lemma showing that
we can suppress any threshold gate for a subset of input assignments.

I Lemma 11. Let l and r be positive integers, and g be a threshold gate with l + r input
variables. Then, for any a ∈ {0, 1}l, there exists a threshold gate ga such that for every
x ∈ {0, 1}l and y ∈ {0, 1}r

ga(x,y) =
{

0 if x 6= a;
g(a,y) if x = a. (7)

We call ga given in Lemma 11 a suppressed gate of g for a.

Proof. Consider a = (a1, a2, . . . , al) ∈ {0, 1}l. Let p1, p2, . . . , pl be weights for the l input
variables, q1, q2, . . . , qr be weights for the r input variables, and t be threshold of g: For every
x = (x1, x2, . . . , xl) and y = (y1, y2, . . . , yr),

g(x,y) = sig (p(x,y)) .

where we denote by

p(x,y) =
l∑

i=1
pixi +

r∑
i=1

qiyi − t.

Let W be a positive integer satisfying

1 + max
x,y

p(x,y) ≤W. (8)

We can obtain the desired gate ga by modifying the weights for x1, x2, . . . , xn as follows: For
each 1 ≤ i ≤ l, we define new weight p′i for xi as

p′i =
{
pi +W if ai = 1;
−W otherwise.

ISAAC 2020
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and new threshold t′ as

t′ = t+W

l∑
i=1

ai.

Consequently, we have ga(x,y) = sig (p′(x,y)), where

p′(x,y) =
∑

i:ai=1
(pi +W )xi −

∑
i:ai=0

Wxi +
r∑

i=1
qiyi −

(
t+W

l∑
i=1

ai

)

=
∑

i:ai=1
W (xi − 1)−

∑
i:ai=0

Wxi +
∑

i:ai=1
pixi +

r∑
i=1

qiyi − t (9)

We below verify Eq. (7).
Consider the case where x 6= a. Then there exists i such that either 0 = xi 6= ai = 1

or 1 = xi 6= ai = 0. Thus Eq. (9) implies that p′(x,y) contains at least a term −W , and
hence Eq. (8) implies that p(x,y) < 0 for every y ∈ {0, 1}r. Thus ga(x,y) = 0. Consider
the other case where x = a. Eq. (9) implies that all the −W s disappear, and hence we have
p(a,y) = p′(a,y), as desired. J

Using Lemma 11, we construct depth-2 circuits computing the parity function.

I Theorem 12. For any positive integer e, 3 ≤ e ≤ n, PARn is computable by a depth-2
threshold circuit of size O(e2n−2e) and energy e.

Proof. We construct the desired circuit C. Let l = n − 2(e − 2) and r = 2(e − 2), and
consider {0, 1}n as {0, 1}l × {0, 1}r.

We denote by gj and hj threshold gates such that gj outputs one if and only if j ≤
∑r

i=1 yi,
and hj outputs one if and only if

∑r
i=1 yi ≤ j: For every x ∈ {0, 1}l and y ∈ {0, 1}r,

gj(x,y) = sig
(

r∑
i=1

yi − j

)
and hj(x,y) = sig

(
−

r∑
i=1

yi + j

)
.

For each a = (a1, a2, . . . , an) ∈ {0, 1}l, we make 2(e− 2) or 2(e− 2) + 1 suppressed gates
depending on whether |a| is even or odd. If |a| is even, for every odd j satisfying 1 ≤ j ≤ r,
we make ga

j and ha
j (that is, we make ga

1 , h
a
1 , g

a
3 , h

a
3 , and so on. Note that the weights for

x1, x2, . . . , xl are considered to be zeros when we apply the lemma.) Suppose x = a. Then,
if |y| is even, exactly e− 2 gates of ga

j s and ha
j s outputs one; otherwise, exactly e− 1 gates

of ga
j s and ha

j s outputs one. Similarly, if |a| is odd, for every even j satisfying 1 ≤ j ≤ r,
we make ga

j and g′aj (that is, we make ga
2 , h

a
2 , g

a
4 , h

a
4 , and so on). In addition, we add a

suppressed gate ha
0 . Suppose x = a. Then, if |y| is odd, exactly e− 2 gates of ga

j s and ha
j s

outputs one; otherwise, exactly e− 1 gates of ga
j s and g′aj s outputs one.

We then connect the outputs of ga
j and ha

j to the top gate of C with weight 1 for every
a ∈ {0, 1}l and j. We finally set the threshold of the top gate to r/2 + 1 = e − 1. This
completes the construction.

Consider an arbitrary fixed input a∗ and b∗. We verify that C computes PARn for the
case where |a∗| is even, since the other case is similar. Lemma 11 implies that all the gates
ga

j and ha
j such that a∗ 6= a output zeros, and hence the output of C is determined by ga∗

j s
and ha∗

j s. Since the threshold of the top gate is e− 1, C outputs one if and only if |b∗| is
odd, as desired. Clearly, C has size at most (r + 1)2l + 1 ≤ 2(e− 1)2n−2(e−2) + 1, depth 2
and energy e. J
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4.2 Depth-3 Circuits
We here provide a construction of depth-3 circuits. The following construction shows that
the exponent of the lower bound given in Theorem 10 is tight up to polylogarithmic factor
for depth-3 circuits if energy e is constant.

I Theorem 13. For any positive integer e, 2 ≤ e ≤ n, PARn is computable by a depth-3
threshold circuit of size O(e2n/(e−1) + 2e−2) and energy e.

Proof. Partition [n] into e − 1 disjoint sets I1, I2, . . . , Ie−1, each of which has at most
dn/(e − 1)e elements. Consider an input assignment a as (a1,a2, . . . ,ae−1) ∈ {0, 1}I1 ×
{0, 1}I2 × · · · × {0, 1}Ie−1 .

Then, for each j ∈ [e− 1], we define

Sj = {aj ∈ {0, 1}Ij | |aj | is odd}.

For every j ∈ [e− 1] and aj ∈ Sj , we make a threshold gate that has input variables xi for
all i ∈ Ij , and outputs one if and only if the gate receives aj .

Consequently, we have 2n/(e−1) gates for each j ∈ [e− 1], and exactly one of the gates
outputs one if |aj | is odd, and no gate outputs one, otherwise. Thus, we can regard the
outputs of the 2n/(e−1) gates as a single input variable, and hence we can complete the
construction by feeding them into a depth-2 circuit given by Theorem 2 which is of size 2e−2,
depth 2 and energy one, and computes PARe−1.

Since, the resulting circuit C has at most (e−1)2n/(e−1) gates in the first layer, 2e−2 gates
in the second layer, and the top gate in the third layer, C has size (e− 1)2n/(e−1) + 2e−2 + 1
and depth 3. Moreover, at most e− 1 gates outputs one in the first layer, and at most one
gate outputs one in the second and third layers, and hence C has energy e. J

4.3 Depth-d Circuits
Using a similar idea to the one given in Section 4.1, we provide circuits of depth d and energy
e. Let C be a threshold circuit. We define a suppressed circuit Ca of C for a as a threshold
circuit in which every gate g is replaced by the suppressed gate ga of g for a. Clearly, we
have

Ca(x,y) =
{

0 if x 6= a;
C(a,y) if x = a, (10)

and, moreover, if x 6= a then no gate in Ca outputs one, and the the energy of Ca is at most
the one of C.

Using the known circuit constructions given in Theorems 3 and 4, we show that we can
decrease size if large depth or energy are allowed.

I Theorem 14. For any positive integers d and e, 3 ≤ d, e ≤ n, PARn is computable by a
threshold circuit of size O((e+ d)2n−m), depth d+O(1) and energy e+O(1), where

m = max
((

e− 1
d− 1

)d−1
,

(
d− 1
e− 1

)e−1
)
.

Proof. Consider first the case where it holds that

m =
(
e− 1
d− 1

)d−1
.
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For simplicity, we assume that m is an integer. In this case, Theorem 3 implies that a
threshold circuit C of size

s = (d− 1)dm1/(d−1)e+ 1 = e,

and depth d, and energy s(= e) computes PARm. Moreover, it is known that a threshold
gate is closed under complement [20], and hence there exists a circuit D of size e, depth d,
and energy at most e that computes the complement of PARm. For each a ∈ {0, 1}n−m, we
construct a suppressed circuit as follows: If |a| is even, we make Ca, and otherwise, we make
Da. Equation (10) implies that by adding, as the top gate, a single threshold gate computing
OR of all the Cas and Das, we obtain the desired circuit C∗ that computes PARn. Clearly,
C∗ has size e2n−m + 1, depth d+O(1), and energy e+O(1).

For the other case where

m =
(
d− 1
e− 1

)e−1
,

we can similarly construct the desired circuit of size d2n−m + 1, depth d+O(1), and energy
e+O(1) based on Theorem 4. We omit the details. J

5 Conclusion

In this paper, we prove lower and upper bounds on the size of threshold circuits computing
the parity function. Although the parity function has constant communication complexity,
our lower bounds are exponential if depth and energy are constant. Since there is a large
gap between our bounds, improving on these bounds is an interesting future work. We are
also interested in whether similar relations among the size, depth and energy exists for other
computational tasks.
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