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Abstract
We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal
graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest
path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to
find a geodetic set with minimum cardinality of a given graph. The problem is known to remain
NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study
MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid
grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and
show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies
some results in the literature. We then turn our attention to chordal graphs, showing that MGS
is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which
equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k.
Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et
al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a
rather sophisticated reduction technique to work around their inherent linear structure.
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1 Introduction

A simple undirected graph G has vertex set V (G) and edge set E(G). For two vertices
u, v ∈ V (G), let I(u, v) denote the set of all vertices in G that lie in some shortest path
between u and v. For a subset S of vertices of a graph G, let I(S) =

⋃
u,v∈S I(u, v). We

say that T ⊆ V (G) is covered by S if T ⊆ I(S). A set of vertices S is a geodetic set if
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V (G) is covered by S. The geodetic number, denoted gn(G), is the minimum integer k such
that G has a geodetic set of cardinality k. Given a graph G, the Minimum Geodetic
Set (MGS) problem, introduced in [17], is to compute a geodetic set of G with minimum
cardinality. In this paper, we study the computational complexity of MGS in subclasses of
planar and chordal graphs. MGS is a natural graph covering problem that falls in the class
of problems dealing with the important geometric notion of convexity: see [11,22] for some
general discussion of graph convexities. The setting of MGS is quite natural, and it can be
applied to facility location problems such as the optimal determination of bus routes in a
public transport network [6]. See also [10] for further applications.

The algorithmic complexity of MGS has been studied actively. In 1993, Harari, Loukakis
and Tsouros, in [17], proved that MGS is NP-hard. Later, Dourado et al. [8,9] strengthened
the above result to bipartite graphs, chordal graphs (i.e. graphs with no induced cycle of
order greater than 3) and chordal bipartite graphs (i.e. bipartite graphs with no induced
cycle of order greater than 4). Recently, Bueno et al. [4] proved that MGS remains NP-hard
for subcubic graphs, and Chakraborty et al. [6] proved that MGS is NP-hard for planar
graphs. Kellerhals and Koana [19] studied the parameterized complexity of MGS, proving
that it is unlikely to be FPT for the parameters solution size, feedback vertex set number
and pathwidth, combined.

On the positive side, polynomial-time algorithms to solve MGS are known for cographs [8],
split graphs [8], ptolemaic graphs [11], block cactus graphs [10], outerplanar graphs [21] and
proper interval graphs [10], and the problem is FPT for parameters tree-depth and feedback
edge set number [19].

A grid embedding of a graph is a set of points in two dimensions with integer coordinates
such that each point in the set represents a vertex of the graph and, for each edge, the points
corresponding to its endpoints are at Euclidean distance 1. A graph is a partial grid if it has
a grid embedding. A graph is a solid grid if it has a grid embedding such that all interior
faces have unit area. Chakraborty et al. [6] gave a 3-approximation algorithm for MGS on
solid grids. We improve this as follows.

I Theorem 1. There is a linear-time algorithm for MGS on solid grids.

We note that researchers have designed polynomial-time algorithms for various problems
on solid grids [12,20, 24]. Our algorithm on solid grids does not require the grid embedding
to be part of input. This is interesting since deciding whether an input graph is a solid grid
is an NP-complete problem [16]. To complement Theorem 1, we prove the following.

I Theorem 2. MGS is NP-hard for subcubic partial grids of girth at least g, for any fixed
integer g ≥ 4.

We note that this result jointly strengthens three existing hardness results: for bipartite
graphs [8], subcubic graphs [4] and planar graphs [6]. Moreover, partial grids are subclasses
of many other important graph classes such as disk graphs, rectangle intersection graphs,
etc [7, 23]. Hence, our result implies that MGS remains NP-hard on the aforementioned
graph classes.

An interval representation of a graph G is a collection of intervals on the real line such
that two intervals intersect if and only if the corresponding vertices are adjacent in G. A
graph is an interval graph if it has an interval representation. Ekim et al. [10] asked if there is
a polynomial-time algorithm for MGS on interval graphs. We give a negative answer to their
question (note that proper interval graphs are those interval graphs with no induced K1,3).

I Theorem 3. MGS is NP-hard for interval graphs (even with no induced K1,5).
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This result is somewhat surprising, as most covering problems can be solved in polynomial
time on interval graphs (but other distance-based problems, like Metric Dimension, are
NP-complete for interval graphs [13]). Our reduction (from 3-Sat) uses a quite involved
novel technique, that we hope can be used to prove similar results for other distance-related
problems on interval graphs. The main challenge here is to overcome the linear structure
of the graph to transmit information across the graph. To this end, we use a sophisticated
construction of many parallel tracks, i.e. shortest paths with intervals of (mostly) the same
length spanning roughly the whole graph, and such that each track is shifted with respect to
the previous one. Each track represents shortest paths that will be used by solution vertices
from our variable and clause gadgets. In between the tracks, we are able to build our gadgets.

We remark that MGS admits a polynomial-time algorithm on proper interval graphs by a
nontrivial dynamic programming scheme [10]. Problems known to be NP-complete on interval
graphs but polynomial-time solvable on proper interval graphs are very rare; two examples
known to us are Equitable Coloring [15] and Induced Subgraph Isomorphism [18].

To complement Theorem 3, we design an FPT algorithm for MGS on interval graphs
when parameterized by its treewidth which equals its clique number ω minus one. Observe
that interval graphs are also chordal graphs, i.e. graphs without induced cycles of order
greater than 3. We use dynamic programming on tree decompositions to prove the following.

I Theorem 4. MGS can be solved in time 22O(ω)
n for chordal graphs and in time 2O(ω)n

for interval graphs, where n is the order of the input graph.

This result applies to the following setting. A k-tree is a graph formed by starting with
a complete graph on (k + 1) vertices and then repeatedly adding vertices by making each
added vertex adjacent to exactly k neighbors forming a (k + 1)-clique. Allgeier [1] gave a
polynomial-time algorithm to solve MGS on maximal outerplanar graphs, which is a subclass
of 2-trees, and thus our algorithm generalizes this result (note that 2-trees are both chordal
and planar). Since all k-trees are chordal graphs, MGS can be solved in time 22O(k)

n for
k-trees of order n. Recall that this is unlikely to hold for partial k-trees (which are exactly
the graphs of treewidth at most k) since MGS is W [1]-hard for parameter treewidth [19].

Structure of the paper. In Section 2, we describe the algorithm for solid grids. In Section 3,
we present the algorithm for chordal graphs. In Section 4, we prove hardness for partial grids.
In Section 5, we prove hardness for interval graphs. We conclude in Section 6. Due to space
restrictions, some of the proofs are only sketched. The complete proof details can be found
in the full version of this paper: see [5].

2 A linear-time algorithm for solid grids

We here give a linear-time algorithm for MGS on solid grids and prove Theorem 1. In the
remainder of the section, G denotes a solid grid and R its grid embedding. A path P in G is
a corner path if (i) no vertex of P is a cut-vertex, (ii) both end-vertices of P have degree 2
in G, and (iii) all other vertices of P have degree 3 in G. Chakraborty et al. [6] proved:

I Lemma 5 ([6]). Any geodetic set of G contains at least one vertex from each corner path.

Any geodetic set of G contains all vertices of degree 0 or 1. We say that a vertex v of G
is a corner vertex if v is an end-vertex of some corner path. All corner vertices can be found
in linear time even if the grid embedding is not provided as an input [6].

ISAAC 2020
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I Definition 6. We say that u1, u2, . . . , uk forms a corner sequence if for each 1 ≤ i ≤ k− 1,
1. there is a corner path with ui and ui+1 as endpoints, and
2. there is no corner vertex in the clockwise traversal of the boundary of R from ui to ui+1.

A corner sequence is maximal if it is not a subsequence of any other corner sequence. For
a corner sequence S, let |S| denote the length of S.

I Lemma 7. Let S be the set of all maximal corner sequences of G, and let t be the number
of vertices of G with degree 1. Then, gn(G) ≥ t+

∑
S∈S b|S|/2c.

Proof. Any geodetic set of G contains all vertices of degree 1 and therefore gn(G) ≥ t.
Now, let X be any geodetic set of G and S ∈ S be an arbitrary maximal corner sequence.
Assume that u1, u2, . . . , u|S| forms the maximal subsequence S. Lemma 5 implies that for
each 1 ≤ j < |S|, at least one vertex of the corner path between uj and uj+1 must belong to
X. Observe that two corner paths may have at most one corner vertex in common. Moreover,
a corner vertex cannot be in three corner paths. Therefore, X must contain at least

⌊
|S|
2

⌋
vertices. Now, let P be a corner path with endpoints a, b and P ′ be a corner path with
endpoints a′, b′. If a, b and a′, b′ are in two different maximal corner subsequences, then P
and P ′ have no vertex in common. J

Due to space constraints, we only sketch the proof. Let S be the set of all maximal corner
sequences of G. For a maximal corner sequence S = u1, u2, . . . , uk let f(S) denote the set
{u2, u4 . . . , uk−k′} where k′ = 0 if k is even and k′ = 1, otherwise. Observe that |f(S)| =

⌊
k
2
⌋
.

Let V1 be the set of all vertices of degree 1. Now consider the sets V2 = ∪S∈Sf(S) and
D = V1 ∪ V2. Indeed, one can prove that D is a geodetic set of G and by Lemma 7, we
are done.

3 An FPT algorithm for chordal graphs parameterized by clique
number

We now sketch the main ideas for proving Theorem 4.
We give an FPT algorithm for chordal graphs parameterized by the clique number (which

is also the treewidth plus 1). We explain how to improve the complexity in the case of interval
graphs after the proof of the chordal case. Our algorithm performs dynamic programming on
a nice tree decomposition of the input chordal graph. The main idea behind the algorithm
is that the internal bags of the tree-decomposition (i.e. those who disconnect the tree into
non-empty graphs) induce clique cutsets (cliques whose removal disconnects the graph).
Then, for two vertices u, v all whose shortest paths go through some clique cutset X, their
behaviour (with respect to MGS and X) can be described in terms of X only. This key
observation will be enough to design our algorithm.

Nice tree decompositions are a well-known tool for designing dynamic programming
algorithms for graphs of bounded treewidth. In our notation, the set of vertices of the graph
associated to a node v of the tree, its bag, is denoted Xv. A nice tree decomposition of a
chordal graph (see [2]) is a rooted tree decomposition where the bag of every node induces a
clique. Each node belong to one of the following types. A node is a join node if it has exactly
two children, on the same bags as the node. An introduce node has a unique child whose
bag contains exactly one vertex less. A forget node has a unique child whose bag contains
exactly one more vertex. A leaf node is a leaf of the tree whose bag is empty. The root node
is a leaf node.
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For a nice tree decomposition and a node v, we define G≤v as the subgraph of G induced
by the vertices of the subtree of the decomposition rooted at v. If u ∈ V (G) and X is a clique,
we say that u is close to a nonempty set of vertices A ⊆ X with respect to X, if d(u, x) = du
when x ∈ A and d(u, x) = du + 1 when x ∈ X \ A (for some integer du). Intuitively, if X
is clique cutset which creates two connected components G1 and G2 when removed and if
u ∈ V (G1) then the shortest paths from u to some vertices of the other components “tends
to” go through vertices of A.

Each maximal clique of a chordal graph will be associated to some node of the tree
decomposition. Intuitively speaking, as in most tree-width based dynamic programming
schemes, we need to show how the number of local solutions (i.e. in a bag of the tree) is
bounded by a function of the maximal size of a bag, and how it can be computed from the
information already computed for the node’s children. To do this, we will need the following
lemma, which deals with how shortest paths interact with clique cutsets.

I Lemma 8. Let X be a clique cutset of a chordal graph G. Let u, v be two vertices of G
such that all paths from u to v intersect X. Let A (resp. B) be a nonempty set of vertices of
X such that u (resp. v) is close to A (resp. B) with respect to X. Then, a vertex x belongs
to I(u, v) ∩X (where I(u, v) is the set of vertices of G covered by a shortest path from u to
v) if and only if x ∈ A ∩B or, A ∩B = ∅ and x ∈ A ∪B.

Lemma 8 implies that to compute an optimal partial solution (i.e. a subset of vertices of
G≤v) for a given bag Xv, it is sufficient to ”guess” for which subsets A of Xv, there will exist
(in the future solution that will be computed for ancestors of v) a vertex y which is close to
A with respect to Xv. Thus, roughly speaking, it will be sufficient to index our solutions by
types depending on what subsets A of Xv are required to satisfy this property.

More precisely, for each node v of our tree decomposition, we compute a table of partial
solutions, indexed by types. For a node v, a type τ = (τ int, τext, τ bag, τ cov) is an element of
{0, 1}2Xv

×{0, 1}2Xv

× 2Xv × 2Xv where 2Xv is the power set of Xv. We see τ int and τext as
Boolean vectors indexed by the elements of 2Xv , and τ bag and τ bag, as subsets of Xv. The
table of partial solutions of the node v, denoted as sol [v, τ ], will contain an optimal partial
solution for Xv of the given type τ , computed using the partial solutions of the children of
v. Our goal is to compute all such partial solutions sol [v, τ ]. The partial solution sol [v, τ ],
must follow some additional constraints that we detail below. Note that it is possible that
no partial solution verify those constraints. In this case, sol [v, τ ] is left empty.

For a node v of type τ and for a set A ⊆ Xv of vertices, the Boolean τ int[A] represents
whether there is some y ∈ sol [v, τ ] such that y is close to A with respect to Xv (“int” stands
for “interior”). For A ⊆ Xv, the Boolean τext[A] represents whether we need to add, at a
later step of our algorithm, some vertex y such that y is close to A with respect to Xv. Here,
y is a vertex that needs to be added later to the solution, in the upper part of the tree (“ext”
stands for “exterior”). By Lemma 8, it is not necessary to keep track of all such vertices, as
it is sufficient to record which subsets of vertices of Xv they are close to. This is a crucial
property used to construct our solution: if there exists such a y, then we can cover some
vertices of the subtree using this y, and Lemma 8 tells us exactly how.

The set τ cov represents the vertices of Xv that we require to cover with sol [v, τ ]. Due to
the existence of join nodes, we might want to cover the other vertices of Xv at a later step of
the algorithm. The set τ bag represents the vertices of Xv in sol [v, τ ], and is essentially used
to know which solutions of the children nodes of a join node can be merged.

To formalise the notion of types associated with a node we introduce the following
definition which essentially asserts what our solution table for a given node must satisfy
to be correct. To this end, we define a helper graph Hτ

v that simulates the vertices (using
simplicial vertices) whose types are required to belong to the (future) solution.

ISAAC 2020
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For a node v, let Tv denote the set of all types of v. For a fixed τ let Hτ
v denote the graph

obtained by adding a vertex S to G≤v whenever there is a set S ⊆ Xv with τext[S] = 1,
and making S adjacent to each x ∈ S. Let Sτv = {S : S ⊆ Xv, τ

ext[S] = 1} denote the newly
added vertices.

I Definition 9. Let v be a node of T . A 4-tuple τ = (τ int, τext, τ cov, τ bag) of Tv is a “type
associated with v” if there exists a set D ⊆ V (Hτ

v ) such that the following hold.
(i) Sτv ⊆ D and τ bag = D ∩Xv.
(ii) For a vertex w ∈ (V (G≤v) \ Xv) ∪ τ cov there exists a pair w1, w2 ∈ D such that

w ∈ I(w1, w2) and w1 ∈ D \ Sτv .
(iii) For a subset A ⊆ Xv, we have τ int[A] = 1 if and only if D ∩ V (G≤v) contains a vertex

which is close to A with respect to Xv.

Moreover, we shall say that the set D \ Sτv is a “certificate” for (v, τ).

The proof of Theorem 4 boils down to showing, by induction, that it is possible to construct
certificates of minimum cardinality for each (valid) pair (v, τ) in a total of 22O(ω(G))

n time.
This is possible as the tree decomposition contains a O(n) nodes and for each of them,
computing our table for one particular node can be achieved in 22O(ω(G)) time. For the root
r, there is only one type τ0 and therefore the minimum cardinality certificate for (r, τ0) is an
optimal geodetic set of G.

For interval graphs, the tree decomposition is a path decomposition. τ int and τext can be
chosen in {0, 1}A, where A is a set of size O(ω), reducing the time complexity to 2O(ω)n.

4 Hardness for partial grids

We now prove Theorem 2. Let PG(3, g) denote the class of subcubic partial grids of girth at
least g. Given a graph G, a subset S ⊆ V (G) is a vertex cover of G if every edge in E(G)
has at least one end-vertex in S. The problem Minimum Vertex Cover is to compute
a vertex cover of an input graph G with minimum cardinality. To prove Theorem 2, we
reduce the NP-hard Minimum Vertex Cover problem on cubic planar graphs [14] to MGS
on graphs in PG(3, g). We use a result of Valiant [25] which says that any planar graph
G with maximum degree at most 4 has a drawing using O(|V (G)|) area where vertices are
represented as points on the integer grid, and edges are drawn as rectilinear curves on the
integer grid.

Let R be an embedding of a cubic planar graph G as described above. One can ensure
that the distance between two vertices is at least 100, and two parallel lines are at distance
at least 100. (Any large constant would be sufficient). We call such an embedding a good
embedding of G. A set S of vertices of a graph is an edge geodetic set if every edge lies in
some shortest path between a pair of vertices in S. Note that an edge geodetic set is also a
geodetic set (if there are no isolated vertices). We need the following lemma.

I Lemma 10. Let H be a graph having a geodetic set S which is also an edge geodetic set.
If H ′ denotes the graph obtained by replacing each edge of H with a path having k ≥ 0 edges,
then S is a geodetic set of H ′.

Proof. Let w ∈ V (H ′) be a new vertex that was introduced while replacing an edge e of H
with a path. Let ue, ve ∈ S such that e belongs to a shortest path P between ue and ve. Let
P ′ be the path obtained by replacing each edge of P by a path having k edges. Observe that
P ′ is a shortest path between ue and ve in H ′. Hence w belongs to a shortest path between
ue and ve in H ′. Thus S is a geodetic set of H ′. J
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Overview of the reduction. From a cubic planar graph G with a given good embedding,
first we construct a planar graph f1(G) having maximum degree at most 6 and girth 4.
We show that G has a vertex cover of size k if and only if f1(G) has a geodetic set of size
3|V (G)|+ k. Then, we construct a graph f2(G) ∈ PG(3, 42) such that the geodetic numbers
of f2(G) and f1(G) are the same. When g > 42, we construct a graph f3(G) ∈ PG(3, g) such
that the geodetic numbers of f3(G) and f2(G) are the same.

Construction of f1(G). From a cubic planar graph G with a given good embedding R, we
construct a graph f1(G) as follows. Each vertex v of G will be replaced by a vertex-gadget
Gv which is shown in Figure 1. The edges outside of the vertex-gadgets will depend on R.
We assume that the edges incident with any vertex v are labeled evi with 0 ≤ i < 3, in such a
way that the numbering increases counterclockwise around v with respect to the embedding
(thus the edge vw will have two labels: evi and ewj , for some i, j ∈ {1, 2, 3}). Consider two
vertices v and w that are adjacent in G, and let evi and ewj be the two labels of edge vw
in G. Add the edges (tvi , twj ), (yvi,i+1, y

w
j−1,j) and (yvi−1,i, y

w
j+1,j) (See Figure 1). All indices

are taken modulo 3. There are no other edges in f1(G). Observe that f1(G) is planar, and
has maximum degree at most 6 and girth 4. We have the following lemma whose proof is
omitted due to space restrictions.

cv tv0

xv0,1

yv0,1

zv0,1
tv1

xv1,2yv1,2

zv1,2

tv2

xv0,2

yv0,2
zv0,2

Gv

cwtw0

xw0,1

yw0,1
zw0,1

tw1

xw1,2 yw1,2

zw1,2

tw2

xw0,2

yw0,2

zw0,2

Gw

Figure 1 Illustration of vertex-gadgets in the reduction in the proof of Theorem 2. For an
edge vw, we have the vertex gadgets Gv and Gw and the dashed lines indicate edges between two
vertex-gadgets.

I Lemma 11. The graph G has a vertex cover C of size k if and only if f1(G) has a geodetic
set of size 3|V (G)|+ k.

Proof. We construct a geodetic set S of f1(G) of size 3|V (G)|+ k as follows. For each vertex
v in G, we add the three vertices zvi,j (0 ≤ i < j ≤ 2) of Gv to S. If v is in C, we also add
vertex cv to S.

Let us show that S is indeed a geodetic set. First, we observe that in any vertex gadget
Gv that is part of f1(G), the unique shortest path between two distinct vertices zvi,j , zvi′,j′

has length 4 and goes through vertices yvi,j , tvk and yvi′,j′ (where {k} = {i, j} ∩ {i′, j′}). Thus,
it only remains to show that the vertices {cv, xvi,j} (0 ≤ i < j ≤ 2) belong to some shortest
path of vertices of S. Assume that v is a vertex of G in C. The shortest paths between cv
and zvi,j have length 3 and one of them goes through vertex xvi,j . Thus, all vertices of Gv
belong to some shortest path between vertices of S. Now, consider a vertex w /∈ C of G.
Since G is a cubic planar graph, all three neighbours of w, say, w1, w2, w3 must lie in C. Let
A = {cw1 , cw2 , cw3} and Z = {zw0,1, zw1,2, zw0,2}. Observe that all vertices of Gw lie in the set
I(A ∪ Z). Therefore, S is a geodetic set.

ISAAC 2020
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cv

xv
1,2

yv1,2

tv2

tv1

xv
0,1

xv
0,2

yv0,2

yv0,1

tv0

zv1,2

zv0,2

zv0,1

av bv dv

Figure 2 Construction of f2(G).

For the converse, assume we have a geodetic set S′ of f1(G) of size 3|V (G)| + k. We
will show that G has a vertex cover of size k. First of all, observe that all the 3|V (G)|
vertices of type zvi,j are necessarily in S′, since they have degree 1. As observed earlier, the
shortest paths between those vertices already go through all vertices of type tvi and yvi,j .
However, no other vertex lies on a shortest path between two such vertices: these shortest
paths always go through the boundary 6-cycle of the vertex-gadgets. Let S′0 be the set of
the remaining k vertices of S′. These vertices are there to cover the vertices of type cv and
xvi,j . We construct a subset C ′ of V (G) as follows: C ′ contains those vertices v of G whose
vertex-gadget Gv contains a vertex of S′0. We claim that C ′ is a vertex cover of G. Suppose
by contradiction that there is an edge vw of G such that neither Gv nor Gw contains any
vertex of S′0. Without loss of generality assume that ev0 and ew0 are the two labels of the edge
vw. Here also, the shortest paths between vertices of S always go through the boundary
6-cycle of Gv and thus, they never include vertex xv1,2. Let a and b be the neighbours of v
different from w. Observe that no shortest path between a vertex of Ga and a vertex of Gb
contains the vertex xv1,2, a contradiction. Thus S′ is a vertex cover of G. J

Construction of f2(G). An edge uv of f1(G) is an internal edge if both u and v belong to
Gw for some w ∈ V (G). The other edges of f1(G) are external edges. We construct f2(G) in
three steps described below.
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1. Replace each vertex of type twi (for w ∈ V (G)) with a new edge Twi = (twi t′wi ). Replace
each vertex of type ywi,j with a path Y wi,j = awi,j y

w
i,j b

w
i,j d

w
i,j . Replace each vertex of type

cw with a path Cw = aw bw cw dw. (See Figure 2).
2. Replace each internal edge between vertices having labels p, q with a new path such that

the shortest path in the new graph between the vertices with label p, q has length 14 (this
constant is required to get a valid good embedding).

3. For an edge uv ∈ E(G), let Euv denote the set of three external edges between Gu and
Gv in f1(G). Recall that R is a good embedding of G. Let luv denote the length of the
edge uv in R. Replace all three external edges piqi ∈ Euv (1 ≤ i ≤ 3) with three new
paths Pi (1 ≤ i ≤ 3) such that lengths of all three paths are equal and in O(luv).

Clearly, f2(Gv) is a partial grid for each v ∈ V (G) (Figure 2). It is not difficult to verify
that f2(G) has maximum degree 3 and girth at least 42. Let C be a vertex cover of G with
cardinality k. We construct a geodetic set S of f2(G) of cardinality 3|V (G)|+ k as follows.
For each vertex v in G, we add the three vertices with labels zvi,j (0 ≤ i < j ≤ 2) to S. If v
is in C, we also add vertex cv to S. From the construction of f2(G) and using arguments
similar to that of Lemma 11, G has a vertex cover of size k if and only if f2(G) has a geodetic
set of size 3|V (G)|+ k. Moreover, we can prove the following.

I Lemma 12. The set S is both a geodetic set of minimum cardinality and an edge geodetic
set of minimum cardinality of f2(G).

Completion of the proof of Theorem 2. If g ≤ 42, then observe that f2(G) ∈ PG(3, g)
and from the previous discussions, we have that MGS is NP-hard for graphs in PG(3, g).
Otherwise, we replace every edge of f2(G) with a path of length g. Call this modified
graph f3(G), and observe that f3(G) ∈ PG(3, g). By Lemma 12, S is both a geodetic set of
minimum cardinality and an edge geodetic set of minimum cardinality in f2(G). Now, due
to Lemma 10, S is a geodetic set of f3(G) of cardinality 3|V (G)|+ k.

5 Hardness for interval graphs

We now give a sketch of the proof of Theorem 3. Let F be an instance of 3-Sat with
variables x1, . . . , xn and clauses C1, . . . , Cm. We construct a set D of intervals in polynomial
time such that the geodetic number of the intersection graph of D (denoted as I(D)) is at
most 4 + 7n+ 58m if and only if F is a positive instance of 3-Sat.

The key intuition that explains why the problem is hard on interval graphs, is that
considering two solution vertices x, y, the structure of the covered set I(x, y) can be very
complicated. Indeed, it can be that many vertices lying “in between” x and y in the interval
representation, are not covered. This allows us to construct gadgets, by controlling which
such vertices get covered, and which do not. Moreover, we can easily force some vertices
to be part of the solution by representing them by an interval of length 0 (then, they are
simplicial vertices), which is very useful to design our reduction. Nevertheless, implementing
this idea turns out to be far from trivial, and to this end we need the crucial idea of tracks,
which are shortest paths spanning a large part of the construction. Each track starts at a
key interval called its root (representing a literal, for example) and serves as a shortest path
from the root to the rightmost end of the construction. In a way, each track “carries the
effect of the root” being chosen in a solution to the rest of the graph. The tracks are shifted
in a way that no shortcut can be used going from one track to another. We are then able to
locally modify the tracks and place our gadgets so that the track of, say, a literal, enables
the interval of that literal to cover an interval of a specific clause gadget (while the other
tracks are of no use for this purpose).
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S X1 X2 · · · Xn C1 C2
· · ·

Cm E

Figure 3 Overview of the construction. Boxes represent gadgets, and lines represent tracks.

Overview of the reduction. There are four stages of our reduction. We initialise it by
constructing a set of intervals which we call the start gadget (denoted as S). After creating
the start gadget, we create the variable gadgets, which are placed consecutively, after the start
gadget. For each variable xi with 1 ≤ i ≤ n, we create the variable gadget Xi. Each variable
gadget is composed of several implication gadgets. An implication gadget IMP [¬p→ q]
ensures (under some extra hypotheses) that if p is not chosen in a geodetic set of our
constructed intervals, then q must be chosen. These are used to encode the behaviour of
the variables of the 3-SAT instance: there will be two possible solutions, corresponding to
both truth values of xi. After creating all the variable gadgets, we create the clause gadgets,
also placed consecutively, after the variable gadgets. For each clause Cj with 1 ≤ j ≤ m,
we construct the clause gadget Cj . Each clause gadget is composed of a covering gadget,
several implication gadgets and several AND gadgets. The covering gadget of a clause Ci is
denoted by COV[i]. For two intervals p and q, the corresponding AND gadget is denoted
by AND [p, q]. Together, these gadgets will ensure that all intervals of the clause gadget
corresponding to the clause Ci are covered by six intervals if and only if one of the intervals
corresponding to the literals of Ci is chosen in a geodetic set. This encodes the behaviour of
the clauses of the 3-SAT instance.

After creating all the clause gadgets, we conclude our construction by creating the end
gadget E, placed after all clause gadgets. See Figure 3 for a schematic diagram.

Notations. Let S be a set of intervals with no isolated interval. For a vertex v ∈ V (I(S)), let
v = [min(v),max(v)] denote the interval corresponding to v in S, where min(v) and max(v)
refer the left boundary and right boundary of v, respectively. From now on, we only work with
intervals. The rightmost neighbour of v is the interval intersecting v that has the maximum
right boundary. For a nonempty set S of intervals, let min(S) = min{min(v) : v ∈ S},
max(S) = max{max(v) : v ∈ S}.. For two intervals u,v we have u < v if max(u) < min(v).
Let S be a set of intervals and u,v ∈ S. A shortest path between u,v is a shortest path
between u,v in I(S). The set I(u,v) is the set of intervals that belongs to some shortest
path between u,v. The geodetic set of S is analogously defined. For a subset S′ of S the
phrase “S is covered by S′” means that S′ is a geodetic set of S. A point interval is an
interval of the form [a, a]. A unit interval is an interval of the form [a, a + 1]. A set of
intervals is proper if no interval contains another. A set T = {u1,u2, . . . ,ut} of intervals is a
track if max(ui) = min (ui+1) for all 1 ≤ i < t and no ui is a point interval for all 1 ≤ i ≤ t.
Observe that if T is a track, then I(T ) is a path. In our construction, each track T will be
associated with a number of intervals called its roots. The set of roots of T is denoted by
R(T ). For an intuition of how the tracks and roots are used, the track for which v is the root
will almost entirely be a shortest path from v to any interval w to the right of v (except for
some local shortcuts in the gadgets involving w, that can be controlled).

I Definition 13. Let T and T ′ be two tracks such that T ∪ T ′ is a proper set of intervals.
Then T < T ′ if max(T ) < max(T ′).
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sq

q
rq

···

X

Tp
uTp vTp wTp

T2 t
T1 t2t1

···
X ′

Figure 4 The implication gadget IMP [¬p → q].

Let T be a set of tracks and T ∈ T . By construction each T ∪ T ′ will be a proper set
of intervals for T, T ′ ∈ T . The phrase “the track just preceding T” refers to the track T ′
such that T ′ < T and there is no T ′′ such that T ′ < T ′′ < T . The phrases “the track just
following T”, “maximal track of T ” and “minimal track of T ” are analogously defined.

Construction of S. Let ε = 1
(n+m)4 where n is the number of variables and m is the number

of clauses. The start gadget S consists of four intervals which are defined as follows: the start
interval o = [1, 1], uo = [1, 2], the true interval > = [1 + ε, 1 + ε] and u> = [1 + ε, 2 + ε].
Let T1 = {uo} and T2 = {u>}. Observe that T1, T2 are tracks and T1 < T2.

We initialize two more sets, the set T = {T1, T2} of all tracks, and the set D = S of
all intervals. As we proceed with the construction, we shall insert more intervals in T1, T2
while maintaining that both of them are tracks. We shall also add more tracks in T . Let
R(T1) = {o} and R(T2) = {>}.

Implication gadget of a root p. To construct the variable gadgets and the clause gadgets,
we need to define the implication gadget. On Figure 4, we present the implication gadget of
a root p which is different from o of S. The track Tp ∈ T is the track such that p ∈ R(Tp).
Since p 6= o, Tp is not the minimal element in T . The interval q is a new interval constructed
in the gadget for which we create a track T1. The goal of this gadget is to ensure that q is
part of our solution when p is not.

Construction of variable gadgets. We construct the variable gadgets sequentially and
connect each of them to the previous one (X1 is connected to the start gadget S). Assuming
that we have placed S,X1, . . . ,Xi−1, we construct Xi as follows. For variable xi, the gadget
Xi consists of two implication gadgets. Let D and T be the set of intervals and tracks created
so far. First, we construct IMP [¬>→ xi]. Observe that the sets D and T have been
updated after the last operation. There is an interval xi in D and there is a track T ∈ T
whose root is xi. Now we construct IMP [¬xi → xi]. Observe that after constructing all
the variable gadgets, for each literal `, there is an interval named ` in D. Also note that
nothing prevent us, at this point, from taking both xi and xi in our solution. This property
will follow from the cardinality constraints on the size of the solution.

A clause gadget consists of a covering gadget, several implication and AND gadgets.
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ai

bi

ci

di

covi
fi

···

Tdi

Tci

Tbi

Tai

Tfi

Figure 5 The covering gadget COV[i].

Construction of covering gadgets. The covering gadget COV[i] of a clause Ci is presented
on Figure 5. In particular, this gadget is used to say that, under some extra assumptions,
one of ai, bi and ci is in our solution and covers the interval covi with a shortest path to fi.

Construction of the AND gadget. For two previously constructed interval p and q, we
can construct a gadget named AND [p, q]. We do not present the construction of this gadget
as it is slightly more complicated than the previous ones. This gadget contains a number
of new intervals. Among them is a particular interval denoted by γ(p, q). The role of this
gadget is as follows. If p and q are in our solution then every interval of the gadget is covered.
Otherwise we need to add an interval of the gadget to cover it, namely the interval γ (p, q)
is sufficient to cover every interval of AND [p, q].

Construction of Ci. We shall complete our construction of clause gadget Ci corresponding
to the clause Ci = (`1

i , `
2
i , `

3
i ). First, we create the covering gadget COV[i] and update D, T .

Recall from the construction of COV[i] that the intervals named ai, bi, ci exist. Also recall
from the construction of variable gadgets that the intervals `1

i , `2
i , `3

i and `1
i , `2

i , `3
i exist. Now

we create, in this order, IMP
[
¬ai → a′i

]
, AND

[
ai, `

1
i

]
, AND

[
a′i, `

1
i

]
, IMP

[
¬bi → b′i

]
,

AND
[
bi, `

2
i

]
, AND

[
b′i, `

2
i

]
, IMP

[
¬ci → c′i

]
, AND

[
ci, `

3
i

]
, AND

[
c′i, `

3
i

]
where a′i, b′i

and b′i are three new intervals constructed in the corresponding implication gadgets. The
role of this last part is to ensure that ai and `1

i are either both in the solution or both not in
the solution. The reality is slightly more complex but one should think of ai as a copy of `1

i

and a′i as a copy of `1
i . The same holds for bi and ci. This completes the construction of Ci.

Construction of end gadget. For each T ∈ T , we introduce two new intervals uT =
[max(T ),max(T ) + 1], eT = [max(uT ),max(uT )] and define T = T ∪ {uT }, D = D ∪
{uT , eT }T∈T . For each T ∈ T , let eT be the tail of T . The end gadget E consists of all the
new intervals created above. The role of this gadget is to ensure that every interval belonging
to a track is covered.

5.1 Analysis
First, note that there are 2 + 4n+ 35m tracks in T and npoint = 4 + 6n+ 52m point intervals
in D. The total number of intervals in D is O((n+m)2). Remark that the point intervals
are exactly the simplicial vertices of D, hence they belong to every geodetic set of D. Let
T be a track in T such that T = {u1, . . . ,uk} with max(ui) = min(ui+1) (1 ≤ i ≤ k − 1).
Observe that for each i with 1 ≤ i ≤ k − 1, ui+1 is the rightmost neighbour of ui.
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I Proposition 14. Let u and v be two intervals of D such that min(u) < min(v). The
path u0,u1, . . . ,uk,v is a shortest path from u to v (where u = u0, ui+1 is the rightmost
neighbour of ui for i ∈ 1 ≤ i ≤ k − 1, and uk−1 /∈ N(v), while uk ∈ N(v)). We say that
such a path is a good shortest path.

An interval u is a track interval if u ∈ T for some T ∈ T . From now on, U shall denote
the set of track intervals. Let Sp be the set of all point intervals and recall that Sp is a
subset of every geodetic set of D. For an interval z, let T (z) denote the track T such that
z ∈ R(T ). From our construction, one can observe that all track intervals are covered by
pair of vertices in Sp.

I Proposition 15. For an implication gadget IMP [¬p→ q], let T be the track with root q.
Then q ∈ I(p, sq), rq ∈ I(o, sq).

I Proposition 16. Consider the cover gadget COV[i] and let z ∈ {ai,di, ci}. Then z ∈
I(di, eT (z)) and covi ∈ I(z,fi).

I Proposition 17. Consider an AND gadget AND [p, q]. The set {p, q} ∪ Sp covers all
vertices in AND [p, q]. The set {γ (p, q)} ∪ Sp covers all vertices in AND [p, q] where
γ (p, q) is a vertex of AND [p, q].

We shall show that if F is satisfiable, thenD has a geodetic set of cardinality 4+7n+58m =
npoint + n + 6m. Let φ : {x1, x2, . . . , xn} → {0, 1} be a satisfying assignment of F (we
also define φ(xi) = 1 − φ(xi)). Now, define the following sets. Let S1 = {xi : φ(xi) =
1} ∪ {xi : φ(xi) = 1}}. Let S2 = ∅. Now, for each clause Ci = (`1

i , `
2
i , `

3
i ), and for each

(v,v′, `, `) ∈
{

(ai,a
′
i, `

1
i , `

1
i ), (bi, b

′
i, `

2
i , `

2
i ), (ci, c

′
i, `

3
i , `

3
i )
}
, if φ(`) = 1, then put S2 =

S2 ∪
{
v,γ

(
v′, `

)}
otherwise put S2 = S2 ∪ {v′,γ (v, `)}. We have that |S1 ∪ S2 ∪ Sp| =

4 + 7n+ 58m.

I Lemma 18. The set S is a geodetic set of D.

Proof. As Sp ⊆ S, we know that all track intervals of D are covered. Moreover, every interval
of the form rq is covered by Proposition 15. Consider any variable gadget Xi corresponding to
the variable xi. Recall from construction, that Xi = IMP [¬>→ xi]∪IMP [¬xi → xi]. Due
to Proposition 15, we have that xi ∈ I(>, eT (xi)). Hence, all intervals of IMP [¬>→ xi]
are covered by S. Due to Proposition 15, either xi ∈ I(xi, eT (xi)) when xi ∈ S or xi ∈ S
otherwise. The above arguments imply that all intervals in Xi are covered by S.

Now, consider any clause Ci = (`1
i , `

2
i , `

3
i ) and recall the construction of Ci. Observe

that there exists at least one interval z ∈ {ai, bi, ci} ∩ S. Using Proposition 16, we can
infer that all intervals in COV[i] are covered by S. Now, consider the implication gadget
IMP

[
¬ai → a′i

]
, note that

{
ai,a

′
i

}
∩ S 6= ∅ and therefore using Proposition 15, we can

infer that all intervals in IMP
[
¬ai → a′i

]
are covered by S. Repeating the above arguments

for IMP
[
¬bi → b′i

]
and IMP

[
¬ci → c′i

]
, we infer that all intervals in these implication

gadgets are covered by S. Now, consider the AND gadget AND
[
ai, `

1
i

]
. From our definition

of S2, it follows that either
{
ai, `

1
i

}
⊆ S or γ (p, q) ∈ S. In both cases, we can use

Proposition 17 to show that all intervals in AND
[
ai, `

1
i

]
are covered by S. Repeating the

above arguments for all the AND gadgets in Ci, we can show that all intervals of Ci are
covered by S. J

Now, we show that if the geodetic number of D is at most 4 + 7n + 58m, then F is
satisfiable. The next proposition is key in showing this (recall that U contains all track
vertices). It is proven by considering an interval v with minimum min(v) contradicting the
statement.
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I Proposition 19. There is a minimum-size geodetic set S∗ of D such that S∗ ∩ U = ∅.

A good geodetic set of D is a geodetic set of minimum cardinality which does not contain
any interval belonging to a track (i.e. intervals of U).

I Proposition 20. Let S∗ be a good geodetic set of D and IMP [¬p→ q] be an implication
gadget where p is the only root of T (p). Then, either p ∈ S∗ or q ∈ S∗.

I Proposition 21. Let S∗ be a good geodetic set of D and let Ci = (`1
i , `

2
i , `

3
i ) be a clause.

Then |S∗ ∩ Ci| ≥ 6. Moreover if none of `i
1, `

i
2, `

i
3 is in S∗ then |S∗ ∩ Ci| ≥ 7.

I Lemma 22. If there is a good geodetic set of D with cardinality 4 + 7n+ 58m, then F is
satisfiable.

Proof. Let S∗ be a good geodetic set of D with cardinality 4 + 7n + 58m. Recall that
a variable gadget Xi is IMP [¬>→ xi] ∪ IMP [¬xi → xi]. Due to Proposition 20, we
know that at least one among {xi,xi} lies in S∗. Let S1 = (S∗ \ Sp) ∩ (∪1≤i≤nXi), and
S2 = (S∗ \ Sp) ∩ (∪1≤i≤mCi). Note that S1 ∪ S2 ∪ Sp ⊆ S∗. We have |S1| ≥ n, |S3| ≥ 6m by
Proposition 21, and |Sp| = 4 + 6n+ 52m. Therefore, |S1| = n as |S∗| ≤ 4 + 7n+ 58m. This
means that for each 1 ≤ i ≤ n, exactly one of xi,xi lies in S∗. Based on these, we define the
following truth assignment φ : {x1, . . . , xn} → {1, 0} of F . Define φ(xi) = 1 if xi ∈ S∗ and
φ(xi) = 0, otherwise. Using Proposition 21 we can infer that for each 1 ≤ i ≤ m, we have
that |S∗ ∩ Ci| = 6 and at least one of the intervals `i

1, `
i
2, `

i
3 lies in S∗. Thus, for at least one

literal `ji , we have that φ(`ji ) = 1, as needed. J

6 Conclusion

We gave a polynomial-time algorithm for MGS on solid grids and proved that MGS is
NP-hard on partial grids and interval graphs. We proved that MGS is FPT on chordal
graphs when parameterized by the clique number.

Are there FPT algorithms for MGS on interval graphs, chordal graphs, partial grids,
planar graphs when parameterized by the geodetic number?

Assuming the Exponential Time Hypothesis, our reduction implies that there cannot be
a 2o(

√
n) time algorithm for MGS on interval graphs of order n. Are there subexponential

time algorithms for MGS on interval graphs or chordal graphs, matching this lower bound?
(This is the case for many graph problems for geometric intersection graphs, see [3].)

We have seen that for every k, MGS is solvable in time f(k)n for k-trees, but such a
running time is unlikely to be possible for partial k-trees, since MGS is known to be W[1]-hard
for parameter tree-width [19]. However, there could still exist an XP-time algorithm for
MGS, running in time ng(k) on partial k-trees. In fact, it is already unknown whether MGS
is solvable in polynomial time on partial 2-trees (also known as series-parallel graphs or
K4-minor-free graphs).
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