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Abstract
Holonomic techniques have deep roots going back to Wallis, Euler, and Gauss, and have evolved in
modern times as an important subfield of computer algebra, thanks in large part to the work of
Zeilberger and others over the past three decades. In this talk, I will give an overview of the area,
and in particular will present a select survey of known and original results on decision problems for
holonomic sequences and functions. (Holonomic sequences satisfy linear recurrence relations with
polynomial coefficients, and holonomic functions satisfy linear differential equations with polynomial
coefficients.) I will also discuss some surprising connections to the theory of periods and exponential
periods, which are classical objects of study in algebraic geometry and number theory; in particular,
I will relate the decidability of certain decision problems for holonomic sequences to deep conjectures
about periods and exponential periods, notably those due to Kontsevich and Zagier.
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1 Summary

Holonomic sequences (also known as P -recursive or P -finite sequences) are infinite sequences
of real (or complex) numbers that satisfy a linear recurrence relation with polynomial
coefficients. The earliest and best-known example is the Fibonacci sequence, introduced by
Leonardo of Pisa in the 12th century; more recently, Apéry famously made use of certain
holonomic sequences 〈un〉n satisfying the recurrence relation

(n+ 1)3un+1 = (34n3 + 51n2 + 27n+ 5)un − n3un−1 (n ∈ N)

to prove that ζ(3) :=
∑∞

n=1 n
−3 is irrational [2]. Holonomic sequences now form a vast

subject in their own right, with numerous applications in mathematics and other sciences;
see, for instance, the monographs [20, 5, 6] or the seminal paper [24] of Zeilberger.

Any holonomic sequence 〈un〉∞n=0 naturally gives rise to a holonomic function by consid-
ering the associated generating power series F(x) =

∑∞
n=0 unx

n. The recurrence relation
defining the holonomic sequence in turn yields a linear differential equation satisfied by the
corresponding power series.

There is a voluminous literature devoted to the study of identities for holonomic sequences
and functions, and several computer-algebra packages implementing various identity-checking
algorithms are also available. However, as noted by Kauers and Pillwein, “in contrast, [. . . ]
almost no algorithms are available for inequalities” [11]. For example, the Positivity Problem
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(i.e., whether every term of a given sequence is non-negative) for C-finite sequences1 is
only known to be decidable at low orders, and there is strong evidence that the problem
is mathematically intractable in general [19, 18]; see also [10, 14, 19, 17]. For holonomic
sequences that are not C-finite, virtually no decision procedures currently exist for Positivity,
although several partial results and heuristics are known (see, for example [15, 11, 16, 23, 21,
22]).

Another extremely important property of holonomic sequences is minimality; a sequence
〈un〉n is minimal if, given any other linearly independent sequence 〈vn〉n satisfying the same
recurrence relation, the ratio un/vn converges to 0. Minimal holonomic sequences play a
crucial rôle, among others, in numerical calculations and asymptotics, as noted for example in
[7, 8, 9, 3, 1, 4] – see also the references therein. Unfortunately, there is also ample evidence
that determining algorithmically whether a given holonomic sequence is minimal is a very
challenging task, for which no satisfactory solution is at present known to exist.

In this talk, I will present a select survey of known and original results on decision
problems for holonomic sequences and functions. Some of this work will involve periods and
exponential periods, which are classical objects of study in algebraic geometry and number
theory; in particular, I will relate the decidability of certain decision problems for holonomic
sequences to deep conjectures about periods and exponential periods, notably those due to
Kontsevich and Zagier [13]. Parts of this presentation will be based on the paper [12].
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