Perspective Games with Notifications

Orna Kupferman
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

Noam Shenwald
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
noam.shenwald@mail.huji.ac.il

—— Abstract

A reactive system has to satisfy its specification in all environments. Accordingly, design of

correct reactive systems corresponds to the synthesis of winning strategies in games that model the
interaction between the system and its environment. The game is played on a graph whose vertices
are partitioned among the players. The players jointly generate a path in the graph, with each
player deciding the successor vertex whenever the path reaches a vertex she owns. The objective of
the system player is to force the computation induced by the generated infinite path to satisfy a
given specification. The traditional way of modelling uncertainty in such games is observation-based.
There, uncertainty is longitudinal: the players partially observe all vertices in the history. Recently,
researchers introduced perspective games, where uncertainty is transverse: players fully observe the
vertices they own and have no information about the behavior of the computation between visits
in such vertices. We introduce and study perspective games with notifications: uncertainty is still
transverse, yet a player may be notified about events that happen between visits in vertices she
owns. We distinguish between structural notifications, for example about visits in some vertices, and
behavioral notifications, for example about the computation exhibiting a certain behavior. We study
the theoretic properties of perspective games with notifications, and the problem of deciding whether
a player has a winning perspective strategy. Such a strategy depends only on the visible history,
which consists of both visits in vertices the player owns and notifications during visits in other
vertices. We show that the problem is EXPTIME-complete for objectives given by a deterministic or
universal parity automaton over an alphabet that labels the vertices of the game, and notifications
given by a deterministic satellite, and is 2EXPTIME-complete for LTL objectives. In all cases, the
complexity in the size of the graph and the satellite is polynomial — exponentially easier than games
with observation-based partial visibility. We also analyze the complexity of the problem for richer
types of satellites.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory;
Theory of computation — Logic and verification

Keywords and phrases Games, Incomplete Information, Automata

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2020.51

Related Version https://www.cs.huji.ac.il/~ornak/publications/fsttcs20.pdf.

1 Introduction

A reactive system has to satisfy its specification in all environments. Accordingly, design of
correct reactive systems corresponds to the synthesis of a winning strategy for the system
in a game that model the interaction between the system and its environment. The game
is played on a graph whose vertices correspond to configurations along the interaction. We
study here settings in which each configuration is controlled by either the system or its
environment. Thus, the set of vertices is partitioned between the players, and the game is
turn-based: starting from an initial vertex, the players jointly generate a play, namely a path
in the graph, with each player deciding the successor vertex when the play reaches a vertex
she controls. Each vertex is labeled by an assignment to a set AP of atomic propositions —
? Orna Kupferman a.nd Noam Shenv.vald;
5v icensed under Creative Commons License CC-BY
40th TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 51; pp.51:1-51:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:orna@cs.huji.ac.il
mailto:noam.shenwald@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.51
https://www.cs.huji.ac.il/~ornak/publications/fsttcs20.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2

Perspective Games with Notifications

these with respect to which the system is defined. The objective of the system is given by a
language L C (247)% and it wins if the computation induced by the generated play, namely
the word that labels its vertices, is in L [14, 4].

A strategy for a player directs her how to continue a play that reaches her vertices.
We consider deterministic strategies, which choose a successor vertex. In games with full
visibility, strategies may depend on the full history of the play. In games with partial visibility,
strategies depend only on visible components of the history [16]. A well studied model of
partial visibility is observation based [9, 6, 5, 2]. There, a player does not see the vertices
of the game and can only observe the assignments to a subset of the atomic propositions.
Accordingly, strategies cannot distinguish between different plays in which the observable
atomic propositions behave in the same manner. Recently, [8] introduced perspective games.
There, the visibility of each player is restricted to her vertices. Accordingly, a perspective
strategy for a player cannot distinguish among histories that differ in visits to vertices owned
by other players. As detailed in [8], the perspective model corresponds to switched systems
and component-based software systems [1, 11, 12, 13].

Note that visibility and lack of visibility in the observation-based model are longitudinal
— players observe all vertices, but partially. On the other hand, in the perspective model,
players have full visibility on the parts of the system they control, and no visibility (in
particular, even no information on the number of transitions taken) on the parts they do not
control. Thus, visibility and lack of visibility are transverse — some vertices the players do
not see at all, and some they fully see. For a comparison of perspective games with related
visibility models (in particular, games with partial visibility in an asynchronous setting [15],
switched systems [7], and control-flow composition in software and web service systems [12]),
see [8].

In many settings, players indeed cannot observe the evolution of the computation in parts
of the system they do not control, yet they may have information about events that happen
during these parts. For example, if the system is synchronous with a global clock, then all
players know the length of the invisible parts of the computation. Likewise, visits in some
vertices of the other players may be observable, for example in a communication network
in which all companies observe routers that belong to an authority and can detect visits to
routers that leave a stamp. Finally, behaviors may be visible too, like an airplane that flies
high, or a robot that enters a zone that causes an alarm to be activated. In this paper we
introduce and study perspective games with notifications, which model such settings.

Formally, perspective games with notifications include, in addition to the game graph and
the winning condition, an information satellite: a finite state machine that is executed in
parallel with the game and may notify the players about events it monitors. We distinguish
between structural satellites, which monitor the generated play, and behavioral satellites,
which monitor the generated computation. Examples to structural satellites include ones
that notify the players about visits in designated sets of states, transitions among regions
in the system, say calls and returns in software systems, traversal of loops, etc. Another
useful structural satellite notifies the players about the assignment to a subset of the atomic
propositions. Note that such a satellite combines the transverse visibility of perspective games
with the longitudinal visibility in observation-based games. A typical behavioral satellite
is associated with a regular language R C (24F)*. The satellite may notify the players
whenever the computation induced by the play is in R (termed a single-track satellite), or
whenever a suffix of the computation is in R (termed a multi-track satellite). The language
R may vary from simple propositional assertion over AP, to rich finite on-going behaviors.
Note that even very simple satellites may be very useful. For example, when R = (247)*,
the satellite acts as a clock, notifying the players about the length of the invisible parts of
the computation.

0. Kupferman and N. Shenwald

We start by studying some theoretical aspects of perspective games with notifications.
We consider two-player games with a winning condition L C (247)% such that PLAYER 1
aims for a play whose computation is in L, and PLAYER 2 aims for a play whose computation
is not in L. Unsurprisingly, the basic features of the game are inherited from the model
without notifications. In particular, perspective games with notifications are not determined.
Thus, there are games in which PLAYER 1 does not have a perspective strategy that forces
the generated computation to satisfy L nor PLAYER 2 has a perspective strategy that forces
the generated computation not to satisfy L. Also, the restriction to a perspective strategy
(as opposed to one that fully observes the computation) makes a difference only for one of
the players. Thus, if PLAYER 1 has a strategy to win against all perspective strategies of
PLAYER 2, she also has a perspective strategy to win against all strategies of PLAYER 2.

The prime problem when reasoning about games is to decide whether a player has a
winning strategy. Here the differences between perspective games and other models of
partial visibility become significant: handling of observation-based partial visibility typically
involves some subset-construction-like transformation of the game graph into a game graph
of exponential size with full visibility. Accordingly, deciding of observation-based partial-
visibility games is EXPTIME-complete in the graph [2, 6, 5, 3]. In perspective games, one
can avoid this exponential blow-up in the size of the graph and trade it with an exponential
blow-up in the (typically much smaller) winning condition [§].

Our main technical contribution is an extension of these good news to perspective games
with notifications, and a study of the complexity in terms of the satellite. The solution in [8]
is based on the definition of a tree automaton for winning strategies. The extension to a
model with notifications is not easy, as the type of strategies is different. Let V; denote the
set of vertices that PLAYER 1 controls. With no notifications, a strategy for PLAYER 1 is a
function f: V}* = V, mapping each visible history to a successor vertex. With notifications,
the visible histories of PLAYER 1 consist not only of vertices in V; but refer also to a set I of
notifications that PLAYER 1 may receive from the satellite. Moreover, histories that end in a
notification in I correspond to vertices in the game in which PLAYER 1 do not have control.
Accordingly, the outcome of the strategy in them is not important, yet they should still
be taken into account. We are still able to define a tree automaton for winning strategies.
Essentially, the tree automaton follows both the satellite and the automaton for the winning
condition, where a tree that encodes a strategy includes branches not only for vertices in
V1 but also branches for notifications in I. We analyze the complexity of our algorithm for
winning conditions given by deterministic or universal co-Biichi or parity automata, as well
as by LTL formulas, and show that the problem is EXPTIME-complete for all above types
of automata and is 2EXPTIME-complete for LTL. In all cases, the complexity in terms of
the graph and the satellite is polynomial.

While EXPTIME-hardness follows immediately from the setting with no notifications
[8], we analyse the complexity also in terms of the satellite. Recall that given a finite
language R C (247)*
multi-track, notifying about computations in (247)* - R. We examine four cases, depending

, a satellite may be single-track, notifying about computations in R, or

on whether the satellite is single- or multi-track and whether R is given by a deterministic
or nondeterministic automaton. For deterministic single-track satellites, the complexity of
deciding whether PLAYER 1 wins is polynomial. In the other three cases, a naive construction
of a satellite requires determinization and involves an exponential blow-up. Note that this
applies also to the case where R is given by a deterministic automaton yet the satellite is
multi-track, and thus has to follow all suffixes. We show that this blow up is unavoidable.
Thus, deciding whether PLAYER 1 wins is EXPTIME-hard even when the winning condition,

51:3

FSTTCS 2020

51:4

Perspective Games with Notifications

which is the source for the exponential complexity in the setting with no notifications, is
fixed. On the positive side, we show that many interesting cases need a fixed-size satellite, or
a satellite whose state space can be merged with that of the game.

2 Preliminaries

2.1 Perspective games

A game graph is a tuple G = (AP, V1, V5, v, E,7), where AP is a finite set of atomic
propositions, Vi and V5 are disjoint sets of vertices, owned by PLAYER 1 and PLAYER 2,
respectively, and we let V' =1, U V5. Then, vy € V; is an initial vertex, which we assume to
be owned by PLAYER 1, and E C V x V is a total edge relation, thus for every v € V there
is u € V such that (v,u) € E. The function 7 : V' — 247 maps each vertex to a set of atomic
propositions that hold in it. The size |G| of G is |E|, namely the number of edges in it.

In a beginning of a play in the game, a token is placed on vg. Then, in each turn, the
player that owns the vertex that hosts the token chooses a successor vertex and move there the
token. A play p = vg,v1,... in G, is an infinite path in G that starts in vg; thus for all 7 > 0 we
have that (v;,v;41) € E. The play p induces a computation 7(p) = 7(vo), 7(v1), ... € (247)".

A game is a pair G = (G, L), where G is a game graph, and L C (247)* is a behavioral
winning condition, namely an w-regular language over the atomic propositions, given by an
LTL formula or an automaton. Intuitively, PLAYER 1 aims for a play whose computation is
in L, while PLAYER 2 aims for a play whose computation is in comp(L) = (247)“\ L.

Let Prefs(G) be the set of nonempty prefixes of plays in G. For a sequence p = vy, ..., v,
of vertices, let Last(p) = v,,. For j € {1,2}, let Prefs;(G) = {p € Prefs(G) : Last(p) € V;}. In
games with full visibility, the players have a full view of the generated play. Accordingly,
a strategy for PLAYER j maps Prefs;(G) to vertices in V' in a way that respects E. In
perspective games [8], PLAYER j can view only visits to V. Accordingly, strategies are
defined as follows. For a prefix p = vy,...,v; € Prefs(G), and j € {1,2}, the perspective
of player j on p, denoted Persp; (p), is the restriction of p to vertices in V;. We denote
the perspectives of player j on prefixes in Prefs;(G) by PPrefs;(G), namely PPrefs;(G) =
{Persp;(p) : p € Prefs;(G)}. Note that PPrefs;(G) C V;*. A perspective strategy for player
Jj, is then a function f; : PPrefs;(G) — V such that for all p € PPrefs;(G), we have that
(Last(p), fj(p)) € E. That is, a perspective strategy for player j maps her perspective of
prefixes of plays that end in a vertex v € Vj to a successor of v.

The outcome of P-strategies f; and f; for PLAYER 1 and PLAYER 2, respectively, is
the play obtained when the players follow their P-strategies. Formally, Outcome(f1, f2) =
V0, V1, ... is such that for all i > 0 and j € {1,2}, if v; € V}, then v; 11 = f;(Persp;(vo, .. .,v;)).

We use F and P to indicate the visibility type of strategies, namely whether they are
full (F) or perspective (P). Consider a game G = (G,L). For a,f € {F, P}, we say
that PLAYER 1 (a, 8)-wins G if there is an a-strategy f1 for PLAYER 1 such that for every
B-strategy fo for PLAYER 2, we have that 7(Outcome(f1, f2)) € L. Similarly, PLAYER 2
(ar, B)-wins G if there is an a-strategy fo for PLAYER 2 such that for every S-strategy fi for
PLAYER 1, we have that 7(Outcome(fy, f2)) ¢ L.

2.2 Automata

Given a set D of directions, a D-tree is a set T' C D* such that if z - ¢ € T, where x € D*
and ¢ € D, then also x € T. The elements of T" are called nodes, and the empty word ¢ is
the root of T. For every x € T, the nodes z - ¢, for ¢ € D, are the successors of x. A path =

0. Kupferman and N. Shenwald

of a tree T is a set m C T such that ¢ € 7w and for every x € m, either z is a leaf or there
exists a unique ¢ € D such that z - ¢ € 7. Given an alphabet X, a X-labeled D-tree is a pair
(T,7) where T is a tree and 7 : T — X maps each node of T to a letter in X.

For a set X, let BT(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using A and V), where we also allow the formulas true and
false. For aset Y C X and a formula § € BT (X), we say that Y satisfies 6 iff assigning true
to elements in Y and assigning false to elements in X \ Y makes 6 true. An alternating tree
automaton is A = (3, D, Q, ¢in, 0,), where ¥ is the input alphabet, D is a set of directions,
Q is a finite set of states, § : Q x X — BT (D X Q) is a transition function, ¢;, € @ is an initial
state, and « is an acceptance condition. We consider here the Biichi, co-Biichi, and parity
acceptance conditions. For a state ¢ € @, we use A? to denote the automaton obtained from
A by setting the initial state to be ¢q. The size of A, denoted |A|, is the sum of lengths of
formulas that appear in 6.

The alternating automaton A runs on X-labeled D-trees. A run of A over a X-labeled
D-tree (T, 1) is a (T x @)-labeled IN-tree (T,.,r). Each node of T, corresponds to a node
of T. A node in T;., labeled by (z,q), describes a copy of the automaton that reads the
node x of T and visits the state q. Note that many nodes of T, can correspond to the
same node of T. The labels of a node and its successors have to satisfy the transition
function. Formally, (T,,r) satisfies the following: (1) ¢ € T, and r(e) = (&,qin). (2)
Let y € T, with r(y) = (x,q) and 6(¢,7(x)) = 6. Then there is a (possibly empty)
set S = {(co,9),(c1,q1),--+,(Cn-1,qn-1)} € D x @, such that S satisfies §, and for all
0<i<n—1,wehavey-i €T, and r(y-i) = (x - c;, qi)-

A run (T, r) is accepting if all its infinite paths satisfy the acceptance condition. Given
a run (T,,r) and an infinite path © C T,, let inf(7) C @ be such that ¢ € inf(x) if and
only if there are infinitely many y € 7 for which r(y) € T x {q}. That is, inf(7) contains
exactly all the states that appear infinitely often in 7. In Biichi and co-Biichi automata, the
acceptance condition is @ C Q). A path 7 satisfies a Biichi condition « iff inf(7) Na # 0,
and satisfies a co-Biichi condition « iff inf(7) N a = 0. In parity automata, the acceptance
condition o : @ — {1,...,k} maps each vertex to a color. A path 7 satisfies a parity
condition « iff the minimal color that is visited infinitely often in 7 is even. Formally,
min{i : inf(r) Na~1(i) # 0} is even. An automaton accepts a tree iff there exists a run that
accepts it. We denote by L(A) the set of all X-labeled trees that A accepts.

The alternating automaton A is nondeterministic if for all the formulas that appear in
d, if (c1,q1) and (c2,q2) are conjunctively related, then ¢; # co. (i.e., if the transition is
rewritten in disjunctive normal form, there is at most one element of {c} x @, for each ¢ € D,
in each disjunct). The automaton A is universal if all the formulas that appear in § are
conjunctions of atoms in D x @, and A is deterministic if it is both nondeterministic and
universal. The automaton A is a word automaton if |[D| = 1. Then, we can omit D from the

specification of the automaton and denote the transition function of A as § : Q@ x ¥ — BT(Q).

If the word automaton is nondeterministic or universal, then 6 : Q x ¥ — 29, and we often
extend 0 to sets of states and to finite words: for S C @, we have that §(S,e) = .S and for a
word w € ¥* and a letter o € X, we have 6(S,w - o) = §(6(S,w),0). When a C Q, we are
ometimes interested in reachability via a nonempty path that visits a. For this, we define
§o 1 29 x XF — 29 as follows. First, d,(S,0) = §(9,0) Na. Then, for a word w € +, we
define ,,(S,w - 0) = 6(d0 (S, w), o) U (6(S,w - o) N). Thus, either « is visited in the prefix
of the run that reads w after leaving S, or the last state of the run is in a. It is not hard to
prove by an induction on the length of w that for all states ¢ € @, we have that ¢ € §,(S,w)
iff there is a run from S on w that reaches ¢ and visits « after leaving S. We sometimes refer
also to word automata on finite words. There, a C @ and a (finite) run is accepting if its
last state is in a.

51:5

FSTTCS 2020

51:6

Perspective Games with Notifications

We denote each of the different types of automata by three-letter acronyms in {D,N,U,A}x
{F,B,C,P}x{W,T}, where the first letter describes the branching mode of the automaton
(deterministic, nondeterministic, universal, or alternating), the second letter describes the
acceptance condition (finite, Biichi, co-Biichi, or parity), and the third letter describes the
object over which the automaton runs (words or trees). For example, UCT stands for a
universal co-Biichi tree automaton.

3 Perspective Games with Notifications

Counsider a game graph G = (AP, Vi, Va,vo, E, 7). An information satellite for G (satellite,
for short) is finite-state machine Z = (O, 1, S, so, M, i1,142), where O and I are observation
and information alphabets, S is a finite set of states, so € S is an initial state, M : SxO — S
is a deterministic transition function, and 1,42 : S — I U {e} are information functions for
Players 1 and 2, respectively, where € ¢ I is a special letter, standing for “no information”.
We distinguish between structural satellites, where O = V', and behavioral satellites, where
O = 24P Intuitively, the satellite is executed during the play, updating its state according
to the current vertex or its label, possibly notifying the players with information in I.

» Example 1. Assume there is an atomic proposition alarm € AP. Both players can
hear whenever an alarm is activated, but they do not know for how many rounds it
is on. A satellite that informs the players about the activation of the alarm is Z =
(2lalarm} Lactivated}, S, s0, M, i1,i0), with S = {sq,s1,82}, M(s;,~alarm) = sq, for all
i €{0,1,2}, M(so, alarm) = s1, and M(s1, alarm) = M (s2, alarm) = s3. Thus, the satellite
moves to s; whenever a —alarm - alarm pattern is read, and then moves to and stays in so
as long as the alarm is on. When the alarm is deactivated, the satellite moves to sg. Also,
i1(s1) = i2(s1) = activated, and i1(sg) = i1(s2) = i2(So) = i2(s2) = . Thus, when the
satellite is in s7, it notifies both players about the activation of the alarm.

A perspective game with notifications is a tuple G = (G,Z, L) where G and L are as in
perspective games with no notifications, and Z = (O, 1, S, so, M, i1,i2) is a satellite. As
in usual perspective games, PLAYER 1 aims for a play whose computation is in L, while
PLAYER 2 aims for a play whose computation is in comp(L). Now, however, the perspectives
of the players contain, in addition to visits in their sets of vertices, also information from the
satellite. Below we formalize this intuition.

We define the function ¢ : V' — O that maps each vertex of G to the appropriate
observation alphabet letter of Z. Thus, for every v € V, we have that ((v) = v if 7
is structural, and ((v) = 7(v) if Z is behavioral. An attributed path in G is a sequence
n € (V x S)" obtained by attributing a path p = vg,v1,v2,...,v, € V* in G by the state
in S that Z visits when a play proceeds along p. Formally, n = (vo, o), (v1,81), -+, (Un, Sn)
is such that for all 1 < i < n, we have that s; = M(s;—1,((v;)). Note that first the play
proceeds from v;_1 to v;, and then the satellite reads ((v;) and proceeds accordingly. We use
Last(7) to refer to v,. Let Prefs'(G) C (V x S)* be the set of nonempty attributed prefixes
of plays in G. For j € {1,2}, let Prefsﬁ(G) = {n € Prefs’ (G) : Last(n) € V;}. For a prefix
n € Prefs’ (@), the rich perspective of PLAYER j on 7, denoted Persp‘g (n), is the restriction of n
to vertices in V;; and notifications of Z that occur in vertices not in V;. Formally, the function
info; : (V x S) — V; UI describes the information added to PLAYER j in each round. For all
(v,8) € VxS, if v € Vj, then info;((v, s)) = v; if v € V}, then info;((v, s)) = i;(s). Note that
in the latter case, it may be that i,(s) = . Thus, if n = (v, S0}, (v1,51),- -, (Un, Sn), then
Perspf(n) = info;((vo, s0)) - info;({v1, s1)) - - - info;((vn, sn)). Note that e does not contribute

0. Kupferman and N. Shenwald

letters to PerspJI-(n), and so the length of PerspJI-(n) is the number of the vertices in V; in
plus the number of vertices not in V; in which the satellite provides to PLAYER j information
in 1.

» Example 2. Consider the alarm activation satellite described in Example 1, and consider a
game graph G. Let v] and v} be vertices of PLAYER 2 with alarme7(v)) and alarmé 7(v}).
Then, the rich perspective of PLAYER 1 on the path v%, v%, v%, vg, v; v%, vg, vg, vg, v% ise,e,
reflecting the two activations of the alarm during its traversal. Now, if vI € V1, and alarm €

T(UI), then the rich perspective of PLAYER 1 on v%, U%, UI, ’Ui’, vg, vg, UI, U%, UI, Ug, U;r, vg, v%, UI

A
is vy, ®,v1,v7,0.

We denote the perspective of PLAYER j on prefixes in Prefs§(G) by PPrefsé(G); thus
PPrefs§(G) = {Perspjl(n) i € Prefst(G)}. A perspective strategy for PLAYER j (P-strategy
for short) is then a function f; : PPrefs§ (G) — V such that for all p € PPrefs§(G), we have
that (Last(n), f;(n)) € E. That is, a perspective strategy for PLAYER j maps her perspective
prefixes of plays that end in a vertex v € V; to a successor of v. The definitions of the
outcome of F or P-strategies and F or P-winning are similar to the definitions in perspective
games with no notifications, with Persp§ instead of Persp;.

» Example 3. Consider the game graph G appearing in Figure 1. For simplicity, we assume
that the atomic propositions in AP are mutually exclusive, and thus each vertex is labeled
by a letter in ¥ = {p, ¢, #, $}.

//__,:!p /} ; Uy 17

II‘Y -K /'
V# Vg $ wq| q
- \ /'
\ Vg [q Ug 4q
o o8 52

-— R o —

Figure 1 The game graph G over {p, q,#,$}. The vertices of PLAYER 1 are circles, and those of
PLAYER 2 are squares. The initial vertex is vx.

Note that whenever the token reaches vg, there are four possible sub-computations it may
generate before returning to vy; these are $-p-#,8$-¢-#,8-¢-p-#and $-¢-q- #. Let
G1 = (G, ¢1) be a perspective game with ;1 = G(((¢gAX¢q) = X X X ¢)A((gAXp) = X X Xp)).
That is, ¢ requires every ¢ - ¢ subword to be followed by a subword in X - ¢, and every
q - p subword to be followed by X - p. It is easy to see that PLAYER 1 cannot (P, F')-win
G1, because she is unable to distinguish between the different possible sub-computations,
and thus every P-strategy of hers chooses the same successor of vy for all four cases. Now
consider the perspective game with notifications G; = (G, Z1, p1) where Z; is a structural
satellite that notifies PLAYER 1 whenever a visit in w, occurs. The information from the
satellite restricts the possibilities; when PLAYER 1 gets a notification, she knows that the
last sub-computation is $ - ¢ - ¢ - #. When she does not get a notification, she knows that the
last sub-computation is one of the other possibilities. Therefore, PLAYER 1 (P, F)-wins Gf,
as she can distinguish between the sub-computations $-¢-¢-# and $-¢-p- #, and can
choose the successor of vy after each visit in it in a way that satisfies ¢;.

51:7

FSTTCS 2020

51:8

Perspective Games with Notifications

Let Go = (G, p2) be a perspective game with s = G((($ A Xp) = XX Xp) A ((¢ A
Xp) = XX Xq)). Again, PLAYER 1 cannot (P, F)-win G5. Now consider the perspective
game with notifications G5 = (G, Zs, v2), where Ty is a behavioral satellite that notifies
PLAYER 1 whenever the computation generated so far is a word in the regular language
(p+q+#+9%)"-$-p. Now, when PLAYER 1 gets a notification, she knows that the last
sub-computation is $ - p - #, and when she does not get a notification, she knows that the
last sub-computation is one of the other possibilities. Therefore, PLAYER 1 (P, F')-wins Gj.
Indeed, PLAYER 1 can distinguish between the sub-computations $-p-# and $-q-p - #,
and can choose the successor of vy after each visit in it in a way that satisfies ¢o.

Note that PLAYER 1 cannot P-win the games (G, 71, p2) and (G, Zs, ¢1). Indeed, Z; does
not enable PLAYER 1 to distinguish between the sub-computations $-p-# and $-¢-p-#, and
Z> does not enable PLAYER 1 to distinguish between the sub-computations $ - ¢ - ¢ - # and
$-q-p-#. Therefore, in both games, a P-strategy of PLAYER 1 chooses the same successor
of v in these undistinguishable cases.

Example 3 shows that, as is the case in perspective games with no notifications [8],
P-strategies with no notifications are weaker than P-strategies with notifications, which are
weaker than F-strategies. It also shows that perspective games with notifications are not
determined. That is, there are perspective games with notifications where both PLAYER 1
and PLAYER 2 do not have P-winning strategies. Also, the visibility type of PLAYER 2 does
not matter. Essentially, it follows from the fact that if a perspective strategy of PLAYER 1
loses against an F-strategy fo of PLAYER 2, then it also loses to a P-strategy of PLAYER 2
that is induced from f5. The formal proofs of the above properties are similar to the case of
perspective games with no notifications [8] and we leave them to the full version.

Since the visibility type of PLAYER 2 does not matter, we can omit it from our notation
and talk about PLAYER 1 P-winning a game. Also, specifying satellites, we remove the
function i from their description.

4 Deciding Perspective Games with Notifications

Consider a game G = (G,Z, L), for a game graph G = (AP, V1, V5, v0, E, 7) and a satellite
7 =1(0,1,85,s0,M,iy). For a regular expression R over the alphabet V, an R-path from v
is a finite path vy,...,vx € L(R) in G such that v; = v. For a subset X C V| an X“-path
from v is an infinite path vy, vs,... € X¥ in G with v; = v. Note, for example, that when
PLAYER 1 moves the token to a vertex v € Vs, the token may traverse a (V5" - V;)-path p
from v, in which case it returns to V; in Last(p), or it my traverse a Vi’-path from v, in
which case it never returns to a vertex in V;. For a regular expression R over the alphabet
V x S, an R-path from (v, s) is an attributed path (vq,s1),..., (vg, sk} € L(R) in G with
vy = v and s; = s. For such a path p, we denote its projections on V" and S by p|, and p|,,
respectively.

Consider the satellite Z. For o € I U {e}, we denote by S, the set of states in Z in which
PLAYER 1 is notified 0. That is, Sy = {s € S : i1(s) = o}. Then, S; = {J,; 5o is the set of
states in which PLAYER 1 is notified some information. Equivalently, St = S\ S..

We focus on games in which the winning condition L is given by a UCW. For simplicity,
we denote them by G = (G, Z,U), for a UCW U. Let U = (247 Q, qo, 6,) In order for
PLAYER 1 to P-win G, her objective in the beginning of the game is to force a token that is
placed in vy into computations that i/ accepts from ¢y with the satellite being in state sq.
We can describe this objective by the triple (vg, qo, So). As the play progresses, the objective
of PLAYER 1 is updated. Moreover, as I is universal, the objective may contain several such
triples. Below we formalize this intuition.

0. Kupferman and N. Shenwald

Consider a UCW U = (247 Q, qo, 5, @), a state ¢ € @, and a state s € S. Suppose that
the token is placed in some vertex v € V7, the objective of PLAYER 1 is to force the token
into computations in L(U7), and the satellite is in state s after seeing ((v). Assume further

that PLAYER 1 chooses to move the token to a successor v’ of v and that s' = M (s, ((v")).

We distinguish between two cases.
1. v' € V4. Then, the new objective of PLAYER 1 is to force the token in v into computations

in LU, for all states ¢’ € 6(q,7(v)), with the satellite being in state s'.

2. v' € V5. Then, there are three cases:

a. There is a Vy*-path p from v with 7(p) ¢ L(U9) for some ¢’ € 6(q, 7(v)). We then say
that v" is a trap for (v,q). Indeed, PLAYER 2 can stay in vertices in V5 and force the
token into a computation not in L(14¢'). Note that once PLAYER 1 chooses a vertex
that is a trap for (v, ¢), PLAYER 2 has a strategy to win the game.

b. v’ is not a trap for (v, q), yet there is no (Vo1 - V})-path from v'. That is, all paths
from v’ stay in vertices in V5 and are in L(U9) for all ¢ € 6(q,7(v)). We then say
that v’ is safe for (v,q). Indeed, PLAYER 2 stays in vertices in V5 and all the possible
plays induce a computation in L({/?). Note that once PLAYER 1 chooses a safe vertex
for (v, q), her objective is fulfilled regardless of the stragety of PLAYER 2.

c. v’ is neither a trap nor safe for (v,), in which case:

i. For every (Vo x Sc)T - (V1 x S)-path p- (v",s”) from (v',s’) PLAYER 1 should
force a token that is placed in v” into computations in L(U4?), for all states
q € (g, 7(v-p|,)), with the satellite being in state s”. Note that for all (9, §) along
p, we have info, ({0, 8)) = ¢, and so the visit in v” is the first event that PLAYER 1
observes after placing the token in v’.
ii. For every (Va x S.)*-(Va x Sy)-path p- (v, s") from (v, s’), PLAYER 1 should force
a token that is placed in v” with the satellite being in state s’ into computations
in LU?), for all states ¢ € d(¢q,7(v - p|,))). Note that for all (§,3) along p, we
have info, ((,8)) = e, and so i;(s”) is the first event that PLAYER 1 observes
after placing the token in v’. Also note that p might be empty, in particular when
PLAYER 1 moves the token to a vertex in V5 that invokes a notification of Z. In
this case, (v, sy = (v",s").
The above analysis induces the definition of updated objectives: Consider a triple (v, g, s) €
Vi x Q x S, standing for an objective of PLAYER 1 to force a token placed on v to be
accepted by U9 with the satellite being in state s. For a successor v’ of v, we define the
set Si’j:q,s C(VxQxS8x{L,T}) U{false} of objectives that PLAYER 1 has to satisfy
in order to fulfil her (v, ¢, s) objective after choosing to move the token to v'. Also, for a
triple (v,q,s) € Va x Q x S, we define the set S, ;s CV x Q xS x {L, T} of objectives
that PLAYER 1 has to satisfy in order to fulfil her (v, g, s) objective for every successor that
PLAYER 2 might choose for v. In both cases, the {1, T} flag in the objectives is used for
tracking visits in a: an updated objective (v”,¢’,s"”,¢) € S;’:q’s has ¢ = T if PLAYER 2 can
force a visit in a when U runs from ¢ to ¢’ along a word that labels a path from v via v’
to v”.
Formally, for a triple (v,q,s) € V x Q x S we define the set of updated objectives as
follows. Let s' = M(s,{(v")).
1. If v € V4 and E(v,v’), we distinguish between three cases.

a. If v/ is a trap for (v, q), then S:jj%s = {false}.
b. If v/ is safe for (v,q), then Sﬁ:qﬁs =0.
c. Otherwise, a tuple (v”,¢’, s”,¢) is in Sfj:q,s iff one of the following holds.

i.veV, v =v,q¢ €d(q,7(v)), and s” =s'. Then, c=T iff ¢ € a.

51:9

FSTTCS 2020

51:10 Perspective Games with Notifications

ii. v' € Vs, and there is an (Vo x S.)T - (V4 x S)-path p- (v, s"”) from (v', s’} such that
q €6(q,7(v-p|,)). Then, ¢ = T iff there is an (Vo x S¢)* - (V4 x S)-path p- (v",s")
from (v',s’) such that ¢’ € da(q, 7(v - p|,)).
iii. v’ € V3, and there is an (V3 x So)* - (Vo x Sy)-path p - (v”,s") from (v',s’) such
that ¢ € §(¢, 7(v - p|,)). Then, ¢ = T iff there is an (V5 x So)* - (Vo x Sy)-path
p- (v, 8") from (v/, ") such that ¢ € d4(q, (v - pl,)).
2. If v € Va, a tuple (v”, ¢/, s",¢) is in S, 4 5 iff one of the following holds.

a. There is an (Vo x S.)"+ (V4 x S)-path p- (v, s") from (v, s) such that ¢’ € 6(q, 7(v-p|,))-
Then, ¢ = T iff there is an (Vo x S¢)* - (V4 x S)-path p- (v, s"”) from (v, s) such that
¢ € 6alg, (0 pl,)).

b. Thereis an (Vo xS.)*-(Va x.Sy)-path p-(v”, s”) from (v, s) such that ¢’ € d(q, 7(v-pl,))-
Then, ¢ = T iff there is an (V3 x S¢)* - (Vo x Sp)-path p- (v”,s") from (v, s) such that
¢ € 6alg, (0 pl,)).

The notion of updated objectives is the key to our algorithm for deciding P-winning in
perspective games with notifications. Recall that a perspective strategy for PLAYER 1 is a
function f; : PPrefs; (G) — V such that for all p € PPrefs; (G), we have that (Last(p), f1(p)) €
E, where PPrefs;(G) contains words in V3 U I that end with a vertex in V3. Accordingly, we
describe a strategy for PLAYER 1 by a (V U {©})-labeled (V7 U I)-tree, where the letter ©
label nodes = € PPrefs; (G), namely nodes z € (V3 UI)* - I. Formally, a (V U {©})-labeled
(Vi UI)-tree (V1 UI)* n) is a P-strategy of PLAYER 1 if for all p € (V; UI)* and v € V7,
we have that n(p - v) = v’, where v/ € V is such that E(v,v’), and for all ¢ € I we have
that n(p - o) = ©, indicating PLAYER 1 does not move the token when she receives the o
notification, and just keeps this notification in mind.

» Theorem 4. Let G = (G,Z,U) be a game with notifications, where G is a game graph,
T =1(0,1,8,s0,M,i1) is a satellite, and U is a UCW. We can construct a UCT Ag over
(V U {o})-labeled (Vi U I)-trees such that Ag accepts a (V U {Q})-labeled (Vi U I)-tree
((VuD)*n) iff (Vi UI)* n) is a winning P-strategy for PLAYER 1. The size of Ag is
polynomial in |G|, |Z|, and |U|.

Proof. Let U = (24%,Q, qo, 6,). We define Ag = (V U{S},V1 UL, Q’, g}, ¢, '), where:
1. @' =V xQxSx{L, T}. Intuitively, when Ag is in state (v, g, s, c) it accepts strategies
that force a token placed on v into a computation accepted by U? with the satellite being
in state s. The flag c is used for tracking visits in a.
2. g4 = (vo, g0, S0, L)-
3. The transitions are defined, for all states (v,q, s,c) € V1 x Q x S x {L, T}, as follows.
a. If v € Vq, then ¢'({v,q, s,c),®) = false, and for every v’ € V we have the following
transitions.
i. If Sg:q,s = {false} or ~E(v,v’), then ¢'({v,q, s, c),v") = false.
i. If S}j:q,s = (, then ¢'((v, q, s, c),v") = true.

iii. Otherwise, §'({v,q, s,c),v") =

A WL EDA N), W),

’ ’
<v",q’75”70’)65",(1,5:1)”6V1 <U”,q/,S”7C'>ESZ,’,qYS3’U”6V2

v

b. If v € V&, then for all v € V| we have that §'({v, q, s, ¢),v") = false.
Also, ¢'((v,¢,5,¢),0) =

/\ (11”, <v”,q’,s”,c’>) A /\ (il(S'/), <U”,q/,5//,C/>).

{(v",q’,8" ,c')ESy,q,s:0""EVL} {(v",q’,8" ,c'VESy,q,s:0""EVa}

0. Kupferman and N. Shenwald

Thus, for every updated objective (v” ¢, s”, ¢}, the automaton Ag sends a copy in state
(W",q', 8",y to direction v” if v" € V4, and to direction i, (s”), if v" € V4. Note that
several updated requirements may be sent to the same direction. In particular, in addition
to multiple copies sent to the same direction due to universal branches in i/, a direction
o € I may “host” updated objectives associated with different vertices in V5. Intuitively,
such vertices are indistinguishable by PLAYER 1.

4. o/ =V x@Q x S x{T}. Recall that a T flag indicates that PLAYER 2 may reach the
Q-element in an updated objective traversing a path that visits . Accordingly, the
co-Biichi requirement to visit « only finitely many times amounts to a requirement to
visit states with T only finitely many times. |

Theorem 4 gives us an upper bound on the problem of deciding whether PLAYER 1 P-wins
a perspective game with notifications.

» Theorem 5. Deciding whether PLAYER 1 P-wins a perspective game with notifications
G = (G, Z,U), for a UCW U, is EXPTIME-complete, and can be solved in time polynomial
in |G| and |Z|, and exponential in |U|.

Proof. Let G = (G,Z,U) and Z = (O, 1,5, 59, M,i1). By Theorem 4, we can construct a
UCT Ag over (V U{9})-labeled (V7 U I)-trees such that L(Ag) is not empty iff there is a
winning P-strategy for PLAYER 1 in G. The size of Ag is polynomial in |G|, |Z| and [U].

We construct an NBT Ag over (V U {©})-labeled (V; U I)-trees such that L(Ag) is not
empty iff there is a winning P-strategy for PLAYER 1 in G. The size of Ag is polynomial in
|G| and |Z|, and is exponential in |U/|. As has been the case in the setting with no notifications
8], the transformation from Ag to Aj uses the fact that Ag is deterministic in the V' and
S components, in order to generate, following the construction of [10], an NBT that it is
polynomial in |G| and |Z| and exponential only in |I/|. Since the nonemptiness problem for
an NBT can be solved in quadratic time, the specified complexity follows.

Since perspective games with notifications are a special case of perspective game (tech-
nically, with a satellite that only outputs €), EXPTIME-hardness of the former implies an
EXPTIME lower bound for our setting. |

Since an LTL ¢ formula can be translated to a UCW U, with an exponential blow up
(for example, by translating — to an NBW [17], and then dualizing the NBW), Theorem 5
implies a 2EXPTIME upper bound for perspective games with notifications in which the
winning condition is given by an LTL formula. Also, as has been the case in [8], it is possible
to refine the {1, T} flag in the updated objectives to maintain the minimal parity color that
is visited, and adjust the construction to games in which the winning condition is given by a
UPW. The complexity stays exponential in the automaton. Formally, we have the following.

» Theorem 6. Deciding whether PLAYER 1 P-wins a perspective game with notifications
G =(G,Z,U), for a UPW U, is EXPTIME-complete, and can be solved in time polynomial
in |G| and |Z|, and exponential in |U|.

Proof. The updated objectives defined for the case where the winning condition is given by
a UCW contain a flag that records visits in the co-Biichi condition. When ¢/ is a UPW with
k colors, we define the flag such that it records the minimal color visited instead. That is,
S Sv.qs C(V xQ xS x{l,..,k})U{false}, is such that for every updated objective

v,q,8? =

W".q,s",c)eSY, U Su,q,5» PLAYER 2 can force a path from v (via v’) to v” in which the

v,4,5

51:11

FSTTCS 2020

51:12

Perspective Games with Notifications

minimal color visited in the run of U/ along it from ¢ to ¢’ is c. We then use a construction that
is similar to the one in the proof of Theorem 4 to construct a UPT Ag over (VU{@})-labeled
(V4 U I)-trees such that L(Ag) is not empty iff there is a winning P-strategy for PLAYER 1
in G. The size of Ag is polynomial in |G|, |Z| and |U|.

By [10], APT emptiness can be reduced to UCT emptiness with a polynomial blow up.
From there, determinizm in the V-component implies the required complexity. |

5 Examples of Information Satellites

Consider a game graph G = (AP, V1, V5, v9, E, 7). Recall that a structural satellite for G
is a satellite Z = (O, I, S, sg, M, i1) with O = V. Thus, the satellite can view the state in
which the play is, and can decide about outputs to PLAYER 1 based on this visibility. Then,
a behavioral satellite for G has O = 24P, Thus, the satellite can only observe the labels of
vertices, and its outputs to PLAYER 1 are based only on these labels. In this section we
describe some natural structural and behavioral satellites.

5.1 Structural Information Satellites

A visible subset of vertices. As discussed in Section 1, in some settings there is a subset
of vertices I; C V5 such that PLAYER 1 is notified whenever the play visits a vertex in I.
Then, the satellite is (V, I, V,vo, M, i1), where for all v,u € V, we have that M (v,u) = u,
i1(v) =wvifv € I, and i1 (v) = &, otherwise. Thus, the state of the satellite follows the vertex
of the game, and it produces an output during visits in I;. Note that PLAYER 1 is notified
not only about visits in I, but also about the specific vertex that is visited. Alternatively, we
could define the satellite with output in only, i;(v) = inif v € I, and 41 (v) = &, otherwise.
Here, PLAYER 1 is notified that some vertex in I; has been visited, with no information
about which vertex it is.

Observation-based uncertainty. Assume that there is a subset of the atomic propositions
AP, C AP, such that PLAYER 1 observes the assignments to AP; in PLAYER 2’s vertices.
A corresponding satellite is (V, 2AP1,V,110,M,Z'1>, where for all v,u € V, we have that
M(v,u) = u, i1(v) = 7(v) N APy if v € Vi, and i1 (v) = ¢, otherwise. Note that this case
combines the transverse visibility of perspective games with the longitudinal visibility in
observation-based games. Indeed, when the token is in PLAYER 2’s vertices, PLAYER 1’s
visibility is observation based. In particular, PLAYER 1 knows the number of vertices visited,
yet cannot distinguish between paths that differ only in assignments to atomic propositions
in AP\ AP;. Tt is not hard to see that when AP, = AP, then, as the winning condition is
behavioral (that is, refers to AP rather than to V'), the setting coincides with games with
full visibility. Also, note that even though the notifications of the satellite are in 247, we
could not define it as a behavioral information satellite.

Visible switches among regions. Assume that the vertices in V5 is partitioned into disjoint
regions Vi, ..., V. For example, the regions may correspond to modules or procedures. If
PLAYER 1 is notified upon entry to the different regions, then the corresponding satellite is
(V. {1,...,k}, S, (v, 0), M,i1), where S = (V4 x {o}) U (V5 x {0, e}). Thus, the state space
of the satellite has one copy of the vertices in V7 and two copies of the vertices in PLAYER 2.
Then, M and i are as follows. For a vertex v € V3, let reg(v) be the region of v; thus
vE Vgreg(v). Then, for all v,u € V and j € {o, e}, we have that M ({v,j),u) = (u,0) if u € V}
or reg(v) = reg(u), and M ({v, j),u) = (u, e) if reg(v) # reg(u). Also, for every (v,j) € S we

0. Kupferman and N. Shenwald

have that i1 ((v, j)) = reg(v) if j = o, and i1({v, j)) = €, otherwise. As in the case of a visible
subset of vertices, the satellite can notify PLAYER 1 only about a switch in a region, without
specifying which region it is. Then, the satellite has only output e, and i1 ({v,j)) = e if j = e,
and 41 ((v, j)) = €, otherwise. Note that in both case, PLAYER 1 is not notified about the
number of rounds that PLAYER 2 is spending in each region, and only about switches among
them.

An interesting variant of the above is a satellite that notifies PLAYER 1 whenever
PLAYER 2 loops in a vertex. Note that this is a special case of the above, where each
vertex of V, has its own region, with a dual {o, e} notification. Namely, we let PLAYER 1
know when there is no change in the region. Then, the satellite is (V, {e}, .S, (vg,0), M, 1),
where 7; is as above, yet for every v,u € V and j € {o, e}, we have that M ((v, j),u) = (u, o)
ifueVyorwv+#u, and M({v,j),u) = (u,e), otherwise.

5.2 Behavioral Information Satellites

Visible regular properties. Assume there is a property, given by a regular language R over
24P "such that PLAYER 1 is notified whenever the computation generated since the beginning
of the play is in R. For example, if AP = {p, q}, the property may be true* - p- (=q)", thus
we want to notify PLAYER 1 whenever a vertex satisfying p has been visited with no visit in
a vertex satisfying ¢ following this visit. Then, if Ag = (247 S 59, M, F) is a DFW that
recognizes R, an appropriate satellite is Z = (247, {e}, S, M (sq7(vg)), M, i1), where for every
s € S, we have that i1(s) = e if s € F', and i1(s) = ¢, otherwise. Note that the initial state
of the satellite is the state of Ar after reading the label of vy. Indeed, notifications inform
PLAYER 1 about the membership of the computation up to (and including) the vertex where
the token visits. A useful special case of regular properties are these of the form true* - R,
for a regular language R over 24¥. Thus, PLAYER 1 is notified whenever the computation
generated since the beginning of the play has a suffix in R. As we discuss in Section 6,
handling of the two types of notifications is of different complexity.

The above can be generalized to multiple regular languages Ry, . . ., Ry over 247 where for
every 1 <i <k, PLAYER 1 is notified whenever the computation generated since the begin-
ning of the play is in R;. Indeed, if for every 1 <14 < k, the DFW A; = (2475, s9 M;, F;)
recognizes R;, then an appropriate satellite is 7 = <2AP,2{'1"“7"°},S, sY, M, i), where
S =81 %8y x xSy, ¥ = (M(s9,7(v0)), ..., Mi(s?,7(vg))), the transitions are as in a
usual product of automata, and for every (s1, s2,...,s5) € S and 1 < i < k, we have that
o, €i1({s1,82,...,8,)) iff s; € F;.

A clock. A clock notifies PLAYER 1 how many vertices of PLAYER 2 are visited between
visits in her own vertices. This is done by a behavioral satellite for the regular language
R = (24P)". Indeed, then, PLAYER 1 is notified in every step.

6 Complexity for the Different Satellites

Recall that the complexity of deciding a game depends on the size of the satellite. Formally,
for a satellite T = (O, I, S, sg, M, i1,12), the state space of the NBT whose nonemptiness we
check in Theorem 5 is a product of S with other parameters. In this section we study the
size of different satellites, and the way it affects the complexity.

We start with structural satellites. It is easy to see that the structural satellites described
in Section 5.1 are such that S =V or S =V x C, for some constant set C. Moreover, since
the satellite follows the play (formally, in all states of the UCT constructed in Theorem 4,

51:13

FSTTCS 2020

51:14

Perspective Games with Notifications

the V-component agrees with the V-component of S. Accordingly, we don’t need the V-
component in the state space and can maintain C only. In other words, the state space of
Ag can be redefined as V x @ x C x {L, T}, and the complexity of the decision problem is
reduced accordingly.

We continue to simple behavioral satellites. One is the clock from Section 5.2, which
involves a satellite with a single state, leading to Ag with state space V x @ x {1, T},
and a simpler definition of updated objectives. Another easy special case are propositional
satellites, which notify PLAYER 1 whenever the play visits a vertex v such that 7(v) = 6,
for an assertion 6 over AP. Indeed, for such notifications we need a two-state satellite.
We note that in both cases, EXPTIME-hardness of the game is valid. While the case of
propositional satellites this follows by an easy reduction from the case of perspective games
with no notifications, for the case of clocks such a reduction is impossible. Nevertheless, since
the game constructed in the reduction in the lower-bound proof in [8] alternates between V;
and V5, the result applies also in the clock setting.

Our focus in this section is general behavioral satellites. Consider a regular language
R. We distinguish between the case where the satellite notifies PLAYER 1 whenever the
computation since the beginning of the game is in R (termed single-track satellites, as they
follow a single computation), and the case where the satellite notifies PLAYER 1 whenever a
suffix of the computation is in R, or equivalently, whenever the computation is in true* - R
(termed multi-track satellites, as they follow all suffixes of the computation). Analyzing
the complexity of games with behavioral satellites, we assume a game is given by a tuple
G = (G, Ag,U,t), where G and U are the game graph and winning condition, Ag is the pattern
automata, namley the automata describing a regular property R, and t € {SINGLE, MULTI},
is a flag indicating whether the satellite is single- or multi-track.

» Theorem 7. Deciding whether PLAYER 1 P-wins in a game G = (G, Ag,U,t) can be
solved in time polynomial in |G|, exponential in |U|, and
polynomial in |Ar| when t = SINGLE and Ag is a DFW.

exponential in |Agr| when t = MULTI or Agr is an NFW. Moreover, the problem is
EXPTIME-complete already for a fixed-size U.

Proof. The upper bounds follow from Theorem 5, and the fact we can generate from Ag a
satellite with no blow-up when ¢t = SINGLE and Ag is a DFW, and a satellite exponential
in Agr when ¢ = multi or Ar is an NFW. Note that when ¢ = MULTI, we first add to Ar a
true® self-loop leading to the initial state, which makes it nondeterministic.

We continue to the EXPTIME lower bound, and start with the case t = SINGLE and Ag
is an NFW. We describe a reduction from linear-space alternating Turing machines (ATM).
An ATM is a tuple M = (Qe, Qu, T, A, ¢init, Qaces @rej), Where T is the alphabet, Q. and @,
are finite sets of existential and universal states, and we let Q = Q. U Q.. Then, ¢init, qace,
and g¢,; are the initial, accepting, and rejecting states, respectively. In the membership
problem, we get as input an ATM M and a word w € I, and we decide whether M accepts
w. The membership problem is EXPTIME-hard already for M of a fixed size, and when A
has a binary branching degree and alternates between existential and universal states, Thus,
AC(QexT' x QuxT Xx{L,R})U(Qu xT x Q. xT x {L,R}).

A configuration of M on w = wy,...,w, describes its state, the content of the working
tape, and the location of the reading head. Assume s: N — N is a linear function such that
the number of cells used by the working tape in every configuration of M on its run on w
is bounded by s(n). We encode a configuration of M by a string #vy1v2 - (¢,7) - Vs(n)-
That is, a configuration starts with #, and all its other letters are in I', except for one letter

0. Kupferman and N. Shenwald

in @ x I'. Then, M is in state g, the content of the j-th tape cell is 7;, and the reading head
points at cell i. We say that the configuration is existential if ¢ € Q. and that it is universal
if ¢ € Q. The initial configuration of M on w, is then #(ginit, w1) « ... - Wy, - Lsm)=nfor
the special letter , € I'. We also assume that the initial configuration is existential. If the
current state is guce Or grej, then the configuration is final and has no successors. Otherwise,
the successors of a configuration #vy17y2...(¢,7i), - - - ;Ys(n) are determined by A.

Given an ATM M and a word w € I'*, we construct a game G = (G, Ag,U, SINGLE) such
that PLAYER 1 P-wins G iff M accepts w. The size of U is fixed, and G and Ag are of size

linear in s(n), for n = |w|. The details of the reduction can be found in the full version.

Below we describe the key ideas in it.

Essentially, PLAYER 1 generates a legal accepting computation in the computation tree
of M on w. Thus PLAYER 1 chooses successors in existential configurations, and PLAYER 2
chooses successors in universal ones. The challenging part of the reduction is to guarantee
that the sequence of configurations generated is a legal computation, and to do it with
a fixed size winning condition. Recall that we encode a configuration of M by a string
#1v2 - (¢,7) -+ Vsm)- When U is polynomial, it is easy to relate letters in the same address

in successive configurations, making sure that the transition function of M is respected.
When U is of a fixed size, it is not clear how to do it, as such letters are s(n)-letters apart.

The key idea is to use A in order to do the required counting: We let PLAYER 2 choose an

address k € {1,...,s(n)} and challenge PLAYER 1 by raising a flag whenever the address is k.

The winning condition U checks that the transition function of M is respected whenever the

flag is raised, which forces PLAYER 1 to respect the transitions function of M in address k.
Moreover, since PLAYER 1 does not know k, she has to always respect the transition function.

The above mechanism is not sufficient, as PLAYER 2 may try to fail PLAYER 1 by raising the
flag maliciously, that is, not sticking to one address k. This is where the notifications enter

the picture: the language R detects malicious flag raises and notifies PLAYER 1 about them.

For this, Ar has to count to s(n), but this is allowed, and enables U to skip the counting. In

addition, U restricts the check of PLAYER 1 only to ones in which the flag is raised properly.

Then, when ¢ = MULTI and Ap is a DFW (or NFW), the reduction is similar and is based
on the fact that the only nondeterminism in A above is in guessing malicious flag raises,
namely raises that are not s(n) letters apart. Such a behavior can be specified by a regular
expression true” - R for R that can be described by a DFW of size polynomial in s(n). <

—— References

1 S. Agarwal, M. S. Kodialam, and T. V. Lakshman. Traffic engineering in software defined
networks. In Proc. 32nd IEEE International Conference on Computer Communications, pages
2211-2219, 2013.

2 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49(5):672-713, 2002.

3 D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Strategy construction
for parity games with imperfect information. Information and Computation, 208(10):1206-1220,
2010.

4 R. Bloem, K. Chatterjee, and B. Jobstmann. Graph games and reactive synthesis. In Handbook
of Model Checking., pages 921-962. Springer, 2018.

5 K. Chatterjee and L. Doyen. The complexity of partial-observation parity games. In Proc.

16th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning, pages 1-14.

Springer, 2010.
6 K. Chatterjee, L. Doyen, T. A. Henzinger, and J-F. Raskin. Algorithms for w-regular games
with imperfect information. In Proc. 15th Annual Conf. of the European Association for

51:15

FSTTCS 2020

51:16

Perspective Games with Notifications

10

11
12

13

14
15

16

17

Computer Science Logic, volume 4207 of Lecture Notes in Computer Science, pages 287-302,
2006.

D. Fisman and O. Kupferman. Reasoning about finite-state switched systems. In 5th
International Haifa Verification Conference, volume 6405 of Lecture Notes in Computer
Science, pages 71-86. Springer, 2009.

O. Kupferman and G. Vardi. Perspective games. In Proc. 34th IEEE Symp. on Logic in
Computer Science, pages 1-13, 2019.

O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in
Temporal Logic, pages 109-127. Kluwer Academic Publishers, 2000.

O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531-540, 2005.

D. Liberzon. Switching in Systems and Control. Birkhauser, 2003.

Y. Lustig and M.Y. Vardi. Synthesis from component libraries. Software Tools for Technology
Transfer, 15(5-6):603-618, 2013.

M. Margaliot. Stability analysis of switched systems using variational principles: an introduc-
tion. Automatica, 42(12):2059-2077, 2006.

D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363-371, 1975.

B. Puchala. Asynchronous omega-regular games with partial information. In 35th Int. Symp.
on Mathematical Foundations of Computer Science, pages 592—-603. Springer, 2010.

J.H. Reif. The complexity of two-player games of incomplete information. Journal of Computer
and Systems Science, 29:274-301, 1984.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1-37, 1994.

	Introduction
	Preliminaries
	Perspective games
	Automata

	Perspective Games with Notifications
	Deciding Perspective Games with Notifications
	Examples of Information Satellites
	Structural Information Satellites
	Behavioral Information Satellites

	Complexity for the Different Satellites

