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Preface

This volume contains the proceedings of the 40th TARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2020). The conference
was originally planned to be held in BITS Pilani, K K Birla Goa Campus, Goa, India. Due
to the COVID-19 pandemic, the conference was held online from December 15 to December
17, 2020. The conference had two tracks, Track-A focussing on algorithms, complexity and
related issues and Track-B focussing on logic, automata and other formal methods aspects
of computer science. Each track had its own Program Committee (PC) with a chair. This
volume constitutes the joint proceedings of the two tracks, published in the LIPIcs series
under a Creative Common license, with free online access to all.

The conference comprised of 6 invited talks, 27 contributed talks in Track-A and 25 in
Track-B. This volume contains all the contributed papers from both tracks and the abstracts
of all invited talks presented at the conference. There were overall 138 submissions, 75 in
Track-A and 63 in Track-B. We thank all the authors who submitted their papers to FSTTCS
2020. We also express our gratitude to all the PC members for their tireless work and all
external reviewers for their expert opinion in the form of timely reviews.

We are grateful to all the invited speakers: Sanjeev Arora (Princeton University, U.S.A.),
Albert Atserias (Universitat Politecnica de Catalunya, Spain), Yin-Tat Lee (University of
Washington, U.S.A.), Joél Ouaknine (MPI for Software Systems, Saarbriicken, Germany and
University of Oxford, U.K.), Sanjit Seshia (University of California, Berkeley, U.S.A.) and
Amir Shpilka (Tel Aviv University, Israel). They kindly accepted our invitations and gave
talks that inspired the entire audience.

The main conference was preceded by two workshops: Workshop on Matriz Rigidity,
organised by Amey Bhangale (University of California, Riverside), Alexander Golovnev (Geor-
getown University), Mrinal Kumar (IIT Bombay) and Amit Kumar Sinhababu (University
of Ulm, Germany), and Strategies for Uncertainty (SUN) organised by Dietmar Berwanger
(CNRS & ENS Paris-Saclay) and R. Ramanujam (IMSc, Chennai). This was followed by a
post-conference workshop: Advances in Verification organised by Prakash Saivasan (IMSc,
Chennai) and B. Srivathsan (CMI, Chennai). In addition, there was a co-located event:
Workshop on Research Highlights in Programming Languages organised by Deepak D’Souza
(IISc, Bangalore), Uday P. Khedkar (IIT Bombay), K. Narayan Kumar (CMI, Chennai),
Komondoor V. Raghavan (IISc, Bangalore) and Aseem Rastogi (Microsoft Research, India).

We are indebted to the organising committee members: A. Baskar (BITS Pilani), Pritam
Bhattacharya (BITS Pilani), Amaldev Manuel (IIT Goa), Anup Basil Mathew (BITS Pilani)
and A.V. Sreejith (IIT Goa). They ensured a smooth running of the conference and workshops;
and made all necessary arrangements to shift to the online mode. We thank S.P. Suresh
(CMI, Chennai) for maintaining the conference webpage and promptly addressing our update
requests. We also thank the friendly staff at Dagstuhl LIPIcs, particularly Michael Wagner,
for being prompt and helpful in answering our queries. Finally, we thank the members of the
Steering Committee for having confidence in us for running the conference; and giving us
pertinent advice to handle the unprecedented changes made in the conduct of the conference.

Nitin Saxena and Sunil Simon
December 2020
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The Quest for Mathematical Understanding of
Deep Learning

Sanjeev Arora

Computer Science Department, Princeton University, NJ, USA
https://www.cs.princeton.edu/~arora/
arora@cs.princeton.edu

—— Abstract

Deep learning has transformed Machine Learning and Artificial Intelligence in the past decade. It

raises fundamental questions for mathematics and theory of computer science, since it relies upon
solving large-scale nonconvex problems via gradient descent and its variants. This talk will be an
introduction to mathematical questions raised by deep learning, and some partial understanding
obtained in recent years.

2012 ACM Subject Classification Theory of computation — Mathematical optimization; Computing
methodologies — Artificial intelligence; Computing methodologies — Machine learning

Keywords and phrases machine learning, artificial intelligence, deep learning, gradient descent,
optimization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.1

Category Invited Talk
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Proofs of Soundness and Proof Search
Albert Atserias

Universitat Politécnica de Catalunya, Barcelona, Spain
atserias@cs.upc.edu

—— Abstract

Let P be a sound proof system for propositional logic. For each CNF formula F, let SAT(F) be
a CNF formula whose satisfying assignments are in 1-to-1 correspondence with those of F' (e.g., F’
itself). For each integer s, let REF(F, s) be a CNF formula whose satisfying assignments are in 1-to-1
correspondence with the P-refutations of F' of length s. Since P is sound, it is obvious that the
conjunction formula SAT(F') & REF(F, s) is unsatisfiable for any choice of F' and s. It has been
long known that, for many natural proof systems P and for the most natural formalizations of
the formulas SAT and REF, the unsatisfiability of SAT(F) & REF(F),s) can be established by a
short refutation. In addition, for many P, these short refutations live in the proof system P itself.
This is the case for all Frege proof systems. In contrast it was known since the early 2000’s that
Resolution proofs of Resolution’s soundness statements must have superpolynomial length. In this
talk I will explain how the soundness formulas for a proof system P relate to the computational
complexity of the proof search problem for P. In particular, I will explain how such formulas are
used in the recent proof that the problem of approximating the minimum proof-length for Resolution
is NP-hard (Atserias-Miller 2019). Besides playing a key role in this hardness of approximation
result, the renewed interest in the soundness formulas led to a complete answer to the question
whether Resolution has subexponential-length proofs of its own soundness statements (Garlik 2019).

2012 ACM Subject Classification Theory of computation — Automated reasoning

Keywords and phrases Proof complexity, automatability, Resolution, proof search, consistency
statements, lower bounds, reflection principle, satisfiability
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Convex Optimization and Dynamic Data Structure
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—— Abstract

In the last three years, there are many breakthroughs in optimization such as nearly quadratic time
algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of
these algorithms are based on a careful combination of optimization techniques and dynamic data
structures. In this talk, we will explain the framework underlying all the recent breakthroughs.

Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun
Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.
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Holonomic Techniques, Periods, and Decision
Problems

Joél Ouaknine
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbriicken, Germany
Department of Computer Science, Oxford University, UK

—— Abstract

Holonomic techniques have deep roots going back to Wallis, Euler, and Gauss, and have evolved in

modern times as an important subfield of computer algebra, thanks in large part to the work of
Zeilberger and others over the past three decades. In this talk, I will give an overview of the area,
and in particular will present a select survey of known and original results on decision problems for
holonomic sequences and functions. (Holonomic sequences satisfy linear recurrence relations with
polynomial coefficients, and holonomic functions satisfy linear differential equations with polynomial
coefficients.) I will also discuss some surprising connections to the theory of periods and exponential
periods, which are classical objects of study in algebraic geometry and number theory; in particular,
I will relate the decidability of certain decision problems for holonomic sequences to deep conjectures
about periods and exponential periods, notably those due to Kontsevich and Zagier.
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1  Summary

Holonomic sequences (also known as P-recursive or P-finite sequences) are infinite sequences
of real (or complex) numbers that satisfy a linear recurrence relation with polynomial
coefficients. The earliest and best-known example is the Fibonacci sequence, introduced by
Leonardo of Pisa in the 12th century; more recently, Apéry famously made use of certain
holonomic sequences (uy,),, satisfying the recurrence relation

(n+1)3u,41 = (340> + 510 + 270 + 5)u, — n3u,_1  (n € N)

to prove that ((3) := Y., n~? is irrational [2]. Holonomic sequences now form a vast
subject in their own right, with numerous applications in mathematics and other sciences;
see, for instance, the monographs [20, 5, 6] or the seminal paper [24] of Zeilberger.

Any holonomic sequence (u, )22, naturally gives rise to a holonomic function by consid-
ering the associated generating power series F(x) = ZZO:() upx™. The recurrence relation
defining the holonomic sequence in turn yields a linear differential equation satisfied by the
corresponding power series.

There is a voluminous literature devoted to the study of identities for holonomic sequences
and functions, and several computer-algebra packages implementing various identity-checking
algorithms are also available. However, as noted by Kauers and Pillwein, “in contrast, [...]
almost no algorithms are available for inequalities” [11]. For example, the Positivity Problem
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(i.e., whether every term of a given sequence is non-negative) for C-finite sequences! is

only known to be decidable at low orders, and there is strong evidence that the problem
is mathematically intractable in general [19, 18]; see also [10, 14, 19, 17]. For holonomic
sequences that are not C-finite, virtually no decision procedures currently exist for Positivity,
although several partial results and heuristics are known (see, for example [15, 11, 16, 23, 21,
22]).

Another extremely important property of holonomic sequences is minimality; a sequence
(tn),, is minimal if, given any other linearly independent sequence (vy,),, satisfying the same
recurrence relation, the ratio u, /v, converges to 0. Minimal holonomic sequences play a
crucial role, among others, in numerical calculations and asymptotics, as noted for example in
[7, 8,9, 3, 1, 4] — see also the references therein. Unfortunately, there is also ample evidence
that determining algorithmically whether a given holonomic sequence is minimal is a very
challenging task, for which no satisfactory solution is at present known to exist.

In this talk, I will present a select survey of known and original results on decision
problems for holonomic sequences and functions. Some of this work will involve periods and
exponential periods, which are classical objects of study in algebraic geometry and number
theory; in particular, I will relate the decidability of certain decision problems for holonomic
sequences to deep conjectures about periods and exponential periods, notably those due to
Kontsevich and Zagier [13]. Parts of this presentation will be based on the paper [12].
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—— Abstract

Algorithmic Improvisation, also called control improvisation or controlled improvisation, is a new
framework for automatically synthesizing systems with specified random but controllable behavior.
In this talk, I will present the theory of algorithmic improvisation and show how it can be used in a
wide variety of applications where randomness can provide variety, robustness, or unpredictability
while guaranteeing safety or other properties. Applications demonstrated to date include robotic
surveillance, software fuzz testing, music improvisation, human modeling, generating test cases for
simulating cyber-physical systems, and generation of synthetic data sets to train and test machine
learning algorithms. In this talk, I will particularly focus on applications to the design of intelligent
autonomous systems, presenting work on randomized planning for robotics and a domain-specific
probabilistic programming language for the design and analysis of learning-based autonomous
systems.
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Summary

Algorithmic improvisation is a new framework for automatically synthesizing systems with
specified random but controllable behavior. Such systems are known as improvisers and have
applications in a variety of applications where randomness can provide variety, robustness,
or unpredictability in a specified, controlled manner. This framework, also termed as control
improvisation or controlled improvisation, was proposed and formalized by the author and
colleagues several years ago [2, 6, 5|. Informally, an improviser is a generator of data items
di,ds,ds, . .. subject to three kinds of constraints:

1. Hard Constraints: Fach data item d; must satisfy all these constraints.

2. Soft Constraints: A data item d; must satisfy these constraints as measured by a tunable

quantity, typically a probability written as 1 — ¢ for tunable parameter 0.
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Algorithmic Improvisation

3. Randomness Constraints: The output distribution of the improviser must satisfy specified
properties, e.g., obeying a particular distribution.

The problem of synthesizing an improviser is termed as the control (or controlled) impro-

visation problem. The papers and thesis by Fremont et al. [6, 5, 4] lay out the foundations

of the theory of control improvisation, analyzing its complexity for different variants of the

problem involving various forms of constraints.

Algorithmic improvisation has been demonstrated in a variety of applications. Here are
some of these applications:

Music improvisation, generating controlled random variations of a given melody [2];

Modeling human behavior for controlling Internet-of-Things (IoT) devices in a home

automation context [1];

Synthesizing control policies for controlling vehicles [9];

Synthesizing randomized plans for robotic surveillance [3];

Generating test inputs for software fuzz testing [4];

Generating test cases for simulating cyber-physical systems [8, 7], and

Generation of synthetic data for training and testing machine learning applications [7].
In these applications, the type of data generated by the improviser varies (music, control
policies, test inputs, images, etc.) and the formalism used to encode constraints also varies,
including logics, automata, and domain specific languages.

In this invited talk, I will give an overview of the theory of algorithmic improvisation,
give a tour of some of the key applications with a particular focus on the design of intelligent
autonomous systems, and present an outlook on the exciting future directions that remain
to be explored.
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—— Abstract
Algebraic complexity is the field studying the intrinsic difficulty of algebraic problems in an algebraic

model of computation, most notably arithmetic circuits. It is a very natural model of computation
that attracted a large amount of research in the last few decades, partially due to its simplicity
and elegance, but mostly because of its importance. Being a more structured model than Boolean
circuits, one could hope that the fundamental problems of theoretical computer science, such as
separating P from NP, deciding whether P = BPP and more, will be easier to solve for arithmetic
circuits.

In this talk I will give the basic definitions, explain the main questions and how they relate to
their Boolean counterparts, and discuss what I view as promising approaches to tackling the most
fundamental problems in the field.
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—— Abstract

Property testing algorithms are highly efficient algorithms, that come with probabilistic accuracy

guarantees. For a property P, the goal is to distinguish inputs that have P from those that are far
from having P with high probability correctly, by querying only a small number of local parts of the
input. In property testing on graphs, the distance is measured by the number of edge modifications
(additions or deletions), that are necessary to transform a graph into one with property P. Much
research has focussed on the query complexity of such algorithms, i.e. the number of queries the
algorithm makes to the input, but in view of applications, the running time of the algorithm is
equally relevant.

In (Adler, Harwath STACS 2018), a natural extension of the bounded degree graph model of
property testing to relational databases of bounded degree was introduced, and it was shown that on
databases of bounded degree and bounded tree-width, every property that is expressible in monadic
second-order logic with counting (CMSO) is testable with constant query complexity and sublinear
running time. It remains open whether this can be improved to constant running time.

In this paper we introduce a new model, which is based on the bounded degree model, but the
distance measure allows both edge (tuple) modifications and vertex (element) modifications. Our
main theorem shows that on databases of bounded degree and bounded tree-width, every property
that is expressible in CMSO is testable with constant query complexity and constant running time in
the new model. We also show that every property that is testable in the classical model is testable
in our model with the same query complexity and running time, but the converse is not true.

We argue that our model is natural and our meta-theorem showing constant-time CMSO
testability supports this.
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Keywords and phrases Constant Time Algorithms, Logic and Databases, Property Testing, Bounded
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1 Introduction

Extracting information from large amounts of data and understanding its global structure
can be an immensely challenging and time consuming task. When the input data is huge,
many traditionally “efficient” algorithms are no longer practical. The framework of property
testing aims at addressing this problem. Property testing algorithms (testers, for short) are
given oracle access to the inputs, and their goal is to distinguish between inputs which have
a given property P or are structurally far from having P with high probability correctly.
This can be seen as a relaxation of the classical yes/no decision problem for P. Testers
make these decisions by exploring only a small number of local parts of the input which are
randomly chosen. They come with probabilistic guarantees on the quality of the answer.
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Typically, only a constant number of small local parts are explored and the algorithms often
run in constant or sublinear time. This speed up in running time, whilst sacrificing some
accuracy, can be crucial for dealing with large inputs. In particular it can be useful for a
quick exploration of newly obtained data (e.g. biological networks). Based on the outcome
of the exploration, a decision can then be taken whether to use a more time consuming exact
algorithm in a second step.

A property is simply an isomorphism-closed class of graphs or relational databases. For
example, each Boolean database query ¢ defines a property Py, the class of all databases
satisfying ¢. In the bounded degree graph model [16], a uniform upper bound d on the degree
of the graphs is assumed. For a small € € (0, 1], two graphs G and H, both on n vertices, are
e-close, if at most edn edge modifications (deletions or insertions in G or H) are necessary to
make G and H isomorphic. If G and H are not e-close, then they are called e-far. A graph
G is called e-close to a property P, if G is e-close to a member of P, and G is e-far from
P otherwise. The natural generalisation of this model to relational databases of bounded
degree (where a database has degree at most d if each element in its domain appears in at
most d tuples) was studied in [1], where two databases D and D', both with n elements
in the domain, are e-close, if at most edn tuple modifications (deletions from relations or
insertions to relations) are necessary to make D and D’ isomorphic, and D and D’ are e-far
otherwise. We call this model for bounded degree relational databases the BDRD model.

Our contributions. In this paper we propose a new model for property testing on bounded
degree relational databases, which we call the BDRD_ ,_ model, with a distance measure
that allows both tuple deletions and insertions, and deletion and insertion of elements of the
domain. On graphs, this translates to edge insertions and deletions, and vertez insertions and
deletions. We argue that this yields a natural distance measure. Indeed, take any (sufficiently
large) graph G, and let H be obtained from G by adding an isolated vertex. Then G and
H are e-far for every e € (0,1] under the classical distance measure, although they only
differ in one vertex. In contrast, our distance measure allows for a small number of vertex
modifications. While comparing graphs on different numbers of vertices by adding isolated
vertices was done implicitly as part of the study the testability of outerplanar graphs [4], to
the best of our knowledge, such a distance measure has not been considered before as part of
a model in property testing, which seems surprising to us.

Formally, in the BDRD, ,_ model, two databases D and D’ are e-close, if they can be
made isomorphic by at most edn modifications, where a modification is either, (1) removing
a tuple from a relation, (2) inserting a tuple to a relation, (3) removing an element from
the domain (and, as a consequence, any tuple containing that element is removed), or (4)
inserting an element into the domain. Here n is the minimum of the sizes of the domains of
D and D'. In Section 3 we give the full details of our model. We note that the BDRD  ,_
model differs from the BDRD model only in the choice of the distance measure. While
we work in the setting of relational databases, we would like to emphasize that our results
carry over to (undirected and directed) graphs, as these can be seen as special instances of
relational databases.

It is known that in the bounded degree graph model, every minor-closed property is
testable [6], and, more generally, every hyperfinite graph property is testable [23] with
constant query complexity. However, no bound on the running time can be obtained in
these general settings. Indeed, there exist hyperfinite properties (of edgeless graphs) that are
uncomputable. In [1], Adler and Harwath ask which conditions guarantee both low query
complexity and efficient running time. They prove a meta-theorem stating that, on classes of
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databases (or graphs) of bounded degree and bounded tree-width, every property that can be
expressed by a sentence of monadic second-order logic with counting (CMSO) is testable with
constant query complexity and polylogarithmic running time in the BDRD model. Treating
many algorithmic problems simultaneously, this can be seen as an algorithmic meta-theorem
within the line of research inspired by Courcelle’s famous theorem [9] that states that each
property of relational databases which is definable in CMSO is decidable in linear time
on relational databases of bounded tree-width. CMSO extends first-order logic (FO) and
hence properties expressible in FO (e.g. subgraph/sub-database freeness) are also expressible
in CMSO. Other examples of graph properties expressible in CMSO include bipartiteness,
colourability, even-hole-freeness and Hamiltonicity. Rigidity (i.e. the absence of a non-trivial
automorphism) cannot be expressed in CMSO (cf. [10] for more details).

Our main theorem (Theorem 17) shows that in the BDRD, ,_ model, on classes of
databases (or graphs) of bounded degree and bounded tree-width, every property that can
be expressed by a sentence of monadic second-order logic with counting (CMSO) is testable
with constant query complexity and constant running time. The question whether constant
running time can also be achieved in the BDRD model remains open.

We show that the BDRD, ,_ model is in fact stronger than the BDRD model: Any
property testable in the BDRD model is also testable in the BDRD_ ,_ model with the same
query complexity and running time (Lemma 4), but there are examples that show that the
converse is not true (Lemma 6).

In the future, it would be interesting to obtain a characterisation of the properties that
are (efficiently) testable in the BDRD, ,_ model.

Our techniques. To prove our main theorem, we give a general condition under which
properties are testable in constant time in the BDRD_ ,_ model whereas the fastest known
testers for such properties in the BDRD model run in polylogarithmic time. To describe this
condition let us first briefly introduce some definitions. A property P is hyperfinite on a
class of databases C if every database in P can be partitioned into connected components
of constant size by removing only a constant fraction of the tuples such that the resulting
partitioned database is in C. Let r € N, given an element a in the domain of a database D
the r-neighbourhood type of a in D is the isomorphism type of the sub-database of D induced
by all elements that are at distance at most r from a in the underlying graph of D, expanded
by a. The r-histogram of a bounded degree database D, denoted by h, (D), is a vector indexed
by the r-neighbourhood types, where the component corresponding to the r-neighbourhood
type T contains the number of elements in D that realise 7. The r-neighbourhood distribution
of D is the vector h,.(D)/n where D is on n elements. We show that for any property P
and input class C, if P is hyperfinite on C and the set of r-histograms of the databases in
P are semilinear, then P is testable on C in constant time (Theorem 16). As a corollary
we then obtain our main theorem, that every property definable by a CMSO sentence is
testable on the class of databases with bounded degree and bounded tree-width in constant
time (Theorem 17).

Alon [22, Proposition 19.10] proved that for every bounded degree graph G there exists
a constant size graph H that has a similar neighbourhood distribution to G. However, the
proof is based on a compactness argument and does not give an explicit upper bound on the
size of H. Finding such a bound was suggested by Alon as an open problem [18]. We ask
under which conditions on a given property P, for every member of P there exists a constant
size database with a similar neighbourhood distribution which is also in P. We show that
for any property P which is hyperfinite on the input class C and whose r-histograms are
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semilinear, if a database D is in P then there exists a constant size database D’ in P with a
similar neighbourhood distribution but this is not true for databases in C that are far from
P. Furthermore, we obtain upper and lower bounds on the size of D’. We can then use this
result to construct constant time testers. We first use the algorithm EstimateFrequencies,.
(given in [23] and adapted to databases in [1]) to approximate the neighbourhood distribution
of the input database. Then we only have to check if the estimated distribution is close to
the neighbourhood distribution of a constant size database in the property.

As a corollary (Corollary 14), we obtain an explicit bound on the size on graphs H from
Alon’s theorem for “semilinear” properties, i. e. properties, where the histogram vectors of
the neighbourhood distributions form a semilinear set.

Further related work. Other than the work already mentioned in [1] there are only a
handful of results on relational databases that utilise models from property testing. Chen
and Yoshida [8] study a model which is close to the general graph model (cf. e.g. [2]) in
which they study the testability of homomorphism inadmissibility. Ben-Moshe et al. [5]
study the testability of near-sortedness (a property of relations that states that most tuples
are close to their place in some desired order). Our model differs from both of these, as it
relies on a degree bound and uses different types of oracle access. Explicit bounds for Alon’s
theorem restricted to high-girth graphs were given in [12].

Obtaining a characterisation of constant query testable properties is a long-standing
open problem. Ito et al. [19] give a characterisation of the 1-sided error constant query
testable monotone and hereditary graph properties in the bounded degree (directed and
undirected) graph model. Fichtenberger et al. [13] show that every constant query testable
property in the bounded degree graph model is either finite or contains an infinite hyperfinite
subproperty.

Organisation. In Section 2 we introduce relevant notions used throughout the paper. In
Section 3 we introduce our property testing model for bounded degree relational databases
and we compare it to the classical model. In Section 4 we prove our main theorems. Due to
space constraints the proofs of statements labelled (x) are deferred to the appendix.

2 Preliminaries

We let N be the set of natural numbers including 0, and N>; = N\ {0}. For each n € N>,
we let [n] ={1,2,...,n}.

Databases. A schema is a finite set 0 = {R1,..., R, } of relation names, where each
R € o has an arity ar(R) € N>1. A database D of schema o (o-db for short) is of the
form D = (D,RP, ... ’RI?TI)’ where D is a finite set, the set of elements of D, and RP is an
ar(R;)-ary relation on D. The set D is also called the domain of D. An (undirected) graph
G is a tuple G = (V(G), E(G)) where V(G) is a set of vertices and E(G) is a set of 2-element
subsets of V(G) (the edges of G). An undirected graph can be seen as a {E}-db, where E is
a binary relation name, interpreted by a symmetric, irreflexive relation.

We assume that all databases are linearly ordered or, equivalently, that D = [n] for some
n € N (similar to [20]). We extend this linear ordering to a linear order on the relations
of D via lexicographic ordering. The Gaifman graph of a o-db D is the undirected graph
G(D) = (V, E), with vertex set V := D and an edge between vertices a and b whenever a # b
and there is an R € ¢ and a tuple (a1,...,au(r)) € RY with a,b € {a1,...,aar)}. The
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degree deg(a) of an element a in a database D is the total number of tuples in all relations
of D that contain a. We say the degree deg(D) of a database D is the maximum degree of
its elements. A class of databases C has bounded degree, if there exists a constant d € N
such that for all D € C, deg(D) < d. (We always assume that classes of databases are closed
under isomorphism.) Let us remark that the deg(D) and the (graph-theoretic) degree of
G(D) only differ by at most a constant factor (cf. e.g. [11]). Hence both measures yield
the same classes of relational structures of bounded degree. We define the tree-width of a
database D as the the tree-width of its Gaifman graph. (See e.g. [15] for a discussion of
tree-width in this context.) A class C of databases has bounded tree-width, if there exists a
constant t € N such that all databases D € C have tree-width at most t. Let D be a o-db,
and M C D. The sub-database of D induced by M is the database D[M] with domain M
and RPIM] .= RP N M (B for every R € 0. An (e, k)-partition of a o-db D on n elements
is a o-db D’ formed by removing at most en many tuples from D such that every connected
component in D’ contains at most k elements. A class of o-dbs C C D is p-hyperfinite on D
if for every e € (0,1] and D € C there exists an (e, p(¢))-partition D’ € D of D. We call C
hyperfinite on D if there exists a function p such that C is p-hyperfinite on D.

Logics. We shall only briefly introduce first-order logic (FO) and monadic second-order
logic with counting (CMSO). Detailed introductions can be found in [21] and [10]. Let
var be a countable infinite set of variables, and fix a relational schema o. The set FOlo]
is built from atomic formulas of the form xy = x5 or R(x1,...,%a(r)), Where R € o and
T1,- .-, Tar(r) € var, and is closed under Boolean connectives (7, V, A, =, ) and existential
and universal quantifications (3,V). Monadic second-order logic (MSO) is the extension of
first-order logic that also allows quantification over subsets of the domain. CMSO extends
MSO by allowing first-order modular counting quantifiers 3™ for every integer m (where
3™ ¢ is true in a o-db if the number of its elements for which ¢ is satisfied is divisible by
m). A free variable of a formula is a (individual or set) variable that does not appear in the
scope of a quantifier. A formula without free variables is called a sentence. For a o-db D
and a sentence ¢ we write D = ¢ to denote that D satisfies ¢.

» Proviso. For the rest of the paper, we fiz a schema o and numbers d,t € N with d > 2.
From now on, all databases are o-dbs and have degree at most d, unless stated otherwise.
We use Cq to denote the class of all o-dbs with degree at most d, C, to denote the class of
all o-dbs with degree at most d and tree-width at most t and finally we use C to denote a
class of o-dbs with degree at most d.

Property testing. Adler and Harwath [1] introduced the model of property testing for
bounded degree relational databases, which is a straightforward extension of the model for
bounded degree graphs [16]. We call this model the BDRD model for short, which we shall
discuss below.

Property testing algorithms do not have access to the whole input database. Instead,
they are given access via an oracle. Let D be an input o-db on n elements. A property
testing algorithm receives the number n as input, and it can make oracle queries® of the
form (R,i,j), where R € o, i <n and j < deg(D). The answer to (R, i, ) is the j*" tuple in
RP containing the i'" element? of D (if such a tuple does not exist then it returns 1). We
assume oracle queries are answered in constant time.

1 Note that an oracle query is not a database query.
2 According to the assumed linear order on D.
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Let D,D’ be two o-dbs, both having n elements. In the BDRD model the distance
between D and D’, denoted by dist(D,D’), is the minimum number of tuples that have to be
inserted or removed from relations of D and D’ to make D and D’ isomorphic. For € € [0, 1],
we say D and D’ are e-close if dist(D,D’) < edn, and D and D’ are e-far otherwise. A
property is simply an isomorphism-closed class of databases. Note that every CMSO sentence
¢ defines a property Py, = {D | D |= ¢}. We call P, N C the property defined by ¢ on C.
A o-db D is e-close to a property P if there exists a database D’ € P that is e-close to D,
otherwise D is e-far from P.

Let P C C be a property and € € (0, 1] be the proximity parameter. An e-tester for P on
C is a probabilistic algorithm which is given oracle access to a o-db D € C and it is given
n := |D| as auxiliary input. The algorithm does the following:

1. If D € P, then the tester accepts with probability at least 2/3.

2. If D is e-far from P, then the tester rejects with probability at least 2/3.

The query complexity of a tester is the maximum number of oracle queries made. A tester
has constant query complexity, if the query complexity does not depend on the size of the
input database. We say a property P C C is uniformly testable in time f(n) on C, if for
every € € (0, 1] there exists an e-tester for P on C which has constant query complexity and
whose running time on databases on n elements is f(n). Note that this tester must work for
all n.

Neighbourhoods. For a o-db D and a,b € D, the distance between a and b in D, denoted
by distp(a,b), is the length of a shortest path between a and b in G(D). Let r € N. For
an element a € D, we let NP (a) denote the set of all elements of D that are at distance at
most r from a. The r-neighbourhood of a in D, denoted by NP (a), is the tuple (D[N,.(a)],a)
where a is called the centre. We omit the superscript and write N,.(a) and N,(a), if D is
clear from the context. Two r-neighbourhoods, N,.(a) and N,.(b), are isomorphic (written
N.(a) = N, (b)) if there is an isomorphism between D[N,.(a)] and D[N, (b)] which maps
a to b. An Z-equivalence-class of r-neighbourhoods is called an r-neighbourhood type (or
r-type for short). We let 7% denote the set of all r-types with degree at most d, over
schema o. Note that for fixed d and o, the cardinality |7.7°¢
depending on r and d. We say that an element a € D has r-type 7, if NP(a) € 7.
For r € N, the r-histogram of a database D, denoted by h,(D), is the vector with c(r)
components, indexed by the r-types, where the component corresponding to type 7 contains
the number of elements of D of r-type 7. The r-neighbourhood distribution of D, denoted
by dv,(D), is the vector h,(D)/n where |D| = n. For a class of o-dbs C and r € N, we let
h,(C) := {h, (D) | D € C}. A set is semilinear if it is a finite union of linear sets. A set
M C N¢is linear if M = {vg + a101 + -+ + ax¥x | a1,...,a; € N}, for some vy, ..., 0, € N°.
From a result in [14] about many-sorted spectra of CMSO sentences it can be derived that
that the set of r-histograms of properties defined by a CMSO sentence on C, are semilinear.

=: ¢(r) is a constant, only

» Lemma 1 ([1, 14]). For each r € N and each property P C CY, definable by a CMSO
sentence on CY, the set h,.(P) is semilinear.

Model of computation. We use Random Access Machines (RAMs) and a uniform cost
measure when analysing our algorithms, i.e. we assume all basic arithmetic operations
including random sampling can be done in constant time, regardless of the size of the
numbers involved.
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Figure 1 The graphs G, and Hn,» (respectively) of Example 3.

3 The Model

We shall now introduce our property testing model for bounded degree relational databases,
which is an extension of the BDRD model discussed in Section 2. The notions of oracle
queries, properties, e-tester, query complexity and uniform testability remain the same but
we have an alternative definition of distance and e-closeness. In our model, which we shall
call the BDRD_,_ model for short, we can add and remove elements as well as tuples and
can therefore compare databases that are on a different number of elements.

» Definition 2 (Distance and e-closeness). Let D, D’ € C4 and € € [0,1]. The distance
between D and D' (denoted by dist,,_(D,D’)) is the minimum number of modifications
we need to make to D and D' to make them isomorphic where a modification is either (1)
inserting a new element, (2) deleting an element (and as a result deleting any tuple that
contains that element), (3) inserting a tuple, or (4) deleting a tuple. We then say D and D’
are e-close if dist, ,_(D,D’) < edmin{|D|, |D’'|} and are e-far otherwise.

The following example illustrates the difference between the distance measure of the BDRD
and the distance measure of the BDRD_,_ model.

» Example 3. Let P = {G,, ,,, | n,m € N5} where G, ,, is an n by m grid graph as shown
in Figure 1. Let us consider the graph H,, ,,, for some n, m € N which is formed from G,, ,,, by
removing a corner vertex. In the BDRD_ ,_ model the distance between H,, ,,, and Gnym is 1
(we remove a corner vertex from Gy ,, to get Hy ) and therefore H,, ,, is at distance 1 from
P in the BDRD_ ,_ model. In the BDRD model if two graphs are on a different number of
vertices then the distance between them is infinity. Therefore if nm — 1 is a prime number
then H,, ,, is at distance infinity from P in the BDRD model.

We now show that if a property is testable in the BDRD model then it is also testable in
the BDRD_ ,_ model but the converse is not true. This allows for more testable properties
in the BDRD, ,_ model.

» Lemma 4 (x). Let P C C. If P is uniformly testable on C in time f(n) in the BDRD
model then P is also uniformly testable on C in time f(n) in the BDRD, ,_ model.

» Theorem 5 ([16]). In the bounded degree model, bipartiteness cannot be tested with query
complexity o(y/n), where n is the number of vertices of the input graph.

» Lemma 6. There exists a class C of o-dbs and a property P C C such that P is trivially
testable on C in the BDRD,_ model but is not testable on C in the BDRD model.
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Proof. Let C be the class of all graphs with degree at most d. Let P = P; UP5s C C be
the property where P; contains all bipartite graphs in C and P2 contains all graphs in C
that have an odd number of vertices. In the BDRD, ,_ model every G € C is e-close to P if
|V(G)| > 1/(ed) and hence P is trivially testable on C in the BDRD, ,_ model (the tester
accepts if |V (G)| > 1/(ed) and does a full check of the input otherwise). In the BDRD model,
if the input graph has an even number of vertices then it is far from Py and so we have to
test for Py. By Theorem 5, bipartiteness is not testable (with constant query complexity)
in the BDRD model. In particular, in the proof of Theorem 5, Goldreich and Ron show
that for any even n there exists two families, G; C C and G, C C, of n-vertex graphs such
that every graph in G; is bipartite and almost all graphs in G, are far from being bipartite
but any algorithm that performs o(y/n) queries cannot distinguish between a graph chosen
randomly from G; and a graph chosen randomly from G,. Therefore P is not testable on C
in the BDRD model. <

Note that the underlying general principle of the above proof can be applied to obtain
further examples of properties that are testable in the BDRD, ,_ model but not testable in
the BDRD model.

It is known that every hyperfinite property is “local” (Theorem 7), where “local” means
that if a o-db D has a similar r-histogram to some o-db (with the same domain size) that has
the (hyperfinite) property, then D must be e-close to the property [23, 1]. This is summarised
in Theorem 7 below. We use Theorem 7 to prove a similar result in the BDRD, ,_ model
(Lemma 8). Lemma 8 is essential for the proof of Theorem 9.

» Theorem 7 ([23, 1]). Let € € (0,1] and let C be closed under removing tuples. If a property
P C C is hyperfinite on C then there exists A7 := A7(€) € (0,1] and r7 := r7(e) € N such that
for each D € P and D' € C with the same number n of elements, if ||hr, (D)—h,.(D')||1 < Arn,
then D' is e-close to P in the BDRD model.

» Lemma 8. Let e € (0,1] and let C be closed under removing tuples. If a property P C C is
hyperfinite on C then there exists A := A(e) € (0,1] and r := r(e) € N such that for each D € P
and D' € C, on |D| and |D’'| elements respectively, if || h,.(D) —h,.(D')|l1 < Amin{|D|, |D’|},
then D' is e-close to P in the BDRD, ,_ model.

Proof. Let 7 = r7(e/4) and let A\ = 61)\-:;?'/*41)' Let us assume that ||h,.(D) — h.(D')|; <
Amin{|D|,|D’|} and P is hyperfinite on C. If |[D| = |D’| then by Theorem 7 and the choice
of A, D' is e-close to P. So let us assume that |D| # |D’|. Let D; be the o-db on |D|
elements formed from D’ by either removing |D’| — |D| elements if |D| < |D’| or adding
|D| — |D'| new elements if |D’| < |D|. Note that as ||h,(D) — h.(D’)||1 < Amin{|D|,|D’|}
and by definition || h.(D) — b, (D)1 = X7 | b (D) — he(D')| we have ||D| — [D'|| <
Amin{|D|,|D’|}. When an element a is removed, the r-type of any element in N, (a) will
change. As [N, (a)] < d"*! (cf. e.g. Lemma 3.2 (a) of [7]) and ||D|—|D'|| < Amin{|D|, |D’|},
we have || h,.(D’) — h,.(D1)|l1 < Amin{|D|,|D’|}d"*!. Therefore

(D) = he(Dy)ll < Amin{| D], |D'[}(1 +d") < Ae(e/4)| D]

by the choice of A\. By Theorem 7, in the BDRD model D is €/4-close to P. Hence there exists
a o-db Dy € P such that |Ds| = |D| and dist(D;,D2) < ed|D|/4. By the definition of the
two distance measures dist and dist, ,_, we have dist, ,_ (D1, Dz) < dist(D1, D2) < ed|D|/4
and by the choice of D; we have dist,_(D’,D1) < Amin{|D|, |D’|}. Therefore
. ’ ed‘D‘ . ’ . ’
dist/_ (D', Ds) < 4 + Amin{|D|, |D’|} < edmin{|D|, |D'|},
as |D| < min{|D|, |D’|} + Amin{|D|,|D’|} < 2min{|D|,|D’|} and A < ed/2. Hence in the
BDRD, ,_ model D’ is e-close to P. <
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4 Main Results

We begin this section with the first of our main theorems (Theorem 9). We show that for
any property P which is hyperfinite on the input class C, if the set of r-histograms of P
is semilinear, then for every o-db D in P there exists a constant size o-db in P with a
neighbourhood distribution similar to that of D, but this is not true for o-dbs in C that are
far from P. We then use this result to prove that such properties are testable in constant
time in the BDRD_,_ model (Theorem 16). As a corollary we obtain that CMSO definable
properties on o-dbs of bounded tree-width and bounded degree are testable in constant time
(Theorem 17).

» Theorem 9. Let € € (0,1] and let r := r(e) be as in Lemma 8. Let C be closed under

removing tuples and let P C C be a property that is hyperfinite on C such that the set h,.(P)

is semilinear. There exist Nymin := Nnin(€), Nmaz = Nmaz(€) € N and f:= f(e),n = p(e) €

(0,1) such that for every D € C with |D| > Numqg,

1. if D € P, then there exists a D' € P such that npmin < |D'| < Npas and || dv, (D) —
dvr (D)1 < f — p, and

2. if D is e-far from P (in the BDRD. ,_ model), then for every D' € P such that nym, <
|D'| < Nnag, we have || dv,. (D) — dv,.(D)||1 > f + p.

Proof. Let A := A(€) be as in Lemma 8 and ¢ := ¢(r) (the number of r-types). First note
that if P is empty then for any choice of nyin, "max, f and u, both 1. and 2. in the theorem
statement are true and hence we shall assume that P is non-empty. As h,.(P) is a semilinear
set we can write it as follows, h,.(P) = My UMyU- - -U M, where m € N and for each i € [m)],
M; = {0} + a10} + - -~ + ax, 0}, | a1,...,ax, € N} is a linear set where of, ..., v}, € N°and
for each j € [ki], |0%]l1 # 0. Let k := max;e[n) ki + 1 and v := max;c(, (maxj6[07ki] ||17;||1>

note that v > 0 as P is non-empty). Let nmin := 1o — kv, Nmax := Mo + kv, f:= 2, and
( pty ; :

A 3¢
W= §; where

;’C_]ﬂ; +1).

Note that nmyi, > 0 by the choice of ng, f and pu.

(Proof of 1.) Assume D € P and |D| = 1 > Npax. Then there exists some i € [m]
and af’,...,a; € N such that h,(D) = 0 + aT?} +--- + a0}, (note that n = [|Tj||; +
Y ictr 5 105]11)- Let D' be the o-db with r-histogram v +aP v+ +al vl € M; where
aP" is the nearest integer to aPng/n, and hence aPng/n —1/2 < a?’ < aPno/n + 1/2. Note
that since o} + aP 0% 4 - + aaf),ii € h,(P), D' exists and D’ € P. We need to show that
Nmin < |D'| < npmax and || dv,. (D) — dv,.(D)||1 < f — p.

ng = kv(

> Claim 10 (%). |D’| > nmin-
> Claim 11 (%). |D'] < Nmax-
> Claim 12. || dv,.(D) — dv.(D)||1 < f — p.

Proof. By definition, || dv,(D) — dv,(D')[lx = > ;¢ |dve(D)]j] — dv,(D')[j]]. First recall
that 0 < ng — kv < |D’| < ng + kv < n and note that for every ¢ € [k;], aP < n (since

FSTTCS 2020



7:10

Faster Property Testers in a Variation of the Bounded Degree Model

|5i]l, # 0). Then for every j € [¢], by the choice of a?" for ¢ € [ki],

@)~ v, (P01 = (2 - ) + 3 (% - o)

e ki)

iiaraP  aPng 1y .oraP (|D'| = ng 1
< 2 (= Sipt o) = 2 G (For) + )

_ira (M kv+ng—ng 1 2kv +1 o
= Z Ué[]](g( ng — kv )+ 2(n07kv)) - (Q(nofkv)> Z velJ]

L€ ki) Le[k;)

< kv(2kv + 1).
- ng-—kv

On the other hand,

(@)l — v, (@)=~ 1 3 (0 ()

n\ D) 2D
Le(ki]
v} [4] iea(af r—kv—+mng—ng 1
= D] U;H”M(n< D] )- 2|D’|>
v5 1] it (AL kv L
= — — Uyl +
|D/| %:ki] tl ](n|D’| 2|D’\)
vg 1] =il nkv 1
>_ o)
~ no—kv Z;};] vili] (n(no — kv) + 2(nog — kv))
o5 14] 2kv+1 i kv(2kv 4+ 1)
S - > T
ng — kv (2(n0 — kv)) z;;;.] vplj] = ng — kv
Hence,
) ) kv(2kv+1) _ 3(kv)®> f—u
- ! < < =
v (D)) - v (@] < Tt < BB T2

by the choice of ng. Therefore,

ldvp(D) = dvi (D)1 = Y [dve(D)[j] = dv (D[]l < f — e

JEld]

as required. <

(Proof of 2.) Assume D is e-far from P and |D| = n > npax. For a contradiction let
us assume there does exist a o-db D’ € P such that nyin < |D’| < Nmax and || dv,.(D) —
dv,(D)||y < f + p. As D' € P there exists some i € [m] and a?’,... ,afi/ € N such that
h, (D) = v+ aP' v} + -+ al v} . Let D" be the o-db with r-histogram v} +a?" v} + - +
aP"' v} € M; where a?” is the nearest integer to a]-D/n/\D’|. Note as 0y +aP” v+ +al v} €
h,.(P), D" exists and D" € P.

> Claim 13. D is e-close to P.
Proof. First note that as || dv, (D) —dv,(D')|1 < f+p and h. (D) = v§+aP i+ -+al v} ,
for every j € []

U61) + Xeei) af v[4]
1D’

0607 + Xeeqra ap v (4]
|D'|

— f—u<dv,.(D)[j] < +f+n
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and therefore

ol lj aP'vi[j
- /1) (D)[j]gn( O[J]"‘Ze;[lkr] ¢ Vgld] +f+ﬁb)~

n( v ]+Z€e[k]al ;5]
1D’

Hence, by the choice of a?” for ¢ € [ki],

(D) [j] — b (D")]f] < ’ZH(|D, )+ Y wl (|D, —af") + fn+pm

Le[ki]
+Z” ( —(@—1))+fn+;m
D] D’ 2
ee[k]
it N 1 it
_'UO[]] |D/‘ 246[]6] []} “!‘fﬂ-F,UTl

Similarly, by the choice of a?" for £ € [k;] and as n > |D/|,

b, (D)[j] = b, (D")[j] > v3[1(|g,|—1)+zvm(‘|‘g,]‘ af") = fn—un

Le(ki]
( D
Le[k;]

D/

a;n 1

(o7 t2)) o
—i n 1 it -

e ki)

Therefore,

0<t<k;
k A A A A A A
=57+ 5t ae) <nl(im i ae) = o

by the choice of f and p and as

D[ > gy = 2602 _ 18(chv)®  18cky.
f—n A Y

To apply Lemma 8 we need to show that || b, ( )—h, (D")||1 < Amin{n, |D”|}. If | h,(D)[j] —

h,(D")[j]] < 2 min{n,|D"|} then || 1, (D) — b, (D")||; < Amin{n, |D"[}. Clearly, 2n < 2n

We also have

_ 1,
[D"[ = |7l + ap" ||l > (5] + T2 [[vgll1
|D 2

£€[k;) L€[k;]
i n —1i
Ivolhff > ||'Ue||1+ ,| > af |wilh > - |D,|(ID’|f||vo||1)
ee[k] Le(k;)
o 17 bn
- 18 18 T 9
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as

18ckw » (ckv)?  Nmin n
>18v>1 K dkv< —— = < —.
> 18v > 18]|5j]|1 and kv < 3 TIEST

D] =

Therefore, 55‘—6" < /\l%”‘ and hence || h,.(D) — h,.(D")||1 < Amin{n,|D”|}. By Lemma 8, D is
e-close to P. 4

Claim 13 gives us a contradiction and therefore for every D’ € P such that ny, < |[D'| <
Nmax, We have || dv,.(D) — dv,.(D')||1 > f + p as required. <

As mentioned in the introduction, Alon [22, Proposition 19.10] proved that on bounded
degree graphs, for any graph G, radius r and € > 0 there always exists a graph H whose size
is independent of |V(G)| and whose r-neighbourhood distribution vector satisfies || dv,(G) —
dv,(H)||1 < e. However, the proof is only existential and does not provide an explicit bound
on the size of H. As a corollary to the proof of Theorem 9, we immediately obtain explicit
bounds for classes of graphs and relational databases of bounded degree whose histogram
vectors form a semilinear set.

» Corollary 14. Let e € (0,1], r € N and D be a o-db that belongs to a class of o-dbs C
such that the set h,.(C) is semilinear, i.e. h,.(C) = M3 UMsU---UM,, where m € N and
for each i € [m], M; = {0§ + a9} + -+ + ax, 0}, | a1,...,ax, € N} is a linear set where
178, e 717};1, € N(") Then there exists a o-db Dy such that

3ckv
€

| dvo(D) — dv,(Do)lls < ¢ and | Dol < k(== +2)

5l )

Our aim is to construct constant time testers for hyperfinite properties whose set of
r-histograms are semilinear. If we can approximate the r-neighbourhood distribution of a
o-db then by Theorem 9 we only need to check whether this distribution is close or not to the
r-neighbourhood distribution of some small constant size o-db. We let EstimateFrequencies,.
be the algorithm that, given oracle access to an input o-db D, samples s many elements
uniformly and independently from D and computes their r-type. The algorithm then returns
the r-neighbourhood distribution vector of the sample.

where ¢ := c(r), k := maxX;ey, ki + 1 and v := max;epm) (maxje[mki]

» Lemma 15 ([1]). Let D € Cy4 be a o-db on n elements, pn € (0,1) and r € N. If
s > c(r)?/u? - (20 ¢(r)), with probability at least 9/10 the vector v returned by the algorithm
EstimateFrequencies, ; on input D satisfies ||v — dv,.(D)[1 < p.

S

» Theorem 16. Let C be closed under removing tuples and let P C C be a property that is
hyperfinite on C. If for each r € N the set h,.(P) is semilinear, then P is uniformly testable
on C in constant time in the BDRD, ,_ model.

Proof. Let € € (0,1]. Let r := r(e) be as in Lemma 8, let nmin := Nmin(€); Pmax := Mmax(€),

f = f(e) and p := p(e) be as in Theorem 9 and let s = ¢(r)?/u? - In(20¢(r)). Assume that

the set h,(P) is semilinear. Given oracle access to a o-db D € C and |D| = n as an input,

the e-tester proceeds as follows:

1. If n < npax, do a full check of D and decide if D € P.

2. Run EstimateFrequencies, , and let v be the resulting vector.

3. If there exists a D’ € P where nyin < |D’| < nmax and [|v — dv,.(D’)||1 < f then accept
otherwise reject.
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The running time and query complexity of the above tester is constant as n,.x is a constant
(it only depends on P, d and ¢) and EstimateFrequencies,. ; runs in constant time and makes
a constant number of queries.

For correctness, first assume D € P. By Theorem 9 there exists a o-db D’ € P such that
Nmin < |D'| < Npax and || dv,.(D) — dv,-(D')||1 < f — p. By Lemma 15 with probability at
least 9/10, ||v — dv,.(D)||1 < w and therefore ||v — dv,.(D’)||1 < f. Hence with probability at
least 9/10 the tester will accept.

Now assume D is e-far from P. By Theorem 9 for every D’ € P with ny, < |D'| <
Nmax, we have | dv,.(D) — dv,.(D')|l1 > f + p. By Lemma 15 with probability at least
9/10, ||v — dv,(D)|l1 < wp and therefore for every D' € P with nyin < |D'| < Nmax,
|o —dv,.(D')|l1 > f. Hence with probability at least 9/10 the tester will reject. <

Combining Theorem 16 and Lemma 1 and the fact that CY is hyperfinite [17, 3] (and so
any property is hyperfinite on C%) we obtain the following as a corollary.

» Theorem 17. Every property P definable by a CMSO sentence on CY, is uniformly testable
on CY with constant time complexity in the BDRD, ,_ model.
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B Proofs of Section 4

Proof of Claim 10. By the choice of a}y for j € [ki],
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—— Abstract

We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the
perturbation stability assumption. An instance is a-stable if the underlying optimal clustering
continues to remain optimal even when all pairwise distances are arbitrarily perturbed by a factor of
at most a. Our main contribution is in presenting efficient exact algorithms for a-stable clustering
instances whose running times depend near-linearly on the size of the data set when a > 2 4+ /3.
For k-center and k-means problems, our algorithms also achieve polynomial dependence on the
number of clusters, k, when a > 2 4+ /3 + ¢ for any constant € > 0 in any fixed dimension. For
k-median, our algorithms have polynomial dependence on k for & > 5 in any fixed dimension; and
for & > 24 /3 in two dimensions. Our algorithms are simple, and only require applying techniques
such as local search or dynamic programming to a suitably modified metric space, combined with
careful choice of data structures.
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1 Introduction

Clustering is a fundamental problem in unsupervised learning and data summarization, with
wide-ranging applications that span myriad areas. Typically, the data points are assumed to
lie in a Euclidean space, and the goal in center-based clustering is to open a set of k centers
to minimize the objective cost, usually a function over the distance from each data point
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to its closest center. The k-median objective minimizes the sum of distances; the k-means
minimizes the sum of squares of distances; and the k-center minimizes the longest distance.
In the worst case, all these objectives are NP-hard even in 2D [48,50].

A substantial body of work has focused on developing polynomial-time approximation
algorithms and analyzing natural heuristics for these problems. Given the sheer size of
modern data sets, such as those generated in genomics or mapping applications, even a
polynomial-time algorithm is too slow to be useful in practice — just computing all pairs of
distances can be computationally burdensome. What we need is an algorithm whose running
time is near-linear in the input size and polynomial in the number of clusters.

Because of NP-hardness results, we cannot hope to compute an optimal solution in
polynomial time, but in the worst case an approximate clustering can be different from an
optimal clustering. We focus on the case when the optimal clustering can be recovered under
some reasonable assumptions on the input that hold in practice. Such methodology is termed
“beyond worst-case analysis” and has been adopted by recent work [2,8,23]. In recent years,
the notion of stability has emerged as a popular assumption under which polynomial-time
optimal clustering algorithms have been developed. An instance of clustering is called stable
if any “small perturbation” of input points does not change the optimal solution. This
is natural in real datasets, where often, the optimal clustering is clearly demarcated, and
the distances are obtained heuristically. Different notions of stability differ in how “small
perturbation” is defined, though most of them are related. In this paper, we focus on the
notions of stability introduced in Bilu and Linial [23] and Awasthi, Blum, and Sheffet [14]. A
clustering instance is a-perturbation resilient or a-stable if the optimal clustering does not
change when all distances are perturbed by a factor of at most «. Similarly, a clustering
instance is a-center proximal if any point is at least a factor of « closer to its own optimal
center than any other optimal center. Awasthi, Blum, and Sheffet showed that a-stability
implies a-center proximity [14]. This line of work designs algorithms to recover the ezact
optimal clustering — the ground truth — in polynomial time for a-stable instances.

This paper also focuses on recovering the optimal clustering for stable clustering instances.
But instead of focusing on polynomial-time algorithms and optimizing the value of «, we ask
the question: Can algorithms be designed that compute exact solutions to stable instances of
Euclidean center-based clustering that run in time near-linear in the input size? We note
that an (1 + €)-approximation solution, for an arbitrarily small constant € > 0, may differ
significantly from an optimal solution (the ground truth) even for stable instances, so one
cannot hope to use an approximation algorithm to recover the optimal clustering.

1.1 Our Results

In this paper, we make progress on the above question, and present near-linear time algorithms
for finding optimal solutions of stable clustering instances with moderate values of a. In
particular, we show the following meta-theorem:

» Theorem 1. Let X be a set of n points in R? for some constant d, let k > 1 be an integer,
and let o > 24 /3 be a parameter. If the k-median, k-means, or k-center clustering instance
for X is a-stable, then the optimal solution can be computed in O(npoly k + f(k)) time.

In the above theorem, the O notation suppresses logarithmic terms in n and the spread
of the point set. The function f(k) depends on the choice of algorithm, and we present
the exact dependence below. We also omit terms depending solely on the dimension, d.
Furthermore, the above theorem is robust in the sense that the algorithm is not restricted to
choosing the input points as centers (discrete setting), and can potentially choose arbitrary
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points in the Euclidean plane as centers (continuous setting, sometimes referred to as the
Steiner point setting) — indeed, we show that these notions are identical under a reasonable
assumption on stability.

At a more fine-grained level, we present several algorithms that require mild assumptions
on the stability condition. In the results below, as well as throughout the paper, we present
our results both for the Euclidean plane, as well as generalizations to higher (but fixed
number of) dimensions.

Dynamic Programming. In Section 3, we present a dynamic programming algorithm that
computes the optimal clustering in O(nk? + npolylogn) time for a-stable k-means, k-
median, and k-center in any fixed dimension, provided that o > 2 + /3 + ¢ for any
constant € > 0. For d = 2, it suffices to assume that a > 2 + v/3.

Local Search. In Sections 4 and 5, we show that the standard 1-swap local-search algorithm,
which iteratively swaps out a center in the current solution for a new center as long as
the resulting total cost improves, computes an optimal clustering for a-stable instances of
k-median assuming o > 5. We also show that it can be implemented in O(nk? log® nlog A)
for d = 2 and in O(nk2¢~1 polylognlog A) for d > 2; A is the spread of the point set.!

Coresets. In the full version of the paper, we use multiplicative coresets to compute the
optimal clustering for k-means, k-median and k-center in any fixed dimension, when
a > 2+ /3. The running time is O(nk? + f(k)) where f(k) is an exponential function
of k.

» Remark 2. While the current analysis of the dynamic programming based algorithm
suggests that it is better than the local-search and coreset based approaches, the latter are
of independent interest — our local-search analysis is considerably simpler than the previous
analysis [38], and coresets have mostly been used to compute approximate, rather than exact,
solutions. We also note that our analysis of the local-search algorithm is probably not tight.
Furthermore, variants of all three approaches might work for smaller values of «.

Techniques. The key difficulty with developing fast algorithms for computing the optimal
clustering is that some clusters could have a very small size compared to others. This issue
persists even when the instances are stable. Imagine a scenario where there are multiple
small clusters, and an algorithm must decide whether to merge these into one cluster while
splitting some large cluster, or keep them intact. Now imagine this situation happening
recursively, so that the algorithm has multiple choices about which clusters to recursively
split. The difference in cost between these options and the size of the small clusters can be
small enough that any (1 4+ €)-approximation can be agnostic, while an exact solution cannot.
As such, work on finding exact optima use techniques such as dynamic programming [10]
or local search with large number of swaps [26, 38] in order to recover small clusters. Other
work makes assumptions lower-bounding the size of the optimal clusters or the spread of
their centers [34].

Our main technical insight for the first two results is simple in hindsight, yet powerful:
For a stable instance, if the Euclidean metric is replaced by another metric that is a good
approximation, then the optimal clustering does not change under the new metric and in
fact the instance remains stable albeit with a smaller stability parameter. In particular,

1 The spread of a point set is the ratio between the longest and shortest pairwise distances.
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we replace the Euclidean metric with an appropriate polyhedral metric — that is, a convex
distance function where each unit ball is a regular polyhedron — yielding efficient procedures
for the following two primitives:
Cost of 1-swap. Given a candidate set of centers S, maintain a data structure that
efficiently updates the total cost if center x € S is replaced by center y ¢ S.
Cost of 1-clustering. Given a partition of the data points, maintain a data structure
where the cost of 1-clustering (under any objectives) can be efficiently updated as partitions
are merged.

We next combine the insight of changing the metrics with additional techniques. For
local search, we build on the approach in [26,31,38] that shows local search with t-swaps for
large enough constant ¢ finds an optimal solution for stable instances in polynomial time for
any fixed-dimension Euclidean space. None of the prior analysis directly extends as is to
1-swap, which is critical in achieving near-linear running time — note that even when ¢t = 2
there is a quadratic number of candidate swaps per step.

For the dynamic programming algorithm, we use the following insight: In Euclidean
spaces, for a > 2+ /3, the longest edge of the minimum spanning tree over the input points
partitions the data set in two, such that any optimal cluster lies completely in one of the
two sides of the partition. Combined with the change of metrics one can achieve near-linear
running time.

Due to length constraints of the paper, the coreset result, most of algorithmic details,
and many proofs can be found in the full version of the paper.

1.2 Related Work

All of k-median, k-means, and k-center are widely studied from the perspective of approxi-
mation algorithms and are known to be hard to approximate [36]. Indeed, for general metric
spaces, k-center is hard to approximate to within a factor of 2 — € [43]; k-median is hard
to (1 + 2/e)-approximate [44]; and k-means is hard to (1 + 8/e)-approximate in general
metrics [29], and is hard to approximate within a factor of 1.0013 in the Euclidean setting [47].
Even when the metric space is Euclidean, k-means is still NP-hard when k = 2 [7,32], and
there is an n*(*) lower bound on running time for k-median and k-means in 4-dimensional
Euclidean space under the exponential-time hypothesis [27].

There is a long line of work in developing (1 + ¢)-approximations for these problems
in Euclidean spaces. The holy grail of this work has been the development of algorithms
that are near-linear time in n, and several techniques are now known to achieve this. This
includes randomly shifted quad-trees [11], coresets [4,15,37,40,41], sampling [46], and local
search [26,28,30], among others.

There are many notions of clustering stability that have been considered in literature [1,6,
13,17,18,22,35,45,52]. The exact definition of stability we study here was first introduced in
Awasthi et al. [14]; their definition in particular resembles the one of Bilu and Linial [23] for
max-cut problem, which later has been adapted to other optimization problems [9,10,19,49,51].
Building on a long line of work [14,16,20,21], which gradually reduced the stability parameter,
Angelidakis et al. [10] present a dynamic programming based polynomial-time optimal
algorithm for discrete 2-stable instances for all center-based objectives.

Chekuri and Gupta [25] show that a natural LP-relaxation is integral for the 2-stable
k-center problem. Recent work by Cohen-Addad [31] provides a framework for analyzing
local search algorithms for stable instances. This work shows that for an a-stable instance
with a > 3, any solution is optimal if it cannot be improved by swapping [2/(a — 3)]
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centers. Focusing on Euclidean spaces of fixed dimensions, Friggstad et al. [38] show that
a local-search algorithm with O(1)-swaps runs in polynomial time under a (1 4 §)-stable
assumption for any § > 0. However, none of the algorithms for stable instances of clustering
so far have running time near-linear in n, even when the stability parameter « is large, points
lie in R2, and the underlying metric is Euclidean.

On the hardness side, solving (3 — §)-center proximal k-median instances in general metric
spaces is NP-hard for any 6 > 0 [14]. When restricted to Euclidean spaces in arbitrary
dimensions, Ben-David and Reyzin [22] showed that for every § > 0, solving discrete (2 — §)-
center proximal k-median instances is NP-hard. Similarly, the clustering problem for discrete
k-center remains hard for a-stable instances when o < 2, assuming standard complexity
assumption that NP # RP [20]. Under the same complexity assumption, discrete a-stable
k-means is also hard when @ < 1+ d¢ for some positive constant dy [38]. Deshpande et al. [34]
showed it is NP-hard to (1 + €)-approximate (2 — d)-center proximal k-means instances.

2 Definitions and Preliminaries

Clustering. Let X = {p1,...,pn} be a set of n points in R, and let §: R? x R? — Rx
be a distance function (not necessarily a metric satisfying triangle inequality). For a set
Y C R?, we define 6(p,Y) == minyey 6(p,y). A k-clustering of X is a partition of X into k
non-empty clusters Xi,..., Xp. We focus on center-based clusterings that are induced by
a set S == {c1,...,cx} of k centers; each X; is the subset of points of X that are closest
to ¢; in S under 4§, that is, X; == {p € X | 6(p,¢;) < d(p,¢;)} (ties are broken arbitrarily).
Assuming the nearest neighbor of each point of X in S is unique (under distance function ¢),
S defines a k-clustering of X. Sometimes it is more convenient to denote a k-clustering by
its set of centers S.

The quality of a clustering S of X is defined using a cost function $(X, S); cost function $
depends on the distance function J, so sometimes we may use the notation $5 to emphasize
the underlying distance function. The goal is to compute S* := argming $(X,S) where the
minimum is taken over all subsets S C R? of k points. Several different cost functions have
been proposed, leading to various optimization problems. We consider the following three
popular variants:

k-median clustering: the cost function is $(X,S) = >_  d(p, S).

k-means clustering: the cost function is (X, S) = > . (d(p, 9))*.

k-center clustering: the cost function is $(X,.S) = max,ecx d(p, S).

In some cases we wish S to be a subset of X, in which case we refer to the problem as
the discrete k-clustering problem. For example, the discrete k-median problem is to compute
argmingc y,|s|=k 2_pex 0(p,S). The discrete k-means and discrete k-center problems are
defined analogously.

Given point set X, distance function §, and cost function $, we refer to (X,4,$) as a
clustering instance. If § is defined directly by the distance function 4, we use (X, d) to denote
a clustering instance. Note that a center of a set of points may not be unique (e.g. when ¢ is
defined by the Li-metric and $ is the sum of distances) or it may not be easy to compute
(e.g. when § is defined by the Lo-metric and $ is the sum of distances).

Stability. Let X be a point set in Euclidean space R%. For a > 1, a clustering instance
(X,0,$5) is a-stable if for any perturbed distance function 6 (not necessary a metric) satisfying
5(p,q) <6(p.q) < a-6(p,q) forall p,q e R? any optimal clustering of (X, d,$s) is also an
optimal clustering of (X, $5). Note that the cluster centers as well as the cost of optimal
clustering may be different for the two instances. We exploit the following property of
stability, which follows directly from its definition.
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» Lemma 3. Let (X,0) be an a-stable clustering instance with o > 1. Then the optimal
clustering O of (X, ) is unique.

Metric approximations. The next lemma, which we rely on heavily throughout the paper,
is the observation that a change of metric preserves the optimal clustering as long as the
new metric is a S-approximation of the original metric satisfying g < a.

» Lemma 4. Given point set X, let 6 and §' be two metrics satisfying §(p,q) < §'(p,q) <
B-0(p,q) for all p and q in X for some B. Let (X,0) be an a-stable clustering instance with
a > B. Then the optimal clustering of (X,0) is also the optimal clustering of (X,4"), and
vice versa. Furthermore, (X,d") is an («/B)-stable clustering instance.

Polyhedral metric. In light of the metric approximation lemma, we would like to approxi-
mate the Euclidean metric without losing too much stability, using a collection of convex
distance functions generalizing the L.,-metric in Euclidean space. Let N C S%! be a
centrally-symmetric set of v unit vectors (that is, if w € N then —u € N) such that for any
unit vector v € S%71, there is a vector u € N within angle arccos(1 — ¢) = O(y/€). The
number of vectors needed in N is known to be O(e~(4=1)/2). We define the polyhedral metric
Sn: RExRY — Rsg to be dx(p, q) = max,en(p — ¢, u).

Since N is centrally symmetric, dy is symmetric and thus a metric. The unit ball under
dn is a convex polyhedron, thus the name polyhedral metric. By construction, an easy
calculation shows that for any p and ¢ in R, ||p—ql|| > én(p,q) > (1—¢)-||p—¢||. By scaling
each vector in N by a 1 + € factor, we can ensure that (1+¢€) - ||p—q| > dn(p,q) > |lp — ¢l
By taking € to be small enough, the optimal clustering for a-stable clustering instance
(X, ]I-l,$) is the same as that for (X, 0y, $) by Lemma 4, and the new instance (X, dy, $) is
(1 — €)a-stable if the original instance (X, |||, $) is a-stable.

Center proximity. A clustering instance (X, J) satisfies a-center prozimity property [14] if
for any distinct optimal clusters X; and X; with centers ¢; and ¢; and any point p € X,
one has a - 6(p, ¢;) < 6(p,¢;). Awasthi, Blum, and Sheffet showed that any a-stable instance
satisfies a-center proximity [14, Fact 2.2] (also [10, Theorem 3.1] under metric perturbation).
Optimal solutions of a-stable instances satisfy the following separation properties.?
a-center proximity implies that (o« — 1) -0(p, ¢;) < d(p, q) for any p € X; and any q € X;.
For o > 2, a point is closer to its own center than to any point of another cluster.?
For a > 2+ /3, a-center proximity implies that &(p,p’) < &(p,q) for any p,p’ €
X; and any ¢ ¢ X;. In other words, from any point p in X, any intra-cluster distance to
a point p’ is shorter than any inter-cluster distance to a point q.
We make use of the following stronger intra-inter distance property on a-stable instances,
which allows us to compare any intra-distance between two points in X; and any inter-distance
between a point in X; and a point in Xj.

» Lemma 5. Let (X, ) be an a-stable instance, « > 1, and let Xy be a cluster in an optimal
clustering with ¢ € X \ Xy and p,p’,p" € X1. If 0 is a metric, then §(p,p’) < 6(p”,q) for

a > 2+ /5. If§ is the Buclidean metric in R?, then &(p,p') < 6(p”,q) for a > 2+ /3.

Finally, we note that it is enough to consider the discrete version of the clustering problem
for stable instances.

2 We give an additional list of known separation properties in the full version of the paper.
3 They are known as weak center proximity [20] and strict separation property [18,22] respectively.
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» Lemma 6. For any a-stable instance (X,0,$s) with a > 2 ++/3, any continuous optimal
k-clustering is a discrete optimal k-clustering and vice versa.

3 Efficient Dynamic Programming

We now describe a simple, efficient algorithm for computing the optimal clustering for
the k-means, k-center, and k-median problem assuming the given instance is a-stable for
a > 2+ /3. Roughly speaking, we make the following observation: if there are at least two
clusters, then the two endpoints of the longest edge of the minimum spanning tree of X belong
to different clusters, and no cluster has points in both subtrees of the minimum spanning
tree delimited by the longest edge. We describe the dynamic programming algorithm in
Section 3.1 and then describe the procedure for computing cluster costs in Section 3.2. We
summarize the results in this section by the following theorem.

» Theorem 7. Let X be a set with n points lying in R® and k > 1 an integer. If the k-means,
k-median, or k-center instance for X under the Euclidean metric is a-stable for o > 243+¢
for any constant € > 0, then the optimal clustering can be computed in O(nk? + n polylogn)
time. For d = 2 the assumption can be relaxed to o > 2 + V3.

3.1 Fast Dynamic Programming

The following lemma is the key observation for our algorithm.

» Lemma 8. Let (X,6,9$) be an a-stable k-clustering instance with o > 2+ /3 and k > 2,
and let T be the minimum spanning tree of X under metric 6. Then (1) The two endpoints
u and v of the longest edge e in T do not belong to the same cluster; (2) each cluster lies in
the same connected component of T \ {e}.

Algorithm. We fix the metric 0 and the cost function $. For a subset Y C X and for an
integer j between 1 and k — 1, let x(Y’;j) denote the optimal cost of an j-clustering on
Y (under § and $). Recall that our definition of j-clustering required all clusters to be
non-empty, so it is not defined for |Y'| < j. For simplicity, we assume that u(Y’;j) = oo for
Y| < j. Let T be the minimum spanning tree on X under ¢, let uv be the longest edge in
T; let X,, and X, be the set of vertices of the two components of T'\ {uv}. Then u(X;k)
satisfies the following recurrence relation:

w(X;1) if =1,
(X3 k) = q oo if k> |X], (1)
ming <jcp {(Xu;?) + p(Xy;k—4)} if |[X|>1and k> 1.

Using recurrence (1), we compute pu(X; k) as follows. Let R be a recursion tree, a binary
tree where each node v in R is associated with a subtree T, of T'. If v is the root of R, then
T, = T. Recursion tree R is defined recursively as follows. Let X,, C X be the set of vertices
of T'in T,. If | X,| = 1, then v is a leaf. Each interior node v of T is also associated with
the longest edge e, of T,,. Removal of e, decomposes T, into two connected components,
each of which is associated with one of the children of v. After having computed T', R can be
computed in O(nlogn) time by sorting the edges in decreasing order of their costs.*

4 Tree R is nothing but the minimum spanning tree constructed by Kruskal’s algorithm.
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For each node v € R and for every i between 1 and k — 1, we compute p(X,;4) as follows.
If v is a leaf, we set p(X,;1) =0 and u(X,;4) = co otherwise. For all interior nodes v, we
compute p(X,;1) using the algorithms described in Section 3.2. Finally, if v is an interior
node and ¢ > 1, we compute p(X,;4) using the recurrence relation (1). Recall that if w and
z are the children of v, then p(X,,;¢) and u(X,;r) for all £ and r have been computed before
we compute pu(X,;14).

Let 7(n) be the time spent in computing 7" plus the total time spent in computing
w(Xy, 1) for all nodes v € R. Then the overall time taken by the algorithm is O(nk? + 7(n)).
What is left is to compute the minimum spanning tree 7' and all u(X,, 1) efficiently.

3.2 Efficient Implementation

In this section, we show how to obtain the minimum spanning tree and compute u(X,;1)
efficiently for 1-mean, 1-center, and 1-median when X C R%. We can compute the Euclidean
minimum spanning tree 7' in O(nlogn) time in R? [54]. We can then compute u(X,;1)
efficiently either under Euclidean metric (for 1-mean), or switch to the Lj-metric and compute
1w(Xy; 1) efficiently using Lemma 4 (for 1-center and 1-median).

There are two difficulties in extending the 2D data structures to higher dimensions. No
near-linear time algorithm is known for computing the Euclidean minimum spanning tree for
d > 3, and we can work with the Li-metric only if o > Vd (Lemma 4). We address both of
these difficulties by working with a polyhedral metric dy. Let a > 2+ v/3 + Q(1) be the
stability parameter. By taking the number of vectors in N (defined by the polyhedral metric)
to be large enough, we can ensure that (1 —¢)|p — ¢|| < dn(p,q) < ||p — ql| for all p,q € R%.
By Lemma 4, X is an a-stable instance under oy for a > 2 + V3. We first compute the
minimum spanning tree of X in O(n polylogn) time under dy using the result of Callahan
and Kosaraju [24], and then compute p(X,,1).

Data structure. We compute p(X,;1) in a bottom-up manner. When processing a node v
of R, we maintain a dynamic data structure ¥, on X, from which u(X,;1) can be computed
quickly. The exact form of ¥, depends on the cost function to be described below. Before
that, we analyze the running time 7(n) spent on computing every p(X,;1). Let w and z be
the two children of v. Suppose we have ¥,, and ¥, at our disposal and suppose |X,,| < |X.|.
We insert the points of X, into ¥, one by one and obtain ¥, from which we compute
1(Xy;1). Suppose Q(n) is the update time of U, as well as the time taken to compute
1(Xy; 1) from ¥,. The total number of insert operations performed over all nodes of R is
O(nlogn) because we insert the points of the smaller set into the larger set at each node
of R [42,53]. Hence 7(n) = O(Q(n) - nlogn). We now describe the data structure for each
specific clustering problem.

1-mean. We work with the Lo-metric. Here the center of a single cluster consisting of X,
is the centroid o, = (Zper p) /1 Xo|, and p(Xo;1) = 32 cx, pl|? — | Xy| - ||low]|?. At each

node v, we maintain > v pand > |lp||?. Point insertion takes O(1) time so Q(n) = 1.

1-center. As mentioned in the beginning of the section, we can work with the Li-metric for
d = 2. We wish to find the smallest L;-disc (a diamond) that contains X,. Let et = (1,1)
and e~ = (—1,1). Then the radius p, of the smaller L;-disc containing X, is

1
po = 5 max {;Ielg(x (p,et) — min (p.e™), max (pe”) — mip (p, e‘)} :
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We maintain the following four terms max,ex, (p,e), minyex, (p,et), maxyex, (p,e7),
and minyex, (p,e”) at v. A point can be inserted in O(1) time and p, can be computed
from these four terms in O(1) time. Therefore, Q(n) = O(1). For d > 2, we work with a
polyhedral metric and compute the smallest ball B(X,,) that contains X,. For full details,
see the full version of the paper.

1-median. Similar to 1-center, we work with the polyhedral metric. Fix a node v of T'. For
a point x € RY) let F,(r) = ZpEXU On(x,p) which is a piecewise-linear function. Our goal is
to compute &) = argmin pa F, (). Our data structure is a dynamic range-tree [3] used for
orthogonal range searching that can insert a point in O(logn) time. Using multi-dimensional
parametric search [5], £ can be computed in O(poly logn) time after each update; see the
full version of the paper for details.

4  k-Median: Single-Swap Local Search

We customize the standard local-search framework for the k-clustering problem [30,31,39].
In order to recover the optimal solution, we must define near-optimality more carefully.

Let (X,8) be an instance of a-stable k-median in R? for a > 5. By Lemma 6, it suffices
to consider the discrete k-median problem In Section 4, we describe a simple local-search
algorithm for finding the optimal clustering of (X, d). In Section 4 we show that the algorithm
terminates within O(klog(nA)) iterations. We obtain the following.

» Theorem 9. Let (X,0) be an a-stable instance of the k-median problem for some o > 5
where X is a set of n points in R? equipped with L,-metric 6. The 1-swap local search
algorithm terminates with the optimal clustering in O(klog(nA)) iterations.

Local-search algorithm. The local-search algorithm maintains a k-clustering induced by
a set S of k cluster centers. At each step, it finds a pair of points z € X and y € S such
that $(X,S + = — y) is minimized. If $(X,S + = —y) > $(X,5), it stops and returns the
k-clustering induced by S. Otherwise it replaces S with S + = — y and repeats the above
step. The pair (z,y) will be referred to as a 1-swap.

Local-search analysis. The high-level structure of our analysis follows Friggstad et al. [39],
however new ideas are needed for 1-swap. In this subsection, we denote a k-clustering by the

set of its cluster centers. Let S be a fixed k-clustering, and let O be the optimal clustering.
For a subset Y C X, we use $(Y") and $*(V) to denote $(Y,.5) and $(Y,O), respectively.

Similarly, for a point p € X, we use nn(p) and nn*(p) to denote the nearest neighbor of p in
S and in O, respectively; define (p) to be 6(p,.S) and §*(p) to be §(p, 0). We partition X
into four subsets as follows:

Xoo={p€ X |nn(p) € S\ O,nmn*(p) € O\ S};

Xo1 ={p€ X |nn(p) € S\ O,mn*(p) € SNO};

X0 = {p € X | nn(p) € SNO,nn*(p) € O\S};

X = {p € X |nn(p) € SNO,nn*(p) € SN O}.
Observe that for any point p in X1, nn(p) = nn*(p) and $(p) = $*(p); for any point p in
Xo1, one has $(p) < $*(p); and for any point p in Xig, one has $(p) > $*(p). Costs (p) and
0*(p) are not directly comparable for point p in Xgo. A k-clustering S is C'-good for some
parameter C' > 0 if $(X) < $*(X) + C - $*(Xoo).

» Lemma 10. Any C-good clustering S for an a-stable clustering instance (X, 0,$) must be
optimal for a > C' + 1.
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Figure 1 Tllustration of candidate swaps S in R?. The blue dots belong to set S, the red dots
belong to set O; the only purple dot is in S N O. The thick gray segments indicate pairs inside the
stars; each star has exact one blue dot as its center. The black pairs are the candidate swaps. Notice
that the partitions of S and O form connected components.

Proof. Define a perturbed distance function 6: X x X — R>o with respect to the given
clustering S as follows:

S = {290 A )
(', p) otherwise.

Note that é is not symmetric. Let é( -) denote the cost function under the perturbed
distance function 6. The optimal clustering under perturbed cost function is the same as the
original optimal clustering O by the stability assumption. Since nn(p) = nn*(p) if and only
if p € Xq1, the cost of O under the perturbed cost can be written as:

$(X,0) = a-$(Xo0,0) + a - $(Xo1,0) + - $(X10,0) + $(X11,0).

By definition of perturbed distance 4, @(X, S) =8$(X,S). Now, by the assumption that
clustering S is C-good,

$(X,5) =$(X,5) < $(X,0) + C - $(Xo0,0)
< 1

(C+1)-8%(Xg0,0) + $(Xo1,0) + $(X10,0) + $(X11,0)
$(X,0);

the last inequality follows by taking a > C' + 1. This implies that S is an optimal clustering
for (X,0), and thus is equal to O. <

IN

Next, we prove a lower bound on the improvement in the cost of a clustering that is not
C-good after performing a 1-swap. Following Arya et al. [12], define the set of candidate
swaps S as follows: For each center 7 in .S, consider the star X; centered at ¢ defined as the
collection of pairs ¥; := {(4,j) € S x O | nn(j) = i}. Denote center(j) to be the center of the
star where j belongS' in other words, center(j) = 4 if j belongs to %;.

Fori € S, let O; == {j € O| center(j) = i} be the set of centers of O in star ¥;. If |O;| = 1,
then we add the only pair (i,7) € X; to the candidate set S. Let Sy :={i € S| O; = }.
Let O~ contain centers in O that belong to a star of size greater than 1. We pick |Os1|
pairs from Sg x Os1 such that each point of O~ is matched only once and each point of Sy
is matched at most twice and add them to S; this is feasible because |Sz| > |Os1|/2. Since
each center in O belongs to exactly one pair of S, |S| = k. By construction, if |X;| > 2, then
1 does not belong to any candidate swap. See Figure 1.

» Lemma 11. For each point p in X1, X109, or X11, the set of candidate swaps S satisfies

> (6(p) = ' (p) = 6(p) — 5% (p); (3)

(1,7)€S
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and for each point p in Xog, the set of candidate swaps S satisfies

D> (6(p) = 8 (p) = (8(p) — 6% (p)) — 46" (p), (4)
(i,5)€S
where $' is the cost function on X defined with respect to S =S —i+ j, and §'(p) is the
distance between p and its nearest neighbor in S’.

Proof. For point p in X;;, both nn(p) and nn*(p) are in S’, so §’'(p) = §(p) = ¢*(p). For
point p in Xo1, 6(p) < §*(p); when nn(p) is being swapped out by some in 1-swap S’, nn*(p)
must be in S’. For point p in X1, §(p) > 6*(p); center nn(p) will never be swapped out by
any 1-swap in S, so ¢’'(p) < §(p). By construction of S, there is exactly one choice of S’ that
swaps nn*(p) in; for that particular swap we have ¢§'(p) = §*(p). In all three cases one has
inequality (3). Our final goal is to prove inequality (4). Consider a swap (4,j) in S. There
are three cases to consider:

j = nn*(p). There is exactly one swap for which j = nn*(p). In this case d(p) < §*(p),

therefore 6(p) — &' (p) > d(p) — 0*(p).

j #nun*(p) and i # nn(p). Since nn(p) € S, ¢’(p) < é(p). Therefore §(p) — ¢’(p) > 0.

Jj # nn*(p) and i = nn(p). By construction, there are most two swaps in S that may

swap out nn(p). We claim that i # center(nn*(p)). Indeed, if i = center(nn*(p)), then

by construction, ¥; = {(¢,nn*(p))} because the center of star of size greater than one is

never added to a candidate swap. But this contradicts the assumption that j # nn*(p).

The claim implies that center(nn*(p)) € S’ and thus ¢’'(p) < d(p, center(un*(p))). We

obtain a bound on 4(p, center(nn*(p))) as follows:

0(p, center(nn*(p))) < §(p,nn*(p)) + d(un*(p), center(nn*(p)))
< 6"(p) + 6(nn"(p), nn(p))
< d%(p) + (6" (p) +6(p)) = 6(p) + 26" (p).

Therefore, §(p) — §'(p) > §(p) — d(p, center(nn*(p))). Putting everything together, we
obtain:

D (3(p) = 8'(p) > (5(p) — 5" (p)) + 0+ 2(8(p) — 8(p) — 26" (p)) = 5(p) — 55" (p).
S'eS

Using Lemma 11, we can prove the following.

> Lemma 12. Let S be a k-clustering of (X, d) that is not C-good for some fized constant
C > 4+ ¢ with arbitrarily small e > 0. There is always a 1-swap S’ such that $'(X)—$*(X) <
I—€¢/(T+e)k)- (3(X)—$*(X)), where § is the cost function defined with respect to S’.

Proof. By Lemma 11 one has $(X)—$'(X) > ($(X)—$*(X) — ¥ (Xqo))/k for some 1-swap S’

and its corresponding cost function $'(-). Since S is not C-good, $(X) —$*(X) > C - $*(Xoo).
Rearranging and plugging the definition of ¥(-), we have
$(X) — §(X) < $(X) — $7(X) — ($(X) — $"(X) — ¥(Xoo))/k
$(X) = 87(X) — (8(X) = $7(X) —4-8"(Xo0)) /k
$(X) —37(X)
— (8(X) = $(X) + (M — 1) - (3(X) — §°(X)) — 4M - $"(Xo0)) /Mk

< (1 - (1+€)k) L(8(X) = $°(X)),

where the last inequality holds by taking M to be arbitrarily large (say M > 14 1/e). <«

<
<
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Figure 2 L; Voronoi diagram V, quadrant decomposition V, and trapezoid decomposition v

5 Efficient Implementation of Local Search

We describe an efficient implementation of each step of the local-search algorithm in this
section. By Lemma 4, it suffices to implement the algorithm using a polyhedral metric dy.
We show that each step of 1-swap can be implemented in O(nk??~! polylogn) time under
the assumption that o > 5. We obtain the following;:

» Theorem 13. Let (X,6) be an a-stable instance of the k-median problem where X C R?
and § is the Fuclidean metric. For a > 5, the 1-swap local search algorithm computes the
optimal k-clustering of (X,6) in O(nk2?! polylogn) time.

For simplicity, we present a slightly weaker result for d = 2 using the Li-metric, as it is
straightforward to implement and more intuitive. Using the Li-metric requires o > 5v/2.
The extension to higher dimensional Euclidean space using the polyhedral metric is described
in the full version of the paper, which works for o > 5.

Voronoi diagram under L; norm. First, we fix a point 2 € X \ S to insert and a center
y € S to drop. Define S’ :== S + x — y. We build the L; Voronoi diagram V of S’. The
cells of V may not be convex, but they are star-shaped: for any ¢ € S’ and for any point
x € Vor(c), the segment cz lies completely in Vor(c). Furthermore, all line segments on the
cell boundaries of V' must have slopes belonging to one of the four possible values: vertical,
horizontal, diagonal, or antidiagonal.

Next, decompose each Voronoi cell Vor(c) into four quadrants centered at ¢. Denote the
resulting subdivision of V as V. We compute a trapezoidal decomposition VI of the diagram
V by drawing a vertical segment from each vertex of V in both directions until it meets an
edge of V; VIl has O(k) trapezoids, see Figure 2. For each trapezoid 7 € VIl let X, .= X N.
The cost of the new clustering S” can be computed as $(X,S") = > .y $(X,5).

Range-sum queries. Now we discuss how to compute $(X,S’). Each trapezoid 7 in cells
Vor(c) is associated with a vector u(r) € {£1}?, depending on which of the four quadrants
T belongs to with respect to the axis-parallel segments drawn passing through the center ¢
of the cell. If 7 lies in the top-right quadrant then w(r) = (1,1). Similarly if 7 lies in the
top-left (resp. bottom-left, bottom-right) then u(r) = (—1,1) (resp. (—1,-1), (1,-1)).

$(Xr,8) = Y llz—clhi= Y {e—cu(m) =Y (zu(r) —[X] - {c,ul(r). ()

zeX, zeX, reX,

We preprocess X into a data structure that answers the following query:
TRAPEZOIDSUM(T, u): Given a trapezoid T and a vector u € {£1}2, return | X N 7| as

well as ) v (T, u).
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1-Swapr(X, S):

input: Point set X and centers S
for each point z € X \ S and center y € S:
S —S+zxz—y
V < L; Voronoi diagram of S’
V < decompose each cell Vor(c) into four quadrants centered at ¢
Vi~ trapezoidal decomposition of V
for each trapezoid T € VI
$(X;,S") « TRAPEZOIDSUM(T, u(T))
$(Xv Sl) A ZTeVH $(X7'7 S/)
return (z,y) with the lowest $(X,S +z — y)

Figure 3 Efficient implementation of 1-swap under 1-norm.

The above query can be viewed as a 3-oriented polygonal range query [33]. We construct
a 3-level range tree ¥ on X. Omitting the details (which can be found in [33]), ¥ can be
constructed in O(nlog®n) time and uses O(n log® n) space. Each node ¢ at the third level of
U is associated with a subset X¢ C X. We store w(§,u) == erxg (w,u) for each u € {£1}?

and |X¢| at & For a trapezoid 7, the query procedure identifies in O(log3 n) time a set =, of
O(log3 n) third-level nodes such that X N7 = Ugez, X¢ and each point of X N7 appears as
exactly one node of Z;. Then 3 v (v,u) = .z w(§ u) and [X;| = o | Xl

With the information stored at the nodes in =, TRAPEZOIDSUM(T, u) query can be
answered in O(log® n) time. By performing TRAPEZOIDSUM(T,u(7)) query for all 7 € VI,
$(X,,S") can be computed in O(klog® n) time since VIl has a total of O(k) trapezoids.

We summarize the implementation of 1-swap algorithm in Figure 3. The 1-swap procedure
considers at most nk different k-clusterings. Therefore we obtain the following.

» Lemma 14. Let (X,6,%) be a given clustering instance where § is the Ly metric, and
let S be a given k-clustering. After O(nlogn) time preprocessing, we find a k-clustering
S’ := S + x —y minimizing $(X,S") among all choices of (z,y) in O(nk?log®n) time.

6 Conclusion

We presented near-linear time algorithms for finding optimal solutions of stable clustering
instances for the k-means, k-medians, and k-center problem. We note that variants of all
three approaches might work for smaller values of a. The value of « assumed in our results in
larger than what is known for polynomial-time algorithm (e.g. a > 2 in Angelidakis et al. [10])
and that in some applications the input may not satisfy our assumption, but our results
are a big first step toward developing near-linear time algorithms for stable instances. We
are not aware of any previous near-linear time algorithms for computing optimal clustering
even for larger values of . We leave the problem of reducing the assumption on « as an
important open question.
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—— Abstract
We are studying a weighted version of a linear extension problem, given some finite partial order p,
called COMPLETION OF AN ORDERING. While this problem is NP-complete, we show that it lies
in FPT when parameterized by the interval width of p. This ordering problem can be used to
model several ordering problems stemming from diverse application areas, such as graph drawing,
computational social choice, or computer memory management. Each application yields a special p.
We also relate the interval width of p to parameterizations such as mazimum range that have been
introduced earlier in these applications, sometimes improving on parameterized algorithms that
have been developed for these parameterizations before. This approach also gives some practical
sub-exponential time algorithms for ordering problems.

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability; Theory
of computation — Dynamic programming; Mathematics of computing — Combinatorial optimization

Keywords and phrases Parameterized algorithms, interval width, linear extension, one-sided crossing
minimization, Kemeny rank aggregation, grouping by swapping

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.9

Funding Emmanuel Arrighi: Research Council of Norway (Grant no. 274526), IS-DAAD (Grant no.
309319).

Henning Fernau: DAAD PPP (Grant no. 57525246).

Mateus de Oliveira Oliveira: Trond Mohn Foundation, Research Council of Norway (Grant no.
288761), IS-DAAD (Grant no. 309319).

Petra Wolf: DFG project FE 560/9-1, DAAD PPP (Grant no. 57525246).

1 Introduction

Many computational problems can be phrased as the task of arranging a collection of
combinatorial objects into a minimum-cost linear order that satisfies certain constraints.
Examples of natural problems that fall in this category are ONE-SIDED CROSSING MINI-
MIZATION (OSCM), a prominent problem in the field of graph drawing and VLSI design
[4, 32, 45, 50, 52], GROUPING BY SWAPPING (GBS), a problem with applications in computer
memory management [15, 28, 55], and KEMENY RANK AGGREGATION (KRA), a prominent
problem in the field of computational social choice [19, 36]. A natural parameter that
arises when studying problems such as OSCM, GBS and KRA from the perspective of
parameterized complexity theory is the cost k of a solution. In particular, the best algorithm
? Emmanuel Arrighi., Henning Fernafu, Mateus de Oliveira Oliveira, and Petra Wolf;
5v icensed under Creative Commons License CC-BY
40th TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 9; pp. 9:1-9:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


https://orcid.org/0000-0002-0326-1893
mailto:emmanuel.arrighi@uib.no
https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
https://orcid.org/0000-0001-7798-7446
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0003-3097-3906
mailto:wolfp@informatik.uni-trier.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Width Notions for Ordering-Related Problems

for OSCM, parameterized by the cost of a solution k, is the algorithm due to Kobayashi and
Tamaki [38] which runs in time! O*(2V2¥) and the best single-exponential algorithm for KRA
runs in time ©*(1.403%) [51], while sub-exponential algorithms of type O*(2°(V®)) have been
proposed in [35], with some unclear constant hidden in the O-notation of the exponent. Not
surprisingly, they have been devised with substantially distinct sets of techniques.

In this paper, significantly extending the ideas started out in [23, 25], we leverage the
COMPLETION OF AN ORDERING problem (CO) to provide a unified framework for the study
of several cost-parameterized ordering problems. In this problem, we are given a partial
order p on a set V, and a function ¢ : V' x V — N assigning costs to incomparable pairs,
and the goal is to compute a minimum-cost linear extension of p. Interestingly, a natural
structural parameter that arises in this context is the pathwidth of the cocomparability graph
of the input partial order p. This graph has V as vertex-set and there is an undirected edge
between vertices v and v’ if and only if v and v are not related in the partial order. Our main
result states that CO, parameterized by the interval width w of the input partial order, can
be solved in time O*(2%). Additionally, our algorithm is optimal under ETH. Using our main
result, together with reductions from OSCM, GBS and KRA to PCO, the natural restriction
of CO to positive costs, we obtain algorithms for these three problems (parameterized by
width, or by the standard parameter, or by other problem-specific structural parameters)
whose running times often match or improve on the best algorithms for the three problems.

When reducing OSCM or GBS to PCO, the partial order one obtains is an interval order,
meaning that the cocomparability graph of this order is an interval graph. Interval orders
play an important role in partial order theory due to the fact that their interval width can be
computed in linear time. Additionally, they find applications in many contexts of practical
relevance such as scheduling, online and packing algorithms, see [54]. Inspired by this, we
define the POSITIVE COMPLETION OF AN INTERVAL ORDERING (PCIO) problem, a version
of PCO where the input partial order is required to be an interval order. In this restricted
version, our main algorithm for CO parameterized by interval width can be converted into a
sub-exponential O* (2m)—time FPT algorithm for PCIO, parameterized by cost k.

Our width-based approach also allows us to improve on a parameterized algorithm for
KRA based on the parameter mazimum range (of a candidate) as introduced and discussed
in [5]. Further, it can be used to show that GBS is also fixed parameter tractable when
parameterized by a parameter called scope coincidence degree, a natural parameter in the
context of strings. This gives the first algorithmic use of this structural string parameter.

Our approach for CO is built on dynamic programming on a path decomposition of the
cocomparability graph of the partial order. Notice that this path decomposition structure
has been recently exploited for counting the number of linear extensions by Eiben et al. [22].
Here, we use this approach to find the cheapest linear extension.

2 Preliminaries

In this section, we collect the basic notions of this paper. N denotes the set of non-negative
integers and N+ denotes the set of positive integers. Given r € Nsg, we write [r] = {1,...,r}.

Notation on Partial Orders. Let V be a set. A partial order over V is a reflexive, anti-

symmetric and transitive binary relation p C V x V. We say that p is a linear order if
additionally, for each (z,y) € V x V, either (z,y) € p or (y,z) € p. A strict partial order

! Recall that the O*-notation suppresses polynomial factors.
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over V is an irreflexive and transitive binary relation o C V x V. By adding the identity
relation Iy, p = o U Iy becomes a partial order, and conversely from a partial order p
on V, we can define o = p\ Iy as a strict partial order. Hence, we will occasionally use the
term linear order also for the corresponding strict order, often denoted as <, for reasons of
clarity. Notice that for finite base sets V', we can specify a linear order <; by a bijection
f - [|V]] = V, with the understanding that f(:) <; f(j) if and only if ¢ < j, i.e., if the
number ¢ is smaller than the number j. Such a bijection f is also called a ranking in the
following. Conversely, any linear order 7 on ¥ defines a bijection f. : [|[V]] — V.

Given two partial orders p, 7 C V' x V, 7 is an extension of p if p C 7. If 7 is also a linear
order on V, then 7 is a linear extension of p. Given a linear order 7 on V, let min, (V) be
the minimum element in V' with respect to 7 and max, (V') be the maximum element in V'
with respect to 7. Given a subset 7' C V and a partial order p CV x V, let plr = pNT x T
be the restriction of p to T'. A linear order 7 C T x T is a linear extension of p on T if T is
a linear extension of p|7. We define Lin(p,T') to be the set of linear extensions of p on T.

Notation on Graphs. Given an undirected graph G = (V, E) and a vertex v € V, we let
N@w) ={u|u eV, (v,u) € E} be the neighborhood of v.

A path decomposition of a graph G = (V, E) is a sequence D = (By,Ba,...,B,) of
subsets of V', such that the following conditions are satisfied.

Uicic, Bi= V.

For each edge (u,v) € E, there is an ¢ € [r] such that u,v € B;.

For each 4,7,k € [r] with i < j < k, B; (B C B;.

The width of D is defined as w(D) = max;¢[,) |Bi| — 1. The pathwidth, pw(G), of G is
the minimum width of a path decomposition of G.

Partial Orders and Interval Width. Given a (strict) partial order p C V' x V, the undirected
graph G, = (V,E) with £ = {{u,v} € V.xV | u # v,(u,v) ¢ p,(v,u) ¢ p} is the
cocomparability graph of p. An interval order is a strict partial order ¢ C V x V whose
elements v € V are represented by half-open intervals I, = [l,,7,) on the real line with
(u,v) € v <= 1, < l,. {I, | v € V} is called an interval representation of t. The
cocomparability graph G, is the intersection graph of {I, | v € V'} and is hence an interval
graph. It is known [29] that interval graphs are exactly the cocomparability graphs that do
not contain an induced cycle of length four. The interval width of a partial order p CV x V
is defined as iw(p) = min{w(¢)|¢ interval order,t C p}, where w(¢) is the maximum size of
an antichain of .. By Theorem 2.1 from [31], pw(G,) = iw(p) — 1. Conversely, for any graph
G = (V,E), pw(G) = min{w(H) | H is an interval graph, V(H) =V, E(H) 2 E} — 1, where
w(H) is the size of the largest clique in H. For more information on interval orders, we refer
to textbooks and survey articles such as [26, 54].

3 Completion of an Ordering (CO)

Below, we formally define the COMPLETION OF AN ORDERING problem, generalizing POSITIVE
COMPLETION OF AN ORDERING (PCO) introduced in [16, Sec. 8] and [23, Sec. 6.4].

Problem name: COMPLETION OF AN ORDERING (CO)
Given: A partial order p CV x V, a cost function ¢: V x V — N, and k € N.
Output: Is there a linear order 7 2 p with ¢(7\ p) =32, e\, (@, y) < K7
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In the PCO problem, the cost function needs to satisfy the following condition: for all
pairs (z,y) € V x V such that 2 and y are incomparable in p, ¢(x,y) > 0.

Let us shortly discuss the cost parameter k: By the result of Dujmovic, Fernau and
Kaufmann [16] (for details, see [23]), PCO can be solved in time O*(1.52%) and admits a linear-
size kernel. The best known algorithm for PCO, whose running time is O*(20(VF1og(R))  wag
obtained in [25] by relating PCO to the FEEDBACK ARC SET PROBLEM IN TOURNAMENTS,
or FAST for short, that allows for subexponential algorithms due to [1]. Here, we are
presenting an algorithm for a variation of this problem that runs in time O*(2°(V®) and is
relatively straightforward to implement. We also present a branching algorithm that runs in
time O*(1.42%), improving on [23]. Our algorithms are based on the interval width of p.

3.1 CO, parameterized by pathwidth

Let G = (V, E) be a graph, p CV x V be a (strict) partial order on the vertices of G and
D = (By,...,B,) be a path decomposition of G. We call D consistent with p if there is no
pair of vertices (z,y) € p with max{i € [r] | y € B;} < min{i € [r] | z € B;}. Thus, if z
is smaller than y in p, then y cannot be forgotten in D before z is introduced in D. The
consistent pathwidth, cpw(G, p), of G is the minimum width of a path decomposition of G
consistent with p. We will be interested in particular in the consistent pathwidth cpw(G,,, p).

» Theorem 1. Given a partial order p over a set V', a cost function¢:V xV — N and a
width-w path decomposition D of the cocomparability graph G, that is consistent with p, one
can solve an instance (p,c, k) of the CO problem in time O(|V]-w 2% -log(k) + |V |? - log(k)).

The remainder of this subsection is dedicated to the proof of Theorem 1.

Let us explain why our pathwidth measure can be seen as a distance to triviality parame-
terization in the context of CO. A trivial instance of CO is a linear order, as it has cost zero.
Then, the cocomparability graph is an independent set and has consistent pathwidth 02. In
the opposite case, if the input partial order is empty, then the cocomparability graph is a
clique and has consistent pathwidth |V| — 1. Tt is also worth noticing that it is NP-hard
to determine the pathwidth of a cocomparability graph, together with an optimal path
decomposition, as observed in [31].

Notation on Path Decompositions. Let D = (By, Bs,..., B,) be a path decomposition of
a graph G. We say that [r] is the set of positions of D and that r is the length of D. For
each position i, we say that B; is the i-th bag of D. For each ¢ € [r], i > 1, we say that B;
is an introduce bag if B; = B;—1 U{v} and that B; is a forget bag if B; = B;_1 \ {v}. We
say that the path decomposition D = (B1, Ba,..., B,) is nice if for each i € [r], B; is either
an introduce bag or a forget bag and |B;| = 1 and B, = (). It can be shown that, given
any path decomposition D = (By, Bs, ..., B,) of width w of a graph G, one can construct
in time O(r - w(D)) a nice path decomposition of G of width at most w. In a nice path
decomposition, for every vertex of V', there is a bag that introduces it and a bag that forgets
it, so the length of a nice path decomposition is 2 - |V|. For each position i € [r], we let
L; = U <j<;—1 Bj\ Bi be the set of vertices that have been forgotten (lost) up to position .

» Lemma 2. Let . be an interval order over V and {I, | v € V'} be an interval representation
of . One can derive a minimum width path decomposition of G, consistent with ¢ from
{I, | v €V} of width w(t) — 1 in time O(w(¢) - |V]).

2 In Lemma 5, we show that consistent pathwidth is equal to pathwidth.



E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf

Proof. For each element v in V', we let [,, and r, be the left and right endpoints of I,,. For
every point x on the real line R that corresponds to an endpoint of one or more intervals, we
associate a bag B, = {v | « € I,}. Then, we order the bags following the order of [, and r,
on the real line. For each element v € V, v € B;,. Given three bags B,, By, B, such that
x<y<z wehavethat B,NB, ={v |z e L}n{v]zel,}={v|l,<z<z<r,}C
{v|l, <y <ry,} = By. For each edge (u,v) € E(G,), I,, and I, intersect, therefore, we have
either I, € I, or l, € I,,. If |, € I,, then u,v € By, similarly if [, € I, then u,v € B;,. So
this construction builds a path decomposition. We call this path decomposition D. Now,
we will show that D is consistent with . More precisely, we will show that for each pair
(u,v) € v, max{xr € R | v € B} < min{z € R | v € B,}. For each (u,v) € ¢, we have
ly <ry <lp,max{r € R | u € By} <71y <1l, <min{x € R| v € B,}. Therefore, D is
consistent with ¢. Note that each bag is a clique, therefore, this is a path decomposition of
minimum width. A clique in G, is an antichain of ¢ and each antichain of ¢ forms a clique
in G,. Therefore, we have that D has width w(¢) — 1. <

We will refer to this decomposition as the path decomposition derived from the interval
order ¢.

» Lemma 3. Let G = (V, E) be a graph. Given a partial order p on V and a path decompo-
sition D of G of width w and length v that is consistent with p, one can construct in time
O(w-r) a nice path decomposition of width w that is consistent with p.

Given a path decomposition D, one can get a nice path decomposition by introducing before
each bag B several new bags that will forget one by one each vertex forgotten by B and
introduce each new vertex in B one by one. If D is consistent with p, then the new path
decomposition is also consistent with p. For the cocomparability graph, we can further show:

» Lemma 4. Let p be a partial order on a set V, G, be the cocomparability graph of p and
D be a path decomposition of G, consistent with p, then D is consistent with any extension

of p.

» Lemma 5. Let G, = (V, E) be the cocomparability graph of a partial order p CV x V.
Then pw(G,) = cpw(G,, p).

Proof. By definition we have pw(G,) < cpw(G), p). We will show that cpw(G,, p) < iw(p)—1
and use the fact that pw(G,) = iw(p) — 1 (Theorem 2.1 from [31]). By definition of iw(p),
we can find an interval order ¢ such that iw(p) = w(:) and ¢ C p. Let {I, | v € V} be an
interval representation of ¢. Then G, is the intersection graph of {I,, | v € V'}. Then by
Lemma 2, the path decomposition D of G, derived from {I, | v € V'} is consistent with ¢ and
has width w(¢) — 1. From Lemma 4, we know that D is also consistent with the extension p
of 1. We conclude cpw(G,, p) < cpw(G,, 1) = w(t) — 1 =iw(p) — 1 = pw(G)). <

Dynamic Programming Algorithm. Let p C V x V be a partial order over a set V,
¢: VxV — N be a cost function and S and T be two subsets of V' such that for each
pair (s,t) € S x T, (t,s) & p. We define ¢(S,T) = 35 ;) e(sxm)p €(8: 1), this is the cost of
having elements of S before elements of T'. For every linear extension 7 of p on T, we let

o(7) = D (ap)er\plz €(a,b) be the cost of 7. We define opt(7) = min{c(7) | 7 € Lin(p, T)}.

Our goal is to find opt(V).
Let D be a path decomposition of width w of the graph G, consistent with p. By
Lemma 3, we can assume without loss of generality that D is nice.
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For each position 1 < i < 2-|V| in the path decomposition, we compute and store
¢(L;,{v}) for every vertex v € B; such that for each u € L; (v,u) ¢ p in table T} and
opt(L; UT) for each T' C B; in table T;’pt. For every vertex v € B; such that for each u € L;
(v,u) & p, c(L;i, {v}) is the cost of having v after the vertices forgotten at position ¢ if this is
compatible with p and for each T' C B;, opt(L; UT) is the minimum cost of a linear extension
on L; UT. We have Ly |y U By, jy| = V. So, to find the solution, it is enough to inductively
construct these two tables. The induction basis is trivial: Ly = @ and |B;| = 1, so that
¢(L1,{v}) = 0 for every vertex v € B; in table Tf and opt(L; UT) = 0 for both T'= ) and
T = B in table T{P". The following two lemmas explain the induction step of the algorithm.

» Lemma 6. Letic€ [2,...,2-|V]|]. Given a table T | that lists the values of ¢(L;—1,{v})
for every v € B;_1, one can compute ¢(L;,{v}) for every v € B; in time w-log(k) in order
to build the table T} .

» Lemma 7. Leti € [2,...,2-|V|]. Given a table Tf that lists the values of ¢(L;, {v}) for
every v € B; such that for each u € L; (v,u) ¢ p and a table TY®; that lists the values of
opt(Li—1 UT) for every T C B;_1, one can compute in O(w-2% -log(k)) time the value of
opt(L; UT) for all T C B; in order to build the table T ™.

Proof. The cost can be arbitrarily large, therefore, the addition of two costs is done in time
O(log(k)). First, we compute ¢(T,{v'}) for v' € B; and for T' C B; \ {v'}, and store the
values in an auxiliary table 7%"*. This computation can be done in O(w -2% - log(k)) time.
Now there are two cases:
If B; forgets a vertex v, then L; = L;_1 U {v}; for each subset T C B;, opt(L;, UT) =
opt(L;_1 UT U {v}) and this value is in the table T/}, as T U {v} C B;_;.
If B; introduces a vertex v, then L; = L;_; and B; = B;_1 U{v}. Given a subset T of B;,
if v ¢ T, then opt(L; UT) is already in the table T ). Suppose v € T. For all u € L;,
there is no edge between u and v in G,, and as D is consistent with p, we have (u,v) € p.
So in any linear extension of p on L; U T, the maximum element is a maximal element
of T' (with respect to p). Then we have, by testing all possible maximum elements v’:

opt(L; UT) =  min (T){opt(Ll- UT\{v'}) +c(L; UT\ {v'},{v'})}

v’ €max,

= _min (T){Opt(Li UT\A{0'}) + e(Li, {v'}) + «(T\ {v'}, {o' D)}

v’ €max,

where max,(T) ={v e T |Vu € T, (v,u) ¢ p} is the set of maximal elements of T" with
respect to p. The second and third terms are in the tables T} and T®"*, respectively.
If ' = v, then the first term can be looked up in table T?}. By walking through all
T C B; with increasing cardinality (recall that always v € T'), we can inductively compute
opt(L; UT), as this provides the first term. As inductive basis, consider T' = {v}, in
which case opt(L; UT) = opt(L; U{v}) = opt(L;) + ¢(L;i, {v}). The first term is already
in the table T°}. The computation of T** can be done in time O(w -2" - log(k)).

This explains how to build the table T°P". <

Since Lo.jy| U By.y| =V, the dynamic programming algorithm can provide an optimal
solution and runs in time O(|V|]-w-2% - log(k)). The size of the cost function given as input
is |[V|? - log(k). Reading the cost function gives the second part of the running time. This
proves Theorem 1.
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3.2 Further Algorithmic Consequences

The relation between variants of FAST and CO range in both directions. One direction
(solving PCO with the help of FAST) was exploited in [25]. We are now explaining a reverse
reduction. The CONSTRAINED FAST problem [9, 57] is defined as follows: The arc set of a
given tournament graph is split into fixed arcs Agy and free arcs Agee. The task is to remove
at most k free arcs such that the resulting graph becomes acyclic. We know that every arc in
Afree that contradicts the transitivity of Agy, needs to be removed. Therefore, we assume that
Agx gives a transitive relation on the set of vertices and that it is acyclic, so that it defines a
partial order p on the vertex set V. By defining the following cost function, we can solve
CONSTRAINED FAST with any CO algorithm: For arcs (z,y) € Afree, we set ¢(z,y) = 0. For
arcs (z,y) such that (y,z) € Apee, we set ¢(z,y) = 1. By the tournament condition, for each
edge {z,y} of G, ¢(z,y) € {0,1} and ¢(y,z) € {0,1} are defined, with ¢(z,y) + ¢(y,z) = L.
As FAST is a well-known NP-complete problem, this also shows NP-completeness for CO
(even with costs 0,1 only) and similarly, we obtain NP-completeness for PCO, even with
costs from the set [2] = {1, 2}.

Completing an interval ordering is easier. Consider the following restriction of PCO:

Problem name: PoOSITIVE COMPLETION OF AN INTERVAL ORDERING (PCIO)
Given: An interval order t CV x V over a set V, a cost function ¢: V xV — N
satisfying Ve, y € V: ((x,y) ¢ 1A (y,z) ¢ t) = ¢(z,y) > 0, and an integer k € N.
Output: Is there a linear order 7 D ¢« with ¢(7\ ¢) < k7

This variation has two more restrictions compared to CO: the cost between two incom-
parable elements must not be zero and the partial order is an interval order. These two
restrictions allow us to get better bounds for our dynamic programming algorithm.

» Theorem 8. An instance (v, ¢, k) of PCIO is solvable in time O(k-2V2F-log(k)+|V [>-log(k)).

The following is an outline of our algorithm, called DP-PCIO.

1. Construct G,, if G, has more than k edges then stop with “NO”. This can be done in
time |V'|2. This is justified, because ¢(z,y) > 0 for each incomparable pair {z,y}.

2. Construct a nice path decomposition D consistent with ¢. If the width of D is more than
V/2E, then stop with “NO”, as a large clique was detected.

3. Compute opt(V) by a dynamic programming algorithm based on the path decomposi-
tion D. If the current optimum solution is bigger than k, then stop with “NO”. If the
computation is successful and opt(V) < k then answer “YES”. Otherwise answer “NO”.

We will prove several lemmas to show Theorem 8. To apply our dynamic programming
algorithm, we need consistency.

» Lemma 9. Given an interval order v, one can construct in linear time a path decomposition
of G, consistent with v of minimum width.

Let D = (By, ..., Byjy|) be the nice path decomposition consistent with + we got by applying
Lemma 3 on the path decomposition of Lemma 9. Clearly, each bag in D is a clique.

» Lemma 10. Assume that G, has at most k edges. Let H = [v/2k|+1 and, for2 < h < H,
let ¢, = |{i: |B;| = h}|. Then we have ¢, <k/(h—1)—h/2+1.
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Finally, we show how our considerations also help to improve the running time of a simple
branching algorithm. The algorithm works as follows: it picks an edge in the cocomparability
graph and considers orienting it both ways. As long as there are profitable edges that cause
at least a cost of two in each branch, we keep on branching. Costs can also be implicitly
caused, as we modify the partial order p and hence transitivity must be maintained. We can
use Theorem 8 when there are no more profitable edges because of the following lemma.

» Lemma 11. After ezhaustively branching at all profitable edges, G, is an interval graph.

This is the key to the following improvement on the branching algorithm described in [23].
Notice that in practice, branching algorithms tend to be faster at least for small parameter
values, due to the smaller constants in the basis of the (sub-)exponential functions that
upper-bound the running times.

» Theorem 12. PCO can be solved in time O*(ﬂk) by a branching algorithm.

4  One-Sided Crossing Minimization (OSCM)

Given a bipartite graph G with bipartition (Vi, V2), a two-layer drawing of G is a drawing
such that vertices of V; and V5 are placed on two parallel lines and edges are represented as
straight lines between the vertices. A two-layer drawing can be specified by two linear orders
71 of V1 and 1 of V5. A crossing in a two-layer drawing is a pair of edges that intersect
each other in a point that is not a vertex. The number of crossings is defined by the order
of V; and V5 on the lines. The ONE-SIDED CROSSING MINIMIZATION problem consists in
placing vertices of one part V5 of the bipartite graph, given an ordering of the other part V7,
that minimizes the number of crossings. This problem is a key sub-problem for drawing
hierarchical graphs [3, 4, 32, 45] or producing row-based VLSI layouts [50, 52].

Problem name: ONE-SIDED CROSSING MINIMIZATION (OSCM)

Given: A bipartite graph G = (V, V4, E), a linear order 71 on V; and k € N
Output: Is there a linear order 75 on V5 such that, in the two-layer drawing
specified by (71, 72), at most k edge crossings incur?

The problem is known to be NP-complete [21] even in sparse graphs [44] and FPT in the
number of edge crossings k [17, 18, 25], including sub-exponential algorithms. The two-sided
variant of the problem (where the permutation of both sides is variable) is also FPT in the
number of crossings [37]. OSCM is a cornerstone of algorithms dealing with the so-called
Sugiyama approach to hierarchical graph drawing, see [32, 53].

Now, we show that OSCM can be reduced into PCIO, starting with a simple remark.

» Remark 13. Isolated vertices in V5 can be placed anywhere in an optimal ordering of V5.
From here, we assume that V2 does not contain any isolated vertices. Similar to [23, 25, 38],

we can model OSCM instances as PCIO instances.

» Lemma 14. Given an instance (G, 71,k) of OSCM, one can construct in polynomial time
an equivalent instance (1, ¢, k) of PCIO.

As PCIO has not been formally studied in the literature, let us draw an important

consequence from the previous lemma (also see the discussion in the beginning of Section
3.2).

» Corollary 15. PosiTivE COMPLETION OF AN INTERVAL ORDERING is NP-complete, even
when restricted to instances (, ¢, k) where the arc weights are within the set {1,2,...,16}.
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» Remark 16. We can use Theorem 8 to immediately deduce an algorithm for OSCM
matching the running time O*(2V2¥) of the best published algorithm for OSCM [38]. We
could also use the PCO-kernelization as a kernelization procedure for OSCM.

» Remark 17. Cakiroglu et al. [11] studied the variation where edges (if existing) have positive
weights, and the cost of an edge crossing is obtained by the product of the weights of the
crossing edges. This modification (with applications in automatic graph drawing) can also be
modeled by PCIO, so that we inherit an (’)*(2@) algorithm for the standard parameter k.

5 The Kemeny Rank Aggregation Problem

Preference lists are extensively used in social science surveys and voting systems to capture
information about choice. Kemeny [36] discussed the problem to combine several preference
lists into one, called its aggregation. This approach aims at minimizing the total disagreement
(formalized below) between the several input rankings and their aggregation. The idea itself
has not only applications in (the theory of) elections in the context of social sciences, say, on
a committee, but has also been suggested as a means of designing meta-search engines [19].
It has been also shown by Young and Levenglick [56] that the aggregation method proposed
by Kemeny is the only one satisfying a number of natural requirements on such aggregations.

More formally, in KEMENY RANK AGGREGATION we are given a set IT of rankings (also
called votes) over a set of alternatives C' (also called candidates), and a positive integer k,
and are asked for a ranking 7 of C, such that the sum of the Kendall-Tau distances (or,

KT-distances for short) of 7 from all the votes, called its Kemeny score, is at most k.

The ranking 7 that gives the smallest Kemeny score is called a Kemeny consensus. The
KT-distance between two rankings m; and 7y is the number of pairs of candidates that
are ordered differently in the two rankings and is denoted by KT-dist(7y,72). Hence, if
71, m ¢ [|C]] = C, KT-dist(m,m2) = [{(¢,d) € C x C| ¢ <z, ¢ AN’ <x, c}|. Observe that
the Kendall-Tau distance can be seen as the “bubble sort” distance.

Problem name: KEMENY RANK AGGREGATION (KRA)

Given: A list of votes Il over a set of candidates C, a non-negative integer k
Output: Is there a ranking 7 on C such that the sum of the KT-distances of 7
from all the votes is at most k.

Hence, given rankings my,...,m, of C and a non-negative integer k, the question is
if there exists a ranking 7 : [|C|] — C such that Y.." KT-dist(r,m;) < k. The problem
KEMENY RANK AGGREGATION is known to be NP-complete [2], even if only four votes are

input [19].> Simjour [51] obtained an algorithm for the problem that runs in time O*(1.403%).

There are also sub-exponential algorithms for KEMENY RANK AGGREGATION under this
parameterization: Karpinski and Schudy [35] obtained an algorithm for KEMENY RANK
AGGREGATION that runs in O*(QO(‘/E)) time, while the algorithm of Fernau et al. [24, 25],
based on a different methodology, runs in O* (ko(‘/g)) time. Both algorithms hide some

constant factor in the O-notation in the exponent that is not that clear from the expositions.

Our considerations are also valid for weighted Kemeny score, a modification suggested in [5]
that assigns positive weights to the voters. We can add some comment on conditional lower
bounds of this problem by bringing together facts from different parts of the literature.

3 The proof of this fact is not contained in the conference paper [19] but only appears in Appendix B of
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/rank_www10.html.
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» Theorem 18. KRA on instances with only m = 4 votes on some candidate set C and
some integer k bounding the sum of the Kendall-Tau distances to a solution cannot be solved

neither in time O* (20(‘C|)) nor in time O* (20(\/@), unless ETH fails.

5.1 Reduction from KRA to PCO

Now we will show that KRA can be encoded into PCO. Let (II, C) be an instance of KEMENY
RANK AGGREGATION with m votes IT = (mq, . .., 7, ) over n candidates C. From this instance,
we construct an equivalent instance of the PCO problem p C V x V, ¢ with base set V = C.
For every pair of candidates ¢; and ca, we define the cost of (c1,¢2), ¢(c1,cz), as the number
of votes that do not order ¢; before co. More formally, ¢(c1,c2) = |{i € [m] | ca <x, c1}|.

» Lemma 19. Given two candidates ¢c1 and ca, if for every vote m; € I, we have ¢1 <g, ca
then for every Kemeny consensus w, ¢ <g Ca.

Using different terminology, a proof of this lemma can be found in [43, Théoréme 3]. Now,
we define the partial order p as follows: (c1,¢2) € p if and only if ¢(c1,c2) = 0. Hence,
<p =%, <r, is the unanimity order [12]. By Lemma 19, a vote 7, which is a linear order
of the candidates, is a Kemeny consensus iff 7 is a linear extension of p of minimum cost
with Kemeny score*

m m n n n

n
ZKlebtﬂm ZZZ(/‘] < Ck A Ck <g ] :ZZC Ck, ¢j)]er <x ¢4 (1)

i=1 1=1 j=1 k=1 j=1k=1

is equal to the cost of the linear extension given by 7 according to its definition.
These considerations prove that we can translate our algorithmic results for PCO to KRA.

» Remark 20. Our reduction works even if votes are reflexive and antisymmetric relations
instead of linear orders. In this case, the cost between ¢; and cy is defined as follows:

c(cr,c2) = {i € [m] [ er #£r; ca}l-

5.2 Pathwidth in Kemeny Rank Aggregation

Now we will discuss the meaning of the pathwidth measure from the PCO problem applied
to KRA. For KRA, several measures have been studied in the context of parameterized
complexity, Betzler et al. [5] introduced the notion of mazimum range of candidate positions.
For an election (II, C), the range r(c) of a candidate c is defined as r(c) = max; je[m |7r_1 (c)—
7rj_1(c)| + 1. If (c) = {i € [|C]]: Im € 1 : w(i) = ¢} denotes the set of positions candidate ¢
received in election (IT, C), then r(¢) = maxII(¢) — minII(c) 4+ 1. The mazimum range rmax
of an election is given by rmax = max.ecc r(c). Betzler et al. [5] proved that KRA can be
solved in time O(32"=x . (r2 - |C| + rmax - |C|?1og |C| - m) +m? - |C|log |C]) = O* (257max),

max

» Lemma 21. Given an election (II,C), let w be the consistent pathwidth associated to the
election and rmax be the maximum range of the election. We have w < 2 - rpax — 2.

Proof. Let p be the partial order defined by the election. To prove this statement, we will
construct an interval order ¢ such that ¢ C p, and w(¢) < 2 - rpax. To each candidate ¢ € C,
we associate the interval I, = [minII(c) — 1, maxII(c)). (We subtract one from the left
border to avoid empty intervals.) We let ¢ be the interval order associated with the interval

4 Recall the bracket notation: if p is a logical proposition, then [p] yields 1 if p is true and else, [p] yields 0.
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representation {I. | ¢ € C'}. By Lemma 19, we have that p is an extension of the interval
order ¢. Each interval I. has length at most r,.x. Thus, there are at most 27, — 2 intervals
that intersect at one point in the interval representation. Hence, w(t) < 2 - rpax — 2. |

Hence, Theorem 1 yields the following noticeable improvement to the mentioned result of [5]:

» Corollary 22. KRA can be solved in time O(|C| - Fmax - 227 +m, - |C]?) = O*(22rmax).

6 Grouping by Swapping (GbS)

This problem asks whether a given string can be transformed by at most k interchanges of
neighboring letters into a block format where all occurrences of each letter are adjacent to
form one single block each. It is on the famous list of NP-complete problems in [28]. Further
algorithmic aspects are discussed in [15, 55]. We show that GBS can be reduced to OSCM
in a parameter-preserving way and hence inherits FPT-results shown above. We first discuss
the problem GBS itself and then continue with the reductions.

Problem name: GROUPING BY SWAPPING (GBS)

Given: A finite alphabet 3, a string w € ¥*, and k € N.

Output: Is there a sequence of at most & adjacent swaps such that w is transformed
into a string w’ where all occurrences of each symbol are in single blocks?

Let us formalize this problem a bit more. If w,w’ € ¥* both have length n, we call v’
a permutation of w if there exists a bijection 7 : [n] — [n] such that, for any ¢ € [n],
w'[i] = w[w(i)]. Slightly abusing notation, we will also write w’ = 7(w). Special bijections
are adjacent swaps o; : [n] — [n] (with ¢ € [n—1]) that act as the identity with two exceptions:
0i(i) =i+ 1 and 0;(i + 1) = i. Every bijection 7 : [n] — [n] can be written as a composition
of swaps (property (*)). Hence, given a permutation w’ of w, we can ask to compute the
swap distance, written sd(w,w’), which is the smallest number & of swaps o;,, 04y, ..., 0i,
such that w’ = (04, 004, 0 -+~ 00y, )(w). Observe that sd can be viewed, for each mapping
g : X — N, as a metric on the space of all words w € ¥* with g(a) occurrences of a for each
letter a € X. In particular, sd(w,w’) = sd(w’,w) for all permutations w’ of w. Notice that
the swap distance can be computed in quadratic time by dynamic programming, as shown
in [42] (property (4)).

This picture changes if we add one more degree of freedom. Let us call w’ € ¥* to be

in block format if there is a bijection f : [|X|] — ¥ such that w’ € f(1)"f(2)"--- f(|Z])".

Alternatively, we can view f as defining a linear order <; on ¥, and then the block format
of w corresponding to f is the <y-lexicographic smallest permutation of w. GBS now asks,
given w € ¥* and k > 0, if there is some permutation w’ of w that is in block format

and has swap distance at most k from w. As claimed in [28], this variant is NP-complete.

Unfortunately, the proof referenced by [28] is hidden in a private communication. We remedy
this below by proving that GBS is NP-complete even for strings w where each letter occurs
exactly four times. Let us start with two rather straightforward observations.

» Lemma 23. Any string w can be grouped into blocks using at most |w|> many swaps.

In fact, any permutation of w can be obtained by using at most |w|? many swaps, as
can be seen by bubble-sort. This reasoning also shows (*), a well as (+), with a little bit of
thinking. This can be used to obtain our first (easy) FPT-result, to be improved on later.

» Lemma 24. GBS on strings w € X" parameterized by |X| can be solved in time O*(|X|!).

9:11
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We are now going to show that computing the swap distance can be done by considering the
distance for pairs of letters, summing up the corresponding results. Notice that the formula
in Lemma 25 resembles earlier derived summation formulae, as the defining equation for
PCO. To make this more precise, let ¥’ C ¥ and consider the projection py s : ¥ — X/ that
maps a — a for a € ¥ and a + ¢, the empty word, if a ¢ ¥/, as a morphism ¥* — (X/)".
» Lemma 25. Let w,w’ € ¥* such that w' is a permutation of w. Let w’ be in block format
following the linear order T on 3. sd(w,w’) = Ea,b€E7a<7b 5d(ps {a.p} (W), Ps {a,p} (W)).
Moreover, ps, (.03 (w') = al®lapl®l if g < b.

6.1 Discussing NP-completeness

In this subsection, we will prove NP-completeness of GBS even for quite restricted instances
by making use of a somewhat similar result for OSCM, based on [44].

» Theorem 26. GBS is NP-complete, even if each letter has exactly 4 occurrences.

Proof. Membership in NP is clear. In order to show NP-hardness, we give a reduction
from OSCM which is also NP-complete if each node in V5 has degree four and each vertex
in V7 has degree one, i.e., if the graph is a forest of 4-stars [44], with all star’s centers
in V5. Let G = (V1, V4, E) be an instance of OSCM with order 7 on V; and integer k
such that all vertices in V; are of degree one and all vertices in V5 are of degree four. We
set ¥ = Vo = {v1,v2,...,v,}. Clearly, |[V;] = 4n. We construct w € £4" (starting from
the empty word) by going through the vertices in V4, following the order 71. If the current
vertex is adjacent to v;, we concatenate v; to w. As the vertices in V; are of degree one,
this assignment is unambiguous. Following [21], for vertices v;,v; € Va, let c,,0, be the
number of crossings between edges incident to v; and edges incident to v; when v; is placed
left of v;. Lemma 3 in [21] states, referring to [20], that for a linear order 7 on V3, the
number of crossings cross(G, 1, 72) of the edges between V; in order 7 and V5 in order 7
is cross(G, Ty, 12) = Zvi7vjev27vi<72vj
Cuv; 18 equal to sd(ps (v, 0, } (W); PS {v;,0,} (Wry)), Where wy, is the To-lexicographic smallest
permutation of w. Combining this observation with Lemma 25, we obtain that for every

Cy0;- Clearly, for v;,v; € V2 the number of crossings

linear order 7o, sd(w,w,,) = cross(G, Ty, T2). <

In the following subsection, we will show that, in a sense, the reduction presented in our
NP-hardness result for GBS can be reversed. This also shows the following:

» Remark 27. GBS is polynomial-time solvable when each letter occurs at most twice.

This also leaves the following case as an open question: Can GBS instances be solved
in polynomial time if each letter occurs at most thrice? Notice that it is also open whether
subcubic OSCM graph instances can be solved in polynomial time. Furthermore, within
KRA, it is open if instances with three voters can be solved in polynomial time. Also, Cor. 15
leaves some room for improvement.

6.2 Reduction from GbS to OSCM

With the same idea as in the proof of Theorem 26, we can also reduce GBS to OSCM by
representing the string w as the ordered vertex set Vi and ¥ as the vertex set V5. More
precisely, let n be the length of w and interpret w as a mapping from [n] into ¥. Moreover,
set V4 = [n] with the usual linear ordering <, = < on [n]. Let V5 = ¥ and connect a € V5
to ¢ € [n] iff w(i) = a. This defines the bipartite graph G = (V1, Vs, E) with linear ordering
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71 on Vi. Now, the GBS instance (w,k) is a YES-instance if and only if the constructed
OSCM instance (G, 11, k) is a YES-instance. As OSCM is solvable in polynomial time if the
vertices in V5 have degree at most two, this implies that GBS is solvable in polynomial time
if each letter has at most two appearances, see Remark 27 and the following comments.

Together with the reduction proving Theorem 26, we see that GBS can be viewed as
exactly the special case of OSCM where all vertices of V; are of degree one, so that the
instance becomes a forest of stars with centers in V5. We make the algorithmic consequences
of this connection explicit, each time giving references to the literature on OSCM.

» Corollary 28. GBS, parameterized by k, can be solved (in polynomial space) in time
O*(1.4656%) by [17] or (in exponential space) in time O*(2V2*) by [38] or Remark 16.

Fernau et al. [25] and Kobayashi and Tamaki [38] also obtained OSCM lower bound
results, based on [44], assuming ETH. By the proof of Theorem 26, we can strengthen them:

» Corollary 29. GBS on strings of length n over alphabet X, parameterized by the number k
of swaps, cannot be solved neither in time O*(2°(") nor in time O*(2°U=D) nor in time
O*(QO(‘/E)), unless ETH fails, even if each letter has exactly 4 occurrences.

6.3 Pathwidth in Grouping by Swapping

The concept of scope coincidence degree (SCD for short) was introduced in [49] for patterns,
which are strings over two disjoint alphabets, where only the alphabet of variables was used to
measure the SCD of patterns. We adapt it in the following to strings over a single alphabet.

Given a string w € ¥*, and a letter a € X, then the scope of a, denoted Scope(a) is the set of
positions in {1, ..., |w|} between the minimum position and the maximum position in which a
occurs. For each position ¢, we let the incidence set of i to be Inc(i) = {a € ¥ : i € Scope(a)}.
Now the scope coincidence degree is the number of overlapping scopes for all letters. In other
words, we have that SCD(w) = max; |Inc(i)|.

Our reduction from GBS to OSCM first turns w € ¥* into a bipartite graph G =
(V1, Vo, E) with V} = [|w|] and V2 = . Lemmas 14 then produce an equivalent PCIO-
instance with an associated partial order p,, on V5 that is an interval order. For two
letters a,b € X, (a,b) € p, means that the last occurrence of a in w comes before the first
occurrence of b in w. Obviously, SCD(w) is the maximum size of an anti-chain in p,,. Hence,
the previously mentioned results of Habib and Mohring imply, together with Lemma 5:

» Lemma 30. SCD(w) = pw(G,,) +1 = cpw(G,,, pw) + 1.

Theorem 1 has therefore the following consequences for the string parameter SCD. To
the best of our knowledge, this is the first algorithmic exploit of this string parameter.

» Corollary 31. GBS can be solved in O*(SCD(w)25¢Pw)),

As the scope coincidence degree of a word w € ¥* is upper-bounded by |X|, we also
obtain the following result for the parameter |X| that improves on Lemma 24.

» Corollary 32. GBS can be solved in O*(|S[2/>).

There is another graph-theoretic interpretation of the scope coincidence degree presented
by Reidenbach and Schmid [49] for patterns. It relates to our setting as follows. To a string
w € X", we associate its Gaifman graph T, with vertex set [n] and edges (i,7 + 1) for
i € [n— 1], as well as the edge sets E, = {(min Scope(a), j) | j € Scope(a)} (disregarding
loops) for each a € 3. According to [49, Lemma 15], pw(T',,) < SCD(w) + 1. It might be
interesting to further link the pathwidths of I'y, and of G,,. Do they differ by exactly two?
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Inspired by the considerations on the range of a candidate in KRA, the maximum scope
Smax = MaXgcy |Scope(a)| could be another parameterization for GBS. Similar to Lemma 21,
one can show that GBS, parameterized by spax, is in FPT. It would also be meaningful to
interpret this parameter in the context of OSCM for graph visualization reasons.

7 Conclusion

Finally, we explain some further connections and future lines of research. Recall that we did
list several concrete open problems throughout the paper that we are not going to repeat
here, but they are clearly also natural continuations of the present study.

Different types of partial orderings. It would be interesting to have a closer look to different
types of partial orderings in the context of PCO. For instance, the papers of Brandenburg
and Gleifler [8] or Hudry [34] list quite a lot of different types of partial orders (in the
context of rank aggregation problems). We can also view this research as a starting point
to systematically look at decision problems related to partial orders from the viewpoint of
parameterized complexity. Then, [7] might be a good starting point.

Related problems, popular with Operations Research. In the Operations Research Com-
munity, there has also been lots of studies of the linear ordering polytope. Regarding the
problems studied in this paper, [10] might be a good starting point. Likewise, the so-called
OPTIMAL LINEAR EXTENSION PROBLEM has been considered in the literature [41]. However,
only the costs of the immediate neighborhood in the target linear order are considered,
similar to the famous TRAVELLING SALESPERSON PROBLEM,® while we sum up all costs
associated to pairs (z,y) with < y in the final linear order <.

Putting additional constraints: a theme arising in Graph Drawing and in Order Theory.
Forster [27] argues that the CONSTRAINED OSCM problem, where a partial order on V5
is given in addition, that should be extended to a linear ordering (as before), has quite
some applications. This can be clearly modeled as an instance of CO, but some further
research is needed to conclude the same type of results as we did for OSCM with the interval
order approach. This might relate to earlier (systematic) research on the realizability of
constraints on interval orders, see [47, 48]. In particular the distance constraints might be
indeed interesting for graph drawing purposes, as the neighbor vertices should not stretch
out too much.

Remarks on approximation. For the minimization problem related to PCO, a PTAS is
known according to [25]. Our reasoning immediately implies the existence of PTAS for
OSCM, KRA and GBS. In view of the tedious factor-1.4664 approximation for OSCM
presented in [46], this shows again the strength of looking at these specific problems from a
wider perspective.

Comments on approximation and heuristics. We suggest that the tight connections that
we found between GBS and OSCM should also be interesting in the development and analysis
of (heuristic) algorithms for both problems. In this context, it is interesting to observe that

5 The difference between cycles (tours) and paths do not matter for the involved algorithms that much.
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Wong and Reingold [55] proposed a median heuristic for computing a solution to a given
GBS instance. They proved that on random instances, this heuristic is at most 10% off
from the optimum (in expectation). Moreover, the larger random instances are picked, the
smaller is the relative error of the median heuristic (in expectation). Incidentally, the same

(median) heuristic was suggested by Eades and Wormalds [21] some years later for OSCM.

They proved that this heuristic is a factor-3 approximation, but did not go into a randomized

analysis. Our translation of GBS into OSCM actually proves the following which is the last

result of this paper.

» Corollary 33. The median heuristic gives a factor-8 approximation for GBS.
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—— Abstract

In this paper we consider two classic cut-problems, GLOBAL MIN-CUT and MIN k-CuT, via the
lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive

integer f, our objective is to compute an upper bound on the size of the sparsest subgraph H of
G that preserves edge connectivity of G (denoted by A(G)) in the case of GLOBAL MIN-CuT, and
A(G, k) (denotes the minimum number of edges whose removal would partition the graph into at
least k connected components) in the case of MIN k-CuUT, upon failure of any f edges of G. The
subgraph H corresponding to GLOBAL MIN-CUT and MIN k-Cur is called f-FTCS and f-FT-k-CS,
respectively. We obtain the following results about the sizes of f-FTCS and f-FT-k-CS.

There exists an f-FTCS with (n — 1)(f + A(G)) edges. We complement this upper bound with

a matching lower bound, by constructing an infinite family of graphs where any f-FTCS must

have at least (”_MG)_I)Q(A(GHJI_U +(n—-XG)—-1)+ w edges.

There exists an f-FT-k-CS with min{(2f + A(G, k) — (k — 1))(n — 1), (f + X\(G, k))(n — k) + £}

edges. We complement this upper bound with a lower bound, by constructing an infinite family

of graphs where any f-FT-k-CS must have at least ("_)‘(G’k)_1)(§(G’k)+f_k+l)) +n—XG,k)+
ko 3 4 QUGK) —k+8) A(G.k) —k+2)
2

edges.

Our upper bounds exploit the structural properties of k-connectivity certificates. On the other
hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in
the family any f-FTCS (or f-FT-k-CS) must contain all its edges. We also add that our upper
bounds are constructive. That is, there exist polynomial time algorithms that construct H with the
aforementioned number of edges.
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1 Introduction

There is a common proverb in English — m it is better to be safe than sorry! Probably, it
has never been more true than the Covid-19-times we are living in. Closed in our homes,
computers are probably our only way of communicating with the world. Our machines are
part of a larger network — it is is just a node in the network. Thus, to get past this moment
in time we need our networks to be more reliable, than ever before. Unfortunately, most of
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the real life networks are prone to failures. A failure of a link (or a small number of links)
in the network may lead to a breakdown in communication. This motivates us to build
networks that are resilient to failures, leading to the field of fault tolerant network design.

Networks are best modelled as graphs. For example, we could imagine we have a
communication network, where the nodes (or vertices) are computers, routers, or cell-towers
and there is an edge between them if they can communicate. One could also imagine a
transportation network, where the edges correspond to segment of a road and the junctions
between the roads are vertices. Once we have abstracted these networks as graphs, there
are a number of properties we could try to ask about graphs that are meaningful for the
particular network they represent. As stated earlier, real life networks are prone to failures.
That is, edges (or vertices) may change their status from active to failed, and vice versa.
These failures may occur anytime; however it is expected that they are small in numbers.
Further, we can assume that failures are not permanent as they are repaired simultaneously.
The fact that we only have a small number of failures is captured by associating an integer—a
fault parameter f with the network. That is, we assume that at any point of time we only
have at most f-edges (or vertices) that are failed. Indeed, f is much smaller than the number
of vertices in the graph. This motivates the research on designing fault tolerant structures
for various graph problems in terms of fault parameter f and the input size n.

We now formally define the model of fault tolerant network design, with respect to a
property II, we would be interested in. A property of graphs is a function o that assigns to
each graph a value in {true, false}. Given a graph G, a fault parameter f, we want to find a
subgraph H of G, such that for any set F' C E(G)(V(QG)) of size f, we have the following:
o(G — F) is true if and only if o(H — F) is true. In general, the solution of a fault tolerant
network design is measured by the size of the subgraph H. That is, our objective is to find
H with as few edges as possible. Fault tolerant subgraphs have been developed for various
problems like reachability [3,4, 8], shortest path [6,20,37-39] and spanners [5,7,9,12,36].
A fault tolerant subgraph for single source reachability in directed graphs was shown by
Baswana et al. [4] to contain ©(2/n) edges. Given a graph G, a source s, and an integer f, a
subgraph H is an («, 8)-single source fault tolerant subgraph, if for every vertex v € V(G),
for every F' C E(G) of size at most f, dist(s,v, H — F) < a-dist(s,v,G — F) + 8. Parter
and Peleg [39] gave an (3(f + 1), (f + 1) logn)-single source fault tolerant subgraph with
with O(fn) edges. For spanners with a stretch k, Dinitz et al. [12] gave an f-fault tolerant
k-spanner with O( f2n1+ki+1) edges. Recently, Chakraborty and Choudhary [8] showed an
O(n + min | P|y/n,n+/|P|) bound on a subgraph, that is an 1-fault tolerant reachability
preserver for a given vertex-pair set P C V(G) x V(G).

Our main objective of this article is to extend this study to two classic cut-problems,
GLOBAL MIN-CUT and MIN k-CuT. Arguably, GLOBAL MIN-CUT and MIN k-CUT are
one of the two most well-studied problems in the field of graph algorithms. In the MIN
k-CuT problem, input is an undirected graph G and an integer k, and the task is to partition
the vertex set into k non-empty sets, say P, such that the total number of the edges with
endpoints in different parts is minimized. We call such a partition as min k-cut, or simply a
k-cut. For k = 2, rather that saying 2-cut, we say min-cut. Indeed, for k = 2, this is the
classic GLOBAL MIN-CUT problem, which can be solved in polynomial time. In fact, for every
fixed k, the problem is known to be polynomial time solvable [18]. However, when k is part
of the input, the problem is NP-complete [18]. Both these problems have been extensively
studied in the last 30 years, and the running time of algorithms for these two problems have
been improved over the years [10, 15,19, 22,24-28, 30, 32, 35,40, 41]. In particular, after a
series of improvement, the fastest known algorithm for GLOBAL MIN-CUT in unweighted
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graphs is given by Ghaffari et al. [17] that runs in time O(mlogn). On the other hand, for
edge-weighted graphs the fastest known algorithm for GLOBAL MIN-CUT is independently
given by Gawrychowski et al [16] and Mukhopadhyay and Nanongkai [34] and (almost) runs
in time O(mlog®n). Both of these algorithms are randomized. The best known deterministic
algorithm for the problem on unweighted graph is given by Henzinger et al. [23] and runs in
time O(mlog® n(loglogn)?).

The history of MIN k-CUT problem is also extremely rich. The direction of polynomial
time approximation algorithms is essentially settled, with factor 2(1 — %) approximation
algorithms and matching lower bounds. Recently, Gupta et al. [19] showed that for every
fixed k > 2, the Karger-Stein algorithm [29] outputs any fixed k-cut with probability at
least O(n*), where O(-) hides a 20Un™m)* factor. This immediately gives an extremal
bound of @(nk), on the number of minimum k-cuts in an n-vertex graph and an algorithm
for MIN k-CuUT in similar running time. Both the extremal bound and the running time
of the algorithm are essentially tight (under reasonable assumptions). Indeed the extremal
bound matches known lower bounds up to @(1) factors, while any further improvement to
the exact algorithm would imply an improved algorithm for MAX-WEIGHT k-CLIQUE [1,2],
which has been conjectured not to exist. One can also obtain f(k)n°*) lower bound on
the running time [11,13] under the Exponential Time Hypothesis (ETH). In the world of
FPT-approximation, MIN k-CuUT is known to admit (1 + €) approximation algorithm running
in time (%)O(k)no(l) (31].

1.1 Our Results and Methods

In this paper we initiate a new research direction to the studies of GLOBAL MIN-CUT and
MiN k-CuT. In particular we do the following.

We focus on GLOBAL MIN-CUT and MIN k-CUT, via the lens of fault tolerant network
design, and construct asymptotically optimal fault tolerant subgraphs for these two
problems.

Given a graph G, let A(G) and A(G,k) denote the size of min-cut and k-cut of G,
respectively. We formally define the objects we consider in the paper.

» Definition 1.1 (f-FTCS (f-FT-k-CS)). An f-FTCS (f-FT-k-CS) is a subgraph H of G
such that for any set of edges F' C E(G) of cardinality at most f, N(G — F) = \(H — F)
(MG = F,k) = XH — F,k)). For a graph G, we use ¥(G, k) to denote the minimum number
of edges in a f-FT-k-CS of G. That is,

V(G k) = |E(H)|

min
H is an f-FT-k-CS of G

When k = 2, this denotes the minimum number of edges in a f-FTCS of G. In this case we
simply use U(QG), rather than (G, 2).

Let F be a family of graphs, then for all n € N, we define the following:

F = v(G
TCs(F,n, f) cer (
Fr-k-cs(F,n, f) = max U (G, k)

GeF,|V(G)|=n

When F is the family of all graphs, then we simply use Frcs(n, f) and Fr-k-cs(n, f).
Our goal is to give asymptotic upper bounds on Frcs(n, f) and Fr-k-cs(n, f). Since any
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graph has at most (%) edges, we have that FTcs(n, f) (or FT-k-Cs(n, f)) is at most O(n?).
Let G be a clique on n vertices. First, note that A(G) = n — 1. Next observe that any
f-FTCS, H of G, even for f =1, must contain all the edges of the clique. Indeed, if an edge
(u,v) € E(Q) is not present in H, then the adversary may delete an edge adjacent to u or v
in the clique, that is not (u,v). In this case, A(G — F) = n — 2, whereas A\(H — F) <n — 3.
This simple construction shows that FTcs(n, 1) is at least (n?). This bound tells us that
for these problems we can not improve upon the trivial upper bounds.

Our example with family of cliques seems to suggest that we have reached the end of the
road. However, on the second look we observe that for a clique even A(G) = Q(n). Thus, we
can also express our lower bound as A(G) - n. This motivates us to look for a fine-grained
definition of Frcs(n, f) and FT-k-cs(n, f), that not only takes into account n and f, but
also some parameter that captures the edge-connectivity (or the value of k-cut) of the input
graph. In particular, we can come up with the following new definitions. Let F be a family
of graphs, then for all n,¢ € N, we define the following:

max U(QG)
GEF,|V(G)|=n,\G)=¢

max U (G, k)
GEF|V(Q)| =\ (G k)=t

Frcs(F,n, ¢, f) =
Fr-k-cs(F,n, ¢, f)

With respect to our new definition, when F is a family of cliques, we have that
Frcs(F,n, ¢, 1) is at most O(¢n). Thus, a natural question arises: Can we derive sim-
ilar upper bound even when F denotes the family of all graphs? Indeed, we provide a
matching upper and lower bound on these quantities in this paper. As before, when F is
the family of all graphs. Then, we simply use FTcs(n, ¢, f) and F1-k-cs(n, ¢, f). Our first
result is the following.

» Theorem 1.2. Let n, ¢ and f be three positive integers. Then, FTcs(n,t, f) is upper
bounded by (f +€)(n —1).

The proof of Theorem 1.2 is inspired from the concept of k-connectivity certificates used in
the literature [14,35]. For a k-edge connected graph G = (V, E), a subset of edges E' C E
is called a k-connectivity certificate of the graph G, if the subgraph G’ = (V, E’) is k-edge
connected. For a k-edge connected graph on n vertices, there always exists a k—connectivity
certificate with at most k(n — 1) edges [14]. For our proof, we modify a known construction
of a k-connectivity certificate to also handle edge failures.

Our second result complements the above upper bound, by showing that this bound is
tight upto constant factors. Specifically, we show the following.

» Theorem 1.3. There exists an infinite family of triplets (n, ¢, f) such that

(n7671)2(€+f71) Hn*gile(e;l)'

Frcs(n,/, f) >

To prove Theorem 1.3, we construct an infinite family of graphs (G), such that for any G € G

we have that any f-FTCS of G must contain all its edges. In particular, for any positive
n—~—1

+f
(n—~0— 1)(“];7_1) +(n—f-1)+ @ edges with A\(G) = ¢ (note that £ < n — 1) such that
any f-FTCS of G must contain all the edges of G. The construction of the family G, and
the analysis that for any graph G € G, any f-FTCS of G must contain all its edges are quite

integers n, ¢, f, such that is an integer, we construct a graph G on n vertices and

technical.
Next we generalize our results on GLOBAL MIN-CUT to MIN k-CUT and give the following
two results about Ft-k-cs(n, ¢, f).
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» Theorem 1.4. Let n, ¢ and f be three positive integers. Then, FT-k-cs(n, ¥, f) is upper
bounded by min{(2f +¢— (k—1))(n—1),(f +O)(n — k) + (}.

Proof of Theorem 1.4 is quite involved and requires understanding the intricate relationship
between edge-connectivity certificates and the MIN k-CuT problem. This is one of the main

technical results. In our final result, we complement Theorem 1.4 with a tight lower bound.

» Theorem 1.5. There exists an infinite family of triplets (n, ¢, f) such that

(n—C—1)(C+f—k+1)
2

SN Gt ) et )
5 .

Fr-k-cs(n, £, f) >

While the construction is somewhat similar in spirit to the construction of the lower bound
for the construction of the family of graphs for GLOBAL MIN-CuUT, the proof of correctness
is even more involved.

Tightness of our Upper and Lower Bounds. Notwithstanding the fact that the leading
terms in our upper and lower bounds appear close, there are some negative quantities in
the leading terms, and in some ranges, the other terms in the bounds dominate. Still, our
bounds for GLOBAL MIN-CUT are asymptotically optimal. For example in the lower bound
for GLOBAL MIN-CUT (Theorem 1.3), when n— ¢ becomes o(n), £ is ©(n) and in this case the
@ bound dominates and we get a lower bound of Q(n?) which is asymptotially optimal
given our upper bound and the range of £. When ¢ is o(n), our lower bound is Q((f 4 £)n)
which matches asymptotically with the upper bound.

For MIN k-CUT however, there are some gaps. For example, if / = n—1 and kK = n—logn,
the upper bound is O((f + n)logn) but the lower bound is 2(n). Such a gap exists in some
ranges of f and k when n — ¢ and ¢ — k are both o(n). However, when n — ¢ or £ — k is O(n),
our upper and lower bounds are a constant factor away from each other.

Algorithmic Considerations. The proof of Theorem 1.2 is constructive. That is, given a
graph G and an integer f, in polynomial time we can construct an f-FTCS of G with at
most (f + A(G))(n — 1) edges. For this algorithm we just need the value of A\(G)), which
can be computed in O(mlog® n(loglogn)?) time [23]. However, the proof of Theorem 1.4
is “almost” constructive. That is, the proof can be made constructive, if for a graph G we
can compute the value of A(G, k) in polynomial time. Indeed, for a constant value of k, we
could use the polynomial time algorithm running in time n®®) [10,19,41]. However, the

running time of this algorithm grows with k, and hence becomes prohibitive quite soon.

Thus, as an alternative we could use an upper bound on A\(G, k), provided by the known
polynomial time factor 2 approximation algorithm [21,42]. This leads to an upper bound of
min{(2f + 2\(G, k) — (k= 1))(n — 1), (f + 2A\(G, k))(n — k) + 2A\(G, k)} on the constructed
f-FT-k-CS, which is slightly worse than the upper bound provided by Theorem 1.4.

2 Preliminaries

Given an integer ¢, we use [g] to denote {1,...,q}. Further, for two integers, ¢ < g2, we
use [q1, g2] to denote {q1,...,q2}. For a graph G = (V, E), we also use V(G) and E(G) to
denote the set of vertices and the set of edges of graph G, respectively. A path P in G is a
sequence of distinct vertices (P = vivg - - - v,), such that two consecutive vertices have an
edge between them. Let Ay, ..., A; be a partition of the vertex set V(G) of a graph G. That
is, U!_1A; = V(GQ) and for all i # j, A;NA; =0. We use E(Aq,...,As G) to denote the set
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of edges such that each edge in the set has one endpoint in A; and the other endpoint in A;,
where ¢ # j. For a graph G, and a pair of vertices u,v € V(G), we use Ag(u,v) to denote
the minimum number of edges whose removal separates u and v (that is, v and v belong
to different connected components). If the graph G is clear from the context, we omit the
subscript G from Ag(u,v), and simply write A(u,v). Next, we state the classical Menger’s
Theorem and a simple lemma which are crucially used in our proofs,

» Lemma 2.1 (Menger's Theorem, [33]). Let G be an undirected graph and let u and v be
two vertices of G. Then the maximum number of pairwise edge-disjoint u-v paths in G is
equal to A(u,v).

» Lemma 2.2. Let G = (V, E) be an undirected graph and let H be a subgraph of G. Let
k > 1 be an integer. Then, A(H) < AMG) and A\(H, k) < XNG, k).

3 Global Min-Cut

In this section we develop upper and lower bounds on Frcs(n, £, f). In particular we prove
Theorems 1.2 and 1.3.

3.1 Upper Bound

Let n, ¢ and f be three positive integers. We need to show that Frcs(n,?, f) is upper
bounded by (f 4+ ¢)(n — 1). Towards this we show that given an undirected graph G, and
an integer f, we can construct an f-FTCS, H, of G on at most (f + A(G))(n — 1) edges.
Indeed, when A(G) = ¢, the upper bound follows. Further, we assume G is connected. If G
is disconnected then A(G) = 0, and it remains so after any edge failure. Thus, in this case
we can take H to be an empty graph. Our construction is presented next.

Construction of an f-FTCS of a graph G.
1. Initialize f + ¢ empty (no edges) forests T, T5, ..., Tf1e on the same vertex set
V(G).

2. for each edge (u,v) € E(G), do the following.
Find the smallest integer i € [f +¢], such that v and v are in different connected
components of T;. If no such ¢ exists, then assign ¢ to oco.
If 7 is not oo then add (u,v) to T;.

3. Output H = Uf;ifTa.

J

We will show that H is an f-FTCS with at most (f + ¢)(n — 1) edges. The bound on the
number of edges on H is clear, as H is the union of at most (f + ¢) forests.

» Lemma 3.1. The subgraph H has at most (f +£)(n — 1) edges.
Next, we show that H is an f-FTCS. We start with the following observation.

» Lemma 3.2. (x) ! Let (u,v) € E(G)\ E(H). Then there are at least £ + f edge-disjoint
paths between u and v in G and H.

! Results marked with + are deferred to the full version.
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Figure 1 Vertex a; has degree n — ¢ — 1 within X;. Vertices a1, a2, ..., ar+1 in X2 form an induced
2+ 1-clique. C1,Cy, ..., Cn_e—1 represent 22£=L cliques each of size £+ f within X;.
Tty

L+ f

To prove that H is an f-FTCS of G, we need to show that for any set of edges F' C E(G)
of cardinality at most f, A\(H — F) = AM(G — F). As H is a subgraph of G, we know from
Lemma 2.2 that A\(H — F') < A\(G — F). Now we show that A\(H — F) > A\(G — F).

» Lemma 3.3. Let G be an undirected graph with \(G) = £, f be a positive integer, and H be
the subgraph constructed above. Then for any set F' of at most f edges, \(H—F) > A\(G—F).

Proof. Let A, B be a partition of V(G) such that |[E(A,B,H — F)| = A(H - F). If
E(A,B,H — F) = E(A,B,G — F), then we have that a min-cut in H — F is also a min-cut
in G — F of the same size, thereby proving that A\(H — F') > A(G — F). Suppose not. As H
is a subgraph of G, EF(A,B,H — F) C E(A,B,G — F). Suppose (u,v) € E(A,B,G — F)\
E(A,B,H — F). Then (u,v) € E(G)\ E(H). Then from Lemma 3.2, there are ¢ + f edge-
disjoint paths between v and v in H, and hence there will be at least ¢ edge-disjoint paths
between v and v in H — F. Hence, \(H—F) = |E(A,B,H—F)| > {=\G) > AM(G-F). <«

Proof of Theorem 1.2 follows from Lemmas 3.1, 3.2 and 3.3.

3.2 Lower Bound

In this section we show that the upper bound shown on Frcs(n, 4, f) in Section 3.1 is indeed
asymptotically tight. To prove Theorem 1.3, we construct an infinite family of graphs G, such
that for any G € G we have that any f-FTCS of G must contain all its edges. In particular,

for any positive integers n, ¢, f, such that "Zf;l is an integer, we construct a graph G on n

vertices and (n — £ — 1)(KL271) +(n—0-1)+ @ edges with A(G) = ¢, such that any
f-FTCS of G must contain all the edges of G.

Let n, ¢, f be three integers such that ”;ijjl = ¢ is an integer. We first describe the

construction of a graph G on n vertices. To easily understand our construction, we would

suggest to simultaneously refer to the illustration given in Figure 1.
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Construction of a graph G. Here, ¢ = 7
The vertex set V(G) is a union of X; and Xg, such that | X7 N Xs| = 1.
X1 has ¢ pairwise vertex disjoint cliques Ci, ..., C,. Each clique C; is on (¢ + f)
vertices. X7 also contains a vertex a; as described below.(The edges of the cliques,
Cy,...,Cy, are denoted by the solid blue edges in Figure 1.)
The set X5 consists of ay,...,ap41 vertices that form a clique. These vertices do
not belong to the cliques, C1, ..., Cy. (The edges of the clique on aq, ..., arq;1 are
represented by blue solid edges in Figure 1.)
Let a1 € X5 be a fixed vertex. Each vertex in a clique C;, i € [q], is adjacent to
the vertex a;. There are no edges between a pair of vertices belonging to two
distinct cliques, C; and C;. The vertex a; is the only common vertex between two
sets X7 and X,. (Edges between a; and the vertices in the cliques, Cy,...,Cy,
are represented by the red dotted edges in Figure 1.)

J

In the upcoming lemmas we show certain properties of our construction. Here, Lemma 3.5
is used to prove Lemma 3.6.

» Lemma 3.4. (x) The number of edges in G is (n —{ — 1)(“”;7“) + @.

» Lemma 3.5. (x) For any two vertices uy,us € X1, Auy,uz) > €+ f.

» Lemma 3.6. (x) Let G be a graph and f > 1 be a positive integer. Then \(G) = £. Further,
for any F C E(G[X1]) of size at most f, we have that \(G — F) = £.

We now prove the final property of an f-FTCS.
» Lemma 3.7. Any f-FTCS of G must contain all the edges of G.

Proof. Let H be an f-FTCS of G. We will show that H must contain all the edges of G.
Towards this, we partition the edges of G into three parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of GG, then there
is a strategy for the adversary to choose a subset F' of edges (of size at most f) to delete
from G such that A\(G — F) and A(H — F) are not the same. Let u;, i € [¢ + f], be the set of
vertices of a fixed clique C}.

(i) Let us first show that the edges in the cliques C;, i € [g], have to be present in H (the
solid blue edges in X in Figure 1). Each u; has £+ f — 1 edges to vertices in C; apart
from an edge to a;. Suppose an edge (uy,u;), ¥,z € [{ + f], y # 2 is not present in
H. Let F consist of any f edges adjacent to u, in C; other than (u,,u,). We know
that f edges exist as £ > 1 (by construction G is connected). Now by Lemma 3.6 we
know that A\(G — F') = {. But the degree of u, in H — F becomes ¢ — 1 as (uy,u,) ¢ H.
Thus, A(H — F) < ¢ — 1. This contradicts H being an f-FTCS of G. Therefore, all
edges of the cliques C; must be present in H.

(ii) Next, we show that edges E({a1},C;, G),i € [q], must be present in H (the red dotted
edges in X; in Figure 1). Suppose (u,a1), z € [{+ f] is not present in H. Let F' consist
of any f edges adjacent to u, in C; other than (u,,a;). Now by Lemma 3.6 we know
that A\(G — f) = £. However, the degree of u, in H — F is {— 1. Thus, \(H —F) < {—1.
This contradicts H being an f-FTCS of G. Therefore, for all i € [g], all the edges in
E({a1},C;, G) must be present in H.

(iii) Lastly, we show that all the edges of the (£ + 1)-clique in X5 formed by a;,i € [¢ + 1]
must be present in H (the solid blue edges in X5 in Figure 1). Suppose an edge
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(a;,aj) ,1,j € [€+1], i # jis not present in H. Let F consist of any f edges of the form
(us,a1),i € [f]. All these edges exist in G — F as £+ f > f + 1 (Since by construction
G is connected and £ > 1). Observe that F C E(G[X1]) of size at most f, and hence by
Lemma 3.6 we have that A\(G — F') = {. However, \(H — F) = { — 1, as a; and a; have
degree ¢ — 1 inside X5 in H — F'. This contradicts H being an f-FTCS of G. Therefore,
all the edges of the £ + 1- clique in X5 must be present in H.

The three cases together show that if H is an f-FTCS of G then all edges of the graph G
must be present in H. Thus, the total number of edges present in H is (n — £ — 1)(“’;7_1) +
(n—¢—-1)+ @. Our proof follows. <

Proof of Theorem 1.3 follows from Lemmas 3.4, 3.6 and 3.7.

4 Min k-Cut

In this section we develop upper and lower bounds on FT-k-Cs(n, ¢, f). In particular we
prove Theorems 1.4 and 1.5.

4.1 Upper Bound

Let n, £ and f be three positive integers. We need to show that FT-k-cs(n, ¥, f) is upper
bounded by min{(2f + ¢ — (k—1))(n—1),(f +£)(n — k) + £}. Towards this we show that
given an undirected graph G, and an integer f > 1, we can construct an f-FT-k-CS, H of
G on at most min{(2f + A\(G, k) — (k —1))(n — 1), ((f + MG, k))(n — k) + MG, k))} edges.
Indeed, when A(G, k) = £, the upper bound follows. Our construction is presented next. It is
similar to the construction of in Section 3.1 except for the choice of t. G is assumed to be
connected in the algorithm. The complementary case will be handled later.

K-wAY-FAULT-TOLERANT-CONSTRUCTION

Construction of an f-FT-k-CS of a graph G.
1. Let t =min{2f + ¢+ 1—k, f + ¢}.
2. Initialize ¢ empty (no edges) forests T1,T5,...,T; on the same vertex set V(G).
3. for each edge (u,v) € E(G), do the following.
= Find the smallest integer i € [t], such that u and v are in different connected
components of T;. If no such ¢ exists, then assign 7 to oco.
= If i is not oo then add (u,v) to T;.
4. Output H = UL_,T,.

Next, we show that H is an f-FT-k-CS for both the values the variable ¢ can take. We
start with the following observation which we use in both the cases.

» Lemma 4.1. (x) Let (u,v) € E(G)\ E(H). Then there are at least t edge-disjoint paths
between u and v in G and H.

Note that the ¢(n — 1) upper bound of Section 3.1 for the number of edges in H applies
here too with the same proof. However, we show stronger bounds for certain values of ¢.
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41.1 Caseoft=f+ ¢
» Lemma 4.2. The subgraph H has at most (f +£)(n — k) + ¢ edges.

Proof. Let Ay,..., Ay be a partition of V(G) such that |E(Aq,...,A;,G)| = £. Let X =
E(Ay,..., Ak, G). We will show that every forest T; — X, i € [f +£], has at least k connected
components. Note that, once we can show this claim, we can get the upper bound on the
number of edges in H. Indeed, each T; — X has at most n — k edges (since, it has at least k
components) and hence |E(H)| < Zfif |E(T; — X)|+|X| < (f+0)(n—k)+ £ Next we
prove our claim. Observe that every edge going out of the connected components A;, j € [k],
is contained inside X. Thus, in particular, every edge going out of the vertices in A; in T; is
also contained inside X. Hence, the vertices of A; at least form one connected component
in T; — X. This concludes the proof that every forest T; — X, i € [f + ], has at least k
connected components. |

Next, we show that H is an f-FT-k-CS.

» Lemma 4.3. Let G be a graph with \(G,k) = £, f be a positive integer, and H be the
subgraph constructed above. Then, for any set F' of at most f edges, \(H—F,k) > AM(G—F, k).

Proof. Let Ay,..., Ay be a partition of V(G) such that |E(Ay, ..., Ax, H—F)| = A\(H—F\, k).
If E(Ay,...,Ax,H— F) = E(A4,...,Ax,G — F), then we have that a k-cut in H — F is
also a k-cut in G — F' of the same size, thereby proving that A\(H — F, k) > MG — F,k).
Suppose not. As H is a subgraph of G, E(Ay,..., Ay, H — F) C E(4,,...,4;,G - F).
Suppose (u,v) € E(Ay,...,Ax,G—F)\ E(A1,..., Ay, H— F). Then (u,v) € E(G) \ E(H).
Then from Lemma 4.1, there are £ + f edge-disjoint paths between uw and v in H, and
hence there will be at least ¢ edge-disjoint paths between w and v in H — F. Hence,
MH — F k) = |E(Ay,..., Ay, H — F)| > { = MG, k) > MG — F,k). This concludes the
proof. <

412 Caseoft=2f+£+1—k

We will show that H is an f-FT-k-CS with at most (2f + ¢+ 1 — k)(n — 1) edges.
The bound on the number of edges on H is clear, as H is the union of at most (2f+¢+1—k)
forests.

» Lemma 4.4. The subgraph H has at most (2f + ¢+ 1—k)(n —1) edges.

We could have obtained a bound similar to Lemma 4.2, but in this case, it does not give us
asymptotically better bound than that of (2f + ¢+ 1 — k)(n — 1). Next, we show that H is
an f-FT-k-CS. We start with the following lemma which is a folklore and we give the proof
here for completeness.

» Lemma 4.5. (x) Let G be a connected graph and let uy, ..., u, € V(G). Further, let Ep,
be an inclusion-wise minimal subset of edges, such that uy,...,u, get pairwise separated in
G — Eyy), then G — Ejp) has exactly p connected components, one containing each u;, i € [p].

» Lemma 4.6. Let G be a connected graph, then for all p < k, we have that \(G,k) >
MG, p) + (k—p).

Proof. Let A;,... Ay be a k partition of V(G) such that |[E(Aq,..., Ak, G)| = MG, k). Let
u; € A;, i € [p], be a vertex. Clearly, E(Ay,...,Ai,G) separates any pair of vertices in
{u1,...,up}, and thus there exists an inclusion-wise minimal subset Ey,) C€ E(Ay, ..., Ay, G),
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such that any pair of vertices in {u1,...,u,} gets separated in G—Ep,). Now by Lemma 4.5, we
have that G — E,) has exactly p connected components, one containing each wu;, ¢ € [p]. This

implies that £, is a p-cut in G (may not be of the minimum size) and thus, |Ep,| > MG, p).

However, G — E(A1,..., Ak, G) has k connected components, and deleting an edge can
only increase the number of connected components by 1. This implies that |E(Aq, ..., Ag, G)\
Ep| > (k —p). Putting together this with the fact that |Ep, | > A(G, p), we get that

MG, k) = [Ep| + (k= p) 2 MG, p) + (k —p).

This concludes the proof. |

To prove that H is an f-FT-k-CS of G, we need to show that for any set of edges F' C E(G)
of cardinality at most f, A\(H — F, k) = AM(G — F, k). As H is a subgraph of G, we know from

Lemma 2.2 that A\(H — F, k) < A\(G — F, k). Now we show that A\(H — F, k) > A\(G — F, k).

In fact, we will prove something stronger, which we call robustness. That is, for all k* < k,
we have that A\(H — F, k*) > MG — F,k*).

» Lemma 4.7 (Robustness). Let G be a connected graph with A(G, k) = £, f be a positive
integer, and H be the subgraph constructed above. Then, for any set F of at most f edges,
and for k* <k, A\(H — F,k*) > MG — F, k).

Proof. Let A1, ... Ag+ be a partition into k* sets of V(G) such that |E(A4, ..., Ag«, H—F)| =
MNH — Fk*). It E(Ay,...,Ap«,H — F) = FE(A1,...,Ap,G — F), then we have that a
min k*-cut in H — F is also a min k*-cut in G — F of the same size, thereby proving that
AMNH—F,k*) > A(G—F, k*). Suppose not. As H is a subgraph of G, E(A1,..., A, H—F) C
E(A1,..., A, G—F). Suppose (u,v) € E(A;,A;,G-—F)\E(A;,A;,H—F),i,j € [k*], and
i # j. Then (u,v) € E(G) \ E(H). From Lemma 4.1, there are 2f 4+ £ + 1 — k edge-disjoint
paths between v and v in H, and hence there will be at least f + ¢+ 1 — k edge-disjoint
paths between v and v in H — F.

Observe that, since G is connected, H is also connected by our construction (77 is
definitely a spanning tree). However, H — F may not be connected. On the other hand, since
A (u,v) > 2f + 0+ 1 —k, we get that Ay_p(u,v) > f 4+ €+ 1— k. Note that since, H is
connected, any k-cut has size at least k — 1, and thus, £+ 1 > k (recall that, A\(G, k) = ¢).
Since, Ag_p(u,v) > f+€+1—k > f > 1, we have that u and v are in the same connected
component of H — F. Further, they get separated after we delete E(Ay,..., Ay, H — F)
from H — F'. This implies that the number of connected components in H — F' is at most
k* — 1. Next observe that since H is connected, deleting F' from H can only result in at
most |F| + 1 connected components in H — F. Thus, the number of connected components
in H — F, say d, is upper bounded by the minimum of {k¥* — 1, f + 1}.

Let the connected component containing u,v in H — F be denoted by C,,. Observe
that E(Aq,..., Ag+, H— F) separates u from v in H — F — E(Ay, ..., A, H — F), and thus
there exists an inclusion-wise minimal subset E,, C F(A1,..., Ag+, H — F), such that v and
v get separated in (H — F) — Ey,. Further, note that the minimality of F,, implies that
E., C E(Cyy), and it is an an inclusion-wise minimal separator for v and v in Cy,. Applying,
Lemma 4.5 on C,,, we get that Cy, — Ey, has exactly two connected components, C,, and C,,
containing u v, respectively. This implies that |Ey,| > Ag_r(u,v) = Ac,, (u,v) > f+L+1—F.
Recall that, H — F' has d components, and thus H — F' — F,, has d + 1 components.
However, H — F — E(Ay, ..., Ag«, H — F) has k* connected components. This implies that
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1y---y k>, - uv Z - . ence,
\E(Ay, ..., Ape, H— F)\ Eyo| > (k* — d). H

MH — F,k*) = |E(Ay,..., Ajp, H — F)|
>fHLl+1—k+ (K —d)

>0+ (f+1)—(f+1)—(k—Fk") (Using d < f+1)
={—(k—-k")
= AG, k) — (k—Fk%) (since, \(G, k) =?)
> MG - F, k") + (k—k*) — (k— k) (Lemma 4.6)
= \G — F, k).
This concludes the proof. |

Now we deal with the case when G is not connected.

» Lemma 4.8. Let G be a disconnected graph with d > 1 connected components with
MG, k) = £ and let f be a positive integer. Then there exists a subgraph H of G with
at most (n — d)(2f + 0+ 2 — k + d) edges such that for any set F of at most [ edges,
AMH - F, k) > MG — F,k).

Proof. If d > k, then we return H as an empty (edgeless) graph on the vertices of G. So
let us assume that d < k. Suppose, G has connected components G1,...,Gy. We apply
K-wAY-FAULT-TOLERANT-CONSTRUCTION with G;,i € [d] and k' = (k — d + 1) and get H;.
Let H = U% | H;. That is, we apply our upper bound construction on each of the connected
components with k' and get the desired H. Lemma 4.7 implies the following.

> Claim 4.9. For all i € [d], k* <K', H; is a f-FT-k*-CS of G;.

Next we show that for any set F' of at most f edges, A\(H — F,k) > MG — F,k).
Let Ay,..., Ay be a k partition of V(G) such that |E(Ay,..., Ay, H — F)| = \(H — F, k).
Observe that, since G; is connected we have that H; is connected. Let Aq,..., Ay be a k
partition of V(G) such that |E(A1, ..., Ax, H — F)| = AM(H — F, k). Recall, that d < k, thus,
A(H — F,k) > 0. Further, from the minimality of E(A4s,..., A, H — F), and the fact that
|E(Ay,..., A, H— F)| > 1, we have that H[A;] is connected, and completely contained
inside one of Gj, j € [d]. That is, E(A4,...,Ar, H — F) further partitions some of the
connected components, and each connected component of H — E(Ay,..., Ay, H—F) is a
part in the partition (Aj,..., Ag) of V(QG).

Let E; = E(H;)) N E(Ay,..., A, H—F), i € [d] and ¢; = |E;|. Further, let A;, i € [d],
be the set of parts among A, ..., Ag, which are completely contained inside GG;. Note that
for all 4,5 € [d], i # j, A; and A; are pairwise disjoint, and for all ¢ € [k], there exists an
integer j € [d], such that A, € A;. We summarize this in the following claim.

. d
> Claim 4.10. Let k; = |A;|, then > ;| k; = k.
Next we have the following claim.
> Claim 4.11. For all i € [d], k; < k', N\(H; — F, k;) = {;. Further, ., {; = /.

Proof. No k; can be more than k', otherwise we get strictly greater than k& components,
contradicting that H — F — E(Ay, ..., Ax, H — F) has exactly k components. Further, for
some 4, let A\(H;, k;) = £ < £;. In this case, we can delete ¢; edges inside G;, and delete Ej,
j # 1, to get k components in H — F, by deleting strictly less than ¢ edges. This contradicts
the definition of E(Ay,..., Ay, H — F). By definition ), _, ¢; = (. <
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MNH — F,k) Z/\ (H; — F, k;) (Claim 4.11)
d
> NGi — F, k) (Claim 4.9)
=1
=\G - F,k).

To see the last inequality observe the following. Let W; be a subset of edges in E(G;) such
that |W;| = M(G; — F,k;). Then, clearly by deleting W = U W;, we get Zle ki =k
components in G — F. Here, we used Claim 4.10 to conclude that Zle k; = k. This implies

that Zle MG; — Fk;) = Ele |[W;| is a k-cut of G — F' (may not be of the minimum size).

Thus, a min k-cut in G — F' can only be smaller. This concludes the correctness proof.

All that remains to show is the upper bound on the number of edges. Let the number
of vertices in each component be n;,i € [d]. Then, the total number of edges in H is upper
bounded as follows.

ni—1)2f+l+1-k)=n—-d)2f+L+1-FK) = (n—d)(2f +{+2—k+d).

HM&

This concludes the proof. |

Proof of Theorem 1.4 follows from Lemmas 4.2, 4.3, 4.4, 4.7 and 4.8.

4.2 Lower Bound

In this section we show that the upper bound shown on FT-k-cs(n, ¥, f) in Section 4.1 is
indeed asymptotically tight. To prove Theorem 1.5, we construct an infinite family of graphs
G, such that for any G € G we have that any f-FT-k-CS of G must contain all its edges. In

particular, for any positive integers n, ¢, f, such that is an integer, we construct a

£—1
1’+f (k—2)
graph G on n vertices and (n—t= 1)(§+f k+1)) +n—L0+k—-3+ w edges with
MG, k) = £, such that any f-FT-k-CS of G must contain all the edges of G.

The graph G is a modification of the graph used to show the lower bound for global
minimum cut in Section 3.2.
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Cy (n—2—1)

+f—(k—2)

Figure 2 Vertex a; has degree n — ¢ — 1 within X;. In X, the vertices a1, ao, ..., p—(k—2)+1 induce
a clique. The vertex a4 has k — 2 edges in X3 each going to a separate vertex z;. There are no edges

between zs. C1,Cs,...,C (n_e—1) represent p(rr}iii;i)m cliques each of size £ + f — (k — 2) within
(-2
Xi.

Construction of a graph G. Here, ¢ = %.

m The vertex set V(@) is a union of X3, X5 and X3, such that | X3 N X5| = 1.

= X, has ¢ pairwise vertex disjoint cliques C1, ..., Cy. Each clique C; is on (¢ + f —
(k —2)) vertices. (The edges of the cliques, C1,...,C, are denoted by the solid
blue edges in Figure 2.)

= The set X, consists of ai,...,a,_x—2)41 vertices that form a clique. These
vertices do not belong to the cliques, Ci,...,Cq. (The edges of the clique on
ai,...,ay_(y—2)+1 are represented by blue solid edges in X5 in Figure 2.)

= Let a; € X, be a fixed vertex. All the vertices in a clique Cj,i € [g], is adjacent
to the vertex a;. There are no edges between a pair of vertices belonging to two
distinct cliques, C; and C;. The vertex a; is the only common vertex between two
sets X7 and X,. (Edges between a; and the vertices in the cliques, Cy,...,Cy,
are represented by the red dotted edges in Figure 2.)

= X3 consists of k — 2 vertices x;,i € [k — 2]. Let ay € X3 be a fixed vertex. Edges
in X3 are of the form (a4, ;),7 € [k — 2]. There are no edges between x}s. (Edges
between a4 and the vertices x; € X3, are represented by the red solid edges in
Figure 2.)

In the upcoming lemmas we show certain properties of our construction.

» Lemma 4.12. The number of edges in G is ("_2_1)(g+f_k+1))+n—€+k—3+w.

Proof. Each clique C; is of size (¢ + f — (k — 2)) and contributes (¢ + f — (k — 2))(%)
edges. There are ¢ cliques and thus the total number of edges contributed by all cliques
Ciyi € [q]is (n—£€— 1)(%) The vertex a; is adjacent to all vertices of all Cls.
Hence, a; has degree n — £ — 1 inside X;. The (¢ — (k — 2) 4+ 1)—clique in X5 contributes
WM edges. The vertex a4 contributes k — 2 edges in X3. Therefore, the total

number of edges of G is ("_é_l)(gﬂc_k“)) +n—0+k—-3+ w. <
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» Lemma 4.13. For any two vertices uj,us € X1, AMuj,ug) > €+ f —k+2.

Proof. The pair {u,us} is of one of the three types described below. We prove the claim

for each of the three types.
Both u; and us are part of the same clique C; in X;. We know that the size of C;
is ¢ + f —k + 2. Let the other vertices in C; be uj,j € [3,£ + f —k + 2]. Then
uujug, j € [3,0 + f — k +2],u1,us and uiaius are £ + f — k + 2 edge-disjoint paths
between uq and us. By Theorem 2.1 A(ug,ue) > €+ f —k+ 2.
Vertices uy € C; and ug € Cj, and i # j. Let vj,j € [(+ f —k+1] denote the vertices in C}
other than uy. Let wy be a vertex in C; other than u;. Then uiaivjus, j € [(+ f—k+1]
and uywiaiug are £+ f — k + 2 edge-disjoint paths between u; and uy. By Theorem 2.1
)\(ul,ug) >0+ f—k+2
Let u; be a part of clique C; and up = a;. Let vj,j € [(+ f — k+ 1] denote the vertices in
C; other than uy. Then uiv;ai,j € [(+ f —k+1] and uja; are £+ f —k + 2 edge-disjoint
paths between u; and a1. By Theorem 2.1 that A(uy,us) >+ f —k+ 2.

This concludes the proof. <

» Lemma 4.14. Let G be a graph and f > 1 be a positive integer. Then \(G, k) = £. Further,
for any F C E(G[X1]) of size at most f, we have that A\(G — F, k) = £.

Proof. Vertices x;,i € [k — 2] in X3 have degree 1 with all of them adjacent to as. The edges
E(xz, X1 UX,,G) for all x = x;,1 € [k — 2] partition the graph into k — 1 components using
k — 2 edges. As a minimum of k£ — 2 edges are required to partition a connected graph into
k — 1 components all these edges will be part of A(G, k). We need one more partition of the
graph to get k components.

The cut E({a}, X1 U X2\ {a},G), where a = a; for i € [¢ — k + 3] is of size £ — k + 2.

Together, with the edges E(x, X1 U X3, G) for all x = z;,i € [k — 2] we get a k—cut of G of
size £.

Now we show that any other cut if of size at least . From Lemma 4.13 we know
that for any two vertices uj,us € X1, A(uy,uz2) > £+ f — k + 2. This implies that for
any 2 partitions A, B of V(G) such that |X; N A > 1 and |X; N B] > 1 we have that

|E(A,B,G)| > 0+ f—k+2>(—k+3. In this case, \(G— F, k) > {—k+3+ (k—2) = {+1.

Thus, any min-k-cut should keep all of X7 in one side of the partition. It can be easily
checked that |[E(X7UY, X\ Y,G)| > ¢ —k+2 for any Y C X5, with the minimum being
achieved when Y is a singleton set. These edges along with k — 2 edges from X3 shows that
MG, k) = £. This concludes the first part of the proof.

Let F C E(G[X1]) of size at most f and A;,¢ € [k] be a partitioning of V(G). We will
show that |E(A4, ..., Ay, G — F)| > £. Indeed, if | X7 N A4;| > 1 and | X3 N A;| > 1 for i # j,
we have that |E(A4;,A;,G — F)| > ¢ —k + 2 (since, |E(A;, A;,G)| > {+ f —k +2). These
edges alongwith the k — 2 edges (a4,2;),1 € [k — 2] give |E(Ay, ..., Ay, G — F)| > ¢. Thus,
let us assume that all of X; in one side of the partition. Again in this case, we can easily
check that |[E(X1UY, Xo \Y,G — F)| > ¢ —k+2 for any Y C X5, with the minimum being
achieved when Y is a singleton set. Alongwith the edges (a4, x;),7 € [k — 2], we have that
|E(Ay, ..., Ak, G — F)| > L. Thus, A(G — F, k) = £. This concludes the proof. <

We now prove the final property of an f-FT-k-CS.

» Lemma 4.15. Any f-FT-k-CS of G must contain all the edges of G.

Proof. Let H be an f-FT-k-CS of G. We will show that H must contain all edges of G.

Towards this, we partition the edges of GG into four parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of G, then there is

10:15

FSTTCS 2020



10:16

Optimal Output Sensitive Fault Tolerant Cuts

a strategy for the adversary to choose a subset F' of edges (of size at most f) to delete from
G such that \(G — F, k) and A\(H — F, k) are not the same. Let u;, i € [{ + f — k + 2)], be
the set of vertices of a fixed clique C;.

(i) We first show that the edges in the cliques Cj,i € [¢] in X; are present in H (the solid

blue edges in X in Figure 2). Each u; has degree ¢ + f — k + 1 within C; apart from
an edge to a;. Suppose an edge (uy,us),y,z € [ + f —k + 2],y # z is not present in
H. Let F consist of any f edges adjacent to u, in C; other than (u,,u,). We know
that f edges exist as £ > k — 1 (by construction G is connected).

Now by Lemma 4.14 we know that A(G — F, k) = {. But the degree of u, in H — F
becomes ¢ — k + 1 as (uy,u,) ¢ H—F. In H— F, we will choose all the remaining
adjacent edges of u, and the k—2 edges in X3 as our cut edges. Thus, A\(H—F, k) = ¢{—1.
This contradicts H being an f-FT-k-CS of G. Therefore, all edges of the cliques C;
must be present in H.

(ii) Next, we show that the edges F({a1}, Ci, G) are present in H(the red dotted edges in

X in Figure 2). Suppose (u,a1),z € [{ + f — k+ 2] is not present in H. Let F' consist
of any f edges adjacent to u, in C; other than (u,,a:). By Lemma 4.14, we know that
MG —F)=/{but \(H—-F)=+{—1. A similar argument to case (i), shows that all
such edges E({a1},C;, G) must be present in H.

(iii) Next, let us show that the edges in the ¢ — k + 3-clique in X5 formed by a;,i € [¢ —k+ 3]

are present in H (the dashed blue edges in X5 in Figure 2). Suppose edge (a;,a;),4,j €
[ — k 4+ 3],i # j is not present in H. Let F consist of any f edges of the form
(ui,a1),i € [f]. All these edges exist in G — F as £+ f —k+2 > f+ 1 (Since G is
connected and ¢ > k — 1).

By Lemma 4.14 we have that A\(G, k) = {. However, as a; and a; both have degree
{—k+1inside X5 in H so E({a;}, X1UX2\{a;}, H—F) or E({a;}, X,UX>\{a,}, H-F)
alongwith k — 2 edges in X3 give A(H — F,k) = £ — 1. This contradicts H being an
f-FT-k-CS of G. Therefore, all edges of the £ — k + 3-clique in X5 must be present in H.

(iv) Lastly, we show that all the k — 2 edges E(z, X1 U X»,G) for all z = x;,i € [k — 2] are

present in H (the solid red edges in X3 in Figure 2). Suppose an edge (a4, 2,), z € [k—2]
is not present in H. Let F consist of any f edges of the form (u;,a1),4 € [f].

Again by Lemma 4.14 we have that \(G — F, k) = £. However, as edge (a4, 2.) ¢ H, we
have that A\(H — F, k) = £ — 1. This contradicts H being an f-FT-k-CS of G. Therefore,
all k£ — 2 edges of X3 must be present in H.

All the cases together show that all edges of the graph G must be present in H if H is an

f-FT-k-CS of G. Thus, the total number of edges present in H is (n—é—l)(§+f—k+1)) +n—
{+k—-3+ %W. Our proof follows. <
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—— Abstract

The matching problem in the online setting models the following situation: we are given a set of
servers in advance, the clients arrive one at a time, and each client has edges to some of the servers.
Each client must be matched to some incident server upon arrival (or left unmatched) and the
algorithm is not allowed to reverse its decisions. Due to this no-reversal restriction, we are not able
to guarantee an eract maximum matching in this model, only an approximate one.

Therefore, it is natural to study a different setting, where the top priority is to match as many
clients as possible, and changes to the matching are possible but expensive. Formally, the goal is
to always maintain a maximum matching while minimizing the number of changes made to the
matching (denoted the recourse). This model is called the online model with recourse, and has been
studied extensively over the past few years. For the specific problem of matching, the focus has been
on vertex-arrival model, where clients arrive one at a time with all their edges. A recent result of
Bernstein et al. [1] gives an upper bound of O (n log? n) recourse for the case of general bipartite
graphs. For trees the best known bound is O(nlogn) recourse, due to Bosek et al. [4]. These are
nearly tight, as a lower bound of Q(nlogn) is known.

In this paper, we consider the more general model where all the vertices are known in advance,
but the edges of the graph are revealed one at a time. Even for the simple case where the graph is a
path, there is a lower bound of Q(n?). Therefore, we instead consider the natural relaxation where
the graph is worst-case, but the edges are revealed in a random order. This relaxation is motivated
by the fact that in many related models, such as the streaming setting or the standard online setting
without recourse, faster algorithms have been obtained for the matching problem when the input
comes in a random order. Our results are as follows:

Our main result is that for the case of general (non-bipartite) graphs, the problem with random
edge arrivals is almost as hard as in the adversarial setting: we show a family of graphs for which

the expected recourse is 2 ( n? )

logn

We show that for some special cases of graphs, random arrival is significantly easier. For the
case of trees, we get an upper bound of O (n log? n) on the expected recourse. For the case of
paths, this upper bound is O (nlogn). We also show that the latter bound is tight, i.e. that the
expected recourse is at least 2 (nlogn).
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1 Introduction

The online matching problem models a scenario in which a set of servers is given in advance,
and a set of clients arrive one at a time, with each client incident to some of the servers. In
the standard version of this model, the arriving client must be immediately matched to a
free server or be left unmatched, and this decision is irrevocable. Due to this constraint, it is
not possible to guarantee an exact matching, so the goal is to guarantee the best possible
approximation. (See the work of Karp et al. [14], which shows that we can’t get better than
1-— % approximation.)

But there are several applications where the top priority is to match all the clients (or at
least to have a maximum matching), and the irreversibility condition of the standard online
model is too restrictive; in applications such as streaming content delivery, web hosting, job
scheduling, or remote storage it is preferable to reallocate the clients provided the number of
reallocations is small (see [5] for more details). Therefore, over the past decade there have
been many papers on the so-called online model with recourse, where the goal is to maintain
an ezact solution the problem, while making as few changes to this solution as possible.

In the case of matching in particular, existing results focus on the vertex-arrival model,
which is analogous to the similar model in online matching without recourse. In this model,
clients arrive one at a time and ask to be matched to a server. The algorithm is allowed
to change the matching over time and must always maintain a maximum matching: the
goal is then to minimize the total number of changes made to the matching, denoted the
recourse. Note that the trivial recourse bound is O(n?) (n changes per client), but one
can do significantly better. This model has been studied extensively (see for example,
[9, 5, 2, 3, 10, 4, 1]), and the state of the art is an upper bound of O(nlog®n) on the total
recourse [1]) in bipartite graphs. For the special case of trees, the best known upper bound
is O (nlogn) due to [4]. These upper bounds nearly match the lower bound of Q (nlogn) for
trees due to [9].

In this paper, we consider a more general model where the graph can be non-bipartite
and, more importantly, the edges in the graph are revealed one at a time; the algorithm
must again maintain a maximum matching at all times. Unfortunately, we have very strong
lower bounds when the order in which the edges arrive is adversarial; even for the simplest
possible case of a path, £2(n?) recourse is necessary. To overcome this lower bound, we
consider a natural relaxation of this model where the adversary can still choose the graph,
but edges arrive in a random order. One of the motivations behind this relaxation is that in
several related models, such as the online model without recourse or the streaming model,
we have been able to get faster algorithms when the input is assumed to arrive in a random
order rather than an adversarial order. (See [13, 16] for online model without recourse, and
[15, 12, 8, 7] for the streaming model).

Our results show that for the case of trees and paths, we can do significantly better in
the random edge-arrival model: in particular, we show an upper bound of O (nlogn) on the
expected recourse in the case of paths (which we show is tight), and a bound of O (n log? n)
in the case of trees. But our main result is that in general graphs, the random arrival setting
is provably almost as hard as the adversarial setting. We state our main results formally:

» Theorem 1. For anyn > 216, there is a (non-bipartite) graph G,, (described in Section 3.1)
with n vertices and © (nlogn) edges, such that if edges of the graph arrive in a random order,
then the total expected recourse taken by any algorithm that maintains a maximum matching

in the graph is Q ( n’ )

logn
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» Theorem 2. Let T be a tree on n vertices and let the edges of T arrive one at a time in
a random order. Then, the expected total recourse taken by an algorithm that maintains a
mazimum matching in T is at most O(nlog®n).

» Theorem 3. Let P be a path on n vertices, and let the edges of P arrive in a random order.
The expected total recourse taken by an algorithm that maintains a maximum matching in P
is O(nlogn). Moreover, this bound is tight: the expected recourse taken by any algorithm is
Q(nlogn).

» Remark 4. For the lower bounds of Theorems 1 and 3, when we say that any algorithm has
the given lower bound on expected recourse, this bound holds even if the algorithm knows
the random permutation in advance. That is, the lower bound holds even if the algorithm is
optimal for every possible ordering of the edges.

» Remark 5. For the upper bounds in Theorems 2 and 3, the algorithm we use simply changes
the matching along an augmenting path whenever such a path becomes available due to the
insertion of some edge. If there are multiple augmenting paths the algorithm can take, it
chooses between them arbitrarily; the upper bound holds regardless of the choice of path.

We prove our main result, Theorem 1 in Section 3. For proofs of Theorem 2 and 3 we
refer the reader to the full version of the paper. We leave as an intriguing open problem
whether our lower bound in Theorem 1 also holds for bipartite graphs, or whether these
graphs allow for expected o(n?~¢) recourse when edges arrive in a random order. See Section
4 for more details.

2 Preliminaries

Let G be an unweighted graph. A matching in G is a set of vertex-disjoint edges. Given
any matching M of G, we say that a vertex v is matched if it incident to an edge in M,
and free otherwise. Given any two matchings M and M’, we use M @& M’ to denote the
symmetric difference. We study the model of online matching with recourse under random
edge arrivals. In this model, the adversary fixes any graph G = (V, E) with m edges and n
vertices. The vertex set is given in advance, but the edges arrive one at a time; the arrival
order ey, ..., ey, is a random permutation of E. The goal of the algorithm is to maintain
a sequence of matchings My, ... M,,, such that M; is a maximum matching in the graph
(V,{e1,...,e;}). The total recourse of the algorithm is 22_11 |M; & M; 1], which is the total
number of changes made to the matching throughout the entire sequence of insertions.
Intuitively, an algorithm that minimizes recourse should only change the matching when
the maximum matching in the graph increases in size. We formalize this intuition in the
remainder of this section.
» Definition 6. Define a sequence M, M} - -- ,M4*77 to be only-augmenting if M = 0, each

in? TR 7

M is a mazimum matching in G, , aond eczch symmetric difference M & M | consists of a
single augmenting path; that is, M7 &M;  consists of an odd-length path P in {ei1,... e}
such that every second edge of P is in M;,, but the first and last edges of P are not in M;, .
We say that an algorithm is only augmenting if the sequence of distinct matchings produced
by the algorithm is only-augmenting; in other words, in the sequence of matchings produced
by an only-augmenting algorithm, for every 1 < i < m —1, either M; = M; 1, or M; & M; 1
consists of a single augmenting path.

11:3
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» Definition 7. Let r(0) is the best recourse achievable on permutation o by an algorithm
that knows o in advance, and let r*(o) be the best recourse achievable by an only-augmenting
algorithm that knows o in advance. (Knowing o in advance allows the respective algorithms
to pick the best possible matching sequence for permutation o.)

» Observation 8. Using the above notation, we note that E,[r(o)] is a lower bound on the
expected recourse of any algorithm, while Ey[r*(0)] is a lower bound on the expected recourse
of any only-augmenting algorithm. The lower bound applies even if the algorithm knows o in
advance.

The following Lemma allows us to assume throughout the paper that we are working
with an only-augmenting algorithm. The proof of this lemma is relegated to the full version
of the paper.

» Lemma 9. Given any permutation o, we have r(c) = r*(o).
We now restate our main Theorem with the above lemma in mind.
» Theorem 10. E,[r*(0)] = Q(n?/log(n))
» Observation 11. Observation 8, Lemma 9 and Theorem 10 immediately imply Theorem 1.

The lower bound proof of Section 3 is devoted entirely to proving Theorem 10

3 Lower Bound on Expected Recourse in General Graphs

This section will be devoted to proving Theorem 10, the main result of our paper. Recall from
the preliminaries that we can assume that the algorithm is only-augmenting (See Definition
6) and that it knows the entire permutation ¢ in advance. In other words, to prove Theorem
1, it is sufficient to prove Theorem 10.

Our proof will proceed as follows. In Section 3.1 we define our candidate graph G,, (we
will refer to it as G from now). The main step will be to show that between the times when
half the edges of the graph have arrived and a three-quarters of the edges have arrived,
the graph induced by non-isolated vertices contains a perfect matching or a near perfect
matching throughout (see Definition 15 for a definition of near perfect matching). We will
then use this fact to prove Theorem 10.

» Remark 12. Before we describe our graph, we describe how we will go about proving the
lower bound. Suppose that our algorithm is given graph G = (V, E) as input, where |E| = m.
In our model this graph is revealed to our algorithm one edge at a time, with the edges
arriving in the order prescribed by a random permutation o . Suppose we look at the graph
at time t < m, then Gy, the graph at time ¢ has the same distribution as the subgraph of
G obtained by randomly sampling ¢ out of m edges. We will show that between the times
when ¢t = 0.5-m and t = 0.75 - m, G; will contain a perfect or a near-perfect matching. To
prove this, we will show (in Section 3.2) that the distribution of G can be approximated by
the following distribution: graph obtained by sampling each edge of G independently with
probability % Finally, we will prove our aforementioned claims about this new distribution
(Section 3.3).

3.1 The Graph

We use n to denote the number of vertices in our graph. In this write-up, s = 400logn

and t = m. Let K, denote the complete graph on s vertices. Our graph is called G

(see Figure 1) and it consists of ¢ copies of K that we index as K% for 1 <i <t. The
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remaining ¢ vertices are partitioned into ¢ sets {D(i of size 1001ogn each. The graph
G contains the following edges. _
1. For 1 <i¢ <t—1, we introduce edges between every vertex of Kgl) and every vertex of

K s(iﬂ). Additionally, edges are also introduced between every vertex of K. él) and every

)}1§i§t

vertex of Ks(t).

2. For 1 < i < t, we fix an arbitrary set U C Ksi) of size 100logn. Introduce an arbitrary
matching between U® and D®. Call this matching M. Let M = Uﬁle(i); we add
the edges of M to G. We also let U = U'_,U® and D = Ut_, D). For any u € DUU,
we define M (u) to be the vertex that u is matched to.

We denote the number of edges in G by m. Note that m = © (nlogn).

Figure 1 Graph G.

3.2 Relating G, and GP™

» Definition 13. Let p € [0,1]. We define E, C E(G) to be the set of edges obtained by
sampling each e € E(Q) with independently probability p.

Let V,, = V(G) \ {v € D such that (v, M(v)) ¢ E,}; note that V, excludes isolated vertices
in D. Let G, be the graph with vertex set V), and edge set E,.

» Definition 14. Let EP'™ C E(G) be the set of edges obtained by sampling p - m random
edges of E(G). Let VP™ = V(G) \ {v € D such that (v, M(v)) ¢ EP"™}; note that VP™
excludes isolated vertices in D. Let GP'™™ be the graph with verter set VP™ and the edge
set EP™,

» Definition 15. Let H be a graph with an odd number of vertices. Let M be any matching
of H that leaves exactly one vertex unmatched. Then, M is called a near perfect matching
of H.

11:5
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We state the main theorem that we want to prove in this section:

» Theorem 16. Let p € {0.5, 0'5';””+1,~~ , 0‘757';"_1,0.75}, then, the graph GP'™ contains a

perfect matching or a near perfect matching with probability at least 1 — O (%)

To prove this theorem, we claim that it is sufficient to prove the following theorem:

» Theorem 17. Letp € {0.5, 0'5‘;’;“, cee 0'757‘;”*1 ,0.75}, then, graph G, contains a match-
ing or a near perfect matching with probability at least 1 — O (#)

To show that Theorem 17 implies Theorem 16, we prove the following lemma:

» Lemma 18. Letp € {0.5, 25mEL ... [0T5m=L .75} and let GP™ and G, be as described
above, and let G be the set of graphs that contain a perfect matching or a near perfect matching,
then,

Pr(GP™ ¢ G) < 10v/m - Pr(Gy ¢ G).

We refer the reader to the full version of this paper for a proof of Lemma 18. For now, we
prove Theorem 16 assuming Theorem 17 and Lemma 18:

Proof (Theorem 16). It follows from Lemma 18 that:

Pr (Gp‘m does not contain a matching) < 10v/m - Pr (G does not contains a perfect matching)

=10y/m - O (%) (Due to Theorem 17)
n
=0 (%) (Since m = © (nlogn)). <

The following corollary follows from Theorem 16, via a union bound:

» Corollary 19. Let I = {0.5, 0'5'7’””“,--- , 0'757';”_170.75}. Let G be the sequence of graphs
{Gp‘m}pel. The probability that every G € G contains a perfect matching or a near perfect
matching is at least 1 — O (l)

n

The bulk of our paper is proving Theorem 17. But first, we provide some intuition for
our choice of G by sketching how Corollary 19 implies our main result (Theorem 10).

Proof sketch of Theorem 10. Recall the edges M C E(G) which connect the vertices in
D, where |[M| = ©(n) (see 3.1). Consider how the graph GP™ evolves from for p = 1 to
p = %. Let us assume without loss of generality that G R
vertices. Whenever an edge (d,z) from M is inserted into the graph, d € D is added to
V(GP™) (See Definition 13). Since we know from Corollary 19 that GP™ contains a perfect
matching whenever V(GP™) is even, we know that after every two edges (d,z) and (d',z’)

added to M, there is a perfect matching in the resulting graph; thus, the algorithm must

™ contains an even number of

take some augmenting path from d to d’. Because G consists of §2 %) consecutive
layers, it is easy to see that with probability %, the shortest path from d to d’ has length
Q (%) We expect to add ‘%\fl = Q(n) edges to M between G2™ and G1™, so we have

Q (n) augmenting paths of expected length (%), which implies total augmenting path
712
log(n)

length 2 ( ) See Section 3.5 for full proof. |
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3.3 Proving G, has a Near-Perfect Matching
We now turn to proving Theorem 17. To this end, we introduce some notation:

» Definition 20. Given G, we define the active subgraph A of G, as follows: let V (A) =

V(Gp) \{ue DUU : (u,M(u)) € Gp}. The active subgraph A is the induced subgraph

Gp [V (4)].

» Definition 21. We define A®) to be the following subgraph of G, : let V (A(i)) =V (AN

14 (Kﬁi)) for 1 <i<t. Let AW = G, [V (A(i))] For1<i<t,let|V (A(i)) | = a;. Then,

1. If a; is even, then let P U QW be an arbitrary G by % bipartition of V(A®),

2. If a; is odd, then let vV be an arbitrary vertex in V(AW) and let P U QW be an
arbitrary | %] by %] bipartition of V(A®)\ v(®).

We denote G(P(i),Q(i)) to be the bipartite graph between P® and Q, with edge set

E (p(i),Q(i)) = (p(i) X Q(i)) NE (A(i))

> Claim 22.  We observe that V(A) N D = (). This follows from the following two facts:

1. Consider any u € D such that (u,M(u)) ¢ G,. Then, u ¢ V(Gp,). This follows
immediately from Definition 13.

2. By Definition 20, we know that any u such that (u, M(u)) € G) is not included in V(A).

> Claim 23.  From Definition 20, we know that a; > 400log n—|U®|. Since |[U®| = 100logn
(see Section 3.1 2), it follows that a; > 3001logn.

In order to prove Theorem 17, it is sufficient to prove the following theorem:

» Theorem 24. The active subgraph, A contains a perfect matching or a near perfect
matching with probability at least 1 — O (i)

n?

Proof (Theorem 17). Given a perfect (resp. near-perfect) matching M (A) of A, we will
construct a perfect (resp. near perfect) matching M (G,) of G,,. Consider any u € V(G,) \
V(A). Note that M(u) € V(Gp)\V(A) and (u, M(u)) € Gp. So we may match u to M (u) in
Gp. In particular, M (G,) = M (A) U {(u, M (u)) where v € V(G,) \ V(A)}. Thus, M (G,)
is a perfect (or a near perfect matching) of G, if M (A) is a perfect (or a near perfect
matching) of A. <

3.4 Near Perfect Matching in Active Subgraph

To prove Theorem 24, we need Chernoff bound, and some existing results on matchings in
random bipartite graphs.

» Theorem 25. [11] Define B(n,n,p) to be the bipartite graph obtained by deleting edges
from K, ,, independently with probability 1 —p. Then,

Pr (B(n,n,p) does not contain a perfect matching ) = O (nefnp) .

» Theorem 26 (Chernoff Bounds). Let Xg,---, Xy be 0 — 1 random wvariables that are
independent. Let u =FE [Zle Xl} . Then, for any 0 <46 <1,

k 2
Pr (Z X; <(1- 5)u> < e and, (1)
N 2
Pr (Z X; > (1+ 5)u> <e . (2)
i=1

11:7
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Consider the A)’s in Definition 21. We mentioned that for some of these A()’s the
corresponding a;’s might be odd. Let {A(il), e 7A(ik)} be this set, with i3 < --- < 1. Let
v%) be the vertex left out of the bipartition P() UQ(s) of A) for 1 < j < k (see Definition
21.2). We define the following events:

» Definition 27. For 1 < i < t, let A; be the event that G(P®", QW) contains a perfect
matching (or a near perfect matching). Let A = Ni_, A;.

» Definition 28. Let M) be a mazimum matching of G (P(i),Q(i)) for1 < ¢ < t. Let

» Definition 29. For1l <m < L%J, let By, be the event that there is an augmenting path

. E
between v(2m=1) and v2m) with respect to M’ in A. Let B = ﬂltﬁlj B

In order to prove Theorem 24, we follow these steps:
1. We will prove that each A; happens with high probability, and therefore by union bound,
A happens with high probability also.
2. We prove that each B,,, conditioned on A happens with high probability, and by union
bound, B conditioned on A also happens with high probability.
In order to prove 2, we will show that for each 1 < m < L J there is an augmenting path
between v(2m-1) and v(2m) which only consists of vertices between layers is,,_1 and igy,.
Therefore, these augmenting paths are vertex-disjoint from each other. These paths can be
augmented simultaneously since they don’t interfere with each other. So, 1 and 2 combined
with this fact imply that the active graph, A contains a perfect matching or a near perfect
matching with high probability.

Before we move on to proving 1 and 2, we note that G(P®,Q®") and V(A®) are both
random variables. In particular, V(A®) = (V(Kﬁl)) \ U(Z)) U.S, where S is a random subset

of U obtained by excluding every vertex with probability p. However, if we fix the vertex
set V (A(i)), then the edges of G(P(i), Q(i)) have the same distribution as that of a random
bipartite graph; we remind the reader that P U Q® is an arbitrary bipartition of A (see
Definition 21). Formally:

» Observation 30. For1 <i<t, G (PW,QW) conditioned on V (AW) = S, where |S| = a;,
has the same distribution as B (L%J, L%J,p)

Now we prove the following lemma;:

» Lemma 31. For1 <i<t¢, Pr(-A4;) =0 (%) Moreover, Pr(=A) = O (7%4)

Proof. We know that:

v (A9) =1) P (v (49) =)
= ZO || - efm‘p) -Pr (V (A(i)) = T) (Due to Observation 30 and Lemma 25)
= ZO ( ) (A( >) T) (Due to Claim 23 that a; > 300logn and p > 0.5)

1
=0 ( ) (Since we are summing over disjoint events).

By union bound it follows that, Pr (-.A) = O (7). <
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Np(v)
} A(iZm—I)

M (Np())

N 0D
} A(im)

Figure 2 Case 1: When unmatched vertices are in consecutive layers.

» Theorem 32. For 1 <m < |£], Pr(=B,, | A) = O (). Therefore, by union bound it
follows that Pr (=B | A) = O (5).

Proof. To bound Pr (=8, | A), we consider two cases:

1. Case 1: vy, _, and vj,  are in consecutive layers. That is, 42, = iam—1 + 1. We
will give an overview of what we are about to do. We will use v to denote v;,,, ,, v’ to
denote v;, , P and P’ to denote P(2m-1) and P(2») @ and @’ to denote Q(*2m-1) and

Q'2m) respectively.

» Definition 33. Let Np(v) (resp. Np/(v')) denote the set of vertices in P (resp. P’)
adjacent to v (resp. v'). Let degp(v) (resp. degp:(v')) denote |[Np(v)| (resp. |Np:(v')]).

For a set of vertices S, let M’(.S) denote the set of vertices matched to S in M’ (refer
to Definition 28 for the definition of M’). We will prove that with high probability
M (Np(v)) | and M’ (Np/(v')) ]| are large. Conditioned on these sizes being large, we
will prove that there is an edge (x,2’) in A where z € M’ (Np(v)) and 2’ € M’ (Np/(v')).
It follows there is an augmenting path P = (v, M'(z),z,2’, M’(z’),v') in A (note that
M’ (z) € Np (v) and M’ (2') € Np/ (v')). (See Figure 2)

To show this, we first show that |Np(v)| and |Np/(v')] are large with high probability.
We will condition on A, so M’ (Np(v))| and |[M’ (Np/(v')) | will consequently be large
with high probability. It then follows that one of the edges between these two sets is in A
with high probability.

FSTTCS 2020
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Ipai (M (Sj-1)
=5

M 5

Figure 3 Case 2: When v and v’ are not in consecutive layers.

We now turn to the formal proof of case 1. Let X, and X, be the random variables
denoting degp(v) and degp/(v') respectively (see Definition 33). Each edge incident on v
and v’ in A is sampled independently with probability p € [0.5,0.75]. This is true even
if we condition on the event A. Consequently, E[X, | A] = E[X,] > 75logn. Since X,
is the sum of 0 — 1 independent random variables, we may apply Chernoff bound (see
Theorem 26). It follows that:

1
Pr(X, <25logn|.A)=0 <$> .
Similarly, we have:
ns

Pr (X, §25logn|A)=O< ! )

Define Y to be the event that |[M’ (Np (v))| > 25logn and M’ (Np/ (v')) | > 25logn.
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Observe that,

1
Pr(=Y | A) <Pr(X, <25logn|A)+Pr(X, <25logn|.A) =0 (ns) .
Define Z to be the event that there is an edge between M’ (Np (v)) and M’ (Np/ (v')).
Observe that,

Pr(-2 | 4) < Pr(D [ A) +Pr(2 19,4 =0 () + ot
The second term follows from the fact that each edge appears independently with
probability p € [0.5,0.75], and there are Q(log?n) edges between M’ (Np (v)) and
M’ (Np: (v')) conditioned on Y. It follows that Pr (=B, | A) < Pr(=Z | A) = O ().
This proves our claim for this case.
2. Case 2: izm > igm-1 + 1. We denote v;,,, , by v, Pplizm-1) by P and pliam) by v’. Let
f =i9m —iom—_1. For 1 < j < f, let P2m-1+J) be denoted by P + j. We similarly define
Q and @ + j (see Figure 3). We also define the following sets:

SO = NP(U)
Sj = Np4j(M'(Sj_1)) for 1 <j < f.

For 0 < j < f, let &; be the event that |M’(S;)| > 25logn. Let £ be the event that
there is an edge between v and M’(Sy). It is easy to check that the occurrence of
Xo, X1 -+, Xy implies that there is an alternating path from v to a large set of vertices
(at least Q (logn)) in Q + j for all j € [f]. Note that £ implies that there is an edge from
Q@+ f tov'. Combined, & ---, Xf, € imply an augmenting path from v to v'. We thus
have:

» Observation 34. Let B,, and X1, -, X5, E be as defined above (refer to Definition 29
for a definition of B,,), then:

Pr (B, | A) > Pr (mgzoxk ne ] A) .

From the above observation, we deduce that in order to upper bound Pr (—=85,, | A), it is
sufficient to upper bound Pr (Uﬁzoﬁ/\,’k U-£ ‘ A). We know that:

;
Pr(Ufg=Xeu=e [ A) < D7 Pr (-2 | niZha 0 A) + Pr (=€ [ nf,dn A).
k=0

(Follows from the definition of conditional probability)

We computed Pr(—Xp | A) in case 1. We remind the reader this is just the probability
that |[M'(Sp)| < 25logn. We now show how to compute Pr(=&; | A, Ay, -+, Xj_1).
Consider any w € P + j. We want to compute the probability that w is in the set
Npij(M’'(S;-1)) = S; conditioned on the events X;_; and A. Since every edge on w is
present in the active graph A independently with probability p:

Pr(wé¢S;| A X, -, X_1) < (1—p)>ler 3)

25logn
1
< (2) (Due to the fact that p > 0.5). (4)
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This implies that:
E HSJ| | A7 X(), s ,Xjfl] Z 100 10g n.

Since |S;| is a sum of 0 — 1 random variables (it is the sum of 1(,¢g,3, that take value 0
with probability O ( : ) (due to Equation (4)) and 1 otherwise), we can apply Chernoff

25

bounds (Theorem 26):

1
Pr(|SJ| < 2510gn ‘ A, X(), te ,Xjfl) =0 (9) .
n
Since we condition on A (that is a perfect or, a near perfect matching being present), we
know that:
M (S5) | = 1S}]

Consequently, we have:

Pr(JM’'(S;)] <25logn | A, Xy, -+, Xj—1) = Pr(|S;| < 25logn | A, X, -+, Xj_1)

of)

Finally, we want to bound Pr (=€ | A, Xp,--- , X}). This can be upper bounded:
1 25logn
Pr(ﬁg ‘ ‘AaXOa"' 7Xf) < (2)
(Edges on v" appear independently with probability p > 0.5)

1
-0 (5)
It is immediate from Observation 34 that:
1

From case 1 and case 2, we know that by union bound, Pr (=B | A) = O (). <

Proof (Theorem 24). From Lemma 31 and Theorem 32 we have that:

1
Pr (A does not contain a perfect matching ) < Pr(=A) +Pr (=B | A) = O <4> .«
n

3.5 Lower Bound On Lengths of Augmenting Paths
We start with some definitions:

» Definition 35. For i € {1,--- ,m}, we denote by e;, the edges arriving at time i. Let
S ={eosm, * ,€0.m5m}-

This section will be devoted to proving that among the edges in S, Q (n) edges will join

augmenting paths of expected length (L), and the algorithm is forced to augment along

logn

these. Formally,

» Theorem 36. With high probability, there exists S' C S, |S'| > 155 such that each e € S’

n
logn ) °

joins an augmenting path of expected length at least ) (
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We first give a proof of Theorem 10 using Theorem 36:

Proof (Theorem 10). For i € [m], let Z; be the random variable denoting the length of the
augmenting path that we augment along when the edge e; joins. Let Z = Z;’;l Z;, which
is the random variable denoting the total length of the augmenting paths taken during the
course of the algorithm. We want to compute the quantity E [Z]. We note that:

Bl2]= Y El2] > 3 ElZ] =150 (o)

jeSs’

-5
logn

(Due to Theorem 36) <

Before we prove Theorem 36, we need certain observations, and the following version of
Chernoff for negatively associated random variables:

» Theorem 37. [6] Let Xy, - , Xy be 0 — 1 random variables that are negatively associated.
Let u=FE {Zle Xz}. Then, for any 0 < 4§ <1,

52

k
Pr <Z X; <(1- 5)u> <e 7 and, (5)

k 2
Pr (ZX > (1+5)u> <e . (6)

We remind the reader of the edges M in graph G between D and U (refer to Section
3.12). Note that [M| > 2. Further, M = Ul_; M®) and [M®| > 100logn for all i € [t].
We now prove the following claim about S:

> Claim 38. Let R be the event that for all i € [t], |[M ) N S| > 10logn. Then, Pr(R) >
1-0 ().

n3

Proof. Consider any M®, and let e € M), Let Z, be a 0 — 1 random variable that takes
value 1 if e € S, and 0 otherwise. Let Z = ) ;) Z.. This is the random variable that
denotes |M NN |. Further, Z is a sum of negatively associated random variables, and
therefore obeys the condition of Theorem 37. We note the following:

1
Pr(Z.=1) = 1 and, E[Z] = 25logn.

It follows that:

1
Pr(Z < 10logn) < exp (f (0.6)* (0.5) 25 log n) < exp(—4.5logn) =0 <n4) .

Due to union bound, we know that Pr(R) >1— O (7). <
We also have the following corollary due to Claim 38:
» Corollary 39. With probability at least 1 — O (%), [M N S| > £

We are ready to define the candidate set S’ in Theorem 36, but before that we give a
final definition:
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» Definition 40. Consider edges e € M®) and f € MY (see 3.12 for the definition of M® ).
Then let d (e, f) = min{t — |i — j|,|i — j|}.

Let MNS = {Gm e, } Let us assume without loss of generality that before the arrival
of e;,, the set V(G;,_1) is even, so by Theorem 16 the graph G;, _; has a perfect matching.
We define S’ to contain every second edge of M NS: that is, S’ = {eiz, €igy ,eiQLqJ } For

2
the rest of the proof we proceed as follows: we will show that with high probability, when
€;,. arrives, it will join an augmenting path ending at e;,, , where s € {17 RN L%J } Let
€y, € M) and €inyy1 € MG, Then, the length of the augmenting path that e,,, , joins is
at least d(e;,._,,ei,.) =min{t — |§' — j|, |7’ — j|}. We prove that the expected value of this
quantity is at least (

logn
We prove the following observation:

» Lemma 41. Let e and f be two edges that are chosen uniformly at random from M. Then,

Eld(e, /)] > 3500 ogm -

Proof. The total number of possible choices for (e, f) = (£) - (2 —1). The total number
choices for (e, f) such that d (e, f) = k, are (m) - (1001logn) - (2001logn). To see this,

fix a layer for e, then the number of choices of f for which d (e, f) = k are exactly 200 log n.
Finally, the total number possible choices of layers for e is m. This implies that:

(50010gn) (10010g7’l) (QOOIOgn)
e =0 = GBEEED
5
(somtew) - (10010g7) - (200 log n)
- (5)- (%)
> 1000logn.
n
Finally, we have that:
%
3 n
E[d(evf)}:ZhPr(d(e,f):k)zZ:W. <

We state an immediate corollary of Lemma 41:

» Corollary 42. For alls € {1,---,[2]}, E[d (e, _,.€i,.)] = 3000 Tog 7 -

» Lemma 43. If GP™ contains a perfect matching or a mear perfect matching for all
pE {0.5, (]'5'$+1,- - 0'757';”*1,0.75}, then for all s € {1, S L%J }, €iy. JOINS an augmenting
path that ends in e;,, .

Proof. We remind the reader that |V (GP"™)| is a random variable (check Definition 14)
and it’s value increases if and only if the edges in M arrive. Recall the assumption that
|V (Gi,-1) | is even. Upon the arrival of e;,, we have a near perfect matching in the graph,
and this remains the case until e;, arrives. At this point under our assumption, there must
be a perfect matching in the graph. However, the matching that is currently maintained
by the algorithm leaves the vertices are the end points of e;; and e;, in D unmatched.
(Here we use the simplifying assumption from the preliminaries that the algorithm is only-
augmenting, so since the arrival of e;; does not increase the size of the maximum matching,
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and since the algorithm only changes the matching via augmenting paths, the endpoint of
e;, in D remains free until the arrival of e;,.) It follows that these endpoints are joined
together by an augmenting path. Continuing this way, we can prove the theorem for any

se{l- 3]} <

Proof (Theorem 36). Let F be the event that there is an S’ C S, |S| > 135 such that each
e € S§" augments along a path of expected length at least Q (1 ) Note that the event F

n
ogn

fails to happen if one of these go wrong:

1. |S'] < 7&. We call this event —¢/. We know from Corollary 39 that Pr(-/) = O (-5).

This is because S’ just takes alternate elements from S.
2. Let V be the event that for all p € {0.57 0'5'$+1,~-- , 0'75"”*1,0.75}, GP™ contain a

perfect matching or a near perfect matching. Then, fromniemma 43 we know that V
implies that for all s € {1, s L%J }, €i,._, joins an augmenting path ending in e,,,.
From Corollary 42, we know all these paths have expected length at least m. We
know from Corollary 19, that Pr(=V) = O ().

n
It follows that the occurrence of A and B implies the occurrence of F. Consequently,

Pr(F)>1-Pr(-U) —Pr(=V)>1-0(2). <

n

4 Conclusion and Open Problems

We consider the problem of maximum matching with recourse in the random edge-arrival
setting. The goal is to compute the expected recourse. As mentioned in the introduction,
there are strong lower bounds of 2 (n2) in the adversarial edge-arrival model, even for the case
of simple paths. For random edge-arrivals, we can do significantly better for special classes
of graphs: we prove an upper bound of O (nlogn) for the case of paths and O (n log? n) for
the case of trees. This bound is tight up to logn factors, since we prove that for the case
of paths, any algorithm must take expected total recourse of 2 (nlogn). But for general
graphs, we show that random arrival is basically as hard as adversarial arrival: we give a

family of graphs for which the expected recourse is at least {2 (b";n).
An interesting open question is the case of bipartite graphs: if edge-arrivals are random,

can we prove a similar lower bound of €2 ( ) on the expected recourse? Our current

2
lower-bound construction seems hard to extend to the bipartite case, as our proof crucially
relies on the fact that after a constant fraction of the edges have arrived, if we focus only on
the non-isolated vertices in the lower-bound graph G, then G contains a perfect matching
with high probability. This allowed us to force the adversary to take an augmenting path
between every new pair of non-isolated vertices. But in the case of bipartite graphs, it
seems difficult to guarantee a perfect matching between the non-isolated vertices because the
number of non-isolated vertices on the left might not be equal to the number on the right; in

fact, they are likely to differ by a © (y/n) factor.
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—— Abstract

We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [6]), a
refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike
most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together
with information on countermodels, which are syntactically stored in the proofs as merge maps.
As demonstrated in [6], this makes MRes quite powerful: it has strategy extraction by design and
allows short proofs for formulas which are hard for classical QBF resolution systems.

Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of
MRes. Technically, the results are either transferred from bounds from circuit complexity (for
restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our
results imply that the MRes approach is largely orthogonal to other QBF resolution models such as
the QCDCL resolution systems QRes and QURes and the expansion systems VExp + Res and IR.

2012 ACM Subject Classification Theory of computation — Proof complexity
Keywords and phrases QBF, resolution, proof complexity, lower bounds
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.12

Funding Olaf Beyersdorff: John Templeton Foundation (grant no. 60842), Carl Zeiss Foundation.
Toma$ Peitl: Grant J-4361 of the Austrian Science Fund FWF.

3

Acknowledgements Part of this work was done during the Dagstuhl Seminar “SAT and Interactions’
(Seminar 20061).

1 Introduction

Proof complexity aims to provide a theoretical understanding of the ease or difficulty of
proving statements formally. It also aims to explain the success stories of, as well as the
obstacles faced by, algorithmic approaches to hard problems such as satisfiability (SAT) and
Quantified Boolean Formulas (QBF) [18,28]. While propositional proof complexity, the study
of proofs of unsatisfiability of propositional formulas, has been around for decades [19,26],
the area of QBF proof complexity is relatively new, with theoretical studies gaining traction
only in the last decade or so [2,7,9,10]. While inheriting and using a wealth of techniques
from propositional proof complexity [11,13,24], QBF proof complexity has also given several
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new perspectives specific to QBF [5,23,34], and these perspectives and their connections to
QBEF solving [31,38] as well as their practical applications [33] have driven the search for
newer proof systems [1,10,21,27,29].

Many of the currently known QBF proof systems are built on the best-studied propositional
proof system resolution [16,32]. Broadly speaking, resolution has been adapted to handle
the universal variables in QBFs in two intrinsically different ways. The first is an ezpansion-
based approach: universal variables are eliminated at the outset by implicitly expanding the
universal quantifiers into conjunctions, creating annotated copies of existential variables.
The systems VExp + Res, IR, and IRM [10, 23] are of this type. The second is a reduction-
rule approach: under certain conditions, resolution may be blocked, and also under certain
conditions, universal variables can be deleted from clauses. The conditions are formulated to
preserve soundness, ensuring that if a QBF is true, then so is the QBF resulting from adding
a derived clause. The systems QRes, QURes, CP + VRed [12,25, 36] are of this type.

A central role in QBF proof complexity is played by the two-player evaluation game on
QBFs, and the existence of winning strategies for the universal player in false QBFs. For
many QBF resolution systems, such strategies were used to construct proofs and demonstrate
completeness, and soundness was demonstrated by extracting such strategies from proofs
[1,10,20]. The strategy extraction procedures build partial strategies at each line of the proof,
with the strategies at the final line forming a complete countermodel. These extraction
procedures are based on the fact that in each application of a rule in the proof system, any
winning strategies of the existential player are not destroyed.

In the systems QRes [25] and QURes [36], the soundness of the resolution rule is ensured
by enforcing a very simple side-condition: variables other than the pivot cannot appear in
both polarities in the antecedents. It was observed early on that this is often too restrictive.
The long-distance resolution proof system LD-QRes [1,38] arose from efforts to have less
restrictive but still sound rules. In this system, a universal variable could appear in both
polarities and get merged in the consequent, provided it was to the right of the pivot in the
quantifier prefix. This preserves soundness, but the strategy extraction procedures become
notably more complex.

The system LD-QRes, while provably better than QRes [20], is still needlessly restrictive
in some situations. In particular, by checking a very simple syntactic prefix-ordering condition,
it fails to exploit the fact that soundness is not lost even if universal variables to the left
of the pivot are merged in both antecedents, provided the partial strategies built for them
in both antecedents are identical. A new system Merge Resolution (MRes) was introduced
last year [6] by a subset of the current authors, precisely to address this point. In MRes,
partial strategies are explicitly represented within the proof, in a particular representation
format called merge maps — these are essentially deterministic branching programs (DBPs).
In this format, isomorphism checking can be done efficiently, and this opens the way for
enabling sound applications of resolution that would have been blocked in LD-QRes (and
QRes). In [6], it was shown that this brought a rich pay-off: there is a family of formulas, the
SquaredEquality formulas, with short (linear-size) proofs in MRes, even in its tree-like and
regular versions, but requiring exponential size in QRes, QURes, CP 4 VRed, VExp + Res,
and IR. It is notable that the hardness of SquaredEquality in these systems stems from a
certain semantic cost associated with these formulas and a corresponding lower bound [4,5].
Thus the results of [6] show that such semantic costs are not a barrier for MRes.

In this paper, we explore the price paid for overcoming the semantic cost barrier. We
show that (expectedly) MRes is not an unqualified success story. Building strategies into
proofs via merge maps, and screening out unsoundness only through isomorphism tests,
comes at a fairly heavy price.
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Figure 1 Visual summary of the proof complexity landscape, with new results shown in bold.

Dotted lines to the box containing the four systems on the right indicate incomparability with all the
four systems. All incomparability results with tree-like MRes hold also with the tree-like systems.

(A) Lower bounds from circuit complexity for restricted versions of MRes. Since the
strategies are explicitly represented inside the proofs, computational hardness of strategies
immediately translates to proof size lower bounds. While computational hardness of strategies
is a known source of hardness in all reduction-based proof systems admitting efficient strategy
extraction [8,10], the computational model relevant for MRes is one for which no unconditional
lower bounds are known. For tree-like and regular MRes, the relevant models are decision
trees and read-once DBPs, where lower bounds are known. Using this approach, we show:
1. Tree-like MRes is exponentially weaker than MRes.
The QParity formulas witness the separation (Theorem 7) as their unique countermodel
is the parity function which requires large decision trees.
2. Tree-like MRes is incomparable with the dag-like and tree-like versions of QRes, QURes,
CP + VRed, VExp + Res and IR.
One direction was shown in [6] via the SquaredEquality formulas: these formulas are
easy for tree-like MRes but hard for dag-like QRes, QURes, CP + VRed, VExp + Res,
IR. The other direction is witnessed by the Completion Principle formulas (Theorem 9).
Unlike the QParity formulas, these formulas do not have unique countermodels. However,
we show that every countermodel requires large decision tree size, and hence obtain the
lower bound for tree-like MRes.

(B) Combinatorial lower bounds for full MRes. Even when winning strategies are unique
and easy to compute by DBPs, the formulas can be hard for MRes. We establish such
hardness in two cases, obtaining more incomparabilities.

12:3

FSTTCS 2020



12:4

Hard QBFs for Merge Resolution

1. The LQParity formulas, easy in VExp 4+ Res [10], are exponentially hard for regular MRes
(Theorem 13). Hence regular MRes is incomparable with VExp + Res and IR.

2. The KBKF-Iq formulas, easy in QURes [2], are exponentially hard for MRes (Theorem 19).
Hence MRes and regular MRes are incomparable with QURes and CP 4 VRed.

The second hardness result above for the KBKF-lq formulas provides the first lower
bound for the full system of MRes, for which previously no lower bounds were known.

It may be noted that for existentially quantified QBFs, all the QBF proof systems
mentioned in this paper coincide with Resolution (or in case of CP + VRed, with Cutting
Planes). Therefore lower bounds for these propositional proof systems trivially lift to the
corresponding QBF proof system. In particular, the separations of tree-like and regular
MRes from MRes and other systems follow from the propositional case. However, such lower
bounds do not tell us much about the limitations of the QBF proof system other than what is
known from the underlying propositional proof system. Therefore, in QBF proof complexity,
we are interested in “genuine” QBF lower bounds, i.e. lower bounds that do not follow from
propositional lower bounds (cf. [14] on how to formally define the notion of “genuine” lower
bounds). The lower bounds we establish here are of this nature.

Figure 1 depicts the simulation order and incomparabilities we establish involving MRes
and its refinements. Amongst the remaining systems (the five systems on the right), all
relationships not directly implied by depicted connections are known to be incomparabilities
[10,12,23].

2 Preliminaries

Let [n] ={1,2,...,n} and [m,n] = {m,...,n}. We represent clauses by sets of literals.
The resolution rule derives, from clauses C'V x and D V -z, the clause C vV D. We say
that C'V D is the resolvent,  is the pivot, and denote this by C'V D =res(C Vz, DV -z, x).
The propositional proof system Resolution proves that a CNF formula F' is unsatisfiable
by deriving the empty clause through repeated applications of the resolution rule.

Quantified Boolean formulas. A Quantified Boolean formula (QBF) in prenex conjunctive
normal form is denoted ® = Q- ¢, where (a) Q = Q121Q22> ... QZy, is the quantifier prefix,
in which Z; are pairwise disjoint finite sets of Boolean variables, Q; € {3,V} for each i € [k]
and Q; # Q41 for each i € [k — 1], and (b) the matrix ¢ is a CNF over vars(®) = U;cr) Z;.

The existential (resp. universal) variables of ®, typically denoted X or X3 (resp. U or
Xv) is the set obtained as a union of Z; for which Q; = 3 (resp. @Q; = V). The prefix Q
defines a binary relation <g on vars(®), such that z <¢ 2’ holds iff z € Z;, 2’ € Z;, and
1 < j, in which case we say that 2’ is right of z and z is left of z’. For each u € U, we define
Lo(u) ={z € X |  <g u}, i.e. the existential variables left of wu.

For a set of variables Z, let (Z) denote the set of assignments to Z. A strategy h for a QBF
® is a set {h" | u € U} of functions h": (Lg(u)) — {0,1} (for each a € (X), h*(al ()
and h(«) should be interpreted as a Boolean assignment to the variable v and the variable
set U respectively). Additionally h is winning if, for each o € (X), the restriction of ¢ by
the assignment (o, h()) is false. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

The semantics of QBFs is also explained by a two-player evaluation game played on a
QBF. In a run of the game, two players, the existential and the universal player, assign
values to the variables in the order of quantification in the prefix. The existential player wins
if the assignment so constructed satisfies all the clauses of ¢; otherwise the universal player
wins. Assigning values according to a countermodel guarantees that the universal player
wins no matter how the existential player plays; hence the term “winning strategy”.
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2.1 The formulas

We describe the formulas we will use throughout the paper.

The QParity and LQParity formulas [10]. Let parity“(y1,y2,...,yx) be a shorthand
for the following conjunction of clauses: Agci s/=1 (mod 2) ((Vies¥i) V (Vigsyi)). Thus
parity®(y1,y2, ..., yx) is equal to 1 iff y1 + y2 + -+ + yx = 0 (mod 2). QParity,, is the QBF
Jxy, ... 2, V2, 31, . by (/\ie[n+l] ¢Z) where

b = parity®(z1,t1); Vi € [2,n)], ¢!, = parity®(ti_1,xi, t;); "= (t, V 2) A (ﬂ\/f) )

The QBFs are false: they claim that there exist z1,...,z, such that z; + - -+ + x, is neither
congruent to 0 nor 1 modulo 2. Note that the only winning strategy for the universal player
is to play z satisfying z = x1 + - -+ + x,, (mod 2).

Similarly, let parity“(y1,y2, - - - , Yk, 2) abbreviate /\CeparityC(yl,yz,...,yk)
LQParity,, is the QBF Jx1,...,2,,Vz, 31, ..., tp. (/\ie[nJrl] qﬁl) where

(b'}y, = Pmc(l'lathz); Vi € [2an]7¢:7, = pmc(tiflvxivtiaz); ¢Z+1 = (tn vV Z)/\(a\/f) .

For both QParity,, and LQParity,,, for 4,5 € [n + 1],7 < j, we let (b%’j] denote /\ke[m] ok .

Also, X ={z1,...,zp} and T = {t1,...,t,}.

» Observation 1. For both QParity, and LQParity, : (a) for eachi € [n], and each C € ¢!,
{zi,t;} C var(C); and (b) for each i € [n+ 1]\ {1}, and each C € ¢¢, {t;—1} C var(C).

The Completion Principle formulas CR,, [23]. The QBF CR,, is defined as follows:

CR, = 3 ]a:ij,Vz7 ﬂ]ai, 3 bj. ( A (Aij/\Bij))/\LA/\LB
i€

i,j€n [n]  j€ln] i,j€[n]

where Aij :acij\/z\/ai, Bij :Tij\/f\/bj, LA :aVVﬁ, and LB :E\/\/E

Let X, A, B denote the variable sets {z;; : ¢,j € [n]}, {a; : i € [n]}, and {b; : j € [n]}. Tt is
convenient to think of the X variables as arranged in an n X n matrix.
Intuitively, the formulas describe a completion game, played on the matrix

a ... ar ... Qn ... Qn

by ... by, ... b1 ... by
where the 3-player first deletes exactly one cell per column and the V-player then chooses
one row. The V-player wins if his row contains all of A or all of B (cf. [23]).

The KBKF-Iq[n2] formulas [2]. Our last QBFs are a variant of the formulas introduced by
Kleine Biining et al. [25], which in various versions appear prominently throughout the QBF
literature [2,5,10,20,36]. For n > 1, the nth member of the KBKF-lg[n] family consists of
the prefix 3dy, ey, V1, Ads, es, Vo, ..., 3dy, en, VL, 3f1, fo, ..., fn and clauses

AO :{aaavﬁ7"'7ﬁ}
A?:{diaxiamaﬁaﬁw“aﬁ} Aze :{eivlﬁvmvm7ﬁv“'7ﬁ} VZE[’H*”

A’rdl = {dnax’l’ﬂﬁ? AR 7f7n} Af‘b = {en7ﬂ7ﬁ7 AR 7%}
B?L = {l’n,fn} BylL = {ﬁa fn}

(Cvz)A(CV7)).
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Note that the existential part of each clause in KBKF-lq[n] is a Horn clause (at most one
positive literal), and except Ay, is even strict Horn (exactly one positive literal).

We use the following shorthand notation. Sets of variables: D = {d,...,d,}, E =
{e1,..vent, F={f1,.. ., fu},and X = {x1,...,2,}. Sets of literals: For Y € {D, E, X, F'},
set Yi={u|ueY}and YO = {u|u € Y}. Sets of clauses:

Ao = {Ao}

A = {AL A5} Vien] B; = {BY.B!} Vie|n

Al = UkeijAr Vi, j €[0,n],i<j Bij = UkeligBr Vi,je€[n],i<j
= A[O,n] B = B[l,n]

We use the following property of these formulas:

» Proposition 2. Let h be any countermodel for KBKF-lg[n|. Let o be any assignment to
D, and B be any assignment to E.
For each i € [n)], if aj # f3; for all 1 < j <, then h*i((c, B) [LQ(M)) = .

In particular, if a; # B; for all j € [n], then the countermodel computes h(c, f) = a.

2.2 The Merge Resolution proof system [6]

The formal definition of the Merge Resolution proof system, denoted MRes, is rather technical
and can be found in [6]. Here we present a somewhat informal description.

First, we describe the idea behind the proof system. MRes is a line-based proof system.
Each line L has a clause C' with only existential literals, and a partial strategy h* for each
universal variable u. The idea is to maintain the invariant that for each existential assignment
a, if « falsifies C, then « extended by the partial universal assignment setting each u to h*(«)
falsifies at least one of the clauses used to derive L. Thus the set of functions {h*} gives a
partial strategy that wins whenever the existential player plays from the set of assignments
falsifying C'. The goal is to derive a line with the empty clause; the corresponding strategy
at that line will be a complete winning strategy, a countermodel. Along the way, resolution
is used on the clauses. If the pivot is x, then for universal variables u right of x, the partial
strategies can be combined with a branching decision on z. However, for u left of z, in
the evaluation game, the value of u is already set when x is to be assigned. Thus already
existing non-trivial partial strategies for u cannot be combined with a branching decision,
and so this resolution step is blocked. However, if both the strategies are identical, or if
one of them is trivial (unspecified), then the non-trivial strategy can be carried forward
while maintaining the desired invariant. Checking whether strategies are identical can itself
be hard, making verification of the proof difficult. In MRes, this is handled by choosing a
particular representation called merge maps, where isomorphism checks are easy.

Now we can describe the proof system itself. First we describe merge maps. Syntactically,
these are deterministic branching programs, specified by a sequence of instructions of one of
the following two forms:

(line £) : b where b € {*,0,1}.1

Merge maps containing a single such instruction are called simple. In particular, if b = *,

then they are called trivial.

(line ¢) : If x =0 then go to (line ¢1) else go to (line {s), for some ¢1,¢5 < £. In a merge

map M for u, all queried variables x must precede u in the quantifier prefix.

Merge maps with such instructions are called complex.

! In [6], the notation used is b € {*,u, @}; u, @, * denote u = 1,u = 0, undefined respectively.
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(All line numbers are natural numbers.) The merge map M™ computes a partial strategy
for the universal variable u starting at the largest line number (the leading instruction) and
following the instructions in the natural way. The value * denotes an undefined value.

Two merge maps M7, M5 are said to be consistent, denoted M; <t Mo, if for every line
number ¢ appearing in both M7, Ms, the instructions with line number ¢ are identical. Two
merge maps M, My are said to be isomorphic, denoted M; ~ Ms, if there is a bijection
between the line numbers in M7 and Ms that transforms M; to Ms in the natural way.

For the remainder of this section let ® = @ - ¢ be a QBF with existential variables X
and universal variables U. The proof system MRes has the following rules:

1. Aziom: For a clause A in the matrix ¢, let C be the existential part of A. For each
universal variable u, let b, be the value u must take to falsify A; if u ¢ var(A), then

b, = *. For any natural number 4, the line (C,{M" : u € U}) where each M" is the

simple merge map (i) : b, can be derived in MRes.

2. Resolution: From lines L, = (Cy,{M} : u € U}) for a € {0,1}, in MRes, the line

L= (C,{M" :u € U}) can be derived, where for some z € X,

C =res(Cyp, C1, ), and
for each u € U, either M} is trivial and M*" = M}*_, for some a, or M" = My ~ M7,
or z precedes u and M™" has a leading instruction that builds the complex merge map
If © =0 then (M) else (M7").
A refutation is a derivation using these rules and ending in a line with the empty existential
clause. The size of the refutation is the number of lines. In the rest of this paper, we will
denote refutations by the Greek letter IT.

A small but important illustrative example from [6] is reproduced in the appendix.

As shown in [6], the merge maps at the final line compute a countermodel for the QBF.
To establish this, some stronger properties of the derivation are established and will be useful
to us. We restate the relevant properties here.

» Lemma 3 (Extracted/adapted from [6] Section 4.3, (Proof of Lemma 21)). Let ® =Q - ¢
be a QBF with existential variables X and universal variables U. Let 11 = Ly,...,L,, bean
MRes refutation of ®, where each L; = (Cy, {M}* | w € U}). Further, for each i € [m],

let a; be the minimal partial assignment falsifying C;,

let A; be the set of assignments to X consistent with o,

for each uw € U, let h be the function computed by M},

for each o € A;, let hi() be the partial assignment which sets variable u to h¥(a [LQ(u))

if h?(a[LQ(u)) # %, and leaves it unset otherwise.
Then for each « € A;, the assignment (c, h;(@)) falsifies at least one clause of ¢ used in the
sub-derivation of L.

Let Gr be the derivation graph corresponding to II (with edges directed from the
antecedents to the consequent, hence from the axioms to the final line).

» Proposition 4 ([6]). For alluw € U, M}" is isomorphic to a subgraph of G (up to path
contraction).

Let S be a subset of the existential variables X of ®. We say that an MRes refutation of
® is S-regular if for each x € S, there is no leaf-to-root path that uses x as pivot more than
once. An X-regular proof is simply called a regular proof. If Gy is a tree, then we say that
II is a tree-like proof.

12:7
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3 Lifting branching program lower bounds

The following lemma is an immediate consequence of Proposition 4.

def

» Lemma 5. Let II1 = Lq,...,L,, be an MRes refutation. If I is tree-like (resp. regular),
then for allw € U, MY is a decision tree (resp. read-once branching program). Moreover,
the size of I1 is lower bounded by the size of M.

This lemma allows us to lift lower bounds for decision trees (resp. read-once branching
programs) to lower bounds for tree-like (resp. regular) Merge Resolution.

For QParity,, and LQParity,,, the only winning strategy for the universal player is to set
z such that z = x1 + 22 + -+ - + 2, (mod 2).

» Proposition 6 (Folklore). The decision tree size complezity of the parity function is 2™.
» Theorem 7. sizeppestrec(@Parity,,) = 20(n) gnd sizepres Tree(LQParity,) = 28(n)

For the QBF CR,,, the winning strategy for the universal player (countermodel) is not
unique. However, we show that all countermodels require large decision trees.

» Lemma 8. Fvery countermodel for CR, has decision tree size complexity at least 2™.
» Theorem 9. sizeyrestree( CRy) = 2900,

» Corollary 10. Tree-Like MRes is incomparable with the tree-like and general versions of
QRes, QURes, CP+ VY Red, YExp + Res, and IR.

Proof. We showed in Theorem 9 that the Completion Principle CR,, requires exponential-size
refutations in tree-like Merge Resolution. It has polynomial-size refutations in tree-like QRes
[22] (and hence also in QURes and CP + VRed) and tree-like VExp + Res [23] (and hence
also in IR). (While [23] does not explicitly mention tree-like proofs, the proof provided there
for CR,, is tree-like.) On the other hand, the formulas EQ,, have polynomial-size tree-like
MRes refutations [6] but require exponential-size refutations in QRes, QURes, CP +VRed [5],
VExp + Res, IR [4] (cf. [3] on how to apply the lower bound technique from [4] to EQ,,). <

We now show how to lift lower bounds for read-once branching programs to those for
regular MRes. This follows the method used, for instance, in [10] (Section 4.1) and [30]
(Section 6). Let f: X — {0,1} be a Boolean function, let Cy be a Boolean circuit encoding
f, and let u be a variable not in X. Using Tseitin transformation [35], we can construct
a CNF formula ¢(X,u,Y") such that 3Y.¢(X,u,Y) is logically equivalent to Cf(X) # u.
Therefore, ® := IXVuIY.¢(X,u,Y), called the QBF encoding of f, is a false QBF formula
with f as the unique winning strategy. Moreover, the size of ® is polynomial in the size of
Cy. Choosing a function f that can be computed by polynomial-size Boolean circuits but
requires exponential-size read-once branching programs gives the desired lower bound. Many
such functions are known [37]. For instance, we can use the following result:

» Theorem 11 ([17]). There is a Boolean function f in n variables that can be computed by
a Boolean circuit of size O(n3/2) but requires read-once branching programs of size 221

» Corollary 12. There is a Boolean function f in n variables with a QBF encoding ® of size
polynomial in n such that any regular MRes refutation of ® has size 24V,
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4 A lower bound for Regular Merge Resolution

In this section, we prove a lower for a formula whose countermodel can be computed by
polynomial-size read-once branching programs.

» Theorem 13. sizenrpespey(LQParity,) = 24,

This follows from a stronger result that we prove below: any T-regular refutation of LQParity,,
in MRes must have size 2°(") (Theorem 17).

The proof proceeds as follows: Let II be a T-regular MRes refutation of LQParity,,.
Since every axiom has a variable from 7' while the final clause in II is empty, there is a
maximal “component” of the proof leading to and including the final line, where all clauses
are T-free. The clauses in this component involve only the X variables. We show that the
“boundary” of this component is large, by showing in Lemma 16 that each clause here must
be wide. (This idea was used in [30] to show that CR is hard for reductionless LD-QRes.) To
establish the width bound, we note that no lines have trivial strategies. Since the pivots at
the boundary are variables from 7', the merge maps incoming into each boundary resolution
must be isomorphic. By carefully analysing what axiom clauses can and must be used to
derive lines just above the boundary (Lemma 15), we conclude that the merge maps must be
simple, yielding the lower bound. To fill in all the details, we first describe some properties
(Lemma 14) of II that will be used in obtaining this result.

The lines of II will be denoted by L, L', L” etc. For lines L and L’ the respective clause,
merge map and the function computed by the merge map will be denoted by C, M, h and
C', M’, b/ respectively. Let Gr be the derivation graph corresponding to IT (with edges
directed from the antecedents to the consequent, hence from the axioms to the final line).
We will refer to the nodes of this graph by the corresponding line. For L, L’ € II, we will say
L ~ L' if there is a path from L to L' in Gpy.

For a line L € II, let II; be the minimal sub-derivation of L, and let Gy, be the
corresponding subgraph of Gp with sink L. Define UsedConstraints(Il;) = {¢¢, | i €
[n + 1],leaves(Gr, ) N ¢, # 0}, and Uci(Ily) = {i € [n + 1] | ¢!, € UsedConstraints(II1)}.
(Ucar stands for UsedConstraintsIndex.) Note that for any leaf L, Uci(II,) is a singleton.

Define S’ to be the set of those lines in II where the clause part has no T variable and
furthermore there is a path in Gy from the line to the final empty clause via lines where all
the clauses also have no T variables. Let S denote the set of leaves in the subgraph of G
restricted to S'; these are lines that are in S’ but their parents are not in &’. Note that no
leaf of IT is in S’ because all leaves of G contain a variable in T'.

» Lemma 14. Let L = (C, M) be a line of II. Then UcI(Il;,) is an interval [i,j] for some
1<i<j<n+1. Furthermore, (below i,j refer to the endpoints of this interval)
1. Forallk € [i,j—1], ty & var(C).
2. Ifi > 1, then t;—1 € var(C).
3. If j < n, then t; € var(C).
4. lvar(C)NT| =1 iff [i,j] contains exactly one of 1,n + 1.
var(C)NT =0 iff [i, 5] = [1,n+ 1].
5. For all k € [i,5] N [1,n], zx € var(C) U var(M).

» Lemma 15. Let L € S be derived in 11 as L = res(L’, L" ty). Then Uci(lly) = [1,n + 1],
and Uci(l ), Uci(Ily») partition [1,n + 1] into [1,k], [k + 1,n + 1].

» Lemma 16. For all L € S, width(C) = n.

FSTTCS 2020
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» Theorem 17. Every T-regular refutation of LQParity, in MRes has size 2™,

Proof. Let IT be a T-regular refutation of LQParity,, in MRes. Let &', S be as defined in
the beginning of this sub-section. By definition, for each L = (C, M) € S, var(C) C X.
Let Il = {C | L = (C,M) € §’}. Then II contains a propositional resolution refutation
of C={C | L= (C,M) € A}. Therefore C is an unsatisfiable CNF formula over the n
variables in X. By Lemma 16, each clause in C has width n and so is falsified by exactly one
assignment. Therefore, to ensure that each of the 2™ assignments falsifies some clause, (at
least) 2™ clauses are required. Therefore |C| > 2". Hence |II| > 2™. <

» Corollary 18. Regular MRes is incomparable with ¥ Ezp + Res and IR.

5 A lower bound for Merge Resolution

In this section we show that the KBKF-lq formulas are exponentially hard for MRes.

» Theorem 19. sizeyres(KBKF-lg[n]) = 29,

Proof idea

We will show that, in any MRes refutation of the KBKF-lq formulas, the literals over
the variables in F' = {fi, f2,..., fn} must be removed before the strategies become “very
complex”. From this we conclude that there must be exponentially many lines.

To argue that literals over F' must be removed before the strategies become “very complex”,
we look at the form of the lines containing literals over F. If any such line has a “very
complex” strate