
Approximating the Packedness of Polygonal
Curves
Joachim Gudmundsson
The University of Sydney, Australia

Yuan Sha
The University of Sydney, Australia

Sampson Wong
The University of Sydney, Australia

Abstract
In 2012 Driemel et al. [17] introduced the concept of c-packed curves as a realistic input model.
In the case when c is a constant they gave a near linear time (1 + ε)-approximation algorithm for
computing the Fréchet distance between two c-packed polygonal curves. Since then a number of
papers have used the model.

In this paper we consider the problem of computing the smallest c for which a given polygonal
curve in Rd is c-packed. We present two approximation algorithms. The first algorithm is a
2-approximation algorithm and runs in O(dn2 logn) time. In the case d = 2 we develop a faster
algorithm that returns a (6 + ε)-approximation and runs in O((n/ε3)4/3 polylog(n/ε))) time.

We also implemented the first algorithm and computed the approximate packedness-value for 16
sets of real-world trajectories. The experiments indicate that the notion of c-packedness is a useful
realistic input model for many curves and trajectories.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, trajectories, realistic input models

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.9

Related Version A full version of this paper is available at https://arxiv.org/abs/2009.07789.

1 Introduction

Worst-case analysis often fails to accurately estimate the performance of an algorithm for
real-world data. One reason for this is that the traditional analysis of algorithms and data
structures is only done in terms of the number of elementary objects in the input; it does not
take into account their distribution. Problems with traditional analysis have led researchers
to analyse algorithms under certain assumptions on the input [15], which are often satisfied
in practice. By doing this, complicated hypothetical inputs are hopefully precluded, and the
worst-case analysis yields bounds which better reflect the behaviour of the algorithms in
practical situations.

In computational geometry, realistic input models were introduced by van der Stappen
and Overmars [39] in 1994. They studied motion planning among fat obstacles. Since then
a range of models have been proposed, including uncluttered scenes [14], low density [40],
simple-cover complexity [33], to name a few. De Berg et al. [15] gave algorithms for computing
the model parameters for planar polygonal scenes. In their paper they motivated why such
algorithms are important.

To verify whether a certain model is appropriate for a certain application domain.
Some algorithms require the value of the model parameter as input in order to work
correctly, e.g. the range searching data structure for fat objects developed by Overmars
and van der Stappen [35].
Computing the model parameters of a given input can be useful for selecting the algorithm
best tailored to that specific input.

© Joachim Gudmundsson, Yuan Sha, and Sampson Wong;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2020.9
https://arxiv.org/abs/2009.07789
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Packedness of Curves

In this paper we will study polygonal curves in Rd. The Fréchet distance [21] is probably
the most popular distance measure for curves. In 1995, Alt and Godau [3] presented an
O(n2 logn) time algorithm for computing the Fréchet distance between two polygonal curves
of complexity n. This was later improved by Buchin et al. [29] who showed that the continuous
Fréchet distance can be computed in O(n2√logn(log logn)3/2) expected time. Any attempt
to find a much faster algorithm was proven to be futile when Bringmann [6] showed that,
assuming the Strong Exponential Time Hypothesis, the Fréchet distance cannot be computed
in strongly subquadratic time, i.e., in time O(n2−ε) for any ε > 0.

In an attempt to break the quadratic lower bound for realistic curves, Driemel et al. [17]
introduced a new family of realistic curves, so-called c-packed curves, which since then has
gained considerable attention [10, 16, 18, 27, 28]. A curve π is c-packed if for any ball B,
the length of the portion of π contained in B is at most c times the radius of B. In their
paper they considered the problem of computing the Fréchet distance between two c-packed
curves and presented a (1 + ε)-approximation algorithm with running time O(cnε + cn logn),
which was later improved to O(cn√

ε
log2(1/ε) + cn logn) by Bringmann and Künnemann [7].

Other models for realistic curves have also been studied. Closely related to c-packedness
is γ-density which was introduced by Van der Stappen et al. [40] for obstacles, and modified
to polygonal curves in [17]. A set of objects is γ-low-density, if for any ball of any radius, the
number of objects intersecting the ball that are larger than the ball is less than γ. Aronov
et al. [5] studied so-called backbone curves, which are used to model protein backbones in
molecular biology. Backbone curves are required to have, roughly, unit edge length and a
given minimal distance between any pair of vertices. Alt et al. [4] introduced κ straight
curves, which are curves where the arc length between any two points on the curve is at
most a constant κ times their Euclidean distance. They also introduced κ-bounded curves
which is a generalization of κ-straight curves. It has been shown [2] that one can decide in
O(n logn) time whether a given curve is backbone, κ-straight or κ-bounded.

From the above discussion and the fact that the c-packed model has gained in popularity,
we study two natural and important questions in this paper.
1. Given a curve π, how fast can one (approximately) decide the smallest c for which π is

c-packed?
2. Are real-world trajectory data c-packed for some reasonable value of c?

Vigneron [41] gave an FPTAS for optimizing the sum of algebraic functions. The algorithm
can be applied to compute a (1 + ε) approximation of the c-packedness value of a polygonal
curve in Rd in O((nε)d+2 logd+2 n

ε) time.
However, working with balls is complicated (see Section 1.1) and in this paper we will

therefore consider a simplified version of c-packedness. Instead of balls we will use (d-)cubes,
that is, we say that a curve π is c-packed if for any cube S, the length of the portion of π
contained in S is at most c · r, where r is half the side length of S. Note that under this
definition, a c-packed curve using the “ball” definition is a (

√
dc)-packed curve in the “cube”’

definition, while a c-packed curve using the “cube” definition is also a c-packed curve in the
“ball” definition. From now on we will use the “cube” definition of c-packed curves.

To the best of our knowledge the only known algorithm for computing packedness of
a polygonal curve, apart from applying the tool by Vigneron [41], is by Gudmundsson et
al. [24] who gave a cubic time algorithm for polygonal curves in R2. They consider the
problem of computing “hotspots” for a given polygonal curve, but their algorithm can also
compute the packedness of a polygonal curve. We provide two sub-cubic time approximation
algorithms for the packedness of a polygonal curve.

J. Gudmundsson, Y. Sha, and S. Wong 9:3

Our first result is a simple O(dn2 logn) time 2-approximation algorithm for d-dimensional
polygonal curves. We also implemented this algorithm and tested it on 16 data sets to
estimate the packedness value for real-world trajectory data. As expected the value varies
wildly both between different data sets but also within the same data set. However, about half
the data sets had an average packedness value less than 10, which indicates that c-packedness
is a useful and realistic model for many real-world data sets.

Our second result is a faster O∗(n4/3) time1 (6+ε)-approximation algorithm for polygonal
curves in the plane. We achieve this faster algorithm by applying Callahan and Kosaraju’s
Well-Separated Pair Decomposition (WSPD) to select O(n) squares, and then approximating
the packedness values of these squares with a multi-level data structure. Note that our
approach of building a data structure and then performing a linear number of square
packedness queries solves a generalised instance of Hopcroft’s problem. Hopcroft’s problem
asks: Given a set of n points and n lines in the plane, does any point lie on a line? An
Ω(n4/3) lower bound for Hopcroft’s problem was given by Erickson [19]. Hence, it is unlikely
that our approach, or a similar approach, can lead to a considerably faster algorithm.

1.1 Preliminaries and our results
Let π = 〈p1, . . . , pn〉 be a polygonal curve in Rd and let si = (pi, pi+1) for 1 6 i < n. Let H
be a closed convex region in Rd. The function Υ(H) =

∑n−1
i=1 |si ∩H| describes the total

length of the trajectory π inside H. In the original definition of c-packedness H is a ball.
As mentioned in the introduction, we will consider H to be an axis-aligned cube instead

of a ball. The reason for our choice was argued for R2 in [24], and for completeness we
include their arguments here.

If H is a square, then each piece of Υ(H) is a simple linear function, i.e. is of the form
γ(x) = ax + b for some a, b ∈ R. The description of each piece of Υ is constant size and
can be evaluated in constant time. However, if H is a disc, the intersection points of the
boundary of H with the trajectory π are no longer simple linear equations in terms of the
center and radius of H, so that Υ becomes a piecewise the sum of square roots of polynomial
functions. These square root functions provide algebraic issues that cannot be easily resolved
for maximising the function Υ(H)/r. For this reason, we will consider H to be a square
instead of a disc.

The function Υ(H) =
∑n−1
i=1 |si ∩H| describes the total length of the polygonal curve

inside H. Similarly, Ψ(H) = Υ(H)/r denotes the packedness value of H. Our aim is to find
a cube H∗ with centre at p∗ and radius r∗ that has the maximum packedness value for a
given polygonal curve π. The radius of a cube is half the side length of the cube.

The following two theorems summarise the main results of this paper.

I Theorem 1. Given a polygonal curve π of size n in Rd, one can compute a 2-approximate
packedness value for π in O(dn2 logn) time.

I Theorem 2. Given a polygonal curve π of size n in R2 and a constant ε, with 0 < ε 6 1,
one can compute a (6 + ε)-approximate packedness value for π in O((n/ε3)4/3 polylog(n/ε))
time.

Theorem 1 is presented in Section 2 and Theorem 2 is presented in Section 3. Experimental
results on the packedness values for real world data sets are given in Section 2.1.

1 The O∗-notation omits polylog and 1/ε factors.

ISAAC 2020

9:4 Packedness of Curves

2 A 2-approximation algorithm

Given a polygonal curve π in Rd, let H∗ be a d-cube with centre at p∗ and radius r∗ that
has a maximum packedness value. Our approximation algorithm builds on two observation.
The first observation is that given a center p ∈ Rd one can in O(dn logn) time find, of all
possible d-cubes centered at p, the d-cube that has the largest packedness value. The second
observation is that there exists a d-cube centered at a vertex of π that has a packedness
value that is at least half the packedness value of H∗.

Before we present the algorithm we need some notations. Let Hp
r be the d-cube H, scaled

with p as center and such that its radius is r. Fix a point p in Rd, and consider Ψ as a
function of r. More formally, let ψp(r) = Ψ(Hp

r). Gudmundsson et al. [24] showed properties
of ψp(r) that we generalize to Rd and restate as:

I Lemma 3. The function ψp(r) is a piecewise hyperbolic function. The pieces of ψp(r) are
of the form a(1/r) + b, for a, b ∈ R, and the break points of ψp(r) correspond to d-cubes H
where: (i) a vertex of π lies on a (d− 1)-face of H, or (ii) a (d− 2)-face (in R3, an edge) of
H intersects an edge of π.

As a corollary we get:

I Corollary 4. Let r1, r2 be the radii of two consecutive break points of ψp(r), where r2 > r1.
It holds that maxr∈[r1,r2] ψp(r) = max{ψp(r1), ψp(r2)}, that is, the maximum value is obtained
either at r1 or at r2.

Proof. According to Lemma 3 the function ψp(r) is a hyperbolic function in the range
r ∈ [r1, r2] of the form a(1/r) + b with the derivative −a/r2. This implies that ψp(r) is a
monotonically decreasing or monotonically increasing function in [r1, r2]. As a result the
maximum value of ψp(r) is attained either at r1 or at r2. J

Next we state the algorithm for the first observation. The general idea is to use plane-
sweep, scaling d-cubeH with centre at p by increasing its radius from 0 to∞. The (d−1)-faces
of H are bounded by 2d hyperplanes in Rd. When H expands from p, it can first meet a
segment of π in one of two ways: (i) a vertex of the segment lies on one of H’s (d− 1)-face,
or (ii) an interior point of the segment lies on a (d− 2)-face of H. For the first case, the new
segment can change to intersect a different (d− 1)-face of H at most d− 1 times, depending
on its relative position to the center of H and its components in all d dimensions.

Similarly for a segment of the second case, it can change to intersect a different (d−1)-face
of H O(d) times. Thus each segment has O(d) event points and there are O(dn) events in
total. Sort the events by their radii r1, . . . , rm(m = O(dn)) in increasing order. Perform the
sweep by increasing the radius r starting at r = 0 and continue until all events have been
encountered.

Recall that Υ(H) is the total length of the trajectory π inside H. For each ri, 1 6 i 6 m,
we can compute ψp = Υ(ri)/r in time O(dn). For two consecutive radii ri and ri+1, Υ(Hp

ri
)

and Υ(Hp
ri+1

) can differ in one of three ways. First, Hp
ri+1

may include a vertex not in Hp
ri
,

in which case the set of contributing edges may increase by up to two. Second, Hp
ri+1

may
intersect an edge not in Hp

ri
. Finally, an edge in Hp

ri
may intersect a different (d− 1)-face.

We can compute a function ∆(ri, ri+1) that describes these changes in constant time. We
then have Υ(Hp

ri+1
) = Υ(Hp

ri
) + ∆(ri, ri+1), and we can compute Υ(Hp

ri+1
) from Υ(Hp

ri
) in

constant time (in R2 similar to [12]). Apart from sorting the event points, we compute ψp(r)
for every ri, 1 6 i 6 m, in O(dn) time. We return radius arg maxr16ri6rm

ψp(ri) as the
result. Hence, the total running time is O(dn logn).

Note that the break points of ψp(r) are the event points. The correctness follows
immediately from Corollary 4 which tells us that we only need to consider the set of event
points. To summarise we get:

J. Gudmundsson, Y. Sha, and S. Wong 9:5

I Lemma 5. Given a point p in Rd one can in O(dn logn) time determine the radius r > 0
such that Ψ(Hp

r) = maxr′>0 ψp(r′).

Now we are ready to prove the second observation.

I Lemma 6. Consider the function ψp(r) for a single segment s, i.e. ψp(r) = |s∩Hp
r |

r . If the
first point on s encountered by H is an interior point of s then the function is non-decreasing
from r = 0 until Hp

r encounters a vertex of s.

Proof. The function is zero until an interior point on s is encountered. After encountering the
interior point and before encountering a vertex of s, the segment |s ∩Hp

r | is a chord between
two boundary points of Hp

r . Suppose we normalise the size of the d-cube Hp
r to be unit-sized.

Then the length of the chord is normalised to |s∩H
p
r |

r = ψp(r). Before normalisation, the
segment |s∩Hp

r | had fixed gradient, and had fixed orthogonal distance to the center p. After
normalisation, the chord has fixed gradient and has decreasing distance to the center p.
Therefore its length ψp(r) is non-decreasing as it approaches the diameter of Hp

r . J

I Lemma 7. There exists a d-cube H with center at a vertex of π such that Ψ(H) ≥ 1
2 ·Ψ(H∗),

where H∗ is the d-cube having the highest packedness value for π.

Proof. Consider H∗. We will construct a d-cube H that is centered at a vertex p of π and
contains H∗. We will then prove that H has packedness value at least 1

2 · Ψ(H∗), which
would prove the theorem. To construct H, we consider two cases:
Case 1: The square H∗ does not contain a vertex of π, see Fig. 1(a). Scale H∗ until

its boundary hits a vertex. Let H1 denote the d-cube obtained from the scaling and
let v be the vertex on the (d − 1)-face of H1. According to Lemma 6, we know that
Ψ(H1) ≥ Ψ(H∗).
Let H2 be the d-cube centered at v with radius twice the radius of H1, as illustrated in
Fig. 1(a). Clearly H2 contains H1 ∩ π, so Ψ(H2) ≥ 1

2 Ψ(H1) ≥ 1
2 Ψ(H∗), as required.

Case 2: The d-cube H∗ contains one or more vertices, see Fig. 1(b). Let v be a vertex inside
H∗. Let H2 be the d-cube with center at v and radius twice that of H∗. Again, we have
H2 completely contains H∗ ∩ π, so Ψ(H2) ≥ 1

2 Ψ(H∗), as required.

In both cases, we have constructed a d-cube H2 centered at a vertex of π for which
Ψ(H2) ≥ 1

2 Ψ(H∗), which proves the lemma. J

v

H∗

H1

H2

(a) (b)

v

H2

H∗

Figure 1 Illustrating the two cases in the proof of Lemma 7: Case 1 in (a) and Case 2 in (b).

ISAAC 2020

9:6 Packedness of Curves

Table 1 The table lists 16 real-world data sets. The second and third columns shows the number
of curves and the maximum complexity of a curve in the set. The following three columns lists the
minimum, maximum and average approximate packedness values. The rightmost column states the
average ratio between c and n for the data sets.

Dataset #Curves MaxCurveSize Min Max Avg Avg c/n

Vessel-Y 187 320 2.37 14.28 3.03 0.022
Hurdat 1785 133 2 16.58 3.24 0.154
Pen 2858 182 4.07 20.82 8.79 0.073
Bats 545 736 1.08 29.52 3.60 0.0625
Bus 148 1012 3.21 34.99 14.70 0.052

Vessel-M 103 143 1.04 46.19 4.66 0.272
Basketball 20780 138 2.00 48.65 3.95 0.092
Football 18028 853 2.12 48.87 7.66 0.045
Truck 276 983 5.32 110.44 25.48 0.079
Buffalo 163 479 1.17 254.14 68.42 0.505
Pigeon 131 1504 3.64 275.18 90.93 0.12
Geolife 1000 64390 1.02 858.19 23.31 0.057
Gull 241 3237 1.02 1082.20 139.50 0.478
Cats 152 2257 6.04 1122.77 207.86 0.655

Seabirds 63 2970 5.59 1803.72 825.57 0.388
Taxi 1000 115732 2.20 4255.23 55.38 0.313

2.1 Experimental results
We implemented the above algorithm to test the approximate packedness of real-world
trajectory data. We ran the algorithm on 16 data sets. The data sets were kindly provided
to us by the authors of [25]. Table 2 summarises the data sets and is taken from [25]. The
minimum/maximum/average (approximate) packedness values and the ratio between c and n
for each dataset are listed in Table 1. Both the Geolife dataset and the Taxi dataset consist
of over 20k trajectories, many of which are very large. For the experiments we randomly
sampled 1,000 trajectories from each of these sets.

Although these are only sixteen data sets, it is clear that the notion of c-packedness is a
reasonable model for many real-world data sets. For example, the maximal packedness value
for all trajectories in all the first eight data sets is less than 50 and the average (approximate)
packedness value is below 15. Looking at the ratio between c and n, we can see that for
many data sets the value of c is considerably smaller than n.

Consider the task of computing the continuous Fréchet distance between two trajectories.
For two trajectories of complexity n, computing the distance will require O∗(n2) time (even
for an O(1)-approximation) while a (1 + ε)-approximation can be obtained for c-packed
trajectories in O∗(cn) time. Thus the algorithm by Driemel et al. [17] for c-packed curves is
likely to be more efficient than the general algorithm for these data sets.

3 A fast (6 + ε)-approximation algorithm

In this section we will take a different approach to Section 2 to yield an algorithm that
considers a linear number of squares rather than a quadratic number of squares. First we will
identify a set S containing a linear number of squares that will include a square having a high
packedness value (Section 3.1). Then we will build a multi-level data structure (Section 3.2)
on π such that given a square S ∈ S it can quickly approximate |S ∩ π|.

J. Gudmundsson, Y. Sha, and S. Wong 9:7

Table 2 Real data sets, showing number of input trajectories n, dimensions d, average number
of simplified vertices per trajectory, and a description.

Data Set n d #vertices Trajectory Description
Vessel-M [31] 106 2 23.0 Mississippi river shipping vessels Shipboard AIS.
Pigeon [22] 131 2 970.0 Homing Pigeons (release sites to home site).
Seabird [36] 134 2 3175.8 GPS of Masked Boobies in Gulf of Mexico.
Bus [20] 148 2 446.6 GPS of School buses.
Cats [30] 154 2 526.1 Pet house cats GPS in Raleigh-Durham, NC, USA.
Buffalo [11] 165 2 161.3 Radio-collared Kruger Buffalo, South Africa.
Vessel-Y [31] 187 2 155.2 Yangtze river shipping Vessels Shipboard AIS.
Gulls [42] 253 2 602.1 Black-backed gulls GPS (Finland to Africa).
Truck [20] 276 2 406.5 GPS of 50 concrete trucks in Athens, Greece.
Bats [23] 545 2 44.1 Video-grammetry of Daubenton trawling bats.
Hurdat2 [34] 1788 2 27.7 Atlantic tropical cyclone and sub-cyclone paths.
Pen [43] 2858 2 119.8 Pen tip characters on a WACOM tablet.
Football [38] 18034 2 203.4 European football player (team ball-possession).
Geolife [32] 18670 2 1332.5 People movement, mostly in Beijing, China.
Basketball [37] 20780 3 44.1 NBA basketball three-point shots-on-net.
Taxi [44, 45] 180736 2 343.0 10,357 Partitioned Beijing taxi trajectories.

3.1 Linear number of good squares
To prove that it suffices to consider a linear number of squares we will use the well-known
Well-Separated Pair Decomposition (WSPD) by Callahan and Kosaraju [8].

Let A and B be two finite sets of points in Rd and let s > 0 be a real number. We say
that A and B are well-separated with respect to s, if there exist two disjoint balls CA and
CB, such that (1) CA and CB have the same radius, (2) CA contains the bounding box of
A and CB contains the bounding box of B, and (3) the distance between CA and CB is at
least s times the radius of CA and CB . The real number s is called the separation ratio.

I Lemma 8. Let s > 0 be a real number, let A and B be two sets in Rd that are well-separated
with respect to s, let a and a′ be two points in A, and let b and b′ be two points in B. Then
(1) |aa′| ≤ (2/s) · |ab|, and (2) |a′b′| ≤ (1 + 4/s) · |ab|.

I Definition 9. Let S be a set of n points in Rd, and let s > 0 be a real number. A well-
separated pair decomposition (WSPD) for S, with respect to s, is a sequence {A1, B1}, . . . ,
{Am, Bm} of pairs of non-empty subsets of S, for some integer m, such that:
1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated with respect to s, and
2. for any two distinct points p and q of S, there is exactly one index i with 1 ≤ i ≤ m,

such that p ∈ Ai and q ∈ Bi, or p ∈ Bi and q ∈ Ai. The integer m is called the size of
the WSPD.

I Lemma 10. (Callahan and Kosaraju [8]) Given a set V of n points in Rd, and given a real
number s > 0, a well-separated pair decomposition for V , with separation ratio s, consisting
of O(sdn) pairs, can be computed in O(n logn+ sdn) time.

Now we are ready to construct a set S of squares. Compute a well-separated pair
decomposition W = {(A1, B1), . . . , (Am, Bm)} with separation constant s = 720/ε for the
vertex set of π. For every well-separated pair (Ai, Bi) ∈W , 1 ≤ i ≤ k, construct two squares
that will be added to S as follows:

ISAAC 2020

9:8 Packedness of Curves

Pick an arbitrary point a ∈ Ai and an arbitrary point b ∈ Bi. Construct one square
with center at a and radius r, and one square with center at b and radius r, where r =
max{|a.x− b.x|, |a.y − b.y|}+ ε/120 · |ab|. The two squares are added to S.

It follows immediately from Lemma 10 that the number of squares in S is O(n/ε2) and
that one can construct S in O(n logn+ n/ε2) time.

To prove the approximation factor of the algorithm we will first need the following
technical lemma. The proof can be found in the full version of the paper [26].

I Lemma 11. Let Hp
r1

and Hp
r2
, with r2 > r1, be two squares with centre at p such that

Hp
r2
\Hp

r1
contains no vertices of π in its interior. For any value rx, with r1 6 rx 6 r2, it

holds that ψp(rx) ≤ ψp(r1) + 2 · ψp(r2).

Due to Lemma 7, it suffices to consider squares with center at a vertex of π to obtain a
2-approximation. Combining this with Lemma 11, it suffices to consider squares with center
at a vertex of π and a vertex of π on its boundary to obtain a 6-approximation. Using the
WSPD argument we have reduced our set of squares to a linear number of squares and we
will now argue that S must contain a square that has a high packedness factor. Let H∗ be a
square with a maximum packedness value of π.

I Lemma 12. There exists a square S ∈ S such that Ψ(S) > 1
(6+ε/8) ·Ψ(H∗).

Proof. From Lemmas 7 and 11 we know that there exists a square H with centre at a vertex
p of π and whose boundary contains a vertex q of π such that Ψ(H) ≥ 1

6 ·Ψ(H∗). According
to the construction of S there exists a square S ∈ S such that S has its centre at a point
a ∈ Ai and has radius r = max{|a.x− b.x|, |a.y− b.y|}+ ε/120 · |ab|, where b is a point in Bi.

By Lemma 8, we have |ap| ≤ ε/360 · |ab| and |bq| ≤ ε/360 · |ab|. If rH is the radius
of H, then rH = max{|p.x− q.x|, |p.y − q.y|} ≤ max{|a.x− b.x|, |a.y − b.y|}+ |ap|+ |bq| ≤
max{|a.x− b.x|, |a.y− b.y|}+ ε/120 · |ab| − |ap| = r− |ap|. But p is at most |ap| away from a

in both the x and y directions, so H must be entirely contained inside S. So Υ(S) ≥ Υ(H).
Next, we show S is not too much larger than H:

r = max{|a.x− b.x|, |a.y − b.y|}+ ε

120 · |ab| 6 rH + |ap|+ |bq|+ ε

120 · |ab| 6 rH + ε

72 · |ab|

6 rH + ε

72 · (1 + ε

180) · |pq| 6 rH + ε

36
√

2
· (1 + ε

180) · rH 6 (1 + ε

48) · rH .

Putting this all together yields:

Ψ(S) = Υ(S)/r ≥ 1
(1 + ε/48) ·Υ(H)/rH = 1

1 + ε/48 ·Ψ(H) ≥ 1
6 + ε/8 ·Ψ(H∗),

which completes the lemma. J

3.2 Data structure
The aim of this section is to develop an efficient data structure on π such that queried with
an axis-aligned square S ∈ S the data structure returns an approximation of |S ∩ π|.

The general idea of the multi-level data structure is that the first level is a modified 1D
segment tree, similar to the hereditary segment tree [9]. We partition the set of π’s segments
into four sets depending on their slope; (−∞,−1), [−1, 0), [0, 1) and [1,∞). In the rest of
this section we will describe the data structure for the set of segments with slope in [0, 1).
The remaining three sets are handled symmetrically.

J. Gudmundsson, Y. Sha, and S. Wong 9:9

3.2.1 Modified 1D segment tree

The description of the segment tree follows the description in [13]. Let L be the set of line
segments in π. For the purpose of the 1D segment tree, we can view L as a set of intervals
on the line. Let p1, . . . , pm be the list of distinct interval endpoints, sorted from left to
right. Consider the partitioning of the real line induced by those points. The regions of this
partitioning are called elementary intervals. Thus, the elementary intervals are, from left to
right: (−∞, p1), [p1, p1], (p1, p2), [p2, p2], . . . , (pm−1, pm), [pm, pm], (pm,+∞).

Given a set I of intervals, or segments, a segment tree T for I is structured as follows:

1. T is a binary tree.

2. Its leaves correspond to the elementary intervals induced by the endpoints in I. The
elementary interval corresponding to a leaf v is denoted Int(v).

3. The internal nodes of T correspond to intervals that are the union of elementary intervals:
the interval Int(N) corresponding to an internal node N is the union of the intervals
corresponding to the leaves of the tree rooted at N . That implies that Int(N) is the
union of the intervals of its two children.

4. Each node or leaf v in T stores the interval Int(v) and a set of intervals, in some data
structure. This canonical subset of node v contains the intervals [x, x′] from I such that
[x, x′] contains Int(v) and does not contain Int(parent(v)). That is, each node in T
stores the set of segments F (v) that span through its interval, but do not span through
the interval of its parent.

The 1D segment tree can be built in O(n logn) time, using O(n logn) space and point
stabbing queries can be answered in O(logn+ k) time, where k is the number of segments
intersecting the query point.

We make one minor change to T that will increase the space usage to O(n log2 n) but it
will allow us to speed up interval stabbing queries. Each internal node v store, apart from
the set F (v), all the segments stored in the subtree rooted at v, including F (v). We denote
this set by L(v).

The main benefit of this minor modification is that when an interval stabbing query is
performed only O(logn) canonical subsets are required to identify all the segments intersecting
the interval. Next we show how to build associated data structures for L(v) and F (v) for
each internal node v in T .

3.2.2 Three associated data structures

Consider querying the segment tree T with a square S ∈ S. There are three different cases
that can occur, and for each of these cases we will build an associated data structure. That
is, each internal node will have three types of associated data structures. Consider a query
S = [x, x′]× [y, y′] and let µl and µr be the leaf nodes in T where the search for the boundary
values x and x′ end. See Figure 2 for an illustration of the search and the three cases. An
internal node v is one of the following types:

Type A: if Int(v) ⊆ [x, x′],

Type B: if Int(v) ∩ [x, x′] 6= ∅, Int(v) * [x, x′] and [x, x′] * Int(v), or

Type C: if [x, x′] ⊂ Int(v).

ISAAC 2020

9:10 Packedness of Curves

split node

µl µr Type B

Int(v)

Q

Type C

Q

Int(v)

T

Type A

S

Int(v)

S S

Figure 2 The primary tree T , and the three types of nodes in T that can be encountered during
a query.

Associated data structure for Type A nodes

For a Type A node we need to compute the length of all segments stored in the subtree with
root v in the y-interval [y, y′]. Let s1, . . . , sm be the set of m segments stored in L(v), and let
Y = 〈y1, . . . , y2m〉 denote the y-coordinates of the endpoints of the segments in L(v) ordered
from bottom-to-top. To simplify the description we assume that the values are distinct.

Let δ(y) denote the total length of the segments in L(v) below y. For two consecutive
y-values yi and yi+1, the set of edges contributing to δ(yi) and δ(yi+1) has increased or
decreased by one. So, we can compute a function ∆(yi, yi+1) that describes these changes
in constant time. We then have δ(yi+1) = δ(yi) + ∆(yi, yi+1), and thus we can compute
δ(yi+1) from δ(yi) in constant time after sorting the events. Hence, we can compute all the
δ(yi)-values and all the ∆(yi, yi+1) in time O(m logm).

Given a y-value y′ one can compute δ(y′) as δ(yi) + y′−yi

yi+1−yi
·∆(yi, yi+1), where yi is the

largest y-value in Y smaller than y′. Hence, our associated data structure for Type A nodes
is a binary tree with respect to the values in Y , where each leaf stores the value yi, δ(yi)
and ∆(yi, yi+1). The tree can be computed in O(m logm) time using linear space, and can
answer queries in O(logm) time.

I Lemma 13. The associated data structures for Type A nodes in T can be constructed in
O(n log2 n) time using O(n log2 n) space. Given a query square S for an associated data
structure of Type A stored in an internal node v, the value |L(v) ∩ S ∩ Int(v)| is returned in
time O(logn).

Associated data structure for Type B nodes

The associated data structure for a Type B node is built to handle the case when the query
square S = [x, x′]× [y, y′] intersects either the left boundary (xl) or the right boundary (xr)
of Int(v), but not both. The two cases are symmetric and we will only describe the case
when S intersects the right boundary.

The data structure returns a value M that is an upper bound on the length of the
segments of F (v) within S and a lower bound on the segments within S+, where S+ is a
slightly expanded version of S. See Figure 3(c). Formally, S+ = [x− ε/8 · |xr − x|, x′ + ε/8 ·
|xr − x|]× [y − ε/8 · |xr − x|, y′ + ε/8 · |xr − x|].

If S+ spans Int(v) then we need to use a binary tree on F (v) to answer the query in
logarithmic time, similar to the associated data structure for Type A nodes.

J. Gudmundsson, Y. Sha, and S. Wong 9:11

If S+ does not span Int(v) then the query is performed on the Type B associated data
structures. We first show how to construct these data structures, then we show how to handle
the query. Recall that all the segments in F (v) span the interval Int(v). Let s1, . . . , sm
be the set of m segment in F (v) and let µ(si) be the angle of inclination2 of si. The
angle of inclination for segments with slope in the interval [0, 1) is in the interval [0, π/4).
Partition F (v) into κ1 sets F1(v), . . . , Fκ1(v) such that for any segment si ∈ Fj(v) it holds
that (j − 1) · π

4κ1
≤ µ(si) < j · π

4κ1
.

Consider one such partition Fj(v) = {sj1, . . . , sjmj
}. Build a balanced binary search tree

T jr on the y-coordinates of the right endpoints of the segments in Fj(v). The data structure
can be constructed in O(mj logmj) time using linear space. Given a y-interval ` as a query,
the number of right endpoints in T jr within ` can be reported in time O(logmj). From the
above description and the fact that

∑
v∈T F (v) = O(n logn) it immediately follows that the

total construction time for all the Type B nodes is O(n log2 n) and the total amount of space
required is O(n logn). This completes the construction of the data structures on F (v).

It remains to show how to handle a query, i.e. how to compute M . We focus first on
computing an M that upper bounds |F (v) ∩ S|, and we later prove that M lower bounds
|F (v) ∩ S+|. There are two steps in computing M . The first step is to count the number
of segments that intersect S. The second step is to multiply this count by the maximum
possible length of intersection between the segment and S. This would clearly yield an upper
bound on |F (v) ∩ S|. To obtain suitable maximum lengths in the second step, we need to
subdivide the partitions Fj further.

The right endpoints must lie in a y-interval given by Ij = [y, y′ + ȳ], where y, y′ are the
y-coordinates of the bottom and top boundaries of S, and ȳ = (xr − x) · tan(j·π4κ1

). Subdivide
Ij into three subintervals: I1

j = [y, y + ȳ), I2
j = [y + ȳ, y′) and I3

j = [y′, y′ + ȳ), see Fig. 3(b).
Further subdivide I1

j and I3
j into 2κ2 subintervals of `1

1, . . . , `
1
κ2

and `3
1, . . . , `

3
κ2

of equal length.
Hence we partitioned Ij into a set Lj of 2κ2 + 1 subintervals.

Given these subdivisions Lj , our first step is to simply perform a range counting query
in T jr for each ` ∈ Lj . Our second step is to multiply this count by the maximum length
of intersection between S and any segment in Fj with its right endpoint in `. The product
of these two values is clearly an upper bound on the length of intersection between S and
segments in Fj with right endpoint in `. Finally, we sum over all subdivisions ` ∈ Fj and
then over all partitions Fj to obtain a value M that upper bounds |S ∩ F (v)|. The time
required to handle a query is O(κ1 · κ2 · logm). It remains only to prove M ≤ |F (v) ∩ S+|.

y

y′

S

xl xr

x x′

Ij
y + ȳ

y′ + ȳ

S

S+

I2j

I1j

I3j(a) (b) (c)

Figure 3 (a) A query S and the set F (v). (b) Illustrating the three interval I1
j , I2

j and I3
j . (c)

The expanded square S+.

By setting κ1 = 16
√

2/ε and κ2 = 16/ε we can prove the following (for proof, see the full
version [26]).

2 µ(si) is the arctan of the slope in the interval [0, 1).

ISAAC 2020

9:12 Packedness of Curves

I Lemma 14. M ≤ |F (v) ∩ S+|

We summarise the associated data structures for Type B nodes with the following lemma.

I Lemma 15. The associated data structure for Type B nodes can be constructed in
O(n log2 n) time using O(n logn) space. Given a query square S = [x, x′] × [y, y′] for
an associated data structure of Type B stored in an internal node v, a real value M(v) is
returned in O(1

ε2 · logn) time such that:

|F (v) ∩ S| ≤M(v) ≤ |F (v) ∩ S+|,

where S+ = ([x − ε/8 · w, x′ + ε/8 · w]) × [y − ε/8 · w, y′ + ε/8 · w] and w is the width of
S ∩ Int(v).

Associated data structure for Type C nodes

The associated data structure for Type C nodes have some similarities with the associated
data structures for Type B nodes, however, it is a much harder case since we cannot use the
ordering on the y-coordinates of the right endpoints like for the Type B nodes. Instead we
will precompute an approximation of |F (v) ∩ S| for every internal node v in T and every
square S ∈ S that lies entirely within Int(v). Recall from Section 3.1 that S is a set of size
O(n/ε2) that is guaranteed to have a square that is a (6 + ε/8)-approximation.

Let S(v) denote the subset of squares in S that lie entirely within Int(v). The stored
value for a square S ∈ S(v) is an upper bound on |F (v)∩S| and a lower bound on |F (v)∩S+|,
where S+ is the same as the one defined for Type B nodes. See Figure 3(c). If S+ intersects
the left or right boundary of Int(v) then perform the query as a Type B node instead of a
Type C node.

The associated data structure will be built on the set F (v), hence, all segments will span
the interval Int(v). Let s1, . . . , sm be the segments in F (v) and let µ(si) be the angle of
inclination of si. Partition F (v) into κ1 sets F1(v), . . . , Fκ1(v) such that for any segment
si ∈ Fj(v) it holds that (j − 1) · π

4κ1
≤ µ(si) < j · π

4κ1
, with κ1 = 16

√
2/ε.

Using a combination of the approach we used for Type B nodes and a result by Agarwal [1]
we can prove the following lemma (proof available in the full version [26]).

I Lemma 16. Given a set Fj(v) = {sj1, . . . , sjn1
} of line segments (as defined above) and

a set S(v) = {S1, . . . , Sn2} of squares lying entirely within Int(v), one can compute, in
O((n1 + n2/ε)4/3 polylog(n1 + n2/ε)) time using O((n1 + n2/ε)4/3/ log(2w+1)/3(n1 + n2/ε))
space, where w is a constant < 3.33, a set of n2 real values {M j

1 (v), . . . ,M j
n2

(v)} such that
for every i, 1 ≤ i ≤ n2 the following holds:

|Fj(v) ∩ Si| ≤M j
i (v) ≤ |Fj(v) ∩ S+

i |.

For each set Fj(v) apply Lemma 16, and for each square Si ∈ S(v) precompute the value
Mi =

∑κ1
j=1 M

j
i (v). Store all the squares lying within the interval Int(v) in a balanced binary

search tree along with their precomputed values Mi. Note that each square of S can appear
at most once on each level of the primary segment tree structure T . Furthermore, an edge
s ∈ π can straddle at most two intervals on a level, as a result we get that the total amount
of time spent on one level of the segment tree to build the Type C associated data structures
is O((n/ε3)4/3 log(w+2)/3(n/ε)). Since the number of levels in T is O(logn) the total time
required to build all the Type C associated data structures is O((n/ε3)4/3 log(w+5)/3(n/ε)).
Putting all the pieces together we get:

J. Gudmundsson, Y. Sha, and S. Wong 9:13

I Lemma 17. The Type C associated data structures for T can be computed in time
O((n/ε3)4/3 polylog(n/ε)) using O(n4/3/ε4) space. Given a query square S ∈ S(v), a value
M(v) can be returned in O(log(n/ε2)) time such that:

|F (v) ∩ S| ≤M(v) ≤ |F (v) ∩ S+|.

3.2.3 Putting it together
In the previous section we showed how to construct a two-level data structure that uses
a modified segment tree as the primary tree, and a set of associated data structures for
all the internal nodes in the primary tree. The primary tree requires O(n logn) space,
and the complexity of the associated data structures is dominated by the Type C nodes,
that require O((n/ε3)4/3 log(w+5)/3(n/ε)) time and O((n/ε3)4/3/ log(2w+1)/3(n/ε)) space to
construct. Given a query square S ∈ S a value M is returned in O(1

ε2 · log2 n) time such
that Υ(S) ≤M ≤ Υ(S+).

According to Lemma 12 there exists a square S ∈ S that has a packedness value that is
within a factor of (6 + ε/8) smaller than the maximum packedness value of π. Using the
data structure described in this section we get a (6 + ε/8)(1 + ε/8)-approximation. Since ε is
assumed to be at most 1, we finally get Theorem 2.

4 Concluding remarks

In this paper we gave two approximation algorithm for the packedness value of a polygonal
curve. The obvious question is if one can get a fast and practical (1 + ε)-approximation.

We also computed approximate packedness values for 16 real-world data sets, and the
experiments indicate that the notion of c-packedness is a useful realistic input model for
curves and trajectories.

References
1 Pankaj K. Agarwal. Partitioning arrangements of lines II: applications. Discrete & Computa-

tional Geometry, 5:533–573, 1990. doi:10.1007/BF02187809.
2 Pankaj K. Agarwal, Rolf Klein, Christian Knauer, Stefan Langerman, Pat Morin, Micha

Sharir, and Michael Soss. Computing the detour and spanning ratio of paths, trees, and cycles
in 2D and 3D. Discrete & Computational Geometry, 39(1):17–37, 2008.

3 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry, 5:75–91, 1995.

4 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

5 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In Proceedings of the European Symposium on Algorithms (ESA),
pages 52–63, 2006.

6 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 661–670, 2014.

7 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal on Computational
Geometry and Applications, 27(1-2):85–120, 2017.

8 P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with ap-
plications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42(1):67–90,
1995.

ISAAC 2020

https://doi.org/10.1007/BF02187809

9:14 Packedness of Curves

9 Bernard Chazelle. Reporting and counting segment intersections. Journal of Computer and
System Sciences, 32(2):156–182, 1986.

10 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In Proceedings of the 13th Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 75–83, 2011.

11 P. C. Cross, D. M. Heisey, J. A. Bowers, C. T. Hay, J. Wolhuter, P. Buss, M. Hofmeyr, A. L.
Michel, R. G. Bengis, T. L. F. Bird, , et al. Disease, predation and demography: assessing the
impacts of bovine tuberculosis on african buffalo by monitoring at individual and population
levels. Journal of Applied Ecology, 46(2):467–475, 2009.

12 R. Silverman D. Mount and A. Wu. On the area of overlap of translated polygons. Computer
Vision and Image Understanding, 64(1):53–61, 1996.

13 M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational geometry:
algorithms and applications, 3rd Edition. Springer, 2008.

14 Mark de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica,
28(3):353–366, 2000.

15 Mark de Berg, Frank van der Stappen, Jules Vleugels, and Matya Katz. Realistic input models
for geometric algorithms. Algorithmica, 34(1):81–97, 2002.

16 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

17 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012.

18 Anne Driemel and Amer Krivosija. Probabilistic embeddings of the Fréchet distance. In
Proceedings of the 16th International Workshop Approximation and Online Algorithms, pages
218–237, 2018.

19 Jeff Erickson. On the relative complexities of some geometric problems. In Proceedings of
the 7th Canadian Conference on Computational Geometry, pages 85–90. Carleton University,
Ottawa, Canada, 1995. URL: http://www.cccg.ca/proceedings/1995/cccg1995_0014.pdf.

20 Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis. Nearest neighbor
search on moving object trajectories. In SSTD, pages 328–345. Springer, 2005.

21 M. Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo, 22:1–72, 1906. doi:10.1007/BF03018603.

22 Anna Gagliardo, Enrica Pollonara, and Martin Wikelski. Pigeon navigation: exposure to
environmental odours prior release is sufficient for homeward orientation, but not for homing.
Journal of Experimental Biology, pages jeb–140889, 2016.

23 Luca Giuggioli, Thomas J McKetterick, and Marc Holderied. Delayed response and biosonar
perception explain movement coordination in trawling bats. PLoS computational biology,
11(3):e1004089, 2015.

24 J. Gudmundsson, M. J. van Kreveld, and F. Staals. Algorithms for hotspot computation on
trajectory data. In 21st SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 134–143. ACM, 2013.

25 Joachim Gudmundsson, Michael Horton, John Pfeifer, and Martin Seybold. A practical index
structure supporting Fréchet proximity queries among trajectories. arXiv:2005.13773.

26 Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness of
polygonal curves, 2020. arXiv:2009.07789.

27 Joachim Gudmundsson and Michiel H. M. Smid. Fast algorithms for approximate Fréchet
matching queries in geometric trees. Computational Geometry, 48(6):479–494, 2015.

28 Sariel Har-Peled and Benjamin Raichel. The Fréchet distance revisited and extended. ACM
Transactions on Algorithms, 10(1), 2014.

29 W. Meulemans K. Buchin, M. Buchin and W. Mulzer. Four soviets walk the dog – with an
application to alt’s conjecture. Discrete & Computational Geometry, 58(1):180–216, 2017.

30 Roland Kays, James Flowers, and Suzanne Kennedy-Stoskopf. Cat tracker project. http:
//www.movebank.org/, 2016.

http://www.cccg.ca/proceedings/1995/cccg1995_0014.pdf
https://doi.org/10.1007/BF03018603
http://arxiv.org/abs/2009.07789
http://www.movebank.org/
http://www.movebank.org/

J. Gudmundsson, Y. Sha, and S. Wong 9:15

31 Huanhuan Li, Jingxian Liu, Ryan Wen Liu, Naixue Xiong, Kefeng Wu, and Tai-hoon Kim.
A dimensionality reduction-based multi-step clustering method for robust vessel trajectory
analysis. Sensors, 17(8):1792, 2017.

32 Microsoft. Microsoft research asia, GeoLife GPS trajectories. http://www.microsoft.com/
en-us/download/details.aspx?id=52367, 2012.

33 Joseph S. B. Mitchell, David M. Mount, and Subhash Suri. Query-sensitive ray shooting.
International Journal on Computational Geometry and Applications, 7(4):317–347, 1997.

34 NOAA. National hurricane center, national oceanic and atmospheric administration,
HURDAT2 atlantic hurricane database. http://www.nhc.noaa.gov/data/, 2017.

35 Mark H. Overmars and A. Frank van der Stappen. Range searching and point location among
fat objects. Journal of Algorithms, 21(3):629–656, 1996.

36 Caroline L Poli, Autumn-Lynn Harrison, Adriana Vallarino, Patrick D Gerard, and Patrick GR
Jodice. Dynamic oceanography determines fine scale foraging behavior of masked boobies in
the gulf of mexico. PloS one, 12(6):e0178318, 2017.

37 Rajiv Shah and Rob Romijnders. Applying deep learning to basketball trajectories. arXiv
preprint arXiv:1608.03793, 2016.

38 STATS. STATS LLC - data science. http://www.stats.com/data-science/, 2015.
39 Frank van der Stappen and Mark H. Overmars. Motion planning amidst fat obstacles (extended

abstract). In Proceedings of the 10th Annual Symposium on Computational Geometry, pages
31–40, 1994.

40 Frank van der Stappen, Mark H. Overmars, Mark de Berg, and Jules Vleugels. Motion
planning in environments with low obstacle density. Discrete & Computational Geometry,
20(4):561–587, 1998.

41 Antoine Vigneron. Geometric optimization and sums of algebraic functions. ACM Trans.
Algorithms, 10(1):4:1–4:20, 2014. doi:10.1145/2532647.

42 Martin Wikelski, Elena Arriero, Anna Gagliardo, Richard A Holland, Markku J Huttunen,
Risto Juvaste, Inge Mueller, Grigori Tertitski, Kasper Thorup, Martin Wild, et al. True
navigation in migrating gulls requires intact olfactory nerves. Scientific reports, 5:17061, 2015.

43 Ben H Williams, Marc Toussaint, and Amos J Storkey. Extracting motion primitives from
natural handwriting data. In ICANN, pages 634–643. Springer, 2006.

44 Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from the
physical world. In Proc. of the 17th ACM SIGKDD Conf., pages 316–324. ACM, 2011.

45 Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan
Huang. T-drive: driving directions based on taxi trajectories. In Proceedings of the 18th ACM
SIGSPATIAL Conference, pages 99–108. ACM, 2010.

ISAAC 2020

http://www.microsoft.com/en-us/download/details.aspx?id=52367
http://www.microsoft.com/en-us/download/details.aspx?id=52367
http://www.nhc.noaa.gov/data/
http://www.stats.com/data-science/
https://doi.org/10.1145/2532647

	Introduction
	Preliminaries and our results

	A 2-approximation algorithm
	Experimental results

	A fast (6+epsilon)-approximation algorithm
	Linear number of good squares
	Data structure
	Modified 1D segment tree
	Three associated data structures
	Putting it together

	Concluding remarks

