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Abstract
We consider Hidden Markov Models that emit sequences of observations that are drawn from
continuous distributions. For example, such a model may emit a sequence of numbers, each of which
is drawn from a uniform distribution, but the support of the uniform distribution depends on the
state of the Hidden Markov Model. Such models generalise the more common version where each
observation is drawn from a finite alphabet. We prove that one can determine in polynomial time
whether two Hidden Markov Models with continuous observations are equivalent.
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1 Introduction

A (discrete-time, finite-state) Hidden Markov Model (HMM) (often called labelled Markov
chain) has a finite set Q of states and for each state a probability distribution over its possible
successor states. For any two states q, q′, whenever the state changes from q to q′, the HMM
samples and then emits a random observation according to a probability distribution D(q, q′).
For example, consider the following diagram visualising a HMM:

q1 q21
2 ( 1

4a+ 3
4b)

1
2 (a)

2
3 (b)

1
3 (a)

In state q1, the successor state is q1 or q2, with probability 1
2 each. Upon transitioning

from q1 to itself, observation a is drawn with probability 1
4 and observation b is drawn with

probability 3
4 ; upon transitioning from q1 to q2, observation a is drawn surely.1

1 One may allow for observations also on the states and not only on the transitions. But such state
observations can be equivalently emitted upon leaving the state. Hence we can assume without loss of
generality that all observations are emitted on the transitions.
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43:2 Equivalence of Hidden Markov Models with Continuous Observations

In this way, a HMM, together with an initial distribution on states, generates a random
infinite sequence of observations. In the example above, if the initial distribution is the Dirac
distribution on q1, the probability that the observation sequence starts with a is 1

2 ·
1
4 + 1

2
and the probability that the sequence starts with ab is 1

2 ·
1
4 ·

1
2 ·

3
4 + 1

2 ·
2
3 .

In the example above the observations are drawn from a finite observation alphabet
Σ = {a, b}. Indeed, in the literature HMMs most commonly have a finite observation alphabet.
In this paper we lift this restriction and consider continuous-observation HMMs, by which
we mean HMMs as described above, but with continuous observation set Σ. For example,
instead of the distributions on {a, b} in the picture above (written there as ( 1

4a+ 3
4b), (a), (b),

respectively), we may have distributions on the real numbers. For example in the following
diagram, where U [a, b) denotes the uniform distribution on [a, b) and Exp(λ) denotes the
exponential distribution with parameter λ:

q1 q21
2Exp(2)

1
2U [−1, 0)

2
3Exp(1)

1
3U [0, 2)

HMMs, both with finite and infinite observation sets, are widely employed in fields such
as speech recognition (see [22] for a tutorial), gesture recognition [7], signal processing [11],
and climate modeling [1]. HMMs are heavily used in computational biology [15], more
specifically in DNA modeling [9] and biological sequence analysis [14], including protein
structure prediction [19] and gene finding [2]. In computer-aided verification, HMMs are the
most fundamental model for probabilistic systems; model-checking tools such as Prism [20]
and Storm [13] are based on analyzing HMMs efficiently.

One of the most fundamental questions about HMMs is whether two HMMs with
initial state distributions are (trace) equivalent, i.e., generate the same distribution on
infinite observation sequences. For finite observation alphabets this problem is very well
studied and can be solved in polynomial time using algorithms that are based on linear
algebra [23, 21, 24, 10]. Checking trace equivalence is used in the verification of obliviousness
and anonymity, properties that are hard to formalize in temporal logics, see, e.g., [3, 18, 5].

Although the generalisation to continuous observations (such as passed time, consumed
energy, sensor readings) is natural, there has been little work on the algorithmics of such
HMMs. One exception is continuous-time Markov chains (CTMCs) [4, 8] which are similar
to HMMs described above, but with two kinds of observations: on the one hand they emit
observations from a finite alphabet, but on the other hand they also emit the time spent in
each state. Typically, each state-to-state transition is labelled with a parameter λ; for each
transition its time of “firing” is drawn from an exponential distribution with parameter λ;
the transition with the smallest firing time “wins” and causes the corresponding change of
state. CTMCs have attractive properties: they are in a sense memoryless, and for many
analyses, including model checking, an equivalent discrete-time model can be calculated
using an efficient and numerically stable process called uniformization [16].

In [17] a stochastic model more general than ours was introduced, allowing not only
for uncountable sets of observations (called labels there), but also for infinite sets of states
and actions. The paper [17] focuses on bisimulation; trace equivalence is not considered. It
emphasizes nondeterminism, a feature we do not consider here.
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To the best of the authors’ knowledge, this paper is the first to study equivalence of
HMMs with continuous observations. As continuous functions are part of the input, an
equivalence checking algorithm, if it exists (which is not a priori clear), needs to be symbolic,
i.e., needs to perform computations on functions. Our contributions are as follows:
1. We show in Section 3 that certain aspects of the linear-algebra based approach for checking

equivalence of finite-observation HMMs carry over to the continuous case naturally. In
particular, equivalence reduces to orthogonality in a certain vector space of state-indexed
real vectors, see Proposition 7.

2. However, we show in Section 4 that in the continuous case there can be additional linear
dependencies between the observation density functions (which is impossible in the finite
case, where the different observations can be assumed linearly independent). This renders
a simple-minded reduction to the finite case incorrect. Therefore, an equivalence checking
algorithm needs to consider the interplay with the vector space from item 1.

3. For the required computations on the observation density functions we introduce in
Section 5 linearly decomposable profile languages, which are languages (i.e., sets of finite
words) whose elements encode density functions on which basis computations can be
performed efficiently. In Section 5.1 we provide an extensive example of such a language,
encoding (linear combinations of) Gaussian, exponential, and piecewise polynomial density
functions. The proof that this language has the required properties is non-trivial itself
and requires alternant matrices and comparisons of the tails of various density functions.

4. In Section 6 we finally show that HMMs whose observation densities are given in terms
of linearly decomposable profile languages can be checked for equivalence in polynomial
time, by a reduction to the finite-observation case. We also indicate, in Example 23, how
our result can be used to check for susceptibility of certain timing attacks.

2 Preliminaries

We write N for the set of positive integers, Q for the set of rationals and Q+ for the set
of positive rationals. For d ∈ N and a finite set Q we use the notation |Q| for the number
of elements in Q, [d] = {1, . . . , d} and [Q] = {1, . . . , |Q|}. Vectors µ ∈ RN are viewed as
row vectors and we write I = (1, . . . , 1) ∈ RN . Superscript T denotes transpose; e.g., IT
is a column vector of ones. A matrix M ∈ RN×N is stochastic if M is non-negative and∑N
j=1Mi,j = 1 for all i ∈ [N ]. For a domain Σ and subset E ⊆ Σ the characteristic function

χE : Σ→ {0, 1} is defined as χE(x) = 1 if x ∈ E and χE(x) = 0 otherwise.
Throughout this paper, we use Σ to denote a set of observations. We assume Σ is

a topological space and (Σ,G, λ) is a measure space where all the open subsets of Σ are
contained within G and have non-zero measure. Indeed R and the usual Lebesgue measure
space on R satisfy these assumptions. The set Σn is the set of words over Σ of length n and
Σ∗ =

⋃∞
n=0 Σn.

A matrix valued function Ψ : Σ→ [0,∞)N×N can be integrated element-wise. We write∫
E

Ψ dλ for the matrix with entries
(∫
E

Ψ dλ
)
i,j

=
∫
E

Ψi,j dλ, where Ψi,j : Σ → [0,∞) is
defined by Ψi,j(x) =

(
Ψ(x)

)
i,j

for all x ∈ Σ.
A function f : Σ → Rm is piecewise continuous if there is an open set C ⊆ Σ, called

a set of continuity, such that f is continuous on C and for every point x ∈ Σ \ C there is
some sequence of points xn ∈ C such that limn→∞ xn = x and limn→∞ f(xn) = f(x). For a
non-negative function f : Σ→ [0,∞) we use the notation supp f = {x ∈ Σ | f(x) > 0}.

I Definition 1. A Hidden Markov Model (HMM) is a triple (Q,Σ,Ψ) where Q is a finite set
of states, Σ is a set of observations, and the observation density matrix Ψ : Σ→ [0,∞)|Q|×|Q|
specifies the transitions such that

∫
Σ Ψ dλ is a stochastic matrix.

FSTTCS 2020



43:4 Equivalence of Hidden Markov Models with Continuous Observations

I Example 2. The second HMM from the introduction is the triple ({q1, q2},R,Ψ) with

Ψ(x) =
( 1

2 · 2 exp(−2x) · χ[0,∞)(x) 1
2 · 1 · χ[−1,0)(x)

1
3 ·

1
2 · χ[0,2)(x) 2

3 · exp(−x) · χ[0,∞)(x)

)
. (1)

We assume that Ψ is piecewise continuous and extend Ψ to the mapping Ψ : Σ∗ →
[0,∞)|Q|×|Q| with Ψ(x1 · · ·xn) = Ψ(x1)×· · ·×Ψ(xn) for x1, . . . , xn ∈ Σ. If C is the set of con-
tinuity for Ψ : Σ→ [0,∞)|Q|×|Q|, then for fixed n ∈ N the restriction Ψ : Σn → [0,∞)|Q|×|Q|
is piecewise continuous with set of continuity Cn. We say that A ⊆ Σn is a cylinder set
if A = A1 × · · · × An and Ai ∈ G for i ∈ [n]. For every n there is an induced measure
space (Σn,Gn, λn) where Gn is the smallest σ-algebra containing all cylinder sets in Σn and
λn(A1 × · · · ×An) =

∏n
i=1 λ(Ai) for any cylinder set A1 × · · · ×An. Let A ⊆ Σn and write

AΣω for the set of infinite words over Σ where the first n observations fall in the set A.
Given a HMM (Q,Σ,Ψ) and initial distribution π on Q viewed as vector π ∈ R|Q|, there
is an induced probability space (Σω,G∗,Pπ) where Σω is the set of infinite words over Σ,
and G∗ is the smallest σ-algebra containing (for all n ∈ N) all sets AΣω where A ⊆ Σn is a
cylinder set and Pπ is the unique probability measure such that Pπ(AΣω) = π

∫
A

Ψ dλnIT
for any cylinder set A ⊆ Σn.

I Definition 3. For two distributions π1 and π2 and a HMM C = (Q,Σ,Ψ), we say that
π1 and π2 are equivalent, written π1 ≡C π2, if Pπ1(A) = Pπ2(A) holds for all measurable
subsets A ⊆ Σω.

One could define equivalence of two pairs (C1, π1) and (C2, π2) where Ci = (Qi,Σ,Ψi) are
HMMs and πi are initial distributions for i = 1, 2. We do not need that though, as we can
define, in a natural way, a single HMM over the disjoint union of Q1 and Q2 and consider
instead equivalence of π1 and π2 (where π1, π2 are appropriately padded with zeros).

Given an observation density matrix Ψ, a functional decomposition consists of functions
fk : Σ→ [0,∞) and matrices Pk ∈ R|Q|×|Q| for k ∈ [d] such that Ψ(x) =

∑d
k=1 fk(x)Pk for

all x ∈ Σ and
∫

Σ fk dλ = 1 for all k ∈ [d]. We sometimes abbreviate this decomposition as
Ψ =

∑d
k=1 fkPk and this notion has a central role in our paper.

I Example 4. The observation density matrix Ψ from Example 2 has a functional decom-
position

Ψ(x) = 2 exp(−2x)χ[0,∞)(x)
( 1

2 0
0 0

)
+ χ[−1,0)(x)

(
0 1

2
0 0

)
+

1
2χ[0,2)(x)

(
0 0
1
3 0

)
+ exp(−x)χ[0,∞)(x)

(
0 0
0 2

3

)

I Lemma 5. Let (Q,Σ,Ψ) be a HMM. If Ψ has functional decomposition Ψ =
∑d
k=1 fkPk

then
∑d
k=1 Pk is stochastic.

Proof. By definition of a HMM,
∫

Σ Ψ dλ is stochastic, and we have

∫
Σ

Ψ dλ =
∫

Σ

d∑
k=1

fkPk dλ =
d∑
k=1

Pk

∫
Σ
fk dλ =

d∑
k=1

Pk. J

When Σ is finite, it follows that
∫

Σ Ψ dλ =
∑
a∈Σ Ψ(a). Hence

∑
a∈Σ Ψ(a) is stochastic.
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Encoding. For computational purposes we assume that rational numbers are represented
as ratios of integers in binary. The initial distribution of a HMM with state set Q is given
as a vector π ∈ Q|Q|. We also need to encode continuous functions, in particular, density
functions such as Gaussian, exponential or piecewise-polynomial functions. A profile is a
finite word (i.e., string) that describes a continuous function. It may consist of (an encoding
of) a function type and its parameters. For example, the profile (N , µ, σ) may denote a
Gaussian (also called normal) distribution with mean µ ∈ Q and standard deviation σ ∈ Q+.
A profile may also consist of a description of a rational linear combination of such building
blocks. For any profile γ we write [[γ]] : Σ→ [0,∞) for the function it encodes. For example,
a profile γ = (N , µ, σ) with µ ∈ Q, σ ∈ Q+ may encode the function [[γ]] : R→ [0,∞) given
as [[γ]](x) = 1

σ
√

2π exp− (x−µ)2

2σ2 . Without restricting ourselves to any particular encoding, we
assume that Γ is a profile language, i.e., a finitely presented but usually infinite set of valid
profiles. For any Γ0 ⊆ Γ we write [[Γ0]] = {[[γ]] | γ ∈ Γ0}.

We use profiles to encode HMMs C = (Q,Σ,Ψ): we say that C is over Γ if the observation
density matrix Ψ is given as a matrix of pairs (pi,j , γi,j) ∈ Q+ × Γ such that Ψi,j = pi,j [[γi,j ]]
and

∫
Σ[[γi,j ]] dλ = 1 hold for all i, j ∈ [Q]. In this way the pi,j form the transition probabilities

between states and the γi,j encode the probability densities of the observations upon each
transition.

I Example 6. For a suitable profile language Γ, the HMM from Example 2 may be over Γ,
with the observation density matrix given as(

( 1
2 , (Exp, 2)) ( 1

2 , (U,−1, 0))
( 1

3 , (U, 0, 2)) ( 2
3 , (Exp, 1))

)
(2)

The observation density matrix Ψ of a HMM (Q,Σ,Ψ) with finite Σ can be given as a list of
matrices Ψ(a) ∈ Q|Q|×|Q|+ for all a ∈ Σ such that

∑
a∈Σ Ψ(a) is a stochastic matrix.

3 Equivalence as Orthogonality

For finite-observation HMMs it is well known [23, 21, 24, 10] that two initial distributions
given as vectors π1, π2 ∈ R|Q| are equivalent if and only if π1 − π2 is orthogonal (written
as ⊥) to a certain vector space. Indeed, this property holds more generally:

I Proposition 7. Consider a HMM (Q,Σ,Ψ). For any π1, π2 ∈ R|Q| we have

π1 ≡ π2 ⇐⇒ π1 − π2 ⊥ span {Ψ(w)IT | w ∈ Σ∗}.

The general case is proven in [12]. In the finite-observation case, Proposition 7 leads
to an efficient algorithm for deciding equivalence: it suffices to compute a basis for V =
span {Ψ(w)IT | w ∈ Σ∗}. This can be done using a fixed-point algorithm that computes a
sequence of (bases of) increasing subspaces of V: start with B = {IT }, and as long as there
is a ∈ Σ and v ∈ B such that Ψ(a)v 6∈ span B, add Ψ(a)v to B. Since dimV ≤ |Q|, this
algorithm terminates after at most |Q| iterations, and returns B such that span B = V . It is
then easy to check whether π1 − π2 ⊥ V. It follows:

I Proposition 8. Given a HMM (Q,Σ,Ψ) with finite Σ and initial distributions π1, π2 ∈ Q|Q|,
it is decidable in polynomial time whether π1 ≡ π2.

This is not an effective algorithm when Σ is infinite.

FSTTCS 2020



43:6 Equivalence of Hidden Markov Models with Continuous Observations

4 Labelling Reductions

Our goal is to reduce in polynomial time the equivalence problem in continuous-observation
HMMs to the equivalence problem in finite-observation HMMs. Since the latter is decidable
in polynomial time by Proposition 8, a polynomial time algorithm for deciding equivalence
in continuous-observation HMMs follows.

Towards this objective, consider a reduction where each continuous density function is
given a label and these labels form the observation alphabet of a finite-observation HMM.
For example consider the chain on the left in the diagram below. This disconnected HMM
emits letters from two distinct normal distributions with profiles (N , 0, 1) and (N , 1, 2).
Assigning each distribution letters a, b respectively yields the HMM given on the right. Since
in the right chain states q1 and q2 are equivalent so too are the same labelled states in the
continuous chain.

q1

q2

q3

2
3 (N , 0, 1) + 1

3 (N , 1, 2)

2
3 (N , 0, 1) 1

3 (N , 1, 2)

1
3 (N , 1, 2)

2
3 (N , 0, 1)

q1

q2

q3

2
3a+ 1

3b

2
3 (a) 1

3 (b)

1
3 (b)

2
3 (a)

More rigorously, if C = (Q,Σ,Ψ) is a HMM over Γ = {β1, . . . , βK} and Ψ is encoded as a
matrix of coefficient-profile pairs (pi,j , γi,j) ∈ Q+ × Γ then we call the labelling reduction the
HMM (Q, Σ̂, M̂) where Σ̂ = {a1, . . . , aK} is an alphabet of fresh observations and

M̂i,j(ak) =
{
pi,j γi,j = βk

0 otherwise.

Since Ψ has functional decomposition Ψ =
∑K
k=1[[βk]]M̂(ak), it follows by Lemma 5 that∑K

k=1 M̂(ak) is stochastic and the labelling reduction is a well defined HMM which may
be computed in polynomial time. As discussed in the previous example, equivalence in the
labelling reduction implies equivalence in the original chain:

I Proposition 9. Let C = (Q,Σ,Ψ) be a HMM with labelling reduction L = (Q, Σ̂, M̂).
Then for any initial distributions π1 and π2

π1 ≡L π2 =⇒ π1 ≡C π2.

For the proof of Proposition 9 we use the following lemma proven in [12] which will be re-used
in Section 6.

I Lemma 10. Let C1 = (Q,Σ1,Ψ1) and C2 = (Q,Σ2,Ψ2) be two HMMs with the same state
space Q. Suppose that span {Ψ1(x) | x ∈ Σ1} ⊆ span {Ψ2(x) | x ∈ Σ2}. Then, for any two
initial distributions π1 and π2,

π1 ≡C2 π2 =⇒ π1 ≡C1 π2.
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Proof of Proposition 9. Ψ has a functional decomposition Ψ =
∑K
k=1[[βk]]M̂(ak). Thus,

span {Ψ(x) | x ∈ Σ} ⊆ span {M̂(ak) | ak ∈ Σ̂} and the statement follows by Lemma 10. J

I Example 11. Consider the HMMs in the diagram below. The HMM on the left is a
continuous-observation chain where D and D′ are distributions on [0, 1] with probability
density functions 2xχ[0,1)(x) and 2(1− x)χ[0,1)(x) respectively, and U [a, b) is the uniform
distribution on [a, b). The HMM on the right is the corresponding labelling reduction.

Since U [0, 1) = 1
2D + 1

2D
′, (the Dirac distributions on) states q1 and q4 are equivalent

but as the distributions U [0, 1), D,D′ are distinct, they get assigned different labels a, b, c,
respectively in the labelling reduction. The states q1 and q4 are therefore not equivalent in
the right chain.

q1

q2

q3

q4

1U [0, 2)

1U [0, 1)

1U [0, 2)

1
2D

1
2D
′ q1

q2

q3

q4

1(d)

1(a)

1(d)

1
2 (b)

1
2 (c)

5 Linearly Decomposable Profile Languages

Example 11 shows that the linear combination of two continuous distributions can “imitate”
a single distribution. Therefore we consider the transition densities as part of a vector space
of functions. In the usual way L1(Σ, λ) is the quotient vector space where functions that
differ only on a λ-null set are identified. In particular, when Σ ⊆ R and λ is the Lebesgue
measure λLeb, the functions χ[a,b) and χ(a,b] are considered the same.

Let Γ be a profile language with [[Γ]] ⊆ L1(Σ, λ). We say that Γ is linearly decomposable
if for every finite set {γ1, . . . , γn} = Γ0 ⊆ Γ one can compute in polynomial time profiles
β1, . . . , βm ∈ Γ0 such that {[[β1]], . . . , [[βm]]} is a basis for span {[[γ1]], . . . , [[γn]]} (hence m ≤ n),
and further a set of coefficients bi,j ∈ Q for i ∈ [n], j ∈ [m] such that

[[γi]] =
m∑
j=1

bi,j [[βj ]] for all i ∈ [n].

The following theorem is the main result of this paper:

I Theorem 12. Given a HMM (Q,Σ,Ψ) over a linearly decomposable profile language,
and initial distributions π1, π2 ∈ Q|Q|, it is decidable in polynomial time (in the size of the
encoding) whether π1 ≡ π2.

We prove Theorem 12 in Section 6. To make the notion of linearly decomposable profile
languages more concrete, we give a concrete example in the following subsection.

5.1 Example: Gaussian, Exponential, and Piecewise Polynomial
Functions

We describe a profile language, ΓGEM , that can specify linear combinations of Gaussian,
exponential, and piecewise polynomial density functions.

FSTTCS 2020



43:8 Equivalence of Hidden Markov Models with Continuous Observations

We call a function of the form x 7→ xkχI(x) where k ∈ N ∪ {0} and I ⊂ R is an interval
an interval-domain monomial. To avoid clutter, we often denote interval-domain monomials
only by xkχI . Recall that L1(R, λLeb) is a quotient space, so half open intervals I = [a, b) are
sufficient. Any piecewise polynomial is a linear combination of interval-domain monomials.

Let M be a set of profiles encoding interval-domain monomials xkχ[a,b) in terms of
k ∈ N ∪ {0} and a, b ∈ Q. Gaussian and exponential density functions can be fully described
using their parameters, which we assume to be rational. We write G and E for corresponding
sets of profiles, respectively. Finally, we fix a profile language ΓGEM ⊃ G ∪ E ∪M obtained
by closing G ∪ E ∪M under linear combinations. That is, for any γ1, . . . , γk ∈ ΓGEM and
λ1, . . . , λk ∈ Q, there exists a profile γ ∈ ΓGEM such that [[γ]] = λ1[[γ1]] + · · ·+ λk[[γk]]. This
closure can be achieved using a specific constructor, say S, for linear combinations, so that
γ = S(λ1, γ1, . . . , λk, γk).

I Example 13. The HMM (Q,R,Ψ) from Example 11 is over ΓGEM : the observation density
matrix Ψ can be encoded as a matrix of coefficient-profile pairs

0 ( 1
2 , γ1) ( 1

2 , γ2) 0
0 (1, γ3) 0 0
0 (1, γ3) 0 0
0 (1, γ4) 0 0


with γ1, γ2, γ3, γ4 ∈ ΓGEM and [[γ1]] = 2xχ[0,1) and [[γ2]] = 2(1− x)χ[0,1) and [[γ3]] = 1

2χ[0,2)
and [[γ4]] = χ[0,1).

I Lemma 14. Let H be a set of disjoint half open intervals. Suppose that m1, . . . ,mI are
distinct interval-domain monomials such that supp mi ∈ H for all i ∈ [I]. In addition, let
g1, . . . , gJ and e1, . . . , eK be distinct Gaussian and exponential density functions, respectively.
Then, the set {m1, . . . ,mI , g1, . . . , gJ , e1, . . . , eK} is linearly independent.

For the proof of this lemma we need a result concerning alternant matrices. Consider
functions f1, . . . , fn : Σ→ R and let x1, . . . , xn ∈ Σ. Then,

M =


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xn) f2(xn) . . . fn(xn)


is called the alternant matrix for f1, . . . , fn and input points x1, . . . , xn.

I Lemma 15. Suppose f1, . . . , fn ∈ L1(Σ, λ). Then, the fi are linearly dependent if and
only if all alternant matrices for the fi are singular.

Sketch proof of Lemma 14. Under the assumption that a linear combination exists almost
surely equal to 0, by examining the limit at +∞ we show that the exponential and Gaussian
coefficients are zero. Then, by constructing an appropriate alternant matrix with full rank
we invoke Lemma 15 which means the remaining interval-domain monomials are linearly
independent and thus must also have zero coefficients. J

I Proposition 16. The profile language ΓGEM is linearly decomposable.

Full proofs of Lemmas 14 and 15 and Proposition 16 can be found in [12]. From the
latter we obtain the following corollary of Theorem 12:

I Corollary 17. Given a HMM (Q,Σ,Ψ) over ΓGEM , and initial distributions π1, π2 ∈ Q|Q|,
it is decidable in polynomial time whether π1 ≡ π2.
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6 Proof of Theorem 12

Suppose that Ψ has a functional decomposition
∑d
k=1 fkPk such that the set {f1, . . . , fd} is

linearly independent. Then,
∑d
k=1 fkPk is called an independent functional decomposition.

The efficient computation of an independent functional decomposition is the key ingredient
for the proof of Theorem 12. We start with the following lemma.

I Lemma 18. Suppose Ψ : Σ→ [0,∞)|Q|×|Q| has an independent functional decomposition
Ψ =

∑d
k=1 fkPk. Then, span {Ψ(x) | x ∈ Σ} = span {Pk | k ∈ [d]}.

Proof. Since Ψ(x) =
∑d
k=1 fk(x)Pk, we have span {Ψ(x) | x ∈ Σ} ⊆ span {Pk | k ∈ [d]}. For

the reverse inclusion, since the fi are linearly independent, by Lemma 15 there exists an
alternant matrix M with full rank for f1, . . . , fd with input points x1, . . . , xd. Hence, for
each of the standard basis vectors ek ∈ {0, 1}d, k ∈ [d], there exists vk = (v1,k, . . . , vd,k) ∈ Rd
such that vkM = ek. Writing δj,k for the Kronecker delta function it follows that

d∑
i=1

vi,kΨ(xi) =
d∑
i=1

vi,k

d∑
j=1

fj(xi)Pj =
d∑
j=1

Pj

d∑
i=1

vi,kfj(xi) =
d∑
j=1

Pjδj,k = Pk ,

which implies that span {Ψ(x) | x ∈ Σ} ⊇ span {Pk | k ∈ [d]}. J

The proof of the following proposition re-uses Lemma 10 from Section 4.

I Proposition 19. Suppose that HMM C = (Q,Σ,Ψ) has independent functional decomposi-
tion Ψ =

∑d
k=1 fkPk and each Pk is non-negative for all k ∈ [d]. Define a set Σ = {a1, . . . , ad}

of fresh observations and the observation density matrix M with M(ak) = Pk for all k ∈ [d].
Then F = (Q,Σ,M) is a finite-observation HMM and for any initial distributions π1, π2

π1 ≡C π2 ⇐⇒ π1 ≡F π2.

Proof. It follows by Lemma 5 that
∑d
k=1 Pk is stochastic. Thus F defines a HMM. By

Lemma 18, span {Ψ(x)IT | x ∈ Σ} = span {M(a)IT | a ∈ Σ} which combined with Lemma 10
gives the result. J

I Example 20. We use the HMM C discussed in Examples 11 and 13 to illustrate the
construction of Proposition 19. The basis {2xχ[0,1), 2(1 − x)χ[0,1),

1
2χ[0,2)} leads to the

independent functional decomposition

Ψ = 2xχ[0,1)


0 1

2 0 0
0 0 0 0
0 0 0 0
0 1

2 0 0

+2(1−x)χ[0,1)


0 0 1

2 0
0 0 0 0
0 0 0 0
0 1

2 0 0

+ 1
2χ[0,2)


0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0

 .

Therefore, Proposition 19 implies that two initial distributions π1, π2 ∈ R|Q| are equivalent
in C if and only if they are equivalent in the following HMM:

q1

q2

q3

q4

1(c)

1( 1
2a+ 1

2b)

1(c)

1
2 (a)

1
2 (b)

Here, states q1 and q4 are equivalent. Hence, they are also equivalent in C.
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If an observation density matrix has an entry with pdf 2e−x − 2e−2x (which is encodable
in ΓGEM due to its convex closure property), the independent functional decomposition
generated by the algorithm described in the proof of Proposition 16 in [12] has matrices which
are not all non-negative. Therefore, Proposition 19 cannot be applied directly. However,
given an independent functional decomposition Ψ =

∑d
k=1 fkPk and noting that

∑d
k=1 Pk is

stochastic by Lemma 5, the following proposition shows that there is a small θ > 0 such that
P − θPk is non-negative for all k ∈ [d]. Furthermore, span {Pk | k ∈ [d]} = span {P − θPk |
k ∈ [d]}. These two facts lead us to construct a finite-observation HMM using the scaled
transition matrices 1

d−θ (P − θPk).

I Proposition 21. Let C = (Q,Σ,Ψ) be a HMM with independent functional decomposition
Ψ =

∑d
k=1 fkPk. Let P =

∑d
k=1 Pk and

θ = min
{

1
2 ,

min{(P )i,j | (P )i,j > 0}
max{

(
Pk
)
i,j
| i, j ∈ [Q], k ∈ [d]}

}
.

Define an alphabet Σ̃ = {a1, . . . , ad} of fresh observations and the HMM F = (Q, Σ̃,M) with
M(ak) = 1

d−θ (P − θPk). Then, for any initial distributions µ1, µ2

µ1 ≡F µ2 ⇐⇒ µ1 ≡C µ2.

Proof. First we show that F is a well-defined HMM. Matrix
∑d
k=1M(ak) is stochastic as

d∑
k=1

M(ak) = 1
d− θ

d∑
k=1

(P − θPk) =
dP − θ

∑d
k=1 Pk

d− θ
= P , (3)

and by Lemma 5, P is stochastic. In addition we must show that M(ak) is non-negative
for each k ∈ [d]. Since θ ≤ 1

2 , it is enough to show that P − θPk is non-negative for each
k ∈ [d]. Suppose that (P )i,j = 0. Then,

∫
Σ Ψi,j dλ = (P )i,j = 0, which implies that Ψi,j = 0

since Ψ is piecewise continuous. Thus,
∑d
k=1 fk(Pk)i,j = Ψi,j = 0. Since {fk}dk=1 is linearly

independent, it follows that (Pk)i,j = 0 for all k ∈ [d] and so (P − θPk)i,j = 0. Now suppose
that (P )i,j > 0. By the definition of θ, it follows that (θPk)i,j ≤ (P )i,j . Thus, F is a well
defined HMM.

Observe that span {P − θPk | k ∈ [d]} ⊆ span {Pk | k ∈ [d]}. The opposite inclusion
follows from the fact that, by Equation (3), we have P ∈ span {P − θPk | k = 1, . . . , d}.
Thus, by Lemma 18,

span {M(a) | a ∈ Σ̃} = span {P−θPk | k ∈ [d]} = span {Pk | k ∈ [d]} = span {Ψ(x) | x ∈ Σ}

and hence, the proposition follows from Lemma 10. J

Now we can prove Theorem 12:

Proof of Theorem 12. Suppose the HMM C = (Q,Σ,Ψ) is over the linearly decomposable
profile language Γ. Let Γ0 = {γ1, . . . , γn} be the set of profiles appearing in the description
of Ψ. From the description of Ψ as a matrix of coefficient-profile pairs, we can easily compute
matrices P ′1, . . . , P ′n ∈ Q|Q|×|Q| such that Ψ =

∑n
i=1[[γi]]P ′i . Since Γ is linearly decomposable,

one can compute in polynomial time a subset {β1, . . . , βd} ⊆ Γ0 such that [[{β1, . . . , βd}]] is
linearly independent and also a set of coefficients bi,k such that [[γi]] =

∑d
k=1 bi,k[[βk]] for all

i ∈ [n]. Hence:

Ψ =
n∑
i=1

[[γi]]P ′i =
n∑
i=1

d∑
k=1

[[βk]]bi,kP ′i =
d∑
k=1

[[βk]]
n∑
i=1

bi,kP
′
i
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Setting Pk =
∑n
i=1 bi,kP

′
i for all k ∈ [d], we thus obtain the independent functional decom-

position Ψ =
∑d
k=1[[βk]]Pk. Now it is straightforward to compute the finite-observation

HMM F from Proposition 21 in polynomial time, thus reducing the equivalence problem
in C to the equivalence problem in the finite-observation HMM F . By Proposition 8 the
theorem follows. J

I Example 22. We illustrate aspects of the proof of Theorem 12 using the HMM:

q1 q21
2 ( 1

2χ[0,2))

1
2 ( 1

2χ[1,3))

1
2 ( 1

2χ[2,4))

1
2 ( 1

2 (χ[0,1) + χ[3,4)))

Noting that 1
2 (χ[0,1) +χ[3,4)) = 1

2χ[0,2)− 1
2χ[1,3) + 1

2χ[2,4) and the set { 1
2χ[0,2),

1
2χ[1,3),

1
2χ[2,4)}

is linearly independent we obtain the independent functional decomposition

Ψ = 1
2χ[0,2)

( 1
2 0
0 1

2

)
+ 1

2χ[1,3)

(
0 1

2
0 − 1

2

)
+ 1

2χ[2,4)

(
0 0
1
2

1
2

)
.

According to Proposition 21, P =
( 1

2
1
2

1
2

1
2

)
. Further we compute θ = 1

2 and d− θ = 5
2 and

M(a) = 2
5

[( 1
2

1
2

1
2

1
2

)
− 1

2

( 1
2 0
0 1

2

)]
=
( 1

10
1
5

1
5

1
10

)
M(b) = 2

5

[( 1
2

1
2

1
2

1
2

)
− 1

2

(
0 1

2
0 − 1

2

)]
=
( 1

5
1
10

1
5

3
10

)
M(c) = 2

5

[( 1
2

1
2

1
2

1
2

)
− 1

2

(
0 0
1
2

1
2

)]
=
( 1

5
1
5

1
10

1
10

)
.

It follows that any initial distributions π1 and π2 are equivalent in (Q,Σ,Ψ) if and only if
they are equivalent in the following HMM:

q1 q21
2 ( 1

5a+ 2
5b+ 2

5c)

1
2 ( 2

5a+ 1
5b+ 2

5c)

1
2 ( 2

5a+ 2
5b+ 1

5c)

1
2 ( 1

5a+ 3
5b+ 1

5c)

For any initial distributions π1, π2 ∈ Q2 this can be checked with Proposition 8. (In this
example π1 ≡ π2 holds only if π1 = π2.)

I Example 23. We also discuss an example, inspired from [6], where HMM non-equivalence
means susceptibility to timing attacks, and HMM equivalence means immunity to such
attacks. Consider a system that emits two kinds of observations, both visible to an attacker:
a function to be executed (we arbitrarily assume a choice between two functions a and b,
and impute a probability distribution between them) and the time it takes to execute that
function. An attacker therefore sees a sequence `1t1`2t2 . . ., where `i ∈ {a, b} and ti ∈ [0,∞).
In [6] the times t1, t2, . . . are all identical and depend only on the secret key held by the
system, but we assume in the following that the ti are drawn from a probability distribution
that depends on the function (a or b) and the key. We assume that with key i the execution

FSTTCS 2020



43:12 Equivalence of Hidden Markov Models with Continuous Observations

times have uniform distributions U [ma
i − 1

2 ,m
a
i + 1

2 ) and U [mb
i − 1

2 ,m
b
i + 1

2 ). The situation
can then be modelled with the HMM below.2

sitai tbi

U [ma
i − 1

2 ,m
a
i + 1

2 )

1
3a

U [mb
i − 1

2 ,m
b
i + 1

2 )

2
3b

A timing leak occurs if the attacker can glean the key from the execution times. For example,
the attacker can distinguish between keys k1 and k2 if and only if states s1 and s2 are not
equivalent. One can check, using the algorithm we have developed in this section, that s1 and
s2 are equivalent if and only if ma

1 = ma
2 and mb

1 = mb
2. Moreover, it follows from Section 5

that if instead of U [ma
1 − 1

2 ,m
a
1 + 1

2 ) and U [ma
2 − 1

2 ,m
a
2 + 1

2 ) we had two distributions with
density functions from [[ΓGEM ]] with the same mean and the same variance, states s1, s2
would still be non-equivalent whenever the two distributions are not identical.

One may try to guard against this timing leak by “padding” the execution time, so that
the sum of the execution time and an added time is constant (and independent of the key).
After the execution of the function, an idling loop would be executed until the worst-case
(among all keys) execution time of the functions has been reached or exceeded. Let us call
this worst-case execution time w ∈ (0,∞). This idling loop would take time u > 0 in each
iteration, so the total idling time is always an integer multiple of u. It is argued in [6] that
this guard is in general ineffective in that the attacker can still glean the execution time
modulo u. Therefore, it is suggested in [6] to add, in addition, a time that is uniformly
distributed on [0, u).

This remedy also works in our case with random execution times. Indeed, one can show
that for any independent random variables X,Y , where Y is distributed with U [0, u], we
have that (X + Y ) mod u is distributed with U [0, u). Therefore, by adding an independent
U [0, u) random time to the padding described above, the times observable by the attacker
now have a U [w + u,w + 2u) distribution, independent of the key.

sitai tbi

U [w + u,w + 2u)

1
3a

U [w + u,w + 2u)

2
3b

All states si are now equivalent, so the key does not leak.

7 Conclusions

We have shown that equivalence of continuous-observation HMMs is decidable in polynomial
time, by reduction to the finite-observation case. The crucial insight is that, rather than
integrating the density functions, one needs to consider them as elements of a vector space and
computationally establish linear (in)dependence of functions. Therefore, our polynomial-time
reduction performs symbolic computations on continuous density functions. As a suitable
framework for these computations we have introduced the notion of linearly decomposable
profile languages, and we have established ΓGEM as such a profile language.

2 In this case the observation set Σ = [0, ∞) ∪ {a, b} is a disjoint union of topological spaces and there is
a natural measure space induced from the Lebesgue measure space on [0, ∞) and a discrete measure on
{a, b}.
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In future work, it would be desirable to extend ΓGEM and/or develop other linear
decomposable profile languages, including over sets Σ of observations that are not real
numbers. The authors believe that the developed computational framework may be the
foundation for further algorithms on continuous-observation HMMs. For example, one may
want to compute the total-variation distance of two continuous-observation HMMs. Can
Markov chains with continuous emissions be model-checked efficiently?
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