
Static Race Detection for RTOS Applications
Rishi Tulsyan
Indian Institute of Science Bangalore, India
rishitulsyan@iisc.ac.in

Rekha Pai
Indian Institute of Science Bangalore, India
rekhapai@iisc.ac.in

Deepak D’Souza1

Indian Institute of Science Bangalore, India
deepakd@iisc.ac.in

Abstract
We present a static analysis technique for detecting data races in Real-Time Operating System
(RTOS) applications. These applications are often employed in safety-critical tasks and the presence
of races may lead to erroneous behaviour with serious consequences. Analyzing these applications is
challenging due to the variety of non-standard synchronization mechanisms they use. We propose a
technique based on the notion of an “occurs-in-between” relation between statements. This notion
enables us to capture the interplay of various synchronization mechanisms. We use a pre-analysis and
a small set of not-occurs-in-between patterns to detect whether two statements may race with each
other. Our experimental evaluation shows that the technique is efficient and effective in identifying
races with high precision.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Static analysis, concurrency, data-race detection, RTOS

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.57

Supplementary Material https://bitbucket.org/rishi2289/static_race_detect/

Acknowledgements The second author want to thank University Grants Commission (UGC) India
for the Dr. DS Kothari Post Doctoral Fellowship EN/17-18/0039.

1 Introduction

Real-Time Operating Systems (RTOSs) are small operating systems or microkernels that an
application programmer uses as a library to create and manage the execution of multiple
tasks or threads. The programs written by the application programmer are called RTOS
applications and are programs typically written in C or C++ that are compiled along with
the RTOS kernel library and run on bare metal processors. Much of embedded software
today, ranging from home appliances to safety-critical systems like industrial automation
systems and flight controller software, are implemented as such programs.

An RTOS application comprises multiple threads (even if these are typically run on a
single core) and hence they need to protect against concurrency issues like data races. Two
statements are involved in a data race if they are conflicting accesses to a shared memory
location and can happen “simultaneously” or one after another. Data races can lead to
unexpected and erroneous program behaviours, with serious consequence in safety-critical
applications.

1 corresponding author

© Rishi Tulsyan, Rekha Pai, and Deepak D’Souza;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 57; pp. 57:1–57:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rishitulsyan@iisc.ac.in
mailto:rekhapai@iisc.ac.in
mailto:deepakd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.57
https://bitbucket.org/rishi2289/static_race_detect/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Data-Race Detection

While detecting data races is important, doing this for RTOS applications is a challenging
problem. This is because these programs use a variety of non-standard synchronization
mechanisms like dynamically raising and lowering proirities, suspending other tasks and the
scheduler, flag-based synchronization, disabling and enabling interrupts, in addition to the
more standard locks and semaphores. A look at the ArduPilot flight control software [1]
which is written in C++ and runs on the ChibiOS RTOS shows several instances of each of
these synchronization mechanisms being used. Standard techniques for race detection like
lockset analysis [28] or for priority-ceiling based scheduling and flag-based synchronization
[23, 22], or the disjoint-block approach of [8] for disabling interrupts, would not be precise
enough as they do not handle the first two mechanisms mentioned above. Extending the
disjoint-block approach for these synchronization mechanisms seems difficult.

Instead, in this work we adapt the disjoint-block approach of [8] to focus on a weaker
notion of “not occuring in between”. Essentially, a statement s2 does not occur in between
a statement s1 if it is not possible for a thread running s2 to preempt a thread while it is
running s1. If s1 and s2 cannot occur in between each other they also cannot race. We identify
six patterns or rules that ensure that a statement cannot occur in between another. We
take the help of a pre-analysis to identify dynamic priority ranges as well as task suspension
information, for each statement in an application. Then for each pair of conflicting statements
we check if the rules tell us that they cannot occur in between each other.

We have implemented our analysis for FreeRTOS applications (FreeRTOS [5] is a popular
open source RTOS), and analyse several small benchmarks from the literature as well as
a fragment of the ArduPilot [1] code, which we translate as a FreeRTOS application. Our
analysis runs in fractions of a second with an overall precision rate of 73%.

2 Overview

We begin with an overview of our technique with an illustrative example adapted from
a FreeRTOS demo application. The application, shown in Fig. 1, begins by creating two
task threads t1 and t2 that run the task functions prod and cons respectively, both at

void main (...) { Prio Susp
1. item = count = 0;
2. xTaskCreate (prod ,... ,1 , t1);
3. xTaskCreate (cons ,... ,1 , t2);
4. vTaskStartScheduler ();
}

void prod (...) {
10. for(; ;) { 1,1 -
11. vTaskSuspend (t2); 1,1 -
12. item = 5; 1,1 cons
13. count = count +1; 1,1 cons
14. vTaskResume (t2); 1,1 cons
15. } 1,1 -
}

void cons (...) {
20. for(; ;) { 1,1 -
21. temp = item; 1,1 -
22. vTaskPrioritySet (NULL , 2); 1,1 -
23. count = count -1; 2,2 -
24. vTaskPrioritySet (NULL , 1); 2,2 -
25. } 1,1 -
}

Figure 1 A producer-consumer FreeRTOS app.

R. Tulsyan, R. Pai, and D. D’Souza 57:3

priority 1. Once the scheduler is started in line 4 of main, the two threads begin executing
in a round-robin manner, preempting each other whenever the time slice is over (unless one
thread is suspended, or the running thread has raised its priority above the other thread).
The prod thread protects its accesses to the shared variables item and count by suspending
the cons thread in line 11, and resuming it in line 14 after the access. Similarly, the cons
thread protects its access to count by temporarily raising its priority to 2 in line 22.

We are interested in statically detecting potential data races in this application. We
give a more precise definition of a race in Sec. 4, but for now we can take it to mean
that two statements access a shared variable with at least one writing to it (we call these
“conflicting” accesses), and these statements happen one after the other in some execution of
the application.

Our analysis begins by first performing a data-flow analysis to identify the minimum
and maximum dynamic priorities that each statement can run at. The computed values are
shown on the second column from the right in the figure, and represent the priorities just
before the statement. Thus at line 23 in cons the min and max priorities are both 2. We
also perform a “suspended” analysis to find out at each point, which are the tasks that are
guaranteed to be suspended. These values are shown in the rightmost column.

Next, for each conflicting pair of accesses s1 and s2, we check whether s2 can “occur in
between” s1. Essentially, s2 can occur in between s1 if there is an execution in which while
s1 is executing, a context-switch may happen and s2 eventually executes before the context
switches back to s1. If s2 cannot occur in between s1, and vice-versa, then one can rule
out s1 and s2 being involved in a race. To check the “occur in between” relation we use a
small set of rules (see Fig. 4 in Sec. 5) which tell us when s2 cannot occur in between s1.
Thus, by the “Suspend” rule (C1), we can conclude that statements in line 21 and 23 cannot
occur in between the statements in line 12 and 13 (since the cons task is suspended here).
Similarly, by the “Priority” rule (C2), it follows that line 13 cannot occur in between line 23
(since it runs at a higher priority). This allows us to conclude that the accesses to count
in lines 13 and 23 cannot race. However for the accesses to item in lines 12 and 21, we are
unable to show that line 12 cannot occur in between 21, and hence our analysis declares
them as potentially racy. Indeed, these two accesses are racy.

We note that analyses like [23, 8] do not handle these synchronization mechanisms and
would be unable to declare the accesses in line 13 and 23 to be non-racy.

3 Interrupt-Driven Applications

In this section, we describe the syntax and semantics of an Interrupt-Driven Application
(IDA). An IDA program is essentially a set of thread functions, which are run by dynamically
created threads during execution. The functions are of two types: task functions which will be
run by threads that are created dynamically at different priorities, and ISR functions which
are run as Interrupt Service Routines triggered by hardware interrupts, at fixed priorities
above that of task threads. There is a designated main function which is run by the main
thread which is the only thread running initially. The main thread may create other task
threads and then “start” the scheduler, at which point the created threads and ISR threads
are enabled. The scheduler runs the task threads according to a highest-priority-first basis
and time-slices within threads of the same priority. ISR threads can be triggered at any
point of time, preempting task threads or lower priority ISR threads.

The thread functions can use a variety of commands, listed in Tab. 1, to perform
computation or influence the way they are scheduled. Task threads are created using the
create command. The command creates a new thread, which runs the specified task

FSTTCS 2020

57:4 Data-Race Detection

main: prod: cons:
1. item:=0; 10. for(; ;) { 20. for(; ;) {
2. count:=0; 11. suspend(t2); 21. temp:=item;
3. create(prod,1,t1); 12. item:=5; 22. set_priority(t2,2);
4. create(cons,1,t2); 13. count:=count+1; 23. count:=count-1;
5. start; 14. resume(t2); 24. set_priority(t2,1);
6. 15. } 25. }

16. 26.

(a) Example IDA program.

assume(true)
10

prod

11

12

13

14

15 skip

resume(t2)

count:=count+1

item:=5

suspend(t2)

assume(false)

16

(b) CFG of prod.

Figure 2 Example program and the CFG representation of prod.

function at the specified priority. High priority threads share execution time with low priority
threads using the set_priority, suspend, and block commands. These commands can
lead to re-scheduling of the threads, thereby giving other threads a chance to execute. The
set_priority command sets the priority of a task thread, suspend suspends the execution
of a task thread, and block (representing blocking commands like “delay” or “receive
message”) blocks the execution of the current task thread. A suspended task thread can be
resumed with the resume command. A blocked task thread resumes after a non-deterministic
amount of time. Task threads can suspend and resume the scheduler with suspendsched
and resumesched, respectively. When the scheduler is suspended the currently running task
thread can be preempted only by an ISR thread, and not by other task threads. Threads
can also disable and enable interrupts with disableint and enableint, respectively. When
interrupts are disabled, no preemption can occur. Tasks can synchronize accesses to shared
variables by acquiring and releasing locks with lock and unlock commands, respectively.

More formally, an IDA program P is a triple 〈V,M,F〉 where V is a finite set of integer-
valued global variables, M is a finite set of locks, and F is a finite set of thread function
names, with a designated one called main. Each function A in F has an associated Control
Flow Graph (CFG) GA = (LA, entA, extA, instA), where LA is the set of locations, entA and
extA are respectively the entry and exit locations in LA, and instA ⊆ LA × cmd(V,M)×LA
is the set of instructions of the CFG. Here cmd(V,M) is the set of commands in Tab. 1 over
the variables V and locks M . Each function A in F also has an associated type, type(A),
which is one of task or ISR. While task threads are created during execution at priorities
specified in the create command, ISR threads run at a fixed static priority. We assume that
during execution task threads can have priorities upto a constant value m ∈ N (which we fix
for all IDA programs), while ISR threads have distinct priorities which are greater than m.
If {f1, . . . , fk} are the functions of type ISR, then without loss of generality we assume their
priorities to be m+ 1, . . . ,m+ k respectively. The IDA version of the FreeRTOS application
from Fig. 1 is shown in Fig. 2.

Some notation will be useful going forward. For a program P , the instructions of P ,
denoted instP , is the union of instructions in the thread functions of P , and locations in P ,
denoted LP , is the union of the locations in the thread functions of P . An IDA program
allows standard integer and Boolean expressions over V . For an integer expression e, Boolean
expression b, and an environment φ for V , [[e]]φ denotes the integer value that e evaluates to
in φ, and [[b]]φ denotes the Boolean value that b evaluates to in φ. For a map f : X → Y

and elements x, y which may or may not be in X or Y , we use the notation f [x 7→ y] to
denote the function f ′ : X ∪ {x} → Y ∪ {y} given by f ′(x) = y and for all z different from x,
f ′(z) = f(z).

R. Tulsyan, R. Pai, and D. D’Souza 57:5

Table 1 IDA Basic Commands.

Command Description
skip Do nothing.
x := e Assign the value of expression e to variable x.
assume(b) Enabled only if expression b evaluates to true; does nothing.
create(A, p, t) Create task thread with func A, prio p, and store thread id in variable t.
set_priority(t, p) Set priority of task thread t to p. When the first parameter is NULL,

set priority of current thread. Allowed only in task function.
suspend(t) Suspend task thread t. When the parameter is NULL, suspend

current thread. Allowed only in task function.
resume(t) Resume task thread t. Allowed only in task function.
suspendsched Suspend scheduler. Disables switching to other task threads.
resumesched Resume the scheduler. Enables switching to other task threads.
disableint Disable interrupts and suspend the scheduler.
enableint Enable interrupts and resume the scheduler.
lock(l) Acquire lock l. Blocks if l is not available.
unlock(l) Release lock l.
block Block the current task thread. Re-enable after non-deterministic delay.
start Start scheduler and enable interrupts. Called only by main.

We can now define the semantics of an IDA program P = 〈V,M,F〉 as a labeled transition
system 〈S,Σ,⇒, s0〉, whose components are defined as follows. Let f1, . . . , fk be the thread
functions of type ISR, with priorities m+ 1, . . . ,m+ k respectively.

The set of states S contains tuples of the form s = 〈B,S,R,P,A,F , pc, φ, r, i, ss, id〉,
where
B, S, andR are sets of thread ids (which we assume to be simply integers) representing the
set of blocked task threads, suspended task threads, and ready task threads, respectively.
The sets B, S, and R are pairwise disjoint. We denote the set of threads created so far
by T = B ∪ S ∪R.
P : T → N gives the current priority of each thread.
A : M ⇀ T is a partial map giving us the thread that has acquired a particular lock.
F : T → F gives the function associated with a thread.
pc : T → LP gives the current location of a thread t in the CFG of F(t).
φ ∈ V → Z is a valuation for the variables.
r ∈ R is the currently running thread, while i ∈ R is the interrupted task thread.
ss is a Boolean value indicating whether the scheduler is suspended (ss = true) or not,
while id is a Boolean value indicating whether interrupts are disabled (id = true) or not.

The initial state s0 is 〈∅, {1, . . . , k}, {0}, {0 7→ 0, 1 7→ m+ 1, . . . , k 7→ m+ k}, ∅,
{0 7→ main, 1 7→ f1, . . . , k 7→ fk}, λt ∈ T .entF(t), λx ∈ V.0, 0, 0, true, true〉. Thus initially,
no threads are blocked, ISR threads 1, . . . , k (with priorities k + 1, . . . , k + n respectively)
are disabled, and the main thread 0 with priority 0 is ready and also running. No locks are
acquired. The threads 0, 1, . . . , k are associated with their functions. All the threads are at
their entry locations and all variables are initialized to zero. The interrupted thread is taken
to be 0, the scheduler is suspended, and interrupts are disabled.

The transition relation ⇒ is given as follows. Consider a state s expressed as the tuple
s = 〈B,S,R,P,A,F , pc, φ, r, i, ss, id〉, a thread t ∈ T , and an instruction ι = (l, c, l′) in F(t).
Then we have s ⇒ι s

′ iff one of the following rules is satisfied. Each rule says that if the
conditions on command c and state s, specified in the antecedent of a rule (above the line),

FSTTCS 2020

57:6 Data-Race Detection

hold then s ⇒ι s
′, specified in the consequent of the rule (below the line), holds. We use

task(t) to indicate that t is a task thread (i.e. (type(t) = task) and ISR(t) to indicate that t
is an ISR thread.

In the interest of space, only few rules are shown here. The full semantics can be found
in Arxiv. The ASSIGN is a simple rule on assignment statement. The ASSIGN-INT rule
shows how interrupts are handled while CREATE-CS and CREATE-NS rules show how the
execution of a statement can lead to context switch and no switch, respectively, and the
START rule shows how the threads get running. For the ASSIGN-INT rule given below, the
condition pc(t) = l = entF(t) should hold while for others pc(t) = l needs to be true.

c = x := e t = r
ASSIGN

s⇒ι 〈B,S,R,P,A,F , pc[t 7→ l′], φ[x 7→ [[e]]φ], r, i, ss, id〉

c = x := e t ∈ R ISR(t) t 6= r P(t) > P(r) id = false
ASSIGN-INT

s⇒ι 〈B,S,R,P,A,F , pc[t 7→ l′], φ[x 7→ [[e]]φ], t, r, ss, id〉

c = create(A, p, v) t = r task(t) A ∈ F type(A) = task ts /∈ T (p ≤ P(r) ∨ (ss ∨ id) = true)
CREATE-NS

s⇒ι 〈B,S,R∪ {ts},P[ts 7→ p],A,F [ts 7→ A], pc[t 7→ l′, ts 7→ entA], φ[v 7→ ts], r, i, ss, id〉

c = create(A, p, v) t = r task(t) A ∈ F type(A) = task ts /∈ T p > P(r) (ss ∨ id) = false
CREATE-CS

s⇒ι 〈B,S,R∪ {ts},P[ts 7→ p],A,F [ts 7→ A], pc[t 7→ l′, ts 7→ entA], φ[v 7→ ts], ts, i, ss, id〉

c = start t = r = 0 (ss ∨ id) = false ∃ts ∈ (S ∪R).task(ts) ∧ P(ts) = max({P(u)|u ∈ S ∪R ∧ task(u)})
START

s⇒ι 〈B, ∅,S ∪R,P,A,F , pc[t 7→ l′], φ, ts, i, false, false〉

An execution σ of P is a finite sequence of transitions in the transition system defined.
σ = τ0, τ1, · · · , τn, where n ≥ 0 and there exists a finite sequence of states s0, s1, · · · , sn+1 in
S such that s0 is the initial state and τi = si ⇒ si+1 for each 0 ≤ i ≤ n.

4 Data Races and the Occur-in-Between Relation

We use the notion of data races introduced by Chopra et al [8], which is a general notion
that applies to programs with non-standard synchronization mechanisms. The definition
essentially says that two statements in a program race if (a) they are conflicting accesses
to a memory location and (b) they may happen in parallel, in that notional “skip blocks”
around these statements overlap with each other in some execution of the program. The
definition is meant to capture the fact that when these two statements are compiled down to

MOV count,A

MOV A,count

SUB A,1

MOV count,A

MOV A,count

ADD A,1

Compile

count=count+1 count=count−1

instructions of a processor, the interleaving of these instructions may lead to undesirable
behaviours of the program which don’t correspond to any sequential execution of the two
statements. For example in the figure alongside, the conflicting accesses to count may get
compiled to the instructions shown, and the interleaving of these two blocks of instructions
may lead to unexpected results like count getting decreased by 1 despite both blocks having
completed.

R. Tulsyan, R. Pai, and D. D’Souza 57:7

skip;

skip;

skip;

skip;

A: B:A: B:

skip;

skip;

A: B:

Ps1,s2

s1;
s2;s1;

P tA tB tA tBPs1

s1;

s2;s2;

s2

Figure 3 A program P ; its transformation Ps1,s2 ; an execution of Ps1,s2 in which the skip blocks
overlap and witnesses that s1 and s2 MHP in P ; the program Ps1 ; and an execution of Ps1 which
witnesses occurrence of s2 in between s1.

We now define these notions more formally in our setting. Let us fix an IDA program P .
Let s1 and s2 be two instructions in P , with associated commands c1 and c2 respectively.
We restrict ourselves to the case where c1 and c2 are assignment or assume statements. We
say s1 and s2 are conflicting accesses to a variable x if they both access x and at least one of
them writes x. Let Ps1 denote the program obtained from P by inserting skip statements
immediately before and after s1. Similarly, let Ps1,s2 denote the program obtained from P by
inserting skip statements immediately before and after both s1 and s2. We say s1 and s2 may
happen in parallel (MHP) in P if there is an execution of Ps1,s2 in which the two skip-blocks
interleave (i.e. one block begins in between the other). These terms are illustrated in Fig. 3.
We use the convention that A and B represent the static thread functions, while tA and tB
represent dynamic threads that run the functions A and B respectively, with an optional
subscript indicating the priority at which the thread was created. Finally we say s1 and s2
are involved in a data-race (or simply are racy) in P , if they are conflicting accesses that
may happen in parallel in P .

It will be convenient for us to use a stronger notion than MHP called “occurs-in-between”
while reasoning about IDA programs. Once again, if s1 and s2 are statements in P , we say
that s2 can occur-in-between s1 if there is an execution of Ps1 in which s2 occurs sometime
between the first skip and the second skip around s1. In this case we write s1/ s2, and
s1 6/ s2 otherwise. The definition of s1/ s2 is illustrated in the right side of Fig. 3. While it
is immediate that if s2 occurs in between s1 then they also MHP, a weaker version of the
converse is also true:

I Proposition 1. Let s1 and s2 be two statements in an IDA program P . Then s1 MHP s2
iff either s1 occurs in between s2 or s2 occurs in between s1. J

Thus to conclude that s1 and s2 cannot MHP (and hence not race) it is enough to show
that s1 and s2 cannot occur in between each other.

5 Occur-In-Between Rules

In this section we focus on statically computing a conservative (i.e. under-) approximation
of the cannot-occur-in-between relation for an IDA program, by giving rules for identifying
this relation. To illustrate the typical issues we need to keep in mind while framing these
rules, consider the example program alongside. Task threads A4, B2, and C4 are created at
priority 4,2, and 4 respectively. In the normal course statement s2 in B2 would not be able
to occur in between s1 in A4 as A4 runs at a higher priority than B2. However, (the thread
that runs) C4 may suspend A4 just before it executes s1, block itself, and allow B2 to run.
Thus s2 can occur in between s1.

FSTTCS 2020

57:8 Data-Race Detection

B2:A4: C4:

// t runs A4 at prio 4

suspend(t);

block;

resume(t);

s1; s2;

We will make use of the following terminology for an IDA program P . Let s be a statement
in thread function A in P . We say s may run at priority p if there is an execution of P in
which a thread t runs A and executes statement s at a priority of p. We say (p, q) is the
dynamic priority of s if p and q are respectively the minimum and maximum priorities that s
can run at. Similarly, we say that the dynamic priority of a thread function A (or a block of
code in A) is (p, q) if p and q are respectively the minimum and maximum priorities at which
any statement in A (or the block of A) can run. Finally, we say that a task function A may
suspend another task function B in P , if A contains a statement of the form suspend(t), and
there is an execution of P in which the statement is executed when the thread id t points
to task function B (that is t runs task B). We say the statement suspend(t) in P must
suspend (or simply suspends) a task B if t takes on a unique thread id at this point along
any execution of P , and this thread id is the only thread that runs B. In this case, we will
denote such a statement by suspend(B).

We now proceed to propose sufficient conditions under which one statement in an IDA
program cannot occur-in-between another statement in the program. Let us fix an IDA
program P . Let s1 and s2 be statements in thread functions A and B respectively (A and B
could be the same thread function). The following conditions (C1)–(C6) below are meant
to be sufficient conditions that ensure that s2 cannot occur in between s1. In the rules
below, by a statement s in a thread function A being enclosed in a suspend-resume block
we mean there is a path in the CFG of A which contains s, begins with a suspend, ends
with a resume, and has no intervening resume statement; and similarly for other kinds of
blocks. Each of these rules is illustrated in Fig. 4.

C1 (Suspend Task): Each of the following conditions must hold:
s1 is enclosed in a suspend(B)-resume(B) block with dynamic priority (p, q);
there is no task with maximum dynamic priority greater than or equal to p, that can
resume B;
Either no blocking statement in the suspend(B)-resume(B) block, or no other task
that can resume B.

C2 (Priority): Each of the conditions below must hold:
The dynamic priorities of s1 and s2 are (p1, q1) and (p2, q2) respectively, with p1 > q2.
There is no thread body with maximum dynamic priority greater than or equal to p1
that can suspend A.

C3 (Flag): Each of the conditions below must hold:
s1 is enclosed in a block F begining with setting the variable flag to 1 and ending
with resetting it to 0, with dynamic priority of the block being (p1, q1).
The block F is either in the scope of a suspendsched command or there is no thread
of priority ≥ p1 that resets flag.
Either there is no blocking command before s1 in F , or no thread that can reset flag.
s2 is in an if-then block which checks that flag is not set, with the block having
dynamic priority (p2, q2).
q1 < p2.

C4 (Lock): Each of s1 and s2 are within a lock(l)-unlock(l) block, for some common
lock l.

R. Tulsyan, R. Pai, and D. D’Souza 57:9

C5 (Disable Interrupts): s1 is within a disableint-enableint block.
C6 (Suspend Scheduler): s1 is within a suspendsched-resumesched block in a task
function, and s2 is in a task function.

I Theorem 2. Let P be an IDA program, and let s1 and s2 be statements in P that satisfy
one of the conditions (C1) to (C6) above. Then s1 6/ s2 in P .

Proof. We sketch here a proof of Thm. 2 on the soundness of the conditions C1–C6. Let P
be an IDA program with statements s1 and s2 satisfying one of the conditions C1–C6. We
need to argue that in each case s1 6/ s2. We focus on the first three rules C1–C3 since the
remaining are more standard and their soundness is easy to see.

C1: Suppose s1 and s2 satisfy the condition C1, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then s2 must happen some time after t2 was suspended by t1, and before s1 takes place.
The only way this can happen is if:

Some thread t3 with priority greater than or equal to p1 resumes t2. But this is not
possible since the condition says that there is no other task with dynamic priority greater
than or equal to p1 which can resume B.
t1 makes a blocking call and another task runs and resumes t2. However this is ruled
out by the requirement that [there is no block command before s1] OR [there is no task
other than A which can resume B].

C2: Suppose s1 and s2 satisfy the condition C2, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then thread t2 must preempt thread t1 during the execution of s1. The only way this
can happen is if:

t2 with priority greater than p1 was blocked. It runs and preempts t1. But this is not
possible since the condition says that p1 > maximum dynamic priority of t2.
t2 has a priority equal to p1 and t1’s time slice expires and it gets preempted by t2. Again,
this is not possible since the condition says that p1 > maximum dynamic priority of t2.
Some thread t3 with priority greater than or equal to p1 was blocked. It runs and suspends
t1. However this is ruled out by the requirement that there is no task other than t1 with
maximum dynamic priority ≥ p1, which can suspend t1.

C3: Suppose s1 and s2 satisfy the condition C3, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then s2 must happen some time after flag1 is set to 1 by t1, and before s1 takes place.
The only way this can happen is if:

Some thread t3 with priority greater than or equal to p1 was blocked. It runs and resets
flag1 to 0. But this is not possible since the condition says that s1 is either in the scope
of a suspendsched command or there is no thread of priority ≥ p1 that resets flag1.
t1 makes a blocking call and another task runs and resets flag1 to 0. Again, this is not
possible because of the requirement that [there is no block command before s1] OR
[there is no task other than t1 which can reset flag1 to 0].
Both t1 and t2 run at the same priority. Before t1 sets flag1 to 1, t2 checks flag1 and
finds that it is 0, and enters the block containing s2. Before t2 executes s2, it’s time slice
expires. It gets preempted by t1 which sets flag1 to 1 and starts s1. However this is
ruled out by the requirement that p2 > p1.

This completes the argument. J

FSTTCS 2020

57:10 Data-Race Detection

(b) C2 (Priority)

thread A: thread B:

flag := 0;

thread A: thread B:

if(flag!=1){

}

flag := 1;

thread A: thread B:

(c) C3 (Flag) (d) C4 (Lock)

task A: task B:

(f) C6 (Scheduler Suspend)

thread A: thread B:

(e) C5 (Disable Interrupts)

(a) C1 (Task Suspend)

task A: task B:

s1; 6/ (p2, q2)

p1 > q2.

(p1, q1) s2;

No task with max prio ≥ p1 suspends A.

(p1, q1)

No task with max prio ≥ p1 resumes B.

Sched suspended or no task with prio ≥ p1 resets flag.

(p1, q1)

No block before s1 or no other task resets flag.

(p2, q2)s1; 6/

q1 < p2

s2;

unlock(l);

6/

lock(l);lock(l);

unlock(l);

s2;s1;

resumesched

suspendsched;

s1; 6/ s2;

enableint;

6/s1; s2;

disableint;

resume(B);

suspend(B);

s1;

No block before s1 or no other task resumes B.

6/ s2;

Figure 4 Rules that guarantee s2 cannot occur in between s1 (i.e. s1 6/ s2).

6 Implementation and Evaluation

We have implemented our analysis for FreeRTOS [5] applications in a tool called RAPR (for
“RTOS App Racer”). Our IDA language is closely modelled on the syntax and semantics of
FreeRTOS apps, and hence we continue to use the IDA commands in place of the FreeRTOS
commands in this section. Our analysis is implemented in the CIL static analysis framework
[20] using OCaml, and comprises a few pre-analyses followed by the main analysis for checking
the conditions. For convenience we assume that each create statement uses a different
thread identifier.

Priority Analysis. The priority analysis determines the min and max dynamic priority at
each statement in each thread function. This is done in 2 passes as follows. We first perform
an interval-based analysis for each function A, maintaining an interval [p, q] of possible priority
values at each statement. The initial interval is [p0, q0], given by the min and max priorities
among threads that run A. The transfer function for a set_priority(NULL, p) statement
returns the interval [p, p], and is identity for other statements. The join is the standard join
on the interval lattice. In the second pass, for each statement set_priority(t, p′) where t
may run A, we update the interval [p, q] at each statement in A to [min(p, p′),max(q, p′)].

Suspend/Resume Analysis. This analysis determines the set of tasks which can suspend
or resume a given task. We maintain a set of task functions susplist(A) and reslist(A) for
each task function A, containing the set of tasks that can suspend and resume A respectively.
For each task B with a suspend(A) or resume(A) statement, we add B to susplist(A) or
reslist(A) respectively.

R. Tulsyan, R. Pai, and D. D’Souza 57:11

Figure 5 Architecture of RAPR.

Lockset Analysis. A standard lockset analysis aims to compute the set of locks that are
must held at each program point. On a lock(l) statement, the transfer function adds l to
the set of locks held after this statement, while for an unlock(l) statement we remove l
from the set of locks held. The join operation is simply the intersection of the locksets at
the incoming points. In our setting, apart from the standard locks, we use notional locks
that correspond to the different kinds of code blocks used in the rules of Fig. 4. Thus, for
each suspend(A)-resume(A) block (rule C1) we use a notional lock SA that we “acquire” at
the suspend(A) statement and “release” at the resume(A) statement. The lockset analysis
would then let us identify a suspend(A)-resume(A) block by the fact that the lock SA is
held throughout these statements. In a similar way we use locks F set

flag and F chk
flag for each flag

variable flag, corresponding to the two blocks in rule C3; lock D for disableint-enableint
(rule C5); and lock S for suspendsched-resumesched (rule C6).

Main Analysis. The overall analysis computes conflicting accesses by scanning for global
variables having shared accesses in different threads with at least one access being a write
access. We use CIL’s inbuilt alias analysis to resolve pointers to shared global variables.
The information obtained from priority and lockset analysis is used to check for the cannot
occur-in-between relation between the pair of conflicting accesses, using rules C1–C6. If both
accesses in the pair cannot occur-in-between each other, they are declared to be non-racy;
else they are declared to be potentially racy. A schematic of our implementation is shown in
Fig 5.

Finally, the analysis allows a couple of command-line switches to handle some of the
configuration options of FreeRTOS. Certain locks (called “mutex” locks) have a priority
inheritance mechanism associated with them: when a higher priority thread is waiting
on a mutex already acquired by a lower priority thread, the lower priority thread has its
priority bumped up to the priority of the higher priority thread. Anticipating a need while
translating nxtOSEK applications, we also allow a ceiling priority mechanism for mutexes
which immediately increases the priority of the acquiring thread to the max priority of all
threads that might ever acquire the mutex. To handle this we adapt the transfer function of
our priority analysis for a lock(l) statement, when l is a mutex, to return [p,max(q, p′)] in
the case of priority inheritance, and [p′, p′] in the case of ceiling priority, where [p, q] is the
incoming priority interval and p′ is the max priority of any task that might acquire l. We also
provide a switch to disallow round-robin scheduling within threads of the same priority, and
handle it by modifying the cannot occur-in-between conditions for C1 and C2 by replacing
“>” by “≥” for the dynamic priorities.

FSTTCS 2020

57:12 Data-Race Detection

Table 2 Experimental results.

Program LoC Conf.
acc.

True
Races

RAPR Pot. Pot.
Time Pot. % % Races Races
(in s) Races Elim. Prec. [23] [8]

bipedrobot.c 338 3 0 1.39 2 33.33 0.00 2 10
pe_test.c 95 4 3 0.01 3 25.00 100.00 3 7
res_test.c 110 40 8 0.03 9 77.50 88.88 9 11
tt_test.c 105 5 3 0.01 3 40.00 100.00 3 6
usb_test.c 169 0 0 0.02 0 0.00 100.00 0 52
example.c 87 13 1 0.03 1 92.30 100.00 1 61
example_fun.c 102 13 1 0.05 4 69.23 25.00 1 61
pingpong.c 112 3 0 0.01 0 100.00 100.00 0 7
counter.c 96 6 6 0.01 6 0.00 100.00 6 9
dynamic.c 429 20 2 0.13 6 70.00 33.33 16* 23
IntQueue.c 747 42 5 0.97 16 61.90 31.25 10* 24
rangefinder.c 394 16 10 0.23 10 37.50 100.00 16* 18

Experimental Evaluation. We tested our analysis on 12 FreeRTOS applications, shown in
Tab. 2. The first 9 are nxtOSEK test programs [6] analysed in [23], which were converted
to FreeRTOS programs taking care to preserve the nxtOSEK semantics which these pro-
grams use. nxtOSEK uses a priority ceiling protocol for mutex locks and no round-robin
scheduling between same priority tasks. The next 2 are demo applications in FreeRTOS
and finally, rangefinder.c is the converted version of an ArduPilot subsystem [1] originally in
ChibiOS/C++.

The examples used by Schwarz et al. [23] consist of bipedrobot.c which is part of
the control software of a self-balancing robot, pe_test.c which tests preemptive scheduling,
res_test.c which tests resource based synchronization, tt_test.c where tasks are time-triggered,
usb_test.c which tests usb communication, pingpong.c where two tasks set a variable to
“ping” and “pong” using a mutex and counter.c where one task increments the fields of a
structure and the other task resets and prints these fields. The programs example.c and
example_fun.c are examples from [23]. The FreeRTOS demo dynamic.c consists of three
tasks which use different mechanisms to access a shared global counter. IntQueue.c is another
FreeRTOS demo where tasks share global arrays and counters. Finally rangefinder.c is an
ArduPilot subsystem with three task threads and one ISR thread which share access to a
state variable and ring and bounce buffers.

Table 2 shows the results of our analysis on these programs. We ran these experiments
on a Intel Core i5-8250U 1.60GHz Quad CPU machine under Ubuntu 18.04.4. Conf. acc.
denotes the total number of pairs of conflicting accesses to shared global variables in the
program. True races denotes the number of actual races existing in the program. RAPR
“Pot. Races” denotes the number of conflicting accesses flagged to be potentially racy by the
analysis. %Elim. denotes the fraction of conflicting accesses declared to be non-racy and
%Prec. denotes the fraction of potential races which are actual races. Pot. Races from [23]
and [8] denote the number of potential races flagged using their respective techniques.

In bipedrobot.c, the Task_Init only runs once and hence the potential races are false
positives. The decrement to digits in LowTask races with the read and write access in
HighTask in pe_test.c. In res_test.c, the read accesses to digits are unprotected due to which
it can be an actual race. The decrement of digits in LowTask is unprotected from HighTask
and hence it is racy in tt_test.c. In usb_test.c, there are no shared accesses between tasks
and hence it is trivially race-free. The races in example.c and example_fun.c are shown

R. Tulsyan, R. Pai, and D. D’Souza 57:13

in [23]. The ping and pong tasks use a mutex to access the shared variable in pingpong.c
and it is race-free. In counter.c, the fields of the global structure are accessed without any
protection and hence race with each other. The first initialization of the counter by the
controller task in dynamic.c is an actual race with the increment in the continuous increment
task because both are created at the same priority and the continuous increment task can
preempt the controller when it is initializing the counter. In Intqueue.c some accesses to
the shared arrays are real races. In rangefinder.c, the I2C bus thread’s access to the state
variable is not protected from the main thread and the main thread’s access to the ring
buffer is not protected from the UART thread which results in a high number of actual races.

The potential races from [23] value is obtained by manually estimating the working of
the idea in [23]. This is marked with a * for the last 3 programs as their technique does not
handle constructs like dynamically changing the priority of a task and hence is potentially
unsound for these programs. It also results in more false positives for the dynamic.c and
IntQueue.c examples as protection from synchronization mechanisms like suspending another
task, disabling interrupts and suspending the scheduler is not considered. The number of
potential races from [8] is obtained using their tool. The tool does not consider priorities for
synchronization. Moreover it considers each task function to be run by multiple threads even
if only one thread runs it in the application. These factors add to its imprecision.

In dynamic.c the conflicts in the continuous increment task and the limited increment task
seem to be racy because they occur at the same priority but the controller task actually ensures
that these two can never be in the ready state at the same time keeping one of these two
suspended at all times. But this is unknown to the analysis when it encounters the conflicts as
this dynamic information about the controller task cannot be made available at these points.
This is the reason behind the false positives. The analysis and the test programs with the
results can be found in the repository bitbucket.org/rishi2289/static_race_detect/.

7 Related Work

We discuss related work grouped according to the three categories below.
Static Race Detection. The most closely related work is that of Schwarz et al. [22, 23]

and Chopra et al. [8]. In [22, 23] Schwarz et al. provide a precise interprocedural data-flow
analysis for checking races in OSEK-like applications that use the priority ceiling semantics.
Chopra et al. [8] propose the notion of disjoint-blocks to detect data races and carry out
data-flow analysis for FreeRTOS-like interrupt-driven kernel APIs. In contrast to both these
works, our work handles a comprehensive variety of synchronization mechanisms, including
suspend-resume and setting priorities dynamically. In addition we handle dynamic thread
creation which both these works do not.

In other work in this category Chen et al. [7] develop a static analysis tool for race
detection in binaries of interrupt-driven programs with interrupt priorities of upto two levels.
The tool considers only disable-enable of interrupts as a synchronization mechanism and does
not consider interleavings of task threads. Regehr and Cooprider [21] describe a source-to-
source translation of an interrupt-driven program to a standard multi-threaded program, and
analyze the translated program for data races. However their translation is inadequate in our
setting and we refer the reader to [8] for the inherent problems with such an approach. Sung
et al. [26] propose a modular technique for static verification of interrupt-driven programs
with nesting and priorities. However, the algorithm does not consider interrupt-related
synchronization mechanisms nor does it consider interleavings of task threads or interaction
with the ISRs. Wang et al. [29] present SDRacer, an automated framework that detects and

FSTTCS 2020

bitbucket.org/rishi2289/static_race_detect/

57:14 Data-Race Detection

validates race conditions in interrupt-driven embedded software. The tool combines static
analysis, symbolic execution, and dynamic simulation. However, it is unsound as their static
analysis does not iterate to fixpoint. Mine et al. [18] extend Astree by employing a thread-
modular static analyzer to soundly report data races in embedded C programs with mutex
locks and dynamic priorities. However they do not consider interrupts and synchronization
mechanisms like flag-based and suspend-resume. Finally, several papers do lockset-based
static analysis for data races in classical concurrent programs [25, 11, 28, 2]. Flanagan et
al. [12, 13] uses type system to track the lockset at each program point. However none
of these techniques apply to interrupt-driven programs with non-standard synchronization
mechanisms and switching semantics.

Model-Checking. Several researchers have used model-checking tools like Slam, Blast,
and Spin to precisely model various kinds of synchronization mechanisms and detect errors
exhaustively [16, 10, 15, 14, 30, 3, 19]. These technique cannot handle dynamic thread
creation, and even with a small bound on the number of threads suffer from state-space
explosion. Liang et al. [17] present an effective method to verify interrupt-driven software
with nested interrupts, based on symbolic execution. The method translates a concurrent
program into atomic memory read/write events, and then describe the interleavings of these
events as a symbolic partial order expressed by a SAT/SMT formula. It is able to verify only
a bounded number of interrupts.

High-Level Race Detection. A “high-level” race occurs when two blocks of code representing
critical accesses overlap in an execution. Our definition of a data race between statements
s1 and s2 in program P can thus be phrased as a high-level race on the skip-blocks in the
augmented program Ps1,s2 . Artho et al. [4], von Praun and Gross [27], and Pessanha et al. [9]
study a “view”-based notion of high-level races and carry out lockset based static analysis to
detect high-level races. Singh et al. [24] use the disjoint-block notion of [8] to detect high-level
races in several RTOS kernels. They consider some non-standard synchronization mechanisms
and also the relative scheduling priorities of specialized threads like callbacks and software
interrupts. However none of these techniques handle the full gamut of synchronization
mechanisms we address, and hence would be very imprecise for our applications.

8 Conclusions and Future Work

We have presented an efficient and precise way to detect data-races in RTOS applications
that use a variety of non-standard synchronization constructs and idioms. Going forward we
would like to extend our tool to be able to handle large real-life applications like ArduPilot
which are written in C++ and run on the ChibiOS RTOS. We would also like to extend
our technique to identify disjoint-block patterns so that we can carry out efficient data-flow
analysis [8] for such applications.

References
1 ArduPilot: Open source drone software. versatile, trusted, open. https://ardupilot.org/,

2020.
2 Martin Abadi, Cormac Flanagan, and Stephen N Freund. Types for safe locking: Static race

detection for Java. ACM Transactions on Programming Languages and Systems (TOPLAS),
28(2):207–255, 2006.

3 Rajeev Alur, Ken McMillan, and Doron Peled. Model-checking of correctness conditions for
concurrent objects. Information and Computation, 160(1):167–188, 2000.

4 Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. Software Testing,
Verification and Reliability, 13(4):207–227, 2003.

https://ardupilot.org/

R. Tulsyan, R. Pai, and D. D’Souza 57:15

5 Richard Barry. The FreeRTOS kernel, v10.0.0. https://freertos.org, 2017.
6 Takashi C. The NxtOSEK project. https://sourceforge.net/projects/lejos-osek/, 2014.
7 Rui Chen, Xiangying Guo, Yonghao Duan, Bin Gu, and Mengfei Yang. Static data race

detection for interrupt-driven embedded software. In Proceedings of the 2011 Fifth International
Conference on Secure Software Integration and Reliability Improvement - Companion, SSIRI-C
’11, page 47–52, USA, 2011. IEEE Computer Society.

8 Nikita Chopra, Rekha Pai, and Deepak D’Souza. Data races and static analysis for interrupt-
driven kernels. In Proceedings of the 28th European Symposium on Programming, ESOP 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2019, volume 11423 of Lecture Notes in Computer Science, pages 697–723, Prague, Czech
Republic, 2019. Springer. doi:10.1007/978-3-030-17184-1_25.

9 Ricardo J. Dias, Vasco Pessanha, and João Lourenço. Precise detection of atomicity violations.
In Proceedings of the 8th International Haifa Verification Conference, HVC 2012. Revised
Selected Papers, volume 7857 of Lecture Notes in Computer Science, pages 8–23, Haifa, Israel,
2012. Springer. doi:10.1007/978-3-642-39611-3_8.

10 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Precise race detection and efficient model
checking using locksets. Technical Report MSR-TR-2005-118, Microsoft Research, 2005.

11 Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race conditions and
deadlocks. SIGOPS Operating Systems Review, 37(5):237–252, October 2003.

12 Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2000, pages 219–232, Vancouver, Britith Columbia, Canada, 2000. ACM. doi:
10.1145/349299.349328.

13 Cormac Flanagan and Stephen N. Freund. Detecting race conditions in large programs. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software
Tools and Engineering, PASTE, 2001, pages 90–96, Snowbird, Utah, USA, 2001. ACM.
doi:10.1145/379605.379687.

14 Klaus Havelund, Michael R. Lowry, and John Penix. Formal analysis of a space-craft controller
using SPIN. IEEE Transactions on Software Engineering, 27(8):749–765, 2001.

15 Klaus Havelund and Jens U. Skakkebæk. Applying model checking in java verification. In
Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking, page 216–231, Berlin, Heidelberg, 1999. Springer-Verlag.
doi:10.1007/3-540-48234-2_17.

16 Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by context inference.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, PLDI ’04, pages 1–13, New York, NY, USA, 2004. Association for Computing
Machinery.

17 Lihao Liang, Tom Melham, Daniel Kroening, Peter Schrammel, and Michael Tautschnig.
Effective verification for low-level software with competing interrupts. ACM Transactions on
Embedded Computing Systems, 17(2):36:1–36:26, December 2017.

18 Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot, Daniel
Kästner, Stephan Wilhelm, and Christian Ferdinand. Taking Static Analysis to the Next
Level: Proving the Absence of Run-Time Errors and Data Races with Astrée. In Proceedings
of the 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016),
Toulouse, France, 2016.

19 Suvam Mukherjee, Arun Kumar, and Deepak D’Souza. Detecting all high-level dataraces in an
RTOS kernel. In Proceedings of the 18th International Conference on VMCAI 2017, volume
10145 of Lecture Notes in Computer Science, pages 405–423, Paris, France, 2017. Springer.
doi:10.1007/978-3-319-52234-0_22.

20 George Necula. CIL – infrastructure for C Program Analysis and Transformation (v. 1.3.7).
http://people.eecs.berkeley.edu/~necula/cil/, 2002.

FSTTCS 2020

https://freertos.org
https://sourceforge.net/projects/lejos-osek/
https://doi.org/10.1007/978-3-030-17184-1_25
https://doi.org/10.1007/978-3-642-39611-3_8
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/379605.379687
https://doi.org/10.1007/3-540-48234-2_17
https://doi.org/10.1007/978-3-319-52234-0_22
http://people.eecs.berkeley.edu/~necula/cil/

57:16 Data-Race Detection

21 John Regehr and Nathan Cooprider. Interrupt verification via thread verification. Electronic
Notes in Theoretical Computer Science, 174(9):139–150, 2007.

22 Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, and Kalmer Apinis. Precise analysis of
value-dependent synchronization in priority scheduled programs. In Proceedings of the 15th
International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI
2014, volume 8318 of Lecture Notes in Computer Science, pages 21–38, San Diego, CA, USA,
2014. Springer. doi:10.1007/978-3-642-54013-4_2.

23 Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, Peter Lammich, and Markus Müller-Olm.
Static analysis of interrupt-driven programs synchronized via the priority ceiling protocol. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, pages 93–104, Austin, TX, USA, 2011. ACM. doi:10.1145/1926385.
1926398.

24 Abhishek Singh, Rekha Pai, Deepak D’Souza, and Meenakshi D’Souza. Static analysis for
detecting high-level races in RTOS kernels. In Proceedings of the Formal Methods - The Next 30
Years - Third World Congress, FM 2019, volume 11800 of Lecture Notes in Computer Science,
pages 337–353, Porto, Portugal, 2019. Springer. doi:10.1007/978-3-030-30942-8_21.

25 Nicholas Sterling. WARLOCK - A static data race analysis tool. In Proc. Usenix Winter
Technical Conference, pages 97–106, 1993.

26 Chungha Sung, Markus Kusano, and Chao Wang. Modular verification of interrupt-driven
software. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 206–216, Urbana, IL, USA, 2017. IEEE Computer
Society. doi:10.1109/ASE.2017.8115634.

27 Christoph von Praun and Thomas R. Gross. Static detection of atomicity violations in
object-oriented programs. Journal of Object Technology, 3(6):103–122, 2004.

28 Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: static race detection on millions of
lines of code. In Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, pages 205–214, Dubrovnik, Croatia, 2007. ACM. doi:10.1145/1287624.
1287654.

29 Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong Li. Automatic detection
and validation of race conditions in interrupt-driven embedded software. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2017, pages
113–124, Santa Barbara, CA, USA, 2017. ACM. doi:10.1145/3092703.3092724.

30 Reng Zeng, Zhuo Sun, Su Liu, and Xudong He. Mcpatom: A predictive analysis tool for
atomicity violation using model checking. In Proceedings of the 19th International Workshop
on Model Checking Software SPIN 2012, volume 7385 of Lecture Notes in Computer Science,
pages 191–207, Oxford, UK, 2012. Springer. doi:10.1007/978-3-642-31759-0_14.

A Semantics

https://doi.org/10.1007/978-3-642-54013-4_2
https://doi.org/10.1145/1926385.1926398
https://doi.org/10.1145/1926385.1926398
https://doi.org/10.1007/978-3-030-30942-8_21
https://doi.org/10.1109/ASE.2017.8115634
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/3092703.3092724
https://doi.org/10.1007/978-3-642-31759-0_14

R. Tulsyan, R. Pai, and D. D’Souza 57:17

c
=

sk
ip
t

=
rp

c(
t)

=
l

S
K

IP
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

sk
ip
t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

S
K

IP
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

x
:=

et
=
rp

c(
t)

=
l

A
S

S
IG

N
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ

[x
7→

[[e
]] φ

],
r,
i,

ss
,i

d〉

c
=

x
:=

et
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

A
S

S
IG

N
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ

[x
7→

[[e
]] φ

],
t,
r,

ss
,i

d〉

c
=

as
su

me
(b

)t
=
rp

c(
t)

=
l[[
b]]
φ

=
tr

ue
A

S
S

U
M

E
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

as
su

me
(b

)
t
∈
R

IS
R

(t
)
t
6=
r

pc
(t

)=
l

=
en

t F
(t

)
P

(t
)>
P

(r
)

[[b
]] φ

=
tr

ue
id

=
fa

lse
A

S
S

U
M

E
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

cr
ea

te
(A
,p
,v

)
t

=
r

ta
sk

(t
)
A
∈

F
ty

pe
(A

)=
ta

sk
ts
/∈
T

(p
≤
P

(r
)∨

(s
s∨

id
)=

tr
ue

)
C

R
E

A
T

E
-N

S
s
⇒
ι
〈B
,S
,R
∪
{t
s}
,P

[ts
7→
p
],
A
,F

[ts
7→
A

],
pc

[t
7→
l′
,t
s
7→

en
t A

],
φ

[v
7→
ts

],
r,
i,

ss
,i

d〉

c
=

cr
ea

te
(A
,p
,v

)
t

=
r

ta
sk

(t
)
A
∈

F
ty

pe
(A

)=
ta

sk
ts
/∈
T

p
>
P

(r
)

(s
s∨

id
)=

fa
lse

C
R

E
A

T
E

-C
S

s
⇒
ι
〈B
,S
,R
∪
{t
s}
,P

[ts
7→
p
],
A
,F

[ts
7→
A

],
pc

[t
7→
l′
,t
s
7→

en
t A

],
φ

[v
7→
ts

],
ts
,i
,s

s,
id
〉

c
=

se
t_

pr
io

ri
ty

(t
s,
p)

t
=
r

ta
sk

(t
)

pc
(t

)=
l
p
∈
N

ta
sk

(t
s)

ts
∈
T

(
(P

(r
)≥

p
)
∨

(P
(r

)<
p
∧
ts
∈

(B
∪
S)

)
∨

(s
s∨

id
)=

tr
ue

)
S

E
T

P
-N

S
s
⇒
ι
〈B
,S
,R
,P

[ts
7→
p
],
A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

se
t_

pr
io

ri
ty

(t
s,
p)

t
=
r

ta
sk

(t
)

pc
(t

)=
l
p
∈
N

ta
sk

(t
s)

ts
∈
R

p
>
P

(r
)

(s
s∨

id
)=

fa
lse

S
E

T
P

-C
S

s
⇒
ι
〈B
,S
,R
,P

[ts
7→
p
],
A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

FSTTCS 2020

57:18 Data-Race Detection

c
=

su
sp

en
d(
ts

)t
as
k(
t)
t

=
r
6=
ts
ts
∈
T

pc
(t

)=
l

S
U

S
-N

S
s
⇒
ι
〈B
−
{t
s}
,S
∪
{t
s}
,R
−
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

su
sp

en
d(
ts

)
ta
sk

(t
)
t

=
r

=
ts

pc
(t

)=
l

(s
s∨

id
)=

fa
lse
∃t
s′
∈
R
.ta

sk
(t
s′

)
∧
ts
′
6=
r
∧
P

(t
s′

)=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧

ta
sk

(u
)}

)
S

U
S

-C
S

s
⇒
ι
〈B
,S
∪
{r
},
R
−
{r
},
P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s′
,i
,s

s,
id
〉

c
=

re
su

me
(t
s)

ta
sk

(t
)
t

=
r
6=
ts

pc
(t

)=
l
ts
∈

(S
∪
R

)
((

ss
∨

id
)=

tr
ue
∨
P

(r
)≥
P

(t
s)

)
R

E
S

-N
S

s
⇒
ι
〈B
,S
−
{t
s}
,R
∪
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

re
su

me
(t
s)

ta
sk

(t
)
t

=
r
6=
ts

pc
(t

)=
l
ts
∈
S

(s
s
∨

id
)=

fa
lse
P

(t
s)
>
P

(r
)

R
E

S
-C

S
s
⇒
ι
〈B
,S
−
{t
s}
,R
∪
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

c
=

su
sp

en
ds

ch
ed
t

=
rt
as
k(
t)

pc
(t

)=
l

S
U

S
S

C
H

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,t

ru
e,

id
〉

c
=

re
su

me
sc

he
dt

=
rt
as
k(
t)

pc
(t

)=
l(
∀t
s
∈
R
.ta

sk
(t
s)
∧
P

(r
)≥
P

(t
s)
∨

id
=

tr
ue

)
R

E
S

S
C

H
-N

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,f

al
se
,i

d〉

c
=

re
su

me
sc

he
d
t

=
r

ta
sk

(t
)

pc
(t

)=
l
∃t
s
∈
R
.ta

sk
(t
s)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
∧

ta
sk

(u
)}

)
id

=
fa

lse
R

E
S

S
C

H
-C

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

fa
lse
,i

d〉

c
=

di
sa

bl
ei

nt
t

=
rp

c(
t)

=
l

D
IS

IN
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
tr

ue
〉

c
=

di
sa

bl
ei

nt
t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

D
IS

IN
T

-I
N

T
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
tr

ue
〉

c
=

en
ab

le
in

tt
=
rp

c(
t)

=
l(
∀t
s
∈
R
.ta

sk
(t
s)
∧
P

(r
)≥
P

(t
s)
∨

ss
=

tr
ue
∨

IS
R

(r
))

E
N

IN
T

-N
S

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
fa

lse
〉

R. Tulsyan, R. Pai, and D. D’Souza 57:19

c
=

en
ab

le
in

t
t

=
r

ta
sk

(t
)

pc
(t

)=
l
∃t
s
∈
R
.ta

sk
(t
s)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
∧
ta
sk

(u
)}

)
ss

=
fa

lse
E

N
IN

T
-C

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,f

al
se
〉

c
=

en
ab

le
in

tt
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

E
N

IN
T

-I
N

T
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
fa

lse
〉

c
=

lo
ck

(m
)t

=
rp

c(
t)

=
l(
A

(m
)=

un
de

f
∨
A

(m
)=

r)
L

O
C

K
-A

Q
s
⇒
ι
〈B
,S
,R
,A

[m
7→
r]
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

lo
ck

(m
)
t

=
r

ta
sk

(t
)

pc
(t

)=
l
A

(m
)=

ts
6=
r

(s
s∨

id
)=

fa
lse
∃t
s′
∈
R
.t
s′
6=
r
∧

ta
sk

(t
s′

)
∧
P

(t
s′

)=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧
ta
sk

(u
)}

)
L

O
C

K
-C

S
s
⇒
ι
〈B
∪
{r
},
S,
R
−
{r
},
A
,F
,p

c,
φ
,t
s′
,i
,s

s,
id
〉

c
=

lo
ck

(m
)
t
∈
R

IS
R

(t
)
t
6=
r

pc
(t

)=
en

t F
(t

)
P

(t
)>
P

(r
)
A

(m
)=

un
de

f
id

=
fa

lse
L

O
C

K
-A

Q
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A

[m
7→
t],
F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

un
lo

ck
(m

)t
=
rp

c(
t)

=
l(
A

(m
)=

r
∨
A

(m
)=

un
de

f)
U

N
L

O
C

K
s
⇒
ι
〈B
,S
,R
,A

[m
7→

un
de

f]
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

un
lo

ck
(m

)t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)A

(m
)6=

tid
=

fa
lse

U
N

L
O

C
K

-I
N

T
s
⇒
ι
〈B
,S
,R
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

bl
oc

kt
=
rt
as
k(
t)

pc
(t

)=
l(

ss
∨

id
)=

tr
ue

B
L

K
-N

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

bl
oc

k
t

=
r

ta
sk

(t
)

pc
(t

)=
l

(s
s∨

id
)=

fa
lse
∃t
s
∈
R
.ta

sk
(t
s)
∧
ts
6=
r
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧

ta
sk

(u
)}

)
B

L
K

-C
S

s
⇒
ι
〈B
∪
{r
},
S,
R
−
{r
},
P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

FSTTCS 2020

57:20 Data-Race Detection

c
=

st
ar

t
t

=
r

=
0

(s
s∨

id
)=

fa
lse
∃t
s
∈

(S
∪
R

).t
as
k(
ts

)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
S
∪
R
∧

ta
sk

(u
)}

)
S

T
A

R
T

s
⇒
ι
〈B
,∅
,S
∪
R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

fa
lse
,f

al
se
〉

t
∈
B
ta
sk

(r
)(

(s
s∨

id
)=

tr
ue
∨
P

(t
)≤
P

(r
))

U
N

B
L

K
-N

S
s
⇒
∗
〈B
−
{t
},
S,
R
∪
{t
},
P
,A
,F
,p

c,
φ
,r
,i
,s

s,
id
〉

t
∈
B
ta
sk

(r
)(

ss
∨

id
)=

fa
lse
P

(t
)>
P

(r
)

U
N

B
L

K
-C

S
s
⇒
∗
〈B
−
{t
},
S,
R
∪
{t
},
P
,A
,F
,p

c,
φ
,t
,i
,s

s,
id
〉

t
∈
R
ta
sk

(t
)t
6=
r(

ss
∨

id
)=

fa
lse
P

(t
)=
P

(r
)

T
S

H
A

R
E

s
⇒
∗
〈B
,S
,R
,P
,A
,F
,p

c,
φ
,t
,i
,s

s,
id
〉

Fo
r
th
e
co
m
m
an

ds
sk

ip
,x

:=
e,

as
su

me
,d

is
ab

le
in

t,
en

ab
le

in
t,

lo
ck

,a
nd

un
lo

ck
pe

rm
itt

ed
in

an
IS
R

th
re
ad

,t
he

fo
llo

w
in
g
co
ns
tr
ai
nt
s
ne

ed
to

ho
ld

on
s′
.
If

th
e
cu

rr
en
t
IS
R

th
re
ad

is
ex
ec
ut
in
g
th
e
la
st

st
at
em

en
t
th
en

r′
is

th
e
hi
gh

es
t
pr
io
rit

y
IS
R

w
hi
ch

w
as

in
te
rr
up

te
d,

if
th
er
e
ex
ist

s
on

e,
an

d
i′

=
i.

If
no

IS
R
s
w
er
e
in
te
rr
up

te
d
th
en

r′
=
i,
th
e
in
te
rr
up

te
d
ta
sk

th
re
ad

an
d
i′

=
m

ai
n,

a
de

fa
ul
t
va
lu
e.

A
lso

,p
c′

(t
)=

en
t F

(t
).

	Introduction
	Overview
	Interrupt-Driven Applications
	Data Races and the Occur-in-Between Relation
	Occur-In-Between Rules
	Implementation and Evaluation
	Related Work
	Conclusions and Future Work
	Semantics

