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Abstract
Let P = {p0, . . . , pn−1} be a set of points in Rd, modeling devices in a wireless network. A range
assignment assigns a range r(pi) to each point pi ∈ P , thus inducing a directed communication
graph Gr in which there is a directed edge (pi, pj) iff dist(pi, pj) 6 r(pi), where dist(pi, pj) denotes
the distance between pi and pj . The range-assignment problem is to assign the transmission ranges
such that Gr has a certain desirable property, while minimizing the cost of the assignment; here the
cost is given by

∑
pi∈P

r(pi)α, for some constant α > 1 called the distance-power gradient.
We introduce the online version of the range-assignment problem, where the points pj arrive one

by one, and the range assignment has to be updated at each arrival. Following the standard in online
algorithms, resources given out cannot be taken away – in our case this means that the transmission
ranges will never decrease. The property we want to maintain is that Gr has a broadcast tree rooted
at the first point p0. Our results include the following.

We prove that already in R1, a 1-competitive algorithm does not exist. In particular, for
distance-power gradient α = 2 any online algorithm has competitive ratio at least 1.57.
For points in R1 and R2, we analyze two natural strategies for updating the range assignment
upon the arrival of a new point pj . The strategies do not change the assignment if pj is
already within range of an existing point, otherwise they increase the range of a single point,
as follows: Nearest-Neighbor (nn) increases the range of nn(pj), the nearest neighbor of pj ,
to dist(pj , nn(pj)), and Cheapest Increase (ci) increases the range of the point pi for which
the resulting cost increase to be able to reach the new point pj is minimal. We give lower and
upper bounds on the competitive ratio of these strategies as a function of the distance-power
gradient α. We also analyze the following variant of nn in R2 for α = 2: 2-Nearest-Neighbor
(2-nn) increases the range of nn(pj) to 2 · dist(pj , nn(pj)),
We generalize the problem to points in arbitrary metric spaces, where we present an O(logn)-
competitive algorithm.
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60:2 The Online Broadcast Range-Assignment Problem

1 Introduction

Consider a collection of wireless devices, each with its own transmission range. The transmis-
sion ranges induce a directed communication network, where each device pi can directly send
a message to any device pj in its transmission range. If pj is not within range, a message
from pi can still reach pj if there is a path from pi to pj in the communication network. The
energy consumption of a device depends on its transmission range: the greater the range,
the more power is needed. This leads to the range-assignment problem: assign transmissions
ranges to the devices such that the resulting network has some desired connectivity property,
while minimizing the total power consumption.

Mathematically we can model the problem as follows. Let P = {p0, . . . , pn−1} be a set
of n points in Rd. For an assignment r : P → R>0, let Gr be the directed graph on the vertex
set P obtained by putting a directed edge from a vertex pi to a vertex pj iff dist(pi, pj) 6 r(pi),
where dist(pi, pj) denotes the distance between pi and pj . We call Gr the communication
graph on P induced by the range assignment r. The cost of a range assignment r is defined as
costα(r) :=

∑
pi∈P r(pi)

α, where α > 1 is called the distance-power gradient. In practice, α
typically varies from 1 to 6 [15]. We then want to find a range assignment that minimizes the
cost while ensuring that Gr has some desired property. Properties that have been investigated
in this context include strong connectivity [9, 14], h-hop strong connectivity [8, 10, 14],
broadcast capability – here Gr must contain a broadcast tree (that is, an arborescence)
rooted at the source point p0 – , and h-hop broadcast capability [2, 13]; see the survey by
Clementi et al. [6] for an overview of the various range-assignment problems. Most previous
work considered the Euclidean setting. There has been some work on arbitrary metric spaces
for the strong connectivity version [4, 12]. (Note that while the 2-dimensional version seems
the most relevant setting, the distances may not be Euclidean due to obstacles that reduce
the strength of the signal of a device.)

In this paper we focus on the broadcast version of the range-assignment problem. This
version can be solved optimally in a trivial manner when α = 1, by setting r(p0) :=
max06i<n dist(p0, pi) and r(pi) := 0 for i > 0. Clementi et al. [7] showed a polynomial time
algorithm for the 1-dimensional problem when α > 2. Moreover, Clementi et al. [5] showed
the problem is NP-hard for any α > 1 and any d > 2. Clementi et al. [7], Clementi et
al. [5], and Wan et al. [17] also showed that the problem can be approximated within a
factor c · 2α for any α > 2 and for a certain constant c. Furthermore, Clementi et al. [5]
showed that for any d > 2 and for any α > d, there is a function f : N× R→ R such that
the problem can be approximated within a factor f(d, α) in the d-dimensional Euclidean
space. Fuchs [11] showed that for d = 2, the problem remains NP-hard even for so-called
well-spread instances for any α > 1. In dimension d > 3, he also showed that the problem
is NP-hard to approximate within a factor of 51/50 when α > 1; the result also holds for
well-spread instances when α > d.

Our contribution. We study the online version of the broadcast range-assignment problem.
Here the points p0, p1, . . . , pn−1 come in one by one, and the goal is to maintain a range
assignment r such that Gr contains a broadcast tree on the currently inserted points, rooted
at the first point p0. Of course one can simply recompute the assignment from scratch, but
in online algorithms one requires that resources that have been given out cannot be taken
back. For the range assignment problem this means that we are not allowed to decrease the
range of any point. In fact, our algorithms have the useful property that upon arrival of each
point, we change the current range assignment only minimally: either we do not change it at
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all – this happens when the newly arrived point is already within range of an existing point –
or we increase the range of only a single point. Our goal is to obtain algorithms with a good
competitive ratio.1 As far as we know, the range-assignment problem has not been studied
from the perspective of online algorithms.

We first prove a lower bound on the competitive ratio achievable by any online algorithm:
even in R1 there is a constant cα > 1 (which depends on the power-distance gradient α) such
that no online algorithm can be cα-competitive. For α = 2, we have cα > 1.57.

We then investigate the following two natural online algorithms for the broadcast range-
assignment problem. Suppose the point pj arrives. Our algorithms all set r(pj) := 0 and,
as mentioned, they do not change any of the ranges r(p0), . . . , r(pj−1) if |pipj | 6 r(pi) for
some 0 6 i < j. When pj is not within range of an already inserted point, the algorithms
increase the range of one point, as follows. Let nn(pj) denote the nearest neighbor of pj in
the set {p0, . . . , pj−1}, with ties broken arbitrarily.

Nearest-Neighbor (nn for short) increases the range of nn(pj) to dist(pj ,nn(pj)).
Cheapest Increase (ci for short) increases the range of pi∗ to dist(pi∗ , pj), where pi∗
is a point minimizing the cost increase of the assignment, which is dist(pi∗ , pj)α− r(pi∗)α
where r(pi∗) denotes the current range of pi∗ .

Table 1 Overview of results on nn and ci.

dimension distance-power gradient lower bound for nn upper bound for nn and ci
d = 1 α = 2 2 2

d = 2
α = 2 ≈ 7.61 322

2-nn: 36
2 < α < α∗ ≈ 4.3

≈ 6(1 + 0.52α) α 2α−3
2α−1−α

α > α∗ ≈ 4.3 ≈ 12.94

The results are summarized in Table 1. Note the lower bounds hold only for nn, while
the upper bounds hold for nn and ci; the exception is the third row, which is for 2-nn
(see below). The lower bound of 6(1 + 0.52α) mentioned in the table – the exact bound is
6(1 + (

√
6−
√

2
2 )α) – applies to all α > 1, and thus implies the given lower bound for α = 2.

Recall that for d = 1 and α = 2, we also have a universal lower bound of 1.57 that holds
for any online algorithm and, hence, also for ci. The exact value of α∗ is α∗ = arg minF ∗α,
where F ∗α = α 2α−3

2α−1−α .
As can be seen in the table nn is O(1)-competitive for α = 2, but the competitive ratio

is quite large, namely 322. We therefore also analyze the following variant of nn, which (if
pj is not yet within range of an existing point) proceeds as follows:

2-Nearest-Neighbor (2-nn for short) increases the range of nn(pj) to 2·dist(pj ,nn(pj)).
We prove that the competitive ratio of 2-nn is at most 36 for α = 2. Thus, while still rather
large, the competitive ratio is a lot smaller than what we were able to prove for nn. It is
interesting to note that both nn and 2-nn make decisions that are independent of α. Hence,
nn obtains a solution that is simultaneously competitive for all α > 2.

1 The competitive ratio [16] of an online algorithm compares the cost of the solution it maintains to the
cost achieved by the optimal offline algorithm. More precisely, an online algorithm alg is c-competitive
if there is a constant a such that for any instance I, the cost of alg is at most c ·OPT(I) + a. Note the
the offline algorithm must still maintain the solution over time. Thus the offline problem is not the
same as the static problem, where we only want a solution for the final configuration.

ISAAC 2020
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As a final contribution we generalize the broadcast problem to points in arbitrary metric
spaces. Since to the best of our knowledge this version has not been studied before, we present
in the appendix an approximation algorithm for the offline setting; its approximation ratio is
5α. In this offline setting the algorithm must be what Boyar et al. [3] call an incremental
algorithm: an algorithm that, even though it may know the future, maintains a feasible
solution at any time. For the online setting (where the future is unknown) we obtain an
O(4α logn)-competitive algorithm.

Notation. We let P := p0, . . . , pn−1 denote the input sequence, where we assume without
loss of generality that pi is inserted at time i and that all pi are distinct. Define Pi := p0, . . . , pi,
and denote the range of a point pi ∈ Pj just after the insertion of the point pj by rj(pi).
Thus in the online version we require that rj(pi) 6 rj+1(pi). For an algorithm alg we use
costα(alg(P )) to denote the cost incurred by alg on input P for distance-power gradient α.
Finally we denote the ball of radius ρ centered at a point p by B(p, ρ); note that in R1 this
is an interval of length 2ρ and in R2 it is a disk of radius ρ.

2 Online range-assignment in R1

In this section we prove that no online algorithm can have a competitive ratio arbitrarily
close to 1, even in R1. We also prove bounds on the competitive ratio of nn and ci in R1.

A universal lower bound. To prove the lower bound we consider an arbitrary online
algorithm alg. Our adversary then first presents the points p0 = 0, p1 = x, and p2 := δα · x.
Depending on the range assignment alg has done so far, the adversary either ends the
instance or presents a fourth point p3 = −δα · x. By picking a suitable value for δα and
making x sufficiently large, we can obtain a lower bound. This is made precise in the following
theorem.

I Theorem 2.1. For any distance-power gradient α > 1, there is a constant cα > 1 such
that any online algorithm for the range assignment problem in R1 has a competitive ratio of
at least cα. For α = 2 this constant is c2 ≈ 1.58.

Proof. Let α > 1 and let alg be an algorithm with competitive ratio c > 1, i.e., there is a
constant a such that the cost of alg is upper bounded by c ·OPT +a. We also define

cα : = max
δ>1

min
(

δα

1 + (δ − 1)α ,
δα + (δ − 1)α

δα
,

1 + (δ + 1)α

δα

)
,

and δα : = arg max
δ>1

min
(

δα

1 + (δ − 1)α ,
δα + (δ − 1)α

δα
,

1 + (δ + 1)α

δα

)
.

We show that c > cα by constructing the following families of instances consisting of,
respectively, three and four points, and parametrized by the real number x > 1:

F1 := {{p0 = 0, p1 = x, p2 = δα · x}}
and F2 := {{p0 = 0, p1 = x, p2 = δα · x, p3 = −δα · x}}.

Note that there is a one-to-one correspondence between the instances in both families: each
instance of F1 is the beginning of exactly one instance of F2 and each instance of F2 starts
like exactly one instance of F1.

For any x, depending on what alg does after p2 is inserted, we choose an instance from
either the family F1 or the family F2 using the following rule: if after p2 is inserted, alg
has a disk of radius at least δα · x, we choose F1, otherwise we choose F2. In the former



M. de Berg, A. Markovic, and S.W. Umboh 60:5

case, alg pays at least δαα ·xα while the optimal solution would be to place a disk of radius x
at p0 and a disk of radius (δα− 1) ·x at p1 and pay xα + (δα− 1)α ·xα. Since the competitive
ratio of alg is c, we have that δαα · xα 6 c · xα(1 + (δα − 1)α) + a and hence

c >
δαα

1 + (δα − 1)α −
a

xα(1 + (δα − 1)α) .

Since the second term can be made arbitrarily small by choosing x large enough, c must be
at least δαα

(δα−1)α .
In the latter case, alg has one disk of radius at least x and one of radius at least (δα−1) ·x

before p3 is inserted. We split this case into two subcases: in the first one, alg increases the
radius of the disk at p0 and in the second one, alg increases the radius of the disk at p1.
The cost alg has to pay after p3 has been inserted is at least either δαα · xα + (δα − 1)α · xα
in the first subcase, or xα + (δα + 1)α · xα in the second, whereas the optimal solution for
both subcases would be to place only one disk of radius δα · x at p0 and pay δαα · xα. Since
the competitive ratio of alg is c, we have that δαα · xα + (δα − 1)α · xα 6 c · δαα · xα + a for
the first subcase and hence

c >
δαα + (δα − 1)α

δαα
− a

δαα · xα
;

and that xα + (δα + 1)α · xα 6 cδαα · xα + a for the second subcase and hence

c >
1 + (δα + 1)α

δαα
− a

δαα · xα
.

Since, in both subcases, the second term can be made arbitrarily small by choosing x large
enough, c must be at least δαα+(δα−1)α

δαα
for the first subcase, and at least 1+(δα+1)α

δαα
, otherwise

there is an infinite family of instances contradicting the competitive ratio for these two
subcases.

Therefore, the competitive ratio of alg must be at least the minimum of the competitive
ratio between these cases, which is exactly cα. Even though it is not clear how to compute
the value of cα for any fixed α > 1, it is easy to see it is strictly bigger than 1. If α = 2, we
have

c2 : = max
δ>1

min
(

δ2

1 + (δ − 1)2 ,
δ2 + (δ − 1)2

δ2 ,
1 + (δ + 1)2

δ2

)
= 1

12

(
4 + 3

√
496− 24

√
183 + 2 3

√
62 + 3

√
183
)

≈ 1.58

which is achieved for

δ2 : = arg max
δ>1

min
(

δ2

1 + (δ − 1)2 ,
δ2 + (δ − 1)2

δ2 ,
1 + (δ + 1)2

δ2

)
= 1

3

(
5 + 3

√
62− 3

√
183 + 3

√
62 + 3

√
183
)

≈ 4.15. J

Bounds for nn and ci. We now prove bounds on the competitive ratio of the algorithms
nn and ci explained in the introduction.

ISAAC 2020



60:6 The Online Broadcast Range-Assignment Problem

I Theorem 2.2. Consider the range-assignment problem in R1 with distance-power gradi-
ent α.
(i) For any α > 1, the competitive ratio of ci is at most 2.
(ii) For any α > 1, the competitive ratio of nn is exactly 2.

Proof. We first prove the upper bounds. Assume without loss of generality that p0 = 0. We
first prove that both NN and ci perform optimally for α > 1 on any sequence p0, p1, . . . , pn−1
with pj > 0 for all 1 6 j < n.

B Claim. Suppose p0 = 0 and pj > 0 for all 1 6 j < n. Then nn and ci are optimal.

Proof. We first observe that for any point pj the following holds for the graph Grj that we
have after the insertion of pj : for any point pi with 0 < i 6 j there is a path from the
source p0 to pi that only uses edges directed from left to right, that is, edges (pi′ , pi′′) with
pi′ < pi′′ . Indeed, if the path uses an edge (pi′ , pi′′) with pi′ > pi′′ then the subpath from p0
to pi′ must contain an edge (ps, pt) with ps 6 pi′′ 6 pt, and then we can go directly from ps
to pi′′ . This observation implies that there exists an optimal strategy Opt such that the balls
B(pi, rj(pi)) of the currently inserted points never extend beyond the currently rightmost
point, a property which holds for nn and ci as well. (Intuitively, the part of B(pi, rj(pi)) to
the right of the rightmost point is currently useless, and the part of B(pi, rj(pi)) to the left
of pi is not needed because we never need edges going to the left. Hence, we decrease rj(pi)
until the right endpoint of B(pi, rj(pi)) coincides with the currently rightmost point, and
increase the range of pi later, as needed.)

Now imagine running nn, ci, and Opt simultaneously on P . We claim that nn and ci do
exactly the same, and that their cost increase after the insertion of any point pj is at most
the cost increase of Opt. To see this, let pj′ be the rightmost point just before inserting pj .
If pj < pj′ then nn and ci do not increase any range – since pj′ is reachable from p0, the
point pj must already be reachable as well – and so the cost increase is zero. If pj > pj′

then nn and ci both increase the range of pj′ from 0 to pj − pj′ . For nn this is clear. For ci
it follows from the fact that α > 1. Indeed, increasing the range of some pi < pj′ gives a
cost increase (rj−1(pi) + x+ (pj − pj′))α − (rj−1(pi))α, for some x > 0. This is more than
(pj − pj′)α, since we must have rj−1(pi) + x > 0. By a similar reasoning, and using that the
balls of Opt do not extend beyond pj′ , we conclude that the cost increase of Opt cannot be
smaller than (pj − pj′)α. Hence, nn and ci are optimal on a sequence of non-negative points.

C

Next, we prove that the optimality for non-negative points gives a competitive ratio of
at most 2 for any input sequence P . Let P+ and P− denote the subsequences of P
consisting of the points with non-negative and non-positive points, respectively. Note that
the source point p0 = 0 is included in both subsequences. We claim that costα(Opt((P )) >
costα(Opt((P+)). Indeed, we can modify the optimal solution for P to a valid solution for
P+ whose cost is at most costα(Opt((P )), as follows: whenever the range of a point pi 6∈ P+

is increased to reach a point pj ∈ P+, we instead increase the range of p0 by the same
amount. A similar argument gives costα(Opt((P )) > costα(Opt((P−)).

We now argue that costα(nn(P )) 6 costα(nn(P+)) + costα(nn(P−)) and, similarly, that
costα(ci(P )) 6 costα(ci(P+)) + costα(ci(P−)).

Imagine running nn simultaneously on P , on P+ and on P−. We claim that the increase
of costα(nn(P )) upon the arrival of a new point pj is at most the increase of costα(nn(P+))
if pj > 0, and at most the increase of costα(nn(P−)) if pj < 0. To see this, assume without
loss of generality that pj > 0 and suppose the increase of costα(nn(P )) is non-zero. Then pj
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lies to the right of the currently rightmost point, pi. Both nn(P ) and nn(P+) then increase
the range of pi, and pay the same cost. The only exception is when i = 0, that is, pj is the
first point with pj > 0. In this case nn(P ) may pay less than nn(P+), since nn(P ) could
already have increased the range of p0 due to arrivals of points to the left of p0.

A similar argument works for ci. Indeed, ci(P+) and ci(P−) never extend a ball beyond
the currently rightmost and leftmost point, respectively. Hence, when the new point pj lies,
say, to the right of the currently rightmost point pi, then ci(P+) would pay (dist(pi, pj))α.
Since ci(P ) also has the option to increase the range of pi, it will never pay more.

Hence, for nn– a similar computation holds for ci– we get

costα(nn(P )) 6 costα(nn(P+)) + costα(nn(P−)) 6 2 ·OPT(P ).

It remains to prove the lower bound for part (ii) of the theorem. Assume for a contradiction
that there is a constant a such that for all inputs P we have costα(nn(P )) 6 (2 − ε) ·
costα(Opt(P )) + a. Consider the input p0 = 0, p1 = δx, p2 = x, and p3 = −x, for
some δ ∈ (0, 1] and x > 0 to be determined later. The optimal solution has r3(p0) = x

and r3(p1) = r3(p2) = r3(p3) = 0, while nn has r3(p0) = x and r3(p1) = (1 − δ)x and
r3(p2) = r3(p3) = 0. Hence, the competitive ratio that nn achieves on this instance is

c = ((1− δ)α + 1)xα − a
xα

= (1− δ)α + 1− a

xα
,

which is larger than 2− ε when we pick δ sufficiently small and x sufficiently large. J

3 Online range-assignment in R2

3.1 Bounds on the competitive ratio of nn and ci when α > 2

As before, let p0, . . . , pn−1 be the sequence of inserted points, with p0 being the source point.
Consider a fixed point pi, and a disk D centered at pi – the disk D need not have radius
equal to the range of pi. Define S(pi, D) := {pj : j > i and pj ∈ D} to be the set containing
pi plus all points arriving after pi that lie in D. For a point pj , define costα(nn, pj) to be
the cost incurred by nn when pj is inserted; in other words, costα(nn, pj) := 0 when pj falls
into an existing disk B(pi, rj−1(pi)), and costα(nn, pj) := (rj(pk))α − (rj−1(pk))α otherwise,
where pk := nn(pj). Define costα(ci, pj) similarly for ci. Finally, for pj ∈ S(pi, D) define

Fα(pj) = Fα(pj ; pi, D) := min{dist(pj , pk)α | pk ∈ S(pi, D) and k < j}.

The next lemma shows that we can use the function Fα to upper bound the cost of nn and
ci. We later apply this lemma to all disks in an optimal solution to bound the competitive
ratio. Note that costα(nn, pj) 6 Fα(pj). Indeed, nn either pays zero (when pj already lies
inside a disk) or it expands the disk of pj ’s nearest neighbor (which may or may not lie in
D) which costs at most Fα(pj). Similarly costα(ci, pj) 6 Fα(pj). Hence we have:

I Lemma 3.1. Let pi be any input point and D a disk centered at pi. Then for any subset
S(D) ⊆ S(pi, D) \ {pi} we have:∑
pj∈S(D)

costα(nn, pj) 6
∑

pj∈S(D)

Fα(pj) and
∑

pj∈S(D)

costα(ci, pj) 6
∑

pj∈S(D)

Fα(pj).

ISAAC 2020
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Lemma 3.1 suggests the following strategy to bound the competitive ratio of nn (and ci).
Consider, for each point pi, the final disk D placed at pi in an optimal solution, and let ρ be
its radius. The cost of this disk is ρα. We charge the cost of the disks placed by nn (or ci)
at points pj inside D – this cost can be bounded using the function Fα, by Lemma 3.1 – to
the cost of D. This motivates the following definition:

F ∗α := max 1
ρα

∑
pj∈S(D)

Fα(pj),

where the maximum is over any possible input instance P , any point pi ∈ P , any disk D of
radius ρ centered at pi, and any subset S(D) ⊆ S(pi, D) \ {pi}. The value F ∗α bounds the
maximum total charge to any disk D in the optimal solution, relative to D’s cost ρα. The
next lemma shows that for α > 2, the value F ∗α is bounded by a constant (depending on α).

I Lemma 3.2. We have that F ∗α 6 α 2α−3
2α−1−α for any α > 2.

The formal proof of the lemma is quite technical and can be found in the full version. Here
we just sketch the intuition, also showing why the condition α > 2 is needed. The quantity
F ∗α can be thought of in the following way. Consider a disk D of radius ρ centered at pi,
and imagine the points in S(D) arriving one by one. (The points in S(pi, D) \ S(D) are
irrelevant.) Whenever a new point pj arrives, then F ∗α increases by dist(pj ,nn(pj))α, where
nn(pj) is pj ’s nearest neighbor among the already arrived points from S(D) including pi.
Since the more points arrive the distances to the nearest neighbor will decrease – more
precisely, we cannot have many points whose nearest neighbor is at a relatively large distance
– the hope is that the sum of these distance to the power α converges, and this is indeed what
we can prove for α > 2. For α = 2 it does not converge, as shown by the following example.

Let D be a unit disk centered at pi, and consider the inscribed square σ of D. Note that
the radius of σ – the distance from its center to its vertices – is 1. We insert a set S(D)
of n− 1 points in rounds, as follows. In the first round we partition σ into four squares of
radius 1/2, and we insert a point in the center of each of them. These four points all have
pi as nearest neighbor, and F ∗α increases by 4 · (1/2)α = (1/2)α−2. We recurse in each of
the four squares. Thus in the k-th round, we have 4k−1 squares of radius (1/2)k−1, each of
which is partitioned into four squares of radius (1/2)k, and we place a point inside each such
subsquare. This increases F ∗α by 4k · (1/2k)α = (1/22−α)k. The total cost is

∑t
k=1(1/22−α)k,

where t := Θ(logn) is the number of rounds.
Note that 1/22−α = 1 for α = 2, giving F ∗2 = Ω(logn), while for α > 2 the total cost

converges. Also note that the example only gives a lower bound on F ∗2 , it does not show
that nn has unbounded competitive ratio for α = 2. The reason is that nn actually pays less
than F ∗2 , since most points pj are already within range of an existing point upon insertion,
and so we do not have to pay dist(pj ,nn(pj))α. Indeed, in the next section we prove, using a
different argument, that nn is O(1)-competitive even for α = 2.

Using Lemma 3.2 we can prove a bound on the competitive ratio of nn and ci.

I Theorem 3.3. Let F ∗α := α 2α−3
2α−1−α . For any α > 2, the competitive ratio of nn and ci in

R2 is at most min{F ∗β | 2 < β 6 α}. Hence, for α 6 α∗, where α∗ = arg minF ∗α ≈ 4.3, the
competitive ratio is at most α 2α−3

2α−1−α , and for α > α∗ it is at most 12.94.

Proof. Consider a sequence p0, p1, . . . , pn−1 of points in the plane. Let Dj be the disk
centered at pj in an optimal solution, after the last point pn−1 has been handled, and let ρj
be its radius. Thus the cost of the optimal solution is OPT :=

∑n−1
j=0 ρ

α
j . To bound the cost
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of nn on the same sequence, we charge the cost of inserting pi, with 0 < i 6 n − 1, to a
disk Dj such that j < i and pi ∈ Dj . Such a disk Dj exists, since after pi’s insertion, pi
is contained in a disk of an existing point pj and so pi will also be contained in Dj , the
final disk of pj . (If there are more such points, we take an arbitrary one.) Let S(Dj) be the
set of points that charge disk Dj . Note that {p1, . . . , pn−1} =

⋃n−2
j=0 S(Dj). Hence, using

Lemmas 3.1 and 3.2, for any 2 < β 6 α, for nn (and similarly for ci) we get:

costα(nn) =
∑n−2
i=0

∑
pj∈S(Di) costα(nn, pj)

=
∑n−2
i=0 ρ

α
i

∑
pj∈S(Di)

costα(nn,pj)
ρα
i

6
∑n−2
i=0 ρ

α
i

∑
pj∈S(Di)

dist(pj ,nn(pj))α
ρα
i

6
∑n−2
i=0 ρ

α
i

∑
pj∈S(Di)

dist(pj ,nn(pj))β

ρβ
i

because dist(pj ,nn(pj)) 6 ρ

=
∑n−2
i=0 ρ

α
i

∑
pj∈S(Di)

Fβ(pj)
ρβ
i

by Lemma 3.1

6
∑n−2
i=0 ρ

α
i F
∗
β

6 β 2β−3
2β−1−β

∑n−2
i=0 ρ

α
i by Lemma 3.2

= β 2β−3
2β−1−β OPT . J

The next theorem gives a lower bound on the competitive ratio of nn.

I Theorem 3.4. For any α > 1, nn has a competitive ratio of at least 6(1 + (
√

6−
√

2
2 )α) ≈

6(1 + 0.52α) in the plane. In particular, for α = 2, we get a lower bound of 7.6 on the
competitive ratio.

Proof. Let p0 be the source placed at the origin. The following construction is depicted
in Figure 1. We place p1, . . . , p18 in a disk of radius 1 around p0 as explained next, such
that a possible solution is to place that single disk and pay 1s. For simplicity, in the rest of
the proof we use polar coordinates. Let ε > 0 be a positive number. Let then p1 = (ε, 0),
p2(ε, π/3), ..., and p6 = (ε, 5π/3) be the next six points. nn places a disk of radius ε on p0.
Let further p7 = (1, 0), p8 = (1, π/3), ..., and p12 = (1, 5π/3) be the next six points. Here
nn places six disks of radius 1 − ε centered around p1, . . . , p6, paying 6(1 − ε)α. Finally,
let p13 = (1, π/6− ε), p14 = (1, 3π/6− ε),..., and p18 = (1, 11π/6− ε) be the last six points.
nn is now forced to place 6 disks of radius almost equal to the side of a 12-gon of radius 1,
that is 2 sin(π/12)− δ for some δ > 0 that tends to 0 as ε tends to 0.

Thus, we have that for any ε > 0, there is an instance on which a solution of cost 1 exists,
whereas nn is forced to pay εα + 6(1− ε)α + 6(2 sin(π/12)− δ)α, where δ > 0 tends to 0 as ε
tends to 0. We can therefore conclude that nn has to pay at least 6(1 + (2 sin(π/12))α) =
6(1 + (2

√
6−
√

2
4 )α) = 6(1 + (

√
6−
√

2
2 )α) ≈ 6(1 + 0.52α), whereas OPT 6 1.

We can then scale this construction and thus, there is no constant a such that cost(nn) 6
c ·OPT +a for c < 6(1 + (

√
6−
√

2
2 )α). J

3.2 Bounds on the competitive ratio of nn and 2-nn when α = 2
Above we proved upper bounds for nn and ci for α > 2, and we gave a lower bound for nn
for any α > 1. We now study nn and 2-nn for the case α = 2. Unfortunately, the arguments
below do not apply to ci.

An upper bound on the competitive ratio of 2-nn for α = 2. Let P := p0, p1, . . . , pn−1
be the input instance. Recall that nn(pi) is the closest point to pi among p0, . . . , pi−1.
Upon insertion of a point pi, if pi is not covered by the current set of balls B(pi′ , rj−1(pi′))
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p0
p1

p2p3

p4

p5 p6

p7

p8p9

p10

p11 p12

p13

p14

p15

p16

p17

p18

Figure 1 Lower bound on the competitive ratio of nn. The light gray disk (of radius 1) represents
the optimal solution on the boundary of which points p7, . . . , p18 are placed. Points p1, . . . , p6 are
placed on the boundary of a disk of radius ε (in dark gray). The algorithm nn is forced to place
one first disk of radius ε around p0, then six disks of radius 1− ε around p1, . . . , p6. And finally six
disks of radius roughly 0.5 around p7, . . . , p12.

with i′ < i, then 2-nn increases the range of nn(pi) to 2 · dist(pi,nn(pi)), and otherwise
it does nothing. Suppose that upon the insertion of some point pi, we increase the range
of nn(pi). We now define D∗i as the disk centered at pi (not at nn(pi)) and of radius di/2,
where di := dist(pi,nn(pi)). We call D∗i the charging disk of pi. Note that the charging
disk is a tool in the proof, it is not a disk used by the algorithm. If 2-nn did nothing upon
insertion of pi because pi was already covered by a disk, we define D∗i := ∅.

I Lemma 3.5. For every pair of charging disks D∗i and D∗j with j 6= i, we have D∗i ∩D∗j = ∅.

Proof. Without loss of generality we assume that i < j. Suppose for a contradiction that
D∗i ∩ D∗j 6= ∅. Let pi′ := nn(pi) and pj′ := nn(pj), and let di := dist(pi, pi′) and dj :=
dist(pj , pj′). Since i′ < i < j, we have dist(pj , pi′) > 2di, otherwise pj lies inside the disk of pi′
when pj is inserted and we would have D∗j = ∅. On the other hand, di/2 + dj/2 > dist(pi, pj)
because D∗i ∩D∗j 6= ∅. Since dj 6 dist(pi, pj), which is true because we assumed i < j, this
implies di > dist(pi, pj). But then dist(pj , pi′) 6 di + dist(pi, pj) 6 2di, a contradiction. J

I Lemma 3.6. For any points pi and pj with i < j, let DOPT
j (pi) be the disk centered

at pi after pj is inserted in an optimal solution and let ρj(pi) be its radius. Furthermore,
let D1.5 OPT

j (pi) be the disk centered at pi of radius 1.5 · ρj(pi). Then, for every point pk,
there is a point pi such that the charging disk D∗k is contained in D1.5 OPT

k (pi).

Proof. Let pi be such that pk is contained in DOPT
k (pi). Upon insertion of pk, we create the

charging disk D∗k of radius 1
2 dist(pk,nn(pk)) 6 1

2 dist(pi, pk) centered at pk. Therefore, the
point ofD∗k furthest from pi is at distance at most 3

2 dist(pi, pk). ThusD∗k ⊂ D1.5OPT
k (pi). J

Using these two lemmas, we can conclude the following.

I Theorem 3.7. In R2 the strategy 2-nn is 36-competitive for α = 2.

Proof. Recall that the charging disk D∗i has radius dist(pi,nn(pi))/2. Thus the cost incurred
by 2-nn upon the insertion of pi is at most (2 · dist(pi,nn(pi)))2 6 16 · radius(D∗i )2. By
Lemma 3.5, the disks D∗i are pairwise disjoint. Let DOPT denote the set of disks in an
optimal solution, and let OPT be its cost. Then by Lemma 3.6 we have

∑n−1
i=1 radius(D∗i )2 6∑

D∈DOPT
((3/2) · radius(D))2 = 9

4 OPT. Hence the total cost incurred by 2-nn is bounded
by 16 ·

∑n−1
i=1 radius(D∗i )2 6 36 OPT. J
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Upper bound on the competitive ratio of nn for α = 2. We now prove an upper bound
on the competitive ratio of nn using a similar strategy as for 2-nn. The proof uses charging
disks, as above. The main difference being how the charging disks are defined.

Suppose that nn increases the range of nn(pi) upon the insertion of pi. Then the charging
disk D∗i is the disk of radius γ · di that is centered on the midpoint of the segment pi nn(pi),
where di := dist(pi,nn(pi)) and γ is a constant to be determined later. If nn did nothing
upon insertion of pi, we define D∗i := ∅. As shown in the full version of the paper, the
charging disks are disjoint if we pick γ suitably.

I Lemma 3.8. Let γ < 3−
√

7
4 . Then for every pair D∗i , D∗j of charging disks with i 6= j, we

have D∗i ∩D∗j = ∅.

We also need the following lemma, whose proof is similar to that of Lemma 3.6.

I Lemma 3.9. For any points pi and pj with i < j, let DOPT
j (pi) be the disk centered at pi

of radius ρj(pi) after pj is inserted in an optimal solution and let D(1.5+γ) OPT
j (pi) be the

disk centered at pi of radius (1.5 + γ)ρj(pi). Then, for every point pk, there is a point pi
such that the disk D∗k is contained in the disk D(1.5+γ) OPT

k (pi).

Putting everything together we obtain the following theorem.

I Theorem 3.10. In R2 the strategy nn is 322-competitive for α = 2.

Proof. Recall that radius(D∗i ) = γ · dist(pi, nn(pi)). Thus the cost incurred by nn upon
the insertion of pi is at most dist(pi, nn(pi))2 6 ((1/γ) · radius(D∗i ))2. By Lemma 3.8, the
disks D∗i are pairwise disjoint. If DOPT denotes the set of disks used in an optimal solution,
then by Lemma 3.9 we have

∑n−1
i=1 ρ(D∗i )2 6

∑
D∈DOPT

((1.5 + γ) · ρ(D))2 = (1.5 + γ)2 OPT,
where OPT is the cost of an optimal solution. Hence the total cost incurred by nn is at
most 1

γ2

∑n−1
i=1 ρ(D∗i )2 = 1

γ2 · (1.5 + γ)2 OPT. Since this holds for any value of γ < 3−
√

7
4 ,

we can conclude that the cost incurred by nn is at most 42

(3−
√

7)2 · (1.5 + 3−
√

7
4 )2 OPT =

(163 + 60
√

7) OPT < 322 OPT. J

4 Online range-assignment in general metric spaces

In this section we consider the problem in general metric spaces. In the full version of the
paper we also consider the offline variant of the problem; here we focus on the online variant,
for which we give an O(logn)-competitive algorithm. The key insight to our algorithms is to
formulate the problem as a set-cover problem and apply linear-programming techniques. As
we will see later, applying the online set cover algorithm of Alon et al. [1] yields a competitive
ratio much worse than O(logn), so we need to exploit structural properties of the particular
set cover instances arising from our problem.

4.1 A set cover formulation and its LP
Let R be the set of distances between pairs of points. Observe that we can restrict ourselves
without loss of generality to only using ranges from R. This allows us to formulate the
problem in terms of set cover: The elements are the points p0, p1, . . . , pn−1, with p0 being
the source point, and for each 0 6 i 6 n − 2 and r ∈ R there is a set Si,r := {pj : j >
i and dist(pi, pj) 6 r} with cost rα. (Note that Si,r is the set of points arriving after pi that
are within range r of pi). In the following, we abuse notation and also write j ∈ Si,r for
points pj ∈ Si,r. We also say that Si,r is centered at pi.
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60:12 The Online Broadcast Range-Assignment Problem

Observe that a feasible range assignment corresponds to a feasible set cover. A set cover
is minimally feasible if removing any set from it causes an element to be uncovered. Since a
minimally feasible set cover picks at most one set Si,r for each i, it corresponds to a feasible
range assignment. (Note that applying the online set cover algorithm of Alon et al. [1] only
gives a competitive ratio of O(log2 n/ log logn) as our set cover instance has n− 1 elements
and |R|(n− 1) sets.)

We can now formulate our problem as an integer linear program. To this end we introduce,
for each range r ∈ R and each point pi a variable xi,r, where xi,r = 1 indicates we choose
the set Si,r (or, in other words, that we assign range r to pi) and xi,r = 0 indicates we do
not choose Si,r. Allowing the xi,r to take fractional values gives us the following relaxed LP.

Minimize
∑

06i6n−2

∑
r∈R

xi,r · rα

Subject to
∑

i,r:j∈Si,r

xi,r > 1 for all 1 6 j 6 n− 1

xi,r > 0 for all (i, r) with 0 6 i 6 n− 2 and r ∈ R

(1)

The dual LP corresponding to the LP above is as follows.

Maximize
∑

16j6n
yj

Subject to
∑
j∈Si,r

yj 6 rα for all (i, r) with 0 6 i 6 n− 2 and r ∈ R

yj > 0 for all 1 6 j 6 n− 1

(2)

We say that the set Si,r is tight if the corresponding dual constraint is tight, that is, if∑
j∈Si,r yj = rα.

4.2 The online algorithm and its analysis
Recall that in the online version, we are given the source p0 and then the points p1, . . . , pn−1
arrive one-by-one. When a point pi arrives, its distances to previous points and the source
are revealed.

The algorithm. Let γ > 1 be a constant that we will set later. The basic idea of the
algorithm is that when a point pi arrives, we will raise its associated dual variable yi
until some set Sj,r containing pi is tight and then update the range of point pj to be
ri(pj) := γmax{r :

∑
k∈Sj,r:k6i yk = rα}. In other words, the range of pj becomes γ times

the largest radius of the tight sets centered at pj .
Here is a more precise description of the algorithm. When pi arrives, we initialize its

dual variable yi := 0. If pi ∈ Sj,r for some j < i and range r with
∑
k∈Sj,r:k6i yk = rα, then

we set ri(pj) := γmax{r :
∑
k∈Sj,r:k6i yk = rα} for one such j. (It can happen that some

Sj,r is tight but that ri−1(pj) is still smaller than r, because when multiple sets become
tight at the same time, we only increase the range of one point.) Otherwise, we increase yi
until for some j < i and range r we have

∑
k∈Sj,r:k6i yk = rα; we then set pj ’s new range to

ri(pj) := γr for one such j. In both cases, we only set pj ’s range, the other ranges remain
unchanged. Note that in the event that multiple sets centered at different points become
tight simultaneously, we only update the range of one of them.
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Analysis. We begin our analysis of the algorithm by showing the feasibility of the constructed
dual solution y and the corresponding range assignment. For each point pi, the algorithm
stops raising yi once some set Sj,r containing pi is tight and then updates pj ’s radius to be
γr > r. This guarantees that no dual constraint is violated and that pi is covered by pj .

Next we analyze the cost of this algorithm. We use the shorthand rj for the final range
rn−1(pj) of the point pj . First, we argue that it suffices to bound the cost of the points
whose ranges are large enough. Let H = {0 6 i 6 n− 2 : ri > max06j6n−2 rj/n}. Then, the
cost of the algorithm is∑

i

rαi =
∑
i∈H

rαi +
∑
i/∈H

rαi 6
∑
i∈H

rαi + n(max
j
rj/n)α 6 (1 + 1/nα−1)

∑
i∈H

rαi 6 2
∑
i∈H

rαi ,

where the second last inequality is because
∑
i∈H r

α
i > maxj rαj and the last is because α > 1.

In the remainder of this section we will show that∑
i∈H

rαi 6 O(logn) ·
∑

16j6n−1
yj . (3)

The theorem then follows from the Weak Duality Theorem of Linear Programming which
states that value of any feasible solution to the primal (minimization) problem is always
greater than or equal to the value of any feasible solution to its associated dual problem.

For 0 6 i 6 n− 2, our algorithm sets the final range ri of point pi such that ri = γr for
some r ∈ R such that

∑
k∈Si,r yk = rα. Thus, we get(

ri
γ

)α
=

∑
j∈Si,ri/γ

yj ,

and so

∑
i∈H

rαi =
∑
i∈H

γα

 ∑
j∈Si,ri/γ

yj

 = γα
∑

16j6n−1
yj ·

∣∣{i ∈ H : j ∈ Si,ri/γ}
∣∣ ,

where the last equality follows by interchanging the sums. Thus, to prove Inequality (3) it
suffices to prove the following lemma.

I Lemma 4.1. For every 1 6 j 6 n − 1 and any fixed γ > 3, we have |{i ∈ H : j ∈
Si,ri/γ}| = O(γα logn).

Proof. Define Hj = {i ∈ H : j ∈ Si,ri/γ}. We will show that for every i, i′ ∈ Hj , either
ri >

γ−1
2 ri′ or ri′ > γ−1

2 ri. This implies that the t-th smallest range (among the points in Hj)
is at least ((γ − 1)/2)t times the smallest range (among those points). Since maxi∈Hj ri

mini∈Hj ri
6 n,

this means that |Hj | = O(log(γ−1)/2 n) = O(logn).
Suppose i, i′ ∈ Hj . Let pk be the last-arriving point that causes our algorithm to update

ri, and pk′ be the last-arriving point that causes our algorithm to update ri′ . Since the
arrival of any point causes at most one point’s range to be updated, we have that pk 6= pk′ .
Suppose that pk arrived before pk′ . By construction of ri′ , we have dist(pk′ , pi′) = ri′/γ.
Moreover, since i, i′ ∈ Hj , we have dist(pi, pj) 6 ri/γ and dist(pi′ , pj) 6 ri′/γ. Therefore, by
the triangle inequality,

dist(pi, pk′) 6 dist(pi, pj) + dist(pj , pi′) + dist(pi′ , pk′) 6 2ri
′

γ
+ ri
γ
.
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Since pk arrived before pk′ and pk′ caused our algorithm to update ri′ , the point pk′ must
have been uncovered when it arrived, and so dist(pi, pk′) > ri. Therefore, we get

ri < dist(pi, pk′) 6 2ri
′

γ
+ ri
γ

and so ri′ > γ−1
2 ri as desired. In the case that pk′ arrived before pk, a similar argument

yields ri > γ−1
2 ri′ . J

By setting γ = 4 we obtain the following theorem.

I Theorem 4.2. For any power-distance gradient α > 1, there is a O(4α logn)-competitive
algorithm for the online range assignment problem in general metric spaces.

5 Concluding Remarks

We introduced the online version of the broadcast range-assignment problem, and we analyzed
the competitive ratio of two natural algorithm, nn and ci, in R1 and R2 as a function of
the power-distance gradient α. While nn is O(1)-competitive in R2 and for α = 2 the
best competitive ratio we can prove is quite large, namely 322. The variant 2-nn has a
better ratio, namely 36, but this is still large. We conjecture that the actual competitive
ratio of nn is actually much closer to the lower bound we proved, which is 7.61. We also
conjecture that ci has a constant (and small) competitive ratio in R2. Another approach to
getting better competitive ratios might be to develop more sophisticated algorithms. For the
general (metric-space) version of the problem, the main question is whether an algorithm
with constant competitive ratio is possible.

While the requirement that we cannot decrease the range of any point in the online
setting is perhaps not necessary in practice, our algorithms have the additional benefit that
they modify the range of at most one point. Thus it can also be seen as the first step in
studying a more general version, where we are allowed to modify (increase or decrease) the
range of, say, two points. In general, it is interesting to study trade-offs between the number
of modifications and the competitive ratio. Studying deletions is then also of interest.

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set

cover problem. SIAM J. Comput., 39(2):361–370, 2009. doi:10.1137/060661946.
2 Christoph Ambühl, Andrea E. F. Clementi, Miriam Di Ianni, Nissan Lev-Tov, Angelo Monti,

David Peleg, Gianluca Rossi, and Riccardo Silvestri. Efficient algorithms for low-energy
bounded-hop broadcast in ad-hoc wireless networks. In Proc. 21st Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2004), volume 2996 of Lecture Notes in
Computer Science, pages 418–427. Springer, 2004. doi:10.1007/978-3-540-24749-4_37.

3 Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbcík, and Kim S. Larsen. On-
line dominating set. Algorithmica, 81(5):1938–1964, 2019. doi:10.1007/s00453-018-0519-1.

4 Gruia Călinescu. Approximate min-power strong connectivity. SIAM J. Discret. Math.,
27(3):1527–1543, 2013. doi:10.1137/100819540.

5 Andrea E. F. Clementi, Pierluigi Crescenzi, Paolo Penna, Gianluca Rossi, and Paola Vocca.
On the complexity of computing minimum energy consumption broadcast subgraphs. In
Proc. 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2001),
volume 2010 of Lecture Notes in Computer Science, pages 121–131. Springer, 2001. doi:
10.1007/3-540-44693-1_11.

https://doi.org/10.1137/060661946
https://doi.org/10.1007/978-3-540-24749-4_37
https://doi.org/10.1007/s00453-018-0519-1
https://doi.org/10.1137/100819540
https://doi.org/10.1007/3-540-44693-1_11
https://doi.org/10.1007/3-540-44693-1_11


M. de Berg, A. Markovic, and S.W. Umboh 60:15

6 Andrea E. F. Clementi, Gurvan Huiban, Paolo Penna, Gianluca Rossi, and Yann C. Verho-
even. Some ecent theoretical advances and open questions on energy consumption in ad-hoc
wireless networks. In Proc. 3rd Workshop on Approximation and Randomization Algorithms
in Communication Networks (ARACNE 2002), 2002.

7 Andrea E. F. Clementi, Miriam Di Ianni, and Riccardo Silvestri. The minimum broadcast
range assignment problem on linear multi-hop wireless networks. Theor. Comput. Sci., 299(1-
3):751–761, 2003. doi:10.1016/S0304-3975(02)00538-8.

8 Andrea E. F. Clementi, Paolo Penna, Afonso Ferreira, Stephane Perennes, and Riccardo
Silvestri. The minimum range assignment problem on linear radio networks. Algorithmica,
35(2):95–110, 2003. doi:10.1007/s00453-002-0985-2.

9 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. Hardness results for the power
range assignmet problem in packet radio networks. In Proc. 3rd International Workshop on
Randomization and Approximation Techniques in Computer Science, and 2nd International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (RANDOM-
APPROX’99), volume 1671 of Lecture Notes in Computer Science, pages 197–208. Springer,
1999. doi:10.1007/978-3-540-48413-4_21.

10 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. On the power assignment
problem in radio networks. Mob. Networks Appl., 9(2):125–140, 2004. doi:10.1023/B:
MONE.0000013624.32948.87.

11 Bernhard Fuchs. On the hardness of range assignment problems. Networks, 52(4):183–195,
2008. doi:10.1002/net.20227.

12 Fabrizio Grandoni. On min-power steiner tree. In Proc. 20th Annual European Symposium on
Algorithms (ESA 2012), volume 7501 of Lecture Notes in Computer Science, pages 527–538.
Springer, 2012. doi:10.1007/978-3-642-33090-2_46.

13 Sudipto Guha and Samir Khuller. Improved methods for approximating node weighted steiner
trees and connected dominating sets. Inf. Comput., 150(1):57–74, 1999. doi:10.1006/inco.
1998.2754.

14 Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Power
consumption in packet radio networks. Theor. Comput. Sci., 243(1-2):289–305, 2000.
doi:10.1016/S0304-3975(98)00223-0.

15 Kaveh Pahlavan and Allen H. Levesque. Wireless information networks, Second Edition. Wiley
series in telecommunications and signal processing. Wiley-VCH, 2005.

16 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

17 Peng-Jun Wan, Gruia Călinescu, Xiang-Yang Li, and Ophir Frieder. Minimum-energy
broadcasting in static ad hoc wireless networks. Wirel. Networks, 8(6):607–617, 2002.
doi:10.1023/A:1020381720601.

ISAAC 2020

https://doi.org/10.1016/S0304-3975(02)00538-8
https://doi.org/10.1007/s00453-002-0985-2
https://doi.org/10.1007/978-3-540-48413-4_21
https://doi.org/10.1023/B:MONE.0000013624.32948.87
https://doi.org/10.1023/B:MONE.0000013624.32948.87
https://doi.org/10.1002/net.20227
https://doi.org/10.1007/978-3-642-33090-2_46
https://doi.org/10.1006/inco.1998.2754
https://doi.org/10.1006/inco.1998.2754
https://doi.org/10.1016/S0304-3975(98)00223-0
https://doi.org/10.1145/2786.2793
https://doi.org/10.1023/A:1020381720601

	Introduction
	Online range-assignment in R^1
	Online range-assignment in R^2
	Bounds on the competitive ratio of nnand ciwhen alpha > 2
	Bounds on the competitive ratio of nnand 2-nnwhen alpha = 2

	Online range-assignment in general metric spaces
	A set cover formulation and its LP
	The online algorithm and its analysis

	Concluding Remarks

