On Some Recent Advances in Algebraic Complexity

Amir Shpilka 🔍

School of Computer Science, Tel Aviv University, Israel https://www.cs.tau.ac.il/~shpilka shpilka@tauex.tau.ac.il

– Abstract

Algebraic complexity is the field studying the intrinsic difficulty of algebraic problems in an algebraic model of computation, most notably arithmetic circuits. It is a very natural model of computation that attracted a large amount of research in the last few decades, partially due to its simplicity and elegance, but mostly because of its importance. Being a more structured model than Boolean circuits, one could hope that the fundamental problems of theoretical computer science, such as separating P from NP, deciding whether P = BPP and more, will be easier to solve for arithmetic circuits.

In this talk I will give the basic definitions, explain the main questions and how they relate to their Boolean counterparts, and discuss what I view as promising approaches to tackling the most fundamental problems in the field.

2012 ACM Subject Classification Theory of computation \rightarrow Algebraic complexity theory

Keywords and phrases Algebraic Complexity, Arithmetic Circuits, Polynomial Identity Testing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.6

Category Invited Talk

Funding Amir Shpilka: Supported by the Israel Science Foundation (grant number 514/20) and by the Len Blavatnik and the Blavatnik Family foundation-

© Amir Shpilka: licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).

Editors: Nitin Saxena and Sunil Simon; Article No. 6; pp. 6:1–6:1 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany