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Abstract
We generalize the notions of the degree and composition from uniquely decipherable codes to
arbitrary finite sets of words. We prove that if X = Y ◦ Z is a composition of finite sets of words
with Y complete, then d(X) ≤ d(Y ) · d(Z), where d(T ) is the degree of T . We also show that a
finite set is synchronizing if and only if its degree equals one.

This is done by considering, for an arbitrary finite set X of words, the transition monoid of
an automaton recognizing X∗ with multiplicities. We prove a number of results for such monoids,
which generalize corresponding results for unambiguous monoids of relations.
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1 Introduction

Let X be a set of finite words. The set X∗ of all concatenations of words in X (often called
the Kleene star of X) plays an important role in formal languages theory and its applications.
The set X often represents a dictionary or a code transmitted over a channel, so the case
where X is finite is especially important. In general, a word in X∗ can have several different
factorizations over X, and it is useful to understand the relations between them. A word w
is called synchronizing for X if for any words u, v such that uwv ∈ X∗ we have uw,wv ∈ X∗.
In particular, we get that any word in X∗ containing ww as a factor, that is, any word of the
form uwwv, has a factorization where uw and wv are both in X∗, and thus can be factorized
separately. A set which admits a synchronizing word is also called synchronizing. A set X is
called complete if every word over the same alphabet occurs as a factor of a word in X∗.

Synchronizing words are studied a lot for uniquely decipherable codes (see e.g., Chapter
10 of [3]). A set X of words is called a uniquely decipherable code (often also called a variable
length code) if every word has at most one factorization over X. Such codes play a crucial
role in the theory of data compression and transmission [3].

Provided a set Z of words such that X ⊂ Z∗, one can rewrite X using Z as the alphabet,
thus resulting in a new set Y . The representation X = Y ◦ Z is then called a decomposition
of X, and the converse process of obtaining X is called composition. Decomposition of a
set allows to represent it by using simpler sets as building blocks, while preserving many
properties of the initial one. Conversely, compositions of codes allow to construct more
complicated codes by using simple ones, so they are interesting on their own. In particular,
the composition of two uniquely decipherable codes is again a uniquely decipherable code [3].
For any injective morphism α : A∗ → B∗, α(A) is a code, and each code can be obtained as
the image of A for some A and α [3]. Compositions of codes are then nothing more than

© Dominique Perrin and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominique.perrin@esiee.fr
https://orcid.org/0000-0002-2031-2488
mailto:ryzhikov.andrew@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.54
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


54:2 The Degree of a Finite Set of Words

compositions of injective morphisms between free monoids. The notion of composition of two
arbitrary finite sets of words is also natural as it corresponds to the composition of arbitrary
morphisms.

Our contributions. In this paper, we transfer the notions of composition, degree and
group from uniquely decipherable codes to arbitrary finite sets of words. This extends the
presentation of [3] made for uniquely decipherable codes.

Provided a finite set X of words, we associate a special automaton A (called the flower
automaton) recognizing X∗ with multiplicities. Let S be the set of fixed points of an
idempotent e of minimum rank in the transition relation of A, and Γ be the set of strongly
connected components of S. We consider a permutation group Ge acting on Γ. We show that
all such groups are equivalent for idempotents of minimum rank (Theorem 20). Moreover, we
show that for a given X all these groups are equivalent for any trim automaton recognizing
X∗ with multiplicities (Proposition 21). Thus this group is an invariant of a set. We introduce
the degree d(X) of X, which is the minimum rank of elements in the transition monoid of A.
We then show that synchronizing sets are exactly sets of degree one (Proposition 22). As our
main contribution, we use the obtained results to show that for a composition X = Y ◦ Z of
two finite sets Y, Z such that Y is complete we have d(X) ≤ d(Y ) · d(Z) (Theorem 24).

For a finite set X, all these results were previously known only for the special case
of X being a uniquely decipherable code with the equality d(X) = d(Y )d(Z) instead of
an inequality [3]. Our generalization to the case of an arbitrary finite set requires more
complicated proofs. In particular, for uniquely decipherable codes it is enough to consider
a trim unambiguous automaton recognizing X∗ (which is a cornerstone of the theory),
while in our case we need a trim automaton recognizing X∗ with multiplicities. Intuitively,
such automata count the number of factorizations over X, and thus they are unambiguous
when X is a uniquely decipherable code. The technical difficulties then begin with the
replacement of unambiguous monoids of relations by arbitrary monoids of relations. Indeed,
the multiplication of matrices there is different from the result over the Boolean semiring. In
particular, the representation of maximal subgroups by permutations is still possible but
more complicated.

Motivation and related results. Larger classes of codes are considered both in theory and
in practice. Particular examples include multiset and set decipherable codes. A set X of
words is called a multiset [10] (respectively, set [13]) decipherable code if every factorization
of a word into codewords provides the same multiset (respectively, set) of codewords. Such
codes are used if one needs to transmit only the frequencies (or the fact of occurrences)
of elements, but the order of these elements does not matter. Lempel [13] reports online
compilations of inventories, construction of histograms, or updating of relative frequencies as
particular examples. An important property of multiset decipherable codes is that there exist
examples of such codes with Kraft-McMillan sum more than one, which shows that such
codes can be more efficient than uniquely decipherable codes [18]. An even wider class is that
of numerically decipherable codes, which are sets with the property that every factorization of
a word over such set has the same number of codewords [21]. A similar setting of multivalued
encodings allows to have several different codewords for the same symbol [4]. In view of that,
the transit of results from uniquely decipherable codes to arbitrary sets is interesting.

Another motivation for studying factorizations of words in X∗ for an arbitrary finite set X
is the area of static dictionary compression, where one looks for some specific factorization
of a text over some finite dictionary [1]. The dictionary does not have to be a uniquely
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decipherable code, thus a text can have several different factorizations. In this case, it is
useful to know the relation between different factorizations. The parallel version of this
problem is also considered [15]. In [6] a fast algorithm for checking if a given word w belongs
to X∗ is suggested. If the answer is positive, it also provides a factorization of w over X.

Only few results are known about decompositions and synchronization of arbitrary sets
of words. The defect theorem states that every finite set of words which is not a uniquely
decipherable code can be decomposed over a set of smaller size [2]. A survey of different
generalizations of this theorem is presented in [11]. Synchronization in arbitrary monoids
was studied in [5] and [7]. Other properties of factorizations are studied in [17, 20].

Organization of the paper. To transfer the results from uniquely decipherable code to
arbitrary finite sets of words, we first set a correspondence with an adequate class of automata,
namely automata recognizing with multiplicities (Sections 2 and 3). Then we introduce the
notion of a composition for arbitrary finite sets of words (Section 4). We extend the theory
of unambiguous monoids of relations by the theory of arbitrary monoids of relations (Section
5), and generalize the notion of the group G(X) and the degree d(X) of a finite set X of
words (Section 6). In this way, as for codes, a set is synchronizing if and only if it is of
degree 1 (Section 7). As the main result, we prove that if X = Y ◦ Z with Y complete, then
d(X) ≤ d(Y ) · d(Z) (Section 8). In Section 9 we show that if we require Y to be complete,
we do not get any new decompositions of a uniquely decipherable code other than into two
uniquely decipherable codes.

2 Automata

We denote by A∗ the free monoid on a finite alphabet A, by 1 the empty word, and by A+

the set A∗ \ {1}. For notions not defined in this section see [3].
Let A = (Q, i, t) be an automaton on the alphabet A with Q as set of states, i as initial

state and t as terminal state (we will not need to have several initial or terminal states).
We do not specify in the notation the set of edges, which are triples (p, a, q) with two states
p, q ∈ Q and a label a ∈ A denoted p

a→ q. We form paths as usual by concatenating
consecutive edges. An automaton is called trim if there exists a path from i to every state,
and from every state to t.

The language recognized by A, denoted L(A), is the set of words in A∗ which are labels of
paths from i to t. There can be several paths from i to t for a given label, and this motivates
the introduction of multiplicities.

For a semiring K, a K-subset of A∗ is a map from A∗ into K. The value of a K-subset X
at w is called its multiplicity and denoted (X,w). We denote by K〈〈A〉〉 the semiring of
K-subsets of A∗ and by K〈A〉 the set of corresponding polynomials, that is the K-subsets
with a finite number of words with nonzero multiplicity (on these notions, see [8]).

If X,Y are K-subsets, then X + Y and XY are the K-subsets defined by

(X + Y,w) = (X,w) + (Y,w), (XY,w) =
∑
w=uv

(X,u)(Y, v).

Moreover, if X does not have a constant term, that is, if (X, 1) = 0, then X∗ is the K-subset

X∗ = 1 +X +X2 + . . .

Since X has no constant term, for every word w, the number of nonzero terms (Xn, w) in
the sum above is finite and thus X∗ is well-defined.

FSTTCS 2020



54:4 The Degree of a Finite Set of Words

For a set X ⊂ A∗, we denote by X the characteristic series of X, considered as an
N-subset. It is easy to verify that for X ⊂ A+, the mutiplicity of w ∈ A∗ in X∗ is the number
of factorizations of w in words of X.

For an automaton A = (Q, i, t) on the alphabet A, we denote by |A| its behaviour, which
is an element of N〈〈A〉〉. It is the N-subset of A∗ such that the multiplicity of w ∈ A∗ in |A|
is the number of paths from i to t labeled w in A.

We denote by µA the morphism from A∗ into the monoid of Q×Q-matrices with integer
coefficients defined for µA(w)p,q as the number of paths from p to q labeled by w. Thus, the
multiplicity of w in |A| is (|A|, w) = µA(w)i,t.

Given a set X ⊂ A+, we say that the automaton A recognizes X∗ with multiplicities if
the behaviour of A is the multiset assigning to x its number of distinct factorizations in X.
Formally, A recognizes X∗ with multiplicities if |A| = X∗.

I Example 1. Let X = {a, a2}. The number of factorizations of an in words of X is the
Fibonacci number Fn+1 defined by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 1. The
automaton A represented in Figure 1 recognizes X∗ with multiplicities, that is |A| = (a+a2)∗.

1 2a

a

a

Figure 1 An automaton recognizing X∗ with multiplicities.

We have indeed for every n ≥ 1,

µA(an) =
[
Fn+1 Fn
Fn Fn−1

]
For an automaton A = (Q, i, t) on the alphabet A, we denote by ϕA the morphism from A∗

onto the monoid of transitions of A. Thus, for w ∈ A∗, ϕA(w) is the Boolean Q×Q-matrix
defined by

ϕA(w)p,q =
{

1 if p w→ q,

0 otherwise

Let X ⊂ A+ be a finite set of words on the alphabet A. The flower automaton of X is the
following automaton. Its set of states is the subset Q of A∗ ×A∗ defined as

Q = {(u, v) ∈ A+ ×A+ | uv ∈ X} ∪ (1, 1).

We often denote ω = (1, 1). There are four type of edges labeled by a ∈ A

(u, av) a−→ (ua, v) for uav ∈ X, u, v 6= 1
ω

a−→ (a, v) for av ∈ X, v 6= 1
(u, a) a−→ ω for ua ∈ X, u 6= 1

ω
a−→ ω for a ∈ X.

The state ω is both initial and terminal.
The proof of the following result is straightforward. It generalizes the fact that the flower

automaton of a code recognizes X∗ and is unambiguous (see Theorem 4.2.2 in [3]).
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I Proposition 2. For any finite set X ⊂ A+, the flower automaton of X recognizes X∗ with
multiplicities.

I Example 3. Let X = {a, ab, ba}. The flower automaton of X∗ is represented in Figure 2.
As an example, there are two paths from ω to ω labeled aba, corresponding to the two
factorizations (a)(ba) = (ab)(a).

ω

b, a

a, b

a b

a

a

b

Figure 2 The flower automaton of X (Example 3).

A more compact version of the flower automaton is the prefix automaton A = (P, 1, 1) of
a finite set X ⊂ A+. Its set of states is the set P of proper prefixes of X and its edges are
the p a→ pa for every p ∈ P and a ∈ A such that pa ∈ P and the p a→ 1 such that pa ∈ X. It
also recognizes X∗ with multiplicities.

I Example 4. Let X = {a2, a3}. The flower automaton of X is shown in Figure 3 on the
left and its prefix automaton on the right.

a, a ω

a, a2

a2, a

a

a

a

a

a

1

a

a2

a

a a

a

Figure 3 The flower automaton and the prefix automaton of X (Example 4).

A reduction from an automaton A = (P, i, t) onto an automaton B = (Q, j, u) is a
surjective map ρ : P → Q such that ρ(i) = j, ρ(t) = u and such that for every q, q′ ∈ Q
and w ∈ A∗, there is a path q w→ q′ in B if and only if there is a path p w→ p′ in A for some
p, p′ ∈ P with ρ(p) = q and ρ(p′) = q′.

The reduction is sharp if ρ−1(j) = {i} and ρ−1(u) = {t}.

I Proposition 5. Let ρ be a reduction from A = (P, i, t) onto B = (Q, j, u). Then L(A) ⊂
L(B), with equality if ρ is sharp.

The term reduction is the one used in [3] and it is not standard but captures the general
idea of a covering. The term conformal morphism is the one used in [19]. The following
statement replaces [3, Proposition 4.2.5].

I Proposition 6. Let X ⊂ A+ be a finite set which is the minimal generating set of X∗.
For each trim automaton B = (Q, i, i) recognizing X∗ with multiplicities, there is a sharp
reduction from the flower automaton of X onto B.

Proof. Let A = (P, ω, ω) be the flower automaton of X. We define a map ρ : P → Q as
follows. We set first ρ(ω) = i. Next, if (u, v) ∈ P with (u, v) 6= ω, then uv ∈ X. Since X is

FSTTCS 2020



54:6 The Degree of a Finite Set of Words

the minimal generating set of X∗, there is only one factorization of uv into elements of X.
Since B recognizes X with multiplicities, there is only one path i u→ q

v→ i in B. We define
ρ
(
(u, v)

)
= q.

It is straightforward to verify that ρ is a reduction. Assume first that q w→ q′ in B.
Let i u→ q and q′

v′→ i be simple paths, that is not passing by i except at the origin or
the end. Then i

uwv′→ i and thus uwv′ = x1x2 · · ·xn with xi ∈ X, u a proper prefix of
x1 = uv and v′ a proper suffix of xn = u′v′. Thus ρ

(
(u, v)

)
= q and ρ

(
(u′, v′)

)
= q′. Since

w = vx2 · · ·xn−1u
′, we have in A a path (u, v) w→ (u′, v′). Conversely, consider a path

(u, v) w→ (u′, v′) in A. If the path does not pass by ω, then u′ = uw, v = wv′ and we have a
path q w→ q′ in B with ρ

(
(u, v)

)
= q and ρ

(
(u′, v′)

)
= q′. Otherwise, the path decomposes in

(u, v) v→ ω
x→ ω

v′→ (u′, v′) with x ∈ X∗. Since B recognizes X∗, we have a path i x→ i in B
and thus also a path q w→ q′ with q = ρ

(
(u, v)

)
and q′ = ρ

(
(u′, v′)

)
. J

The statement above is false if X is not the minimal generating set of X∗, as shown by
the following example.

I Example 7. Let X = {a, a2}. There is no sharp reduction from the automaton of Figure 1
onto the one-state automaton recognizing X∗ = {a}∗.

The statement is also false if the automaton B recognizes X∗, but does not recognize X∗
with multiplicities, as shown by the following example.

I Example 8. Let X = {a2}. The flower automaton of X is represented in Figure 4 on the
left. There is no reduction onto the automaton represented on the right which also recognizes
X∗ (but not with multiplicities).

1 2

a

a

3 1 2
a

a a

a

Figure 4 Two automata recognizing X∗.

3 Transducers

A literal transducer T = (Q, i, t) on a set of states Q with an input alphabet A and an output
alphabet B is defined by a set of edges E which are of the form p

(a,v)−→ q with p, q ∈ Q, a ∈ A
and v ∈ B ∪ {1}. The input automaton associated with a transducer is the automaton with
the same set of states and edges but with the output labels removed.

The relation realized by the transducer T is the set of pairs (u, v) ∈ A∗ ×B∗ such that
there is a path from i to t labeled (u, v). We denote by ϕT the morphism from A∗ to
the monoid of Q × Q-matrices with elements in N〈B〉 defined for u ∈ A∗ and p, q ∈ Q by
ϕT (u)p,q =

∑
p

u|v
−→q

v.
Let X ⊂ A+ be a finite set. Let β : B∗ → A∗ be a coding morphism for X, that is, a

morphism whose restriction to B is a bijection onto X. The decoding relation for X is the
relation γ = {(u, v) ∈ A∗ × B∗ | u = β(v)}. A decoder for X is a literal transducer which
realizes the decoding relation. The flower transducer associated to β is the literal tranducer
built on the flower automaton of X by adding an output label 1 to each edge ω a→ (a, v) or
(u, av) a→ (ua, v) and an output label b to each edge ω a→ ω such that a ∈ X with β(b) = a

or (u, a) a→ ω such that ua = x ∈ X with β(b) = x.
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I Proposition 9. For every finite set X ⊂ A+ with a coding morphism β, the flower
transducer associated to β is a decoder for X.

I Example 10. Let X = {a, ab, ba} and let β : u→ a, v → ab, w → ba. The flower transducer
associated to β is represented in Figure 5. One has

ω

b, a

a, b

a|u
b|1

a|w

a|1

b | v

Figure 5 The flower transducer associated to β.

ϕT (a) =

u 1 0
0 0 0
w 0 0

 and ϕT (b) =

0 0 1
v 0 0
0 0 0

 .
The prefix transducer T = (P, 1, 1) is the same modification of the prefix automaton. Its

states are the proper prefixes of the elements of X. There is an edge p a|1→ pa for every prefix
p and every letter a such that pa ∈ P , and an edge p a|b→ 1 for every prefix p and letter a such
that pa = β(b) ∈ X. Thus the input automaton of the prefix transducer of X is the prefix
automaton of X.

Let B = (Q, j, j) be an automaton on the alphabet B and let T = (P, i, i) be a literal
transducer with the input alphabet A and the output alphabet B. We build an automaton
A = B ◦ T on the alphabet A as follows. Its set of states is Q× P and for every a ∈ A, the
matrix ϕA(a) is obtained by replacing in ϕT (a) the word w = ϕT (a)p,q by the matrix ϕB(w).
The initial and terminal state is (j, i). The automaton A is also called the wreath product of
B and T (see [9]). The word 1 is replaced by the identity matrix, and 0 is replaced by the
zero matrix of appropriate size. An example of A = B ◦ T is provided in Example 13.

4 Composition

Let Y ⊂ B+ and Z ⊂ A+ be finite sets of words such that there exists a bijection β : B → Z.
Two such sets are called composable. Then X = β(Y ) is called the composition of Y and
Z through β, where β(Y ) = {β(y) | y ∈ Y } with β naturally extended to the mapping
B∗ → Z∗. We denote X = Y ◦β Z. We also denote X = Y ◦ Z when β is clear. We say that
X = Y ◦ Z is a decomposition of X.

I Example 11. Let Y = {u, uw, vu} and Z = {a, ab, ba} with β : u → a, v → ab, w → ba.
Then X = Y ◦β Z = {a, aba}.

A decomposition X = Y ◦β Z of a finite set X is trim if every letter of B appears in a
word of Y and every word in X is obtained in a unique way from words in Y , that is, if
the restriction of β to Y is injective. For any decomposition X = Y ◦ Z, there are Y ′ ⊂ Y
and Z ′ ⊂ Z such that X = Y ′ ◦ Z ′ is trim. Indeed, if x ∈ X has two decompositions in
words of Z as x = z1z2 · · · zn = z′1z

′
2 · · · z′n′ , we may remove β−1(z′1z′2 · · · z′n′) from Y without

FSTTCS 2020



54:8 The Degree of a Finite Set of Words

changing X. A finite number of these removals gives a trim decomposition. The set Z ′ is
obtained by removing all words in Z which correspond to the letters no longer occurring
in words in Y ′ (we also remove such letters from B). The decomposition in Example 11 is
not trim, since aba = β(uw) = β(vu), but it can be made trim by taking X = Y ′ ◦ Z ′ with
Y ′ = {u, uw} and Z ′ = {a, ba}. In this case, Y ′ ⊂ {u,w}+.

A set X ⊂ A∗ is complete if any word in A∗ is a factor of a word in X∗.

I Proposition 12. Let Y ⊂ B+ and Z ⊂ A+ be two composable finite sets and let X = Y ◦βZ
be a trim decomposition. Let B = (Q, 1, 1) be the prefix automaton of Y and let T = (P, 1, 1)
be the prefix transducer of Z. The automaton A = B ◦ T recognizes X∗ with multiplicities.

If Y is complete, there is a reduction ρ from A onto the prefix automaton of Z. Moreover,
the automaton B can be identified through β with the restriction of A to ρ−1(1).

Proof. The simple paths in A have the form (1, 1) z1→ (b1, 1) z2→ (b1b2, 1) · · · zn→ (1, 1) for
x = z1 · · · zn = β(b1 · · · bn) in X and zi ∈ Z. Since the decomposition is trim, there is exactly
one such path for every x ∈ X and thus A recognizes X∗ with multiplicities.

Let us show that, if Y is complete, the map ρ : (q, p)→ p is a reduction from A onto the
prefix automaton of Z. We have to show that one has p w→ p′ in the prefix automaton C of Z
if and only if there exist q, q′ ∈ Q such that (q, p) w→ (q′, p′). Assume that p w→ p′ in C. Then
we have p w|u→ p′ in the prefix transducer T for some u ∈ B∗. Since Y is complete, there are
some q, q′ ∈ Q such that q u→ q′ in B. Then (q, p) w→ (q′, p′) in A. The converse is obvious.

Finally, the edges of the restriction of A to ρ−1(1) are the simple paths (q, 1) z→ (q′, 1)
for z = β(b) ∈ Z and q b→ q′ an edge of B. This proves the last statement. J

1 uu

u

v

1 aa|u

a|1

b|v

(1, 1)

(u, 1)

(u, a)

a
a

a

b

Figure 6 The prefix automaton of Y , the prefix transducer T of Z and the trim part of A.

I Example 13. Let Y = {u, uv} and Z = {a, ab} with β : u→ a, v → ab. We have, in view
of Figure 6,

ϕA(a) =
[
ϕB(u) I

0 0

]
and ϕA(b) =

[
0 0

ϕB(v) 0

]
.

5 Monoids of relations

We consider monoids of binary relations and prove some results on idempotents and groups
in such monoids. Few authors have considered monoids of binary relations. In [16], the
Green’s relations in the monoid BQ of all binary relations on a set Q are considered. It is
shown in [14] that any finite group appears as a maximal subgroup of BQ (in contrast with
the monoid of all partial maps in which all maximal subgroups are symmetric groups).

We write indifferently relations on a set Q as subsets of Q×Q, as boolean Q×Q-matrices
or as directed graphs on a set Q of vertices.

The rank of a relation m on Q is the minimal cardinality of a set R such that m = uv

with u a Q×R relation and v an R×Q relation. Equivalently, the rank of m is the minimal
number of row (resp. column) vectors (which are possibly not rows or columns of m) which
generate over {0, 1} the set of rows (resp. columns) of m.
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For example, the full relation m = Q×Q has rank 1. In terms of matrices

m =


1
1
...
1

 [1 1 · · · 1
]

More generally, the rank of an equivalence relation is equal to the number of its classes.
A fixed point of a relation m on Q is an element q ∈ Q such that q m−→ q. The following

result appears in [20] (see also [12]).

I Proposition 14. Let e be an idempotent relation on a finite set Q, let S be the set of fixed
points of e and let Γ be the set of strongly connected components of the restriction of e to S.
1. For all p, q ∈ Q we have p e−→ q if and only if there exists an s ∈ S such that p e−→ s

and s e−→ q.
2. We have

e = `r (1)

where ` = {(p, σ) ∈ Q × Γ | p e−→ s for some s ∈ σ} and r = {(σ, q) ∈ Γ × Q | s e−→
q for some s ∈ σ}.

Proof. 1. Choose n > Card(Q). Since p en

−→ q, there is some s ∈ Q such that p ei

−→ s
ej

−→
s

ek

−→ q with i + j + k = n. Then p e−→ s
e−→ s

e−→ q and the statement is proved. The
other direction is obvious.

2. If p e−→ q, let s ∈ S be such that p e−→ s
e−→ q and let σ be the strongly connected

component of s. Then p `−→ σ
r−→ q. Thus e ≤ `r, which means that each element of e is

not larger than the corresponding element of `r when these relations are considered as binary
matrices. Conversely, if p `−→ σ

r−→ q there are s, s′ ∈ σ such that p e−→ s and s′
s′−→ q.

Since s, s′ are in the same stongly connected component, we have s e→ s′ and we obtain
p

e→ s
e→ s′

e→ q, whence p e→ q. J

The decomposition of e = lr given by Equation (1) is called the column-row decomposition
of e. Note that Proposition 14 is false without the finiteness hypothesis on Q. Indeed, the
relation e = {(x, y) ∈ R2 | x < y} is idempotent, but has no fixed points.

I Example 15. The matrix

m =


1 1 1 0
1 1 1 0
0 0 0 0
1 1 1 0


is an idempotent of rank 1.

For an element m of a monoid M , we denote by H(m) the H-class of m, where H is the
Green relation H = R∩ L (see [3] for the definitions). It is a group if and only if it contains
an idempotent e (see [3]). In this case, every m ∈ H(e) has a unique inverse m−1 in the
group H(e).

The following result is the transposition of Proposition 9.1.7 in [3] to arbitrary monoids
of relations. However, the result is restricted to a statement on the group H(e) instead of
the monoid eMe.
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I Proposition 16. Let M be a monoid of relations on a finite set Q, let e ∈M be idempotent
and let Γ be the set of strongly connected components of the fixed points of e. For m ∈ H(e),
let γe(m) be the relation on Γ defined by

γe(m) = {(ρ, σ) ∈ Γ× Γ | r m→ s
m−1

→ r for some r ∈ ρ and s ∈ σ}

Then m 7→ γe(m) is an isomorphism from H(e) onto a group of permutations on Γ.

Proof. First, γe(m) is a map. Indeed, let s m→ t
m−1

→ s and s′
m→ t′

m−1

→ s′. If s e→ s′, we
have t m

−1

→ s
e→ s′

m→ t′ and thus t e→ t′. By a symmetrical proof, we obtain that γe(m) is a
permutation.

Next, it is easy to verify that γe is a morphism.
Finally, γe is injective. Indeed, assume that for m,m′ ∈ H(e) we have γe(m) = γe(m′).

Suppose that p m→ q.
Assume first that p is a fixed point of e. Let r, r′ be such that p m→ r

m−1

→ p and
p
m′→ r′

m′−1

→ p. Since γe(m) = γe(m′), we obtain that r, r′ are in the same element of Γ. We
conclude that p m

′

→ r′
e→ r

m−1

→ p
m→ q which implies that p m

′

→ q.
Now if p is not a fixed point of e, since em = m, there is an r such that p e→ r

m→ q. By
Proposition 14, there is a fixed point r′ of e such that p e→ r′

e→ r
m→ q. Then r′ m→ q implies

r′
m′→ q by the preceding argument, and finally p m

′

→ q. J

We denote Ge = γe(H(e)). The definition of γe can be formulated differently.

I Proposition 17. Let M be a monoid of relations on a finite set Q and let e ∈ M be
an idempotent. Let σ, τ be two distinct connected components of fixed points of e and let
s ∈ σ, t ∈ τ . If es,t = 1, then mt,s = 0 for every m ∈ H(e) and thus (σ, τ) /∈ γe(m). If
es,t = et,s = 0 then s m→ t implies (σ, τ) ∈ γe(m).

Proof. Assume first that es,t = 1 so that the restriction of e to {s, t} is the matrix
[
1 1
0 1

]
.

If mt,s = 1, then the restriction of m to {s, t} is the matrix with all ones, which is impossible
since no power of m can be equal to e. If the restriction of e to {s, t} is the identity, then
the restriction of m ∈ H(e) is a permutation. Thus (σ, τ) ∈ γe(m) if and only if s m→ t. J

The following extends Proposition 9.1.9 in [3]. It uses the Green relation D = LR = RL.
Two permutation groups G over Q and G′ over Q′ are called equivalent if there exists a
bijection α : Q → Q′ and an isomorphism ψ : G → G′ such that for all q ∈ Q and g ∈ G
we have α(q.g) = α(q).ψ(g), where q.g is the action of g on q (see Section 1.13 of [3]). In a
more standard terminology, two permutation groups are equivalent if and only if their group
actions are isomorphic, though we use the terminology of [3] to simplify the comparison with
the results described there.

I Proposition 18. Let M be a monoid of relations on a finite set Q and let e, e′ ∈ M be
D-equivalent idempotents. Then the groups Ge and Ge′ are equivalent permutation groups.

Proof. Let (a, a′, b, b′) be a passing system from e to e′, that is such that

eaa′ = e, bb′e′ = e′, ea = b′e′.

We will verify that there is a commutative diagram of isomorphisms shown in Figure 7.
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H(e)
τ−−−−→ H(e′)yγe yγe′

Ge
τ ′

−−−−→ Ge′

Figure 7 Commutative diagram of isomorphisms.

We define the map τ by τ(m) = bma. Then it is easy to verify that τ is a morphism and
that m′ 7→ b′m′a′ is its inverse. Thus τ is an isomorphism.

We define τ ′ as follows. Let Γe,Γe′ be the sets of strongly connected components of fixed
points of e and e′ respectively. Let θ be the relation between Γe and Γe′ defined by (σ, σ′) ∈ θ
if for some s ∈ σ and s′ ∈ σ′, we have s eae

′

→ s′. One may verify that θ is a bijection between
Γe and Γe′ . Its inverse is the map on classes induced by e′be = e′a′e. Then τ ′(n) = θtnθ.

We verify that the diagram is commutative. Suppose that for some m ∈ H(e) (σ′1, σ′1) ∈
τ ′(γe(m)). By definition of τ ′ there exist σ1, σ2 ∈ Γe such that

(σ′1, σ1) ∈ θt, (σ1, σ2) ∈ γe(m) and (σ2, σ
′
2) ∈ θ.

Then for s1 ∈ σ1, s′1 ∈ σ′1, s′2 ∈ σ′2 and s2 ∈ σ2, we have

s′1
e′be→ s1, s1

m→ s2
m−1

→ s1. s2
eae′→ s′2.

Then s′1
bma→ s′2

bm−1a→ s′1 showing that (σ′1, σ′1) ∈ γe′(τ(m)). J

Note that, contrary to the case of a monoid of unambiguous relations, two D-equivalent
idempotents need not have the same number of fixed points, as shown by the following
example.

I Example 19. Let M be the monoid of all relations on Q = {1, 2}. The two idempotents

e =
[
1 0
0 0

]
, e′ =

[
1 1
1 1

]
are D-equivalent although the first has one fixed point and the second has two.

Let M be a monoid of relations on a finite set Q. The minimal rank of M , denoted r(M)
is the minimum of the ranks of the elements of M other than 0. The following statement
generalizes Theorem 9.3.10 in [3] from unambiguous to arbitrary transitive monoids of
relations. A D-class is regular if it contains an idempotent. A monoid of relations on Q is
transitive if for every p, q ∈ Q, there is an m ∈M such that p m→ q.

I Theorem 20. Let M be a transitive monoid of relations on a finite set Q. The set K
of elements of rank r(M) is a regular D-class. The groups Ge for e idempotent in K are
equivalent transitive permutation groups. Moreover, for a fixed point i of e, the minimal rank
r(M) is the index of the subgroup {m ∈ H(e) | i m→ i} in H(e).

Proof. The proof is the same as for the case of an unambiguous monoid of relations except
for the last statement. Let σ, τ be two distinct strongly connected components of fixed points
of e and let s ∈ σ, t ∈ τ . Since M is transitive there is an m ∈ M such that s m→ t. Then
eme is not 0 and thus eme ∈ H(e). Similarly, if n ∈M is such that t n→ s, then ene ∈ H(e).
This implies by Proposition 17 that the restriction of e to {s, t} is the identity and that
(σ, τ) ∈ γe(eme). Thus Ge is transitive. The last statement follows from the fact that for
any transitive permutation group on a set S, the number of elements of S is equal to the
index of the subgroup fixing one of the points of S (Proposition 1.13.2 of [3]). J

The Suschkevitch group of M is one of the equivalent groups Ge for e of rank r(M).
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6 Group and degree of a set

Let A = (P, i, i) and B = (Q, j, j) be automata and let ρ : P → Q be a reduction. For
m = ϕA(w), the relation n = ϕB(w) is well defined. We denote it by n = ρ̂(m). Then ρ̂ is a
morphism from ϕA(A∗) onto ϕB(A∗) called the morphism associated with ρ. The following
result extends Proposition 9.5.1 in [3] to arbitrary finite sets of words.

I Proposition 21. Let X ⊂ A+ be finite. Let A = (P, i, i) and B = (Q, j, j) be trim automata
recognizing X∗ with multiplicities. Let M = ϕA(A∗) and N = ϕB(A∗). Let E be the set of
idempotents in M and F the set of idempotents in N .

Let ρ be a sharp reduction of A onto B and let ρ̂ : M → N be the morphism associated
with ρ. Then
1. ρ̂(E) = F .
2. Let e ∈ E and f = ρ̂(e). The restriction of ρ to the set S of fixed points of e is a bijection

on the set of fixed points of f , and the groups He and Hf are equivalent.

Proof. 1. Let e ∈ E. Then ρ̂(e) is idempotent since ρ̂ is a morphism. Thus ρ̂(E) ⊂ F .
Conversely, if f ∈ F , let w ∈ A∗ be such that ϕB(w) = f . Let n ≥ 1 be such that e = ϕA(w)n
is idempotent. Then ρ̂(e) = f since ρ̂ ◦ ϕA = ϕB.

2. Let S be the set of fixed points of e and T the set of fixed points of f . Consider s ∈ S
and let t = ρ(s). From s

e→ s, we obtain t f→ t and thus ρ(S) ⊂ T . Conversely, let t ∈ T .
The restriction of e to the set R = ρ−1(t) is a non zero idempotent. Thus there is some
s ∈ R which is a fixed point of this idempotent, ans thus of e. Thus t ∈ ρ(S).

Since ρ̂ is a morphism from M onto N , we have ρ̂(H(e)) = H(f). It is clear that ρ maps
a strongly connected component of e on a strongly connected component of f . To show that
this map is a bijection, consider s, s′ ∈ S such that ρ(s), ρ(s′) belong to the same connected
component. We may assume that e is not the equality relation. Let w ∈ A+ be such that
ϕA(w) = e. Since X is finite, there are factorizations w = uv = u′v′ such that s u→ i

v→ s

and s′ u
′

→ i
v′→ s′. Then we have j v→ ρ(s) w→ ρ(s′) u′→ j. Since ρ is sharp, this implies i vwu

′

→ i

and finally s uvwu
′v′→ s′. This shows that s e→ s′. A similar proof shows that s′ e→ s. Thus,

s, s′ belong to the same connected component of e.
Moreover, for everym ∈ H(e), one has s m→ t

m−1

→ s if and only if ρ(s) ρ̂(m)→ ρ(t) ρ̂(m−1)→ ρ(s).
Thus He and Hf are equivalent permutation groups. J

Let X ⊂ A+ be a finite set and let A be the flower automaton of X. The degree of X,
denoted d(X) is the minimal rank of the monoid M = ϕA(A∗). The group of X is the
Suschkevitch group of M . Proposition 21 shows that the definitions of the group and of the
degree do not depend on the automaton chosen to recognize X∗, provided one takes a trim
automaton recognizing X∗ with multiplicities.

7 Synchronization

Let X ⊂ A+ be a finite set of words. A word x ∈ A∗ is synchronizing for X if for every
u, v ∈ A∗, uxv ∈ X∗ ⇒ ux, xv ∈ X∗. A set X is synchronizing if there is a synchronizing
word x ∈ X∗. The next proposition generalizes Proposition 10.1.11 of [3]

I Proposition 22. A finite set X ⊂ A+ is synchronizing if and only if its degree d(X) is 1.

Proof. Let A = (Q, i, i) be a trim automaton recognizing X∗.
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Assume first that d(X) = 1. Let x ∈ X∗ be such that ϕA(x) has rank 1. If uxv ∈ X∗, we
have i u→ p

x→ q
v→ i for some p, q ∈ Q. Since ϕA(x) has rank 1, we deduce from i

x→ i and
p
x→ q that we have also i x→ q and p x→ i. Thus ux, xv ∈ X∗, showing that x is synchronizing.
Assume conversely that X is synchronizing. Let x ∈ X∗ be a synchronizing word.

Replacing x by some its power, we may assume that ϕA(x) is an idempotent e. Let m ∈ H(e)
and let w ∈ ϕ−1

A (m). Since H(e) is finite, there is some n ≥ 1 such that mn = e. Then
(me)n = e implies that (wx)n ∈ X∗. Since x is synchronizing, we obtain wx ∈ X∗ and since
ϕA(wx) = me = m, this implies w ∈ X∗. This shows that H(e) is contained in ϕA(X∗) and
thus that d(X) = 1 by Theorem 20. J

I Example 23. Consider again X = {a, ab, ba} (Example 3). The flower automaton of X is
represented again for convenience in Figure 8 (left).

The minimal rank of the elements of ϕA(A∗) is 1. Indeed, we have

ϕA(a2) =

1 1 0
0 0 0
1 1 0

 =

1
0
1

 [1 1 0
]

Accordingly, aa is a synchronizing word.

1

3

2

a b

a

a

b

1, 2 1, 3 3

1, 3 * a2 * a2b * a2b2

1, 2 * ba2 * ba2b ba2b2

2 *b2a2 b2a2b b2a2b2

Figure 8 The flower automaton of X (left) and the set K of elements of rank 1 (right).

The set K of elements of rank 1 is represented in Figure 8 (right). For each H-class, we
indicate on its left the set of states p such that the row of index p in nonzero. Similarly, we
indicate above it the set of states q such that the column of index q is nonzero. A star ∗
indicates an H-class which is a group. Note that

ϕA(a2b) =

1 0 1
0 0 0
1 0 1


has two fixed points but only one strongly connected class, in agreement with fact that it is
of rank 1.

8 Groups and composition

Given a transitive permutation group G on a set Q, an imprimitivity relation of G is an
equivalence on Q compatible with the group action. If θ is such an equivalence relation, we
denote by Gθ the permutation group induced by the action of G on the classes of θ. The
groups induced by the action on the class of an element i ∈ Q by the action of the elements
of G stabilizing the class of i are all equivalent. We denote by Gθ one of them. For two
permutation groups G,H on sets P and Q respectively, we denote G ≤ H if there is an
imprimitivity equivalence θ on Q such that G = Hθ.

The next theorem generalizes Proposition 11.1.2 of [3].
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I Theorem 24. Let X ⊂ A+ be a finite set with a trim decomposition X = Y ◦ Z, where Y
is complete. There exists an imprimitivity equivalence θ of G = G(X) such that

Gθ ≤ G(Y ), Gθ = G(Z).

In particular, d(X) ≤ d(Y ) · d(Z).

Proof. Let B = (Q, i, i) be the flower automaton of Y and let T be the prefix transducer of
Z. Let A = B ◦ T . By Proposition 12, there is a reduction ρ from A = (Q× P, (i, 1), (i, 1))
onto the prefix automaton C of Z.

Let e be an idempotent of minimal rank in ϕA(X∗). Let S be the set of fixed points of
e and let Γ be the set of connected components (scc) of the elements of S. Let Ŝ be the
set of fixed points of ê = ρ̂(e) and let Γ̂ be the set of corresponding scc’s. If s, s′ ∈ S are in
the same scc, then ρ(s), ρ(s′) are in the same scc of Ŝ. Thus, we have a well-defined map
ρ̄ : Γ→ Γ̂ such that s ∈ Γ if and only if ρ(s) ∈ ρ̄(Γ).

We define an equivalence θ on Γ by σ ≡ σ′ if ρ̄(σ) = ρ̄(σ′). Let m ∈ H(e) and suppose
that (σ, τ), (σ′, τ ′) ∈ γe(m). If σ ≡ σ′ mod θ, then τ ≡ τ ′ mod θ. Let indeed s ∈ σ, s′ ∈ σ′
and t ∈ τ, t′ ∈ τ ′. We have by definition of γe

s
m→ t

m−1

→ s and s′ m→ t′
m−1

→ s′

and thus

ρ(s) ρ̂(m)→ ρ(t) ρ̂(m)−1

→ ρ(s) and ρ(s′) ρ̂(m)→ ρ(t′) ρ̂(m)−1

→ ρ(s′)

This implies that ρ(t) ê→ ρ(t′) and ρ(t′) ê→ ρ(t). But since γê(m̂) is a permutation, this forces
ρ̄(τ) = ρ̄(τ ′) and finally τ ≡ τ ′ mod θ. Since the action of H(e) on the classes of θ is the
same as the action of H(ê), we have G(Z) = Gθ.

Finally, let σ ∈ Γ be the scc of the initial state (i, 1) and let I be its class modθ. Thus
d(X) = Card(I)d(Z). Let x ∈ X∗ be such that ϕA(x) = e and let y = β−1(x). Then
f = ϕB(y) is an idempotent of ϕB(B∗) of rank d(Y ). Let U be the set of fixed points of f
and let Φ be the set of scc of U for the action of f . Let σ be the equivalence on Φ induced by
the equivalence r ≡ s if (r, 1), (s, 1) belong to the same scc for e. Then σ is an imprimitivity
equivalence for G(Y ) such that G(Y )σ = Gθ. Thus Gθ ≤ G(Y ) and Card(I) ≤ d(Y ), which
implies d(X) ≤ d(Y ) · d(Z). J

I Example 25. Let Z = {a, ab, ba, ca} and X = Z2. We have X = Y ◦β Z with Y =
{u, v, w, x}2 and β : u 7→ a, v 7→ ab, w 7→ bc, x 7→ ca. The word aa is synchronizing for Z and
thus d(Z) = 1. In contrast, we have d(Y ) = 2 and G(Y ) = Z/2Z. It can be verified that the
word ca2b is synchronizing for X and thus d(X) = 1. Thus d(X) < d(Y ) · d(Z) = 2 · 1 = 2.
Thus the case of a strict inequality can occur. This is made possible by the fact that Z is
not a code. Indeed, we have (ab)(ca) = a(bc)a.

9 Decompositions of codes

Finally, we use the developed techniques to show that for a uniquely decipherable code X for
all the trim decompositions of the form X = Y ◦ Z with Y complete we have that Z (and
thus Y ) is a uniquely decipherable code as well. It shows that, as long as we require Y to be
complete, we do not get any new trim decompositions of uniquely decipherable codes even if
we decompose them as arbitrary sets of words.
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I Proposition 26. Let X = Y ◦ Z be a trim decomposition of a finite set X. If X is a
uniquely decipherable code and if Y is complete, then Z is a uniquely decipherable code.

Proof. Since β is trim, Y is a uniquely decipherable code. Let β : B → Z be the coding
morphism for Z such that X = Y ◦β Z. Assume that z ∈ Z∗ is a word with more than
one factorization into words of Z. Let u, v ∈ B∗ two distinct elements in β−1(z). Let A
be the flower automaton of Y . Let y ∈ Y ∗ be such that ϕA(y) has minimal rank. Then
yuy, yvy are not zero since Y is complete. Thus ϕA(yuy), ϕA(yvy) belong to the H-class of
ϕA(y) which is a finite group. Let e be its idempotent. There are integers n,m, p such that
ϕA(y)n = ϕA(yuy)m = ϕA(yvy)p = e. Since y ∈ Y ∗, this implies that e ∈ ϕA(Y ∗) and thus
that (yuy)m, (yvy)p are in Y ∗. We conclude that Y is not a uniquely decipherable code, a
contradiction. J

This is false if we do not require Y to be complete. Consider a codeX = {ab, abaab, abbab},
which can be decomposed into X = Y ◦ Z with Y = {u, uvu, uwu} and Z = {ab, a, b}. The
decomposition is obviously trim, the set X is a uniquely decipherable code, but the set Z is
not a uniquely decipherable code.
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