
40th IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2020, December 14–18, 2020, BITS Pilani,
K K Birla Goa Campus, Goa, India (Virtual Conference)

Edited by

Nitin Saxena
Sunil Simon

LIPIcs – Vo l . 182 – FSTTCS 2020 www.dagstuh l .de/ l ip i c s

Editors

Nitin Saxena
Indian Institute of Technology Kanpur, India
nitin@cse.iitk.ac.in

Sunil Simon
Indian Institute of Technology Kanpur, India
simon@cse.iitk.ac.in

ACM Classification 2012
Theory of computation; Computing methodologies; Software and its engineering

ISBN 978-3-95977-174-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-174-0.

Publication date
December, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2020.0

ISBN 978-3-95977-174-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-6931-898X
mailto:nitin@cse.iitk.ac.in
https://orcid.org/0000-0002-7489-7477
mailto:simon@cse.iitk.ac.in
https://www.dagstuhl.de/dagpub/978-3-95977-174-0
https://www.dagstuhl.de/dagpub/978-3-95977-174-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-174-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Nitin Saxena and Sunil Simon . 0:ix

Invited Talks

The Quest for Mathematical Understanding of Deep Learning
Sanjeev Arora . 1:1–1:1

Proofs of Soundness and Proof Search
Albert Atserias . 2:1–2:1

Convex Optimization and Dynamic Data Structure
Yin Tat Lee . 3:1–3:1

Holonomic Techniques, Periods, and Decision Problems
Joël Ouaknine . 4:1–4:3

Algorithmic Improvisation for Dependable Intelligent Autonomy
Sanjit A. Seshia . 5:1–5:3

On Some Recent Advances in Algebraic Complexity
Amir Shpilka . 6:1–6:1

Regular Papers

Faster Property Testers in a Variation of the Bounded Degree Model
Isolde Adler and Polly Fahey . 7:1–7:15

Clustering Under Perturbation Stability in Near-Linear Time
Pankaj K. Agarwal, Hsien-Chih Chang, Kamesh Munagala, Erin Taylor, and
Emo Welzl . 8:1–8:16

Width Notions for Ordering-Related Problems
Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, and Petra Wolf 9:1–9:18

Optimal Output Sensitive Fault Tolerant Cuts
Niranka Banerjee, Venkatesh Raman, and Saket Saurabh . 10:1–10:19

Online Matching with Recourse: Random Edge Arrivals
Aaron Bernstein and Aditi Dudeja . 11:1–11:16

Hard QBFs for Merge Resolution
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl, and
Gaurav Sood . 12:1–12:15

On Sampling Based Algorithms for k-Means
Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar 13:1–13:17

String Indexing for Top-k Close Consecutive Occurrences
Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, Eva Rotenberg, and
Teresa Anna Steiner . 14:1–14:17

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Fair Tree Connection Games with Topology-Dependent Edge Cost
Davide Bilò, Tobias Friedrich, Pascal Lenzner, Anna Melnichenko, and
Louise Molitor . 15:1–15:15

Locally Decodable/Correctable Codes for Insertions and Deletions
Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and
Minshen Zhu . 16:1–16:17

Maximum Clique in Disk-Like Intersection Graphs
Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow . 17:1–17:18

Parameterized Complexity of Feedback Vertex Sets on Hypergraphs
Pratibha Choudhary, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh . 18:1–18:15

Size Bounds on Low Depth Circuits for Promise Majority
Joshua Cook . 19:1–19:14

Lower Bounds for Semi-adaptive Data Structures via Corruption
Pavel Dvořák and Bruno Loff . 20:1–20:15

Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds
Karthik Gajulapalli, James A. Liu, Tung Mai, and Vijay V. Vazirani 21:1–21:15

New Verification Schemes for Frequency-Based Functions on Data Streams
Prantar Ghosh . 22:1–22:15

Online Carpooling Using Expander Decompositions
Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla 23:1–23:14

On the (Parameterized) Complexity of Almost Stable Marriage
Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi . 24:1–24:17

Min-Cost Popular Matchings
Telikepalli Kavitha . 25:1–25:17

Constructing Large Matchings via Query Access to a Maximal Matching Oracle
Lidiya Khalidah binti Khalil and Christian Konrad . 26:1–26:15

Planted Models for the Densest k-Subgraph Problem
Yash Khanna and Anand Louis . 27:1–27:18

Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model
Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju . 28:1–28:18

On Parity Decision Trees for Fourier-Sparse Boolean Functions
Nikhil S. Mande and Swagato Sanyal . 29:1–29:16

Colored Cut Games
Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Sommer . . 30:1–30:17

Randomness Efficient Noise Stability and Generalized Small Bias Sets
Dana Moshkovitz, Justin Oh, and David Zuckerman . 31:1–31:16

Connectivity Lower Bounds in Broadcast Congested Clique
Shreyas Pai and Sriram V. Pemmaraju . 32:1–32:17

Contents 0:vii

Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT
Omer Wasim and Valerie King . 33:1–33:19

Weighted Tiling Systems for Graphs: Evaluation Complexity
C. Aiswarya and Paul Gastin . 34:1–34:17

Process Symmetry in Probabilistic Transducers
Shaull Almagor . 35:1–35:14

Reachability in Dynamical Systems with Rounding
Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux,
Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland 36:1–36:17

Parameterized Complexity of Safety of Threshold Automata
A. R. Balasubramanian . 37:1–37:15

Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks
Rebecca Bernemann, Benjamin Cabrera, Reiko Heckel, and Barbara König 38:1–38:17

Synthesizing Safe Coalition Strategies
Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar . 39:1–39:17

Dynamic Network Congestion Games
Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur 40:1–40:16

On the Succinctness of Alternating Parity Good-For-Games Automata
Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak 41:1–41:13

A Framework for Consistency Algorithms
Peter Chini and Prakash Saivasan . 42:1–42:17

Equivalence of Hidden Markov Models with Continuous Observations
Oscar Darwin and Stefan Kiefer . 43:1–43:14

Nivat-Theorem and Logic for Weighted Pushdown Automata on Infinite Words
Manfred Droste, Sven Dziadek, and Werner Kuich . 44:1–44:14

Synchronization of Deterministic Visibly Push-Down Automata
Henning Fernau and Petra Wolf . 45:1–45:15

Synthesis from Weighted Specifications with Partial Domains over Finite Words
Emmanuel Filiot, Christof Löding, and Sarah Winter . 46:1–46:16

Reachability for Updatable Timed Automata Made Faster and More Effective
Paul Gastin, Sayan Mukherjee, and B Srivathsan . 47:1–47:17

Active Prediction for Discrete Event Systems
Stefan Haar, Serge Haddad, Stefan Schwoon, and Lina Ye . 48:1–48:16

Comparing Labelled Markov Decision Processes
Stefan Kiefer and Qiyi Tang . 49:1–49:16

Computable Analysis for Verified Exact Real Computation
Michal Konečný, Florian Steinberg, and Holger Thies . 50:1–50:18

Perspective Games with Notifications
Orna Kupferman and Noam Shenwald . 51:1–51:16

FSTTCS 2020

0:viii Contents

On the Complexity of Multi-Pushdown Games
Roland Meyer and Sören van der Wall . 52:1–52:35

Higher-Order Nonemptiness Step by Step
Paweł Parys . 53:1–53:14

The Degree of a Finite Set of Words
Dominique Perrin and Andrew Ryzhikov . 54:1–54:16

What You Must Remember When Transforming Datawords
M. Praveen . 55:1–55:14

Minimising Good-For-Games Automata Is NP-Complete
Sven Schewe . 56:1–56:13

Static Race Detection for RTOS Applications
Rishi Tulsyan, Rekha Pai, and Deepak D’Souza . 57:1–57:20

Synchronization Under Dynamic Constraints
Petra Wolf . 58:1–58:14

Preface

This volume contains the proceedings of the 40th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2020). The conference
was originally planned to be held in BITS Pilani, K K Birla Goa Campus, Goa, India. Due
to the COVID-19 pandemic, the conference was held online from December 15 to December
17, 2020. The conference had two tracks, Track-A focussing on algorithms, complexity and
related issues and Track-B focussing on logic, automata and other formal methods aspects
of computer science. Each track had its own Program Committee (PC) with a chair. This
volume constitutes the joint proceedings of the two tracks, published in the LIPIcs series
under a Creative Common license, with free online access to all.

The conference comprised of 6 invited talks, 27 contributed talks in Track-A and 25 in
Track-B. This volume contains all the contributed papers from both tracks and the abstracts
of all invited talks presented at the conference. There were overall 138 submissions, 75 in
Track-A and 63 in Track-B. We thank all the authors who submitted their papers to FSTTCS
2020. We also express our gratitude to all the PC members for their tireless work and all
external reviewers for their expert opinion in the form of timely reviews.

We are grateful to all the invited speakers: Sanjeev Arora (Princeton University, U.S.A.),
Albert Atserias (Universitat Politècnica de Catalunya, Spain), Yin-Tat Lee (University of
Washington, U.S.A.), Joël Ouaknine (MPI for Software Systems, Saarbrücken, Germany and
University of Oxford, U.K.), Sanjit Seshia (University of California, Berkeley, U.S.A.) and
Amir Shpilka (Tel Aviv University, Israel). They kindly accepted our invitations and gave
talks that inspired the entire audience.

The main conference was preceded by two workshops: Workshop on Matrix Rigidity,
organised by Amey Bhangale (University of California, Riverside), Alexander Golovnev (Geor-
getown University), Mrinal Kumar (IIT Bombay) and Amit Kumar Sinhababu (University
of Ulm, Germany), and Strategies for Uncertainty (SUN) organised by Dietmar Berwanger
(CNRS & ENS Paris-Saclay) and R. Ramanujam (IMSc, Chennai). This was followed by a
post-conference workshop: Advances in Verification organised by Prakash Saivasan (IMSc,
Chennai) and B. Srivathsan (CMI, Chennai). In addition, there was a co-located event:
Workshop on Research Highlights in Programming Languages organised by Deepak D’Souza
(IISc, Bangalore), Uday P. Khedkar (IIT Bombay), K. Narayan Kumar (CMI, Chennai),
Komondoor V. Raghavan (IISc, Bangalore) and Aseem Rastogi (Microsoft Research, India).

We are indebted to the organising committee members: A. Baskar (BITS Pilani), Pritam
Bhattacharya (BITS Pilani), Amaldev Manuel (IIT Goa), Anup Basil Mathew (BITS Pilani)
and A.V. Sreejith (IIT Goa). They ensured a smooth running of the conference and workshops;
and made all necessary arrangements to shift to the online mode. We thank S.P. Suresh
(CMI, Chennai) for maintaining the conference webpage and promptly addressing our update
requests. We also thank the friendly staff at Dagstuhl LIPIcs, particularly Michael Wagner,
for being prompt and helpful in answering our queries. Finally, we thank the members of the
Steering Committee for having confidence in us for running the conference; and giving us
pertinent advice to handle the unprecedented changes made in the conduct of the conference.

Nitin Saxena and Sunil Simon
December 2020

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Track A

Siddharth Barman (Indian Institute of Science, Bangalore)
Markus Blaeser (Saarland University)
Chandra Chekuri (University of Illinois, Urbana-Champaign)
Zeev Dvir (Princeton University)
Ankit Garg (Microsoft Research India)
Rohit Gurjar (Indian Institute of Technology Bombay)
Rahul Jain (National University of Singapore)
Ravindran Kannan (Microsoft Research India)
Soumen Maity (IISER Pune)
Denis Pankratov (Concordia University)
Rahul Santhanam (University of Oxford)
Nitin Saxena (Indian Institute of Technology Kanpur) – co-chair
C Seshadhri (University of California, Santa Cruz)
Jiri Sgall (Charles University, Prague)
Raghunath Tewari (Indian Institute of Technology Kanpur)
Ramarathnam Venkatesan (Microsoft Research India)
Ronald de Wolf (CWI & University of Amsterdam, The Netherlands)

Track B

Dietmar Berwanger (LSV, CNRS and ENS Paris-Saclay)
Mikołaj Bojanczyk (University of Warsaw)
Benedikt Bollig (LSV, CNRS and ENS Paris-Saclay)
Rohit Chadha (University of Missouri)
Supratik Chakraborty (Indian Institute of Technology Bombay)
Ranko Lazic (University of Warwick)
Amaldev Manuel (Indian Institute of Technology Goa)
Roland Meyer (TU Braunschweig)
Angelo Montanari (University of Udine)
Andrzej Murawski (University of Oxford)
Anca Muscholl (LaBRI, Université Bordeaux)
Daniel Neider (MPI for Software Systems, Kaiserslautern)
Komondoor V Raghavan (Indian Institute of Science Bangalore)
Aseem Rastogi (Microsoft Research India)
Sunil Simon (Indian Institute of Technology Kanpur) – co-chair
S P Suresh (Chennai Mathematical Institute)
Aditya Thakur (University of California, Davis)

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Reviewers: Track-A

A. Karim Abu-Affash Ahmad Biniaz
Akanksha Agrawal Alireza Farhadi
Amit Deshpande Amit Kumar
Amit Kumar Anat Paskin-Cherniavsky
Andreas Emil Feldmann Andrew McGregor
Anil Shukla Anna Gal
Anuj Dawar Aravindan Vijayaraghavan
Aritra Banik Arkadev Chattopadhyay
Arnab Bhattacharya (IITK) Arnab Bhattacharyya (NUS)
Arnau Messegué Ben Lee Volk
Benjamin Raichel Bhargav Narayanan
Bhargav Thankey Christian Konrad
Christian Sohler Clément Dallard
Deeparnab Chakrabarty Diptarka Chakraborty
Dominik Kempa Geevarghese Philip
Gregory Wilsenach Hamed Saleh
Hendrik Fichtenberger Hiro Ito
Ildikó Schlotter Ivor van der Hoog
Janardhan Kulkarni Jason Li
Jayalal Sarma Jesper Nederlof
Jonathan Lee Julian Dörfler
Justin Thaler Karl Bringmann
Karthekeyan Chandrasekaran Kartik Gupta
Krzysztof Nowicki Krzysztof Onak
Mariusz Jakubowski Martin Koutecky
Maximilian Katzmann Mehtaab Sawhney
Mikolas Janota Mohit Singh
Morteza Monemizadeh Mrinal Kumar
Naoyuki Kamiyama Naresh Goud Boddu
Navin Goyal Neeraj Kayal
Nidhi Rathi Ning Xie
Nishanth Chandran Omri Weinstein
Palash Dey Pat Morin
Patrick Rall Pavel Hubáček
Peng Zhang Prajakta Nimbhorkar
Pranjal Awasthi Ragesh Jaiswal
Rahul Madhavan Rajat Mittal
Ramanujan M Sridharan Roshan Raj
Sagar Kale Saket Saurabh
Saladi Rahul Sanjeev Khanna
Satyanarayana Lokam Sean Kafer
Shachar Lovett Shahbaz Khan
Shalev Ben-David Sharma V Thankachan
Shivika Narang Spyridon Tzimas
Srijita Kundu Srikanth Srinivasan

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv List of Reviewers: Track-A

Srinivasan Raghuraman Sriram Rajamani
Stefan Mengel Stefano Leucci
Subrahmanyam Kalyanasundaram Sudeshna Kolay
Suman Kalyan Bera Suprovat Ghoshal
Swagato Sanyal Tara Abrishami
Tasuku Soma Telikepalli Kavitha
Thatchaphol Saranurak Theo McKenzie
Tobias Mömke Upendra Kapshikar
V Vinay Vishakha Patil
Yash Khanna Yassine Hamoudi
Yuichi Yoshida Yuval Filmus

List of Reviewers: Track-B

C. Aiswarya S. Akshay
Shaull Almagor Kazuyuki Asada
Nikhil Balaji Hugo Bazille
Massimo Benerecetti Udi Boker
Davide Bresolin Sourav Chakraborty
Peter Chini Dmitry Chistikov
Alberto Ciaffaglione Wojciech Czerwiński
Deepak D’Souza Laure Daviaud
Bart de Keijzer Dario Della Monica
Giorgio Delzanno Alex Dixon
David Doty Nathanaël Fijalkow
Goran Frehse Matthias Függer
Luca Geatti Nicola Gigante
Shibashis Guha Jens Oliver Gutsfeld
Thomas Haas Peter Habermehl
Loic Helouet Ismaël Jecker
Stefan Kiefer Igor Konnov
Denis Kuperberg Salvatore La Torre
Christof Löding Meena Mahajan
Kaushik Mallik Konstantinos Mamouras
Filip Mazowiecki Benjamin Monmege
Sebastian Muskalla Youssouf Oualhadj
Guillermo Perez Dominique Perrin
Carla Piazza Anton Pirogov
Pavithra Prabhakar M. Praveen
David Purser Karin Quaas
R. Ramanujam Cristian Riveros
Nima Roohi Subhajit Roy
Krishna S Prakash Saivasan
Pietro Sala Arnaud Sangnier
Sriram Sankaranarayanan Sven Schewe
Natarajan Shankar B Srivathsan
Kevin Stier Howard Straubing
Vaishnavi Sundararajan Nathalie Sznajder
Ramanathan Thinniyam Srinivasan Patrick Totzke
Ashutosh Trivedi Sören van der Wall
Przemysław Andrzej Wałęga Pascal Weil
Cas Widdershoven Sarah Winter
Sebastian Wolff Xiang Yin
Martin Zimmermann

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Quest for Mathematical Understanding of
Deep Learning
Sanjeev Arora
Computer Science Department, Princeton University, NJ, USA
https://www.cs.princeton.edu/~arora/
arora@cs.princeton.edu

Abstract
Deep learning has transformed Machine Learning and Artificial Intelligence in the past decade. It
raises fundamental questions for mathematics and theory of computer science, since it relies upon
solving large-scale nonconvex problems via gradient descent and its variants. This talk will be an
introduction to mathematical questions raised by deep learning, and some partial understanding
obtained in recent years.

2012 ACM Subject Classification Theory of computation → Mathematical optimization; Computing
methodologies → Artificial intelligence; Computing methodologies → Machine learning

Keywords and phrases machine learning, artificial intelligence, deep learning, gradient descent,
optimization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.1

Category Invited Talk

© Sanjeev Arora;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.princeton.edu/~arora/
mailto:arora@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Proofs of Soundness and Proof Search
Albert Atserias
Universitat Politècnica de Catalunya, Barcelona, Spain
atserias@cs.upc.edu

Abstract
Let P be a sound proof system for propositional logic. For each CNF formula F , let SAT(F) be
a CNF formula whose satisfying assignments are in 1-to-1 correspondence with those of F (e.g., F

itself). For each integer s, let REF(F, s) be a CNF formula whose satisfying assignments are in 1-to-1
correspondence with the P -refutations of F of length s. Since P is sound, it is obvious that the
conjunction formula SAT(F) & REF(F, s) is unsatisfiable for any choice of F and s. It has been
long known that, for many natural proof systems P and for the most natural formalizations of
the formulas SAT and REF, the unsatisfiability of SAT(F) & REF(F, s) can be established by a
short refutation. In addition, for many P , these short refutations live in the proof system P itself.
This is the case for all Frege proof systems. In contrast it was known since the early 2000’s that
Resolution proofs of Resolution’s soundness statements must have superpolynomial length. In this
talk I will explain how the soundness formulas for a proof system P relate to the computational
complexity of the proof search problem for P . In particular, I will explain how such formulas are
used in the recent proof that the problem of approximating the minimum proof-length for Resolution
is NP-hard (Atserias-Müller 2019). Besides playing a key role in this hardness of approximation
result, the renewed interest in the soundness formulas led to a complete answer to the question
whether Resolution has subexponential-length proofs of its own soundness statements (Garlík 2019).

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Proof complexity, automatability, Resolution, proof search, consistency
statements, lower bounds, reflection principle, satisfiability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.2

Category Invited Talk

© Albert Atserias;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3732-1989
mailto:atserias@cs.upc.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Convex Optimization and Dynamic Data Structure
Yin Tat Lee
University of Washington, Seattle, WA, USA
http://yintat.com
yintat@uw.edu

Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time
algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of
these algorithms are based on a careful combination of optimization techniques and dynamic data
structures. In this talk, we will explain the framework underlying all the recent breakthroughs.

Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun
Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

2012 ACM Subject Classification Mathematics of computing → Mathematical optimization

Keywords and phrases Convex Optimization, Dynamic Data Structure

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.3

Category Invited Talk

© Yin Tat Lee;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://yintat.com
mailto:yintat@uw.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Holonomic Techniques, Periods, and Decision
Problems
Joël Ouaknine
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany
Department of Computer Science, Oxford University, UK

Abstract
Holonomic techniques have deep roots going back to Wallis, Euler, and Gauss, and have evolved in
modern times as an important subfield of computer algebra, thanks in large part to the work of
Zeilberger and others over the past three decades. In this talk, I will give an overview of the area,
and in particular will present a select survey of known and original results on decision problems for
holonomic sequences and functions. (Holonomic sequences satisfy linear recurrence relations with
polynomial coefficients, and holonomic functions satisfy linear differential equations with polynomial
coefficients.) I will also discuss some surprising connections to the theory of periods and exponential
periods, which are classical objects of study in algebraic geometry and number theory; in particular,
I will relate the decidability of certain decision problems for holonomic sequences to deep conjectures
about periods and exponential periods, notably those due to Kontsevich and Zagier.

2012 ACM Subject Classification Theory of computation

Keywords and phrases holonomic techniques, decision problems, recurrence sequences, minimal
solutions, Positivity Problem, continued fractions, special functions, periods, exponential periods

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.4

Category Invited Talk

Funding Joël Ouaknine: Supported by ERC grant AVS-ISS (648701) and by by DFG grant 389792660
as part of TRR 248 (see https://perspicuous-computing.science).

1 Summary

Holonomic sequences (also known as P -recursive or P -finite sequences) are infinite sequences
of real (or complex) numbers that satisfy a linear recurrence relation with polynomial
coefficients. The earliest and best-known example is the Fibonacci sequence, introduced by
Leonardo of Pisa in the 12th century; more recently, Apéry famously made use of certain
holonomic sequences 〈un〉n satisfying the recurrence relation

(n+ 1)3un+1 = (34n3 + 51n2 + 27n+ 5)un − n3un−1 (n ∈ N)

to prove that ζ(3) :=
∑∞

n=1 n
−3 is irrational [2]. Holonomic sequences now form a vast

subject in their own right, with numerous applications in mathematics and other sciences;
see, for instance, the monographs [20, 5, 6] or the seminal paper [24] of Zeilberger.

Any holonomic sequence 〈un〉∞n=0 naturally gives rise to a holonomic function by consid-
ering the associated generating power series F(x) =

∑∞
n=0 unx

n. The recurrence relation
defining the holonomic sequence in turn yields a linear differential equation satisfied by the
corresponding power series.

There is a voluminous literature devoted to the study of identities for holonomic sequences
and functions, and several computer-algebra packages implementing various identity-checking
algorithms are also available. However, as noted by Kauers and Pillwein, “in contrast, [. . .]
almost no algorithms are available for inequalities” [11]. For example, the Positivity Problem

© Joël Ouaknine;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 4; pp. 4:1–4:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0031-9356
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.4
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Holonomic Techniques, Periods, and Decision Problems

(i.e., whether every term of a given sequence is non-negative) for C-finite sequences1 is
only known to be decidable at low orders, and there is strong evidence that the problem
is mathematically intractable in general [19, 18]; see also [10, 14, 19, 17]. For holonomic
sequences that are not C-finite, virtually no decision procedures currently exist for Positivity,
although several partial results and heuristics are known (see, for example [15, 11, 16, 23, 21,
22]).

Another extremely important property of holonomic sequences is minimality; a sequence
〈un〉n is minimal if, given any other linearly independent sequence 〈vn〉n satisfying the same
recurrence relation, the ratio un/vn converges to 0. Minimal holonomic sequences play a
crucial rôle, among others, in numerical calculations and asymptotics, as noted for example in
[7, 8, 9, 3, 1, 4] – see also the references therein. Unfortunately, there is also ample evidence
that determining algorithmically whether a given holonomic sequence is minimal is a very
challenging task, for which no satisfactory solution is at present known to exist.

In this talk, I will present a select survey of known and original results on decision
problems for holonomic sequences and functions. Some of this work will involve periods and
exponential periods, which are classical objects of study in algebraic geometry and number
theory; in particular, I will relate the decidability of certain decision problems for holonomic
sequences to deep conjectures about periods and exponential periods, notably those due to
Kontsevich and Zagier [13]. Parts of this presentation will be based on the paper [12].

References

1 Gil Amparo, Javier Segura, and Nico M. Temme. Numerical methods for special functions,
2007.

2 Roger Apéry. Irrationalité de ζ(2) et ζ(3). In Journées Arithmétiques de Luminy, number 61
in Astérisque, pages 11–13. Société mathématique de France, 1979. URL: http://www.numdam.
org/item/AST_1979__61__11_0.

3 Alfredo Deaño and Javier Segura. Transitory minimal solutions of hypergeometric recursions
and pseudoconvergence of associated continued fractions. Mathematics of Computation,
76(258):879–901, 2007.

4 Alfredo Deaño, Javier Segura, and Nico M. Temme. Computational properties of three-
term recurrence relations for Kummer functions. J. Computational Applied Mathematics,
233(6):1505–1510, 2010.

5 Graham Everest, Alfred J. van der Poorten, Igor E. Shparlinski, and Thomas Ward. Recurrence
Sequences, volume 104 of Mathematical surveys and monographs. American Mathematical
Society, 2003.

6 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

7 Walter Gautschi. Computational aspects of three-term recurrence relations. SIAM Rev.,
9:24–82, 1967.

8 Walter Gautschi. Anomalous convergence of a continued fraction for ratios of kummer functions.
Mathematics of Computation, 31(140):994–999, 1977.

9 Walter Gautschi. Minimal solutions of three-term recurrence relations and orthogonal polyno-
mials. Mathematics of Computation, 36(154), 1981.

10 V. Halava, T. Harju, and M. Hirvensalo. Positivity of second order linear recurrent sequences.
Discrete Appl. Math., 154(3):447–451, 2006.

1 C-finite sequences are linear recurrent sequences with constant coefficients.

http://www.numdam.org/item/AST_1979__61__11_0
http://www.numdam.org/item/AST_1979__61__11_0

J. Ouaknine 4:3

11 Manuel Kauers and Veronika Pillwein. When can we detect that a P-finite sequence is positive?
In Wolfram Koepf, editor, Symbolic and Algebraic Computation, International Symposium,
ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, pages 195–201. ACM, 2010.

12 George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël
Ouaknine, Markus A. Whiteland, and James Worrell. On positivity and minimality for
second-order holonomic sequences. CoRR, abs/2007.12282, 2020. URL: https://arxiv.org/
abs/2007.12282.

13 Maxim Kontsevich and Don Zagier. Periods. In Mathematics unlimited—2001 and beyond,
pages 771–808. Springer, Berlin, 2001.

14 V. Laohakosol and P. Tangsupphathawat. Positivity of third order linear recurrence sequences.
Discrete Appl. Math., 157(15):3239–3248, 2009.

15 Lily Liu. Positivity of three-term recurrence sequences. Electron. J. Combin., 17(1):Research
Paper 57, 10, 2010.

16 M. Mezzarobba and B. Salvy. Effective bounds for P-recursive sequences. J. Symbolic Comput.,
45(10):1075–1096, 2010.

17 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear recurrence
sequences. In Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture
Notes in Computer Science, pages 330–341. Springer, 2014.

18 Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination.
SIGLOG News, 2(2):4–13, 2015.

19 Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence sequences.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 366–379. ACM, New York, 2014.

20 Marko Petkovšek, Herbert Wilf, and Doron Zeilberger. A=B. A. K. Peters, 1997.
21 Veronika Pillwein. Termination conditions for positivity proving procedures. In Manuel Kauers,

editor, International Symposium on Symbolic and Algebraic Computation, ISSAC’13, Boston,
MA, USA, June 26-29, 2013, pages 315–322. ACM, 2013.

22 Veronika Pillwein and Miriam Schussler. An efficient procedure deciding positivity for a class
of holonomic functions. ACM Comm. Computer Algebra, 49(3):90–93, 2015.

23 Ernest X. W. Xia and X. M. Yao. The signs of three-term recurrence sequences. Discrete
Applied Mathematics, 159(18):2290–2296, 2011.

24 Doron Zeilberger. A holonomic systems approach to special functions identities. Journal of
Computational and Applied Mathematics, 32(3):321–368, 1990.

FSTTCS 2020

https://arxiv.org/abs/2007.12282
https://arxiv.org/abs/2007.12282

Algorithmic Improvisation for Dependable
Intelligent Autonomy
Sanjit A. Seshia
University of California, Berkeley, CA, USA
http://www.eecs.berkeley.edu/~sseshia
sseshia@eecs.berkeley.edu

Abstract
Algorithmic Improvisation, also called control improvisation or controlled improvisation, is a new
framework for automatically synthesizing systems with specified random but controllable behavior.
In this talk, I will present the theory of algorithmic improvisation and show how it can be used in a
wide variety of applications where randomness can provide variety, robustness, or unpredictability
while guaranteeing safety or other properties. Applications demonstrated to date include robotic
surveillance, software fuzz testing, music improvisation, human modeling, generating test cases for
simulating cyber-physical systems, and generation of synthetic data sets to train and test machine
learning algorithms. In this talk, I will particularly focus on applications to the design of intelligent
autonomous systems, presenting work on randomized planning for robotics and a domain-specific
probabilistic programming language for the design and analysis of learning-based autonomous
systems.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Computing
methodologies → Machine learning; Computing methodologies → Artificial intelligence; Theory of
computation → Formal languages and automata theory; Software and its engineering → Domain
specific languages; Theory of computation → Complexity theory and logic

Keywords and phrases Formal methods, synthesis, verification, randomized algorithms, formal
specification, testing, machine learning, synthetic data generation, planning

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.5

Category Invited Talk

Funding This work has been supported in part by the National Science Foundation (NSF) Graduate
Research Fellowship Program under Grant No. DGE1106400, by NSF grants CCF-1139138, CNS-
1545126 (VeHICaL), CNS-1646208, and CCF-1837132, DARPA under agreement numbers FA8750-16-
C0043 and FA8750-18-C-0101, by the iCyPhy center, Berkeley Deep Drive, and by TerraSwarm, one
of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO
and DARPA.

Acknowledgements The work on algorithmic improvisation described in this talk has been co-led
by my Ph.D. student, Daniel Fremont, and is reported in his Ph.D. dissertation.

Summary

Algorithmic improvisation is a new framework for automatically synthesizing systems with
specified random but controllable behavior. Such systems are known as improvisers and have
applications in a variety of applications where randomness can provide variety, robustness,
or unpredictability in a specified, controlled manner. This framework, also termed as control
improvisation or controlled improvisation, was proposed and formalized by the author and
colleagues several years ago [2, 6, 5]. Informally, an improviser is a generator of data items
d1, d2, d3, . . . subject to three kinds of constraints:
1. Hard Constraints: Each data item di must satisfy all these constraints.
2. Soft Constraints: A data item di must satisfy these constraints as measured by a tunable

quantity, typically a probability written as 1 − δ for tunable parameter δ.
© Sanjit A. Seshia;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 5; pp. 5:1–5:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6190-8707
http://www.eecs.berkeley.edu/~sseshia
mailto:sseshia@eecs.berkeley.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Algorithmic Improvisation

3. Randomness Constraints: The output distribution of the improviser must satisfy specified
properties, e.g., obeying a particular distribution.

The problem of synthesizing an improviser is termed as the control (or controlled) impro-
visation problem. The papers and thesis by Fremont et al. [6, 5, 4] lay out the foundations
of the theory of control improvisation, analyzing its complexity for different variants of the
problem involving various forms of constraints.

Algorithmic improvisation has been demonstrated in a variety of applications. Here are
some of these applications:

Music improvisation, generating controlled random variations of a given melody [2];
Modeling human behavior for controlling Internet-of-Things (IoT) devices in a home
automation context [1];
Synthesizing control policies for controlling vehicles [9];
Synthesizing randomized plans for robotic surveillance [3];
Generating test inputs for software fuzz testing [4];
Generating test cases for simulating cyber-physical systems [8, 7], and
Generation of synthetic data for training and testing machine learning applications [7].

In these applications, the type of data generated by the improviser varies (music, control
policies, test inputs, images, etc.) and the formalism used to encode constraints also varies,
including logics, automata, and domain specific languages.

In this invited talk, I will give an overview of the theory of algorithmic improvisation,
give a tour of some of the key applications with a particular focus on the design of intelligent
autonomous systems, and present an outlook on the exciting future directions that remain
to be explored.

References
1 Ilge Akkaya, Daniel Fremont, Rafael Valle, Alexandre Donzé, Edward A. Lee, and Sanjit A.

Seshia. Control improvisation for probabilistic temporal specifications. In Proceedings of the
1st IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI),
April 2016.

2 Alexandre Donzé, Rafael Valle, Ilge Akkaya, Sophie Libkind, Sanjit A. Seshia, and David Wessel.
Machine improvisation with formal specifications. In Proceedings of the 40th International
Computer Music Conference (ICMC), pages 1277–1284, September 2014.

3 Daniel Fremont and Sanjit A. Seshia. Reactive control improvisation. In 30th International
Conference on Computer Aided Verification (CAV), 2018.

4 Daniel J. Fremont. Algorithmic Improvisation. PhD thesis, EECS Department, University of
California, Berkeley, August 2019. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2019/EECS-2019-133.html.

5 Daniel J. Fremont, Alexandre Donzé, and Sanjit A. Seshia. Control improvisation. CoRR,
abs/1704.06319, 2017.

6 Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. Control improvisation.
In 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), volume 45 of LIPIcs, pages 463–474, December 2015.

7 Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-
Vincentelli, and Sanjit A. Seshia. Scenic: A language for scenario specification and scene
generation. In Proceedings of the 40th annual ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), June 2019.

8 Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya, Xantha
Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. Formal scenario-based testing
of autonomous vehicles: From simulation to the real world. In 23rd IEEE International
Conference on Intelligent Transportation Systems (ITSC), September 2020.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.html

S. A. Seshia 5:3

9 Jin I. Ge and Richard M. Murray. Voluntary lane-change policy synthesis with control
improvisation. In 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL,
USA, December 17-19, 2018, pages 3640–3647. IEEE, 2018.

FSTTCS 2020

On Some Recent Advances in Algebraic
Complexity
Amir Shpilka
School of Computer Science, Tel Aviv University, Israel
https://www.cs.tau.ac.il/~shpilka
shpilka@tauex.tau.ac.il

Abstract
Algebraic complexity is the field studying the intrinsic difficulty of algebraic problems in an algebraic
model of computation, most notably arithmetic circuits. It is a very natural model of computation
that attracted a large amount of research in the last few decades, partially due to its simplicity
and elegance, but mostly because of its importance. Being a more structured model than Boolean
circuits, one could hope that the fundamental problems of theoretical computer science, such as
separating P from NP, deciding whether P = BPP and more, will be easier to solve for arithmetic
circuits.

In this talk I will give the basic definitions, explain the main questions and how they relate to
their Boolean counterparts, and discuss what I view as promising approaches to tackling the most
fundamental problems in the field.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic Complexity, Arithmetic Circuits, Polynomial Identity Testing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.6

Category Invited Talk

Funding Amir Shpilka: Supported by the Israel Science Foundation (grant number 514/20) and by
the Len Blavatnik and the Blavatnik Family foundation-

© Amir Shpilka;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 6; pp. 6:1–6:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2384-425X
https://www.cs.tau.ac.il/~shpilka
mailto:shpilka@tauex.tau.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Faster Property Testers in a Variation of the
Bounded Degree Model
Isolde Adler
University of Leeds, School of Computing, UK
i.m.adler@leeds.ac.uk

Polly Fahey
University of Leeds, School of Computing, UK
mm11pf@leeds.ac.uk

Abstract
Property testing algorithms are highly efficient algorithms, that come with probabilistic accuracy
guarantees. For a property P , the goal is to distinguish inputs that have P from those that are far
from having P with high probability correctly, by querying only a small number of local parts of the
input. In property testing on graphs, the distance is measured by the number of edge modifications
(additions or deletions), that are necessary to transform a graph into one with property P . Much
research has focussed on the query complexity of such algorithms, i. e. the number of queries the
algorithm makes to the input, but in view of applications, the running time of the algorithm is
equally relevant.

In (Adler, Harwath STACS 2018), a natural extension of the bounded degree graph model of
property testing to relational databases of bounded degree was introduced, and it was shown that on
databases of bounded degree and bounded tree-width, every property that is expressible in monadic
second-order logic with counting (CMSO) is testable with constant query complexity and sublinear
running time. It remains open whether this can be improved to constant running time.

In this paper we introduce a new model, which is based on the bounded degree model, but the
distance measure allows both edge (tuple) modifications and vertex (element) modifications. Our
main theorem shows that on databases of bounded degree and bounded tree-width, every property
that is expressible in CMSO is testable with constant query complexity and constant running time in
the new model. We also show that every property that is testable in the classical model is testable
in our model with the same query complexity and running time, but the converse is not true.

We argue that our model is natural and our meta-theorem showing constant-time CMSO
testability supports this.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Database query processing and optimization (theory)

Keywords and phrases Constant Time Algorithms, Logic and Databases, Property Testing, Bounded
Degree Model

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.7

1 Introduction

Extracting information from large amounts of data and understanding its global structure
can be an immensely challenging and time consuming task. When the input data is huge,
many traditionally “efficient” algorithms are no longer practical. The framework of property
testing aims at addressing this problem. Property testing algorithms (testers, for short) are
given oracle access to the inputs, and their goal is to distinguish between inputs which have
a given property P or are structurally far from having P with high probability correctly.
This can be seen as a relaxation of the classical yes/no decision problem for P. Testers
make these decisions by exploring only a small number of local parts of the input which are
randomly chosen. They come with probabilistic guarantees on the quality of the answer.

© Isolde Adler and Polly Fahey;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9667-9841
mailto:i.m.adler@leeds.ac.uk
https://orcid.org/0000-0002-3781-5313
mailto:mm11pf@leeds.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Faster Property Testers in a Variation of the Bounded Degree Model

Typically, only a constant number of small local parts are explored and the algorithms often
run in constant or sublinear time. This speed up in running time, whilst sacrificing some
accuracy, can be crucial for dealing with large inputs. In particular it can be useful for a
quick exploration of newly obtained data (e. g. biological networks). Based on the outcome
of the exploration, a decision can then be taken whether to use a more time consuming exact
algorithm in a second step.

A property is simply an isomorphism-closed class of graphs or relational databases. For
example, each Boolean database query q defines a property Pq, the class of all databases
satisfying q. In the bounded degree graph model [16], a uniform upper bound d on the degree
of the graphs is assumed. For a small ε ∈ (0, 1], two graphs G and H, both on n vertices, are
ε-close, if at most εdn edge modifications (deletions or insertions in G or H) are necessary to
make G and H isomorphic. If G and H are not ε-close, then they are called ε-far. A graph
G is called ε-close to a property P, if G is ε-close to a member of P, and G is ε-far from
P otherwise. The natural generalisation of this model to relational databases of bounded
degree (where a database has degree at most d if each element in its domain appears in at
most d tuples) was studied in [1], where two databases D and D′, both with n elements
in the domain, are ε-close, if at most εdn tuple modifications (deletions from relations or
insertions to relations) are necessary to make D and D′ isomorphic, and D and D′ are ε-far
otherwise. We call this model for bounded degree relational databases the BDRD model.

Our contributions. In this paper we propose a new model for property testing on bounded
degree relational databases, which we call the BDRD+/− model, with a distance measure
that allows both tuple deletions and insertions, and deletion and insertion of elements of the
domain. On graphs, this translates to edge insertions and deletions, and vertex insertions and
deletions. We argue that this yields a natural distance measure. Indeed, take any (sufficiently
large) graph G, and let H be obtained from G by adding an isolated vertex. Then G and
H are ε-far for every ε ∈ (0, 1] under the classical distance measure, although they only
differ in one vertex. In contrast, our distance measure allows for a small number of vertex
modifications. While comparing graphs on different numbers of vertices by adding isolated
vertices was done implicitly as part of the study the testability of outerplanar graphs [4], to
the best of our knowledge, such a distance measure has not been considered before as part of
a model in property testing, which seems surprising to us.

Formally, in the BDRD+/− model, two databases D and D′ are ε-close, if they can be
made isomorphic by at most εdn modifications, where a modification is either, (1) removing
a tuple from a relation, (2) inserting a tuple to a relation, (3) removing an element from
the domain (and, as a consequence, any tuple containing that element is removed), or (4)
inserting an element into the domain. Here n is the minimum of the sizes of the domains of
D and D′. In Section 3 we give the full details of our model. We note that the BDRD+/−
model differs from the BDRD model only in the choice of the distance measure. While
we work in the setting of relational databases, we would like to emphasize that our results
carry over to (undirected and directed) graphs, as these can be seen as special instances of
relational databases.

It is known that in the bounded degree graph model, every minor-closed property is
testable [6], and, more generally, every hyperfinite graph property is testable [23] with
constant query complexity. However, no bound on the running time can be obtained in
these general settings. Indeed, there exist hyperfinite properties (of edgeless graphs) that are
uncomputable. In [1], Adler and Harwath ask which conditions guarantee both low query
complexity and efficient running time. They prove a meta-theorem stating that, on classes of

I. Adler and P. Fahey 7:3

databases (or graphs) of bounded degree and bounded tree-width, every property that can be
expressed by a sentence of monadic second-order logic with counting (CMSO) is testable with
constant query complexity and polylogarithmic running time in the BDRD model. Treating
many algorithmic problems simultaneously, this can be seen as an algorithmic meta-theorem
within the line of research inspired by Courcelle’s famous theorem [9] that states that each
property of relational databases which is definable in CMSO is decidable in linear time
on relational databases of bounded tree-width. CMSO extends first-order logic (FO) and
hence properties expressible in FO (e.g. subgraph/sub-database freeness) are also expressible
in CMSO. Other examples of graph properties expressible in CMSO include bipartiteness,
colourability, even-hole-freeness and Hamiltonicity. Rigidity (i. e. the absence of a non-trivial
automorphism) cannot be expressed in CMSO (cf. [10] for more details).

Our main theorem (Theorem 17) shows that in the BDRD+/− model, on classes of
databases (or graphs) of bounded degree and bounded tree-width, every property that can
be expressed by a sentence of monadic second-order logic with counting (CMSO) is testable
with constant query complexity and constant running time. The question whether constant
running time can also be achieved in the BDRD model remains open.

We show that the BDRD+/− model is in fact stronger than the BDRD model: Any
property testable in the BDRD model is also testable in the BDRD+/− model with the same
query complexity and running time (Lemma 4), but there are examples that show that the
converse is not true (Lemma 6).

In the future, it would be interesting to obtain a characterisation of the properties that
are (efficiently) testable in the BDRD+/− model.

Our techniques. To prove our main theorem, we give a general condition under which
properties are testable in constant time in the BDRD+/− model whereas the fastest known
testers for such properties in the BDRD model run in polylogarithmic time. To describe this
condition let us first briefly introduce some definitions. A property P is hyperfinite on a
class of databases C if every database in P can be partitioned into connected components
of constant size by removing only a constant fraction of the tuples such that the resulting
partitioned database is in C. Let r ∈ N, given an element a in the domain of a database D
the r-neighbourhood type of a in D is the isomorphism type of the sub-database of D induced
by all elements that are at distance at most r from a in the underlying graph of D, expanded
by a. The r-histogram of a bounded degree database D, denoted by hr(D), is a vector indexed
by the r-neighbourhood types, where the component corresponding to the r-neighbourhood
type τ contains the number of elements in D that realise τ . The r-neighbourhood distribution
of D is the vector hr(D)/n where D is on n elements. We show that for any property P
and input class C, if P is hyperfinite on C and the set of r-histograms of the databases in
P are semilinear, then P is testable on C in constant time (Theorem 16). As a corollary
we then obtain our main theorem, that every property definable by a CMSO sentence is
testable on the class of databases with bounded degree and bounded tree-width in constant
time (Theorem 17).

Alon [22, Proposition 19.10] proved that for every bounded degree graph G there exists
a constant size graph H that has a similar neighbourhood distribution to G. However, the
proof is based on a compactness argument and does not give an explicit upper bound on the
size of H. Finding such a bound was suggested by Alon as an open problem [18]. We ask
under which conditions on a given property P, for every member of P there exists a constant
size database with a similar neighbourhood distribution which is also in P. We show that
for any property P which is hyperfinite on the input class C and whose r-histograms are

FSTTCS 2020

7:4 Faster Property Testers in a Variation of the Bounded Degree Model

semilinear, if a database D is in P then there exists a constant size database D′ in P with a
similar neighbourhood distribution but this is not true for databases in C that are far from
P. Furthermore, we obtain upper and lower bounds on the size of D′. We can then use this
result to construct constant time testers. We first use the algorithm EstimateFrequenciesr,s
(given in [23] and adapted to databases in [1]) to approximate the neighbourhood distribution
of the input database. Then we only have to check if the estimated distribution is close to
the neighbourhood distribution of a constant size database in the property.

As a corollary (Corollary 14), we obtain an explicit bound on the size on graphs H from
Alon’s theorem for “semilinear” properties, i. e. properties, where the histogram vectors of
the neighbourhood distributions form a semilinear set.

Further related work. Other than the work already mentioned in [1] there are only a
handful of results on relational databases that utilise models from property testing. Chen
and Yoshida [8] study a model which is close to the general graph model (cf. e. g. [2]) in
which they study the testability of homomorphism inadmissibility. Ben-Moshe et al. [5]
study the testability of near-sortedness (a property of relations that states that most tuples
are close to their place in some desired order). Our model differs from both of these, as it
relies on a degree bound and uses different types of oracle access. Explicit bounds for Alon’s
theorem restricted to high-girth graphs were given in [12].

Obtaining a characterisation of constant query testable properties is a long-standing
open problem. Ito et al. [19] give a characterisation of the 1-sided error constant query
testable monotone and hereditary graph properties in the bounded degree (directed and
undirected) graph model. Fichtenberger et al. [13] show that every constant query testable
property in the bounded degree graph model is either finite or contains an infinite hyperfinite
subproperty.

Organisation. In Section 2 we introduce relevant notions used throughout the paper. In
Section 3 we introduce our property testing model for bounded degree relational databases
and we compare it to the classical model. In Section 4 we prove our main theorems. Due to
space constraints the proofs of statements labelled (∗) are deferred to the appendix.

2 Preliminaries

We let N be the set of natural numbers including 0, and N≥1 = N \ {0}. For each n ∈ N≥1,
we let [n] = {1, 2, . . . , n}.

Databases. A schema is a finite set σ = {R1, . . . , R|σ|} of relation names, where each
R ∈ σ has an arity ar(R) ∈ N≥1. A database D of schema σ (σ-db for short) is of the
form D = (D,RD1 , . . . , RD|σ|), where D is a finite set, the set of elements of D, and RDi is an
ar(Ri)-ary relation on D. The set D is also called the domain of D. An (undirected) graph
G is a tuple G = (V (G), E(G)) where V (G) is a set of vertices and E(G) is a set of 2-element
subsets of V (G) (the edges of G). An undirected graph can be seen as a {E}-db, where E is
a binary relation name, interpreted by a symmetric, irreflexive relation.

We assume that all databases are linearly ordered or, equivalently, that D = [n] for some
n ∈ N (similar to [20]). We extend this linear ordering to a linear order on the relations
of D via lexicographic ordering. The Gaifman graph of a σ-db D is the undirected graph
G(D) = (V,E), with vertex set V := D and an edge between vertices a and b whenever a 6= b

and there is an R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RD with a, b ∈ {a1, . . . , aar(R)}. The

I. Adler and P. Fahey 7:5

degree deg(a) of an element a in a database D is the total number of tuples in all relations
of D that contain a. We say the degree deg(D) of a database D is the maximum degree of
its elements. A class of databases C has bounded degree, if there exists a constant d ∈ N
such that for all D ∈ C, deg(D) ≤ d. (We always assume that classes of databases are closed
under isomorphism.) Let us remark that the deg(D) and the (graph-theoretic) degree of
G(D) only differ by at most a constant factor (cf. e. g. [11]). Hence both measures yield
the same classes of relational structures of bounded degree. We define the tree-width of a
database D as the the tree-width of its Gaifman graph. (See e. g. [15] for a discussion of
tree-width in this context.) A class C of databases has bounded tree-width, if there exists a
constant t ∈ N such that all databases D ∈ C have tree-width at most t. Let D be a σ-db,
and M ⊆ D. The sub-database of D induced by M is the database D[M] with domain M
and RD[M] := RD ∩Mar(R) for every R ∈ σ. An (ε, k)-partition of a σ-db D on n elements
is a σ-db D′ formed by removing at most εn many tuples from D such that every connected
component in D′ contains at most k elements. A class of σ-dbs C ⊆ D is ρ-hyperfinite on D
if for every ε ∈ (0, 1] and D ∈ C there exists an (ε, ρ(ε))-partition D′ ∈ D of D. We call C
hyperfinite on D if there exists a function ρ such that C is ρ-hyperfinite on D.

Logics. We shall only briefly introduce first-order logic (FO) and monadic second-order
logic with counting (CMSO). Detailed introductions can be found in [21] and [10]. Let
var be a countable infinite set of variables, and fix a relational schema σ. The set FO[σ]
is built from atomic formulas of the form x1 = x2 or R(x1, . . . , xar(R)), where R ∈ σ and
x1, . . . , xar(R) ∈ var, and is closed under Boolean connectives (¬,∨,∧,→,↔) and existential
and universal quantifications (∃,∀). Monadic second-order logic (MSO) is the extension of
first-order logic that also allows quantification over subsets of the domain. CMSO extends
MSO by allowing first-order modular counting quantifiers ∃m for every integer m (where
∃mφ is true in a σ-db if the number of its elements for which φ is satisfied is divisible by
m). A free variable of a formula is a (individual or set) variable that does not appear in the
scope of a quantifier. A formula without free variables is called a sentence. For a σ-db D
and a sentence φ we write D |= φ to denote that D satisfies φ.

I Proviso. For the rest of the paper, we fix a schema σ and numbers d, t ∈ N with d ≥ 2.
From now on, all databases are σ-dbs and have degree at most d, unless stated otherwise.
We use Cd to denote the class of all σ-dbs with degree at most d, Ct

d to denote the class of
all σ-dbs with degree at most d and tree-width at most t and finally we use C to denote a
class of σ-dbs with degree at most d.

Property testing. Adler and Harwath [1] introduced the model of property testing for
bounded degree relational databases, which is a straightforward extension of the model for
bounded degree graphs [16]. We call this model the BDRD model for short, which we shall
discuss below.

Property testing algorithms do not have access to the whole input database. Instead,
they are given access via an oracle. Let D be an input σ-db on n elements. A property
testing algorithm receives the number n as input, and it can make oracle queries1 of the
form (R, i, j), where R ∈ σ, i ≤ n and j ≤ deg(D). The answer to (R, i, j) is the jth tuple in
RD containing the ith element2 of D (if such a tuple does not exist then it returns ⊥). We
assume oracle queries are answered in constant time.

1 Note that an oracle query is not a database query.
2 According to the assumed linear order on D.

FSTTCS 2020

7:6 Faster Property Testers in a Variation of the Bounded Degree Model

Let D,D′ be two σ-dbs, both having n elements. In the BDRD model the distance
between D and D′, denoted by dist(D,D′), is the minimum number of tuples that have to be
inserted or removed from relations of D and D′ to make D and D′ isomorphic. For ε ∈ [0, 1],
we say D and D′ are ε-close if dist(D,D′) ≤ εdn, and D and D′ are ε-far otherwise. A
property is simply an isomorphism-closed class of databases. Note that every CMSO sentence
φ defines a property Pφ = {D | D |= φ}. We call Pφ ∩C the property defined by φ on C.
A σ-db D is ε-close to a property P if there exists a database D′ ∈ P that is ε-close to D,
otherwise D is ε-far from P.

Let P ⊆ C be a property and ε ∈ (0, 1] be the proximity parameter. An ε-tester for P on
C is a probabilistic algorithm which is given oracle access to a σ-db D ∈ C and it is given
n := |D| as auxiliary input. The algorithm does the following:
1. If D ∈ P, then the tester accepts with probability at least 2/3.
2. If D is ε-far from P, then the tester rejects with probability at least 2/3.
The query complexity of a tester is the maximum number of oracle queries made. A tester
has constant query complexity, if the query complexity does not depend on the size of the
input database. We say a property P ⊆ C is uniformly testable in time f(n) on C, if for
every ε ∈ (0, 1] there exists an ε-tester for P on C which has constant query complexity and
whose running time on databases on n elements is f(n). Note that this tester must work for
all n.

Neighbourhoods. For a σ-db D and a, b ∈ D, the distance between a and b in D, denoted
by distD(a, b), is the length of a shortest path between a and b in G(D). Let r ∈ N. For
an element a ∈ D, we let NDr (a) denote the set of all elements of D that are at distance at
most r from a. The r-neighbourhood of a in D, denoted by NDr (a), is the tuple (D[Nr(a)], a)
where a is called the centre. We omit the superscript and write Nr(a) and Nr(a), if D is
clear from the context. Two r-neighbourhoods, Nr(a) and Nr(b), are isomorphic (written
Nr(a) ∼= Nr(b)) if there is an isomorphism between D[Nr(a)] and D[Nr(b)] which maps
a to b. An ∼=-equivalence-class of r-neighbourhoods is called an r-neighbourhood type (or
r-type for short). We let Tσ,dr denote the set of all r-types with degree at most d, over
schema σ. Note that for fixed d and σ, the cardinality |Tσ,dr | =: c(r) is a constant, only
depending on r and d. We say that an element a ∈ D has r-type τ , if NDr (a) ∈ τ .
For r ∈ N, the r-histogram of a database D, denoted by hr(D), is the vector with c(r)
components, indexed by the r-types, where the component corresponding to type τ contains
the number of elements of D of r-type τ . The r-neighbourhood distribution of D, denoted
by dvr(D), is the vector hr(D)/n where |D| = n. For a class of σ-dbs C and r ∈ N, we let
hr(C) := {hr(D) | D ∈ C}. A set is semilinear if it is a finite union of linear sets. A set
M ⊆ Nc is linear if M = {v̄0 + a1v̄1 + · · ·+ akv̄k | a1, . . . , ak ∈ N}, for some v̄0, . . . , v̄k ∈ Nc.
From a result in [14] about many-sorted spectra of CMSO sentences it can be derived that
that the set of r-histograms of properties defined by a CMSO sentence on Ct

d are semilinear.

I Lemma 1 ([1, 14]). For each r ∈ N and each property P ⊆ Ct
d definable by a CMSO

sentence on Ct
d, the set hr(P) is semilinear.

Model of computation. We use Random Access Machines (RAMs) and a uniform cost
measure when analysing our algorithms, i. e. we assume all basic arithmetic operations
including random sampling can be done in constant time, regardless of the size of the
numbers involved.

I. Adler and P. Fahey 7:7

n

m

n

m

Figure 1 The graphs Gn,m and Hn,m (respectively) of Example 3.

3 The Model

We shall now introduce our property testing model for bounded degree relational databases,
which is an extension of the BDRD model discussed in Section 2. The notions of oracle
queries, properties, ε-tester, query complexity and uniform testability remain the same but
we have an alternative definition of distance and ε-closeness. In our model, which we shall
call the BDRD+/− model for short, we can add and remove elements as well as tuples and
can therefore compare databases that are on a different number of elements.

I Definition 2 (Distance and ε-closeness). Let D,D′ ∈ Cd and ε ∈ [0, 1]. The distance
between D and D′ (denoted by dist+/−(D,D′)) is the minimum number of modifications
we need to make to D and D′ to make them isomorphic where a modification is either (1)
inserting a new element, (2) deleting an element (and as a result deleting any tuple that
contains that element), (3) inserting a tuple, or (4) deleting a tuple. We then say D and D′
are ε-close if dist+/−(D,D′) ≤ εdmin{|D|, |D′|} and are ε-far otherwise.

The following example illustrates the difference between the distance measure of the BDRD
and the distance measure of the BDRD+/− model.

I Example 3. Let P = {Gn,m | n,m ∈ N>1} where Gn,m is an n by m grid graph as shown
in Figure 1. Let us consider the graph Hn,m for some n,m ∈ N which is formed from Gn,m by
removing a corner vertex. In the BDRD+/− model the distance between Hn,m and Gn,m is 1
(we remove a corner vertex from Gn,m to get Hn,m) and therefore Hn,m is at distance 1 from
P in the BDRD+/− model. In the BDRD model if two graphs are on a different number of
vertices then the distance between them is infinity. Therefore if nm− 1 is a prime number
then Hn,m is at distance infinity from P in the BDRD model.

We now show that if a property is testable in the BDRD model then it is also testable in
the BDRD+/− model but the converse is not true. This allows for more testable properties
in the BDRD+/− model.

I Lemma 4 (∗). Let P ⊆ C. If P is uniformly testable on C in time f(n) in the BDRD
model then P is also uniformly testable on C in time f(n) in the BDRD+/− model.

I Theorem 5 ([16]). In the bounded degree model, bipartiteness cannot be tested with query
complexity o(

√
n), where n is the number of vertices of the input graph.

I Lemma 6. There exists a class C of σ-dbs and a property P ⊆ C such that P is trivially
testable on C in the BDRD+/− model but is not testable on C in the BDRD model.

FSTTCS 2020

7:8 Faster Property Testers in a Variation of the Bounded Degree Model

Proof. Let C be the class of all graphs with degree at most d. Let P = P1 ∪P2 ⊆ C be
the property where P1 contains all bipartite graphs in C and P2 contains all graphs in C
that have an odd number of vertices. In the BDRD+/− model every G ∈ C is ε-close to P if
|V (G)| ≥ 1/(εd) and hence P is trivially testable on C in the BDRD+/− model (the tester
accepts if |V (G)| ≥ 1/(εd) and does a full check of the input otherwise). In the BDRD model,
if the input graph has an even number of vertices then it is far from P2 and so we have to
test for P1. By Theorem 5, bipartiteness is not testable (with constant query complexity)
in the BDRD model. In particular, in the proof of Theorem 5, Goldreich and Ron show
that for any even n there exists two families, G1 ⊆ C and G2 ⊆ C, of n-vertex graphs such
that every graph in G1 is bipartite and almost all graphs in G2 are far from being bipartite
but any algorithm that performs o(

√
n) queries cannot distinguish between a graph chosen

randomly from G1 and a graph chosen randomly from G2. Therefore P is not testable on C
in the BDRD model. J

Note that the underlying general principle of the above proof can be applied to obtain
further examples of properties that are testable in the BDRD+/− model but not testable in
the BDRD model.

It is known that every hyperfinite property is “local” (Theorem 7), where “local” means
that if a σ-db D has a similar r-histogram to some σ-db (with the same domain size) that has
the (hyperfinite) property, then D must be ε-close to the property [23, 1]. This is summarised
in Theorem 7 below. We use Theorem 7 to prove a similar result in the BDRD+/− model
(Lemma 8). Lemma 8 is essential for the proof of Theorem 9.
I Theorem 7 ([23, 1]). Let ε ∈ (0, 1] and let C be closed under removing tuples. If a property
P ⊆ C is hyperfinite on C then there exists λ7 := λ7(ε) ∈ (0, 1] and r7 := r7(ε) ∈ N such that
for each D ∈ P and D′ ∈ C with the same number n of elements, if ‖hr7(D)−hr7(D′)‖1 ≤ λ7n,
then D′ is ε-close to P in the BDRD model.
I Lemma 8. Let ε ∈ (0, 1] and let C be closed under removing tuples. If a property P ⊆ C is
hyperfinite on C then there exists λ := λ(ε) ∈ (0, 1] and r := r(ε) ∈ N such that for each D ∈ P
and D′ ∈ C, on |D| and |D′| elements respectively, if ‖hr(D)− hr(D′)‖1 ≤ λmin{|D|, |D′|},
then D′ is ε-close to P in the BDRD+/− model.

Proof. Let r = r7(ε/4) and let λ = ελ7(ε/4)
1+dr+1 . Let us assume that ‖ hr(D) − hr(D′)‖1 ≤

λmin{|D|, |D′|} and P is hyperfinite on C. If |D| = |D′| then by Theorem 7 and the choice
of λ, D′ is ε-close to P. So let us assume that |D| 6= |D′|. Let D1 be the σ-db on |D|
elements formed from D′ by either removing |D′| − |D| elements if |D| < |D′| or adding
|D| − |D′| new elements if |D′| < |D|. Note that as ‖ hr(D)− hr(D′)‖1 ≤ λmin{|D|, |D′|}
and by definition ‖ hr(D) − hr(D′)‖1 =

∑c(r)
i=1 |hr(D) − hr(D′)| we have

∣∣|D| − |D′|∣∣ ≤
λmin{|D|, |D′|}. When an element a is removed, the r-type of any element in Nr(a) will
change. As |Nr(a)| ≤ dr+1 (cf. e. g. Lemma 3.2 (a) of [7]) and

∣∣|D|− |D′|∣∣ ≤ λmin{|D|, |D′|},
we have ‖hr(D′)− hr(D1)‖1 ≤ λmin{|D|, |D′|}dr+1. Therefore

‖hr(D)− hr(D1)‖1 ≤ λmin{|D|, |D′|}(1 + dr+1) ≤ λ7(ε/4)|D|

by the choice of λ. By Theorem 7, in the BDRD model D1 is ε/4-close to P. Hence there exists
a σ-db D2 ∈ P such that |D2| = |D| and dist(D1,D2) ≤ εd|D|/4. By the definition of the
two distance measures dist and dist+/−, we have dist+/−(D1,D2) ≤ dist(D1,D2) ≤ εd|D|/4
and by the choice of D1 we have dist+/−(D′,D1) ≤ λmin{|D|, |D′|}. Therefore

dist+/−(D′,D2) ≤ εd|D|
4 + λmin{|D|, |D′|} ≤ εdmin{|D|, |D′|},

as |D| ≤ min{|D|, |D′|} + λmin{|D|, |D′|} ≤ 2 min{|D|, |D′|} and λ ≤ εd/2. Hence in the
BDRD+/− model D′ is ε-close to P. J

I. Adler and P. Fahey 7:9

4 Main Results

We begin this section with the first of our main theorems (Theorem 9). We show that for
any property P which is hyperfinite on the input class C, if the set of r-histograms of P
is semilinear, then for every σ-db D in P there exists a constant size σ-db in P with a
neighbourhood distribution similar to that of D, but this is not true for σ-dbs in C that are
far from P. We then use this result to prove that such properties are testable in constant
time in the BDRD+/− model (Theorem 16). As a corollary we obtain that CMSO definable
properties on σ-dbs of bounded tree-width and bounded degree are testable in constant time
(Theorem 17).

I Theorem 9. Let ε ∈ (0, 1] and let r := r(ε) be as in Lemma 8. Let C be closed under
removing tuples and let P ⊆ C be a property that is hyperfinite on C such that the set hr(P)
is semilinear. There exist nmin := nmin(ε), nmax := nmax(ε) ∈ N and f := f(ε), µ := µ(ε) ∈
(0, 1) such that for every D ∈ C with |D| > nmax,
1. if D ∈ P, then there exists a D′ ∈ P such that nmin ≤ |D′| ≤ nmax and ‖ dvr(D) −

dvr(D′)‖1 ≤ f − µ, and
2. if D is ε-far from P (in the BDRD+/− model), then for every D′ ∈ P such that nmin ≤
|D′| ≤ nmax, we have ‖dvr(D)− dvr(D′)‖1 > f + µ.

Proof. Let λ := λ(ε) be as in Lemma 8 and c := c(r) (the number of r-types). First note
that if P is empty then for any choice of nmin, nmax, f and µ, both 1. and 2. in the theorem
statement are true and hence we shall assume that P is non-empty. As hr(P) is a semilinear
set we can write it as follows, hr(P) = M1∪M2∪· · ·∪Mm where m ∈ N and for each i ∈ [m],
Mi = {v̄i0 + a1v̄

i
1 + · · ·+ aki v̄

i
ki
| a1, . . . , aki ∈ N} is a linear set where v̄i0, . . . , v̄iki

∈ Nc and
for each j ∈ [ki], ‖v̄ij‖1 6= 0. Let k := maxi∈[m] ki + 1 and v := maxi∈[m]

(
maxj∈[0,ki] ‖v̄ij‖1

)
(note that v > 0 as P is non-empty). Let nmin := n0 − kv, nmax := n0 + kv, f := λ

3c , and
µ := λ

6c where

n0 := kv
(3ckv
f − µ

+ 1
)
.

Note that nmin > 0 by the choice of n0, f and µ.
(Proof of 1.) Assume D ∈ P and |D| = n > nmax. Then there exists some i ∈ [m]

and aD1 , . . . , a
D
ki
∈ N such that hr(D) = v̄i0 + aD1 v̄

i
1 + · · · + aDki

v̄iki
(note that n = ‖v̄i0‖1 +∑

j∈[ki] a
D
j ‖v̄ij‖1). Let D′ be the σ-db with r-histogram v̄i0 +aD

′

1 v̄i1 + · · ·+aD
′

ki
v̄iki
∈Mi where

aD
′

j is the nearest integer to aDj n0/n, and hence aDj n0/n− 1/2 ≤ aD′

j ≤ aDj n0/n+ 1/2. Note
that since v̄i0 + aD

′

1 v̄i1 + · · ·+ aD
′

ki
v̄iki
∈ hr(P), D′ exists and D′ ∈ P. We need to show that

nmin ≤ |D′| ≤ nmax and ‖dvr(D)− dvr(D′)‖1 ≤ f − µ.

B Claim 10 (∗). |D′| ≥ nmin.

B Claim 11 (∗). |D′| ≤ nmax.

B Claim 12. ‖ dvr(D)− dvr(D′)‖1 ≤ f − µ.

Proof. By definition, ‖dvr(D) − dvr(D′)‖1 =
∑
j∈[c] |dvr(D)[j] − dvr(D′)[j]|. First recall

that 0 < n0 − kv ≤ |D′| ≤ n0 + kv < n and note that for every ` ∈ [ki], aD` ≤ n (since

FSTTCS 2020

7:10 Faster Property Testers in a Variation of the Bounded Degree Model

‖v̄i`‖1 6= 0). Then for every j ∈ [c], by the choice of aD′

` for ` ∈ [ki],

dvr(D)[j]− dvr(D′)[j] = v̄i0[j]
(1
n
− 1
|D′|

)
+
∑
`∈[ki]

v̄i`[j]
(aD`
n
− aD

′

`

|D′|

)
≤
∑
`∈[ki]

v̄i`[j]
(aD`
n
− aD` n0

n|D′|
+ 1

2|D′|

)
=
∑
`∈[ki]

v̄i`[j]
(aD`
n

(|D′| − n0

|D′|

)
+ 1

2|D′|

)
≤
∑
`∈[ki]

v̄i`[j]
(n
n

(kv + n0 − n0

n0 − kv

)
+ 1

2(n0 − kv)

)
=
(2kv + 1

2(n0 − kv)

) ∑
`∈[ki]

v̄i`[j]

≤ kv(2kv + 1)
n0 − kv

.

On the other hand,

dvr(D)[j]− dvr(D′)[j] ≥ −
v̄i0[j]
|D′|

+
∑
`∈[ki]

v̄i`[j]
(aD`
n

(|D′| − n0

|D′|

)
− 1

2|D′|

)
≥ − v̄

i
0[j]
|D′|

+
∑
`∈[ki]

v̄i`[j]
(aD`
n

(−kv + n0 − n0

|D′|

)
− 1

2|D′|

)
= − v̄

i
0[j]
|D′|

−
∑
`∈[ki]

v̄i`[j]
(aD` kv
n|D′|

+ 1
2|D′|

)
≥ − v̄i0[j]

n0 − kv
−
∑
`∈[ki]

v̄i`[j]
(nkv

n(n0 − kv) + 1
2(n0 − kv)

)
= − v̄i0[j]

n0 − kv
−
(2kv + 1

2(n0 − kv)

) ∑
`∈[ki]

v̄i`[j] ≥ −
kv(2kv + 1)
n0 − kv

.

Hence,

|dvr(D)[j]− dvr(D′)[j]| ≤
kv(2kv + 1)
n0 − kv

≤ 3(kv)2

n0 − kv
= f − µ

c

by the choice of n0. Therefore,

‖dvr(D)− dvr(D′)‖1 =
∑
j∈[c]

|dvr(D)[j]− dvr(D′)[j]| ≤ f − µ

as required. C

(Proof of 2.) Assume D is ε-far from P and |D| = n > nmax. For a contradiction let
us assume there does exist a σ-db D′ ∈ P such that nmin ≤ |D′| ≤ nmax and ‖ dvr(D) −
dvr(D′)‖1 ≤ f + µ. As D′ ∈ P there exists some i ∈ [m] and aD

′

1 , . . . , aD
′

ki
∈ N such that

hr(D′) = v̄i0 + aD
′

1 v̄i1 + · · ·+ aD
′

ki
v̄iki

. Let D′′ be the σ-db with r-histogram v̄i0 + aD
′′

1 v̄i1 + · · ·+
aD

′′

ki
v̄iki
∈Mi where aD

′′

j is the nearest integer to aD′

j n/|D′|. Note as v̄i0+aD′′

1 v̄i1+· · ·+aD′′

ki
v̄iki
∈

hr(P), D′′ exists and D′′ ∈ P.

B Claim 13. D is ε-close to P.

Proof. First note that as ‖dvr(D)−dvr(D′)‖1 ≤ f+µ and hr(D′) = v̄i0 +aD′

1 v̄i1 + · · ·+aD′

ki
v̄iki

,
for every j ∈ [c]

v̄i0[j] +
∑
`∈[ki] a

D′

` v̄i`[j]
|D′|

− f − µ ≤ dvr(D)[j] ≤
v̄i0[j] +

∑
`∈[ki] a

D′

` v̄i`[j]
|D′|

+ f + µ

I. Adler and P. Fahey 7:11

and therefore

n
(v̄i0[j] +

∑
`∈[ki] a

D′

` v̄i`[j]
|D′|

− f − µ
)
≤ hr(D)[j] ≤ n

(v̄i0[j] +
∑
`∈[ki] a

D′

` v̄i`[j]
|D′|

+ f + µ
)
.

Hence, by the choice of aD′′

` for ` ∈ [ki],

hr(D)[j]− hr(D′′)[j] ≤ v̄i0[j]
(n

|D′|
− 1
)

+
∑
`∈[ki]

v̄i`[j]
(aD′

` n

|D′|
− aD

′′

`

)
+ fn+ µn

≤ v̄i0[j] n

|D′|
+
∑
`∈[ki]

v̄i`[j]
(aD′

` n

|D′|
−
(aD′

` n

|D′|
− 1

2

))
+ fn+ µn

= v̄i0[j] n

|D′|
+ 1

2
∑
`∈[ki]

v̄i`[j] + fn+ µn.

Similarly, by the choice of aD′′

` for ` ∈ [ki] and as n > |D′|,

hr(D)[j]− hr(D′′)[j] ≥ v̄i0[j]
(n

|D′|
− 1
)

+
∑
`∈[ki]

v̄i`[j]
(aD′

` n

|D′|
− aD

′′

`

)
− fn− µn

≥ −v̄i0[j] n

|D′|
+
∑
`∈[ki]

v̄i`[j]
(aD′

` n

|D′|
−
(aD′

` n

|D′|
+ 1

2

))
− fn− µn

= −v̄i0[j] n

|D′|
− 1

2
∑
`∈[ki]

v̄i`[j]− fn− µn.

Therefore,

|hr(D)[j]− hr(D′′)[j]| ≤ v̄i0[j] n

|D′|
+ 1

2
∑
`∈[ki]

v̄i`[j] + fn+ µn

≤ n

|D′|
∑

0≤`≤ki

v̄i`[j] + fn+ µn ≤ nkv

|D′|
+ fn+ µn

= n
(kv

|D′|
+ λ

3c + λ

6c

)
≤ n

(λ

18c + λ

3c + λ

6c

)
= 5λn

9c

by the choice of f and µ and as

|D′| ≥ nmin = 3c(kv)2

f − µ
= 18(ckv)2

λ
≥ 18ckv

λ
.

To apply Lemma 8 we need to show that ‖ hr(D)−hr(D′′)‖1 ≤ λmin{n, |D′′|}. If |hr(D)[j]−
hr(D′′)[j]| ≤ λ

c min{n, |D′′|} then ‖hr(D)− hr(D′′)‖1 ≤ λmin{n, |D′′|}. Clearly, 5λn
9c < λn

c .
We also have

|D′′| = ‖v̄i0‖1 +
∑
`∈[ki]

aD
′′

` ‖v̄i`‖1 ≥ ‖v̄i0‖1 +
∑
`∈[ki]

(aD′

` n

|D′|
− 1

2

)
‖v̄i`‖1

= ‖v̄i0‖1 −
1
2
∑
`∈[ki]

‖v̄i`‖1 + n

|D′|
∑
`∈[ki]

aD
′

` ‖v̄i`‖1 ≥ −kv + n

|D′|
(|D′| − ‖v̄i0‖1)

≥ − n

18 + 17
18n ≥

5n
9

FSTTCS 2020

7:12 Faster Property Testers in a Variation of the Bounded Degree Model

as

|D′| ≥ 18ckv
λ
≥ 18v ≥ 18‖v̄i0‖1 and kv ≤ (ckv)2

λ
= nmin

18 ≤ n

18 .

Therefore, 5λn
9c ≤

λ|D′′|
c and hence ‖ hr(D)− hr(D′′)‖1 ≤ λmin{n, |D′′|}. By Lemma 8, D is

ε-close to P. C

Claim 13 gives us a contradiction and therefore for every D′ ∈ P such that nmin ≤ |D′| ≤
nmax, we have ‖ dvr(D)− dvr(D′)‖1 > f + µ as required. J

As mentioned in the introduction, Alon [22, Proposition 19.10] proved that on bounded
degree graphs, for any graph G, radius r and ε > 0 there always exists a graph H whose size
is independent of |V (G)| and whose r-neighbourhood distribution vector satisfies ‖dvr(G)−
dvr(H)‖1 ≤ ε. However, the proof is only existential and does not provide an explicit bound
on the size of H. As a corollary to the proof of Theorem 9, we immediately obtain explicit
bounds for classes of graphs and relational databases of bounded degree whose histogram
vectors form a semilinear set.

I Corollary 14. Let ε ∈ (0, 1], r ∈ N and D be a σ-db that belongs to a class of σ-dbs C
such that the set hr(C) is semilinear, i.e. hr(C) = M1 ∪M2 ∪ · · · ∪Mm where m ∈ N and
for each i ∈ [m], Mi = {v̄i0 + a1v̄

i
1 + · · · + aki

v̄iki
| a1, . . . , aki

∈ N} is a linear set where
v̄i0, . . . , v̄

i
ki
∈ Nc(r). Then there exists a σ-db D0 such that

‖dvr(D)− dvr(D0)‖1 ≤ ε and |D0| ≤ kv
(3ckv

ε
+ 2
)

where c := c(r), k := maxi∈[m] ki + 1 and v := maxi∈[m]

(
maxj∈[0,ki] ‖v̄ij‖1

)
.

Our aim is to construct constant time testers for hyperfinite properties whose set of
r-histograms are semilinear. If we can approximate the r-neighbourhood distribution of a
σ-db then by Theorem 9 we only need to check whether this distribution is close or not to the
r-neighbourhood distribution of some small constant size σ-db. We let EstimateFrequenciesr,s
be the algorithm that, given oracle access to an input σ-db D, samples s many elements
uniformly and independently from D and computes their r-type. The algorithm then returns
the r-neighbourhood distribution vector of the sample.

I Lemma 15 ([1]). Let D ∈ Cd be a σ-db on n elements, µ ∈ (0, 1) and r ∈ N. If
s ≥ c(r)2/µ2 · ln(20 c(r)), with probability at least 9/10 the vector v̄ returned by the algorithm
EstimateFrequenciesr,s on input D satisfies ‖v̄ − dvr(D)‖1 ≤ µ.

I Theorem 16. Let C be closed under removing tuples and let P ⊆ C be a property that is
hyperfinite on C. If for each r ∈ N the set hr(P) is semilinear, then P is uniformly testable
on C in constant time in the BDRD+/− model.

Proof. Let ε ∈ (0, 1]. Let r := r(ε) be as in Lemma 8, let nmin := nmin(ε), nmax := nmax(ε),
f := f(ε) and µ := µ(ε) be as in Theorem 9 and let s = c(r)2/µ2 · ln(20 c(r)). Assume that
the set hr(P) is semilinear. Given oracle access to a σ-db D ∈ C and |D| = n as an input,
the ε-tester proceeds as follows:
1. If n ≤ nmax, do a full check of D and decide if D ∈ P.
2. Run EstimateFrequenciesr,s and let v̄ be the resulting vector.
3. If there exists a D′ ∈ P where nmin ≤ |D′| ≤ nmax and ‖v̄ − dvr(D′)‖1 ≤ f then accept

otherwise reject.

I. Adler and P. Fahey 7:13

The running time and query complexity of the above tester is constant as nmax is a constant
(it only depends on P, d and ε) and EstimateFrequenciesr,s runs in constant time and makes
a constant number of queries.

For correctness, first assume D ∈ P. By Theorem 9 there exists a σ-db D′ ∈ P such that
nmin ≤ |D′| ≤ nmax and ‖ dvr(D)− dvr(D′)‖1 ≤ f − µ. By Lemma 15 with probability at
least 9/10, ‖v̄ − dvr(D)‖1 ≤ µ and therefore ‖v̄ − dvr(D′)‖1 ≤ f . Hence with probability at
least 9/10 the tester will accept.

Now assume D is ε-far from P. By Theorem 9 for every D′ ∈ P with nmin ≤ |D′| ≤
nmax, we have ‖ dvr(D) − dvr(D′)‖1 > f + µ. By Lemma 15 with probability at least
9/10, ‖v̄ − dvr(D)‖1 ≤ µ and therefore for every D′ ∈ P with nmin ≤ |D′| ≤ nmax,
‖v̄ − dvr(D′)‖1 > f . Hence with probability at least 9/10 the tester will reject. J

Combining Theorem 16 and Lemma 1 and the fact that Ct
d is hyperfinite [17, 3] (and so

any property is hyperfinite on Ct
d) we obtain the following as a corollary.

I Theorem 17. Every property P definable by a CMSO sentence on Ct
d is uniformly testable

on Ct
d with constant time complexity in the BDRD+/− model.

References
1 Isolde Adler and Frederik Harwath. Property testing for bounded degree databases. In 35th

Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96, page 6.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

2 Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing triangle-freeness in
general graphs. SIAM Journal on Discrete Mathematics, 22(2):786–819, 2008.

3 Noga Alon, Paul D. Seymour, and Robin Thomas. A separator theorem for graphs with an
excluded minor and its applications. In Harriet Ortiz, editor, Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 293–299. ACM, 1990. doi:10.1145/100216.100254.

4 Jasine Babu, Areej Khoury, and Ilan Newman. Every property of outerplanar graphs is
testable. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

5 Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and Carl Staelin.
Detecting and exploiting near-sortedness for efficient relational query evaluation. In Proceedings
of the 14th International Conference on Database Theory, pages 256–267. ACM, 2011.

6 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. Advances in mathematics, 223(6):2200–2218, 2010.

7 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering fo+ mod queries under
updates on bounded degree databases. ACM Transactions on Database Systems (TODS),
43(2):7, 2018.

8 Hubie Chen and Yuichi Yoshida. Testability of homomorphism inadmissibility: Property
testing meets database theory. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 365–382. ACM, 2019.

9 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and
Semantics, pages 193–242. Elsevier, 1990.

10 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

11 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Transactions on Computational Logic (TOCL),
8(4):21, 2007.

FSTTCS 2020

https://doi.org/10.1145/100216.100254

7:14 Faster Property Testers in a Variation of the Bounded Degree Model

12 Hendrik Fichtenberger, Pan Peng, and Christian Sohler. On constant-size graphs that preserve
the local structure of high-girth graphs. In Naveen Garg, Klaus Jansen, Anup Rao, and
José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ,
USA, volume 40 of LIPIcs, pages 786–799. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.786.

13 Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Every testable (infinite) property
of bounded-degree graphs contains an infinite hyperfinite subproperty. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 714–726. SIAM, 2019.

14 Eldar Fischer, Johann A Makowsky, et al. On spectra of sentences of monadic second order
logic with counting. Journal of Symbolic Logic, 69(3):617–640, 2004.

15 Jörg Flum and Martin Grohe. Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg, 2006.

16 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

17 Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 22–31.
IEEE Computer Society, 2009. doi:10.1109/FOCS.2009.77.

18 Piotr Indyk, Andrew McGregor, Ilan Newman, and Krzysztof Onak. Open problems in data
streams, property testing, and related topics. In Bernitoro Workshop on Sublinear Algorithms,
2011.

19 Hiro Ito, Areej Khoury, and Ilan Newman. On the characterization of 1-sided error strongly
testable graph properties for bounded-degree graphs. computational complexity, 29(1):1, 2020.

20 Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded
degree. Logical Methods in Computer Science, 7(2), 2011. doi:10.2168/LMCS-7(2:20)2011.

21 Leonid Libkin. Elements of finite model theory. Springer, 2004.

22 László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

23 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
Journal on Computing, 42(3):1095–1112, 2013.

A Proofs of Section 3

Proof of Lemma 4. Let π be an ε-tester, that runs in time f(n), for P on C in the BDRD
model. We claim that π is also an ε-tester for P on C in the BDRD+/− model. Let D ∈ C
be the input σ-db. If D ∈ P then π will accept with probability at least 2/3. If D is ε-far
from P in the BDRD+/− model then it must also be ε-far from P in the BDRD model and
therefore π will reject with probability at least 2/3. Hence π is an ε-tester for P on C in the
BDRD+/− model. J

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.786
https://doi.org/10.1109/FOCS.2009.77
https://doi.org/10.2168/LMCS-7(2:20)2011

I. Adler and P. Fahey 7:15

B Proofs of Section 4

Proof of Claim 10. By the choice of aD′

j for j ∈ [ki],

|D′| = ‖v̄i0‖1 +
∑
j∈[ki]

aD
′

j ‖v̄ij‖1 ≥ ‖v̄i0‖1 +
∑
j∈[ki]

(aDj n0

n
− 1

2

)
‖v̄ij‖1

= ‖v̄i0‖1 −
1
2
∑
j∈[ki]

‖v̄ij‖1 + n0

n

∑
j∈[ki]

aDj ‖v̄ij‖1 = ‖v̄i0‖1 −
1
2
∑
j∈[ki]

‖v̄ij‖1 + n0 −
n0‖v̄i0‖1

n

≥ ‖v̄i0‖1 −
1
2
∑
j∈[ki]

‖v̄ij‖1 + n0 − ‖v̄i0‖1 ≥ −kv + n0 = nmin,

as
∑
j∈[ki] a

D
j ‖v̄ij‖1 = n− ‖v̄i0‖1 and n > nmax ≥ n0. C

Proof of Claim 11. By the choice of aD′

j for j ∈ [ki],

|D′| = ‖v̄i0‖1 +
∑
j∈[ki]

aD
′

j ‖v̄ij‖1 ≤ ‖v̄i0‖1 +
∑
j∈[ki]

(aDj n0

n
+ 1

2

)
‖v̄ij‖1

= ‖v̄i0‖1 + 1
2
∑
j∈[ki]

‖v̄ij‖1 + n0

(
1− ‖v̄

i
0‖1

n

)
≤

∑
0≤j≤ki

‖v̄ij‖1 + n0 ≤ kv + n0 = nmax,

as
∑
j∈[ki] a

D
j ‖v̄ij‖1 = n− ‖v̄i0‖1. C

FSTTCS 2020

Clustering Under Perturbation Stability in
Near-Linear Time
Pankaj K. Agarwal
Department of Computer Science, Duke University, Durham, NC, USA
pankaj@cs.duke.edu

Hsien-Chih Chang
Department of Computer Science, Dartmouth College, Hanover, NH, USA
hsien-chih.chang@dartmouth.edu

Kamesh Munagala
Department of Computer Science, Duke University, Durham, NC, USA
kamesh@cs.duke.edu

Erin Taylor
Department of Computer Science, Duke University, Durham, NC, USA
ect15@cs.duke.edu

Emo Welzl
Department of Computer Science, ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the
perturbation stability assumption. An instance is α-stable if the underlying optimal clustering
continues to remain optimal even when all pairwise distances are arbitrarily perturbed by a factor of
at most α. Our main contribution is in presenting efficient exact algorithms for α-stable clustering
instances whose running times depend near-linearly on the size of the data set when α ≥ 2 +

√
3.

For k-center and k-means problems, our algorithms also achieve polynomial dependence on the
number of clusters, k, when α ≥ 2 +

√
3 + ε for any constant ε > 0 in any fixed dimension. For

k-median, our algorithms have polynomial dependence on k for α > 5 in any fixed dimension; and
for α ≥ 2 +

√
3 in two dimensions. Our algorithms are simple, and only require applying techniques

such as local search or dynamic programming to a suitably modified metric space, combined with
careful choice of data structures.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases clustering, stability, local search, dynamic programming, coreset, polyhedral
metric, trapezoid decomposition, range query

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.8

Related Version A full version of the paper is available at https://arxiv.org/abs/2009.14358.

Funding Work on this paper was partially supported by NSF grants IIS-18-14493, CCF-20-07556,
CCF-1637397 and IIS- 1447554; ONR award N00014-19-1-2268; and DARPA award FA8650-18-C-
7880.
Hsien-Chih Chang: This work was done when the author was affiliated with Duke University.

1 Introduction

Clustering is a fundamental problem in unsupervised learning and data summarization, with
wide-ranging applications that span myriad areas. Typically, the data points are assumed to
lie in a Euclidean space, and the goal in center-based clustering is to open a set of k centers
to minimize the objective cost, usually a function over the distance from each data point

© Pankaj K. Agarwal, Hsien-Chih Chang, Kamesh Munagala, Erin Taylor, and Emo Welzl;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:hsien-chih.chang@dartmouth.edu
mailto:kamesh@cs.duke.edu
mailto:ect15@cs.duke.edu
mailto:emo@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.8
https://arxiv.org/abs/2009.14358
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Clustering Under Perturbation Stability in Near-Linear Time

to its closest center. The k-median objective minimizes the sum of distances; the k-means
minimizes the sum of squares of distances; and the k-center minimizes the longest distance.
In the worst case, all these objectives are NP-hard even in 2D [48,50].

A substantial body of work has focused on developing polynomial-time approximation
algorithms and analyzing natural heuristics for these problems. Given the sheer size of
modern data sets, such as those generated in genomics or mapping applications, even a
polynomial-time algorithm is too slow to be useful in practice – just computing all pairs of
distances can be computationally burdensome. What we need is an algorithm whose running
time is near-linear in the input size and polynomial in the number of clusters.

Because of NP-hardness results, we cannot hope to compute an optimal solution in
polynomial time, but in the worst case an approximate clustering can be different from an
optimal clustering. We focus on the case when the optimal clustering can be recovered under
some reasonable assumptions on the input that hold in practice. Such methodology is termed
“beyond worst-case analysis” and has been adopted by recent work [2, 8, 23]. In recent years,
the notion of stability has emerged as a popular assumption under which polynomial-time
optimal clustering algorithms have been developed. An instance of clustering is called stable
if any “small perturbation” of input points does not change the optimal solution. This
is natural in real datasets, where often, the optimal clustering is clearly demarcated, and
the distances are obtained heuristically. Different notions of stability differ in how “small
perturbation” is defined, though most of them are related. In this paper, we focus on the
notions of stability introduced in Bilu and Linial [23] and Awasthi, Blum, and Sheffet [14]. A
clustering instance is α-perturbation resilient or α-stable if the optimal clustering does not
change when all distances are perturbed by a factor of at most α. Similarly, a clustering
instance is α-center proximal if any point is at least a factor of α closer to its own optimal
center than any other optimal center. Awasthi, Blum, and Sheffet showed that α-stability
implies α-center proximity [14]. This line of work designs algorithms to recover the exact
optimal clustering – the ground truth – in polynomial time for α-stable instances.

This paper also focuses on recovering the optimal clustering for stable clustering instances.
But instead of focusing on polynomial-time algorithms and optimizing the value of α, we ask
the question: Can algorithms be designed that compute exact solutions to stable instances of
Euclidean center-based clustering that run in time near-linear in the input size? We note
that an (1 + ε)-approximation solution, for an arbitrarily small constant ε > 0, may differ
significantly from an optimal solution (the ground truth) even for stable instances, so one
cannot hope to use an approximation algorithm to recover the optimal clustering.

1.1 Our Results
In this paper, we make progress on the above question, and present near-linear time algorithms
for finding optimal solutions of stable clustering instances with moderate values of α. In
particular, we show the following meta-theorem:

I Theorem 1. Let X be a set of n points in Rd for some constant d, let k ≥ 1 be an integer,
and let α ≥ 2 +

√
3 be a parameter. If the k-median, k-means, or k-center clustering instance

for X is α-stable, then the optimal solution can be computed in Õ(npoly k + f(k)) time.

In the above theorem, the Õ notation suppresses logarithmic terms in n and the spread
of the point set. The function f(k) depends on the choice of algorithm, and we present
the exact dependence below. We also omit terms depending solely on the dimension, d.
Furthermore, the above theorem is robust in the sense that the algorithm is not restricted to
choosing the input points as centers (discrete setting), and can potentially choose arbitrary

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:3

points in the Euclidean plane as centers (continuous setting, sometimes referred to as the
Steiner point setting) – indeed, we show that these notions are identical under a reasonable
assumption on stability.

At a more fine-grained level, we present several algorithms that require mild assumptions
on the stability condition. In the results below, as well as throughout the paper, we present
our results both for the Euclidean plane, as well as generalizations to higher (but fixed
number of) dimensions.

Dynamic Programming. In Section 3, we present a dynamic programming algorithm that
computes the optimal clustering in O(nk2 + n polylogn) time for α-stable k-means, k-
median, and k-center in any fixed dimension, provided that α ≥ 2 +

√
3 + ε for any

constant ε > 0. For d = 2, it suffices to assume that α ≥ 2 +
√

3.
Local Search. In Sections 4 and 5, we show that the standard 1-swap local-search algorithm,

which iteratively swaps out a center in the current solution for a new center as long as
the resulting total cost improves, computes an optimal clustering for α-stable instances of
k-median assuming α > 5. We also show that it can be implemented in O(nk2 log3 n log ∆)
for d = 2 and in O(nk2d−1 polylogn log ∆) for d > 2; ∆ is the spread of the point set.1

Coresets. In the full version of the paper, we use multiplicative coresets to compute the
optimal clustering for k-means, k-median and k-center in any fixed dimension, when
α ≥ 2 +

√
3. The running time is O(nk2 + f(k)) where f(k) is an exponential function

of k.

I Remark 2. While the current analysis of the dynamic programming based algorithm
suggests that it is better than the local-search and coreset based approaches, the latter are
of independent interest – our local-search analysis is considerably simpler than the previous
analysis [38], and coresets have mostly been used to compute approximate, rather than exact,
solutions. We also note that our analysis of the local-search algorithm is probably not tight.
Furthermore, variants of all three approaches might work for smaller values of α.

Techniques. The key difficulty with developing fast algorithms for computing the optimal
clustering is that some clusters could have a very small size compared to others. This issue
persists even when the instances are stable. Imagine a scenario where there are multiple
small clusters, and an algorithm must decide whether to merge these into one cluster while
splitting some large cluster, or keep them intact. Now imagine this situation happening
recursively, so that the algorithm has multiple choices about which clusters to recursively
split. The difference in cost between these options and the size of the small clusters can be
small enough that any (1 + ε)-approximation can be agnostic, while an exact solution cannot.
As such, work on finding exact optima use techniques such as dynamic programming [10]
or local search with large number of swaps [26, 38] in order to recover small clusters. Other
work makes assumptions lower-bounding the size of the optimal clusters or the spread of
their centers [34].

Our main technical insight for the first two results is simple in hindsight, yet powerful:
For a stable instance, if the Euclidean metric is replaced by another metric that is a good
approximation, then the optimal clustering does not change under the new metric and in
fact the instance remains stable albeit with a smaller stability parameter. In particular,

1 The spread of a point set is the ratio between the longest and shortest pairwise distances.

FSTTCS 2020

8:4 Clustering Under Perturbation Stability in Near-Linear Time

we replace the Euclidean metric with an appropriate polyhedral metric – that is, a convex
distance function where each unit ball is a regular polyhedron – yielding efficient procedures
for the following two primitives:

Cost of 1-swap. Given a candidate set of centers S, maintain a data structure that
efficiently updates the total cost if center x ∈ S is replaced by center y /∈ S.
Cost of 1-clustering. Given a partition of the data points, maintain a data structure
where the cost of 1-clustering (under any objectives) can be efficiently updated as partitions
are merged.

We next combine the insight of changing the metrics with additional techniques. For
local search, we build on the approach in [26, 31, 38] that shows local search with t-swaps for
large enough constant t finds an optimal solution for stable instances in polynomial time for
any fixed-dimension Euclidean space. None of the prior analysis directly extends as is to
1-swap, which is critical in achieving near-linear running time – note that even when t = 2
there is a quadratic number of candidate swaps per step.

For the dynamic programming algorithm, we use the following insight: In Euclidean
spaces, for α ≥ 2 +

√
3, the longest edge of the minimum spanning tree over the input points

partitions the data set in two, such that any optimal cluster lies completely in one of the
two sides of the partition. Combined with the change of metrics one can achieve near-linear
running time.

Due to length constraints of the paper, the coreset result, most of algorithmic details,
and many proofs can be found in the full version of the paper.

1.2 Related Work
All of k-median, k-means, and k-center are widely studied from the perspective of approxi-
mation algorithms and are known to be hard to approximate [36]. Indeed, for general metric
spaces, k-center is hard to approximate to within a factor of 2 − ε [43]; k-median is hard
to (1 + 2/e)-approximate [44]; and k-means is hard to (1 + 8/e)-approximate in general
metrics [29], and is hard to approximate within a factor of 1.0013 in the Euclidean setting [47].
Even when the metric space is Euclidean, k-means is still NP-hard when k = 2 [7,32], and
there is an nΩ(k) lower bound on running time for k-median and k-means in 4-dimensional
Euclidean space under the exponential-time hypothesis [27].

There is a long line of work in developing (1 + ε)-approximations for these problems
in Euclidean spaces. The holy grail of this work has been the development of algorithms
that are near-linear time in n, and several techniques are now known to achieve this. This
includes randomly shifted quad-trees [11], coresets [4, 15, 37, 40, 41], sampling [46], and local
search [26,28,30], among others.

There are many notions of clustering stability that have been considered in literature [1,6,
13,17,18,22,35,45,52]. The exact definition of stability we study here was first introduced in
Awasthi et al. [14]; their definition in particular resembles the one of Bilu and Linial [23] for
max-cut problem, which later has been adapted to other optimization problems [9,10,19,49,51].
Building on a long line of work [14,16,20,21], which gradually reduced the stability parameter,
Angelidakis et al. [10] present a dynamic programming based polynomial-time optimal
algorithm for discrete 2-stable instances for all center-based objectives.

Chekuri and Gupta [25] show that a natural LP-relaxation is integral for the 2-stable
k-center problem. Recent work by Cohen-Addad [31] provides a framework for analyzing
local search algorithms for stable instances. This work shows that for an α-stable instance
with α > 3, any solution is optimal if it cannot be improved by swapping d2/(α − 3)e

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:5

centers. Focusing on Euclidean spaces of fixed dimensions, Friggstad et al. [38] show that
a local-search algorithm with O(1)-swaps runs in polynomial time under a (1 + δ)-stable
assumption for any δ > 0. However, none of the algorithms for stable instances of clustering
so far have running time near-linear in n, even when the stability parameter α is large, points
lie in R2, and the underlying metric is Euclidean.

On the hardness side, solving (3−δ)-center proximal k-median instances in general metric
spaces is NP-hard for any δ > 0 [14]. When restricted to Euclidean spaces in arbitrary
dimensions, Ben-David and Reyzin [22] showed that for every δ > 0, solving discrete (2− δ)-
center proximal k-median instances is NP-hard. Similarly, the clustering problem for discrete
k-center remains hard for α-stable instances when α < 2, assuming standard complexity
assumption that NP 6= RP [20]. Under the same complexity assumption, discrete α-stable
k-means is also hard when α < 1+δ0 for some positive constant δ0 [38]. Deshpande et al. [34]
showed it is NP-hard to (1 + ε)-approximate (2− δ)-center proximal k-means instances.

2 Definitions and Preliminaries

Clustering. Let X = {p1, . . . , pn} be a set of n points in Rd, and let δ : Rd × Rd → R≥0
be a distance function (not necessarily a metric satisfying triangle inequality). For a set
Y ⊆ Rd, we define δ(p, Y) := miny∈Y δ(p, y). A k-clustering of X is a partition of X into k
non-empty clusters X1, . . . , Xk. We focus on center-based clusterings that are induced by
a set S := {c1, . . . , ck} of k centers; each Xi is the subset of points of X that are closest
to ci in S under δ, that is, Xi := {p ∈ X | δ(p, ci) ≤ δ(p, cj)} (ties are broken arbitrarily).
Assuming the nearest neighbor of each point of X in S is unique (under distance function δ),
S defines a k-clustering of X. Sometimes it is more convenient to denote a k-clustering by
its set of centers S.

The quality of a clustering S of X is defined using a cost function $(X,S); cost function $
depends on the distance function δ, so sometimes we may use the notation $δ to emphasize
the underlying distance function. The goal is to compute S∗ := arg minS $(X,S) where the
minimum is taken over all subsets S ⊂ Rd of k points. Several different cost functions have
been proposed, leading to various optimization problems. We consider the following three
popular variants:

k-median clustering: the cost function is $(X,S) =
∑
p∈X δ(p, S).

k-means clustering: the cost function is $(X,S) =
∑
p∈X(δ(p, S))2.

k-center clustering: the cost function is $(X,S) = maxp∈X δ(p, S).

In some cases we wish S to be a subset of X, in which case we refer to the problem as
the discrete k-clustering problem. For example, the discrete k-median problem is to compute
arg minS⊆X,|S|=k

∑
p∈X δ(p, S). The discrete k-means and discrete k-center problems are

defined analogously.
Given point set X, distance function δ, and cost function $, we refer to (X, δ, $) as a

clustering instance. If $ is defined directly by the distance function δ, we use (X, δ) to denote
a clustering instance. Note that a center of a set of points may not be unique (e.g. when δ is
defined by the L1-metric and $ is the sum of distances) or it may not be easy to compute
(e.g. when δ is defined by the L2-metric and $ is the sum of distances).

Stability. Let X be a point set in Euclidean space Rd. For α ≥ 1, a clustering instance
(X, δ, $δ) is α-stable if for any perturbed distance function δ̃ (not necessary a metric) satisfying
δ(p, q) ≤ δ̃(p, q) ≤ α · δ(p, q) for all p, q ∈ Rd, any optimal clustering of (X, δ, $δ) is also an
optimal clustering of (X, δ̃, $δ̃). Note that the cluster centers as well as the cost of optimal
clustering may be different for the two instances. We exploit the following property of
stability, which follows directly from its definition.

FSTTCS 2020

8:6 Clustering Under Perturbation Stability in Near-Linear Time

I Lemma 3. Let (X, δ) be an α-stable clustering instance with α > 1. Then the optimal
clustering O of (X, δ) is unique.

Metric approximations. The next lemma, which we rely on heavily throughout the paper,
is the observation that a change of metric preserves the optimal clustering as long as the
new metric is a β-approximation of the original metric satisfying β < α.

I Lemma 4. Given point set X, let δ and δ′ be two metrics satisfying δ(p, q) ≤ δ′(p, q) ≤
β · δ(p, q) for all p and q in X for some β. Let (X, δ) be an α-stable clustering instance with
α > β. Then the optimal clustering of (X, δ) is also the optimal clustering of (X, δ′), and
vice versa. Furthermore, (X, δ′) is an (α/β)-stable clustering instance.

Polyhedral metric. In light of the metric approximation lemma, we would like to approxi-
mate the Euclidean metric without losing too much stability, using a collection of convex
distance functions generalizing the L∞-metric in Euclidean space. Let N ⊆ Sd−1 be a
centrally-symmetric set of γ unit vectors (that is, if u ∈ N then −u ∈ N) such that for any
unit vector v ∈ Sd−1, there is a vector u ∈ N within angle arccos(1 − ε) = O(

√
ε). The

number of vectors needed in N is known to be O(ε−(d−1)/2). We define the polyhedral metric
δN : Rd × Rd → R≥0 to be δN (p, q) := maxu∈N 〈p− q, u〉.

Since N is centrally symmetric, δN is symmetric and thus a metric. The unit ball under
δN is a convex polyhedron, thus the name polyhedral metric. By construction, an easy
calculation shows that for any p and q in Rd, ‖p− q‖ ≥ δN (p, q) ≥ (1− ε) · ‖p− q‖. By scaling
each vector in N by a 1 + ε factor, we can ensure that (1 + ε) · ‖p− q‖ ≥ δN (p, q) ≥ ‖p− q‖.
By taking ε to be small enough, the optimal clustering for α-stable clustering instance
(X, ‖·‖, $) is the same as that for (X, δN , $) by Lemma 4, and the new instance (X, δN , $) is
(1− ε)α-stable if the original instance (X, ‖·‖, $) is α-stable.

Center proximity. A clustering instance (X, δ) satisfies α-center proximity property [14] if
for any distinct optimal clusters Xi and Xj with centers ci and cj and any point p ∈ Xi,
one has α · δ(p, ci) < δ(p, cj). Awasthi, Blum, and Sheffet showed that any α-stable instance
satisfies α-center proximity [14, Fact 2.2] (also [10, Theorem 3.1] under metric perturbation).
Optimal solutions of α-stable instances satisfy the following separation properties.2

α-center proximity implies that (α− 1) · δ(p, ci) < δ(p, q) for any p ∈ Xi and any q 6∈ Xi.

For α ≥ 2, a point is closer to its own center than to any point of another cluster.3
For α ≥ 2 +

√
3, α-center proximity implies that δ(p, p′) < δ(p, q) for any p, p′ ∈

Xi and any q 6∈ Xi. In other words, from any point p in X, any intra-cluster distance to
a point p′ is shorter than any inter-cluster distance to a point q.

We make use of the following stronger intra-inter distance property on α-stable instances,
which allows us to compare any intra-distance between two points inXi and any inter-distance
between a point in Xi and a point in Xj .

I Lemma 5. Let (X, δ) be an α-stable instance, α > 1, and let X1 be a cluster in an optimal
clustering with q ∈ X \X1 and p, p′, p′′ ∈ X1. If δ is a metric, then δ(p, p′) ≤ δ(p′′, q) for
α ≥ 2 +

√
5. If δ is the Euclidean metric in Rd, then δ(p, p′) ≤ δ(p′′, q) for α ≥ 2 +

√
3.

Finally, we note that it is enough to consider the discrete version of the clustering problem
for stable instances.

2 We give an additional list of known separation properties in the full version of the paper.
3 They are known as weak center proximity [20] and strict separation property [18, 22] respectively.

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:7

I Lemma 6. For any α-stable instance (X, δ, $δ) with α ≥ 2 +
√

3, any continuous optimal
k-clustering is a discrete optimal k-clustering and vice versa.

3 Efficient Dynamic Programming

We now describe a simple, efficient algorithm for computing the optimal clustering for
the k-means, k-center, and k-median problem assuming the given instance is α-stable for
α ≥ 2 +

√
3. Roughly speaking, we make the following observation: if there are at least two

clusters, then the two endpoints of the longest edge of the minimum spanning tree of X belong
to different clusters, and no cluster has points in both subtrees of the minimum spanning
tree delimited by the longest edge. We describe the dynamic programming algorithm in
Section 3.1 and then describe the procedure for computing cluster costs in Section 3.2. We
summarize the results in this section by the following theorem.

I Theorem 7. Let X be a set with n points lying in Rd and k ≥ 1 an integer. If the k-means,
k-median, or k-center instance for X under the Euclidean metric is α-stable for α ≥ 2+

√
3+ε

for any constant ε > 0, then the optimal clustering can be computed in O(nk2 + npolylogn)
time. For d = 2 the assumption can be relaxed to α ≥ 2 +

√
3.

3.1 Fast Dynamic Programming
The following lemma is the key observation for our algorithm.

I Lemma 8. Let (X, δ, $) be an α-stable k-clustering instance with α ≥ 2 +
√

3 and k ≥ 2,
and let T be the minimum spanning tree of X under metric δ. Then (1) The two endpoints
u and v of the longest edge e in T do not belong to the same cluster; (2) each cluster lies in
the same connected component of T \ {e}.

Algorithm. We fix the metric δ and the cost function $. For a subset Y ⊆ X and for an
integer j between 1 and k − 1, let µ(Y ; j) denote the optimal cost of an j-clustering on
Y (under δ and $). Recall that our definition of j-clustering required all clusters to be
non-empty, so it is not defined for |Y | < j. For simplicity, we assume that µ(Y ; j) =∞ for
|Y | < j. Let T be the minimum spanning tree on X under δ, let uv be the longest edge in
T ; let Xu and Xv be the set of vertices of the two components of T \ {uv}. Then µ(X; k)
satisfies the following recurrence relation:

µ(X; k) =


µ(X; 1) if k = 1,
∞ if k > |X|,
min1≤i<k {µ(Xu; i) + µ(Xv; k − i)} if |X| > 1 and k > 1.

(1)

Using recurrence (1), we compute µ(X; k) as follows. Let R be a recursion tree, a binary
tree where each node v in R is associated with a subtree Tv of T . If v is the root of R, then
Tv = T . Recursion tree R is defined recursively as follows. Let Xv ⊆ X be the set of vertices
of T in Tv. If |Xv| = 1, then v is a leaf. Each interior node v of T is also associated with
the longest edge ev of Tv. Removal of ev decomposes Tv into two connected components,
each of which is associated with one of the children of v. After having computed T , R can be
computed in O(n logn) time by sorting the edges in decreasing order of their costs.4

4 Tree R is nothing but the minimum spanning tree constructed by Kruskal’s algorithm.

FSTTCS 2020

8:8 Clustering Under Perturbation Stability in Near-Linear Time

For each node v ∈ R and for every i between 1 and k− 1, we compute µ(Xv; i) as follows.
If v is a leaf, we set µ(Xv; 1) = 0 and µ(Xv; i) =∞ otherwise. For all interior nodes v, we
compute µ(Xv; 1) using the algorithms described in Section 3.2. Finally, if v is an interior
node and i > 1, we compute µ(Xv; i) using the recurrence relation (1). Recall that if w and
z are the children of v, then µ(Xw; `) and µ(Xz; r) for all ` and r have been computed before
we compute µ(Xv; i).

Let τ(n) be the time spent in computing T plus the total time spent in computing
µ(Xv, 1) for all nodes v ∈ R. Then the overall time taken by the algorithm is O(nk2 + τ(n)).
What is left is to compute the minimum spanning tree T and all µ(Xv, 1) efficiently.

3.2 Efficient Implementation
In this section, we show how to obtain the minimum spanning tree and compute µ(Xv; 1)
efficiently for 1-mean, 1-center, and 1-median when X ⊆ Rd. We can compute the Euclidean
minimum spanning tree T in O(n logn) time in R2 [54]. We can then compute µ(Xv; 1)
efficiently either under Euclidean metric (for 1-mean), or switch to the L1-metric and compute
µ(Xv; 1) efficiently using Lemma 4 (for 1-center and 1-median).

There are two difficulties in extending the 2D data structures to higher dimensions. No
near-linear time algorithm is known for computing the Euclidean minimum spanning tree for
d ≥ 3, and we can work with the L1-metric only if α ≥

√
d (Lemma 4). We address both of

these difficulties by working with a polyhedral metric δN . Let α ≥ 2 +
√

3 + Ω(1) be the
stability parameter. By taking the number of vectors in N (defined by the polyhedral metric)
to be large enough, we can ensure that (1− ε)‖p− q‖ ≤ δN (p, q) ≤ ‖p− q‖ for all p, q ∈ Rd.
By Lemma 4, X is an α-stable instance under δN for α ≥ 2 +

√
3. We first compute the

minimum spanning tree of X in O(npolylogn) time under δN using the result of Callahan
and Kosaraju [24], and then compute µ(Xv, 1).

Data structure. We compute µ(Xv; 1) in a bottom-up manner. When processing a node v
of R, we maintain a dynamic data structure Ψv on Xv from which µ(Xv; 1) can be computed
quickly. The exact form of Ψv depends on the cost function to be described below. Before
that, we analyze the running time τ(n) spent on computing every µ(Xv; 1). Let w and z be
the two children of v. Suppose we have Ψw and Ψz at our disposal and suppose |Xw| ≤ |Xz|.
We insert the points of Xw into Ψz one by one and obtain Ψv from which we compute
µ(Xv; 1). Suppose Q(n) is the update time of Ψv as well as the time taken to compute
µ(Xv; 1) from Ψv. The total number of insert operations performed over all nodes of R is
O(n logn) because we insert the points of the smaller set into the larger set at each node
of R [42,53]. Hence τ(n) = O(Q(n) · n logn). We now describe the data structure for each
specific clustering problem.

1-mean. We work with the L2-metric. Here the center of a single cluster consisting of Xv

is the centroid σv :=
(∑

p∈Xv p
)
/|Xv|, and µ(Xv; 1) =

∑
p∈Xv‖p‖

2 − |Xv| · ‖σv‖2. At each
node v, we maintain

∑
p∈Xv p and

∑
p∈Xv‖p‖

2. Point insertion takes O(1) time so Q(n) = 1.

1-center. As mentioned in the beginning of the section, we can work with the L1-metric for
d = 2. We wish to find the smallest L1-disc (a diamond) that contains Xv. Let e+ = (1, 1)
and e− = (−1, 1). Then the radius ρv of the smaller L1-disc containing Xv is

ρv = 1
2 max

{
max
p∈Xv

〈p, e+〉 − min
p∈Xv

〈p, e+〉, max
p∈Xv

〈p, e−〉 − min
p∈Xv

〈p, e−〉
}
. (2)

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:9

We maintain the following four terms maxp∈Xv 〈p, e+〉, minp∈Xv 〈p, e+〉, maxp∈Xv 〈p, e−〉,
and minp∈Xv 〈p, e−〉 at v. A point can be inserted in O(1) time and ρv can be computed
from these four terms in O(1) time. Therefore, Q(n) = O(1). For d > 2, we work with a
polyhedral metric and compute the smallest ball B(Xv) that contains Xv. For full details,
see the full version of the paper.

1-median. Similar to 1-center, we work with the polyhedral metric. Fix a node v of T . For
a point x ∈ Rd, let Fv(x) =

∑
p∈Xv δN (x, p) which is a piecewise-linear function. Our goal is

to compute ξ∗v = arg minx∈Rd Fv(x). Our data structure is a dynamic range-tree [3] used for
orthogonal range searching that can insert a point in O(logn) time. Using multi-dimensional
parametric search [5], ξ∗v can be computed in O(poly logn) time after each update; see the
full version of the paper for details.

4 k-Median: Single-Swap Local Search

We customize the standard local-search framework for the k-clustering problem [30,31,39].
In order to recover the optimal solution, we must define near-optimality more carefully.
Let (X, δ) be an instance of α-stable k-median in R2 for α > 5. By Lemma 6, it suffices
to consider the discrete k-median problem In Section 4, we describe a simple local-search
algorithm for finding the optimal clustering of (X, δ). In Section 4 we show that the algorithm
terminates within O(k log(n∆)) iterations. We obtain the following.

I Theorem 9. Let (X, δ) be an α-stable instance of the k-median problem for some α > 5
where X is a set of n points in R2 equipped with Lp-metric δ. The 1-swap local search
algorithm terminates with the optimal clustering in O(k log(n∆)) iterations.

Local-search algorithm. The local-search algorithm maintains a k-clustering induced by
a set S of k cluster centers. At each step, it finds a pair of points x ∈ X and y ∈ S such
that $(X,S + x − y) is minimized. If $(X,S + x − y) ≥ $(X,S), it stops and returns the
k-clustering induced by S. Otherwise it replaces S with S + x − y and repeats the above
step. The pair (x, y) will be referred to as a 1-swap.

Local-search analysis. The high-level structure of our analysis follows Friggstad et al. [39],
however new ideas are needed for 1-swap. In this subsection, we denote a k-clustering by the
set of its cluster centers. Let S be a fixed k-clustering, and let O be the optimal clustering.
For a subset Y ⊆ X, we use $(Y) and $∗(Y) to denote $(Y, S) and $(Y,O), respectively.
Similarly, for a point p ∈ X, we use nn(p) and nn∗(p) to denote the nearest neighbor of p in
S and in O, respectively; define δ(p) to be δ(p, S) and δ∗(p) to be δ(p,O). We partition X
into four subsets as follows:

X00 :=
{
p ∈ X | nn(p) ∈ S \O,nn∗(p) ∈ O \ S

}
;

X01 :=
{
p ∈ X | nn(p) ∈ S \O,nn∗(p) ∈ S ∩O

}
;

X10 :=
{
p ∈ X | nn(p) ∈ S ∩O,nn∗(p) ∈ O \ S

}
;

X11 :=
{
p ∈ X | nn(p) ∈ S ∩O,nn∗(p) ∈ S ∩O

}
.

Observe that for any point p in X11, nn(p) = nn∗(p) and $(p) = $∗(p); for any point p in
X01, one has $(p) ≤ $∗(p); and for any point p in X10, one has $(p) ≥ $∗(p). Costs δ(p) and
δ∗(p) are not directly comparable for point p in X00. A k-clustering S is C-good for some
parameter C ≥ 0 if $(X) ≤ $∗(X) + C · $∗(X00).

I Lemma 10. Any C-good clustering S for an α-stable clustering instance (X, δ, $) must be
optimal for α ≥ C + 1.

FSTTCS 2020

8:10 Clustering Under Perturbation Stability in Near-Linear Time

Figure 1 Illustration of candidate swaps S in R2. The blue dots belong to set S, the red dots
belong to set O; the only purple dot is in S ∩O. The thick gray segments indicate pairs inside the
stars; each star has exact one blue dot as its center. The black pairs are the candidate swaps. Notice
that the partitions of S and O form connected components.

Proof. Define a perturbed distance function δ̃ : X × X → R≥0 with respect to the given
clustering S as follows:

δ̃(p′, p) :=
{
α · δ(p′, p) if p 6= nn(p′),
δ(p′, p) otherwise.

Note that δ̃ is not symmetric. Let $̃(·, ·) denote the cost function under the perturbed
distance function δ̃. The optimal clustering under perturbed cost function is the same as the
original optimal clustering O by the stability assumption. Since nn(p) = nn∗(p) if and only
if p ∈ X11, the cost of O under the perturbed cost can be written as:

$̃(X,O) = α · $(X00, O) + α · $(X01, O) + α · $(X10, O) + $(X11, O).

By definition of perturbed distance δ̃, $̃(X,S) = $(X,S). Now, by the assumption that
clustering S is C-good,

$̃(X,S) = $(X,S) ≤ $(X,O) + C · $(X00, O)
≤ (C + 1) · $(X00, O) + $(X01, O) + $(X10, O) + $(X11, O)

≤ $̃(X,O);

the last inequality follows by taking α ≥ C + 1. This implies that S is an optimal clustering
for (X, δ̃), and thus is equal to O. J

Next, we prove a lower bound on the improvement in the cost of a clustering that is not
C-good after performing a 1-swap. Following Arya et al. [12], define the set of candidate
swaps S as follows: For each center i in S, consider the star Σi centered at i defined as the
collection of pairs Σi := {(i, j) ∈ S ×O | nn(j) = i}. Denote center(j) to be the center of the
star where j belongs; in other words, center(j) = i if j belongs to Σi.

For i ∈ S, let Oi := {j ∈ O | center(j) = i} be the set of centers of O in star Σi. If |Oi| = 1,
then we add the only pair (i, j) ∈ Σi to the candidate set S. Let S∅ := {i ∈ S | Oi = ∅}.
Let O>1 contain centers in O that belong to a star of size greater than 1. We pick |O>1|
pairs from S∅×O>1 such that each point of O>1 is matched only once and each point of S∅
is matched at most twice and add them to S; this is feasible because |S∅| ≥ |O>1|/2. Since
each center in O belongs to exactly one pair of S, |S| = k. By construction, if |Σi| ≥ 2, then
i does not belong to any candidate swap. See Figure 1.

I Lemma 11. For each point p in X01, X10, or X11, the set of candidate swaps S satisfies∑
(i,j)∈S

(δ(p)− δ′(p)) ≥ δ(p)− δ∗(p); (3)

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:11

and for each point p in X00, the set of candidate swaps S satisfies∑
(i,j)∈S

(δ(p)− δ′(p)) ≥ (δ(p)− δ∗(p))− 4δ∗(p), (4)

where $′ is the cost function on X defined with respect to S′ := S − i+ j, and δ′(p) is the
distance between p and its nearest neighbor in S′.

Proof. For point p in X11, both nn(p) and nn∗(p) are in S′, so δ′(p) = δ(p) = δ∗(p). For
point p in X01, δ(p) ≤ δ∗(p); when nn(p) is being swapped out by some in 1-swap S′, nn∗(p)
must be in S′. For point p in X10, δ(p) ≥ δ∗(p); center nn(p) will never be swapped out by
any 1-swap in S, so δ′(p) ≤ δ(p). By construction of S, there is exactly one choice of S′ that
swaps nn∗(p) in; for that particular swap we have δ′(p) = δ∗(p). In all three cases one has
inequality (3). Our final goal is to prove inequality (4). Consider a swap (i, j) in S. There
are three cases to consider:

j = nn∗(p). There is exactly one swap for which j = nn∗(p). In this case δ(p) ≤ δ∗(p),
therefore δ(p)− δ′(p) ≥ δ(p)− δ∗(p).
j 6= nn∗(p) and i 6= nn(p). Since nn(p) ∈ S′, δ′(p) ≤ δ(p). Therefore δ(p)− δ′(p) ≥ 0.
j 6= nn∗(p) and i = nn(p). By construction, there are most two swaps in S that may
swap out nn(p). We claim that i 6= center(nn∗(p)). Indeed, if i = center(nn∗(p)), then
by construction, Σi = {(i,nn∗(p))} because the center of star of size greater than one is
never added to a candidate swap. But this contradicts the assumption that j 6= nn∗(p).
The claim implies that center(nn∗(p)) ∈ S′ and thus δ′(p) ≤ δ(p, center(nn∗(p))). We
obtain a bound on δ(p, center(nn∗(p))) as follows:

δ(p, center(nn∗(p))) ≤ δ(p,nn∗(p)) + δ(nn∗(p), center(nn∗(p)))
≤ δ∗(p) + δ(nn∗(p),nn(p))
≤ δ∗(p) + (δ∗(p) + δ(p)) = δ(p) + 2δ∗(p).

Therefore, δ(p) − δ′(p) ≥ δ(p) − δ(p, center(nn∗(p))). Putting everything together, we
obtain:∑

S′∈S
(δ(p)− δ′(p)) ≥ (δ(p)− δ∗(p)) + 0 + 2(δ(p)− δ(p)− 2δ∗(p)) = δ(p)− 5δ∗(p).

J

Using Lemma 11, we can prove the following.

I Lemma 12. Let S be a k-clustering of (X, δ) that is not C-good for some fixed constant
C > 4+ε with arbitrarily small ε > 0. There is always a 1-swap S′ such that $′(X)−$∗(X) ≤
(1− ε/(1 + ε)k) · ($(X)− $∗(X)), where $′ is the cost function defined with respect to S′.

Proof. By Lemma 11 one has $(X)−$′(X) ≥ ($(X)−$∗(X)−Ψ(X00))/k for some 1-swap S′
and its corresponding cost function $′(·). Since S is not C-good, $(X)− $∗(X) > C · $∗(X00).
Rearranging and plugging the definition of Ψ(·), we have

$′(X)− $∗(X) ≤ $(X)− $∗(X)− ($(X)− $∗(X)−Ψ(X00))/k
≤ $(X)− $∗(X)− ($(X)− $∗(X)− 4 · $∗(X00)) /k
≤ $(X)− $∗(X)
− ($(X)− $∗(X) + (M − 1) · ($(X)− $∗(X))− 4M · $∗(X00)) /Mk

≤
(

1− ε

(1 + ε)k

)
· ($(X)− $∗(X)),

where the last inequality holds by taking M to be arbitrarily large (say M > 1 + 1/ε). J

FSTTCS 2020

8:12 Clustering Under Perturbation Stability in Near-Linear Time

Figure 2 L1 Voronoi diagram V , quadrant decomposition Ṽ , and trapezoid decomposition V ‖.

5 Efficient Implementation of Local Search

We describe an efficient implementation of each step of the local-search algorithm in this
section. By Lemma 4, it suffices to implement the algorithm using a polyhedral metric δN .
We show that each step of 1-swap can be implemented in O(nk2d−1 polylogn) time under
the assumption that α > 5. We obtain the following:

I Theorem 13. Let (X, δ) be an α-stable instance of the k-median problem where X ⊂ Rd
and δ is the Euclidean metric. For α > 5, the 1-swap local search algorithm computes the
optimal k-clustering of (X, δ) in O(nk2d−1 polylogn) time.

For simplicity, we present a slightly weaker result for d = 2 using the L1-metric, as it is
straightforward to implement and more intuitive. Using the L1-metric requires α > 5

√
2.

The extension to higher dimensional Euclidean space using the polyhedral metric is described
in the full version of the paper, which works for α > 5.

Voronoi diagram under L1 norm. First, we fix a point x ∈ X \ S to insert and a center
y ∈ S to drop. Define S′ := S + x − y. We build the L1 Voronoi diagram V of S′. The
cells of V may not be convex, but they are star-shaped: for any c ∈ S′ and for any point
x ∈ Vor(c), the segment cx lies completely in Vor(c). Furthermore, all line segments on the
cell boundaries of V must have slopes belonging to one of the four possible values: vertical,
horizontal, diagonal, or antidiagonal.

Next, decompose each Voronoi cell Vor(c) into four quadrants centered at c. Denote the
resulting subdivision of V as Ṽ . We compute a trapezoidal decomposition V ‖ of the diagram
Ṽ by drawing a vertical segment from each vertex of Ṽ in both directions until it meets an
edge of V ; V ‖ has O(k) trapezoids, see Figure 2. For each trapezoid τ ∈ V ‖, let Xτ := X ∩ τ .
The cost of the new clustering S′ can be computed as $(X,S′) =

∑
τ∈V ‖ $(Xτ , S

′).

Range-sum queries. Now we discuss how to compute $(Xτ , S
′). Each trapezoid τ in cells

Vor(c) is associated with a vector u(τ) ∈ {±1}2, depending on which of the four quadrants
τ belongs to with respect to the axis-parallel segments drawn passing through the center c
of the cell. If τ lies in the top-right quadrant then u(τ) = (1, 1). Similarly if τ lies in the
top-left (resp. bottom-left, bottom-right) then u(τ) = (−1, 1) (resp. (−1,−1), (1,−1)).

$(Xτ , S
′) =

∑
x∈Xτ

‖x− c‖1 =
∑
x∈Xτ

〈x− c, u(τ)〉 =
∑
x∈Xτ

〈x, u(τ)〉 − |Xτ | · 〈c, u(τ)〉. (5)

We preprocess X into a data structure that answers the following query:
TrapezoidSum(τ, u): Given a trapezoid τ and a vector u ∈ {±1}2, return |X ∩ τ | as
well as

∑
x∈X∩τ 〈x, u〉.

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:13

1-Swap(X,S):
input: Point set X and centers S
for each point x ∈ X \ S and center y ∈ S:

S′ ← S + x− y
V ← L1 Voronoi diagram of S′

Ṽ ← decompose each cell Vor(c) into four quadrants centered at c
V ‖ ← trapezoidal decomposition of Ṽ
for each trapezoid τ ∈ V ‖:

$(Xτ , S′)← TrapezoidSum(τ, u(τ))
$(X,S′)←

∑
τ∈V ‖ $(Xτ , S′)

return (x, y) with the lowest $(X,S + x− y)

Figure 3 Efficient implementation of 1-swap under 1-norm.

The above query can be viewed as a 3-oriented polygonal range query [33]. We construct
a 3-level range tree Ψ on X. Omitting the details (which can be found in [33]), Ψ can be
constructed in O(n log2 n) time and uses O(n log2 n) space. Each node ξ at the third level of
Ψ is associated with a subset Xξ ⊆ X. We store w(ξ, u) :=

∑
x∈Xξ〈x, u〉 for each u ∈ {±1}2

and |Xξ| at ξ. For a trapezoid τ , the query procedure identifies in O(log3 n) time a set Ξτ of
O(log3 n) third-level nodes such that X ∩ τ = ∪ξ∈ΞτXξ and each point of X ∩ τ appears as
exactly one node of Ξτ . Then

∑
x∈Xτ 〈x, u〉 =

∑
ξ∈Ξτ w(ξ, u) and |Xτ | =

∑
ξ∈Ξτ |Xξ|.

With the information stored at the nodes in Ξτ , TrapezoidSum(τ, u) query can be
answered in O(log3 n) time. By performing TrapezoidSum(τ, u(τ)) query for all τ ∈ V ‖,
$(Xτ , S

′) can be computed in O(k log3 n) time since V ‖ has a total of O(k) trapezoids.
We summarize the implementation of 1-swap algorithm in Figure 3. The 1-swap procedure

considers at most nk different k-clusterings. Therefore we obtain the following.

I Lemma 14. Let (X, δ, $) be a given clustering instance where δ is the L1 metric, and
let S be a given k-clustering. After O(n logn) time preprocessing, we find a k-clustering
S′ := S + x− y minimizing $(X,S′) among all choices of (x, y) in O(nk2 log3 n) time.

6 Conclusion

We presented near-linear time algorithms for finding optimal solutions of stable clustering
instances for the k-means, k-medians, and k-center problem. We note that variants of all
three approaches might work for smaller values of α. The value of α assumed in our results in
larger than what is known for polynomial-time algorithm (e.g. α ≥ 2 in Angelidakis et al. [10])
and that in some applications the input may not satisfy our assumption, but our results
are a big first step toward developing near-linear time algorithms for stable instances. We
are not aware of any previous near-linear time algorithms for computing optimal clustering
even for larger values of α. We leave the problem of reducing the assumption on α as an
important open question.

References
1 Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In Proceedings

of of the 12th International Conference on Artificial Intelligence and Statistics, volume 5 of
JMLR Proceedings, pages 1–8, 2009.

2 Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geometric algorithms.
Journal of the ACM (JACM), 64(1):3, 2017.

FSTTCS 2020

8:14 Clustering Under Perturbation Stability in Near-Linear Time

3 Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Contem-
porary Mathematics, 223:1–56, 1999.

4 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approximation
via coresets. Combinatorial and computational geometry, 52:1–30, 2005.

5 Pankaj K Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM Journal on
Computing, 22(4):794–806, 1993.

6 Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering
with same-cluster queries. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:21, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ITCS.2018.40.

7 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

8 Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed
polynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 429–437. ACM, 2017.

9 Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan. Bilu-
Linial stability, certified algorithms and the independent set problem. Preprint, October
2018.

10 Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and
perturbation-resilient problems. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 438–451. ACM, 2017.

11 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In STOC, volume 98, pages 106–113, 1998.

12 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, January 2004. doi:10.1137/S0097539702416402.

13 Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
In Advances in neural information processing systems, pages 3216–3224, 2016.

14 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1–2):49–54, 2012.

15 Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 250–257.
ACM, 2002.

16 Ainesh Bakshi and Nadiia Chepurko. Polynomial time algorithm for 2-stable clustering
instances. Preprint, July 2016.

17 Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without the
approximation. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1068–1077. Society for Industrial and Applied Mathematics, 2009.

18 Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for
clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 671–680. ACM, 2008.

19 Maria-Florina Balcan and Mark Braverman. Nash equilibria in perturbation-stable games.
Theory of Computing, 13(1):1–31, 2017.

20 Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under perturbation
resilience. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages
68:1–68:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2016.68.

21 Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. SIAM
Journal on Computing, 45(1):102–155, 2016.

https://doi.org/10.4230/LIPIcs.ITCS.2018.40
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.4230/LIPIcs.ICALP.2016.68

P.K. Agarwal, H.-C. Chang, K. Munagala, E. Taylor, and E. Welzl 8:15

22 Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. Theoretical
Computer Science, 558(1):51–61, 2014.

23 Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(5):643–660, 2012.

24 Paul B Callahan and S Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proceedings of the fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 291–300. Society for Industrial and Applied Mathematics, 1993.

25 Chandra Chekuri and Shalmoli Gupta. Perturbation resilient clustering for k-center and
related problems via LP relaxations. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2018), volume 116 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 9:1–9:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.9.

26 Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 430–440, Philadelphia, PA, USA, 2018. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=3174304.3175298.

27 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The bane
of low-dimensionality clustering. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’18, pages 441–456, Philadelphia, PA, USA, 2018.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=3174304.3175300.

28 Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approxi-
mation schemes for clustering in doubling metrics. Preprint, June 2019.

29 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

30 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM Journal on
Computing, 48(2):644–667, 2019.

31 Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 49–60. IEEE, 2017.

32 Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, Department of
Computer Science and Engineering, University of California, September 2008.

33 Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
geometry. In Computational geometry, pages 1–17. Springer, 1997.

34 Amit Deshpande, Anand Louis, and Apoorv Vikram Singh. On Euclidean k-means clustering
with α-center proximity. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2087–2095, 2019.

35 Abhratanu Dutta, Aravindan Vijayaraghavan, and Alex Wang. Clustering stable instances of
Euclidean k-means. In Advances in Neural Information Processing Systems, pages 6500–6509,
2017.

36 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 434–444. ACM, 1988.

37 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, pages 11–18. ACM, 2007.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.9
http://dl.acm.org/citation.cfm?id=3174304.3175298
http://dl.acm.org/citation.cfm?id=3174304.3175300
http://dl.acm.org/citation.cfm?id=3174304.3175300

8:16 Clustering Under Perturbation Stability in Near-Linear Time

38 Zachary Friggstad, Kamyar Khodamoradi, and Mohammad R. Salavatipour. Exact algo-
rithms and lower bounds for stable instances of Euclidean k-means. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 2958–
2972, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=3310435.3310618.

39 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.
doi:10.1137/17M1127181.

40 Sariel Har-Peled. No, coreset, no cry. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 324–335. Springer, 2004.

41 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300.
ACM, 2004.

42 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

43 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, May 1985.

44 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 731–740. ACM, 2002.

45 Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm.
In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science
(FOCS), pages 299–308. IEEE, 2010.

46 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ epsilon)-
approximation algorithm for k-means clustering in any dimensions. In Annual Symposium on
Foundations of Computer Science, volume 45, pages 454–462. IEEE COMPUTER SOCIETY
PRESS, 2004.

47 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017.

48 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

49 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-Linial stable
instances of max cut and minimum multiway cut. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pages 890–906. SIAM, 2014.

50 Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984.

51 Matúš Mihalák, Marcel Schöngens, Rastislav Šrámek, and Peter Widmayer. On the complexity
of the metric TSP under stability considerations. In International Conference on Current
Trends in Theory and Practice of Computer Science, pages 382–393. Springer, 2011.

52 Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

53 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.

54 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman, editors. Handbook of discrete and
computational geometry. Chapman and Hall/CRC, 2017.

http://dl.acm.org/citation.cfm?id=3310435.3310618
https://doi.org/10.1137/17M1127181

Width Notions for Ordering-Related Problems
Emmanuel Arrighi
University of Bergen, Norway
emmanuel.arrighi@uib.no

Henning Fernau
University of Trier, Germany
fernau@uni-trier.de

Mateus de Oliveira Oliveira
University of Bergen, Norway
mateus.oliveira@uib.no

Petra Wolf
University of Trier, Germany
wolfp@informatik.uni-trier.de

Abstract
We are studying a weighted version of a linear extension problem, given some finite partial order ρ,
called Completion of an Ordering. While this problem is NP-complete, we show that it lies
in FPT when parameterized by the interval width of ρ. This ordering problem can be used to
model several ordering problems stemming from diverse application areas, such as graph drawing,
computational social choice, or computer memory management. Each application yields a special ρ.
We also relate the interval width of ρ to parameterizations such as maximum range that have been
introduced earlier in these applications, sometimes improving on parameterized algorithms that
have been developed for these parameterizations before. This approach also gives some practical
sub-exponential time algorithms for ordering problems.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Dynamic programming; Mathematics of computing → Combinatorial optimization

Keywords and phrases Parameterized algorithms, interval width, linear extension, one-sided crossing
minimization, Kemeny rank aggregation, grouping by swapping

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.9

Funding Emmanuel Arrighi: Research Council of Norway (Grant no. 274526), IS-DAAD (Grant no.
309319).
Henning Fernau: DAAD PPP (Grant no. 57525246).
Mateus de Oliveira Oliveira: Trond Mohn Foundation, Research Council of Norway (Grant no.
288761), IS-DAAD (Grant no. 309319).
Petra Wolf : DFG project FE 560/9-1, DAAD PPP (Grant no. 57525246).

1 Introduction

Many computational problems can be phrased as the task of arranging a collection of
combinatorial objects into a minimum-cost linear order that satisfies certain constraints.
Examples of natural problems that fall in this category are One-Sided Crossing Mini-
mization (OSCM), a prominent problem in the field of graph drawing and VLSI design
[4, 32, 45, 50, 52], Grouping by Swapping (GbS), a problem with applications in computer
memory management [15, 28, 55], and Kemeny Rank Aggregation (KRA), a prominent
problem in the field of computational social choice [19, 36]. A natural parameter that
arises when studying problems such as OSCM, GbS and KRA from the perspective of
parameterized complexity theory is the cost k of a solution. In particular, the best algorithm

© Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, and Petra Wolf;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0326-1893
mailto:emmanuel.arrighi@uib.no
https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
https://orcid.org/0000-0001-7798-7446
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0003-3097-3906
mailto:wolfp@informatik.uni-trier.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Width Notions for Ordering-Related Problems

for OSCM, parameterized by the cost of a solution k, is the algorithm due to Kobayashi and
Tamaki [38] which runs in time1 O∗(2

√
2k) and the best single-exponential algorithm for KRA

runs in time O∗(1.403k) [51], while sub-exponential algorithms of type O∗(2O(
√
k)) have been

proposed in [35], with some unclear constant hidden in the O-notation of the exponent. Not
surprisingly, they have been devised with substantially distinct sets of techniques.

In this paper, significantly extending the ideas started out in [23, 25], we leverage the
Completion of an Ordering problem (CO) to provide a unified framework for the study
of several cost-parameterized ordering problems. In this problem, we are given a partial
order ρ on a set V , and a function c : V × V → N assigning costs to incomparable pairs,
and the goal is to compute a minimum-cost linear extension of ρ. Interestingly, a natural
structural parameter that arises in this context is the pathwidth of the cocomparability graph
of the input partial order ρ. This graph has V as vertex-set and there is an undirected edge
between vertices v and v′ if and only if v and v′ are not related in the partial order. Our main
result states that CO, parameterized by the interval width w of the input partial order, can
be solved in time O∗(2w). Additionally, our algorithm is optimal under ETH. Using our main
result, together with reductions from OSCM, GbS and KRA to PCO, the natural restriction
of CO to positive costs, we obtain algorithms for these three problems (parameterized by
width, or by the standard parameter, or by other problem-specific structural parameters)
whose running times often match or improve on the best algorithms for the three problems.

When reducing OSCM or GbS to PCO, the partial order one obtains is an interval order,
meaning that the cocomparability graph of this order is an interval graph. Interval orders
play an important role in partial order theory due to the fact that their interval width can be
computed in linear time. Additionally, they find applications in many contexts of practical
relevance such as scheduling, online and packing algorithms, see [54]. Inspired by this, we
define the Positive Completion of an Interval Ordering (PCIO) problem, a version
of PCO where the input partial order is required to be an interval order. In this restricted
version, our main algorithm for CO parameterized by interval width can be converted into a
sub-exponential O∗(2

√
2k)-time FPT algorithm for PCIO, parameterized by cost k.

Our width-based approach also allows us to improve on a parameterized algorithm for
KRA based on the parameter maximum range (of a candidate) as introduced and discussed
in [5]. Further, it can be used to show that GbS is also fixed parameter tractable when
parameterized by a parameter called scope coincidence degree, a natural parameter in the
context of strings. This gives the first algorithmic use of this structural string parameter.

Our approach for CO is built on dynamic programming on a path decomposition of the
cocomparability graph of the partial order. Notice that this path decomposition structure
has been recently exploited for counting the number of linear extensions by Eiben et al. [22].
Here, we use this approach to find the cheapest linear extension.

2 Preliminaries

In this section, we collect the basic notions of this paper. N denotes the set of non-negative
integers and N>0 denotes the set of positive integers. Given r ∈ N>0, we write [r] =̇ {1, . . . , r}.

Notation on Partial Orders. Let V be a set. A partial order over V is a reflexive, anti-
symmetric and transitive binary relation ρ ⊆ V × V . We say that ρ is a linear order if
additionally, for each (x, y) ∈ V × V , either (x, y) ∈ ρ or (y, x) ∈ ρ. A strict partial order

1 Recall that the O∗-notation suppresses polynomial factors.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:3

over V is an irreflexive and transitive binary relation σ ⊆ V × V . By adding the identity
relation IV , ρ =̇ σ ∪ IV becomes a partial order, and conversely from a partial order ρ
on V , we can define σ =̇ ρ \ IV as a strict partial order. Hence, we will occasionally use the
term linear order also for the corresponding strict order, often denoted as <ρ for reasons of
clarity. Notice that for finite base sets V , we can specify a linear order <f by a bijection
f : [|V |] → V , with the understanding that f(i) <f f(j) if and only if i < j, i.e., if the
number i is smaller than the number j. Such a bijection f is also called a ranking in the
following. Conversely, any linear order τ on Σ defines a bijection fτ : [|V |]→ V .

Given two partial orders ρ, τ ⊆ V × V , τ is an extension of ρ if ρ ⊆ τ . If τ is also a linear
order on V , then τ is a linear extension of ρ. Given a linear order τ on V , let minτ (V) be
the minimum element in V with respect to τ and maxτ (V) be the maximum element in V
with respect to τ . Given a subset T ⊆ V and a partial order ρ ⊆ V × V , let ρ|T =̇ ρ∩ T × T
be the restriction of ρ to T . A linear order τ ⊆ T × T is a linear extension of ρ on T if τ is
a linear extension of ρ|T . We define Lin(ρ, T) to be the set of linear extensions of ρ on T .

Notation on Graphs. Given an undirected graph G = (V,E) and a vertex v ∈ V , we let
N(v) =̇ {u | u ∈ V, (v, u) ∈ E} be the neighborhood of v.

A path decomposition of a graph G = (V,E) is a sequence D = (B1, B2, . . . , Br) of
subsets of V , such that the following conditions are satisfied.⋃

1≤i≤r Bi = V .
For each edge (u, v) ∈ E, there is an i ∈ [r] such that u, v ∈ Bi.
For each i, j, k ∈ [r] with i < j < k, Bi

⋂
Bk ⊆ Bj .

The width of D is defined as w(D) = maxi∈[r] |Bi| − 1. The pathwidth, pw(G), of G is
the minimum width of a path decomposition of G.

Partial Orders and Interval Width. Given a (strict) partial order ρ ⊆ V ×V , the undirected
graph Gρ =̇ (V,E) with E =̇ {{u, v} ∈ V × V | u 6= v, (u, v) /∈ ρ, (v, u) /∈ ρ} is the
cocomparability graph of ρ. An interval order is a strict partial order ι ⊆ V × V whose
elements v ∈ V are represented by half-open intervals Iv = [lv, rv) on the real line with
(u, v) ∈ ι ⇐⇒ ru ≤ lv. {Iv | v ∈ V } is called an interval representation of ι. The
cocomparability graph Gι is the intersection graph of {Iv | v ∈ V } and is hence an interval
graph. It is known [29] that interval graphs are exactly the cocomparability graphs that do
not contain an induced cycle of length four. The interval width of a partial order ρ ⊆ V × V
is defined as iw(ρ) =̇ min{w(ι)|ι interval order, ι ⊆ ρ}, where w(ι) is the maximum size of
an antichain of ι. By Theorem 2.1 from [31], pw(Gρ) = iw(ρ)− 1. Conversely, for any graph
G = (V,E), pw(G) = min{ω(H) | H is an interval graph, V (H) = V,E(H) ⊇ E} − 1, where
ω(H) is the size of the largest clique in H. For more information on interval orders, we refer
to textbooks and survey articles such as [26, 54].

3 Completion of an Ordering (CO)

Below, we formally define the Completion of an Ordering problem, generalizing Positive
Completion of an Ordering (PCO) introduced in [16, Sec. 8] and [23, Sec. 6.4].

Problem name: Completion of an Ordering (CO)
Given: A partial order ρ ⊆ V × V , a cost function c : V × V → N, and k ∈ N.
Output: Is there a linear order τ ⊇ ρ with c(τ \ ρ) =

∑
(x,y)∈τ\ρ c(x, y) ≤ k?

FSTTCS 2020

9:4 Width Notions for Ordering-Related Problems

In the PCO problem, the cost function needs to satisfy the following condition: for all
pairs (x, y) ∈ V × V such that x and y are incomparable in ρ, c(x, y) > 0.

Let us shortly discuss the cost parameter k: By the result of Dujmovic, Fernau and
Kaufmann [16] (for details, see [23]), PCO can be solved in timeO∗(1.52k) and admits a linear-
size kernel. The best known algorithm for PCO, whose running time is O∗(2O(

√
k log(k))), was

obtained in [25] by relating PCO to the Feedback Arc Set Problem in Tournaments,
or FAST for short, that allows for subexponential algorithms due to [1]. Here, we are
presenting an algorithm for a variation of this problem that runs in time O∗(2O(

√
k)) and is

relatively straightforward to implement. We also present a branching algorithm that runs in
time O∗(1.42k), improving on [23]. Our algorithms are based on the interval width of ρ.

3.1 CO, parameterized by pathwidth
Let G = (V,E) be a graph, ρ ⊆ V × V be a (strict) partial order on the vertices of G and
D = (B1, . . . , Br) be a path decomposition of G. We call D consistent with ρ if there is no
pair of vertices (x, y) ∈ ρ with max{i ∈ [r] | y ∈ Bi} < min{i ∈ [r] | x ∈ Bi}. Thus, if x
is smaller than y in ρ, then y cannot be forgotten in D before x is introduced in D. The
consistent pathwidth, cpw(G, ρ), of G is the minimum width of a path decomposition of G
consistent with ρ. We will be interested in particular in the consistent pathwidth cpw(Gρ, ρ).

I Theorem 1. Given a partial order ρ over a set V , a cost function c : V × V → N and a
width-w path decomposition D of the cocomparability graph Gρ that is consistent with ρ, one
can solve an instance (ρ, c, k) of the CO problem in time O(|V | ·w ·2w · log(k) + |V |2 · log(k)).

The remainder of this subsection is dedicated to the proof of Theorem 1.
Let us explain why our pathwidth measure can be seen as a distance to triviality parame-

terization in the context of CO. A trivial instance of CO is a linear order, as it has cost zero.
Then, the cocomparability graph is an independent set and has consistent pathwidth 02. In
the opposite case, if the input partial order is empty, then the cocomparability graph is a
clique and has consistent pathwidth |V | − 1. It is also worth noticing that it is NP-hard
to determine the pathwidth of a cocomparability graph, together with an optimal path
decomposition, as observed in [31].

Notation on Path Decompositions. Let D = (B1, B2, . . . , Br) be a path decomposition of
a graph G. We say that [r] is the set of positions of D and that r is the length of D. For
each position i, we say that Bi is the i-th bag of D. For each i ∈ [r], i > 1, we say that Bi
is an introduce bag if Bi = Bi−1 ∪ {v} and that Bi is a forget bag if Bi = Bi−1 \ {v}. We
say that the path decomposition D = (B1, B2, . . . , Br) is nice if for each i ∈ [r], Bi is either
an introduce bag or a forget bag and |B1| = 1 and Br = ∅. It can be shown that, given
any path decomposition D = (B1, B2, . . . , Br) of width w of a graph G, one can construct
in time O(r · w(D)) a nice path decomposition of G of width at most w. In a nice path
decomposition, for every vertex of V , there is a bag that introduces it and a bag that forgets
it, so the length of a nice path decomposition is 2 · |V |. For each position i ∈ [r], we let
Li =

⋃
1≤j≤i−1Bj \Bi be the set of vertices that have been forgotten (lost) up to position i.

I Lemma 2. Let ι be an interval order over V and {Iv | v ∈ V } be an interval representation
of ι. One can derive a minimum width path decomposition of Gι consistent with ι from
{Iv | v ∈ V } of width w(ι)− 1 in time O(w(ι) · |V |).

2 In Lemma 5, we show that consistent pathwidth is equal to pathwidth.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:5

Proof. For each element v in V , we let lv and rv be the left and right endpoints of Iv. For
every point x on the real line R that corresponds to an endpoint of one or more intervals, we
associate a bag Bx = {v | x ∈ Iv}. Then, we order the bags following the order of lv and rv
on the real line. For each element v ∈ V , v ∈ Blv . Given three bags Bx, By, Bz such that
x ≤ y ≤ z, we have that Bx ∩ Bz = {v | x ∈ Iv} ∩ {v | z ∈ Iv} = {v | lv ≤ x ≤ z < rv} ⊆
{v | lv ≤ y < rv} = By. For each edge (u, v) ∈ E(Gι), Iu and Iv intersect, therefore, we have
either lv ∈ Iu or lv ∈ Iu. If lv ∈ Iu then u, v ∈ Blv , similarly if lu ∈ Iv then u, v ∈ Blu . So
this construction builds a path decomposition. We call this path decomposition D. Now,
we will show that D is consistent with ι. More precisely, we will show that for each pair
(u, v) ∈ ι, max{x ∈ R | u ∈ Bx} < min{x ∈ R | v ∈ Bx}. For each (u, v) ∈ ι, we have
lu < ru ≤ lv, max{x ∈ R | u ∈ Bx} < ru ≤ lv ≤ min{x ∈ R | v ∈ Bx}. Therefore, D is
consistent with ι. Note that each bag is a clique, therefore, this is a path decomposition of
minimum width. A clique in Gι is an antichain of ι and each antichain of ι forms a clique
in Gι. Therefore, we have that D has width w(ι)− 1. J

We will refer to this decomposition as the path decomposition derived from the interval
order ι.

I Lemma 3. Let G = (V,E) be a graph. Given a partial order ρ on V and a path decompo-
sition D of G of width w and length r that is consistent with ρ, one can construct in time
O(w ·r) a nice path decomposition of width w that is consistent with ρ.

Given a path decomposition D, one can get a nice path decomposition by introducing before
each bag B several new bags that will forget one by one each vertex forgotten by B and
introduce each new vertex in B one by one. If D is consistent with ρ, then the new path
decomposition is also consistent with ρ. For the cocomparability graph, we can further show:

I Lemma 4. Let ρ be a partial order on a set V , Gρ be the cocomparability graph of ρ and
D be a path decomposition of Gρ consistent with ρ, then D is consistent with any extension
of ρ.

I Lemma 5. Let Gρ = (V,E) be the cocomparability graph of a partial order ρ ⊆ V × V .
Then pw(Gρ) = cpw(Gρ, ρ).

Proof. By definition we have pw(Gρ) ≤ cpw(Gρ, ρ). We will show that cpw(Gρ, ρ) ≤ iw(ρ)−1
and use the fact that pw(Gρ) = iw(ρ)− 1 (Theorem 2.1 from [31]). By definition of iw(ρ),
we can find an interval order ι such that iw(ρ) = w(ι) and ι ⊆ ρ. Let {Iv | v ∈ V } be an
interval representation of ι. Then Gι is the intersection graph of {Iv | v ∈ V }. Then by
Lemma 2, the path decomposition D of Gι derived from {Iv | v ∈ V } is consistent with ι and
has width w(ι)− 1. From Lemma 4, we know that D is also consistent with the extension ρ
of ι. We conclude cpw(Gρ, ρ) ≤ cpw(Gι, ι) = w(ι)− 1 = iw(ρ)− 1 = pw(Gρ). J

Dynamic Programming Algorithm. Let ρ ⊆ V × V be a partial order over a set V ,
c : V × V → N be a cost function and S and T be two subsets of V such that for each
pair (s, t) ∈ S × T , (t, s) /∈ ρ. We define c(S, T) =

∑
(s,t)∈(S×T)\ρ c(s, t), this is the cost of

having elements of S before elements of T . For every linear extension τ of ρ on T , we let
c(τ) =

∑
(a,b)∈τ\ρ|T c(a, b) be the cost of τ . We define opt(T) = min{c(τ) | τ ∈ Lin(ρ, T)}.

Our goal is to find opt(V).
Let D be a path decomposition of width w of the graph Gρ consistent with ρ. By

Lemma 3, we can assume without loss of generality that D is nice.

FSTTCS 2020

9:6 Width Notions for Ordering-Related Problems

For each position 1 ≤ i ≤ 2 · |V | in the path decomposition, we compute and store
c(Li, {v}) for every vertex v ∈ Bi such that for each u ∈ Li (v, u) /∈ ρ in table T c

i and
opt(Li ∪ T) for each T ⊆ Bi in table T opt

i . For every vertex v ∈ Bi such that for each u ∈ Li
(v, u) /∈ ρ, c(Li, {v}) is the cost of having v after the vertices forgotten at position i if this is
compatible with ρ and for each T ⊆ Bi, opt(Li∪T) is the minimum cost of a linear extension
on Li ∪ T . We have L2·|V | ∪B2·|V | = V . So, to find the solution, it is enough to inductively
construct these two tables. The induction basis is trivial: L1 = ∅ and |B1| = 1, so that
c(L1, {v}) = 0 for every vertex v ∈ B1 in table T c

1 and opt(Li ∪ T) = 0 for both T = ∅ and
T = B1 in table T opt

1 . The following two lemmas explain the induction step of the algorithm.

I Lemma 6. Let i ∈ [2, . . . , 2 · |V |]. Given a table T c
i−1 that lists the values of c(Li−1, {v})

for every v ∈ Bi−1, one can compute c(Li, {v}) for every v ∈ Bi in time w · log(k) in order
to build the table T c

i .

I Lemma 7. Let i ∈ [2, . . . , 2 · |V |]. Given a table T c
i that lists the values of c(Li, {v}) for

every v ∈ Bi such that for each u ∈ Li (v, u) /∈ ρ and a table T opt
i−1 that lists the values of

opt(Li−1 ∪ T) for every T ⊆ Bi−1, one can compute in O(w ·2w · log(k)) time the value of
opt(Li ∪ T) for all T ⊆ Bi in order to build the table T opt

i .

Proof. The cost can be arbitrarily large, therefore, the addition of two costs is done in time
O(log(k)). First, we compute c(T, {v′}) for v′ ∈ Bi and for T ⊆ Bi \ {v′}, and store the
values in an auxiliary table T aux. This computation can be done in O(w ·2w · log(k)) time.
Now there are two cases:

If Bi forgets a vertex v, then Li = Li−1 ∪ {v}; for each subset T ⊆ Bi, opt(Li ∪ T) =
opt(Li−1 ∪ T ∪ {v}) and this value is in the table T opt

i−1, as T ∪ {v} ⊆ Bi−1.
If Bi introduces a vertex v, then Li = Li−1 and Bi = Bi−1 ∪{v}. Given a subset T of Bi,
if v /∈ T , then opt(Li ∪ T) is already in the table T opt

i−1. Suppose v ∈ T . For all u ∈ Li,
there is no edge between u and v in Gρ, and as D is consistent with ρ, we have (u, v) ∈ ρ.
So in any linear extension of ρ on Li ∪ T , the maximum element is a maximal element
of T (with respect to ρ). Then we have, by testing all possible maximum elements v′:

opt(Li ∪ T) = min
v′∈maxρ(T)

{opt(Li ∪ T \ {v′}) + c(Li ∪ T \ {v′}, {v′})}

= min
v′∈maxρ(T)

{opt(Li ∪ T \ {v′}) + c(Li, {v′}) + c(T \ {v′}, {v′})}

where maxρ(T) = {v ∈ T | ∀u ∈ T, (v, u) /∈ ρ} is the set of maximal elements of T with
respect to ρ. The second and third terms are in the tables T c

i and T aux, respectively.
If v′ = v, then the first term can be looked up in table T opt

i−1. By walking through all
T ⊆ Bi with increasing cardinality (recall that always v ∈ T), we can inductively compute
opt(Li ∪ T), as this provides the first term. As inductive basis, consider T = {v}, in
which case opt(Li ∪ T) = opt(Li ∪ {v}) = opt(Li) + c(Li, {v}). The first term is already
in the table T opt

i−1. The computation of T opt
i can be done in time O(w ·2w · log(k)).

This explains how to build the table T opt
i . J

Since L2·|V | ∪B2·|V | = V , the dynamic programming algorithm can provide an optimal
solution and runs in time O(|V | · w ·2w · log(k)). The size of the cost function given as input
is |V |2 · log(k). Reading the cost function gives the second part of the running time. This
proves Theorem 1.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:7

3.2 Further Algorithmic Consequences

The relation between variants of FAST and CO range in both directions. One direction
(solving PCO with the help of FAST) was exploited in [25]. We are now explaining a reverse
reduction. The constrained FAST problem [9, 57] is defined as follows: The arc set of a
given tournament graph is split into fixed arcs Afix and free arcs Afree. The task is to remove
at most k free arcs such that the resulting graph becomes acyclic. We know that every arc in
Afree that contradicts the transitivity of Afix needs to be removed. Therefore, we assume that
Afix gives a transitive relation on the set of vertices and that it is acyclic, so that it defines a
partial order ρ on the vertex set V . By defining the following cost function, we can solve
constrained FAST with any CO algorithm: For arcs (x, y) ∈ Afree, we set c(x, y) = 0. For
arcs (x, y) such that (y, x) ∈ Afree, we set c(x, y) = 1. By the tournament condition, for each
edge {x, y} of Gρ, c(x, y) ∈ {0, 1} and c(y, x) ∈ {0, 1} are defined, with c(x, y) + c(y, x) = 1.
As FAST is a well-known NP-complete problem, this also shows NP-completeness for CO
(even with costs 0, 1 only) and similarly, we obtain NP-completeness for PCO, even with
costs from the set [2] = {1, 2}.

Completing an interval ordering is easier. Consider the following restriction of PCO:

Problem name: Positive Completion of an Interval Ordering (PCIO)
Given: An interval order ι ⊆ V × V over a set V , a cost function c : V × V → N
satisfying ∀x, y ∈ V : ((x, y) /∈ ι∧ (y, x) /∈ ι) =⇒ c(x, y) > 0, and an integer k ∈ N.
Output: Is there a linear order τ ⊇ ι with c(τ \ ι) ≤ k?

This variation has two more restrictions compared to CO: the cost between two incom-
parable elements must not be zero and the partial order is an interval order. These two
restrictions allow us to get better bounds for our dynamic programming algorithm.

I Theorem 8. An instance (ι, c, k) of PCIO is solvable in time O(k·2
√

2k·log(k)+|V |2·log(k)).

The following is an outline of our algorithm, called DP-PCIO.
1. Construct Gι, if Gι has more than k edges then stop with “NO”. This can be done in

time |V |2. This is justified, because c(x, y) > 0 for each incomparable pair {x, y}.
2. Construct a nice path decomposition D consistent with ι. If the width of D is more than√

2k, then stop with “NO”, as a large clique was detected.
3. Compute opt(V) by a dynamic programming algorithm based on the path decomposi-

tion D. If the current optimum solution is bigger than k, then stop with “NO”. If the
computation is successful and opt(V) ≤ k then answer “YES”. Otherwise answer “NO”.

We will prove several lemmas to show Theorem 8. To apply our dynamic programming
algorithm, we need consistency.

I Lemma 9. Given an interval order ι, one can construct in linear time a path decomposition
of Gι consistent with ι of minimum width.

Let D = (B1, . . . , B2|V |) be the nice path decomposition consistent with ι we got by applying
Lemma 3 on the path decomposition of Lemma 9. Clearly, each bag in D is a clique.

I Lemma 10. Assume that Gι has at most k edges. Let H = d
√

2ke+ 1 and, for 2 ≤ h ≤ H,
let ch =̇ |{i : |Bi| = h}|. Then we have ch ≤ k/(h− 1)− h/2 + 1.

FSTTCS 2020

9:8 Width Notions for Ordering-Related Problems

Finally, we show how our considerations also help to improve the running time of a simple
branching algorithm. The algorithm works as follows: it picks an edge in the cocomparability
graph and considers orienting it both ways. As long as there are profitable edges that cause
at least a cost of two in each branch, we keep on branching. Costs can also be implicitly
caused, as we modify the partial order ρ and hence transitivity must be maintained. We can
use Theorem 8 when there are no more profitable edges because of the following lemma.

I Lemma 11. After exhaustively branching at all profitable edges, Gρ is an interval graph.

This is the key to the following improvement on the branching algorithm described in [23].
Notice that in practice, branching algorithms tend to be faster at least for small parameter
values, due to the smaller constants in the basis of the (sub-)exponential functions that
upper-bound the running times.

I Theorem 12. PCO can be solved in time O∗(
√

2k) by a branching algorithm.

4 One-Sided Crossing Minimization (OSCM)

Given a bipartite graph G with bipartition (V1, V2), a two-layer drawing of G is a drawing
such that vertices of V1 and V2 are placed on two parallel lines and edges are represented as
straight lines between the vertices. A two-layer drawing can be specified by two linear orders
τ1 of V1 and τ2 of V2. A crossing in a two-layer drawing is a pair of edges that intersect
each other in a point that is not a vertex. The number of crossings is defined by the order
of V1 and V2 on the lines. The One-Sided Crossing Minimization problem consists in
placing vertices of one part V2 of the bipartite graph, given an ordering of the other part V1,
that minimizes the number of crossings. This problem is a key sub-problem for drawing
hierarchical graphs [3, 4, 32, 45] or producing row-based VLSI layouts [50, 52].

Problem name: One-Sided Crossing Minimization (OSCM)
Given: A bipartite graph G = (V1, V2, E), a linear order τ1 on V1 and k ∈ N
Output: Is there a linear order τ2 on V2 such that, in the two-layer drawing
specified by (τ1, τ2), at most k edge crossings incur?

The problem is known to be NP-complete [21] even in sparse graphs [44] and FPT in the
number of edge crossings k [17, 18, 25], including sub-exponential algorithms. The two-sided
variant of the problem (where the permutation of both sides is variable) is also FPT in the
number of crossings [37]. OSCM is a cornerstone of algorithms dealing with the so-called
Sugiyama approach to hierarchical graph drawing, see [32, 53].

Now, we show that OSCM can be reduced into PCIO, starting with a simple remark.
I Remark 13. Isolated vertices in V2 can be placed anywhere in an optimal ordering of V2.
From here, we assume that V2 does not contain any isolated vertices. Similar to [23, 25, 38],
we can model OSCM instances as PCIO instances.

I Lemma 14. Given an instance (G, τ1, k) of OSCM, one can construct in polynomial time
an equivalent instance (ι, c, k) of PCIO.

As PCIO has not been formally studied in the literature, let us draw an important
consequence from the previous lemma (also see the discussion in the beginning of Section
3.2).

I Corollary 15. Positive Completion of an Interval Ordering is NP-complete, even
when restricted to instances (ι, c, k) where the arc weights are within the set {1, 2, . . . , 16}.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:9

I Remark 16. We can use Theorem 8 to immediately deduce an algorithm for OSCM
matching the running time O∗(2

√
2k) of the best published algorithm for OSCM [38]. We

could also use the PCO-kernelization as a kernelization procedure for OSCM.

I Remark 17. Çakiroglu et al. [11] studied the variation where edges (if existing) have positive
weights, and the cost of an edge crossing is obtained by the product of the weights of the
crossing edges. This modification (with applications in automatic graph drawing) can also be
modeled by PCIO, so that we inherit an O∗(2

√
2k) algorithm for the standard parameter k.

5 The Kemeny Rank Aggregation Problem

Preference lists are extensively used in social science surveys and voting systems to capture
information about choice. Kemeny [36] discussed the problem to combine several preference
lists into one, called its aggregation. This approach aims at minimizing the total disagreement
(formalized below) between the several input rankings and their aggregation. The idea itself
has not only applications in (the theory of) elections in the context of social sciences, say, on
a committee, but has also been suggested as a means of designing meta-search engines [19].
It has been also shown by Young and Levenglick [56] that the aggregation method proposed
by Kemeny is the only one satisfying a number of natural requirements on such aggregations.

More formally, in Kemeny Rank Aggregation we are given a set Π of rankings (also
called votes) over a set of alternatives C (also called candidates), and a positive integer k,
and are asked for a ranking π of C, such that the sum of the Kendall-Tau distances (or,
KT-distances for short) of π from all the votes, called its Kemeny score, is at most k.
The ranking π that gives the smallest Kemeny score is called a Kemeny consensus. The
KT-distance between two rankings π1 and π2 is the number of pairs of candidates that
are ordered differently in the two rankings and is denoted by KT-dist(π1, π2). Hence, if
π1, π2 : [|C|]→ C, KT-dist(π1, π2) = |{(c, c′) ∈ C × C | c <π1 c

′ ∧ c′ <π2 c}| . Observe that
the Kendall-Tau distance can be seen as the “bubble sort” distance.

Problem name: Kemeny Rank Aggregation (KRA)
Given: A list of votes Π over a set of candidates C, a non-negative integer k
Output: Is there a ranking π on C such that the sum of the KT-distances of π
from all the votes is at most k.

Hence, given rankings π1, . . . , πm of C and a non-negative integer k, the question is
if there exists a ranking π : [|C|] → C such that

∑m
i=1 KT-dist(π, πi) ≤ k . The problem

Kemeny Rank Aggregation is known to be NP-complete [2], even if only four votes are
input [19].3 Simjour [51] obtained an algorithm for the problem that runs in time O∗(1.403k).
There are also sub-exponential algorithms for Kemeny Rank Aggregation under this
parameterization: Karpinski and Schudy [35] obtained an algorithm for Kemeny Rank
Aggregation that runs in O∗(2O(

√
k)) time, while the algorithm of Fernau et al. [24, 25],

based on a different methodology, runs in O∗(kO(
√
k)) time. Both algorithms hide some

constant factor in the O-notation in the exponent that is not that clear from the expositions.
Our considerations are also valid for weighted Kemeny score, a modification suggested in [5]
that assigns positive weights to the voters. We can add some comment on conditional lower
bounds of this problem by bringing together facts from different parts of the literature.

3 The proof of this fact is not contained in the conference paper [19] but only appears in Appendix B of
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/rank_www10.html.

FSTTCS 2020

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/rank_www10.html

9:10 Width Notions for Ordering-Related Problems

I Theorem 18. KRA on instances with only m = 4 votes on some candidate set C and
some integer k bounding the sum of the Kendall-Tau distances to a solution cannot be solved
neither in time O∗

(
2o(|C|)

)
nor in time O∗

(
2o(
√
k)
)
, unless ETH fails.

5.1 Reduction from KRA to PCO
Now we will show that KRA can be encoded into PCO. Let (Π, C) be an instance of Kemeny
Rank Aggregation withm votes Π = (π1, . . . , πm) over n candidates C. From this instance,
we construct an equivalent instance of the PCO problem ρ ⊆ V × V , c with base set V = C.
For every pair of candidates c1 and c2, we define the cost of (c1, c2), c(c1, c2), as the number
of votes that do not order c1 before c2. More formally, c(c1, c2) = |{i ∈ [m] | c2 <πi c1}|.

I Lemma 19. Given two candidates c1 and c2, if for every vote πi ∈ Π, we have c1 <πi c2
then for every Kemeny consensus π, c1 <π c2.

Using different terminology, a proof of this lemma can be found in [43, Théorème 3]. Now,
we define the partial order ρ as follows: (c1, c2) ∈ ρ if and only if c(c1, c2) = 0. Hence,
<ρ =

⋂m
i=1 <πi is the unanimity order [12]. By Lemma 19, a vote π, which is a linear order

of the candidates, is a Kemeny consensus iff π is a linear extension of ρ of minimum cost
with Kemeny score4

m∑
i=1

KT-dist(π, πi) =
m∑
i=1

n∑
j=1

n∑
k=1

[cj <πi ck ∧ ck <π cj] =
n∑
j=1

n∑
k=1

c(ck, cj)[ck <π cj] (1)

is equal to the cost of the linear extension given by π according to its definition.
These considerations prove that we can translate our algorithmic results for PCO to KRA.
I Remark 20. Our reduction works even if votes are reflexive and antisymmetric relations
instead of linear orders. In this case, the cost between c1 and c2 is defined as follows:
c(c1, c2) = |{i ∈ [m] | c1 ≮πi c2}|.

5.2 Pathwidth in Kemeny Rank Aggregation
Now we will discuss the meaning of the pathwidth measure from the PCO problem applied
to KRA. For KRA, several measures have been studied in the context of parameterized
complexity, Betzler et al. [5] introduced the notion of maximum range of candidate positions.
For an election (Π, C), the range r(c) of a candidate c is defined as r(c) =̇ maxi,j∈[m] |π−1

i (c)−
π−1
j (c)|+ 1. If Π(c) =̇ {i ∈ [|C|] : ∃π ∈ Π : π(i) = c} denotes the set of positions candidate c

received in election (Π, C), then r(c) = max Π(c)−min Π(c) + 1. The maximum range rmax
of an election is given by rmax =̇ maxc∈C r(c). Betzler et al. [5] proved that KRA can be
solved in time O(32rmax · (r2

max · |C|+ rmax · |C|2 log |C| ·m) +m2 · |C| log |C|) = O∗(25rmax).

I Lemma 21. Given an election (Π, C), let w be the consistent pathwidth associated to the
election and rmax be the maximum range of the election. We have w ≤ 2 · rmax − 2.

Proof. Let ρ be the partial order defined by the election. To prove this statement, we will
construct an interval order ι such that ι ⊆ ρ, and w(ι) ≤ 2 · rmax. To each candidate c ∈ C,
we associate the interval Ic =̇ [min Π(c)− 1,max Π(c)). (We subtract one from the left
border to avoid empty intervals.) We let ι be the interval order associated with the interval

4 Recall the bracket notation: if p is a logical proposition, then [p] yields 1 if p is true and else, [p] yields 0.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:11

representation {Ic | c ∈ C}. By Lemma 19, we have that ρ is an extension of the interval
order ι. Each interval Ic has length at most rmax. Thus, there are at most 2 ·rmax−2 intervals
that intersect at one point in the interval representation. Hence, w(ι) ≤ 2 · rmax − 2. J

Hence, Theorem 1 yields the following noticeable improvement to the mentioned result of [5]:

I Corollary 22. KRA can be solved in time O(|C| · rmax · 22rmax +m · |C|2) = O∗(22rmax).

6 Grouping by Swapping (GbS)

This problem asks whether a given string can be transformed by at most k interchanges of
neighboring letters into a block format where all occurrences of each letter are adjacent to
form one single block each. It is on the famous list of NP-complete problems in [28]. Further
algorithmic aspects are discussed in [15, 55]. We show that GbS can be reduced to OSCM
in a parameter-preserving way and hence inherits FPT-results shown above. We first discuss
the problem GbS itself and then continue with the reductions.

Problem name: Grouping by Swapping (GbS)
Given: A finite alphabet Σ, a string w ∈ Σ∗, and k ∈ N.
Output: Is there a sequence of at most k adjacent swaps such that w is transformed
into a string w′ where all occurrences of each symbol are in single blocks?

Let us formalize this problem a bit more. If w,w′ ∈ Σ∗ both have length n, we call w′
a permutation of w if there exists a bijection π : [n] → [n] such that, for any i ∈ [n],
w′[i] = w[π(i)]. Slightly abusing notation, we will also write w′ = π(w). Special bijections
are adjacent swaps σi : [n]→ [n] (with i ∈ [n−1]) that act as the identity with two exceptions:
σi(i) = i+ 1 and σi(i+ 1) = i. Every bijection π : [n]→ [n] can be written as a composition
of swaps (property (*)). Hence, given a permutation w′ of w, we can ask to compute the
swap distance, written sd(w,w′), which is the smallest number k of swaps σi1 , σi2 , . . . , σik
such that w′ = (σi1 ◦ σi2 ◦ · · · ◦ σik)(w) . Observe that sd can be viewed, for each mapping
g : Σ→ N, as a metric on the space of all words w ∈ Σ∗ with g(a) occurrences of a for each
letter a ∈ Σ. In particular, sd(w,w′) = sd(w′, w) for all permutations w′ of w. Notice that
the swap distance can be computed in quadratic time by dynamic programming, as shown
in [42] (property (+)).

This picture changes if we add one more degree of freedom. Let us call w′ ∈ Σ∗ to be
in block format if there is a bijection f : [|Σ|] → Σ such that w′ ∈ f(1)∗f(2)∗ · · · f(|Σ|)∗.
Alternatively, we can view f as defining a linear order <f on Σ, and then the block format
of w corresponding to f is the <f -lexicographic smallest permutation of w. GbS now asks,
given w ∈ Σ∗ and k ≥ 0, if there is some permutation w′ of w that is in block format
and has swap distance at most k from w. As claimed in [28], this variant is NP-complete.
Unfortunately, the proof referenced by [28] is hidden in a private communication. We remedy
this below by proving that GbS is NP-complete even for strings w where each letter occurs
exactly four times. Let us start with two rather straightforward observations.

I Lemma 23. Any string w can be grouped into blocks using at most |w|2 many swaps.

In fact, any permutation of w can be obtained by using at most |w|2 many swaps, as
can be seen by bubble-sort. This reasoning also shows (*), a well as (+), with a little bit of
thinking. This can be used to obtain our first (easy) FPT-result, to be improved on later.

I Lemma 24. GbS on strings w ∈ Σn parameterized by |Σ| can be solved in time O∗(|Σ|!).

FSTTCS 2020

9:12 Width Notions for Ordering-Related Problems

We are now going to show that computing the swap distance can be done by considering the
distance for pairs of letters, summing up the corresponding results. Notice that the formula
in Lemma 25 resembles earlier derived summation formulae, as the defining equation for
PCO. To make this more precise, let Σ′ ⊆ Σ and consider the projection pΣ,Σ′ : Σ→ Σ′ that
maps a 7→ a for a ∈ Σ′ and a 7→ ε, the empty word, if a /∈ Σ′, as a morphism Σ∗ → (Σ′)∗.

I Lemma 25. Let w,w′ ∈ Σ∗ such that w′ is a permutation of w. Let w′ be in block format
following the linear order τ on Σ. sd(w,w′) =

∑
a,b∈Σ,a<τ b sd(pΣ,{a,b}(w), pΣ,{a,b}(w′)).

Moreover, pΣ,{a,b}(w′) = a|w|ab|w|b if a <τ b.

6.1 Discussing NP-completeness
In this subsection, we will prove NP-completeness of GbS even for quite restricted instances
by making use of a somewhat similar result for OSCM, based on [44].

I Theorem 26. GbS is NP-complete, even if each letter has exactly 4 occurrences.

Proof. Membership in NP is clear. In order to show NP-hardness, we give a reduction
from OSCM which is also NP-complete if each node in V2 has degree four and each vertex
in V1 has degree one, i.e., if the graph is a forest of 4-stars [44], with all star’s centers
in V2. Let G = (V1, V2, E) be an instance of OSCM with order τ1 on V1 and integer k
such that all vertices in V1 are of degree one and all vertices in V2 are of degree four. We
set Σ = V2 = {v1, v2, . . . , vn}. Clearly, |V1| = 4n. We construct w ∈ Σ4n (starting from
the empty word) by going through the vertices in V1, following the order τ1. If the current
vertex is adjacent to vi, we concatenate vi to w. As the vertices in V1 are of degree one,
this assignment is unambiguous. Following [21], for vertices vi, vj ∈ V2, let cvivj be the
number of crossings between edges incident to vi and edges incident to vj when vi is placed
left of vj . Lemma 3 in [21] states, referring to [20], that for a linear order τ2 on V2, the
number of crossings cross(G, τ1, τ2) of the edges between V1 in order τ1 and V2 in order τ2
is cross(G, τ1, τ2) =

∑
vi,vj∈V2,vi<τ2vj

cvivj . Clearly, for vi, vj ∈ V2 the number of crossings
cvivj is equal to sd(pΣ,{vi,vj}(w), pΣ,{vi,vj}(wτ2)), where wτ2 is the τ2-lexicographic smallest
permutation of w. Combining this observation with Lemma 25, we obtain that for every
linear order τ2, sd(w,wτ2) = cross(G, τ1, τ2). J

In the following subsection, we will show that, in a sense, the reduction presented in our
NP-hardness result for GbS can be reversed. This also shows the following:

I Remark 27. GbS is polynomial-time solvable when each letter occurs at most twice.

This also leaves the following case as an open question: Can GbS instances be solved
in polynomial time if each letter occurs at most thrice? Notice that it is also open whether
subcubic OSCM graph instances can be solved in polynomial time. Furthermore, within
KRA, it is open if instances with three voters can be solved in polynomial time. Also, Cor. 15
leaves some room for improvement.

6.2 Reduction from GbS to OSCM
With the same idea as in the proof of Theorem 26, we can also reduce GbS to OSCM by
representing the string w as the ordered vertex set V1 and Σ as the vertex set V2. More
precisely, let n be the length of w and interpret w as a mapping from [n] into Σ. Moreover,
set V1 = [n] with the usual linear ordering <τ1 =̇ < on [n]. Let V2 = Σ and connect a ∈ V2
to i ∈ [n] iff w(i) = a. This defines the bipartite graph G = (V1, V2, E) with linear ordering

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:13

τ1 on V1. Now, the GbS instance (w, k) is a YES-instance if and only if the constructed
OSCM instance (G, τ1, k) is a YES-instance. As OSCM is solvable in polynomial time if the
vertices in V2 have degree at most two, this implies that GbS is solvable in polynomial time
if each letter has at most two appearances, see Remark 27 and the following comments.

Together with the reduction proving Theorem 26, we see that GbS can be viewed as
exactly the special case of OSCM where all vertices of V1 are of degree one, so that the
instance becomes a forest of stars with centers in V2. We make the algorithmic consequences
of this connection explicit, each time giving references to the literature on OSCM.

I Corollary 28. GbS, parameterized by k, can be solved (in polynomial space) in time
O∗(1.4656k) by [17] or (in exponential space) in time O∗(2

√
2k) by [38] or Remark 16.

Fernau et al. [25] and Kobayashi and Tamaki [38] also obtained OSCM lower bound
results, based on [44], assuming ETH. By the proof of Theorem 26, we can strengthen them:

I Corollary 29. GbS on strings of length n over alphabet Σ, parameterized by the number k
of swaps, cannot be solved neither in time O∗(2o(n)) nor in time O∗(2o(|Σ|)) nor in time
O∗(2o(

√
k)), unless ETH fails, even if each letter has exactly 4 occurrences.

6.3 Pathwidth in Grouping by Swapping
The concept of scope coincidence degree (SCD for short) was introduced in [49] for patterns,
which are strings over two disjoint alphabets, where only the alphabet of variables was used to
measure the SCD of patterns. We adapt it in the following to strings over a single alphabet.

Given a string w ∈ Σ∗, and a letter a ∈ Σ, then the scope of a, denoted Scope(a) is the set of
positions in {1, . . . , |w|} between the minimum position and the maximum position in which a
occurs. For each position i, we let the incidence set of i to be Inc(i) = {a ∈ Σ : i ∈ Scope(a)}.
Now the scope coincidence degree is the number of overlapping scopes for all letters. In other
words, we have that SCD(w) = maxi |Inc(i)|.

Our reduction from GbS to OSCM first turns w ∈ Σ∗ into a bipartite graph G =
(V1, V2, E) with V1 = [|w|] and V2 = Σ. Lemmas 14 then produce an equivalent PCIO-
instance with an associated partial order ρw on V2 that is an interval order. For two
letters a, b ∈ Σ, (a, b) ∈ ρw means that the last occurrence of a in w comes before the first
occurrence of b in w. Obviously, SCD(w) is the maximum size of an anti-chain in ρw. Hence,
the previously mentioned results of Habib and Möhring imply, together with Lemma 5:

I Lemma 30. SCD(w) = pw(Gρw) + 1 = cpw(Gρw , ρw) + 1.

Theorem 1 has therefore the following consequences for the string parameter SCD. To
the best of our knowledge, this is the first algorithmic exploit of this string parameter.

I Corollary 31. GbS can be solved in O∗(SCD(w)2SCD(w)).

As the scope coincidence degree of a word w ∈ Σ∗ is upper-bounded by |Σ|, we also
obtain the following result for the parameter |Σ| that improves on Lemma 24.

I Corollary 32. GbS can be solved in O∗(|Σ|2|Σ|).

There is another graph-theoretic interpretation of the scope coincidence degree presented
by Reidenbach and Schmid [49] for patterns. It relates to our setting as follows. To a string
w ∈ Σn, we associate its Gaifman graph Γw with vertex set [n] and edges (i, i + 1) for
i ∈ [n − 1], as well as the edge sets Ea = {(min Scope(a), j) | j ∈ Scope(a)} (disregarding
loops) for each a ∈ Σ. According to [49, Lemma 15], pw(Γw) ≤ SCD(w) + 1. It might be
interesting to further link the pathwidths of Γw and of Gρw . Do they differ by exactly two?

FSTTCS 2020

9:14 Width Notions for Ordering-Related Problems

Inspired by the considerations on the range of a candidate in KRA, the maximum scope
smax =̇ maxa∈Σ |Scope(a)| could be another parameterization for GbS. Similar to Lemma 21,
one can show that GbS, parameterized by smax, is in FPT. It would also be meaningful to
interpret this parameter in the context of OSCM for graph visualization reasons.

7 Conclusion

Finally, we explain some further connections and future lines of research. Recall that we did
list several concrete open problems throughout the paper that we are not going to repeat
here, but they are clearly also natural continuations of the present study.

Different types of partial orderings. It would be interesting to have a closer look to different
types of partial orderings in the context of PCO. For instance, the papers of Brandenburg
and Gleißer [8] or Hudry [34] list quite a lot of different types of partial orders (in the
context of rank aggregation problems). We can also view this research as a starting point
to systematically look at decision problems related to partial orders from the viewpoint of
parameterized complexity. Then, [7] might be a good starting point.

Related problems, popular with Operations Research. In the Operations Research Com-
munity, there has also been lots of studies of the linear ordering polytope. Regarding the
problems studied in this paper, [10] might be a good starting point. Likewise, the so-called
Optimal Linear Extension Problem has been considered in the literature [41]. However,
only the costs of the immediate neighborhood in the target linear order are considered,
similar to the famous Travelling Salesperson Problem,5 while we sum up all costs
associated to pairs (x, y) with x < y in the final linear order <.

Putting additional constraints: a theme arising in Graph Drawing and in Order Theory.
Forster [27] argues that the Constrained OSCM problem, where a partial order on V2
is given in addition, that should be extended to a linear ordering (as before), has quite
some applications. This can be clearly modeled as an instance of CO, but some further
research is needed to conclude the same type of results as we did for OSCM with the interval
order approach. This might relate to earlier (systematic) research on the realizability of
constraints on interval orders, see [47, 48]. In particular the distance constraints might be
indeed interesting for graph drawing purposes, as the neighbor vertices should not stretch
out too much.

Remarks on approximation. For the minimization problem related to PCO, a PTAS is
known according to [25]. Our reasoning immediately implies the existence of PTAS for
OSCM, KRA and GbS. In view of the tedious factor-1.4664 approximation for OSCM
presented in [46], this shows again the strength of looking at these specific problems from a
wider perspective.

Comments on approximation and heuristics. We suggest that the tight connections that
we found between GbS and OSCM should also be interesting in the development and analysis
of (heuristic) algorithms for both problems. In this context, it is interesting to observe that

5 The difference between cycles (tours) and paths do not matter for the involved algorithms that much.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:15

Wong and Reingold [55] proposed a median heuristic for computing a solution to a given
GbS instance. They proved that on random instances, this heuristic is at most 10% off
from the optimum (in expectation). Moreover, the larger random instances are picked, the
smaller is the relative error of the median heuristic (in expectation). Incidentally, the same
(median) heuristic was suggested by Eades and Wormalds [21] some years later for OSCM.
They proved that this heuristic is a factor-3 approximation, but did not go into a randomized
analysis. Our translation of GbS into OSCM actually proves the following which is the last
result of this paper.

I Corollary 33. The median heuristic gives a factor-3 approximation for GbS.

References
1 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Susanne Albers, Alberto

Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors,
Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes,
Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer
Science, pages 49–58. Springer, 2009. doi:10.1007/978-3-642-02927-1_6.

2 J. Bartholdi, III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

3 Oliver Bastert and Christian Matuszewski. Layered drawings of digraphs. In Michael Kaufmann
and Dorothea Wagner, editors, Drawing Graphs, Methods and Models (the book grow out of
a Dagstuhl Seminar, April 1999), volume 2025 of Lecture Notes in Computer Science, pages
87–120. Springer, 1999. doi:10.1007/3-540-44969-8_5.

4 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

5 Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond.
Fixed-parameter algorithms for kemeny rankings. Theor. Comput. Sci., 410(45):4554–4570,
2009. doi:10.1016/j.tcs.2009.08.033.

6 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

7 Vincent Bouchitté and Michel Habib. NP-completeness properties about linear extensions.
Order, 4(2):143–154, 1987.

8 Franz J. Brandenburg and Andreas Gleißner. Ranking chain sum orders. Theor. Comput. Sci.,
636:66–76, 2016. doi:10.1016/j.tcs.2016.05.026.

9 Franz-Josef Brandenburg, Andreas Gleißner, and Andreas Hofmeier. Comparing and aggre-
gating partial orders with kendall tau distances. Discrete Math., Alg. and Appl., 5(2), 2013.
doi:10.1142/S1793830913600033.

10 Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algorithms for the quadratic
linear ordering problem. INFORMS J. Comput., 22(1):168–177, 2010. doi:10.1287/ijoc.
1090.0318.

11 Olca A. Çakiroglu, Cesim Erten, Ömer Karatas, and Melih Sözdinler. Crossing minimization
in weighted bipartite graphs. J. Discrete Algorithms, 7(4):439–452, 2009. doi:10.1016/j.jda.
2008.08.003.

12 Irène Charon and Olivier Hudry. A survey on the linear ordering problem for weighted or
unweighted tournaments. 4OR, 5(1):5–60, 2007. doi:10.1007/s10288-007-0036-6.

13 Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS-based certifying algorithm for the
minimum path cover problem on cocomparability graphs. SIAM J. Comput., 42(3):792–807,
2013. doi:10.1137/11083856X.

14 Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and recog-
nition of interval graphs. SIAM J. Discret. Math., 23(4):1905–1953, 2009. doi:10.1137/
S0895480100373455.

FSTTCS 2020

https://doi.org/10.1007/978-3-642-02927-1_6
https://doi.org/10.1007/3-540-44969-8_5
https://doi.org/10.1016/j.tcs.2009.08.033
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/j.tcs.2016.05.026
https://doi.org/10.1142/S1793830913600033
https://doi.org/10.1287/ijoc.1090.0318
https://doi.org/10.1287/ijoc.1090.0318
https://doi.org/10.1016/j.jda.2008.08.003
https://doi.org/10.1016/j.jda.2008.08.003
https://doi.org/10.1007/s10288-007-0036-6
https://doi.org/10.1137/11083856X
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455

9:16 Width Notions for Ordering-Related Problems

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

16 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms
for one-sided crossing minimization revisited. In Giuseppe Liotta, editor, Graph Drawing,
11th International Symposium, GD 2003, Perugia, Italy, September 21-24, 2003, Revised
Papers, volume 2912 of Lecture Notes in Computer Science, pages 332–344. Springer, 2003.
doi:10.1007/b94919.

17 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for
one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313–323, 2008.

18 Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for
1-sided crossing minimization. Algorithmica, 40(1):15–31, 2004.

19 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko, editors,
Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong,
China, May 1-5, 2001, pages 613–622. ACM, 2001. doi:10.1145/371920.372165.

20 Peter Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks. Ars
Combinatoria, 21A:89–98, 1986.

21 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994.

22 Eduard Eiben, Robert Ganian, Kustaa Kangas, and Sebastian Ordyniak. Counting linear
extensions: Parameterizations by treewidth. Algorithmica, 81(4):1657–1683, 2019. doi:
10.1007/s00453-018-0496-4.

23 Henning Fernau. Parameterized Algorithmics: A Graph-Theoretic Approach. Habilitations-
schrift, Universität Tübingen, Germany, 2005.

24 Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Matthias Mnich, Geevarghese Philip,
and Saket Saurabh. Ranking and drawing in subexponential time. In Costas S. Iliopoulos and
William F. Smyth, editors, Combinatorial Algorithms - 21st International Workshop, IWOCA
2010, London, UK, July 26-28, 2010, Revised Selected Papers, volume 6460 of Lecture Notes
in Computer Science, pages 337–348. Springer, 2011.

25 Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Matthias Mnich, Geevarghese Philip,
and Saket Saurabh. Social choice meets graph drawing: How to get subexponential time
algorithms for ranking and drawing problems. TSINGHUA SCIENCE AND TECHNOLOGY,
19(4):374–386, 2014.

26 Peter C. Fishburn. Interval Orders and Interval Graphs. John Wiley, 1985.
27 Michael Forster. A fast and simple heuristic for constrained two-level crossing reduction. In

János Pach, editor, Graph Drawing, 12th International Symposium, GD 2004, New York, NY,
USA, September 29 - October 2, 2004, Revised Selected Papers, volume 3383 of Lecture Notes
in Computer Science, pages 206–216. Springer, 2004. doi:10.1007/978-3-540-31843-9_22.

28 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

29 Paul C Gilmore and Alan J Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:539–548, 1964.

30 Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Viennot. Lex-bfs and
partition refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theor. Comput. Sci., 234(1-2):59–84, 2000. doi:10.1016/
S0304-3975(97)00241-7.

31 Michel Habib and Rolf H. Möhring. Treewidth of cocomparability graphs and a new order-
theoretic parameter. Order, 11(1):47–60, 1994.

32 Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Roberto Tamassia,
editor, Handbook on Graph Drawing and Visualization, pages 409–453. Chapman and Hall/CRC,
2013.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/b94919
https://doi.org/10.1145/371920.372165
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.1007/978-3-540-31843-9_22
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/S0304-3975(97)00241-7

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 9:17

33 Wen-Lian Hsu and Tze-Heng Ma. Fast and simple algorithms for recognizing chordal
comparability graphs and interval graphs. SIAM J. Comput., 28(3):1004–1020, 1999.
doi:10.1137/S0097539792224814.

34 Olivier Hudry. NP-hardness results for the aggregation of linear orders into median orders.
Annals of Operations Research, 163:63–88, 2008.

35 Marek Karpinski and Warren Schudy. Faster algorithms for feedback arc set tournament,
Kemeny rank aggregation and betweenness tournament. In Otfried Cheong, Kyung-Yong
Chwa, and Kunsoo Park, editors, Algorithms and Computation - 21st International Symposium,
ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I, volume 6506 of
Lecture Notes in Computer Science, pages 3–14. Springer, 2010.

36 John G. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.
37 Yasuaki Kobayashi, Hirokazu Maruta, Yusuke Nakae, and Hisao Tamaki. A linear edge kernel

for two-layer crossing minimization. Theor. Comput. Sci., 554:74–81, 2014.
38 Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter

algorithm for one-sided crossing minimization. Algorithmica, 72(3):778–790, 2015.
39 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky. Interval graphs:

Canonical representations in logspace. SIAM J. Comput., 40(5):1292–1315, 2011. doi:
10.1137/10080395X.

40 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe. Interval graph representation
with given interval and intersection lengths. J. Discrete Algorithms, 34:108–117, 2015. doi:
10.1016/j.jda.2015.05.011.

41 Longcheng Liu, Biao Wu, and Enyu Yao. Minimizing the sum cost in linear extensions of a
poset. J. Comb. Optim., 21(2):247–253, 2011. doi:10.1007/s10878-009-9237-6.

42 Roy Lowrance and Robert A. Wagner. An extension of the string-to-string correction problem.
J. ACM, 22(2):177–183, 1975. doi:10.1145/321879.321880.

43 B. Monjardet. Tournois et ordres médians pour une opinion. Mathématiques et Sciences
humaines, 43:55–73, 1973.

44 Xavier Muñoz, Walter Unger, and Imrich Vrt’o. One sided crossing minimization is NP-hard
for sparse graphs. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph
Drawing, 9th International Symposium, GD 2001 Vienna, Austria, September 23-26, 2001,
Revised Papers, volume 2265 of Lecture Notes in Computer Science, pages 115–123. Springer,
2001. doi:10.1007/3-540-45848-4.

45 Petra Mutzel. Optimization in leveled graphs. In Christodoulos A. Floudas and Panos M.
Pardalos, editors, Encyclopedia of Optimization, Second Edition, pages 2813–2820. Springer,
2009. doi:10.1007/978-0-387-74759-0_483.

46 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number
in two-layered drawings. Discret. Comput. Geom., 33(4):569–591, 2005. doi:10.1007/
s00454-005-1168-0.

47 Itsik Pe’er and Ron Shamir. Realizing interval graphs with size and distance constraints.
SIAM J. Discret. Math., 10(4):662–687, 1997. doi:10.1137/S0895480196306373.

48 Itsik Pe’er and Ron Shamir. Satisfiability problems on intervals and unit intervals. Theor.
Comput. Sci., 175(2):349–372, 1997. doi:10.1016/S0304-3975(96)00208-3.

49 Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Inf. Comput.,
239:87–99, 2014.

50 Carl Sechen. VLSI placement and global routing using simulated annealing, volume 54. Springer
Science & Business Media, 2012.

51 Narges Simjour. Improved parameterized algorithms for the Kemeny aggregation problem.
In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th
International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised
Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 312–323. Springer,
2009.

FSTTCS 2020

https://doi.org/10.1137/S0097539792224814
https://doi.org/10.1137/10080395X
https://doi.org/10.1137/10080395X
https://doi.org/10.1016/j.jda.2015.05.011
https://doi.org/10.1016/j.jda.2015.05.011
https://doi.org/10.1007/s10878-009-9237-6
https://doi.org/10.1145/321879.321880
https://doi.org/10.1007/3-540-45848-4
https://doi.org/10.1007/978-0-387-74759-0_483
https://doi.org/10.1007/s00454-005-1168-0
https://doi.org/10.1007/s00454-005-1168-0
https://doi.org/10.1137/S0895480196306373
https://doi.org/10.1016/S0304-3975(96)00208-3

9:18 Width Notions for Ordering-Related Problems

52 Matthias F. M. Stallmann, Franc Brglez, and Debabrata Ghosh. Heuristics, experimental
subjects, and treatment evaluation in bigraph crossing minimization. ACM J. Exp. Algorithmics,
6:8, 2001. doi:10.1145/945394.945402.

53 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

54 William T. Trotter. New perspectives on interval orders and interval graphs. In R. A. Bailey,
editor, Surveys in Combinatorics, volume 241 of London Mathematical Society Lecture Note
Series, pages 237–286. 1997.

55 D. F. Wong and Edward M. Reingold. Probabilistic analysis of a grouping algorithm. Algo-
rithmica, 6(2):192–206, 1991. doi:10.1007/BF01759041.

56 H. P. Young and A. Levenglick. A consistent extension of Condercet’s election principle. SIAM
J. Appl. Math., 35(2):285–300, 1978.

57 Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res., 34(3):594–620, 2009. doi:10.1287/moor.
1090.0385.

https://doi.org/10.1145/945394.945402
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1007/BF01759041
https://doi.org/10.1287/moor.1090.0385
https://doi.org/10.1287/moor.1090.0385

Optimal Output Sensitive Fault Tolerant Cuts
Niranka Banerjee
The Institute of Mathematical Sciences, HBNI, Chennai, India
nirankab@imsc.res.in

Venkatesh Raman
The Institute of Mathematical Sciences, HBNI, Chennai, India
vraman@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Abstract
In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the
lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive
integer f , our objective is to compute an upper bound on the size of the sparsest subgraph H of
G that preserves edge connectivity of G (denoted by λ(G)) in the case of Global Min-Cut, and
λ(G, k) (denotes the minimum number of edges whose removal would partition the graph into at
least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The
subgraph H corresponding to Global Min-Cut and Min k-Cut is called f -FTCS and f -FT-k-CS,
respectively. We obtain the following results about the sizes of f -FTCS and f -FT-k-CS.

There exists an f -FTCS with (n− 1)(f + λ(G)) edges. We complement this upper bound with
a matching lower bound, by constructing an infinite family of graphs where any f -FTCS must
have at least (n−λ(G)−1)(λ(G)+f−1)

2 + (n− λ(G)− 1) + λ(G)(λ(G)+1)
2 edges.

There exists an f -FT-k-CS with min{(2f + λ(G, k)− (k − 1))(n− 1), (f + λ(G, k))(n− k) + `}
edges. We complement this upper bound with a lower bound, by constructing an infinite family
of graphs where any f -FT-k-CS must have at least (n−λ(G,k)−1)(λ(G,k)+f−k+1)

2) + n− λ(G, k) +
k − 3 + (λ(G,k)−k+3)(λ(G,k)−k+2)

2 edges.
Our upper bounds exploit the structural properties of k-connectivity certificates. On the other
hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in
the family any f -FTCS (or f -FT-k-CS) must contain all its edges. We also add that our upper
bounds are constructive. That is, there exist polynomial time algorithms that construct H with the
aforementioned number of edges.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Sparsification and spanners

Keywords and phrases Fault tolerant, minimum cuts, upper bound, lower bound

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.10

Funding Saket Saurabh: Received funding from European Research Council (ERC) under the

 European Union’s Horizon 2020 research and innovation programme (grant no. 819416), and

Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

1 Introduction

There is a common proverb in English – m it is better to be safe than sorry! Probably, it
has never been more true than the Covid-19-times we are living in. Closed in our homes,
computers are probably our only way of communicating with the world. Our machines are
part of a larger network – it is is just a node in the network. Thus, to get past this moment
in time we need our networks to be more reliable, than ever before. Unfortunately, most of

© Niranka Banerjee, Venkatesh Raman, and Saket Saurabh;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nirankab@imsc.res.in
mailto:vraman@imsc.res.in
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Optimal Output Sensitive Fault Tolerant Cuts

the real life networks are prone to failures. A failure of a link (or a small number of links)
in the network may lead to a breakdown in communication. This motivates us to build
networks that are resilient to failures, leading to the field of fault tolerant network design.

Networks are best modelled as graphs. For example, we could imagine we have a
communication network, where the nodes (or vertices) are computers, routers, or cell-towers
and there is an edge between them if they can communicate. One could also imagine a
transportation network, where the edges correspond to segment of a road and the junctions
between the roads are vertices. Once we have abstracted these networks as graphs, there
are a number of properties we could try to ask about graphs that are meaningful for the
particular network they represent. As stated earlier, real life networks are prone to failures.
That is, edges (or vertices) may change their status from active to failed, and vice versa.
These failures may occur anytime; however it is expected that they are small in numbers.
Further, we can assume that failures are not permanent as they are repaired simultaneously.
The fact that we only have a small number of failures is captured by associating an integer–a
fault parameter f with the network. That is, we assume that at any point of time we only
have at most f -edges (or vertices) that are failed. Indeed, f is much smaller than the number
of vertices in the graph. This motivates the research on designing fault tolerant structures
for various graph problems in terms of fault parameter f and the input size n.

We now formally define the model of fault tolerant network design, with respect to a
property Π, we would be interested in. A property of graphs is a function σ that assigns to
each graph a value in {true, false}. Given a graph G, a fault parameter f , we want to find a
subgraph H of G, such that for any set F ⊆ E(G)(V (G)) of size f , we have the following:
σ(G− F) is true if and only if σ(H − F) is true. In general, the solution of a fault tolerant
network design is measured by the size of the subgraph H. That is, our objective is to find
H with as few edges as possible. Fault tolerant subgraphs have been developed for various
problems like reachability [3, 4, 8], shortest path [6, 20, 37–39] and spanners [5, 7, 9, 12, 36].
A fault tolerant subgraph for single source reachability in directed graphs was shown by
Baswana et al. [4] to contain Θ(2fn) edges. Given a graph G, a source s, and an integer f , a
subgraph H is an (α, β)-single source fault tolerant subgraph, if for every vertex v ∈ V (G),
for every F ⊆ E(G) of size at most f , dist(s, v,H − F) ≤ α·dist(s, v,G − F) + β. Parter
and Peleg [39] gave an (3(f + 1), (f + 1) logn)-single source fault tolerant subgraph with
with O(fn) edges. For spanners with a stretch k, Dinitz et al. [12] gave an f -fault tolerant
k-spanner with Õ(f2n1+ 2

k+1) edges. Recently, Chakraborty and Choudhary [8] showed an
O(n + min |P |

√
n, n

√
|P |) bound on a subgraph, that is an 1-fault tolerant reachability

preserver for a given vertex-pair set P ⊆ V (G)× V (G).
Our main objective of this article is to extend this study to two classic cut-problems,

Global Min-Cut and Min k-Cut. Arguably, Global Min-Cut and Min k-Cut are
one of the two most well-studied problems in the field of graph algorithms. In the Min
k-Cut problem, input is an undirected graph G and an integer k, and the task is to partition
the vertex set into k non-empty sets, say P̃ , such that the total number of the edges with
endpoints in different parts is minimized. We call such a partition as min k-cut, or simply a
k-cut. For k = 2, rather that saying 2-cut, we say min-cut. Indeed, for k = 2, this is the
classic Global Min-Cut problem, which can be solved in polynomial time. In fact, for every
fixed k, the problem is known to be polynomial time solvable [18]. However, when k is part
of the input, the problem is NP-complete [18]. Both these problems have been extensively
studied in the last 30 years, and the running time of algorithms for these two problems have
been improved over the years [10, 15, 19, 22, 24–28, 30, 32, 35, 40, 41]. In particular, after a
series of improvement, the fastest known algorithm for Global Min-Cut in unweighted

N. Banerjee, V. Raman, and S. Saurabh 10:3

graphs is given by Ghaffari et al. [17] that runs in time O(m logn). On the other hand, for
edge-weighted graphs the fastest known algorithm for Global Min-Cut is independently
given by Gawrychowski et al [16] and Mukhopadhyay and Nanongkai [34] and (almost) runs
in time O(m log2 n). Both of these algorithms are randomized. The best known deterministic
algorithm for the problem on unweighted graph is given by Henzinger et al. [23] and runs in
time O(m log2 n(log logn)2).

The history of Min k-Cut problem is also extremely rich. The direction of polynomial
time approximation algorithms is essentially settled, with factor 2(1 − 1

k) approximation
algorithms and matching lower bounds. Recently, Gupta et al. [19] showed that for every
fixed k ≥ 2, the Karger-Stein algorithm [29] outputs any fixed k-cut with probability at
least Ô(n−k), where Ô(·) hides a 2O(ln lnn)2 factor. This immediately gives an extremal
bound of Ô(nk), on the number of minimum k-cuts in an n-vertex graph and an algorithm
for Min k-Cut in similar running time. Both the extremal bound and the running time
of the algorithm are essentially tight (under reasonable assumptions). Indeed the extremal
bound matches known lower bounds up to Ô(1) factors, while any further improvement to
the exact algorithm would imply an improved algorithm for Max-Weight k-Clique [1, 2],
which has been conjectured not to exist. One can also obtain f(k)no(k) lower bound on
the running time [11, 13] under the Exponential Time Hypothesis (ETH). In the world of
FPT-approximation, Min k-Cut is known to admit (1 + ε) approximation algorithm running
in time (kε)O(k)nO(1) [31].

1.1 Our Results and Methods
In this paper we initiate a new research direction to the studies of Global Min-Cut and
Min k-Cut. In particular we do the following.

We focus on Global Min-Cut and Min k-Cut, via the lens of fault tolerant network
design, and construct asymptotically optimal fault tolerant subgraphs for these two
problems.

Given a graph G, let λ(G) and λ(G, k) denote the size of min-cut and k-cut of G,
respectively. We formally define the objects we consider in the paper.

I Definition 1.1 (f -FTCS (f -FT-k-CS)). An f -FTCS (f -FT-k-CS) is a subgraph H of G
such that for any set of edges F ⊆ E(G) of cardinality at most f , λ(G − F) = λ(H − F)
(λ(G−F, k) = λ(H −F, k)). For a graph G, we use Ψ(G, k) to denote the minimum number
of edges in a f -FT-k-CS of G. That is,

Ψ(G, k) = min
H is an f -FT-k-CS of G

|E(H)|

When k = 2, this denotes the minimum number of edges in a f -FTCS of G. In this case we
simply use Ψ(G), rather than Ψ(G, 2).

Let F be a family of graphs, then for all n ∈ N, we define the following:

Ftcs(F , n, f) = max
G∈F,|V (G)|=n

Ψ(G)

Ft-k-cs(F , n, f) = max
G∈F,|V (G)|=n

Ψ(G, k)

When F is the family of all graphs, then we simply use Ftcs(n, f) and Ft-k-cs(n, f).
Our goal is to give asymptotic upper bounds on Ftcs(n, f) and Ft-k-cs(n, f). Since any

FSTTCS 2020

10:4 Optimal Output Sensitive Fault Tolerant Cuts

graph has at most
(
n
2
)
edges, we have that Ftcs(n, f) (or Ft-k-cs(n, f)) is at most O(n2).

Let G be a clique on n vertices. First, note that λ(G) = n − 1. Next observe that any
f -FTCS, H of G, even for f = 1, must contain all the edges of the clique. Indeed, if an edge
(u, v) ∈ E(G) is not present in H, then the adversary may delete an edge adjacent to u or v
in the clique, that is not (u, v). In this case, λ(G− F) = n− 2, whereas λ(H − F) ≤ n− 3.
This simple construction shows that Ftcs(n, 1) is at least Ω(n2). This bound tells us that
for these problems we can not improve upon the trivial upper bounds.

Our example with family of cliques seems to suggest that we have reached the end of the
road. However, on the second look we observe that for a clique even λ(G) = Ω(n). Thus, we
can also express our lower bound as λ(G) · n. This motivates us to look for a fine-grained
definition of Ftcs(n, f) and Ft-k-cs(n, f), that not only takes into account n and f , but
also some parameter that captures the edge-connectivity (or the value of k-cut) of the input
graph. In particular, we can come up with the following new definitions. Let F be a family
of graphs, then for all n, ` ∈ N, we define the following:

Ftcs(F , n, `, f) = max
G∈F,|V (G)|=n,λ(G)=`

Ψ(G)

Ft-k-cs(F , n, `, f) = max
G∈F,|V (G)|=n,λ(G,k)=`

Ψ(G, k)

With respect to our new definition, when F is a family of cliques, we have that
Ftcs(F , n, `, 1) is at most O(`n). Thus, a natural question arises: Can we derive sim-
ilar upper bound even when F denotes the family of all graphs? Indeed, we provide a
matching upper and lower bound on these quantities in this paper. As before, when F is
the family of all graphs. Then, we simply use Ftcs(n, `, f) and Ft-k-cs(n, `, f). Our first
result is the following.

I Theorem 1.2. Let n, ` and f be three positive integers. Then, Ftcs(n, `, f) is upper
bounded by (f + `)(n− 1).

The proof of Theorem 1.2 is inspired from the concept of k-connectivity certificates used in
the literature [14,35]. For a k-edge connected graph G = (V,E), a subset of edges E′ ⊆ E
is called a k-connectivity certificate of the graph G, if the subgraph G′ = (V,E′) is k-edge
connected. For a k-edge connected graph on n vertices, there always exists a k−connectivity
certificate with at most k(n− 1) edges [14]. For our proof, we modify a known construction
of a k-connectivity certificate to also handle edge failures.

Our second result complements the above upper bound, by showing that this bound is
tight upto constant factors. Specifically, we show the following.

I Theorem 1.3. There exists an infinite family of triplets (n, `, f) such that

Ftcs(n, `, f) ≥ (n− `− 1)(`+ f − 1)
2 + (n− `− 1) + `(`+ 1)

2 .

To prove Theorem 1.3, we construct an infinite family of graphs (G), such that for any G ∈ G
we have that any f -FTCS of G must contain all its edges. In particular, for any positive
integers n, `, f , such that n−`−1

`+f is an integer, we construct a graph G on n vertices and
(n− `− 1) (`+f−1)

2 + (n− `− 1) + `(`+1)
2 edges with λ(G) = ` (note that ` ≤ n− 1) such that

any f -FTCS of G must contain all the edges of G. The construction of the family G, and
the analysis that for any graph G ∈ G, any f -FTCS of G must contain all its edges are quite
technical.

Next we generalize our results on Global Min-Cut to Min k-Cut and give the following
two results about Ft-k-cs(n, `, f).

N. Banerjee, V. Raman, and S. Saurabh 10:5

I Theorem 1.4. Let n, ` and f be three positive integers. Then, Ft-k-cs(n, `, f) is upper
bounded by min{(2f + `− (k − 1))(n− 1), (f + `)(n− k) + `}.

Proof of Theorem 1.4 is quite involved and requires understanding the intricate relationship
between edge-connectivity certificates and the Min k-Cut problem. This is one of the main
technical results. In our final result, we complement Theorem 1.4 with a tight lower bound.

I Theorem 1.5. There exists an infinite family of triplets (n, `, f) such that

Ft-k-cs(n, `, f) ≥ (n− `− 1)(`+ f − k + 1)
2) + n− `+ k − 3 + (`− k + 3)(`− k + 2)

2 .

While the construction is somewhat similar in spirit to the construction of the lower bound
for the construction of the family of graphs for Global Min-Cut, the proof of correctness
is even more involved.

Tightness of our Upper and Lower Bounds. Notwithstanding the fact that the leading
terms in our upper and lower bounds appear close, there are some negative quantities in
the leading terms, and in some ranges, the other terms in the bounds dominate. Still, our
bounds for Global Min-Cut are asymptotically optimal. For example in the lower bound
for Global Min-Cut (Theorem 1.3), when n−` becomes o(n), ` is Ω(n) and in this case the
`(`+1)

2 bound dominates and we get a lower bound of Ω(n2) which is asymptotially optimal
given our upper bound and the range of `. When ` is o(n), our lower bound is Ω((f + `)n)
which matches asymptotically with the upper bound.

For Min k-Cut however, there are some gaps. For example, if ` = n−1 and k = n− logn,
the upper bound is O((f + n) logn) but the lower bound is Ω(n). Such a gap exists in some
ranges of f and k when n− ` and `− k are both o(n). However, when n− ` or `− k is Θ(n),
our upper and lower bounds are a constant factor away from each other.

Algorithmic Considerations. The proof of Theorem 1.2 is constructive. That is, given a
graph G and an integer f , in polynomial time we can construct an f -FTCS of G with at
most (f + λ(G))(n − 1) edges. For this algorithm we just need the value of λ(G)), which
can be computed in O(m log2 n(log logn)2) time [23]. However, the proof of Theorem 1.4
is “almost” constructive. That is, the proof can be made constructive, if for a graph G we
can compute the value of λ(G, k) in polynomial time. Indeed, for a constant value of k, we
could use the polynomial time algorithm running in time nO(k) [10, 19, 41]. However, the
running time of this algorithm grows with k, and hence becomes prohibitive quite soon.
Thus, as an alternative we could use an upper bound on λ(G, k), provided by the known
polynomial time factor 2 approximation algorithm [21, 42]. This leads to an upper bound of
min{(2f + 2λ(G, k)− (k − 1))(n− 1), (f + 2λ(G, k))(n− k) + 2λ(G, k)} on the constructed
f -FT-k-CS, which is slightly worse than the upper bound provided by Theorem 1.4.

2 Preliminaries

Given an integer q, we use [q] to denote {1, . . . , q}. Further, for two integers, q1 ≤ q2, we
use [q1, q2] to denote {q1, . . . , q2}. For a graph G = (V,E), we also use V (G) and E(G) to
denote the set of vertices and the set of edges of graph G, respectively. A path P in G is a
sequence of distinct vertices (P = v1v2 · · · vq), such that two consecutive vertices have an
edge between them. Let A1, . . . , A` be a partition of the vertex set V (G) of a graph G. That
is, ∪`i=1Ai = V (G) and for all i 6= j, Ai ∩Aj = ∅. We use E(A1, . . . , A`, G) to denote the set

FSTTCS 2020

10:6 Optimal Output Sensitive Fault Tolerant Cuts

of edges such that each edge in the set has one endpoint in Ai and the other endpoint in Aj ,
where i 6= j. For a graph G, and a pair of vertices u, v ∈ V (G), we use λG(u, v) to denote
the minimum number of edges whose removal separates u and v (that is, u and v belong
to different connected components). If the graph G is clear from the context, we omit the
subscript G from λG(u, v), and simply write λ(u, v). Next, we state the classical Menger’s
Theorem and a simple lemma which are crucially used in our proofs,

I Lemma 2.1 (Menger’s Theorem, [33]). Let G be an undirected graph and let u and v be
two vertices of G. Then the maximum number of pairwise edge-disjoint u-v paths in G is
equal to λ(u, v).

I Lemma 2.2. Let G = (V,E) be an undirected graph and let H be a subgraph of G. Let
k > 1 be an integer. Then, λ(H) ≤ λ(G) and λ(H, k) ≤ λ(G, k).

3 Global Min-Cut

In this section we develop upper and lower bounds on Ftcs(n, `, f). In particular we prove
Theorems 1.2 and 1.3.

3.1 Upper Bound
Let n, ` and f be three positive integers. We need to show that Ftcs(n, `, f) is upper
bounded by (f + `)(n− 1). Towards this we show that given an undirected graph G, and
an integer f , we can construct an f -FTCS, H, of G on at most (f + λ(G))(n − 1) edges.
Indeed, when λ(G) = `, the upper bound follows. Further, we assume G is connected. If G
is disconnected then λ(G) = 0, and it remains so after any edge failure. Thus, in this case
we can take H to be an empty graph. Our construction is presented next.

Construction of an f-FTCS of a graph G.
1. Initialize f + ` empty (no edges) forests T1, T2, . . . , Tf+` on the same vertex set

V (G).
2. for each edge (u, v) ∈ E(G), do the following.

Find the smallest integer i ∈ [f+`], such that u and v are in different connected
components of Ti. If no such i exists, then assign i to ∞.
If i is not ∞ then add (u, v) to Ti.

3. Output H = ∪f+`
a=1Ta.

We will show that H is an f -FTCS with at most (f + `)(n− 1) edges. The bound on the
number of edges on H is clear, as H is the union of at most (f + `) forests.

I Lemma 3.1. The subgraph H has at most (f + `)(n− 1) edges.

Next, we show that H is an f -FTCS. We start with the following observation.

I Lemma 3.2. (?) 1 Let (u, v) ∈ E(G) \ E(H). Then there are at least `+ f edge-disjoint
paths between u and v in G and H.

1 Results marked with ? are deferred to the full version.

N. Banerjee, V. Raman, and S. Saurabh 10:7

C1 C2
Cn−`−1

`+f

X1

X2

a1

a2

a3

a`+1

Figure 1 Vertex a1 has degree n− `−1 within X1. Vertices a1, a2, ..., a`+1 in X2 form an induced
`+ 1-clique. C1, C2, ..., Cn−`−1

`+f
represent n−`−1

`+f cliques each of size `+ f within X1.

To prove that H is an f -FTCS of G, we need to show that for any set of edges F ⊆ E(G)
of cardinality at most f , λ(H − F) = λ(G− F). As H is a subgraph of G, we know from
Lemma 2.2 that λ(H − F) ≤ λ(G− F). Now we show that λ(H − F) ≥ λ(G− F).

I Lemma 3.3. Let G be an undirected graph with λ(G) = `, f be a positive integer, and H be
the subgraph constructed above. Then for any set F of at most f edges, λ(H−F) ≥ λ(G−F).

Proof. Let A,B be a partition of V (G) such that |E(A,B,H − F)| = λ(H − F). If
E(A,B,H − F) = E(A,B,G− F), then we have that a min-cut in H − F is also a min-cut
in G− F of the same size, thereby proving that λ(H − F) ≥ λ(G− F). Suppose not. As H
is a subgraph of G, E(A,B,H − F) ⊆ E(A,B,G− F). Suppose (u, v) ∈ E(A,B,G− F) \
E(A,B,H − F). Then (u, v) ∈ E(G) \ E(H). Then from Lemma 3.2, there are `+ f edge-
disjoint paths between u and v in H, and hence there will be at least ` edge-disjoint paths
between u and v in H−F . Hence, λ(H−F) = |E(A,B,H−F)| ≥ ` = λ(G) ≥ λ(G−F). J

Proof of Theorem 1.2 follows from Lemmas 3.1, 3.2 and 3.3.

3.2 Lower Bound

In this section we show that the upper bound shown on Ftcs(n, `, f) in Section 3.1 is indeed
asymptotically tight. To prove Theorem 1.3, we construct an infinite family of graphs G, such
that for any G ∈ G we have that any f -FTCS of G must contain all its edges. In particular,
for any positive integers n, `, f , such that n−`−1

`+f is an integer, we construct a graph G on n
vertices and (n − ` − 1) (`+f−1)

2 + (n − ` − 1) + `(`+1)
2 edges with λ(G) = `, such that any

f -FTCS of G must contain all the edges of G.
Let n, `, f be three integers such that n−`−1

`+f = q is an integer. We first describe the
construction of a graph G on n vertices. To easily understand our construction, we would
suggest to simultaneously refer to the illustration given in Figure 1.

FSTTCS 2020

10:8 Optimal Output Sensitive Fault Tolerant Cuts

Construction of a graph G. Here, q = n−`−1
`+f

.
The vertex set V (G) is a union of X1 and X2, such that |X1 ∩X2| = 1.
X1 has q pairwise vertex disjoint cliques C1, . . . , Cq. Each clique Ci is on (`+ f)
vertices. X1 also contains a vertex a1 as described below.(The edges of the cliques,
C1, . . . , Cq, are denoted by the solid blue edges in Figure 1.)
The set X2 consists of a1, . . . , a`+1 vertices that form a clique. These vertices do
not belong to the cliques, C1, . . . , Cq. (The edges of the clique on a1, . . . , a`+1 are
represented by blue solid edges in Figure 1.)
Let a1 ∈ X2 be a fixed vertex. Each vertex in a clique Ci, i ∈ [q], is adjacent to
the vertex a1. There are no edges between a pair of vertices belonging to two
distinct cliques, Ci and Cj . The vertex a1 is the only common vertex between two
sets X1 and X2. (Edges between a1 and the vertices in the cliques, C1, . . . , Cq,
are represented by the red dotted edges in Figure 1.)

In the upcoming lemmas we show certain properties of our construction. Here, Lemma 3.5
is used to prove Lemma 3.6.

I Lemma 3.4. (?) The number of edges in G is (n− `− 1) (`+f+1)
2 + `(`+1)

2 .

I Lemma 3.5. (?) For any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ `+ f .

I Lemma 3.6. (?) Let G be a graph and f ≥ 1 be a positive integer. Then λ(G) = `. Further,
for any F ⊆ E(G[X1]) of size at most f , we have that λ(G− F) = `.

We now prove the final property of an f -FTCS.

I Lemma 3.7. Any f -FTCS of G must contain all the edges of G.

Proof. Let H be an f -FTCS of G. We will show that H must contain all the edges of G.
Towards this, we partition the edges of G into three parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of G, then there
is a strategy for the adversary to choose a subset F of edges (of size at most f) to delete
from G such that λ(G−F) and λ(H −F) are not the same. Let ui, i ∈ [`+ f], be the set of
vertices of a fixed clique Cj .
(i) Let us first show that the edges in the cliques Ci, i ∈ [q], have to be present in H (the

solid blue edges in X1 in Figure 1). Each ui has `+ f − 1 edges to vertices in Cj apart
from an edge to a1. Suppose an edge (uy, uz), y, z ∈ [`+ f], y 6= z is not present in
H. Let F consist of any f edges adjacent to uz in Cj other than (uy, uz). We know
that f edges exist as ` ≥ 1 (by construction G is connected). Now by Lemma 3.6 we
know that λ(G−F) = `. But the degree of uz in H −F becomes `− 1 as (uy, uz) /∈ H.
Thus, λ(H − F) ≤ ` − 1. This contradicts H being an f -FTCS of G. Therefore, all
edges of the cliques Ci must be present in H.

(ii) Next, we show that edges E({a1}, Ci, G), i ∈ [q], must be present in H (the red dotted
edges in X1 in Figure 1). Suppose (uz, a1), z ∈ [`+f] is not present in H. Let F consist
of any f edges adjacent to uz in Cj other than (uz, a1). Now by Lemma 3.6 we know
that λ(G−f) = `. However, the degree of uz in H−F is `−1. Thus, λ(H−F) ≤ `−1.
This contradicts H being an f -FTCS of G. Therefore, for all i ∈ [q], all the edges in
E({a1}, Ci, G) must be present in H.

(iii) Lastly, we show that all the edges of the (`+ 1)-clique in X2 formed by ai, i ∈ [`+ 1]
must be present in H (the solid blue edges in X2 in Figure 1). Suppose an edge

N. Banerjee, V. Raman, and S. Saurabh 10:9

(ai, aj) , i, j ∈ [`+1], i 6= j is not present in H. Let F consist of any f edges of the form
(ui, a1), i ∈ [f]. All these edges exist in G− F as `+ f ≥ f + 1 (Since by construction
G is connected and ` ≥ 1). Observe that F ⊆ E(G[X1]) of size at most f , and hence by
Lemma 3.6 we have that λ(G− F) = `. However, λ(H − F) = `− 1, as ai and aj have
degree `− 1 inside X2 in H −F . This contradicts H being an f -FTCS of G. Therefore,
all the edges of the `+ 1- clique in X2 must be present in H.

The three cases together show that if H is an f -FTCS of G then all edges of the graph G
must be present in H. Thus, the total number of edges present in H is (n− `− 1) (`+f−1)

2 +
(n− `− 1) + `(`+1)

2 . Our proof follows. J

Proof of Theorem 1.3 follows from Lemmas 3.4, 3.6 and 3.7.

4 Min k-Cut

In this section we develop upper and lower bounds on Ft-k-cs(n, `, f). In particular we
prove Theorems 1.4 and 1.5.

4.1 Upper Bound

Let n, ` and f be three positive integers. We need to show that Ft-k-cs(n, `, f) is upper
bounded by min{(2f + `− (k − 1))(n− 1), (f + `)(n− k) + `}. Towards this we show that
given an undirected graph G, and an integer f ≥ 1, we can construct an f -FT-k-CS, H of
G on at most min{(2f + λ(G, k)− (k − 1))(n− 1), ((f + λ(G, k))(n− k) + λ(G, k))} edges.
Indeed, when λ(G, k) = `, the upper bound follows. Our construction is presented next. It is
similar to the construction of in Section 3.1 except for the choice of t. G is assumed to be
connected in the algorithm. The complementary case will be handled later.

K-way-Fault-Tolerant-Construction

Construction of an f -FT-k-CS of a graph G.
1. Let t = min{2f + `+ 1− k, f + `}.
2. Initialize t empty (no edges) forests T1, T2, . . . , Tt on the same vertex set V (G).
3. for each edge (u, v) ∈ E(G), do the following.

Find the smallest integer i ∈ [t], such that u and v are in different connected
components of Ti. If no such i exists, then assign i to ∞.
If i is not ∞ then add (u, v) to Ti.

4. Output H = ∪ta=1Ta.

Next, we show that H is an f -FT-k-CS for both the values the variable t can take. We
start with the following observation which we use in both the cases.

I Lemma 4.1. (?) Let (u, v) ∈ E(G) \ E(H). Then there are at least t edge-disjoint paths
between u and v in G and H.

Note that the t(n− 1) upper bound of Section 3.1 for the number of edges in H applies
here too with the same proof. However, we show stronger bounds for certain values of t.

FSTTCS 2020

10:10 Optimal Output Sensitive Fault Tolerant Cuts

4.1.1 Case of t = f + `

I Lemma 4.2. The subgraph H has at most (f + `)(n− k) + ` edges.

Proof. Let A1, . . . , Ak be a partition of V (G) such that |E(A1, . . . , Ak, G)| = `. Let X =
E(A1, . . . , Ak, G). We will show that every forest Ti−X, i ∈ [f + `], has at least k connected
components. Note that, once we can show this claim, we can get the upper bound on the
number of edges in H. Indeed, each Ti −X has at most n− k edges (since, it has at least k
components) and hence |E(H)| ≤

∑f+`
i=1 |E(Ti −X)|+ |X| ≤ (f + `)(n − k) + `. Next we

prove our claim. Observe that every edge going out of the connected components Aj , j ∈ [k],
is contained inside X. Thus, in particular, every edge going out of the vertices in Aj in Ti is
also contained inside X. Hence, the vertices of Aj at least form one connected component
in Ti − X. This concludes the proof that every forest Ti − X, i ∈ [f + `], has at least k
connected components. J

Next, we show that H is an f -FT-k-CS.

I Lemma 4.3. Let G be a graph with λ(G, k) = `, f be a positive integer, and H be the
subgraph constructed above. Then, for any set F of at most f edges, λ(H−F, k) ≥ λ(G−F, k).

Proof. Let A1, . . . , Ak be a partition of V (G) such that |E(A1, . . . , Ak, H−F)| = λ(H−F, k).
If E(A1, . . . , Ak, H − F) = E(A1, . . . , Ak, G − F), then we have that a k-cut in H − F is
also a k-cut in G − F of the same size, thereby proving that λ(H − F, k) ≥ λ(G − F, k).
Suppose not. As H is a subgraph of G, E(A1, . . . , Ak, H − F) ⊆ E(A1, . . . , Ak, G − F).
Suppose (u, v) ∈ E(A1, . . . , Ak, G− F) \E(A1, . . . , Ak, H − F). Then (u, v) ∈ E(G) \E(H).
Then from Lemma 4.1, there are ` + f edge-disjoint paths between u and v in H, and
hence there will be at least ` edge-disjoint paths between u and v in H − F . Hence,
λ(H − F, k) = |E(A1, . . . , Ak, H − F)| ≥ ` = λ(G, k) ≥ λ(G − F, k). This concludes the
proof. J

4.1.2 Case of t = 2f + ` + 1 − k

We will show that H is an f -FT-k-CS with at most (2f + `+ 1− k)(n− 1) edges.
The bound on the number of edges onH is clear, asH is the union of at most (2f+`+1−k)

forests.

I Lemma 4.4. The subgraph H has at most (2f + `+ 1− k)(n− 1) edges.

We could have obtained a bound similar to Lemma 4.2, but in this case, it does not give us
asymptotically better bound than that of (2f + `+ 1− k)(n− 1). Next, we show that H is
an f -FT-k-CS. We start with the following lemma which is a folklore and we give the proof
here for completeness.

I Lemma 4.5. (?) Let G be a connected graph and let u1, . . . , up ∈ V (G). Further, let E[p]
be an inclusion-wise minimal subset of edges, such that u1, . . . , up get pairwise separated in
G− E[p], then G− E[p] has exactly p connected components, one containing each ui, i ∈ [p].

I Lemma 4.6. Let G be a connected graph, then for all p ≤ k, we have that λ(G, k) ≥
λ(G, p) + (k − p).

Proof. Let A1, . . . Ak be a k partition of V (G) such that |E(A1, . . . , Ak, G)| = λ(G, k). Let
ui ∈ Ai, i ∈ [p], be a vertex. Clearly, E(A1, . . . , Ak, G) separates any pair of vertices in
{u1, . . . , up}, and thus there exists an inclusion-wise minimal subset E[p] ⊆ E(A1, . . . , Ak, G),

N. Banerjee, V. Raman, and S. Saurabh 10:11

such that any pair of vertices in {u1, . . . , up} gets separated inG−E[p]. Now by Lemma 4.5, we
have that G−E[p] has exactly p connected components, one containing each ui, i ∈ [p]. This
implies that Ep is a p-cut in G (may not be of the minimum size) and thus, |E[p]| ≥ λ(G, p).

However, G− E(A1, . . . , Ak, G) has k connected components, and deleting an edge can
only increase the number of connected components by 1. This implies that |E(A1, . . . , Ak, G)\
E[p]| ≥ (k − p). Putting together this with the fact that |E[p]| ≥ λ(G, p), we get that

λ(G, k) ≥ |E[p]|+ (k − p) ≥ λ(G, p) + (k − p).

This concludes the proof. J

To prove that H is an f -FT-k-CS of G, we need to show that for any set of edges F ⊆ E(G)
of cardinality at most f , λ(H −F, k) = λ(G−F, k). As H is a subgraph of G, we know from
Lemma 2.2 that λ(H − F, k) ≤ λ(G− F, k). Now we show that λ(H − F, k) ≥ λ(G− F, k).
In fact, we will prove something stronger, which we call robustness. That is, for all k? ≤ k,
we have that λ(H − F, k?) ≥ λ(G− F, k?).

I Lemma 4.7 (Robustness). Let G be a connected graph with λ(G, k) = `, f be a positive
integer, and H be the subgraph constructed above. Then, for any set F of at most f edges,
and for k? ≤ k, λ(H − F, k?) ≥ λ(G− F, k?).

Proof. Let A1, . . . Ak? be a partition into k? sets of V (G) such that |E(A1, . . . , Ak? , H−F)| =
λ(H − F, k?). If E(A1, . . . , Ak? , H − F) = E(A1, . . . , Ak? , G − F), then we have that a
min k?-cut in H − F is also a min k?-cut in G− F of the same size, thereby proving that
λ(H−F, k?) ≥ λ(G−F, k?). Suppose not. As H is a subgraph of G, E(A1, . . . , Ak? , H−F) ⊆
E(A1, . . . , Ak? , G−F). Suppose (u, v) ∈ E(Ai, Aj , G−F)\E(Ai, Aj , H−F), i, j ∈ [k?], and
i 6= j. Then (u, v) ∈ E(G) \ E(H). From Lemma 4.1, there are 2f + `+ 1− k edge-disjoint
paths between u and v in H, and hence there will be at least f + ` + 1 − k edge-disjoint
paths between u and v in H − F .

Observe that, since G is connected, H is also connected by our construction (T1 is
definitely a spanning tree). However, H −F may not be connected. On the other hand, since
λH(u, v) ≥ 2f + `+ 1− k, we get that λH−F (u, v) ≥ f + `+ 1− k. Note that since, H is
connected, any k-cut has size at least k − 1, and thus, `+ 1 ≥ k (recall that, λ(G, k) = `).
Since, λH−F (u, v) ≥ f + `+ 1− k ≥ f ≥ 1, we have that u and v are in the same connected
component of H − F . Further, they get separated after we delete E(A1, . . . , Ak? , H − F)
from H − F . This implies that the number of connected components in H − F is at most
k? − 1. Next observe that since H is connected, deleting F from H can only result in at
most |F |+ 1 connected components in H − F . Thus, the number of connected components
in H − F , say d, is upper bounded by the minimum of {k? − 1, f + 1}.

Let the connected component containing u, v in H − F be denoted by Cuv. Observe
that E(A1, . . . , Ak? , H −F) separates u from v in H −F −E(A1, . . . , Ak? , H −F), and thus
there exists an inclusion-wise minimal subset Euv ⊆ E(A1, . . . , Ak? , H −F), such that u and
v get separated in (H − F) − Euv. Further, note that the minimality of Euv implies that
Euv ⊆ E(Cuv), and it is an an inclusion-wise minimal separator for u and v in Cuv. Applying,
Lemma 4.5 on Cuv, we get that Cuv−Euv has exactly two connected components, Cu and Cv,
containing u v, respectively. This implies that |Euv| ≥ λH−F (u, v) = λCuv

(u, v) ≥ f+`+1−k.
Recall that, H − F has d components, and thus H − F − Euv has d + 1 components.
However, H − F − E(A1, . . . , Ak? , H − F) has k? connected components. This implies that

FSTTCS 2020

10:12 Optimal Output Sensitive Fault Tolerant Cuts

|E(A1, . . . , Ak? , H − F) \ Euv| ≥ (k? − d). Hence,

λ(H − F, k?) = |E(A1, . . . , Ak? , H − F)|
≥ f + `+ 1− k + (k? − d)
≥ `+ (f + 1)− (f + 1)− (k − k?) (Using d ≤ f + 1)
= `− (k − k?)
= λ(G, k)− (k − k?) (since, λ(G, k) = `)
≥ λ(G− F, k?) + (k − k?)− (k − k?) (Lemma 4.6)
= λ(G− F, k?).

This concludes the proof. J

Now we deal with the case when G is not connected.

I Lemma 4.8. Let G be a disconnected graph with d > 1 connected components with
λ(G, k) = ` and let f be a positive integer. Then there exists a subgraph H of G with
at most (n − d)(2f + ` + 2 − k + d) edges such that for any set F of at most f edges,
λ(H − F, k) ≥ λ(G− F, k).

Proof. If d ≥ k, then we return H as an empty (edgeless) graph on the vertices of G. So
let us assume that d < k. Suppose, G has connected components G1, . . . , Gd. We apply
K-way-Fault-Tolerant-Construction with Gi, i ∈ [d] and k′ = (k − d+ 1) and get Hi.
Let H = ∪di=1Hi. That is, we apply our upper bound construction on each of the connected
components with k′ and get the desired H. Lemma 4.7 implies the following.

B Claim 4.9. For all i ∈ [d], k? ≤ k′, Hi is a f -FT-k?-CS of Gi.

Next we show that for any set F of at most f edges, λ(H − F, k) ≥ λ(G − F, k).
Let A1, . . . , Ak be a k partition of V (G) such that |E(A1, . . . , Ak, H − F)| = λ(H − F, k).
Observe that, since Gi is connected we have that Hi is connected. Let A1, . . . , Ak be a k
partition of V (G) such that |E(A1, . . . , Ak, H − F)| = λ(H − F, k). Recall, that d < k, thus,
λ(H − F, k) > 0. Further, from the minimality of E(A1, . . . , Ak, H − F), and the fact that
|E(A1, . . . , Ak, H − F)| ≥ 1, we have that H[Ai] is connected, and completely contained
inside one of Gj , j ∈ [d]. That is, E(A1, . . . , Ak, H − F) further partitions some of the
connected components, and each connected component of H − E(A1, . . . , Ak, H − F) is a
part in the partition (A1, . . . , Ak) of V (G).

Let Ei = E(Hi) ∩ E(A1, . . . , Ak, H − F), i ∈ [d] and `i = |Ei|. Further, let Ai, i ∈ [d],
be the set of parts among A1, . . . , Ak, which are completely contained inside Gi. Note that
for all i, j ∈ [d], i 6= j, Ai and Aj are pairwise disjoint, and for all q ∈ [k], there exists an
integer j ∈ [d], such that Aq ∈ Aj . We summarize this in the following claim.

B Claim 4.10. Let ki = |Ai|, then
∑d
i=1 ki = k.

Next we have the following claim.

B Claim 4.11. For all i ∈ [d], ki ≤ k′, λ(Hi − F, ki) = `i. Further,
∑
i=1 `i = `.

Proof. No ki can be more than k′, otherwise we get strictly greater than k components,
contradicting that H − F − E(A1, . . . , Ak, H − F) has exactly k components. Further, for
some i, let λ(Hi, ki) = `′i < `i. In this case, we can delete `′i edges inside Gi, and delete Ej ,
j 6= i, to get k components in H − F , by deleting strictly less than ` edges. This contradicts
the definition of E(A1, . . . , Ak, H − F). By definition

∑
i=1 `i = `. C

N. Banerjee, V. Raman, and S. Saurabh 10:13

λ(H − F, k) =
d∑
i=1

λ(Hi − F, ki) (Claim 4.11)

≥
d∑
i=1

λ(Gi − F, ki) (Claim 4.9)

= λ(G− F, k).

To see the last inequality observe the following. Let Wi be a subset of edges in E(Gi) such
that |Wi| = λ(Gi − F, ki). Then, clearly by deleting W = ∪di=1Wi, we get

∑d
i=1 ki = k

components in G− F . Here, we used Claim 4.10 to conclude that
∑d
i=1 ki = k. This implies

that
∑d
i=1 λ(Gi − F, ki) =

∑d
i=1 |Wi| is a k-cut of G− F (may not be of the minimum size).

Thus, a min k-cut in G− F can only be smaller. This concludes the correctness proof.

All that remains to show is the upper bound on the number of edges. Let the number
of vertices in each component be ni, i ∈ [d]. Then, the total number of edges in H is upper
bounded as follows.

|E(H)| ≤
d∑
i=1

(ni−1)(2f+`+1−k′) = (n−d)(2f+`+1−k′) = (n−d)(2f+`+2−k+d).

This concludes the proof. J

Proof of Theorem 1.4 follows from Lemmas 4.2, 4.3, 4.4, 4.7 and 4.8.

4.2 Lower Bound

In this section we show that the upper bound shown on Ft-k-cs(n, `, f) in Section 4.1 is
indeed asymptotically tight. To prove Theorem 1.5, we construct an infinite family of graphs
G, such that for any G ∈ G we have that any f -FT-k-CS of G must contain all its edges. In
particular, for any positive integers n, `, f , such that n−`−1

`+f−(k−2) is an integer, we construct a
graph G on n vertices and (n−`−1)(`+f−k+1)

2) + n − ` + k − 3 + (`−k+3)(`−k+2)
2 edges with

λ(G, k) = `, such that any f -FT-k-CS of G must contain all the edges of G.

The graph G is a modification of the graph used to show the lower bound for global
minimum cut in Section 3.2.

FSTTCS 2020

10:14 Optimal Output Sensitive Fault Tolerant Cuts

C1 C2
C (n−`−1)

`+f−(k−2)

a1

a2 a3

a`−(k−2)+1

a4

x1
x2

xk−3

xk−2

X1

X2

X3

Figure 2 Vertex a1 has degree n−`−1 within X1. In X2 the vertices a1, a2, ..., a`−(k−2)+1 induce
a clique. The vertex a4 has k− 2 edges in X3 each going to a separate vertex xi. There are no edges
between x′is. C1, C2, ..., C (n−`−1)

`+f−(k−2)
represent (n−`−1)

`+f−(k−2) cliques each of size `+ f − (k − 2) within
X1.

Construction of a graph G. Here, q = n−`−1
`+f−(k−2) .

The vertex set V (G) is a union of X1, X2 and X3, such that |X1 ∩X2| = 1.
X1 has q pairwise vertex disjoint cliques C1, . . . , Cq. Each clique Ci is on (`+ f −
(k − 2)) vertices. (The edges of the cliques, C1, . . . , Cq are denoted by the solid
blue edges in Figure 2.)
The set X2 consists of a1, . . . , a`−(k−2)+1 vertices that form a clique. These
vertices do not belong to the cliques, C1, . . . , Cq. (The edges of the clique on
a1, . . . , a`−(k−2)+1 are represented by blue solid edges in X2 in Figure 2.)
Let a1 ∈ X2 be a fixed vertex. All the vertices in a clique Ci, i ∈ [q], is adjacent
to the vertex a1. There are no edges between a pair of vertices belonging to two
distinct cliques, Ci and Cj . The vertex a1 is the only common vertex between two
sets X1 and X2. (Edges between a1 and the vertices in the cliques, C1, . . . , Cq,
are represented by the red dotted edges in Figure 2.)
X3 consists of k − 2 vertices xi, i ∈ [k − 2]. Let a4 ∈ X2 be a fixed vertex. Edges
in X3 are of the form (a4, xi), i ∈ [k− 2]. There are no edges between x′is. (Edges
between a4 and the vertices xi ∈ X3, are represented by the red solid edges in
Figure 2.)

In the upcoming lemmas we show certain properties of our construction.

I Lemma 4.12. The number of edges in G is (n−`−1)(`+f−k+1)
2)+n−`+k−3+ (`−k+3)(`−k+2)

2 .

Proof. Each clique Ci is of size (`+ f − (k − 2)) and contributes (`+ f − (k − 2))(`+f−k+1
2)

edges. There are q cliques and thus the total number of edges contributed by all cliques
Ci, i ∈ [q] is (n − ` − 1)(`+f−k+1

2). The vertex a1 is adjacent to all vertices of all C ′is.
Hence, a1 has degree n− `− 1 inside X1. The (`− (k − 2) + 1)−clique in X2 contributes
(`−k+3)(`−k+2)

2 edges. The vertex a4 contributes k − 2 edges in X3. Therefore, the total
number of edges of G is (n−`−1)(`+f−k+1)

2) + n− `+ k − 3 + (`−k+3)(`−k+2)
2 . J

N. Banerjee, V. Raman, and S. Saurabh 10:15

I Lemma 4.13. For any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ `+ f − k + 2.

Proof. The pair {u1, u2} is of one of the three types described below. We prove the claim
for each of the three types.

Both u1 and u2 are part of the same clique Ci in X1. We know that the size of Ci
is ` + f − k + 2. Let the other vertices in Ci be uj , j ∈ [3, ` + f − k + 2]. Then
u1uju2, j ∈ [3, ` + f − k + 2], u1, u2 and u1a1u2 are ` + f − k + 2 edge-disjoint paths
between u1 and u2. By Theorem 2.1 λ(u1, u2) ≥ `+ f − k + 2.
Vertices u1 ∈ Ci and u2 ∈ Cj , and i 6= j. Let vj , j ∈ [`+f−k+1] denote the vertices in Cj
other than u2. Let w1 be a vertex in Ci other than u1. Then u1a1vju2, j ∈ [`+ f − k+ 1]
and u1w1a1u2 are `+ f − k + 2 edge-disjoint paths between u1 and u2. By Theorem 2.1
λ(u1, u2) ≥ `+ f − k + 2.
Let u1 be a part of clique Ci and u2 = a1. Let vj , j ∈ [`+ f −k+ 1] denote the vertices in
Ci other than u1. Then u1vja1, j ∈ [`+ f −k+ 1] and u1a1 are `+ f −k+ 2 edge-disjoint
paths between u1 and a1. By Theorem 2.1 that λ(u1, u2) ≥ `+ f − k + 2.

This concludes the proof. J

I Lemma 4.14. Let G be a graph and f ≥ 1 be a positive integer. Then λ(G, k) = `. Further,
for any F ⊆ E(G[X1]) of size at most f , we have that λ(G− F, k) = `.

Proof. Vertices xi, i ∈ [k− 2] in X3 have degree 1 with all of them adjacent to a4. The edges
E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] partition the graph into k − 1 components using
k − 2 edges. As a minimum of k − 2 edges are required to partition a connected graph into
k − 1 components all these edges will be part of λ(G, k). We need one more partition of the
graph to get k components.

The cut E({a}, X1 ∪X2 \ {a}, G), where a = ai for i ∈ [` − k + 3] is of size ` − k + 2.
Together, with the edges E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] we get a k−cut of G of
size `.

Now we show that any other cut if of size at least `. From Lemma 4.13 we know
that for any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ ` + f − k + 2. This implies that for
any 2 partitions A,B of V (G) such that |X1 ∩ A| ≥ 1 and |X1 ∩ B| ≥ 1 we have that
|E(A,B,G)| ≥ `+f −k+ 2 ≥ `−k+ 3. In this case, λ(G−F, k) ≥ `−k+ 3 + (k−2) = `+ 1.
Thus, any min-k-cut should keep all of X1 in one side of the partition. It can be easily
checked that |E(X1 ∪ Y,X2 \ Y,G)| ≥ `− k + 2 for any Y ⊆ X2, with the minimum being
achieved when Y is a singleton set. These edges along with k − 2 edges from X3 shows that
λ(G, k) = `. This concludes the first part of the proof.

Let F ⊆ E(G[X1]) of size at most f and Ai, i ∈ [k] be a partitioning of V (G). We will
show that |E(A1, ..., Ak, G− F)| ≥ `. Indeed, if |X1 ∩ Ai| ≥ 1 and |X1 ∩ Aj | ≥ 1 for i 6= j,
we have that |E(Ai, Aj , G− F)| ≥ `− k + 2 (since, |E(Ai, Aj , G)| ≥ `+ f − k + 2). These
edges alongwith the k − 2 edges (a4, xi), i ∈ [k − 2] give |E(A1, ..., Ak, G − F)| ≥ `. Thus,
let us assume that all of X1 in one side of the partition. Again in this case, we can easily
check that |E(X1 ∪ Y,X2 \ Y,G− F)| ≥ `− k + 2 for any Y ⊆ X2, with the minimum being
achieved when Y is a singleton set. Alongwith the edges (a4, xi), i ∈ [k − 2], we have that
|E(A1, ..., Ak, G− F)| ≥ `. Thus, λ(G− F, k) = `. This concludes the proof. J

We now prove the final property of an f -FT-k-CS.

I Lemma 4.15. Any f -FT-k-CS of G must contain all the edges of G.

Proof. Let H be an f -FT-k-CS of G. We will show that H must contain all edges of G.
Towards this, we partition the edges of G into four parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of G, then there is

FSTTCS 2020

10:16 Optimal Output Sensitive Fault Tolerant Cuts

a strategy for the adversary to choose a subset F of edges (of size at most f) to delete from
G such that λ(G− F, k) and λ(H − F, k) are not the same. Let ui, i ∈ [`+ f − k + 2)], be
the set of vertices of a fixed clique Cj .

(i) We first show that the edges in the cliques Ci, i ∈ [q] in X1 are present in H(the solid
blue edges in X1 in Figure 2). Each ui has degree `+ f − k + 1 within Cj apart from
an edge to ai. Suppose an edge (uy, uz), y, z ∈ [`+ f − k + 2], y 6= z is not present in
H. Let F consist of any f edges adjacent to uz in Cj other than (uy, uz). We know
that f edges exist as ` ≥ k − 1 (by construction G is connected).
Now by Lemma 4.14 we know that λ(G − F, k) = `. But the degree of uz in H − F
becomes ` − k + 1 as (uy, uz) /∈ H − F . In H − F , we will choose all the remaining
adjacent edges of uz and the k−2 edges inX3 as our cut edges. Thus, λ(H−F, k) = `−1.
This contradicts H being an f -FT-k-CS of G. Therefore, all edges of the cliques Ci
must be present in H.

(ii) Next, we show that the edges E({a1}, Ci, G) are present in H(the red dotted edges in
X1 in Figure 2). Suppose (uz, a1), z ∈ [`+ f − k+ 2] is not present in H. Let F consist
of any f edges adjacent to uz in Cj other than (uz, a1). By Lemma 4.14, we know that
λ(G − F) = ` but λ(H − F) = ` − 1. A similar argument to case (i), shows that all
such edges E({a1}, Ci, G) must be present in H.

(iii) Next, let us show that the edges in the `−k+3-clique in X2 formed by ai, i ∈ [`−k+3]
are present in H(the dashed blue edges in X2 in Figure 2). Suppose edge (ai, aj), i, j ∈
[` − k + 3], i 6= j is not present in H. Let F consist of any f edges of the form
(ui, a1), i ∈ [f]. All these edges exist in G − F as ` + f − k + 2 ≥ f + 1 (Since G is
connected and ` ≥ k − 1).
By Lemma 4.14 we have that λ(G, k) = `. However, as ai and aj both have degree
`−k+1 insideX2 inH so E({ai}, X1∪X2\{ai}, H−F) or E({aj}, X1∪X2\{aj}, H−F)
alongwith k − 2 edges in X3 give λ(H − F, k) = ` − 1. This contradicts H being an
f -FT-k-CS of G. Therefore, all edges of the `− k+ 3-clique in X2 must be present in H.

(iv) Lastly, we show that all the k − 2 edges E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] are
present in H(the solid red edges in X3 in Figure 2). Suppose an edge (a4, xz), z ∈ [k−2]
is not present in H. Let F consist of any f edges of the form (ui, a1), i ∈ [f].
Again by Lemma 4.14 we have that λ(G−F, k) = `. However, as edge (a4, xz) /∈ H, we
have that λ(H −F, k) = `− 1. This contradicts H being an f -FT-k-CS of G. Therefore,
all k − 2 edges of X3 must be present in H.

All the cases together show that all edges of the graph G must be present in H if H is an
f -FT-k-CS of G. Thus, the total number of edges present in H is (n−`−1)(`+f−k+1)

2) + n−
`+ k − 3 + (`−k+3)(`−k+2)

2 . Our proof follows. J

Proof of Theorem 1.5 follows from Lemmas 4.12, 4.14 and 4.15.

References
1 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-

ment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2014. doi:10.1007/978-3-662-43948-7_4.

2 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster
clique algorithms. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11

https://doi.org/10.1007/978-3-662-43948-7_4

N. Banerjee, V. Raman, and S. Saurabh 10:17

August 2017, volume 70 of Proceedings of Machine Learning Research, pages 311–321. PMLR,
2017. URL: http://proceedings.mlr.press/v70/backurs17a.html.

3 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in undirected graphs: breaking the O(m) barrier. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 730–739, 2016.

4 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant reachability for
directed graphs. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo,
Japan, October 7-9, 2015, Proceedings, pages 528–543, 2015.

5 Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. Improved
purely additive fault-tolerant spanners. In Algorithms - ESA 2015 - 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 167–178, 2015.

6 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14, 2016.

7 Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive
and (µ, α)-spanners. Theor. Comput. Sci., 580:94–100, 2015.

8 Diptarka Chakraborty and Keerti Choudhary. New extremal bounds for reachability and
strong-connectivity preservers under failures. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of
LIPIcs, pages 25:1–25:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ICALP.2020.25.

9 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM J. Comput., 39(7):3403–3423, 2010.

10 Chandra Chekuri, Kent Quanrud, and Chao Xu. LP relaxation and tree packing for minimum
k-cuts. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9,
2019 - San Diego, CA, USA, pages 7:1–7:18, 2019. doi:10.4230/OASIcs.SOSA.2019.7.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011.

13 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez,
and Frances A. Rosamond. Cutting up is hard to do: the parameterized complexity of
k-cut and related problems. Electron. Notes Theor. Comput. Sci., 78:209–222, 2003. doi:
10.1016/S1571-0661(04)81014-4.

14 Shimon Even. An algorithm for determining whether the connectivity of a graph is at least k.
SIAM J. Comput., 4(3):393–396, 1975. doi:10.1137/0204034.

15 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 112–122, 1991. doi:10.1145/103418.103436.

16 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n) time. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.57.

17 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260–1279. SIAM, 2020. doi:10.1137/1.9781611975994.77.

FSTTCS 2020

http://proceedings.mlr.press/v70/backurs17a.html
https://doi.org/10.4230/LIPIcs.ICALP.2020.25
https://doi.org/10.4230/LIPIcs.ICALP.2020.25
https://doi.org/10.4230/OASIcs.SOSA.2019.7
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/S1571-0661(04)81014-4
https://doi.org/10.1016/S1571-0661(04)81014-4
https://doi.org/10.1137/0204034
https://doi.org/10.1145/103418.103436
https://doi.org/10.4230/LIPIcs.ICALP.2020.57
https://doi.org/10.1137/1.9781611975994.77

10:18 Optimal Output Sensitive Fault Tolerant Cuts

18 Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res., 19(1):24–37, 1994. doi:10.1287/moor.19.1.24.

19 Anupam Gupta, Euiwoong Lee, and Jason Li. The karger-stein algorithm is optimal for k-cut.
In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 473–484, 2020. doi:10.1145/3357713.
3384285.

20 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 127:1–127:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.127.

21 Nili Guttmann-Beck and Refael Hassin. Approximation algorithms for minimum K -cut.
Algorithmica, 27(2):198–207, 2000. doi:10.1007/s004530010013.

22 Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1919–1938, 2017.
doi:10.1137/1.9781611974782.125.

23 Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity.
SIAM J. Comput., 49(1):1–36, 2020. doi:10.1137/18M1180335.

24 David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21–30, 1993. URL: http:
//dl.acm.org/citation.cfm?id=313559.313605.

25 David R. Karger. Using randomized sparsification to approximate minimum cuts. In
Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pages 424–432. ACM/SIAM,
1994. URL: http://dl.acm.org/citation.cfm?id=314464.314582.

26 David R. Karger. Using randomized sparsification to approximate minimum cuts. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994,
Arlington, Virginia, USA, pages 424–432, 1994.

27 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

28 David R. Karger and Clifford Stein. An o~(n2) algorithm for minimum cuts. In Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San
Diego, CA, USA, pages 757–765, 1993. doi:10.1145/167088.167281.

29 David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM,
43(4):601–640, 1996. doi:10.1145/234533.234534.

30 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple
graph in near-linear time. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665–674,
2015. doi:10.1145/2746539.2746588.

31 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approx-
imation scheme for min k-cut. CoRR, to appear in FOCS 2020, abs/2005.00134, 2020.
arXiv:2005.00134.

32 David W. Matula. A linear time 2+epsilon approximation algorithm for edge connectivity. In
Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA, pages 500–504, 1993. URL: http://dl.acm.org/
citation.cfm?id=313559.313872.

33 Karl Menger. Zur allgemeinen kurventheorie. Fund. Math. 10:, pages 96–115, 1927.
34 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,

and streaming algorithms. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT

https://doi.org/10.1287/moor.19.1.24
https://doi.org/10.1145/3357713.3384285
https://doi.org/10.1145/3357713.3384285
https://doi.org/10.4230/LIPIcs.ICALP.2017.127
https://doi.org/10.1007/s004530010013
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1137/18M1180335
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=314464.314582
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/167088.167281
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/2746539.2746588
http://arxiv.org/abs/2005.00134
http://dl.acm.org/citation.cfm?id=313559.313872
http://dl.acm.org/citation.cfm?id=313559.313872

N. Banerjee, V. Raman, and S. Saurabh 10:19

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
496–509. ACM, 2020. doi:10.1145/3357713.3384334.

35 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

36 Merav Parter. Vertex fault tolerant additive spanners. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings,
pages 167–181, 2014.

37 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21
- 23, 2015, pages 481–490, 2015.

38 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
pages 779–790, 2013.

39 Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1073–1092, 2014.

40 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997. doi:10.1145/263867.263872.

41 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Cynthia
Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 159–166. ACM, 2008. doi:
10.1145/1374376.1374402.

42 Vijay Vazirani. Approximation algorithms. Berlin: Springer, ISBN 978-3-540-65367-7, 2003.

FSTTCS 2020

https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1007/BF01758778
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/1374376.1374402
https://doi.org/10.1145/1374376.1374402

Online Matching with Recourse: Random Edge
Arrivals
Aaron Bernstein
Rutgers University, New Brunswick, NJ, USA
bernstei@gmail.com

Aditi Dudeja
Rutgers University, New Brunswick, NJ, USA
aditi.dudeja@rutgers.edu

Abstract

The matching problem in the online setting models the following situation: we are given a set of
servers in advance, the clients arrive one at a time, and each client has edges to some of the servers.
Each client must be matched to some incident server upon arrival (or left unmatched) and the
algorithm is not allowed to reverse its decisions. Due to this no-reversal restriction, we are not able
to guarantee an exact maximum matching in this model, only an approximate one.

Therefore, it is natural to study a different setting, where the top priority is to match as many
clients as possible, and changes to the matching are possible but expensive. Formally, the goal is
to always maintain a maximum matching while minimizing the number of changes made to the
matching (denoted the recourse). This model is called the online model with recourse, and has been
studied extensively over the past few years. For the specific problem of matching, the focus has been
on vertex-arrival model, where clients arrive one at a time with all their edges. A recent result of
Bernstein et al. [1] gives an upper bound of O

(
n log2 n

)
recourse for the case of general bipartite

graphs. For trees the best known bound is O(n log n) recourse, due to Bosek et al. [4]. These are
nearly tight, as a lower bound of Ω(n log n) is known.

In this paper, we consider the more general model where all the vertices are known in advance,
but the edges of the graph are revealed one at a time. Even for the simple case where the graph is a
path, there is a lower bound of Ω(n2). Therefore, we instead consider the natural relaxation where
the graph is worst-case, but the edges are revealed in a random order. This relaxation is motivated
by the fact that in many related models, such as the streaming setting or the standard online setting
without recourse, faster algorithms have been obtained for the matching problem when the input
comes in a random order. Our results are as follows:

Our main result is that for the case of general (non-bipartite) graphs, the problem with random
edge arrivals is almost as hard as in the adversarial setting: we show a family of graphs for which
the expected recourse is Ω

(
n2

log n

)
.

We show that for some special cases of graphs, random arrival is significantly easier. For the
case of trees, we get an upper bound of O

(
n log2 n

)
on the expected recourse. For the case of

paths, this upper bound is O (n log n). We also show that the latter bound is tight, i.e. that the
expected recourse is at least Ω (n log n).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases matchings, edge-arrival, online model

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.11

Funding Aaron Bernstein: This work was done while funded by NSF Award 1942010 and the
Simon’s Group for Algorithms & Geometry.

© Aaron Bernstein and Aditi Dudeja;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bernstei@gmail.com
mailto:aditi.dudeja@rutgers.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Online Matching with Recourse: Random Edge Arrivals

1 Introduction

The online matching problem models a scenario in which a set of servers is given in advance,
and a set of clients arrive one at a time, with each client incident to some of the servers. In
the standard version of this model, the arriving client must be immediately matched to a
free server or be left unmatched, and this decision is irrevocable. Due to this constraint, it is
not possible to guarantee an exact matching, so the goal is to guarantee the best possible
approximation. (See the work of Karp et al. [14], which shows that we can’t get better than
1− 1

e approximation.)
But there are several applications where the top priority is to match all the clients (or at

least to have a maximum matching), and the irreversibility condition of the standard online
model is too restrictive; in applications such as streaming content delivery, web hosting, job
scheduling, or remote storage it is preferable to reallocate the clients provided the number of
reallocations is small (see [5] for more details). Therefore, over the past decade there have
been many papers on the so-called online model with recourse, where the goal is to maintain
an exact solution the problem, while making as few changes to this solution as possible.

In the case of matching in particular, existing results focus on the vertex-arrival model,
which is analogous to the similar model in online matching without recourse. In this model,
clients arrive one at a time and ask to be matched to a server. The algorithm is allowed
to change the matching over time and must always maintain a maximum matching: the
goal is then to minimize the total number of changes made to the matching, denoted the
recourse. Note that the trivial recourse bound is O(n2) (n changes per client), but one
can do significantly better. This model has been studied extensively (see for example,
[9, 5, 2, 3, 10, 4, 1]), and the state of the art is an upper bound of O(n log2 n) on the total
recourse [1]) in bipartite graphs. For the special case of trees, the best known upper bound
is O (n logn) due to [4]. These upper bounds nearly match the lower bound of Ω (n logn) for
trees due to [9].

In this paper, we consider a more general model where the graph can be non-bipartite
and, more importantly, the edges in the graph are revealed one at a time; the algorithm
must again maintain a maximum matching at all times. Unfortunately, we have very strong
lower bounds when the order in which the edges arrive is adversarial; even for the simplest
possible case of a path, Ω(n2) recourse is necessary. To overcome this lower bound, we
consider a natural relaxation of this model where the adversary can still choose the graph,
but edges arrive in a random order. One of the motivations behind this relaxation is that in
several related models, such as the online model without recourse or the streaming model,
we have been able to get faster algorithms when the input is assumed to arrive in a random
order rather than an adversarial order. (See [13, 16] for online model without recourse, and
[15, 12, 8, 7] for the streaming model).

Our results show that for the case of trees and paths, we can do significantly better in
the random edge-arrival model: in particular, we show an upper bound of O (n logn) on the
expected recourse in the case of paths (which we show is tight), and a bound of O

(
n log2 n

)
in the case of trees. But our main result is that in general graphs, the random arrival setting
is provably almost as hard as the adversarial setting. We state our main results formally:

I Theorem 1. For any n > 216, there is a (non-bipartite) graph Gn (described in Section 3.1)
with n vertices and Θ (n logn) edges, such that if edges of the graph arrive in a random order,
then the total expected recourse taken by any algorithm that maintains a maximum matching
in the graph is Ω

(
n2

logn

)
.

A. Bernstein and A. Dudeja 11:3

I Theorem 2. Let T be a tree on n vertices and let the edges of T arrive one at a time in
a random order. Then, the expected total recourse taken by an algorithm that maintains a
maximum matching in T is at most O(n log2 n).

I Theorem 3. Let P be a path on n vertices, and let the edges of P arrive in a random order.
The expected total recourse taken by an algorithm that maintains a maximum matching in P
is O(n logn). Moreover, this bound is tight: the expected recourse taken by any algorithm is
Ω (n logn).

I Remark 4. For the lower bounds of Theorems 1 and 3, when we say that any algorithm has
the given lower bound on expected recourse, this bound holds even if the algorithm knows
the random permutation in advance. That is, the lower bound holds even if the algorithm is
optimal for every possible ordering of the edges.
I Remark 5. For the upper bounds in Theorems 2 and 3, the algorithm we use simply changes
the matching along an augmenting path whenever such a path becomes available due to the
insertion of some edge. If there are multiple augmenting paths the algorithm can take, it
chooses between them arbitrarily; the upper bound holds regardless of the choice of path.

We prove our main result, Theorem 1 in Section 3. For proofs of Theorem 2 and 3 we
refer the reader to the full version of the paper. We leave as an intriguing open problem
whether our lower bound in Theorem 1 also holds for bipartite graphs, or whether these
graphs allow for expected o(n2−ε) recourse when edges arrive in a random order. See Section
4 for more details.

2 Preliminaries

Let G be an unweighted graph. A matching in G is a set of vertex-disjoint edges. Given
any matching M of G, we say that a vertex v is matched if it incident to an edge in M ,
and free otherwise. Given any two matchings M and M ′, we use M ⊕M ′ to denote the
symmetric difference. We study the model of online matching with recourse under random
edge arrivals. In this model, the adversary fixes any graph G = (V,E) with m edges and n
vertices. The vertex set is given in advance, but the edges arrive one at a time; the arrival
order e1, . . . , em is a random permutation of E. The goal of the algorithm is to maintain
a sequence of matchings M1, . . .Mm, such that Mi is a maximum matching in the graph
(V, {e1, . . . , ei}). The total recourse of the algorithm is

∑m−1
i=1 |Mi⊕Mi+1|, which is the total

number of changes made to the matching throughout the entire sequence of insertions.
Intuitively, an algorithm that minimizes recourse should only change the matching when

the maximum matching in the graph increases in size. We formalize this intuition in the
remainder of this section.

I Definition 6. Define a sequence M∗i0 ,M
∗
i1
, · · · ,M∗iη to be only-augmenting if M∗i0 = ∅, each

M∗ij is a maximum matching in Gij , and each symmetric difference M∗ij ⊕M
∗
ij+1

consists of a
single augmenting path; that is, M∗ij⊕M

∗
ij+1

consists of an odd-length path P in {e1, . . . , eij+1}
such that every second edge of P is in Mij , but the first and last edges of P are not in Mij .
We say that an algorithm is only augmenting if the sequence of distinct matchings produced
by the algorithm is only-augmenting; in other words, in the sequence of matchings produced
by an only-augmenting algorithm, for every 1 ≤ i ≤ m− 1, either Mi = Mi+1, or Mi ⊕Mi+1
consists of a single augmenting path.

FSTTCS 2020

11:4 Online Matching with Recourse: Random Edge Arrivals

I Definition 7. Let r(σ) is the best recourse achievable on permutation σ by an algorithm
that knows σ in advance, and let r∗(σ) be the best recourse achievable by an only-augmenting
algorithm that knows σ in advance. (Knowing σ in advance allows the respective algorithms
to pick the best possible matching sequence for permutation σ.)

I Observation 8. Using the above notation, we note that Eσ[r(σ)] is a lower bound on the
expected recourse of any algorithm, while Eσ[r∗(σ)] is a lower bound on the expected recourse
of any only-augmenting algorithm. The lower bound applies even if the algorithm knows σ in
advance.

The following Lemma allows us to assume throughout the paper that we are working
with an only-augmenting algorithm. The proof of this lemma is relegated to the full version
of the paper.

I Lemma 9. Given any permutation σ, we have r(σ) = r∗(σ).

We now restate our main Theorem with the above lemma in mind.

I Theorem 10. Eσ[r∗(σ)] = Ω(n2/ log(n))

I Observation 11. Observation 8, Lemma 9 and Theorem 10 immediately imply Theorem 1.

The lower bound proof of Section 3 is devoted entirely to proving Theorem 10

3 Lower Bound on Expected Recourse in General Graphs

This section will be devoted to proving Theorem 10, the main result of our paper. Recall from
the preliminaries that we can assume that the algorithm is only-augmenting (See Definition
6) and that it knows the entire permutation σ in advance. In other words, to prove Theorem
1, it is sufficient to prove Theorem 10.

Our proof will proceed as follows. In Section 3.1 we define our candidate graph Gn (we
will refer to it as G from now). The main step will be to show that between the times when
half the edges of the graph have arrived and a three-quarters of the edges have arrived,
the graph induced by non-isolated vertices contains a perfect matching or a near perfect
matching throughout (see Definition 15 for a definition of near perfect matching). We will
then use this fact to prove Theorem 10.
I Remark 12. Before we describe our graph, we describe how we will go about proving the
lower bound. Suppose that our algorithm is given graph G = (V,E) as input, where |E| = m.
In our model this graph is revealed to our algorithm one edge at a time, with the edges
arriving in the order prescribed by a random permutation σ . Suppose we look at the graph
at time t < m, then Gt, the graph at time t has the same distribution as the subgraph of
G obtained by randomly sampling t out of m edges. We will show that between the times
when t = 0.5 ·m and t = 0.75 ·m, Gt will contain a perfect or a near-perfect matching. To
prove this, we will show (in Section 3.2) that the distribution of Gt can be approximated by
the following distribution: graph obtained by sampling each edge of G independently with
probability t

m . Finally, we will prove our aforementioned claims about this new distribution
(Section 3.3).

3.1 The Graph
We use n to denote the number of vertices in our graph. In this write-up, s = 400 logn
and t = n

500 logn . Let Ks denote the complete graph on s vertices. Our graph is called G
(see Figure 1) and it consists of t copies of Ks that we index as K(i)

s for 1 ≤ i ≤ t. The

A. Bernstein and A. Dudeja 11:5

remaining n
5 vertices are partitioned into t sets

{
D(i)}

1≤i≤t of size 100 logn each. The graph
G contains the following edges.
1. For 1 ≤ i ≤ t− 1, we introduce edges between every vertex of K(i)

s and every vertex of
K

(i+1)
s . Additionally, edges are also introduced between every vertex of K(1)

s and every
vertex of K(t)

s .
2. For 1 ≤ i ≤ t, we fix an arbitrary set U (i) ⊂ K(i)

s of size 100 logn. Introduce an arbitrary
matching between U (i) and D(i). Call this matching M (i). Let M = ∪ti=1M

(i); we add
the edges of M to G. We also let U = ∪ti=1U

(i) and D = ∪ti=1D
(i). For any u ∈ D ∪ U ,

we define M(u) to be the vertex that u is matched to.
We denote the number of edges in G by m. Note that m = Θ (n logn).

Figure 1 Graph G.

3.2 Relating Gp and Gp·m

I Definition 13. Let p ∈ [0, 1]. We define Ep ⊂ E(G) to be the set of edges obtained by
sampling each e ∈ E(G) with independently probability p.
Let Vp = V (G) \ {v ∈ D such that (v,M(v)) /∈ Ep}; note that Vp excludes isolated vertices
in D. Let Gp be the graph with vertex set Vp and edge set Ep.

I Definition 14. Let Ep·m ⊂ E(G) be the set of edges obtained by sampling p ·m random
edges of E(G). Let V p·m = V (G) \ {v ∈ D such that (v,M(v)) /∈ Ep·m}; note that V p·m
excludes isolated vertices in D. Let Gp·m be the graph with vertex set V p·m and the edge
set Ep·m.

I Definition 15. Let H be a graph with an odd number of vertices. LetM be any matching
of H that leaves exactly one vertex unmatched. Then,M is called a near perfect matching
of H.

FSTTCS 2020

11:6 Online Matching with Recourse: Random Edge Arrivals

We state the main theorem that we want to prove in this section:

I Theorem 16. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, then, the graph Gp·m contains a
perfect matching or a near perfect matching with probability at least 1−O

(1
n3

)
.

To prove this theorem, we claim that it is sufficient to prove the following theorem:

I Theorem 17. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, then, graph Gp contains a match-
ing or a near perfect matching with probability at least 1−O

(1
n4

)
.

To show that Theorem 17 implies Theorem 16, we prove the following lemma:

I Lemma 18. Let p ∈ {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}, and let Gp·m and Gp be as described
above, and let G be the set of graphs that contain a perfect matching or a near perfect matching,
then,

Pr (Gp·m /∈ G) ≤ 10
√
m · Pr (Gp /∈ G) .

We refer the reader to the full version of this paper for a proof of Lemma 18. For now, we
prove Theorem 16 assuming Theorem 17 and Lemma 18:

Proof (Theorem 16). It follows from Lemma 18 that:
Pr
(
Gp·m does not contain a matching

)
≤ 10

√
m · Pr (Gp does not contains a perfect matching)

= 10
√

m ·O
(1

n4

)
(Due to Theorem 17)

= O

(1
n3

)
(Since m = Θ (n log n)). J

The following corollary follows from Theorem 16, via a union bound:

I Corollary 19. Let I = {0.5, 0.5·m+1
m , · · · , 0.75·m−1

m , 0.75}. Let G be the sequence of graphs
{Gp·m}p∈I . The probability that every G ∈ G contains a perfect matching or a near perfect
matching is at least 1−O

(1
n

)
.

The bulk of our paper is proving Theorem 17. But first, we provide some intuition for
our choice of G by sketching how Corollary 19 implies our main result (Theorem 10).

Proof sketch of Theorem 10. Recall the edges M ⊂ E(G) which connect the vertices in
D, where |M | = Θ(n) (see 3.1). Consider how the graph Gp·m evolves from for p = 1

2 to
p = 3

4 . Let us assume without loss of generality that G 1
2 ·m contains an even number of

vertices. Whenever an edge (d, x) from M is inserted into the graph, d ∈ D is added to
V (Gp·m) (See Definition 13). Since we know from Corollary 19 that Gp·m contains a perfect
matching whenever V (Gp·m) is even, we know that after every two edges (d, x) and (d′, x′)
added to M , there is a perfect matching in the resulting graph; thus, the algorithm must
take some augmenting path from d to d′. Because G consists of Ω

(
n

log(n)

)
consecutive

layers, it is easy to see that with probability 1
2 , the shortest path from d to d′ has length

Ω
(

n
log(n)

)
. We expect to add |M |4 = Ω (n) edges to M between G 1

2 ·m and G 3
4 ·m, so we have

Ω (n) augmenting paths of expected length Ω
(

n
log(n)

)
, which implies total augmenting path

length Ω
(

n2

log(n)

)
. See Section 3.5 for full proof. J

A. Bernstein and A. Dudeja 11:7

3.3 Proving Gp has a Near-Perfect Matching
We now turn to proving Theorem 17. To this end, we introduce some notation:

I Definition 20. Given Gp, we define the active subgraph A of Gp as follows: let V (A) =
V (Gp) \ {u ∈ D ∪ U : (u,M(u)) ∈ Gp}. The active subgraph A is the induced subgraph
Gp [V (A)].

I Definition 21. We define A(i) to be the following subgraph of Gp: let V
(
A(i)) = V (A) ∩

V
(
K

(i)
s

)
for 1 ≤ i ≤ t. Let A(i) = Gp

[
V
(
A(i))] For 1 ≤ i ≤ t, let |V

(
A(i)) | = ai. Then,

1. If ai is even, then let P (i) ∪Q(i) be an arbitrary ai
2 by ai

2 bipartition of V (A(i)).
2. If ai is odd, then let v(i) be an arbitrary vertex in V (A(i)) and let P (i) ∪ Q(i) be an

arbitrary bai2 c by b
ai
2 c bipartition of V (A(i)) \ v(i).

We denote G(P (i), Q(i)) to be the bipartite graph between P (i) and Q(i), with edge set
E
(
P (i), Q(i)) =

(
P (i) ×Q(i)) ∩ E (A(i))

B Claim 22. We observe that V (A) ∩D = ∅. This follows from the following two facts:
1. Consider any u ∈ D such that (u,M(u)) /∈ Gp. Then, u /∈ V (Gp). This follows

immediately from Definition 13.
2. By Definition 20, we know that any u such that (u,M(u)) ∈ Gp is not included in V (A).

B Claim 23. From Definition 20, we know that ai ≥ 400 logn−|U (i)|. Since |U (i)| = 100 logn
(see Section 3.1 2), it follows that ai ≥ 300 logn.

In order to prove Theorem 17, it is sufficient to prove the following theorem:

I Theorem 24. The active subgraph, A contains a perfect matching or a near perfect
matching with probability at least 1−O

(1
n4

)
.

Proof (Theorem 17). Given a perfect (resp. near-perfect) matchingM (A) of A, we will
construct a perfect (resp. near perfect) matchingM (Gp) of Gp. Consider any u ∈ V (Gp) \
V (A). Note that M(u) ∈ V (Gp)\V (A) and (u,M(u)) ∈ Gp. So we may match u to M(u) in
Gp. In particular,M (Gp) =M (A) ∪ {(u,M(u)) where u ∈ V (Gp) \ V (A)}. Thus,M (Gp)
is a perfect (or a near perfect matching) of Gp if M (A) is a perfect (or a near perfect
matching) of A. J

3.4 Near Perfect Matching in Active Subgraph
To prove Theorem 24, we need Chernoff bound, and some existing results on matchings in
random bipartite graphs.

I Theorem 25. [11] Define B(n, n, p) to be the bipartite graph obtained by deleting edges
from Kn,n independently with probability 1− p. Then,

Pr (B(n, n, p) does not contain a perfect matching) = O
(
ne−np

)
.

I Theorem 26 (Chernoff Bounds). Let X0, · · · , Xk be 0 − 1 random variables that are
independent. Let µ = E

[∑k
i=1 Xi

]
. Then, for any 0 ≤ δ ≤ 1,

Pr
(

k∑
i=1

Xi ≤ (1− δ)µ
)
≤ e−

δ2µ
2 and, (1)

Pr
(

k∑
i=1

Xi ≥ (1 + δ)µ
)
≤ e−

δ2µ
3 . (2)

FSTTCS 2020

11:8 Online Matching with Recourse: Random Edge Arrivals

Consider the A(i)’s in Definition 21. We mentioned that for some of these A(i)’s the
corresponding ai’s might be odd. Let

{
A(i1), · · · , A(ik)} be this set, with i1 < · · · < ik. Let

v(ij) be the vertex left out of the bipartition P (ij)∪Q(ij) of A(ij) for 1 ≤ j ≤ k (see Definition
21.2). We define the following events:

I Definition 27. For 1 ≤ i ≤ t, let Ai be the event that G(P (i), Q(i)) contains a perfect
matching (or a near perfect matching). Let A = ∩ti=1Ai.

I Definition 28. Let M′i be a maximum matching of G
(
P (i), Q(i)) for 1 ≤ i ≤ t. Let

M′ = ∪ti=1M′i.

I Definition 29. For 1 ≤ m ≤
⌊
k
2
⌋
, let Bm be the event that there is an augmenting path

between v(i2m−1) and v(i2m) with respect toM′ in A. Let B =
⋂b k2 c
i=1 Bm.

In order to prove Theorem 24, we follow these steps:
1. We will prove that each Ai happens with high probability, and therefore by union bound,
A happens with high probability also.

2. We prove that each Bm, conditioned on A happens with high probability, and by union
bound, B conditioned on A also happens with high probability.

In order to prove 2, we will show that for each 1 ≤ m ≤
⌊
k
2
⌋
there is an augmenting path

between v(i2m−1) and v(i2m) which only consists of vertices between layers i2m−1 and i2m.
Therefore, these augmenting paths are vertex-disjoint from each other. These paths can be
augmented simultaneously since they don’t interfere with each other. So, 1 and 2 combined
with this fact imply that the active graph, A contains a perfect matching or a near perfect
matching with high probability.

Before we move on to proving 1 and 2, we note that G(P (i), Q(i)) and V (A(i)) are both
random variables. In particular, V (A(i)) =

(
V (K(i)

s) \ U (i)
)
∪S, where S is a random subset

of U (i) obtained by excluding every vertex with probability p. However, if we fix the vertex
set V

(
A(i)), then the edges of G(P (i), Q(i)) have the same distribution as that of a random

bipartite graph; we remind the reader that P (i) ∪Q(i) is an arbitrary bipartition of A(i) (see
Definition 21). Formally:

I Observation 30. For 1 ≤ i ≤ t, G
(
P (i), Q(i)) conditioned on V

(
A(i)) = S, where |S| = ai,

has the same distribution as B
(⌊
ai
2
⌋
,
⌊
ai
2
⌋
, p
)
.

Now we prove the following lemma:

I Lemma 31. For 1 ≤ i ≤ t, Pr (¬Ai) = O
(1
n5

)
. Moreover, Pr (¬A) = O

(1
n4

)
.

Proof. We know that:

Pr (¬Ai) =
∑

T

Pr
(
¬Ai

∣∣ V
(
A(i)) = T

)
· Pr

(
V
(
A(i)) = T

)
=
∑

T

O
(
|T | · e−|T |·p

)
· Pr

(
V
(
A(i)) = T

)
(Due to Observation 30 and Lemma 25)

=
∑

T

O
(1

n5

)
· Pr

(
V
(
A(i)) = T

)
(Due to Claim 23 that ai ≥ 300 log n and p ≥ 0.5)

= O
(1

n5

)
(Since we are summing over disjoint events).

By union bound it follows that, Pr (¬A) = O
(1
n4

)
. J

A. Bernstein and A. Dudeja 11:9

Figure 2 Case 1: When unmatched vertices are in consecutive layers.

I Theorem 32. For 1 ≤ m ≤ bk2 c, Pr (¬Bm | A) = O
(1
n8

)
. Therefore, by union bound it

follows that Pr (¬B | A) = O
(1
n7

)
.

Proof. To bound Pr (¬Bm | A), we consider two cases:

1. Case 1: vi2m−1 and vi2m are in consecutive layers. That is, i2m = i2m−1 + 1. We
will give an overview of what we are about to do. We will use v to denote vi2m−1 , v′ to
denote vi2m , P and P ′ to denote P (i2m−1) and P (i2m), Q and Q′ to denote Q(i2m−1) and
Q(i2m) respectively.

I Definition 33. Let NP (v) (resp. NP ′(v′)) denote the set of vertices in P (resp. P ′)
adjacent to v (resp. v′). Let degP (v) (resp. degP ′(v′)) denote |NP (v)| (resp. |NP ′(v′)|).

For a set of vertices S, letM′(S) denote the set of vertices matched to S inM′ (refer
to Definition 28 for the definition of M′). We will prove that with high probability
|M′ (NP (v)) | and |M′ (NP ′(v′)) | are large. Conditioned on these sizes being large, we
will prove that there is an edge (x, x′) in A where x ∈M′ (NP (v)) and x′ ∈M′ (NP ′(v′)).
It follows there is an augmenting path P =(v,M′(x), x, x′,M′(x′), v′) in A (note that
M′ (x) ∈ NP (v) andM′ (x′) ∈ NP ′ (v′)). (See Figure 2)
To show this, we first show that |NP (v)| and |NP ′(v′)| are large with high probability.
We will condition on A, so |M′ (NP (v)) | and |M′ (NP ′(v′)) | will consequently be large
with high probability. It then follows that one of the edges between these two sets is in A
with high probability.

FSTTCS 2020

11:10 Online Matching with Recourse: Random Edge Arrivals

Figure 3 Case 2: When v and v′ are not in consecutive layers.

We now turn to the formal proof of case 1. Let Xv and Xv′ be the random variables
denoting degP (v) and degP ′(v′) respectively (see Definition 33). Each edge incident on v
and v′ in A is sampled independently with probability p ∈ [0.5, 0.75]. This is true even
if we condition on the event A. Consequently, E [Xv | A] = E [Xv] ≥ 75 logn. Since Xv

is the sum of 0− 1 independent random variables, we may apply Chernoff bound (see
Theorem 26). It follows that:

Pr (Xv ≤ 25 logn | A) = O

(
1
n8

)
.

Similarly, we have:

Pr (Xv′ ≤ 25 logn | A) = O

(
1
n8

)
.

Define Y to be the event that |M′ (NP (v)) | ≥ 25 logn and |M′ (NP ′ (v′)) | ≥ 25 logn.

A. Bernstein and A. Dudeja 11:11

Observe that,

Pr (¬Y | A) ≤ Pr (Xv ≤ 25 logn | A) + Pr (Xv′ ≤ 25 logn | A) = O

(
1
n8

)
.

Define Z to be the event that there is an edge betweenM′ (NP (v)) andM′ (NP ′ (v′)).
Observe that,

Pr (¬Z | A) ≤ Pr (¬Y | A) + Pr (¬Z | Y,A) = O

(
1
n8

)
+ 1
nO(logn) .

The second term follows from the fact that each edge appears independently with
probability p ∈ [0.5, 0.75], and there are Ω(log2 n) edges between M′ (NP (v)) and
M′ (NP ′ (v′)) conditioned on Y. It follows that Pr (¬Bm | A) ≤ Pr (¬Z | A) = O

(1
n8

)
.

This proves our claim for this case.
2. Case 2: i2m > i2m−1 + 1. We denote vi2m−1 by v, P (i2m−1) by P and v(i2m) by v′. Let

f = i2m − i2m−1. For 1 ≤ j ≤ f , let P (i2m−1+j) be denoted by P + j. We similarly define
Q and Q+ j (see Figure 3). We also define the following sets:

S0 = NP (v)
Sj = NP+j(M′(Sj−1)) for 1 ≤ j ≤ f.

For 0 ≤ j ≤ f , let Xj be the event that |M′(Sj)| ≥ 25 logn. Let E be the event that
there is an edge between v′ and M′(Sf). It is easy to check that the occurrence of
X0,X1 · · · ,Xf implies that there is an alternating path from v to a large set of vertices
(at least Ω (logn)) in Q+ j for all j ∈ [f]. Note that E implies that there is an edge from
Q+ f to v′. Combined, X1 · · · ,Xf , E imply an augmenting path from v to v′. We thus
have:
I Observation 34. Let Bm and X1, · · · ,Xf , E be as defined above (refer to Definition 29
for a definition of Bm), then:

Pr (Bm | A) ≥ Pr
(
∩fk=0Xk ∩ E

∣∣∣ A) .
From the above observation, we deduce that in order to upper bound Pr (¬Bm | A), it is
sufficient to upper bound Pr

(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A). We know that:

Pr
(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A) ≤ f∑
k=0

Pr
(
¬Xk

∣∣ ∩i−1
k=0Xk ∩ A

)
+ Pr

(
¬E
∣∣∣ ∩fk=0Xk ∩ A

)
.

(Follows from the definition of conditional probability)

We computed Pr (¬X0 | A) in case 1. We remind the reader this is just the probability
that |M′ (S0) | ≤ 25 logn. We now show how to compute Pr (¬Xj | A,X0, · · · ,Xj−1).
Consider any w ∈ P + j. We want to compute the probability that w is in the set
NP+j(M′ (Sj−1)) = Sj conditioned on the events Xj−1 and A. Since every edge on w is
present in the active graph A independently with probability p:

Pr (w /∈ Sj | A,X0, · · · ,Xj−1) ≤ (1− p)25 logn (3)

≤
(

1
2

)25 logn
(Due to the fact that p ≥ 0.5). (4)

FSTTCS 2020

11:12 Online Matching with Recourse: Random Edge Arrivals

This implies that:

E [|Sj | | A,X0, · · · ,Xj−1] ≥ 100 logn.

Since |Sj | is a sum of 0− 1 random variables (it is the sum of 1{v∈Sj}, that take value 0
with probability O

(1
n25

)
(due to Equation (4)) and 1 otherwise), we can apply Chernoff

bounds (Theorem 26):

Pr (|Sj | ≤ 25 logn | A,X0, · · · ,Xj−1) = O

(
1
n9

)
.

Since we condition on A (that is a perfect or, a near perfect matching being present), we
know that:

|M′ (Sj) | = |Sj |

Consequently, we have:

Pr (|M′ (Sj) | ≤ 25 logn | A,X0, · · · ,Xj−1) = Pr (|Sj | ≤ 25 logn | A,X0, · · · ,Xj−1)

= O

(
1
n9

)
.

Finally, we want to bound Pr (¬E | A,X0, · · · ,Xf). This can be upper bounded:

Pr (¬E | A,X0, · · · ,Xf) ≤
(

1
2

)25 logn

(Edges on v′ appear independently with probability p ≥ 0.5)

= O

(
1
n25

)
.

It is immediate from Observation 34 that:

Pr (¬Bm | A) = O

(
1
n8

)
.

From case 1 and case 2, we know that by union bound, Pr (¬B | A) = O
(1
n7

)
. J

Proof (Theorem 24). From Lemma 31 and Theorem 32 we have that:

Pr (A does not contain a perfect matching) ≤ Pr (¬A) + Pr (¬B | A) = O

(
1
n4

)
. J

3.5 Lower Bound On Lengths of Augmenting Paths
We start with some definitions:

I Definition 35. For i ∈ {1, · · · ,m}, we denote by ei, the edges arriving at time i. Let
S = {e0.5m, · · · , e0.75m}.

This section will be devoted to proving that among the edges in S, Ω (n) edges will join
augmenting paths of expected length Ω

(
n

logn

)
, and the algorithm is forced to augment along

these. Formally,

I Theorem 36. With high probability, there exists S′ ⊂ S, |S′| ≥ n
100 such that each e ∈ S′

joins an augmenting path of expected length at least Ω
(

n
logn

)
.

A. Bernstein and A. Dudeja 11:13

We first give a proof of Theorem 10 using Theorem 36:

Proof (Theorem 10). For i ∈ [m], let Zi be the random variable denoting the length of the
augmenting path that we augment along when the edge ei joins. Let Z =

∑m
i=1Zi, which

is the random variable denoting the total length of the augmenting paths taken during the
course of the algorithm. We want to compute the quantity E [Z]. We note that:

E [Z] =
m∑
i=1

E [Zi] ≥
∑
j∈S′

E [Zj] = |S′| · Ω
(

n

logn

)

= Ω
(

n2

logn

)
.

(Due to Theorem 36) J

Before we prove Theorem 36, we need certain observations, and the following version of
Chernoff for negatively associated random variables:

I Theorem 37. [6] Let X0, · · · , Xk be 0− 1 random variables that are negatively associated.
Let µ = E

[∑k
i=1 Xi

]
. Then, for any 0 ≤ δ ≤ 1,

Pr
(

k∑
i=1

Xi ≤ (1− δ)µ
)
≤ e−

δ2µ
2 and, (5)

Pr
(

k∑
i=1

Xi ≥ (1 + δ)µ
)
≤ e−

δ2µ
3 . (6)

We remind the reader of the edges M in graph G between D and U (refer to Section
3.12). Note that |M | ≥ n

5 . Further, M = ∪ti=1M
(i), and |M (i)| ≥ 100 logn for all i ∈ [t].

We now prove the following claim about S:

B Claim 38. Let R be the event that for all i ∈ [t], |M (i) ∩ S| ≥ 10 logn. Then, Pr (R) ≥
1−O

(1
n3

)
.

Proof. Consider any M (i), and let e ∈M (i). Let Ze be a 0− 1 random variable that takes
value 1 if e ∈ S, and 0 otherwise. Let Z =

∑
e∈M(i) Ze. This is the random variable that

denotes |M (i) ∩ S|. Further, Z is a sum of negatively associated random variables, and
therefore obeys the condition of Theorem 37. We note the following:

Pr (Ze = 1) = 1
4 and, E [Z] = 25 logn.

It follows that:

Pr (Z ≤ 10 logn) ≤ exp
(
− (0.6)2 (0.5) 25 logn

)
≤ exp (−4.5 logn) = O

(
1
n4

)
.

Due to union bound, we know that Pr (R) ≥ 1−O
(1
n3

)
. C

We also have the following corollary due to Claim 38:

I Corollary 39. With probability at least 1−O
(1
n3

)
, |M ∩ S| ≥ n

50 .

We are ready to define the candidate set S′ in Theorem 36, but before that we give a
final definition:

FSTTCS 2020

11:14 Online Matching with Recourse: Random Edge Arrivals

I Definition 40. Consider edges e ∈M (i) and f ∈M (j) (see 3.12 for the definition of M (i)).
Then let d (e, f) = min {t− |i− j|, |i− j|}.

LetM∩S =
{
ei1 , · · · , eiq

}
. Let us assume without loss of generality that before the arrival

of ei1 , the set V (Gi1−1) is even, so by Theorem 16 the graph Gi1−1 has a perfect matching.

We define S′ to contain every second edge of M ∩S: that is, S′ =
{
ei2 , ei4 , · · · , ei2b q2c

}
. For

the rest of the proof we proceed as follows: we will show that with high probability, when
ei2s arrives, it will join an augmenting path ending at ei2s−1 where s ∈

{
1, · · · ,

⌊
q
2
⌋}

. Let
ei2s ∈M (j) and ei2s+1 ∈M (j′). Then, the length of the augmenting path that ei2s−1 joins is
at least d(ei2s−1 , ei2s) = min {t− |j′ − j|, |j′ − j|}. We prove that the expected value of this
quantity is at least Ω

(
n

logn

)
.

We prove the following observation:

I Lemma 41. Let e and f be two edges that are chosen uniformly at random from M . Then,
E [d (e, f)] ≥ n

2000 logn .

Proof. The total number of possible choices for (e, f) =
(
n
5
)
·
(
n
5 − 1

)
. The total number

choices for (e, f) such that d (e, f) = k, are
(

n
500 logn

)
· (100 logn) · (200 logn). To see this,

fix a layer for e, then the number of choices of f for which d (e, f) = k are exactly 200 logn.
Finally, the total number possible choices of layers for e is n

500 logn . This implies that:

Pr (d (e, f) = k) =

(
n

500 logn

)
· (100 logn) · (200 logn)(
n
5
)
·
(
n
5 − 1

)
≥

(
n

500 logn

)
· (100 logn) · (200 logn)(

n
5
)
·
(
n
5
)

≥ 1000 logn
n

.

Finally, we have that:

E [d (e, f)] =
t
2∑

k=0
k · Pr (d (e, f) = k) ≥ t

4 = n

2000 logn. J

We state an immediate corollary of Lemma 41:

I Corollary 42. For all s ∈
{

1, · · · ,
⌊
q
2
⌋}

, E
[
d
(
ei2s−1 , ei2s

)]
≥ n

2000 logn .

I Lemma 43. If Gp·m contains a perfect matching or a near perfect matching for all
p ∈

{
0.5, 0.5·m+1

m , · · · , 0.75·m−1
m , 0.75

}
, then for all s ∈

{
1, · · · ,

⌊
q
2
⌋}

, ei2s joins an augmenting
path that ends in ei2s−1 .

Proof. We remind the reader that |V (Gp·m) | is a random variable (check Definition 14)
and it’s value increases if and only if the edges in M arrive. Recall the assumption that
|V (Gi1−1) | is even. Upon the arrival of ei1 , we have a near perfect matching in the graph,
and this remains the case until ei2 arrives. At this point under our assumption, there must
be a perfect matching in the graph. However, the matching that is currently maintained
by the algorithm leaves the vertices are the end points of ei1 and ei2 in D unmatched.
(Here we use the simplifying assumption from the preliminaries that the algorithm is only-
augmenting, so since the arrival of ei1 does not increase the size of the maximum matching,

A. Bernstein and A. Dudeja 11:15

and since the algorithm only changes the matching via augmenting paths, the endpoint of
ei1 in D remains free until the arrival of ei2 .) It follows that these endpoints are joined
together by an augmenting path. Continuing this way, we can prove the theorem for any
s ∈

{
1, · · · ,

⌊
q
2
⌋}

. J

Proof (Theorem 36). Let F be the event that there is an S′ ⊂ S, |S′| ≥ n
100 such that each

e ∈ S′ augments along a path of expected length at least Ω
(

n
logn

)
. Note that the event F

fails to happen if one of these go wrong:
1. |S′| ≤ n

100 . We call this event ¬U . We know from Corollary 39 that Pr (¬U) = O
(1
n3

)
.

This is because S′ just takes alternate elements from S.
2. Let V be the event that for all p ∈

{
0.5, 0.5·m+1

m , · · · , 0.75·m−1
m , 0.75

}
, Gp·m contain a

perfect matching or a near perfect matching. Then, from Lemma 43 we know that V
implies that for all s ∈

{
1, · · · ,

⌊
q
2
⌋}

, ei2s−1 joins an augmenting path ending in ei2s .
From Corollary 42, we know all these paths have expected length at least n

2000 logn . We
know from Corollary 19, that Pr (¬V) = O

(1
n

)
.

It follows that the occurrence of A and B implies the occurrence of F . Consequently,
Pr (F) ≥ 1− Pr (¬U)− Pr (¬V) ≥ 1−O

(1
n

)
. J

4 Conclusion and Open Problems

We consider the problem of maximum matching with recourse in the random edge-arrival
setting. The goal is to compute the expected recourse. As mentioned in the introduction,
there are strong lower bounds of Ω

(
n2) in the adversarial edge-arrival model, even for the case

of simple paths. For random edge-arrivals, we can do significantly better for special classes
of graphs: we prove an upper bound of O (n logn) for the case of paths and O

(
n log2 n

)
for

the case of trees. This bound is tight up to logn factors, since we prove that for the case
of paths, any algorithm must take expected total recourse of Ω (n logn). But for general
graphs, we show that random arrival is basically as hard as adversarial arrival: we give a
family of graphs for which the expected recourse is at least Ω

(
n2

logn

)
.

An interesting open question is the case of bipartite graphs: if edge-arrivals are random,
can we prove a similar lower bound of Ω

(
n2

polylog(n)

)
on the expected recourse? Our current

lower-bound construction seems hard to extend to the bipartite case, as our proof crucially
relies on the fact that after a constant fraction of the edges have arrived, if we focus only on
the non-isolated vertices in the lower-bound graph G, then G contains a perfect matching
with high probability. This allowed us to force the adversary to take an augmenting path
between every new pair of non-isolated vertices. But in the case of bipartite graphs, it
seems difficult to guarantee a perfect matching between the non-isolated vertices because the
number of non-isolated vertices on the left might not be equal to the number on the right; in
fact, they are likely to differ by a Θ (

√
n) factor.

References

1 Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amortized
o(log2 n) replacements. Journal of the ACM (JACM), 66(5):1–23, 2019.

2 Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite
matching in offline time. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 384–393. IEEE, 2014.

FSTTCS 2020

11:16 Online Matching with Recourse: Random Edge Arrivals

3 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Shortest augmenting
paths for online matchings on trees. In International Workshop on Approximation and Online
Algorithms, pages 59–71. Springer, 2015.

4 Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych-Pawlewicz. A tight
bound for shortest augmenting paths on trees. In Latin American Symposium on Theoretical
Informatics, pages 201–216. Springer, 2018.

5 Kamalika Chaudhuri, Constantinos Daskalakis, Robert D Kleinberg, and Henry Lin. Online
bipartite perfect matching with augmentations. In IEEE INFOCOM 2009, pages 1044–1052.
IEEE, 2009.

6 Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

7 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1773–1785. SIAM, 2020. doi:10.1137/1.9781611975994.108.

8 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 491–500, 2019.

9 Edward F Grove, Ming-Yang Kao, P Krishnan, and Jeffrey Scott Vitter. Online perfect
matching and mobile computing. In Workshop on Algorithms and Data Structures, pages
194–205. Springer, 1995.

10 Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching,
scheduling, and flows. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 468–479. SIAM, 2014.

11 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2000. doi:10.1002/9781118032718.

12 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 734–751. SIAM, 2014.

13 Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 587–596, 2011.

14 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 352–358, 1990.

15 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 231–242. Springer, 2012.

16 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 597–606, 2011.

https://doi.org/10.1137/1.9781611975994.108
https://doi.org/10.1002/9781118032718

Hard QBFs for Merge Resolution
Olaf Beyersdorff
Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
olaf.beyersdorff@uni-jena.de

Joshua Blinkhorn
Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
joshua.blinkhorn@uni-jena.de

Meena Mahajan
The Institute of Mathematical Sciences, HBNI, Chennai, India
meena@imsc.res.in

Tomáš Peitl
Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
tomas.peitl@uni-jena.de

Gaurav Sood
The Institute of Mathematical Sciences, HBNI, Chennai, India
gauravs@imsc.res.in

Abstract
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [6]), a
refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike
most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together
with information on countermodels, which are syntactically stored in the proofs as merge maps.
As demonstrated in [6], this makes MRes quite powerful: it has strategy extraction by design and
allows short proofs for formulas which are hard for classical QBF resolution systems.

Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of
MRes. Technically, the results are either transferred from bounds from circuit complexity (for
restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our
results imply that the MRes approach is largely orthogonal to other QBF resolution models such as
the QCDCL resolution systems QRes and QURes and the expansion systems ∀Exp + Res and IR.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases QBF, resolution, proof complexity, lower bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.12

Funding Olaf Beyersdorff : John Templeton Foundation (grant no. 60842), Carl Zeiss Foundation.
Tomáš Peitl: Grant J-4361 of the Austrian Science Fund FWF.

Acknowledgements Part of this work was done during the Dagstuhl Seminar “SAT and Interactions”
(Seminar 20061).

1 Introduction

Proof complexity aims to provide a theoretical understanding of the ease or difficulty of
proving statements formally. It also aims to explain the success stories of, as well as the
obstacles faced by, algorithmic approaches to hard problems such as satisfiability (SAT) and
Quantified Boolean Formulas (QBF) [18,28]. While propositional proof complexity, the study
of proofs of unsatisfiability of propositional formulas, has been around for decades [19,26],
the area of QBF proof complexity is relatively new, with theoretical studies gaining traction
only in the last decade or so [2,7, 9, 10]. While inheriting and using a wealth of techniques
from propositional proof complexity [11,13, 24], QBF proof complexity has also given several

© Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl, and Gaurav Sood;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2870-1648
mailto:olaf.beyersdorff@uni-jena.de
https://orcid.org/0000-0001-7452-6521
mailto:joshua.blinkhorn@uni-jena.de
https://orcid.org/0000-0002-9116-4398
mailto:meena@imsc.res.in
https://orcid.org/0000-0001-7799-1568
mailto:tomas.peitl@uni-jena.de
https://orcid.org/0000-0001-6501-6589
mailto:gauravs@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Hard QBFs for Merge Resolution

new perspectives specific to QBF [5,23,34], and these perspectives and their connections to
QBF solving [31, 38] as well as their practical applications [33] have driven the search for
newer proof systems [1, 10,21,27,29].

Many of the currently known QBF proof systems are built on the best-studied propositional
proof system resolution [16,32]. Broadly speaking, resolution has been adapted to handle
the universal variables in QBFs in two intrinsically different ways. The first is an expansion-
based approach: universal variables are eliminated at the outset by implicitly expanding the
universal quantifiers into conjunctions, creating annotated copies of existential variables.
The systems ∀Exp + Res, IR, and IRM [10,23] are of this type. The second is a reduction-
rule approach: under certain conditions, resolution may be blocked, and also under certain
conditions, universal variables can be deleted from clauses. The conditions are formulated to
preserve soundness, ensuring that if a QBF is true, then so is the QBF resulting from adding
a derived clause. The systems QRes, QURes, CP + ∀Red [12,25,36] are of this type.

A central role in QBF proof complexity is played by the two-player evaluation game on
QBFs, and the existence of winning strategies for the universal player in false QBFs. For
many QBF resolution systems, such strategies were used to construct proofs and demonstrate
completeness, and soundness was demonstrated by extracting such strategies from proofs
[1,10,20]. The strategy extraction procedures build partial strategies at each line of the proof,
with the strategies at the final line forming a complete countermodel. These extraction
procedures are based on the fact that in each application of a rule in the proof system, any
winning strategies of the existential player are not destroyed.

In the systems QRes [25] and QURes [36], the soundness of the resolution rule is ensured
by enforcing a very simple side-condition: variables other than the pivot cannot appear in
both polarities in the antecedents. It was observed early on that this is often too restrictive.
The long-distance resolution proof system LD-QRes [1, 38] arose from efforts to have less
restrictive but still sound rules. In this system, a universal variable could appear in both
polarities and get merged in the consequent, provided it was to the right of the pivot in the
quantifier prefix. This preserves soundness, but the strategy extraction procedures become
notably more complex.

The system LD-QRes, while provably better than QRes [20], is still needlessly restrictive
in some situations. In particular, by checking a very simple syntactic prefix-ordering condition,
it fails to exploit the fact that soundness is not lost even if universal variables to the left
of the pivot are merged in both antecedents, provided the partial strategies built for them
in both antecedents are identical. A new system Merge Resolution (MRes) was introduced
last year [6] by a subset of the current authors, precisely to address this point. In MRes,
partial strategies are explicitly represented within the proof, in a particular representation
format called merge maps – these are essentially deterministic branching programs (DBPs).
In this format, isomorphism checking can be done efficiently, and this opens the way for
enabling sound applications of resolution that would have been blocked in LD-QRes (and
QRes). In [6], it was shown that this brought a rich pay-off: there is a family of formulas, the
SquaredEquality formulas, with short (linear-size) proofs in MRes, even in its tree-like and
regular versions, but requiring exponential size in QRes, QURes, CP + ∀Red, ∀Exp + Res,
and IR. It is notable that the hardness of SquaredEquality in these systems stems from a
certain semantic cost associated with these formulas and a corresponding lower bound [4, 5].
Thus the results of [6] show that such semantic costs are not a barrier for MRes.

In this paper, we explore the price paid for overcoming the semantic cost barrier. We
show that (expectedly) MRes is not an unqualified success story. Building strategies into
proofs via merge maps, and screening out unsoundness only through isomorphism tests,
comes at a fairly heavy price.

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:3

MRes

Regular
MRes

Tree-like
MRes

CP + ∀Red

QURes

QRes LD-QRes

IR

∀Exp + Res

A B A p-simulates B

A B
A strictly
p-simulates B

A B
A and B are
incomparable

Figure 1 Visual summary of the proof complexity landscape, with new results shown in bold.
Dotted lines to the box containing the four systems on the right indicate incomparability with all the
four systems. All incomparability results with tree-like MRes hold also with the tree-like systems.

(A) Lower bounds from circuit complexity for restricted versions of MRes. Since the
strategies are explicitly represented inside the proofs, computational hardness of strategies
immediately translates to proof size lower bounds. While computational hardness of strategies
is a known source of hardness in all reduction-based proof systems admitting efficient strategy
extraction [8,10], the computational model relevant for MRes is one for which no unconditional
lower bounds are known. For tree-like and regular MRes, the relevant models are decision
trees and read-once DBPs, where lower bounds are known. Using this approach, we show:
1. Tree-like MRes is exponentially weaker than MRes.

The QParity formulas witness the separation (Theorem 7) as their unique countermodel
is the parity function which requires large decision trees.

2. Tree-like MRes is incomparable with the dag-like and tree-like versions of QRes, QURes,
CP + ∀Red, ∀Exp + Res and IR.
One direction was shown in [6] via the SquaredEquality formulas: these formulas are
easy for tree-like MRes but hard for dag-like QRes, QURes, CP + ∀Red, ∀Exp + Res,
IR. The other direction is witnessed by the Completion Principle formulas (Theorem 9).
Unlike the QParity formulas, these formulas do not have unique countermodels. However,
we show that every countermodel requires large decision tree size, and hence obtain the
lower bound for tree-like MRes.

(B) Combinatorial lower bounds for full MRes. Even when winning strategies are unique
and easy to compute by DBPs, the formulas can be hard for MRes. We establish such
hardness in two cases, obtaining more incomparabilities.

FSTTCS 2020

12:4 Hard QBFs for Merge Resolution

1. The LQParity formulas, easy in ∀Exp+Res [10], are exponentially hard for regular MRes
(Theorem 13). Hence regular MRes is incomparable with ∀Exp + Res and IR.

2. The KBKF-lq formulas, easy in QURes [2], are exponentially hard for MRes (Theorem 19).
Hence MRes and regular MRes are incomparable with QURes and CP + ∀Red.

The second hardness result above for the KBKF-lq formulas provides the first lower
bound for the full system of MRes, for which previously no lower bounds were known.

It may be noted that for existentially quantified QBFs, all the QBF proof systems
mentioned in this paper coincide with Resolution (or in case of CP + ∀Red, with Cutting
Planes). Therefore lower bounds for these propositional proof systems trivially lift to the
corresponding QBF proof system. In particular, the separations of tree-like and regular
MRes from MRes and other systems follow from the propositional case. However, such lower
bounds do not tell us much about the limitations of the QBF proof system other than what is
known from the underlying propositional proof system. Therefore, in QBF proof complexity,
we are interested in “genuine” QBF lower bounds, i.e. lower bounds that do not follow from
propositional lower bounds (cf. [14] on how to formally define the notion of “genuine” lower
bounds). The lower bounds we establish here are of this nature.

Figure 1 depicts the simulation order and incomparabilities we establish involving MRes
and its refinements. Amongst the remaining systems (the five systems on the right), all
relationships not directly implied by depicted connections are known to be incomparabilities
[10,12,23].

2 Preliminaries

Let [n] = {1, 2, . . . , n} and [m,n] = {m, . . . , n}. We represent clauses by sets of literals.
The resolution rule derives, from clauses C ∨ x and D ∨ ¬x, the clause C ∨D. We say

that C ∨D is the resolvent, x is the pivot, and denote this by C ∨D = res(C ∨ x,D ∨¬x, x).
The propositional proof system Resolution proves that a CNF formula F is unsatisfiable

by deriving the empty clause through repeated applications of the resolution rule.

Quantified Boolean formulas. A Quantified Boolean formula (QBF) in prenex conjunctive
normal form is denoted Φ := Q ·φ, where (a) Q = Q1Z1Q2Z2 . . . QkZk is the quantifier prefix,
in which Zi are pairwise disjoint finite sets of Boolean variables, Qi ∈ {∃,∀} for each i ∈ [k]
and Qi 6= Qi+1 for each i ∈ [k − 1], and (b) the matrix φ is a CNF over vars(Φ) := ∪i∈[k]Zi.

The existential (resp. universal) variables of Φ, typically denoted X or X∃ (resp. U or
X∀) is the set obtained as a union of Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q
defines a binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi, z′ ∈ Zj , and
i < j, in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X | x <Q u}, i.e. the existential variables left of u.

For a set of variables Z, let 〈Z〉 denote the set of assignments to Z. A strategy h for a QBF
Φ is a set {hu | u ∈ U} of functions hu : 〈LQ(u)〉 → {0, 1} (for each α ∈ 〈X〉, hu(α�LQ(u))
and h(α) should be interpreted as a Boolean assignment to the variable u and the variable
set U respectively). Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by
the assignment (α, h(α)) is false. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

The semantics of QBFs is also explained by a two-player evaluation game played on a
QBF. In a run of the game, two players, the existential and the universal player, assign
values to the variables in the order of quantification in the prefix. The existential player wins
if the assignment so constructed satisfies all the clauses of φ; otherwise the universal player
wins. Assigning values according to a countermodel guarantees that the universal player
wins no matter how the existential player plays; hence the term “winning strategy”.

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:5

2.1 The formulas
We describe the formulas we will use throughout the paper.

The QParity and LQParity formulas [10]. Let parityc(y1, y2, . . . , yk) be a shorthand
for the following conjunction of clauses:

∧
S⊆[k], |S|≡1(mod 2) ((∨i∈Syi) ∨ (∨i 6∈Syi)). Thus

parityc(y1, y2, . . . , yk) is equal to 1 iff y1 + y2 + · · ·+ yk ≡ 0 (mod 2). QParityn is the QBF
∃x1, . . . , xn,∀z,∃t1, . . . , tn.

(∧
i∈[n+1] φ

i
n

)
where

φ1
n = parityc(x1, t1); ∀i ∈ [2, n], φi

n = parityc(ti−1, xi, ti); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

The QBFs are false: they claim that there exist x1, . . . , xn such that x1 + · · ·+ xn is neither
congruent to 0 nor 1 modulo 2. Note that the only winning strategy for the universal player
is to play z satisfying z ≡ x1 + · · ·+ xn (mod 2).

Similarly, let p̂arityc(y1, y2, . . . , yk, z) abbreviate
∧

C∈parityc(y1,y2,...,yk)
(
(C ∨ z)∧ (C ∨ z)

)
.

LQParityn is the QBF ∃x1, . . . , xn,∀z,∃t1, . . . , tn.
(∧

i∈[n+1] φ
i
n

)
where

φ1
n = p̂arityc(x1, t1, z); ∀i ∈ [2, n], φi

n = p̂arityc(ti−1, xi, ti, z); φn+1
n = (tn ∨ z)∧

(
tn ∨ z

)
.

For both QParityn and LQParityn, for i, j ∈ [n + 1], i ≤ j, we let φ[i,j]
n denote

∧
k∈[i,j] φ

k
n.

Also, X = {x1, . . . , xn} and T = {t1, . . . , tn}.

I Observation 1. For both QParityn and LQParityn: (a) for each i ∈ [n], and each C ∈ φi
n,

{xi, ti} ⊆ var(C); and (b) for each i ∈ [n+ 1] \ {1}, and each C ∈ φi
n, {ti−1} ⊆ var(C).

The Completion Principle formulas CRn [23]. The QBF CRn is defined as follows:

CRn = ∃
i,j∈[n]

xij ,∀ z, ∃
i∈[n]

ai, ∃
j∈[n]

bj .

(
∧

i,j∈[n]
(Aij ∧Bij)

)
∧ LA ∧ LB

where Aij = xij ∨ z ∨ ai, Bij = xij ∨ z ∨ bj , LA = a1 ∨ · · · ∨ an, and LB = b1 ∨ · · · ∨ bn.
Let X,A,B denote the variable sets {xij : i, j ∈ [n]}, {ai : i ∈ [n]}, and {bj : j ∈ [n]}. It is
convenient to think of the X variables as arranged in an n× n matrix.

Intuitively, the formulas describe a completion game, played on the matrix(
a1 . . . a1 . . . an . . . an

b1 . . . bn . . . b1 . . . bn

)
where the ∃-player first deletes exactly one cell per column and the ∀-player then chooses
one row. The ∀-player wins if his row contains all of A or all of B (cf. [23]).

The KBKF-lq[n] formulas [2]. Our last QBFs are a variant of the formulas introduced by
Kleine Büning et al. [25], which in various versions appear prominently throughout the QBF
literature [2,5, 10,20,36]. For n > 1, the nth member of the KBKF-lq[n] family consists of
the prefix ∃d1, e1,∀x1,∃d2, e2,∀x2, . . . ,∃dn, en,∀xn,∃f1, f2, . . . , fn and clauses

A0 = {d1, e1, f1, . . . , fn}
Ad

i = {di, xi, di+1, ei+1, f1, . . . , fn} Ae
i = {ei, xi, di+1, ei+1, f1, . . . , fn} ∀i ∈ [n− 1]

Ad
n = {dn, xn, f1, . . . , fn} Ae

n = {en, xn, f1, . . . , fn}
B0

i = {xi, fi, fi+1, . . . fn} B1
i = {xi, fi, fi+1, . . . fn} ∀i ∈ [n− 1]

B0
n = {xn, fn} B1

n = {xn, fn}

FSTTCS 2020

12:6 Hard QBFs for Merge Resolution

Note that the existential part of each clause in KBKF-lq[n] is a Horn clause (at most one
positive literal), and except A0, is even strict Horn (exactly one positive literal).

We use the following shorthand notation. Sets of variables: D = {d1, . . . , dn}, E =
{e1, . . . , en}, F = {f1, . . . , fn}, and X = {x1, . . . , xn}. Sets of literals: For Y ∈ {D,E,X, F},
set Y 1 = {u | u ∈ Y } and Y 0 = {u | u ∈ Y }. Sets of clauses:

A0 = {A0}
Ai = {Ad

i , A
e
i} ∀i ∈ [n] Bi = {B0

i , B
1
i } ∀i ∈ [n]

A[i,j] = ∪k∈[i,j]Ak ∀i, j ∈ [0, n], i ≤ j B[i,j] = ∪k∈[i,j]Bk ∀i, j ∈ [n], i ≤ j
A = A[0,n] B = B[1,n]

We use the following property of these formulas:

I Proposition 2. Let h be any countermodel for KBKF-lq[n]. Let α be any assignment to
D, and β be any assignment to E.
For each i ∈ [n], if αj 6= βj for all 1 ≤ j ≤ i, then hxi

(
(α, β)�LQ(xi)

)
= αi.

In particular, if αj 6= βj for all j ∈ [n], then the countermodel computes h(α, β) = α.

2.2 The Merge Resolution proof system [6]
The formal definition of the Merge Resolution proof system, denoted MRes, is rather technical
and can be found in [6]. Here we present a somewhat informal description.

First, we describe the idea behind the proof system. MRes is a line-based proof system.
Each line L has a clause C with only existential literals, and a partial strategy hu for each
universal variable u. The idea is to maintain the invariant that for each existential assignment
α, if α falsifies C, then α extended by the partial universal assignment setting each u to hu(α)
falsifies at least one of the clauses used to derive L. Thus the set of functions {hu} gives a
partial strategy that wins whenever the existential player plays from the set of assignments
falsifying C. The goal is to derive a line with the empty clause; the corresponding strategy
at that line will be a complete winning strategy, a countermodel. Along the way, resolution
is used on the clauses. If the pivot is x, then for universal variables u right of x, the partial
strategies can be combined with a branching decision on x. However, for u left of x, in
the evaluation game, the value of u is already set when x is to be assigned. Thus already
existing non-trivial partial strategies for u cannot be combined with a branching decision,
and so this resolution step is blocked. However, if both the strategies are identical, or if
one of them is trivial (unspecified), then the non-trivial strategy can be carried forward
while maintaining the desired invariant. Checking whether strategies are identical can itself
be hard, making verification of the proof difficult. In MRes, this is handled by choosing a
particular representation called merge maps, where isomorphism checks are easy.

Now we can describe the proof system itself. First we describe merge maps. Syntactically,
these are deterministic branching programs, specified by a sequence of instructions of one of
the following two forms:
〈line `〉 : b where b ∈ {∗, 0, 1}.1
Merge maps containing a single such instruction are called simple. In particular, if b = ∗,
then they are called trivial.
〈line `〉 : If x = 0 then go to 〈line `1〉 else go to 〈line `2〉, for some `1, `2 < `. In a merge
map M for u, all queried variables x must precede u in the quantifier prefix.
Merge maps with such instructions are called complex.

1 In [6], the notation used is b ∈ {∗, u, ū}; u, ū, ∗ denote u = 1, u = 0, undefined respectively.

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:7

(All line numbers are natural numbers.) The merge map Mu computes a partial strategy
for the universal variable u starting at the largest line number (the leading instruction) and
following the instructions in the natural way. The value ∗ denotes an undefined value.

Two merge maps M1,M2 are said to be consistent, denoted M1 ./ M2, if for every line
number i appearing in both M1,M2, the instructions with line number i are identical. Two
merge maps M1,M2 are said to be isomorphic, denoted M1 ' M2, if there is a bijection
between the line numbers in M1 and M2 that transforms M1 to M2 in the natural way.

For the remainder of this section let Φ = Q · φ be a QBF with existential variables X
and universal variables U . The proof system MRes has the following rules:
1. Axiom: For a clause A in the matrix φ, let C be the existential part of A. For each

universal variable u, let bu be the value u must take to falsify A; if u 6∈ var(A), then
bu = ∗. For any natural number i, the line (C, {Mu : u ∈ U}) where each Mu is the
simple merge map 〈i〉 : bu can be derived in MRes.

2. Resolution: From lines La = (Ca, {Mu
a : u ∈ U}) for a ∈ {0, 1}, in MRes, the line

L = (C, {Mu : u ∈ U}) can be derived, where for some x ∈ X,
C = res(C0, C1, x), and
for each u ∈ U , either Mu

a is trivial and Mu = Mu
1−a for some a, or Mu = Mu

0 'Mu
1 ,

or x precedes u and Mu has a leading instruction that builds the complex merge map
If x = 0 then 〈Mu

0 〉 else 〈Mu
1 〉.

A refutation is a derivation using these rules and ending in a line with the empty existential
clause. The size of the refutation is the number of lines. In the rest of this paper, we will
denote refutations by the Greek letter Π.

A small but important illustrative example from [6] is reproduced in the appendix.
As shown in [6], the merge maps at the final line compute a countermodel for the QBF.

To establish this, some stronger properties of the derivation are established and will be useful
to us. We restate the relevant properties here.

I Lemma 3 (Extracted/adapted from [6] Section 4.3, (Proof of Lemma 21)). Let Φ = Q · φ
be a QBF with existential variables X and universal variables U . Let Π def= L1, . . . , Lm be an
MRes refutation of Φ, where each Li = (Ci, {Mu

i | u ∈ U}). Further, for each i ∈ [m],
let αi be the minimal partial assignment falsifying Ci,
let Ai be the set of assignments to X consistent with αi,
for each u ∈ U , let hu

i be the function computed by Mu
i ,

for each α ∈ Ai, let hi(α) be the partial assignment which sets variable u to hu
i (α�LQ(u))

if hu
i (α�LQ(u)) 6= ∗, and leaves it unset otherwise.

Then for each α ∈ Ai, the assignment (α, hi(α)) falsifies at least one clause of φ used in the
sub-derivation of Li.

Let GΠ be the derivation graph corresponding to Π (with edges directed from the
antecedents to the consequent, hence from the axioms to the final line).

I Proposition 4 ([6]). For all u ∈ U , Mu
m is isomorphic to a subgraph of GΠ (up to path

contraction).

Let S be a subset of the existential variables X of Φ. We say that an MRes refutation of
Φ is S-regular if for each x ∈ S, there is no leaf-to-root path that uses x as pivot more than
once. An X-regular proof is simply called a regular proof. If GΠ is a tree, then we say that
Π is a tree-like proof.

FSTTCS 2020

12:8 Hard QBFs for Merge Resolution

3 Lifting branching program lower bounds

The following lemma is an immediate consequence of Proposition 4.

I Lemma 5. Let Π def= L1, . . . , Lm be an MRes refutation. If Π is tree-like (resp. regular),
then for all u ∈ U , Mu

m is a decision tree (resp. read-once branching program). Moreover,
the size of Π is lower bounded by the size of Mu

m.

This lemma allows us to lift lower bounds for decision trees (resp. read-once branching
programs) to lower bounds for tree-like (resp. regular) Merge Resolution.

For QParityn and LQParityn, the only winning strategy for the universal player is to set
z such that z ≡ x1 + x2 + · · ·+ xn (mod 2).

I Proposition 6 (Folklore). The decision tree size complexity of the parity function is 2n.

I Theorem 7. sizeMResTree(QParityn) = 2Ω(n) and sizeMResTree(LQParityn) = 2Ω(n).

For the QBF CRn, the winning strategy for the universal player (countermodel) is not
unique. However, we show that all countermodels require large decision trees.

I Lemma 8. Every countermodel for CRn has decision tree size complexity at least 2n.

I Theorem 9. sizeMResTree(CRn) = 2Ω(n).

I Corollary 10. Tree-Like MRes is incomparable with the tree-like and general versions of
QRes, QURes, CP + ∀Red, ∀Exp + Res, and IR.

Proof. We showed in Theorem 9 that the Completion Principle CRn requires exponential-size
refutations in tree-like Merge Resolution. It has polynomial-size refutations in tree-like QRes
[22] (and hence also in QURes and CP + ∀Red) and tree-like ∀Exp + Res [23] (and hence
also in IR). (While [23] does not explicitly mention tree-like proofs, the proof provided there
for CRn is tree-like.) On the other hand, the formulas EQn have polynomial-size tree-like
MRes refutations [6] but require exponential-size refutations in QRes, QURes, CP+∀Red [5],
∀Exp + Res, IR [4] (cf. [3] on how to apply the lower bound technique from [4] to EQn). J

We now show how to lift lower bounds for read-once branching programs to those for
regular MRes. This follows the method used, for instance, in [10] (Section 4.1) and [30]
(Section 6). Let f : X → {0, 1} be a Boolean function, let Cf be a Boolean circuit encoding
f , and let u be a variable not in X. Using Tseitin transformation [35], we can construct
a CNF formula φ(X,u, Y) such that ∃Y.φ(X,u, Y) is logically equivalent to Cf (X) 6= u.
Therefore, Φ := ∃X∀u∃Y.φ(X,u, Y), called the QBF encoding of f , is a false QBF formula
with f as the unique winning strategy. Moreover, the size of Φ is polynomial in the size of
Cf . Choosing a function f that can be computed by polynomial-size Boolean circuits but
requires exponential-size read-once branching programs gives the desired lower bound. Many
such functions are known [37]. For instance, we can use the following result:

I Theorem 11 ([17]). There is a Boolean function f in n variables that can be computed by
a Boolean circuit of size O(n3/2) but requires read-once branching programs of size 2Ω(

√
n).

I Corollary 12. There is a Boolean function f in n variables with a QBF encoding Φ of size
polynomial in n such that any regular MRes refutation of Φ has size 2Ω(

√
n).

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:9

4 A lower bound for Regular Merge Resolution

In this section, we prove a lower for a formula whose countermodel can be computed by
polynomial-size read-once branching programs.

I Theorem 13. sizeMResReg(LQParityn) = 2Ω(n).

This follows from a stronger result that we prove below: any T -regular refutation of LQParityn

in MRes must have size 2Ω(n) (Theorem 17).
The proof proceeds as follows: Let Π be a T -regular MRes refutation of LQParityn.

Since every axiom has a variable from T while the final clause in Π is empty, there is a
maximal “component” of the proof leading to and including the final line, where all clauses
are T -free. The clauses in this component involve only the X variables. We show that the
“boundary” of this component is large, by showing in Lemma 16 that each clause here must
be wide. (This idea was used in [30] to show that CR is hard for reductionless LD-QRes.) To
establish the width bound, we note that no lines have trivial strategies. Since the pivots at
the boundary are variables from T , the merge maps incoming into each boundary resolution
must be isomorphic. By carefully analysing what axiom clauses can and must be used to
derive lines just above the boundary (Lemma 15), we conclude that the merge maps must be
simple, yielding the lower bound. To fill in all the details, we first describe some properties
(Lemma 14) of Π that will be used in obtaining this result.

The lines of Π will be denoted by L,L′, L′′ etc. For lines L and L′ the respective clause,
merge map and the function computed by the merge map will be denoted by C, M , h and
C ′, M ′, h′ respectively. Let GΠ be the derivation graph corresponding to Π (with edges
directed from the antecedents to the consequent, hence from the axioms to the final line).
We will refer to the nodes of this graph by the corresponding line. For L,L′ ∈ Π, we will say
L L′ if there is a path from L to L′ in GΠ.

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the

corresponding subgraph of GΠ with sink L. Define UsedConstraints(ΠL) = {φi
n | i ∈

[n + 1], leaves(GΠL
) ∩ φi

n 6= ∅}, and Uci(ΠL) = {i ∈ [n + 1] | φi
n ∈ UsedConstraints(ΠL)}.

(Uci stands for UsedConstraintsIndex.) Note that for any leaf L, Uci(ΠL) is a singleton.
Define S ′ to be the set of those lines in Π where the clause part has no T variable and

furthermore there is a path in GΠ from the line to the final empty clause via lines where all
the clauses also have no T variables. Let S denote the set of leaves in the subgraph of GΠ
restricted to S ′; these are lines that are in S ′ but their parents are not in S ′. Note that no
leaf of Π is in S ′ because all leaves of GΠ contain a variable in T .

I Lemma 14. Let L = (C,M) be a line of Π. Then Uci(ΠL) is an interval [i, j] for some
1 ≤ i ≤ j ≤ n+ 1. Furthermore, (below i, j refer to the endpoints of this interval)
1. For all k ∈ [i, j − 1], tk 6∈ var(C).
2. If i > 1, then ti−1 ∈ var(C).
3. If j ≤ n, then tj ∈ var(C).
4. |var(C) ∩ T | = 1 iff [i, j] contains exactly one of 1, n+ 1.

var(C) ∩ T = ∅ iff [i, j] = [1, n+ 1].
5. For all k ∈ [i, j] ∩ [1, n], xk ∈ var(C) ∪ var(M).

I Lemma 15. Let L ∈ S be derived in Π as L = res(L′, L′′, tk). Then Uci(ΠL) = [1, n+ 1],
and Uci(ΠL′),Uci(ΠL′′) partition [1, n+ 1] into [1, k], [k + 1, n+ 1].

I Lemma 16. For all L ∈ S, width(C) = n.

FSTTCS 2020

12:10 Hard QBFs for Merge Resolution

I Theorem 17. Every T -regular refutation of LQParityn in MRes has size 2Ω(n).

Proof. Let Π be a T -regular refutation of LQParityn in MRes. Let S ′,S be as defined in
the beginning of this sub-section. By definition, for each L = (C,M) ∈ S′, var(C) ⊆ X.
Let Π̂ = {C | L = (C,M) ∈ S′}. Then Π̂ contains a propositional resolution refutation
of C = {C | L = (C,M) ∈ A}. Therefore C is an unsatisfiable CNF formula over the n
variables in X. By Lemma 16, each clause in C has width n and so is falsified by exactly one
assignment. Therefore, to ensure that each of the 2n assignments falsifies some clause, (at
least) 2n clauses are required. Therefore |C| > 2n. Hence |Π| > 2n. J

I Corollary 18. Regular MRes is incomparable with ∀Exp + Res and IR.

5 A lower bound for Merge Resolution

In this section we show that the KBKF-lq formulas are exponentially hard for MRes.

I Theorem 19. sizeMRes(KBKF-lq[n]) = 2Ω(n).

Proof idea

We will show that, in any MRes refutation of the KBKF-lq formulas, the literals over
the variables in F = {f1, f2, . . . , fn} must be removed before the strategies become “very
complex”. From this we conclude that there must be exponentially many lines.

To argue that literals over F must be removed before the strategies become “very complex”,
we look at the form of the lines containing literals over F . If any such line has a “very
complex” strategy (by which we mean that for some i ∈ [n], ui depends on either di or ei),
then the literals over F cannot be removed from the clause.

Elaborating on the roadmap of the argument: Let Π be an MRes refutation of KBKF-lq[n].
Each line in Π has the form L = (C,Mx1 , . . . ,Mxn) where C is a clause over D,E, F , and
each Mxi is a merge map computing a strategy for xi.

Define S ′ to be set of those lines in Π where the clause part has no F variable and
furthermore the line has a path in GΠ to the final empty clause via lines where all the clauses
also have no F variables. Let S denote the set of leaves in the subgraph of GΠ restricted to
S ′; these are lines that are in S ′ but their parents are not in S ′. Note that by definition,
for each L = (C, {Mxi | i ∈ [n]}) ∈ S ′, var(C) ⊆ D ∪ E. No line in S ′ (and in particular, no
line in S) is an axiom since all axiom clauses have variables from F .

Recall that the variables of KBKF-lq[n] can be naturally grouped based on the quantifier
prefix: for i ∈ [n], the ith group has di, ei, xi, and the (n+ 1)th group has the F variables.
By construction, the merge map for xi does not depend on variables in later groups, as is
indeed required for a countermodel. We say that a merge map for xi has self-dependence if
it does depend on di and/or ei.

We show that every merge map at every line in S ′ is non-trivial (Lemma 24). Further, we
show that at every line on the boundary of S ′, i.e. in S, no merge map has self-dependence
(Lemma 25). Using this, we conclude that S must be exponentially large, since in every
countermodel the strategy of each variable must have self-dependence (Proposition 2).

In order to show that lines in S do not have self-dependence, we first establish several
properties of the sets of axiom clauses used in a sub-derivation (Lemmas 20, 21, 22, 23).

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:11

Detailed proof

For a line L ∈ Π, let ΠL be the minimal sub-derivation of L, and let GΠL
be the corresponding

subgraph of GΠ with sink L. Let Uci(ΠL) = {i ∈ [0, n] | leaves(GΠL
)∩Ai 6= ∅}. (Uci stands

for UsedConstraintsIndex). Note that we are only looking at the clauses in A to define Uci.

I Lemma 20. For every line L = (C, {Mxi | i ∈ [n]}) of Π,
1. Uci(ΠL) = ∅ if and only if C ∩ F 1 6= ∅ if and only if |C ∩ F 1| = 1.
2. Uci(ΠL) 6= ∅ if and only if C ∩ F 1 = ∅.

I Lemma 21. A line L = (C, {Mxi | i ∈ [n]}) of Π with Uci(ΠL) = ∅ has these properties:
1. var(C) ⊆ F ; for all i ∈ [n], Mxi ∈ {∗, 0, 1};
2. For some j ∈ [n], fj ∈ C and Mxj ∈ {0, 1};
3. For 1 ≤ i < j, fi 6∈ var(C) and Mxi = ∗;
4. For j < i ≤ n, if fi 6∈ var(C), then Mxj ∈ {0, 1}.

I Lemma 22. Let L = (C, {Mxi | i ∈ [n]}) be a line of Π with Uci(ΠL) 6= ∅. Then Uci(ΠL)
is an interval [a, b] for some 0 ≤ a ≤ b ≤ n. Furthermore, (in the items below, a, b refer to
the endpoints of this interval), it has the following properties:
1. For k ∈ [n] ∩ [a, b], Mxk 6= ∗.
2. If a ≥ 1, then |{da, ea} ∩ C| = 1. If a = 0, then C does not have any positive literal.
3. If b < n, then db+1, eb+1 ∈ C.
4. For all k ∈ [n] \ [a, b], (i) dk, ek 6∈ var(Mxk), and (ii) if Mxk = ∗ then fk ∈ C.

I Lemma 23. For any line L = (C, {Mxi | i ∈ [n]}) in Π, and any k ∈ [n], if {dk, ek} ∩
var(Mxk) 6= ∅, then Uci(ΠL) = [a, n] for some a ≤ k − 1.

I Lemma 24. For all L ∈ S ′, for all k ∈ [n], Mxk 6= ∗.

Proof. Consider a line L = (C, {Mxi | i ∈ [n]}) ∈ S ′. Since L ∈ S ′, var(C) ∩ F = ∅, so
C ∩ F 1 = ∅. By Lemma 20, Uci(ΠL) 6= ∅. Since every clause in A contains all literals in
F 0, for each k ∈ [n], ΠL has a leaf where the clause contains fk. This literal is removed in
deriving L, so ΠL also has a leaf where the clause contains the positive literal fk. That is, it
uses an axiom from Bk; this leaf has a non-trivial merge map for xk. Since a step in MRes
cannot make a non-trivial merge map trivial, the merge map for xk at L is non-trivial. J

I Lemma 25. For all L ∈ S, for all k ∈ [n], dk, ek 6∈ var(Mxk).

Proof. Consider a line L ∈ S; L = (C, {Mxi | i ∈ [n]}). Assume to the contrary that for
some k ∈ [n], {dk, ek} ∩ var(Mxk) 6= ∅.

Line L is obtained by performing resolution on two non-S ′ clauses with a pivot from F .
Let L = res(L′, L′′, f`) for some ` ∈ [n]; f` ∈ C ′ and f` ∈ C ′′. Since L has no variable in F ,
f` is the only variable from F in var(C ′) and var(C ′′).

Since C ′ has the literal f` ∈ F 1, by Observation 20, Uci(ΠL′) = ∅ and L′ is derived
exclusively from B. Since D ∪E and var(B) are disjoint, all the merge maps in L′ have no
variable from D∪E. So Mxk gets its D∪E variables from (M ′′)xk . Since this does not block
the resolution step, (M ′)xk must be trivial and Mxk = (M ′′)xk . Since var(C ′) ∩ F = f`, by
Lemma 21 (2),(3),(4), k < `.

The line L′′ has no literal from F 1, so by Observation 20, Uci(ΠL′′) 6= ∅. It has a merge
map for xk involving at least one of dk, ek, so by Lemma 23, Uci(ΠL′′) = [a, n] for some
a ≤ k − 1. Thus we have a ≤ k − 1 < k < ` ≤ n.

Consider the resolution of L′ with L′′. By Lemma 21 (2), (M ′)x` ∈ {0, 1}, and by
Lemma 22 (1), (M ′′)x` 6= ∗. To enable this resolution, (M ′′)x` = (M ′)x` . The clauses Ad

`

FSTTCS 2020

12:12 Hard QBFs for Merge Resolution

and Ae
` give rise to different constant strategies for x`. So the derivation of L′′ uses exactly

one of these two clauses. Assume it uses Ad
` ; the other case is symmetric. Since a < `, the

derivation of L′′ uses a clause from A`−1, introducing literals d` and e`. Since the only clause
containing positive literal e` is not used, e` survives in C ′′. Going from L′′ to L removes only
f`, so e` ∈ C.

To summarize, at this stage we know that L ∈ S, e` ∈ C, {dk, ek} ∩ var(Mxk) 6= ∅,
Mx` ∈ {0, 1} and 1 ≤ k < ` ≤ n.

Fix any path ρ in GΠ from L to L�. Along this path, e` appears as the pivot somewhere,
since the literal e` is eventually removed. Consider the resolution step at that point, say
C1 = res(C2, C3, e`), with C3 being the clause at the line on ρ. At the corresponding line
L3, the strategies are at least as complex as those at L. Hence var(Mxk

3) ∩ {dk, ek} 6= ∅. On
the other hand, C2 has the positive literal e`. By Lemma 22, for the corresponding line
L2, Uci(ΠL2) = [`, c] for some c ≥ `. Since k < `, by Lemma 22, {dk, ek} ∩ var(Mxk

2) = ∅.
However, the path from L2 to L1 and thence to L� along ρ witnesses that L2 ∈ S ′, so by
Lemma 24, (M2)xk 6= ∗. Thus Mxk

2 and Mxk
3 are non-trivial but not isomorphic, and this

blocks the resolution on e`.
Thus our assumption that {dk, ek}∩var(Mxk) 6= ∅must be false. The lemma is proved. J

Proof. (of Theorem 19) Let Π be a refutation of KBKF-lq[n] in MRes. Let S ′,S be as
defined in the beginning of this section. Let the final line of Π be L� = (�, {sxi | i ∈ [n]}),
and for i ∈ [n], let hi be the functions computed by the merge map sxi . By soundness of
MRes, the functions {hi}i∈[n] form a countermodel for KBKF-lq[n].

For each a ∈ {0, 1}n, consider the assignment α to the variables of D ∪ E where di = ai,
ei = ai. Call such an assignment an anti-symmetric assignment. Given such an assignment,
walk from L� towards the leaves of Π as far as is possible while maintaining the following
invariant at each line L = (C, {Mxi | i ∈ [n]}) along the way:
1. α falsifies C, and
2. for each i ∈ [n], hi(α) = Mxi(α).
Clearly this invariant is initially true at L�, which is in S ′. If we are currently at a line
L ∈ S ′ where the invariant is true, and if L 6∈ S, then L is obtained from lines L′, L′′. The
resolution pivot in this step is not in F , since that would put L in S. So both L′ and L′′ are
in S ′, and the pivot is in D ∪E. Let the pivot be in {d`, e`} for some ` ∈ [n]. Depending on
the pivot value, exactly one of C ′, C ′′ is falsified by α; say C ′ is falsified. By Lemma 24, for
each i ∈ [n], both (M ′)xi and (M ′′)xi are non-trivial. By definition of the MRes rule,

For i < `, (M ′)xi and (M ′′)xi are isomorphic (otherwise the resolution is blocked), and
Mxi = (M ′)xi = (M ′′)xi .
For i ≥ `, there are two possibilities:
(1) (M ′)xi and (M ′′)xi are isomorphic, and Mxi = (M ′)xi .
(2) Mxi is a merge of (M ′)xi and (M ′′)xi with the pivot variable queried. By definition
of the merge operation, since C ′ is falsified by α, Mxi(α) = (M ′)xi(α).

Thus in all cases, for each i, hi(α) = Mxi(α) = (M ′)xi(α). Hence L′ satisfies the invariant.
We have shown that as long as we have not encountered a line in S, we can move further.

We continue the walk until a line in S is reached. We denote the line so reached by P (α).
Thus P defines a map from anti-symmetric assignments to S.

Suppose P (α) = P (β) = (C, {Mxi | i ∈ [n]}) for two distinct anti-symmetric assignments
obtained from a, b ∈ {0, 1}n respectively. Let j be the least index in [n] where aj 6= bj . By
Lemma 25, Mxj depends only on {di, ei | i < j}, and α, β agree on these variables. Thus
we get the equalities aj = hj(α) = Mxj (α) = Mxj (β) = hj(β) = bj , where the first and last

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:13

equalities follow from Proposition 2, the third equality from by Lemma 25 and choice of j,
and the second and fourth equalities by the invariant satisfied at P (α) and P (β) respectively.
This contradicts aj 6= bj .

We have established that the map P is one-to-one. Hence, S has at least as many lines
as anti-symmetric assignments, so |Π| ≥ |S| ≥ 2n. J

I Corollary 26. Both regular MRes and MRes are incomparable with QURes and CP+∀Red.

Proof. Theorem 19 shows that the KBKF-lq[n] formula requires exponential-size refutations
in MRes (and hence also in its regular restriction). It has polynomial-size refutations in QURes
[2], and also in CP + ∀Red since CP + ∀Red simulates QURes ([12]). The other direction
follows from the EQn formulas, as already mentioned in the proofs of Corollaries 10, 18. J

6 Conclusions and Future Work

The proof system MRes was introduced in [6], using the novel idea of building strategies
directly into the proof and using them to enable additional sound applications of resolution.
In [6], the strengths of the proof system were demonstrated. In this paper, we complement
that study by exposing some limitations of MRes. We obtain hardness for tree-like MRes by
transferring computational hardness of the countermodels in decision trees, and for regular
and general MRes by ad hoc combinatorial arguments.

Several questions still remain.
1. One of the driving goals behind the definition of MRes was overcoming a perceived

weakness of LD-QRes: its criterion for blocking unsound applications of resolution also
blocks several sound applications. However, whether MRes actually overcomes this
weakness is yet to be demonstrated. In [6], MRes is shown to be more powerful than the
reductionless variant of LD-QRes (introduced in [15] and further investigated in [6, 30]).
However, we still do not have an instance of a formula hard for LD-QRes but easy for
MRes. A natural candidate is LQParity, for which we only have a lower bound in regular
MRes. Another natural candidate is SquaredEquality. The other direction, whether there
is a formula easy for LD-QRes but hard for MRes, is also open. One possible candidate
for this separation might appear to be KBKF, which is easy for LD-QRes [20] (that paper
uses the name ϕt). However the KBKF formulas can be shown to have short refutations
in MRes as well, and hence cannot be used for this purpose.

2. In the propositional case, regular resolution simulates tree-like resolution. This relation
may not hold in the case of MRes, and even if it does, it will need a different proof. The
trick used in the propositional case – (i) interpret the proof tree as a decision tree for
search, (ii) make the decision tree read-once, (iii) then return from the search tree to a
refutation, – does not work here because when we prune away parts of the decision tree
to get a read-once tree, we may end up destroying isomorphism of strategies of blocking
variables.

References
1 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.

Form. Methods Syst. Des., 41(1):45–65, August 2012.
2 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and

their proof complexities. In Carsten Sinz and Uwe Egly, editors, Theory and Applications
of Satisfiability Testing – SAT 2014, pages 154–169, Cham, 2014. Springer International
Publishing.

FSTTCS 2020

12:14 Hard QBFs for Merge Resolution

3 Olaf Beyersdorff and Joshua Blinkhorn. Formulas with large weight: a new technique for
genuine QBF lower bounds. Electron. Colloquium Comput. Complex., 24:32, 2017.

4 Olaf Beyersdorff and Joshua Blinkhorn. Lower bound techniques for QBF expansion. Theory
of Computing Systems, 64(3):400–421, 2020. doi:10.1007/s00224-019-09940-0.

5 Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, Cost, and Capacity: A Semantic
Technique for Hard Random QBFs. Logical Methods in Computer Science, Volume 15, Issue 1,
February 2019. doi:10.23638/LMCS-15(1:13)2019.

6 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building Strategies into QBF Proofs.
Journal of Automated Reasoning, 2020. Preliminary version in 36th International Symposium on
Theoretical Aspects of Computer Science (STACS 2019). doi:10.1007/s10817-020-09560-1.

7 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Hardness characterisations and
size-width lower bounds for QBF resolution. In Proc. ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 209–223. ACM, 2020.

8 Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower bounds: From circuits to QBF
proof systems. In ACM Conference on Innovations in Theoretical Computer Science (ITCS),
pages 249–260, 2016.

9 Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for quantified
Boolean logic. J. ACM, 67(2), 2020.

10 Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. New Resolution-Based QBF Calculi
and Their Proof Complexity. ACM Trans. Comput. Theory, 11(4), September 2019. doi:
10.1145/3352155.

11 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for
QBF resolution calculi. Logical Methods in Computer Science, 13, 2017.

12 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Understanding cutting
planes for QBFs. Information and Computation, 262:141–161, 2018.

13 Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of tree-like
Q-Resolution size. J. Comput. Syst. Sci., 104:82–101, 2019.

14 Olaf Beyersdorff, Luke Hinde, and Ján Pich. Reasons for hardness in QBF proof systems.
ACM Transactions on Computation Theory, 12(2), 2020.

15 Nikolaj Bjørner, Mikolás Janota, and William Klieber. On conflicts and strategies in QBF.
In Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, editors, 20th
International Conferences on Logic for Programming, Artificial Intelligence and Reasoning
LPAR 2015, volume 35 of EPiC Series in Computing, pages 28–41. EasyChair, 2015.

16 A. Blake. Canonical expressions in boolean algebra. PhD thesis, University of Chicago, 1937.
17 Beate Bollig and Ingo Wegener. A very simple function that requires exponential size

read-once branching programs. Information Processing Letters, 66(2):53–57, 1998. doi:
10.1016/S0020-0190(98)00042-8.

18 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906–917, 2012.

19 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

20 Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation
and strategy extraction in search-based QBF solving. In Logic for Programming, Artificial
Intelligence, and Reasoning - 19th International Conference, LPAR-19, pages 291–308, 2013.

21 Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF preprocessing.
In IJCAR, pages 91–106, 2014.

22 Mikoláš Janota. On Q-Resolution and CDCL QBF solving. In Nadia Creignou and Daniel
Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages 402–418,
Cham, 2016. Springer International Publishing.

23 Mikoláš Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution.
Theoretical Computer Science, 577:25–42, 2015. doi:10.1016/j.tcs.2015.01.048.

https://doi.org/10.1007/s00224-019-09940-0
https://doi.org/10.23638/LMCS-15(1:13)2019
https://doi.org/10.1007/s10817-020-09560-1
https://doi.org/10.1145/3352155
https://doi.org/10.1145/3352155
https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1016/j.tcs.2015.01.048

O. Beyersdorff, J. Blinkhorn, M. Mahajan, T. Peitl, and G. Sood 12:15

24 Manuel Kauers and Martina Seidl. Short proofs for some symmetric quantified Boolean
formulas. Inf. Process. Lett., 140:4–7, 2018.

25 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified Boolean
formulas. Inf. Comput., 117(1):12–18, 1995.

26 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of
Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge,
1995.

27 Florian Lonsing, Uwe Egly, and Martina Seidl. Q-resolution with generalized axioms. In Nadia
Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 435–452. Springer, 2016.

28 Jakob Nordström. On the interplay between proof complexity and SAT solving. SIGLOG
News, 2(3):19–44, 2015.

29 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-resolution with depend-
ency schemes. J. Autom. Reasoning, 63(1):127–155, 2019.

30 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Proof complexity of fragments of long-
distance Q-resolution. In Mikolás Janota and Inês Lynce, editors, Theory and Applications of
Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT, Proceedings, volume
11628 of Lecture Notes in Computer Science, pages 319–335. Springer, 2019.

31 Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell., 274:224–248, 2019.

32 John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of
the ACM, 12:23–41, 1965.

33 Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, pages 78–84, 2019.

34 Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency schemes.
Theoretical Computer Science, 612:83–101, 2016.

35 G. S. Tseitin. On the complexity of derivation in propositional calculus. In Jörg H. Siekmann and
Graham Wrightson, editors, Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. doi:
10.1007/978-3-642-81955-1_28.

36 Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula solving.
In Proc. Principles and Practice of Constraint Programming (CP’12), pages 647–663, 2012.

37 Ingo Wegener. Branching Programs and Binary Decision Diagrams. Society for Industrial and
Applied Mathematics, 2000. doi:10.1137/1.9780898719789.

38 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean satisfiability
solver. In IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002,
pages 442–449, 2002.

FSTTCS 2020

https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1137/1.9780898719789

On Sampling Based Algorithms for k-Means
Anup Bhattacharya
Indian Statistical Institute Kolkata, India
bhattacharya.anup@gmail.com

Dishant Goyal
Indian Institute of Technology Delhi, India
Dishant.Goyal@cse.iitd.ac.in

Ragesh Jaiswal1

Indian Institute of Technology Delhi, India
rjaiswal@cse.iitd.ac.in

Amit Kumar
Indian Institute of Technology Delhi, India
amitk@cse.iitd.ac.in

Abstract
We generalise the results of Bhattacharya et al.[9] for the list-k-means problem defined as – for a
(unknown) partition X1, ..., Xk of the dataset X ⊆ Rd, find a list of k-center-sets (each element in
the list is a set of k centers) such that at least one of k-center-sets {c1, ..., ck} in the list gives an
(1 + ε)-approximation with respect to the cost function minpermutation π

[∑k

i=1

∑
x∈Xi

||x− cπ(i)||2
]
.

The list-k-means problem is important for the constrained k-means problem since algorithms for the
former can be converted to PTAS for various versions of the latter. The algorithm for the list-k-means
problem by Bhattacharya et al.is a D2-sampling based algorithm that runs in k iterations. Making
use of a constant factor solution for the (classical or unconstrained) k-means problem, we generalise
the algorithm of Bhattacharya et al.in two ways – (i) for any fixed set Xj1 , ..., Xjt of t ≤ k clusters,
the algorithm produces a list of (k

ε
)O(t

ε
) t-center sets such that (w.h.p.) at least one of them is good

for Xj1 , ..., Xjt , and (ii) the algorithm runs in a single iteration. Following are the consequences of
our generalisations:
1. Faster PTAS under stability and a parameterised reduction: Property (i) of our generalisation is

useful in scenarios where finding good centers becomes easier once good centers for a few “bad”
clusters have been chosen. One such case is clustering under stability of Awasthi et al.[5] where
the number of such bad clusters is a constant. Using property (i), we significantly improve the
running time of their algorithm from O(dn3)(k logn)poly(1

β
, 1
ε

) to O
(
dn3 (k

ε

)O(1
βε2)

)
. Another

application is a parameterised reduction from the outlier version of k-means to the classical one
where the bad clusters are the outliers.

2. Streaming algorithms: The sampling algorithm running in a single iteration (i.e., property (ii))
allows us to design a constant-pass, logspace streaming algorithm for the list-k-means problem.
This can be converted to a constant-pass, logspace streaming PTAS for various constrained
versions of the k-means problem. In particular, this gives a 3-pass, polylog-space streaming
PTAS for the constrained binary k-means problem which in turn gives a 4-pass, polylog-space
streaming PTAS for the generalised binary `0-rank-r approximation problem. This is the first
constant pass, polylog-space streaming algorithm for either of the two problems. Coreset based
techniques, which is another approach for designing streaming algorithms in general, is not
known to work for the constrained binary k-means problem to the best of our knowledge.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Facility location and clustering

Keywords and phrases k-means, low rank approximation

1 Part of this work was done while the author was on a sabbatical from IIT Delhi and visiting UC San
Diego.

© Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bhattacharya.anup@gmail.com
mailto:Dishant.Goyal@cse.iitd.ac.in
mailto:rjaiswal@cse.iitd.ac.in
mailto:amitk@cse.iitd.ac.in
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On Sampling Based Algorithms for k-Means

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1909.07511
and https://arxiv.org/abs/1909.11744.

Acknowledgements The authors would like to thank Sanjeev Khanna and Sepehr Assadi for allowing
us to use their impossibility argument for the chromatic k-means problem. Anup Bhattacharya
would like to thank SERB-National Post Doctoral Fellowship, India. Dishant Goyal would like to
thank TCS Research Scholar Program.

1 Introduction

Clustering is one of the most important tools for data analysis and the k-means clustering
problem is one of the most prominent mathematical formulations of clustering. The goal of
clustering is to partition data objects into groups, called clusters, such that similar objects
are in the same cluster and dissimilar ones are in different clusters. Defining the clustering
problem formally requires us to quantify the notion of similarity/dissimilarity and there are
various ways of doing this. Given that in most contexts data objects can be represented as
vectors in Rd, a natural notion of distance between data points is the squared Euclidean
distance and this gives rise to the k-means problem.

k-means: Given a dataset X ⊂ Rd and a positive integer k, find a set C ⊂ Rd of k
points, called centers, such that the following cost function is minimised: Φ(C,X) ≡∑
x∈X minc∈C ‖x− c‖2. 2

The k-means problem has been widely studied by both theoreticians and practitioners and is
quite uniquely placed in the computer science research literature. The theoretical worst-case
analysis properties of the k-means problem are fairly well understood. The problem is known
to be NP-hard [17, 36, 39] and APX-hard [6, 14]. A lot of work has been done on obtaining
efficient constant approximation algorithms for this problem (e.g., [30, 2]). However, this
is not the main focus of this work. In this work, we discuss approximation schemes for the
k-means problem and its variants. Approximation schemes are a family of algorithms {A}ε
that give (1 + ε)-approximation guarantee.

Given the hardness of approximation results, it is known that a Polynomial Time
Approximation Scheme (PTAS) is not possible unless P = NP. However, there are efficient
approximation schemes when at least one of k, d is not part of the input (and hence assumed
to be a fixed constant). The work on approximation schemes for the k-means problem can
be split into two categories where one consists of algorithms under the assumption that k is
a constant while the other with d as a constant. Assuming k is a constant, there are various
PTAS [32, 19, 28, 29] with running time O(nd · 2Õ(kε)).3 Note that the running time has a
dependence on 2k. This is nicely supported by a conditional lower bound result [3] that says
that under the Exponential Time Hypothesis (ETH) any approximation algorithm (beyond
a fixed approximation factor) that runs in time polynomial in n and d will have a running
time dependence of at least 2k. On the other hand, PTAS based on the assumption that d is
a constant form another line of research culminating in the work of Addad et al. [15] and
Friggstad et al. [23] who gave a local search based PTAS with running time dependence on d

2 For a singleton set C = {c}, we will use Φ(c,X) and Φ({c}, X) interchangeably.
3 The multiplicative factor of nd can be changed to an additive factor using useful data analysis tools

and techniques such as coresets [19] and dimensionality reduction [34].

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.13
https://arxiv.org/abs/1909.07511
https://arxiv.org/abs/1909.11744

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:3

of the form (kε)ζ where ζ = dO(d)

εO(d
ε

)
. The work of Makarychev et al. [37] nicely consolidates the

two lines of work by showing that the cost of the optimal k-means solution is preserved up
to a factor of (1 + ε) under a projection onto a random O

(
log (k/ε)

ε2

)
-dimensional subspace.

The k-means problem nicely models the locality requirement of clustering. That is, similar
(or closely located points) should be in the same cluster and dissimilar (or far-away points)
should be in different clusters. However, in many different clustering contexts in machine
learning and data mining, locality is not the only desired clustering property. There are
other constraints in addition to the locality requirement. For example, one requirement is
that the clusters should be balanced or in other words contain roughly equal number of
points. Modelling such requirements within the framework of the k-means problem gives
rise to the so-called constrained k-means problem. The constrained k-means problem can be
modelled as follows: Let C denote the set of k-clusterings that satisfy the relevant constraint.
Then the goal is to find a clustering X = {X1, ..., Xk} of the dataset X ⊂ Rd such that the
clustering X belongs to C and the following cost function is minimised:

∆(X) ≡
k∑
i=1

∆(Xi), where ∆(Xi) ≡ Φ(µ(Xi), Xi) and µ(Xi) ≡
∑
x∈Xi x

|Xi|
.

Note that µ(Xi) is the centroid of the data points Xi. It can be easily shown that the centroid
gives the best 1-means cost for any dataset and so ∆(Xi) denotes the optimal 1-means cost
of dataset Xi. The above formulation in terms of the feasible clusterings C is an attempt to
give a unified framework for considering different variations of the constrained clustering
problem. The issue with such an attempt is how to concisely represent the set of feasible
clusterings C. This issue was addressed in the nice work of Ding and Xu [18] who gave a
unified framework for considering constrained versions of the k-means problem. For every
constrained version, instead of defining C they define a partition algorithm PC which, when
given a set of k centers {c1, ..., ck}, outputs a feasible clustering {X1, ..., Xk} (i.e., a clustering
in C) that minimises the cost

∑k
i=1 Φ({ci}, Xi). They give efficient partition algorithms for

a variety of constrained k-means problems. These problems and their description are given
in Table 1. Note that the partition algorithm for the k-means problem (i.e., the classical
unconstrained version) is simply the Voronoi partitioning algorithm.

Efficient partition algorithms allow us to design PTAS in the following manner: Let
X = {X1, ..., Xk} be an optimal clustering for some constrained k-means problem with
optimal cost OPT = ∆(X) =

∑k
i=1 ∆(Xi). Suppose in some way, we are able to find a k-

center-set {c1, ..., ck} such that minpermutation π

[∑k
i=1
∑
x∈Xi ||x− cπ(i)||2

]
≤ (1 + ε) ·OPT.

Then we can use the partition algorithm to find a clustering X̄ = {X̄1, ..., X̄k} such that
∆(X̄) ≤ (1+ε) ·OPT . It turns out that even though producing a single such k-center-set may
not be possible, producing a list of such k-center-sets is possible. Using the partition algorithm
to find the clustering with least cost from the list will give us a (1 + ε)-approximate solution.
This is the main idea used for designing PTAS by Ding and Xu [18] and Bhattacharya et
al. [9]. Bhattacharya et al. [9] gave quantitative improvements over the results of Ding and
Xu in terms of the list size. They also formally defined the list-k-means problem that is a
natural problem in the context of the above discussion.4 One of the main focus of discussion
of this paper will be the list-k-means problem. So, let us first define the problem formally.

4 Note that Ding and Xu [18] implicitly gave an algorithm for list-k-means without naming it so.

FSTTCS 2020

13:4 On Sampling Based Algorithms for k-Means

Table 1 Constrained k-means problems with efficient partition algorithm (see Section 4 in [18]).

Problem Description

1. r-gather k-means clustering
(r, k)-GMeans

Find clustering X = {X1, ..., Xk} with minimum ∆(X)
such that for all i, |Xi| ≥ r

2. r-Capacity k-means clustering
(r, k)-CaMeans

Find clustering X = {X1, ..., Xk} with minimum ∆(X)
such that for all i, |Xi| ≤ r

3. l-Diversity k-means clustering
(l, k)-DMeans

Given that every data point has an associated colour,
find a clustering X = {X1, ..., Xk} with minimum ∆(X)
such that for all i, the fraction of points sharing the
same colour inside Xi is ≤ 1

l

4. Chromatic k-means clustering
k-ChMeans

Given that every data point has an associated colour,
find a clustering X = {X1, ..., Xk} with minimum ∆(X)
such that for all i, Xi should not have more than one
point with the same colour.

5. Fault tolerant k-means clustering
(l, k)-FMeans

Find clustering X = {X1, ..., Xk} such that
the sum of squared distances of the points to the l nearest
centers out of {µ(X1), ..., µ(Xk)}, is minimised.

6. Semi-supervised k-means clustering
k-SMeans

Given a target clustering X ′ = {X ′
1, ..., X

′
k} and constant α

find a clustering X = {X1, ..., Xk} such that the cost
α ·∆(X) + (1− α) ·Dist(X ′,X) is minimised.
Dist denotes the set-difference distance.

List-k-means: Let X ⊂ Rd be the dataset and let X = {X1, ..., Xk} be an arbit-
rary clustering of dataset X. Given X, positive integer k, and error parameter
ε > 0, find a list of k-center-sets such that (w.h.p.5) at least one of the sets
gives (1 + ε)-approximation with respect to the cost function: Ψ({c1, ..., ck},X) ≡
minpermutation π

[∑k
i=1
∑
x∈Xi ||x− cπ(i)||2

]
.

Bhattacharya et al. [9] gave a lower bound on the list size using a counting argument and
a closely matching upper bound using a D2-sampling based approach. D2-sampling is a
simple idea that is very useful in the context of the k-means/median clustering problems.
Here, the centers are sampled from the given dataset in successive iterations where the
probability of a point getting sampled as the center in an iteration is proportional to the
squared distance of this point to the nearest center out of the centers already chosen in the
previous iterations. Before discussing the algorithm for the list-k-means problem, let us
first make sure that the relevance of this problem in the context of the constrained k-means
problems is well understood. Indeed, given any constrained k-means clustering problem with
feasible clusterings C and partition algorithm PC, one can obtain a (1 + ε)-approximate
solution by first running an algorithm for the list k-means problem (where the unknown
clustering is any optimal clustering for the constrained k-means problem) to obtain a list L
and then use the partition algorithm PC to pick the minimum cost clustering from L. From
the previous discussion, it should be clear that this will give us a (1 +ε)-approximate solution
(w.h.p.). Let us now discuss the D2-sampling based algorithm for the list-k-means problem.

Bhattacharya et al. [9] gave an algorithm for the list-k-means problem with list size
|L| = (kε)O(kε) and running time O(nd|L|). Their algorithm explores a rooted tree of size
(kε)O(kε) and depth k where the degree of every non-leaf vertex is (kε)O(1

ε). Every node in
this tree has an associated center and the path from root to a leaf node gives one of the
k-center-sets for the output list. Let v be an internal node at depth i. The path from root
to v defines i centers Cv and their algorithm extends these i centers to (i + 1) centers by
D2-sampling poly(kε) points w.r.t. Cv and considering the centroids of all possible subsets

5 We use w.h.p. as an abbreviation for “with high probability”.

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:5

of size O(1
ε) of the sampled points plus copies of centers in Cv.6 This defines the (kε)O(1

ε)

children of v that are further explored subsequently. In their analysis, they showed that for
every node v, there is always (w.h.p.) a child of v that is a good center for one of the clusters
for which none of the centers in Cv is good.

Note that the algorithm of Bhattacharya et al.[9] in the previous paragraph has an
unavoidable iteration of depth k since their analysis works only when the centers are picked
one-by-one in k iterations. We circumvent this inherent restriction by using a constant factor
approximate solution C to the k-means problem (i.e., the unconstrained k-means problem)
for the given dataset X. That is, Φ(C,X) ≤ α · OPT ?, where OPT ? denotes the optimal
k-means cost. Note that there are a number of constant factor approximation algorithms
available for the k-means problem. So, this assumption is not restrictive at all. We can even
further relax the assumption by noting that an (O(1), O(1)) bi-criteria approximate solution
C is sufficient. This means that |C| = O(k) and Φ(C,X) ≤ α ·OPT ?. There are bi-criteria
approximation algorithms available for the k-means problem. For example, there is a simple
O(nkd) bi-criteria approximation algorithm based on D2-sampling that just samples O(k)
points (using D2-sampling) and it has been shown [1] that the set of centers obtained gives a
constant approximation with high probability. Making use of a constant factor solution C,
we generalise the D2-sampling based algorithm of Bhattacharya et al. [9] in two ways:
1. We consider the case where we may not need to find good centers for all clusters but for

t ≤ k clusters Xj1 , ..., Xjt . For any fixed choice of t clusters Xj1 , ..., Xjt , our algorithm
returns a list of (kε)O(tε) t-center sets such that (w.h.p.) at least one of them is “good” for
Xj1 , ..., Xjt . Note that the list size is exponential in t but not in k. This can be useful in
scenarios where finding good centers of most of the clusters becomes easier (or not even
required) once good centers of a few t << k clusters have been chosen.

2. The sampling algorithm runs in a single iteration where poly(tε) points from X are D2-
sampled w.r.t. C. We show that good centers for clusters Xj1 ,, Xjt can simultaneously
be found from the sampled points and points in the set C. (Note that there is an
iteration for probability amplification in algorithm GoodCenters but since the 2t rounds
are independent, they can be executed independently.)

The formal description of the generalised algorithm is given in Algorithm 1. The algorithm
takes as input dataset X, an α-approximate solution C, error parameter ε, and t and
outputs a list L of t-center sets. Note that the list size produced by the above algorithm is
|L| = (kε)O(tε) and running time is O(nd|L|). We will show that the GoodCenters algorithm
behaves well (w.h.p.) for any fixed set of t clusters Xj1 , ..., Xjt out of clusters X1, ..., Xk.
What this means is that for any fixed set of t clusters Xj1 , ..., Xjt , the list L produced by the
GoodCenters algorithm will (w.h.p.) contain a t-center set C that is good for these clusters
Xj1 , ..., Xjt . This is our main result on list-k-means and we formally state this as the next
theorem.

I Theorem 1 (Main Theorem). Let 0 < ε ≤ 1
2 and t be any positive integer. Let Xj1 , ..., Xjt

denote an arbitrary set of t clusters out of k clusters X1, ..., Xk of the dataset X. Let L
denote the list returned by the algorithm GoodCenters(X,C, ε, t). Then with probability at
least 3

4 , L contains a center set C such that:

Ψ (C, {Xj1 , ..., Xjt}) ≤
(

1 + ε

2

)
·
t∑
i=1

∆(Xji)+ ε

2 ·OPT ≤ (1+ε)·OPT, where OPT =
k∑
i=1

∆(Xi).

6 D2-sampling w.r.t. a center set C implies sampling from the dataset X using a distribution where the
probability of sampling point x is proportional to minc∈C ||x− c||2. In the case C = ∅, D2-sampling is
the same as uniform sampling.

FSTTCS 2020

13:6 On Sampling Based Algorithms for k-Means

Algorithm 1 Algorithm for finding good centers.

GoodCenters (X,C, ε, t)
Inputs: Dataset X, α-approximate C, accuracy ε, and number of centers t
Output: A list L, each element in L being a t-center set
Constants: η = 216αt

ε4 ; τ = 128
ε

(1) L ← ∅
(2) Repeat 2t times:
(3) Sample a multi-set M of ηt points from X using D2-sampling wrt center set
C

(4) M ←M∪ { 128t
ε copies of each element in C}

(5) For all disjoint subsets S1, ..., St of M such that ∀i, |Si| = τ :
(6) L ← L ∪ {(µ(S1), ..., µ(St))}
(7) return(L)

Moreover, |L| = (kε)O(tε) and the running time of the algorithm is O(nd|L|).

We shall formally prove the above theorem in the full version of the paper. We give a
high-level discussion here. Without loss of generality, we will assume that ji = i, that is the
t clusters Xj1 , ..., Xjt are the first t clusters X1, ..., Xt. Since, the input center set C is an
(α, β)-approximate solution to the standard k-means problem on dataset X, we have

Φ(C,X) ≤ α ·OPT ? and |C| ≤ βk (1)

Note that the outer iteration (repeat 2t times in line (2)) is to amplify the probability that
the list L containing a good t-center set. We will show that the probability of finding a good
t-center set in one iteration is at least (3/4)t and the theorem follows from simple probability
calculation. So in the remaining discussion we will only discuss one iteration of the algorithm.
Consider the multi-set M after line (3) of the algorithm. We will show that with probability
at least (3/4)t, there are disjoint (multi) subsets T1, ..., Tt each of size τ such that for every
j = 1, ..., t,

Φ(µ(Tj), Xj) ≤
(

1 + ε

2

)
·∆(Xj) + ε

2t ·OPT. (2)

Since we try out all possible subsets in step (5), we will get the desired result. We will argue in
the following manner: consider the multi-set C ′ =

{ 16t
ε copies of each element in C

}
.We can

interpret C ′ as a union of multi-sets C ′1,C ′2,...,C ′t, where C ′j ={ 16
ε copies of each element in C}.

Also, since M consists of ηt independently sampled points, we can interpret M as a union of
multi-sets M ′1,M ′2, ...,M ′t where M ′1 is the first η points sampled, M ′2 is the second η points
and so on. For all j = 1, ..., t, let Mj = C ′j ∪ (M ′j ∩ Xj).7 We will show that for every
j ∈ {1, ..., t}, with probability at least (3/4), Mj contains a subset Tj of size τ that satisfies
eqn. (2). Note that Tj ’s being disjoint follows from the definition of Mj . It will be sufficient
to prove the following lemma.

I Lemma 2. Consider the sets M1, ...,Mt as defined above. For any j ∈ {1, ..., t},

Pr
[
∃Tj ⊆Mj s.t. |Tj | = τ and

(
Φ(µ(Tj), Xj) ≤

(
1 + ε

2

)
·∆(Xj) + ε

2tOPT
)]
≥ 3

4 .

7 M ′
j ∩Xj in this case, denotes those points in the multi-set M ′

j that belongs to Xj .

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:7

The formal proof of the above lemma is deferred to the full version of the paper. The proof
is through a case analysis that is based on whether Φ(C,Xj)

Φ(C,X) is large or small for a particular
j ∈ {1, ..., t}.

Case-I :
(
Φ(C,Xj) ≤ ε

6αt · Φ(C,X)
)

The interpretation of this condition is that the points in Xj are close to centers in the
center set C. This means that an appropriate convex combination of points in C will
give a good center for Xj . More precisely, here we will show that there is a subset
Tj ⊆ C ′j ⊆Mj that satisfies eqn. (2).
Case-II :

(
Φ(C,Xj) > ε

6αt · Φ(C,X)
)

This is the case where all points in Xj do not have a close center in the center set C. If we
can show that a D2-sampled set with respect to center set C has a subset S that may be
considered uniform sample from Xj , then we can use known results8 to argue that Mj has
a subset Tj such that µ(Tj) is a good center for Xj . Note that since Φ(C,Xj)

Φ(C,X) >
ε

6αt , we
can argue that if we D2-sample poly(tε) elements, then we will get a good representation
from Xj . However, note that some of the points from Xj may have centers in C that are
very close and hence will have a very small chance of being D2-sampled. In such a case,
no subset S of a D2-sampled set will behave like a uniform sample from Xj . So, we need
to argue more carefully taking into consideration the fact that there may be points in Xj

for which the chance of being D2-sampled is very small. Here is the high-level argument
that we will make:

Consider the set X ′j which is same as Xj except that points in Xj that are very close
to C have been “collapsed” to their closest center in C.
Argue that a good center for the set X ′j is a good center for Xj .
Show that a convex combination of copies of centers in C (i.e., C ′j) and D2-sampled
points from Xj gives a good center for the set X ′j .

More precisely, in this case we will show that Mj contains a subset Tj such that
Φ(µ(Tj), Xj) ≤

(
1 + ε

2
)
·∆(Xj) and hence Tj also satisfies eqn. (2).

In order to discuss the applications of the GoodCenters algorithm, let us note some of its
interesting properties. Note that the algorithm essentially runs in a single iteration. The outer
loop of size 2t consists of independent iterations and can be executed independently. The
rest of the algorithm clearly follows a single line of control and does not have dependencies.
This allows us to design constant-pass streaming algorithms (using reservoir sampling) and
parallel algorithms. The second useful property is that it finds a good list for any fixed set of
t ≤ k clusters (w.h.p.). This allows us to exploit the algorithm in certain contexts where once
good centers for a few clusters have been chosen, choosing good centers for the remaining
clusters becomes easier. We discuss the applications of our algorithm in the subsequent
subsections.

An interesting point to note about the GoodCenters algorithm is that the k-center-set C
that it takes as input is only a constant factor approximate solution for the classical k-means
problem (i.e., unconstrained version) and not some constrained version. Note that we will
use the algorithm for designing PTAS for various constrained versions but constant factor
solutions for those are not required. So in some sense, the GoodCenters algorithm can be
seen as an effective way of converting a constant factor approximate solution for the k-means
problem to PTAS for various constrained versions. Let us now discuss the applications.

8 We use a result from Inaba et al. [27] which says that the centroid of O(1/ε) uniformly sampled points
from any dataset (w.h.p.) gives (1 + ε)-approximation with respect to the 1-means cost for the dataset.

FSTTCS 2020

13:8 On Sampling Based Algorithms for k-Means

1.1 Clustering under stability/separation
The worst-case complexity of the k-means problem is well understood. As discussed earlier,
the problem is NP-hard and APX-hard. Hence, various beyond worst-case type results have
been explored in the context of the k-means problem and one such direction is clustering
under some “clusterability” condition. That is, design algorithms for datasets that satisfy
some condition that captures the fact that the data is clusterable or in other words the data
has some meaningful clusters. Clusterability is captured in various ways using notions such
as separability and stability. Separability means that the target clusters are separated in
some geometrical sense and stability means that the target clustering does not change under
small perturbations of the input points. Separability and stability are closely related and in
various contexts one implies the other. A lot of work has been done in the area of algorithm
design for the k-means problem under various clusterability conditions. We will discuss these
stability properties and their relationship in detail in the full version of the paper. It can be
argued that the β-distributed property of Awasthi et al. [5] given below is one of the weaker
separation properties. Hence, any result for datasets satisfying the β-distributed condition
will have consequences for datasets satisfying stronger conditions. So the relevant question
is: Are there good algorithms for datasets under this condition?

I Definition 3 (β-distributed). A k-means instance (X, k) is called β-distributed iff the
following holds for any optimal clustering {X?

1 , ..., X
?
k}: ∀i,∀x /∈ X?

i , ||x − µ(X?
i)||2 ≥

β · OPT
?

|X?
i
| .

Cohen-Addad and Schwiegelshohn [16] gave a local search based algorithm with neigh-
bourhood size O

(
β−1 · poly(ε−3)

)
that translates to an approximation with running time

O
(
n

1
β poly(1

ε)
)
.9 Awasthi et al. [5] gave a PTAS for the k-means/median problems on datasets

that satisfy the β-distributed assumption. The running time has polynomial dependence on
the input parameters n, k, d and exponential dependence on β−1 and ε−1 (ε is the accuracy
parameter). Even though they showed that the super-polynomial dependence on β−1 and
ε−1 cannot be improved, improving the dependence on other input parameters was left as
an open question. In this work, we address this by giving a faster PTAS for the k-means
problem under the β-distributed notion. The running time of the algorithm for the k-means
problem by Awasthi et al. [5] is O(dn3)(k logn)poly(1

β ,
1
ε). We improve the running time to

O
(
dn3 (k

ε

)O(1
βε2)). Note that due to our improvement in running time, our algorithm is

also a Fixed Parameter Tractable Approximation Scheme (FPT-AS) for the problem with
parameters k and β. Moreover, the running time does not have an exponential dependence
on k that is typically the case for such FPT approximation schemes for general datasets. We
formally state our result as the following theorem. We shall discuss the proof of this theorem
in the full version of the paper.

I Theorem 4. Let ε, β > 0, k be a positive integer, and let X ⊂ Rd be a β-distributed
dataset. There is an algorithm that takes as input (X, k, ε, β) and outputs a k-center-set C
such that Φ(C,X) ≤ (1 + ε) ·OPT ? and the algorithm runs in time O

(
dn3 (k

ε

)O(1
βε2)).

Our running time improvements over the algorithm of Awasthi et al. [5] comes from using a
faster algorithm to find good centers for a few (constant) optimal clusters called “expensive
clusters” in the terminology used by Awasthi et al.They had pointed out that if there was

9 It may be tempting to think that using the local search algorithm on a coreset (instead of the dataset)
will improve the running time to O(nkd+ k

1
β
poly(1

ε
)). However, it is important to realise that known

coreset constructions that give coresets of size poly(k, 1/ε) may not be stability/separation preserving.

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:9

a faster algorithm for finding good centers for these expensive clusters, then the overall
running time of their algorithm could be significantly improved. This is precisely what our
GoodCenters algorithm allows us to do. The GoodCenters algorithm creates a list such
that at least one element in the list is a set of good centers for the expensive clusters. So,
one can execute the algorithm of Awathi et al.repeatedly for every element of the list and
then pick the best solution. The details are given in the full version of the paper.

1.2 Parameterised reduction from outlier k-means to k-means
The k-means problem models the clustering problem when the data is noise-free. That is, the
data does not contain outlier points. Clustering algorithms designed for noise-free datasets
may behave badly when used for datasets with outliers, where the objective is to cluster the
non-outlier points. This is because clustering objective functions such as k-means/median
may be sensitive to outliers. This motivates modelling noisy data clustering as a separate
problem. One way to model noisy data clustering is through a problem known as outlier
k-means or k-means with outliers problem. This problem has been studied in a number of
previous works [11, 13, 12, 31, 22, 8, 25]. The problem is formally defined as:

Outlier k-means: Given a set of n points X ⊂ Rd and positive integers k,m,
find a set of k centers C ⊂ Rd such that the following cost function is minimised:
Φo(C,X) ≡ minZ⊆X,|Z|=m

(∑
x∈X\Z minc∈C ||x− c||2

)
.

This is the same as optimising the k-means cost function on all but at most m points which
can be interpreted as outliers. Note that once an optimal center-set C is obtained, the
outliers can be located as the farthest m points from the centers in C. In the other direction,
suppose we know the m outlier points Z ⊆ X, then the optimal center set C may be found
by solving the k-means problem on the dataset X \ Z. The classical k-means problem can
be considered a special case of this general problem where m = 0. So, the known hardness
results for k-means naturally holds for outlier k-means as well. Given this, an interesting
problem is to analyse the relative hardness of these problems. In other words, is the outlier
k-means problem harder than the classical k-means problem in some sense? One way to
formalise this question is to ask whether the outlier version becomes easier if there is an
oracle for the k-means problem? In other words, is there an efficient reduction from the
outlier-k-means problem to the k-means problem? One brute-force reduction is to consider
all possible subsets of m outliers and then solve the k-means problem on the remaining points.
However, the running time of this reduction is

(
n
m

)
= O(nm) which is prohibitively large.

The same question regarding the relative hardness of these problem can also be asked
in the approximation setting. The known results on efficient approximation algorithms for
these problems makes this question interesting even in the approximation setting. There is a
gap in approximation guarantee between the best known efficient approximation algorithm
for k-means and outlier k-means. The best known polynomial time approximation guarantee
for the k-means problem is 6.358 [2] and for k-means with outliers is 53.003 [31]. So the
relevant question is whether this gap can be be removed. We initiate the discussion by giving
a parameterised reduction from the outlier k-means problem to the k-means problem. We
give a parameterised reduction from the approximate k-means with outliers problems with
parameters k,m, and 1

ε to the classical k-means problem.

I Theorem 5. Let 0<ε≤ 1
2 . LetM be an oracle that returns an optimal solution for arbitrary

instances of the k-means problem. Then there exists an algorithm OutlierAlgM(X, k,m, ε)
that returns a (1 + ε)-approximate solution to the outlier k-means problem with probability

FSTTCS 2020

13:10 On Sampling Based Algorithms for k-Means

at least 3
4 , where X ⊂ Rd and k,m are positive integers. The number of calls made to the

oracleM is bounded by |L| =
(
k+m
ε

)O(m
ε2) and the running time of the algorithm is bounded

by O(nd · |L|).

The main idea is to consider the m outliers in an optimal solution as clusters of their own.
We can then treat k optimal clusters along with these m outlier clusters as the partitioning
X1, ..., Xk+m of the dataset. The GoodCenters algorithm, when executed with t = m, is
guaranteed (w.h.p.) to output a list of m-center-sets such that at least one is good for the
outlier-clusters. This means that at least one of the m-center-sets will be such that the m
centers are close to the outliers. We can exploit this fact to locate good outliers for the
dataset, remove them, and solve the k-means problem on the remaining instance. However,
since we will need to try all m-center-sets in the list produced by the GoodCenters algorithm,
we will pay in terms of the running time with a multiplicative factor proportional to the
list size. Replacing the k-means oracleM with a more realistic constant c-approximation
algorithm A for k-means with running time t(n, k, d), we obtain a (c+ cε)-approximation
algorithm OutlierAlgA for outlier k-means with running time O

(
t(n, k, d) ·

(
k+m
ε

)O(m
ε2)).

The consequences of this is that it removes the approximation factor gap between the k-
means and outlier k-means problem at the cost of increasing the running time by a factor of(
k+m
ε

)O(m
ε2). However, one should note that this factor is independent of the problem size

and is small when compared to the brute-force reduction (considering all possible subsets of
m outliers) with associated factor of O(nm).

Using the GoodCenters algorithm in a different manner in the outlier setting gives us
another interesting consequence. The GoodCenters algorithm, when executed with t = k is
guaranteed (w.h.p.) to output a list of k-center-sets such that at least one is good for the k
optimal clusters. This gives an FPT-approximation scheme (with parameters k andm) for the
outlier k-means problem with running time O(nd·f(k,m, ε)) and furthermore a 4-pass stream-
ing algorithm that uses O(f(k,m, ε) · logn)-space, where f(k,m, ε) = O

(
nd
(
m+k
ε

)O(kε)).
The details of this section are given in the full version of the paper.

1.3 Streaming algorithms for constrained versions of k-means
We discussed how an algorithm for the list-k-means problem can be converted to a PTAS for
a constrained k-means problem given that there is a partition algorithm that finds a feasible
clustering with the smallest k-means cost. Examining the GoodCenters algorithm closely,
we realise that it can be implemented in 2-passes using small amount of space. This opens
the door for designing streaming PTAS for the constrained versions of the k-means problem.
If one can design a streaming version of the partition algorithm for some constrained k-means
problem, then combining it with the streaming version of the GoodCenters algorithm will
give us a streaming PTAS for the problem. So, let us first discuss how a streaming version of
the GoodCenters algorithm can be designed.

The first bottleneck in designing a streaming version of GoodCenters is that we need
a constant factor approximate solution C for the k-means problem (i.e., the unconstrained
k-means problem). Fortunately, there exists a 1-pass, logspace streaming algorithm that
gives a constant factor approximate solution to the k-means problem [10]. Given C, we
need to show how to implement step (3) of the algorithm in a streaming manner (the 2t
repetitions can be performed independently, this appears as a multiplicative factor in the
space used). The probability of sampling a point p is proportional to Φ(C, p), with the
constant of proportionality being Φ(C,X). The sampling can be performed using the ideas

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:11

of reservoir sampling (see e.g. [40]). Since we need to sample ηt ≤ poly(kε) points in step (3),
reservoir sampling takes O

(
poly(kε) · logn

)
space. Given a sample M , steps (5)-(6) can be

implemented in O(|M |kτ) space, where τ = O(1
ε). This can be summarised formally as the

following useful lemma that we will prove in the full version of the paper (we assume that
storing a point accounts for one unit of space).

I Lemma 6. The algorithm GoodCenters can be implemented using 2-passes over the input
data while maintaining space of O(f(k, ε) · logn), where f(k, ε) =

(
k
ε

)O(kε)
.

Let us now see how to design a streaming PTAS for a constrained k-means problem using
the above lemma. Let PC denote the partition algorithm for this constrained problem and
suppose there is a streaming version SPC of this partition algorithm. We will use the 2-pass
streaming version of the GoodCenters algorithm to output the list L. We will then use SPC

on each element of L (independently) and pick the best solution. Since |L| is small, so is the
space requirement. From the previous discussion, we know that (w.h.p.) we are guaranteed
to obtain a (1 + ε)-approximate solution. Hence we get a constant pass streaming PTAS.
So, as long as there is a streaming partition algorithm for a constrained k-means problem,
there is also a streaming PTAS. Now the question is whether there are constrained k-means
problems for which such streaming partition algorithms can be designed. Interestingly, we
can design such streaming partition algorithms for four out of the six constrained k-means
problems in Table 1. Our results can be summarised as the following main theorem the
proof of which is deferred to the full version of the paper. Here, ∆ is the aspect ratio, i.e.,
∆ = maxp∈X,c∈C ||p−c||

minp∈X\C,c∈C ||p−c||
.

I Theorem 7. There is a (1 + ε)-approximate, 4-pass, streaming algorithm for the following
constrained k-means clustering problems that uses O(f(k, ε) · (log ∆ + logn))-space and
O(d · f(k, ε)) time per item, where f(k, ε) = (kε)O(kε):
1. k-means 2. r-gather k-means 3. r-capacity k-means
4. Fault tolerant k-means 5. Semi-supervised k-means

Further, the space requirement can be improved to O(f(k, ε) · logn) using 5-passes.

Note that the classical k-means problem can also be seen as a constrained k-means problem
where there are no constraints. Also note that two constrained versions of constrained
k-means problems from Table 1 are missing from the theorem above. These are the chromatic
k-means clustering and the l-diversity clustering. We can show that deterministic logspace
streaming algorithms for these problems are not possible. Due to space limitations, this is
shown in the full version of the paper.

Comparison with Coreset based streaming algorithms

Streaming coreset constructions provide another approach to designing streaming algorithm
for the k-means problem. An (ε, k) coreset of a dataset X ⊂ Rd is a weighted set S ⊂ Rd
along with a weight function w : S → R+ such that for any k-center-set C, we have:
|
∑
s∈S minc∈C w(s) · ‖s− c‖2 −

∑
x∈X minc∈C‖x− c‖2| ≤ ε ·

∑
x∈X minc∈C‖x− c‖2 So, it is

sufficient to find good k-center-set for a coreset S (instead of the dataset X). There exists
one-pass streaming coreset construction [19] that uses poly(k, 1

ε , logn) space and outputs a
coreset of size poly(k, 1

ε , logn). Using this, one can design a single-pass streaming algorithm
for the k-means problem by first running the streaming algorithm to output a coreset and
then finding a good k center set for the small coreset. If the output is supposed to be a
clustering, then we will need to make another pass over the data. Note that the same idea of

FSTTCS 2020

13:12 On Sampling Based Algorithms for k-Means

working on coreset does not trivially carry over to the constrained versions of k-means as
there are additional constraints. However, there is a specific geometric coreset construction
which works for constrained versions of k-means. This is one of the first coreset constructions
for k-means by Har-Peled and Mazumdar [26] where the points in the coreset are such that
the sum total of the distance of the data points to the nearest coreset point is small. The
weight of a coreset point is simply the number of data points for which the coreset point is
the closest. So, a coreset point represents a subset of data points. Schmidt et al. [38] used
this construction for a contrained version called Fair k-means. This coreset construction can
be performed in a single pass over the data. The coreset size is O(kε−d logn) and it can be
computed in as much space using ideas developed later (e.g., [20]). Even though this gives a
one-pass algorithm for producing a good center set (two passes for producing clustering),
the space requirement is exponentially large in the dimension. Fortunately, in a more recent
development by Makarychev et al. [37] showed that the k-means cost of any clustering is
preserved up to a factor of (1+ε) under a projection onto a random O

(
log (k/ε)

ε2

)
-dimensional

subspace. This result when combined with the geometric coreset construction of Har-Peled
and Mazumdar [26] gives a one-pass, O

((
k
ε

) 1
ε2 · logn

)
-space algorithm for producing a

good k-center-set for any constrained version of the k-means problem. Even though the
space bound has a slightly worse dependency on 1/ε than our list-k-means based idea, the
dependency on k and number of passes is much better. Indeed, we overlooked this connection
with coreset of Har-Peled and Mazumdar and dimension reduction of Makarychev et al.when
we were designing our list-k-means based streaming algorithms and were made to realise
this at a later stage of this work. At this point, all we can say is that designing streaming
algorithm based on list-k-means is another way of approaching constrained k-means problem.
Furthermore, we decided to include this section since some of the techniques developed here
may have independent applications. We also note that coreset based technique does not
seem to work for the constrained binary k-means which is also a problem does not fit into
the unified framework of Ding and Xu [18]. This is because current known techniques for
finding good centers for this problem requires uniform samples from the optimal clusters and
it is not clear whether working with representative points (as in the coreset) will work. We
discuss constrained binary k-means and a related problem next.

1.4 Streaming algorithms for binary-k-means and low rank
approximation

Low rank approximation is a common data analysis task. The most general version of the
problem, the `p-low rank approximation problem, is defined in the following manner:

`p-low rank approximation: Given a matrix A ∈ Rn×d (with n ≥ d) and an integer r,
find a rank-r matrix B ∈ Rn×d such that ‖A−B‖pp ≡

∑
i,j |Ai,j−Bi,j |p is minimised.

The above definition is for any positive value of p. When p = 0, the objective is to minimise
‖A−B‖0 which is defined to be the number of mis-matches in the matrices A and B. The
`p-low rank approximation problem is known to be NP-hard for p ∈ {0, 1} while for p = 2
the problem can be solved using SVD (Singular Value Decomposition). The specific case of
p = 0 is known as the `0-low rank approximation problem. The problem can alternatively be
stated as: given an n× d matrix A, find an n× r matrix U and a r × d matrix V such that
‖A−U ·V‖0 is minimised. There is an interest in specific class of instances of the `0-low
rank approximation problem where the matrices A,U,V are binary matrices. In fact, we can
generalise even further by making the notion of U ·V in the above definition more flexible in

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:13

the following manner: If A′ = U ·V, then A′ij is the inner product of the ith row of U and
the jth column of V. We can consider various fields for this inner product. The two popularly
explored fields are: (i) F2 with inner product defined as 〈x, y〉 ≡ ⊕i(xi · yi), and (ii) Boolean
semiring {0, 1,∧,∨} with inner product defined as 〈x, y〉 ≡ ∨i(xi ∧ yi) = 1−

∏
i(1− xi · yi).

We can generalise the problem (using the formulation in terms of U and V) so that the
above versions become special cases. This was done by Ban et al. [7] and they called this
problem generalised binary `0-rank-r problem that is defined below.

Generalised binary `0-rank-r approximation: Given a matrix A ∈ {0, 1}n×d with
n ≥ d, an integer r, and an inner product function 〈., .〉 : {0, 1}r × {0, 1}r → {0, 1},
find matrices U ∈ {0, 1}n×r and V ∈ {0, 1}r×d that minimises ‖A−U ·V‖0, where
U ·V is computed using the inner product function. That is [U ·V]ij is the inner
product of the ith row of U with the jth column of V.

Ban et al. [7] showed that there is no approximation algorithm for the generalised binary
`0-rank-r problem running in time 22δr for a constant δ > 0 even though faster algorithms
are known for certain specific versions [33]. The work of Ban et al. [7] and Fomin et al. [21]
addressed one of the main open questions for generalised binary `0 rank-r problem – whether
a PTAS for constant r is possible. They give such a PTAS using very similar set of ideas
(even though they were obtained independently). We extend the previous work of Ban et
al.and Fomin et al.to the streaming setting by using the connection of this problem to the
constrained binary k-means problem which we discuss next. This connection was given and
used by both Ban et al. [7] and by Fomin et al. [21]. We will work with the definition of
the constrained binary k-means problem given by Fomin et al. [21]. For this, we first need
to define the concept of a set of k centers C ⊆ {0, 1}d satisfying a set of k-ary relations.
Given a set R = {R1, ..., Rd} of d, k-ary binary relations (i.e., Ri ⊆ {0, 1}k for every i), a set
C = {c1, ..., ck} ⊆ {0, 1}d of k centers is said to satisfy R iff (c1[i], ..., ck[i]) ∈ Ri for every
i = 1, ..., d. Here, cj ∈ {0, 1}d is thought of as a d-dimensional vector and cj [i] denotes the
ith coordinate of this vector. We can now define the constrained binary k-means problem.

Constrained binary k-means: Given a set of n points X ⊆ {0, 1}d, a positive in-
teger k, and a set of k-ary relations R = {R1, ..., Rd}, find a set of k centers C ⊆
{0, 1}d satisfying R such that the cost function Φ(C,X) ≡

∑
x∈X minc∈C‖x− c‖22 =∑

x∈X minc∈C H(x, c) is minimised. Here H(., .) denotes the Hamming distance.

It is important to distinguish between the definition of constrained binary k-means problem
given above with the constrained k-means problem discussed earlier. The relevant question
to ask is: Does the constrained binary k-means problem fit into the unified framework of
Ding and Xu [18]? If the answer to the above question were yes, then a streaming PTAS for
the constrained binary k-means problem would trivially follow from the earlier discussion
on constrained k-means. Unfortunately, this is not true. Note that the framework of Ding
and Xu [18] defines the constraints on the clusters while the definition of constrained binary
k-means problem defines constraints on the centers. However, we note that the D2-sampling
based techniques can be extended to this setting. Below, we formally state our main results
for the constrained binary-k-means problem.

I Theorem 8. Let 0 < ε ≤ 1/2. There is a 3-pass streaming algorithm that outputs a
(1 + ε)-approximate solution for any instance of the constrained binary k-means problem.
The space and per-item processing time of our algorithm is O

(
d · (logn)k · 2Õ(k2

ε2)
)
.

FSTTCS 2020

13:14 On Sampling Based Algorithms for k-Means

Note that as per the formulation of the constrained binary k-means problem, the output
is supposed to be a set of k centers. The above 3-pass algorithm outputs such a k-center-set.
However, if the objective is to output the clustering of the data points X, then one more
pass over the data will be required and the resulting algorithm will be a 4-pass algorithm.
This is relevant for the generalised binary `0-rank-r approximation problem that we discuss
next. We obtain a result for the generalised binary `0-rank-r problem that is similar to the
above result, using a simple reduction. This reduction is used by both Fomin et al. [21] and
Ban et al. [7]. We restate the result of Fomin et al. [21] for clarity.

I Lemma 9 (Lemma 1 and 2 of [21]). For any instance (A, r) of the generalised binary
`0-rank-r approximation problem, one can construct in time O(n + d + 22r) an instance
(X, k = 2r,R) of constrained binary k-means problem with the following property: Given
any α-approximate solution C of (X, k,R), an α-approximate solution B of (A, r) can be
constructed in time O(rnd).

The dataset X corresponding to matrix A, in the above reduction, is essentially the rows of
the matrix A and ∀i, Ri = {(〈x, λ1〉, ..., 〈x, λk〉) : x ∈ {0, 1}r} and λi’s are pairwise distinct
vectors in {0, 1}r. The above reduction and Theorem 8 gives the following main result for
the generalised binary `0-rank-r approximation problem. Note that since we need to output
a matrix B, we will need the clustering of the rows of A and as per previous discussion this
will require one more pass than that in Theorem 8.

I Theorem 10. Let 0 < ε ≤ 1/2. There is a 4-pass streaming algorithm that makes row-wise
passes over the input matrix and outputs a (1 + ε)-approximate solution for any instance
of the generalised binary `0-rank-r problem. The space and per-item processing time of our
algorithm is O

(
d · (logn)2r · 2Õ(22r

ε2)
)
.

The details of this section are given in the full version of the paper.

1.5 Conclusion and open problems
Our results demonstrate the versatility of the sampling based approach for k-means. This has
also been demonstrated in some of the past works. The effectiveness of k-means++ (which
is basically D2-sampling in k rounds) is well known [4]. The D2-sampling technique has
been used to give simple PTAS for versions of the k-means/median problems with various
metric-like distance measures [28] and also various constrained variations of k-means [9].
It has also been used to give efficient algorithms in the semi-supervised setting [3, 24] and
coreset construction [35]. In this work, we see its use in the streaming, outlier, and clustering-
under-stability settings. The nice property of the sampling based approach is that we have a
uniform template of the algorithm that is simple and that works in various different settings.
This essentially means that the algorithm remains the same while the analysis changes.

This work raises many interesting questions. Our main result on list-k-means is a sampling
algorithm that helps us find good centers for any subset of t clusters. We made use of this
property in clustering-under-stability and outlier settings. There may be other such settings
where the clustering problem may become easier once good centers for a few clusters have
been chosen. Our discussion on outlier k-means raises an interesting question related to
the relative hardness of the k-means and the outlier k-means problem. In the streaming
setting for the constrained k-means, we give a generic algorithm within the unified framework
of Ding and Xu [18]. The advantage of working in this unified framework is that we get
streaming algorithms for various constrained versions of the k-means problem. However, it

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:15

may be possible to obtain better streaming algorithms (in terms of space, time, and number
of passes) for the constrained problems when considered separately as is the case for the
classical k-means problem [10]. It may be worthwhile exploring these problems.

References

1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.
In Proceedings of the 12th International Workshop and 13th International Workshop on
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX ’09 / RANDOM ’09, pages 15–28, Berlin, Heidelberg, 2009. Springer-Verlag. doi:
10.1007/978-3-642-03685-9_2.

2 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means
and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 61–72, October 2017. doi:10.1109/FOCS.
2017.15.

3 Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate Clustering
with Same-Cluster Queries. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:21, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ITCS.2018.40.

4 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’07,
pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=1283383.1283494.

5 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Stability yields a PTAS for k-median and
k-means clustering. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 309–318, Washington, DC, USA, 2010. IEEE Computer
Society. doi:10.1109/FOCS.2010.36.

6 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In Lars Arge and János Pach, editors, 31st
International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 754–767, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SOCG.2015.754.

7 Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and David P.
Woodruff. A PTAS for `p-low rank approximation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 747–766, Philadelphia,
PA, USA, 2019. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3310435.3310482.

8 Aditya Bhaskara, Sharvaree Vadgama, and Hong Xu. Greedy sampling for approximate
clustering in the presence of outliers. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 11146–11155. Curran Associates, Inc., 2019. URL: http://papers.nips.cc/paper/
9294-greedy-sampling-for-approximate-clustering-in-the-presence-of-outliers.
pdf.

9 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the constrained
k-means problem. Theory of Computing Systems, 62(1):93–115, January 2018.

10 Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler,
and Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the Twenty-
second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 26–40,
Philadelphia, PA, USA, 2011. Society for Industrial and Applied Mathematics. URL: http:
//dl.acm.org/citation.cfm?id=2133036.2133039.

FSTTCS 2020

https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.4230/LIPIcs.ITCS.2018.40
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.1109/FOCS.2010.36
https://doi.org/10.4230/LIPIcs.SOCG.2015.754
http://dl.acm.org/citation.cfm?id=3310435.3310482
http://dl.acm.org/citation.cfm?id=3310435.3310482
http://papers.nips.cc/paper/9294-greedy-sampling-for-approximate-clustering-in-the-presence-of-outliers.pdf
http://papers.nips.cc/paper/9294-greedy-sampling-for-approximate-clustering-in-the-presence-of-outliers.pdf
http://papers.nips.cc/paper/9294-greedy-sampling-for-approximate-clustering-in-the-presence-of-outliers.pdf
http://dl.acm.org/citation.cfm?id=2133036.2133039
http://dl.acm.org/citation.cfm?id=2133036.2133039

13:16 On Sampling Based Algorithms for k-Means

11 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’01, page 642–651, USA, 2001. Society for Industrial and
Applied Mathematics.

12 Sanjay Chawla and Aristides Gionis. k-means: A unified approach to clustering and outlier
detection, pages 189–197. Society for Industrial and Applied Mathematics, 2013. doi:
10.1137/1.9781611972832.21.

13 Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’08, page 826–835, USA, 2008. Society for Industrial and Applied Mathematics.

14 V. Cohen-Addad and Karthik C.S. Inapproximability of clustering in lp metrics. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 519–539,
November 2019. doi:10.1109/FOCS.2019.00040.

15 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), 00:353–364, 2016. doi:
10.1109/FOCS.2016.46.

16 Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 49–60, 2017. doi:10.1109/FOCS.2017.14.

17 Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2008-0916,
Department of Computer Science and Engineering, University of California San Diego, 2008.

18 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality
property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 1471–1490, 2015. doi:10.1137/1.9781611973730.97.

19 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, SCG ’07, pages 11–18, New York, NY, USA, 2007. ACM. doi:10.1145/1247069.
1247072.

20 Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Christian
Sohler. Bico: Birch meets coresets for k-means clustering. In Hans L. Bodlaender and
Giuseppe F. Italiano, editors, Algorithms – ESA 2013, pages 481–492, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

21 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saur-
abh. Approximation schemes for low-rank binary matrix approximation problems. CoRR,
abs/1807.07156, 2018. arXiv:1807.07156.

22 Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R. Salavatipour.
Approximation schemes for clustering with outliers. ACM Trans. Algorithms, 15(2), February
2019. doi:10.1145/3301446.

23 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), 00:365–374, 2016. doi:10.1109/FOCS.2016.47.

24 Buddhima Gamlath, Sangxia Huang, and Ola Svensson. Semi-Supervised Algorithms for
Approximately Optimal and Accurate Clustering. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 57:1–57:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2018.57.

25 Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii. Local
search methods for k-means with outliers. Proc. VLDB Endow., 10(7):757?768, March 2017.
doi:10.14778/3067421.3067425.

https://doi.org/10.1137/1.9781611972832.21
https://doi.org/10.1137/1.9781611972832.21
https://doi.org/10.1109/FOCS.2019.00040
https://doi.org/10.1109/FOCS.2016.46
https://doi.org/10.1109/FOCS.2016.46
https://doi.org/10.1109/FOCS.2017.14
https://doi.org/10.1137/1.9781611973730.97
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1247069.1247072
http://arxiv.org/abs/1807.07156
https://doi.org/10.1145/3301446
https://doi.org/10.1109/FOCS.2016.47
https://doi.org/10.4230/LIPIcs.ICALP.2018.57
https://doi.org/10.14778/3067421.3067425

A. Bhattacharya, D. Goyal, R. Jaiswal, and A. Kumar 13:17

26 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC ’04,
pages 291–300, New York, NY, USA, 2004. ACM. doi:10.1145/1007352.1007400.

27 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering: (extended abstract). In Proceedings of the tenth
annual symposium on Computational geometry, SCG ’94, pages 332–339, New York, NY, USA,
1994. ACM. doi:10.1145/177424.178042.

28 Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for
k-means and other clustering problems. Algorithmica, 70(1):22–46, 2014. doi:10.1007/
s00453-013-9833-9.

29 Ragesh Jaiswal, Mehul Kumar, and Pulkit Yadav. Improved analysis of D2-sampling based
PTAS for k-means and other clustering problems. Information Processing Letters, 115(2):100–
103, 2015. doi:10.1016/j.ipl.2014.07.009.

30 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. In
Proc. 18th Annual Symposium on Computational Geometry, pages 10–18, 2002. doi:10.1145/
513400.513402.

31 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, page 646–659, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188882.

32 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes
for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, February 2010. doi:
10.1145/1667053.1667054.

33 Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David Woodruff. Faster algorithms for binary
matrix factorization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3551–3559, Long Beach, California, USA, 09–15 June 2019. PMLR.
URL: http://proceedings.mlr.press/v97/kumar19a.html.

34 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, June 1995. doi:10.1007/BF01200757.

35 Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaussian
mixture models at scale via coresets. J. Mach. Learn. Res., 18(1):5885–5909, January 2017.
URL: http://dl.acm.org/citation.cfm?id=3122009.3242017.

36 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theor. Comput. Sci., 442:13–21, July 2012. doi:10.1016/j.tcs.2010.05.034.

37 Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. CoRR, abs/1811.03195, 2018.
arXiv:1811.03195.

38 Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming
algorithms for fair k-means. In Evripidis Bampis and Nicole Megow, editors, Approximation
and Online Algorithms, pages 232–251, Cham, 2020. Springer International Publishing.

39 Andrea Vattani. The hardness of k-means clustering in the plane. Technical report, Department
of Computer Science and Engineering, University of California San Diego, 2009.

40 J S Vitter. Random sampling with a reservoir. ACM Trans. Math. Software, 11(1):37–57,
1985.

FSTTCS 2020

https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/177424.178042
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1016/j.ipl.2014.07.009
https://doi.org/10.1145/513400.513402
https://doi.org/10.1145/513400.513402
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
http://proceedings.mlr.press/v97/kumar19a.html
https://doi.org/10.1007/BF01200757
http://dl.acm.org/citation.cfm?id=3122009.3242017
https://doi.org/10.1016/j.tcs.2010.05.034
http://arxiv.org/abs/1811.03195

String Indexing for Top-k Close Consecutive
Occurrences
Philip Bille
Technical University of Denmark, DTU Compute, Lyngby, Denmark
phbi@dtu.dk

Inge Li Gørtz
Technical University of Denmark, DTU Compute, Lyngby, Denmark
inge@dtu.dk

Max Rishøj Pedersen
Technical University of Denmark, DTU Compute, Lyngby, Denmark
mhrpe@dtu.dk

Eva Rotenberg
Technical University of Denmark, DTU Compute, Lyngby, Denmark
erot@dtu.dk

Teresa Anna Steiner
Technical University of Denmark, DTU Compute, Lyngby, Denmark
terst@dtu.dk

Abstract
The classic string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P , report
all occurrences of P within S. In this paper, we study a basic and natural extension of string
indexing called the string indexing for top-k close consecutive occurrences problem (Sitcco). Here,
a consecutive occurrence is a pair (i, j), i < j, such that P occurs at positions i and j in S and there
is no occurrence of P between i and j, and their distance is defined as j − i. Given a pattern P and
a parameter k, the goal is to report the top-k consecutive occurrences of P in S of minimal distance.
The challenge is to compactly represent S while supporting queries in time close to the length of P
and k. We give two time-space trade-offs for the problem. Let n be the length of S, m the length
of P , and ε ∈ (0, 1]. Our first result achieves O(n logn) space and optimal query time of O(m+ k),
and our second result achieves linear space and query time O(m+ k1+ε). Along the way, we develop
several techniques of independent interest, including a new translation of the problem into a line
segment intersection problem and a new recursive clustering technique for trees.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation → Data structures design and analysis

Keywords and phrases String indexing, pattern matching, consecutive occurrences

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.14

Related Version https://arxiv.org/abs/2007.04128.

Funding Philip Bille: Supported by the Danish Research Council grant DFF-8021-002498.
Inge Li Gørtz: Supported by the Danish Research Council grant DFF-8021-002498.
Max Rishøj Pedersen: Supported by the Danish Research Council grant DFF-8021-002498.
Eva Rotenberg: Supported by the Danish Research Council grant DFF-8021-002498.

Acknowledgements We thank anonymous reviewers of an earlier draft of this paper for their
insightful comments and suggestions for improvement.

© Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, Eva Rotenberg, and Teresa Anna Steiner;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1120-5154
mailto:phbi@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8850-6422
mailto:mhrpe@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:erot@dtu.dk
https://orcid.org/0000-0003-1078-4075
mailto:terst@dtu.dk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.14
https://arxiv.org/abs/2007.04128
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 String Indexing for Top-k Close Consecutive Occurrences

1 Introduction

The classic string indexing problem is to preprocess a string S into a compact data structure
that supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. An occurrence of P within S is an index i, 0 ≤ i < |S|,
such that P = S[i . . . i + |P | − 1]. In this paper, we introduce a basic extension of string
indexing, where the goal is to report consecutive occurrences of the pattern P that occur close
to each other in S. Here, a consecutive occurrence is a pair (i, j), i < j, such that P occurs at
positions i and j in S and there is no occurrence of P between i and j, and close to each other
means that the distance j − i between the occurrences should be small. More precisely, given
a pattern P and an integer parameter k > 0, define the top-k close consecutive occurrences
of P to be the k consecutive occurrences of P in S with the smallest distances. Given a
string S the string indexing for top-k close consecutive occurrences (Sitcco) problem is to
preprocess S into a data structure that supports top-k close consecutive occurrences queries.
The goal is to obtain a compact data structure while supporting fast queries in terms of
the length of the pattern P and the number of reported occurrences k. For an example, see
Figure 1.

P = AN

S = B
0
ATMAN

5
AND

10
ANNA

15
SING

20
NANAN

25
ANA A

30
ND EA

35
T BAN

40
ANAS

Figure 1 P occurs at positions 4, 7, 11, 22, 24, 26, 30, 39 and 41 in S. The top 5 close consecutive
occurrences are (22, 24), (24, 26), (39, 41), (4, 7), and (7, 11), with the tie between (7, 11) and (26, 30)
broken arbitrarily.

Surprisingly, the Sitcco problem has not been studied before even though it is a natural
variant of string indexing and several closely related problems have been extensively studied
(see related work below).

1.1 Results and Techniques
To state the complexity bounds, let n and m denote the lengths of S and P , respectively.
An immediate approach to solve the Sitcco problem is to store the suffix tree of S using
O(n) space. To answer a query on P with parameter k, we traverse the suffix tree to find all
occurrences of P , construct the consecutive occurrences, and then sort these to output the
top-k close consecutive occurrences. Naively, this requires two sorts of size occ, where occ is
the total number of occurrences of P , giving a query time of O(m+ occ log occ). Using more
advanced data structures [9, 10], the query time can be reduced to O(m+ occ) while still
using linear space. Note that occ can be much larger than k. Alternatively, we can store at
every node in the suffix tree the set of all consecutive occurrences sorted by distance using
O(n2) space. To answer a query we find the node corresponding to P and simply report the
first k of the stored consecutive occurrences in optimal O(m+ k) time.

To achieve better trade-offs, one might try to use a strategy similar to range minimum
query (RMQ), where the ranges are subsequent ranges in the suffix array and the values are
distances between pairs of suffix indexes in S. However, there are several problems with that
idea: first, there are Θ(|S|2) possible pairs of suffix indexes within S, and it is not immediately
clear how many of them can correspond to consecutive occurrences of a pattern (our arguments

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:3

from Section 3 imply that this number is bounded by O(n logn)). Secondly, when taking the
union of two ranges, the set of closest (consecutive) pairs can change completely: consider
for example the string S = A B A C A B A C D A B D A C D A B D A C. While the string
A has occurrences {0, 2, 4, 6, 9, 12, 15, 18}, the string AB has occurrences {0, 4, 9, 15} and AC
has {2, 6, 12, 18}. Note that for P = A, the top-3 consecutive occurrences are (0, 2), (2, 4)
and (4, 6), while for AB they are (0, 4), (4, 9) and (9, 15) and for AC they are (2, 6), (6, 12)
and (12, 18). Both the pairs and the distances are completely different between A and its
extensions. Thus, there is an issue of non-decomposability, which is a main challenge in this
particular problem. However, in the rest of our paper we will show that we can use suffix
tree decompositions and amortized arguments to bound the number of changes that can
happen in the set of consecutive occurrences of substrings corresponding to positions on
some paths in the suffix tree.

We obtain the following significantly improved time-space trade-offs:

I Theorem 1. Given a string S of length n and ε, 0 < ε ≤ 1, we can build a data structure
that can answer top-k close consecutive occurrences queries using either
(i) O(n logn) space and O(m+ k) query time or
(ii) O(nε) space and O(m+ k1+ε) query time.

Here, m is the length of the query pattern.

Hence, Theorem 1(i) achieves optimal query time using near-linear space. Alternatively,
Theorem 1(ii) achieves linear space, for constant ε, while supporting queries in near-optimal
O(m+ k1+ε) time.

To achieve Theorem 1 we develop several data structural techniques that may be of
independent interest. First, we translate the problem into a line segment intersection problem
on the heavy path decomposition of the suffix tree. This leads to the O(n logn) space and
optimal query time bound of Theorem 1(i). We note that Navarro and Thankachan [31] used
similar techniques for a closely related problem (see related work below). To reduce space,
we introduce a novel recursive clustering method on trees. The decomposition partitions
the tree into a hierarchy of depth O(log logn) consisting of subtrees of doubly exponentially
decreasing sizes. We show how to combine the decomposition with the techniques of the
simple algorithm from Theorem 1(i) to obtain an O(n log logn) space and O(m + k1+ε)
query time solution. Finally, we show how to efficiently compress the hierarchy of data
structures into rank space leading to the linear space and O(m+ k1+ε) query time bound of
Theorem 1(ii).

We apply these techniques to three related problems: Firstly, we address the natural
“opposite” problem of reporting the k consecutive occurrences of largest distance, which can
be solved using similar but not identical techniques. Secondly, we apply our framework to
the related problem of reporting consecutive occurrences with distances within a specified
interval, considered by Navarro and Thankachan [31], and give an improvement for a special
case. Finally, we show how this allows us to efficiently report all non-overlapping consecutive
occurrences of a pattern. The proofs for these extensions are deferred to the full version of
the paper.

1.2 Related Work
To the best of our knowledge, the Sitcco problem has not been studied before, even though
distances between occurrences is a natural extension for string indexing and several related
problems have been studied extensively.

FSTTCS 2020

14:4 String Indexing for Top-k Close Consecutive Occurrences

A closely related problem was considered by Navarro and Thankachan [31], who showed
how to efficiently report consecutive occurrences with distances within a specified interval.
They gave an O(n logn) space and O(m+ occ) time solution, where occ denotes the number
of reported consecutive occurrences. We note that their result can be adapted to the Sitcco
problem to achieve the same bounds as in Theorem 1(i). However, our solution is simpler and
does not rely on heavy word RAM techniques such as persistent van Emde Boas trees [12].
Our techniques can also be used to solve the problem considered by Navarro and Thankachan
getting the same space and time bounds as they obtain, and we can achieve improved bounds
in a special case (see Section 7).

A lot of work has been done on the related problem of string indexing for patterns under
various distance constraints, where the goal is to report occurrences of (one or more) patterns
that are within a given distance or interval of distances of each other [4, 6, 7,11,23,24,25].
An important difference between those works and our work is that all those solutions use
time proportional to all pairs of occurrences with distances in the given range, in contrast to
only finding consecutive occurrences. Note that if the goal is to find occurrences of a given
maximal distance, one can find the close consecutive occurrences first and then construct all
pairs satisfying the constraint.

Another line of related work is indexing collections of strings, called documents. Here
the goal is to find documents containing patterns subject to various constraints. For a
comprehensive overview see the survey by Navarro [28]. Several results on supporting
efficient top-k queries are known [8, 18,19, 20, 20,21, 26,27, 29, 30,32, 34]. In this context the
goal is to efficiently report the k documents of smallest weight. The weights can depend
on the query and can be the distance between the closest pair of occurrences of a given
pattern [20,20,26,29,29,32]. The problem can be solved in linear space and optimal O(k)
time, in addition to finding the locus of the pattern in the suffix tree [32]. While this problem
statement resembles ours, there is no direct translation from those results to our problem,
since the documents are considered individually, and for a single document only the pair of
occurrences with minimum distance within the document is considered.

1.3 Outline
The paper is organized as follows. In Section 2 we introduce some notation and recall results
on string indexing. In Section 3 we build a simple data structure and prove Theorem 1(i). In
Section 4 we recall a method for tree clustering and show how to use it to solve a simplified
version of the problem. In Section 5 we introduce a recursive clustering method that allows
us to use the ideas from Section 4 on the actual problem. This gives an O(n log logn) space
and O(m+ k2) time data structure. In Section 6, we show how to reduce the space to linear
while achieving the same query time, and then generalize the recursion to get Theorem 1(ii)
for any 0 < ε ≤ 1. Finally, in Section 7 we apply our techniques to related problems.

2 Preliminaries

We introduce some notation and and recall basic results from string indexing.
A string S of length n is a sequence S[0]S[1] . . . S[n− 1] of characters from an alphabet Σ.

A contiguous subsequence S[i, j] = S[i]S[i+ 1] . . . S[j − 1] is a substring of S. The substrings
of the form S[i, n] are the suffixes of S.

The suffix tree [35] is a compact trie of all suffixes of S$, where $ is a symbol not in the
alphabet, and is lexicographically smaller than any letter in the alphabet. Using perfect
hashing [16], it can be stored in O(n) space and solve the string indexing problem (i.e., find

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:5

and report all occurrences of a pattern P) in O(m+ occ) time, where m is the length of P
and occ is the number of times P occurs in S. The suffix array stores the suffix indices of
S$ in lexicographic order. The suffix tree has the property that the leaves below any node
represent suffixes that appear in consecutive order in the suffix array. Brodal et al. [10] show
that there is a linear space data structure that allows outputting all entries within a given
range of an array in sorted order using time linear in size of the output. This data structure
on the suffix array together with the suffix tree can output all occurrences of a pattern sorted
by text order in O(n) space and O(m+ occ) time.

For any node v in the suffix tree, we define str(v) to be the string found by concatenating
all labels on the path from the root to v. The locus of a string P , denoted locus(P), is the
minimum depth node v such that P is a prefix of str(v).

3 A Simple O(n log n) Space Solution

In this section, we present a simple solution that solves the Sitcco problem in O(n logn)
space and O(m+k) query time. This solution will be a key component in our more advanced
structures in the following sections. We note that the results by Navarro and Thankachan [31]
for the related problem of reporting consecutive occurrences with distances within a specified
interval can be modified to achieve the same complexities. However, our solution is simpler
and does not rely on heavy word RAM techniques such as persistent van Emde Boas trees [12].

Let D(v) denote the set of consecutive occurrences of str(v). Naively, if we store for
each node v the set D(v) in sorted order, we can directly answer a query for the top-k close
consecutive occurrences of a pattern P by reporting the k smallest elements in D(locus(P)).
This solves the problem in O(n2) space and O(m + k) query time. The main idea in our
simple solution is to build a heavy path decomposition of the suffix tree and compactly
represent sets on the same path via a reduction to the orthogonal line segment intersection
problem while maintaining optimal time queries. This is similar to the data structure by
Navarro and Thankachan [31], but our reduction is different.

Heavy path decomposition

A heavy path decomposition of a tree T is defined as follows: Starting from the root, at every
node, we choose the edge to the child with the largest subtree as heavy edge, until we reach a
leaf. Ties are broken arbitrarily. This defines a heavy path, and all edges hanging off the
heavy path are light edges. The root of a heavy path h is called the apex of the path, denoted
apex(h). We then recursively decompose all subtrees hanging off the path. The heavy path
decomposition has the following property:

I Lemma 2 (Sleator and Tarjan [33]). Given a tree T of size n and a heavy path decomposition
of T , any root-to-leaf path in T contains at most O(logn) light edges.

Orthogonal line segment intersection

Similarly as Navarro and Thankachan [31], we are going to reduce the problem to a geometric
problem on orthogonal line segment intersection. Specifically, we are going to reduce to the
following problem: Let L be a set of n vertical line segments in a plane with non-negative
x-coordinates. The orthogonal line segment intersection problem is to preprocess L to support
the query:

smallest-segments(y0, k): return the first k segments intersecting the horizontal line with
y-coordinate y0 in left-to-right order.

FSTTCS 2020

14:6 String Indexing for Top-k Close Consecutive Occurrences

We will assume that y0 is an integer, which suffices for our purpose. Let N be the maximum
y-coordinate of a segment in L. The following lemma follows easily from the results on
partially persistent data structures by Driscoll et al. [14].

I Lemma 3. We can solve the line segment intersection problem as described above in
O(n+N) space and O(k) time.

Proof. Consider the x-coordinates as the elements of a set X and the y-coordinate as time.
The version of X at a time y0 contains exactly the x-coordinates of the line segments which
intersect the horizontal line at y0. Now, the data structure is a partially persistent sorted
doubly linked list L on the elements of X. The elements are sorted in increasing order. Since
we have at most n line segments, the maximum size of X as well as the maximum number
of updates is n. Each update changes only O(1) pointers in the linked list. Using the node
copying technique from Driscoll et al. [14] we can build a partially persistent linked list using
O(n) space. To be able to find version y0 in constant time, we keep an array of size N with
a pointer to the root of the version at each possible time step. For a query (y0, k), use the
sorted linked list L to report the k smallest elements at time y0.

If we use a linear scan to find the place to insert an element or find the element to be
deleted we get a preprocessing time of O(n2). This can be improved to O(n logn) by using a
(non-persistent) balanced binary search tree during the preprocessing holding all elements
in the current version of L together with a pointer to their node in the current version.
When performing an update the binary search tree is used to find the position where the
element must be inserted/deleted in O(logn) time. After the preprocessing step the tree is
discarded. J

3.1 Data Structure

We construct a heavy path decomposition of the suffix tree T of S. Our data structure
consists of a line segment data structure from Lemma 3 for each heavy path of T that
compactly encodes the sets D(v) for each node v on the path.

We describe the contents of the data structure for a single heavy path h = v1, . . . , v`,
where v1 is the apex of the path. Consider a consecutive occurrence (i, j) on some node on h
and imagine moving down the heavy path from top to bottom. Either (i, j) is a consecutive
occurrence at the apex of h or it will become a consecutive occurrence as soon as every suffix
starting at an index between i and j has branched off the heavy path. Then it will stay a
consecutive occurrence until either the suffix corresponding to i or the suffix corresponding to
j (or both) branch off h. Thus, there exists an interval [d1, d2] of depths on the heavy path
such that (i, j) ∈ D(vd) if and only if d ∈ [d1, d2]. We say that (i, j) is alive in this interval.

We encode the consecutive occurrences by line segments in the plane which describe their
distance and the interval in which they are alive along the heavy path. Conceptually, the
x-coordinate in our coordinate system corresponds to the distance of a consecutive pair, and
the y-coordinate corresponds to the depth on the heavy path. Now, for each consecutive
occurrence (i, j), we define a vertical line segment with x-coordinate set to its distance, and
y-coordinate spanning the interval [d1, d2], where [d1, d2] is the interval in which (i, j) is alive.
For an example, see Figure 2. Our data structure for h stores the above line segments in the
line segment data structure from Lemma 3. For each line segment in the data structure we
store a pointer to the pair of occurrences it represents. The full data structure for T consists
of the line segment data structures for all of the heavy paths in T .

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:7

A

N

A

NA

...$

2 4 6 8 10 12 142

1

2

3

4

6

3

3

1

3 2 1

2 1

1

1

1

1

1

Figure 2 Line segments for a heavy path from the suffix tree for
“BATMAN-AND-ANNA-SING-NANANANA-AND-EAT-BANANAS”. Here, if we have overlapping line seg-
ments, we denote by a number how many consecutive occurrences the current segment corresponds
to. At depth 1, we have a line segment corresponding to pairs of consecutive occurrences of string A
- there are six pairs that have a distance of 2, three pairs that have a distance of 3, two pairs that
have a distance of 4, and so on. At depth 2, we encode the consecutive occurrences of string AN.
Some of them are the same as for string A.

Space analysis

For a given heavy path h, a leaf in the subtree of apex(h) can be in at most two consecutive
occurrences in D(apex(h)). Consider a light edge (vd, u) leaving h at depth d. Any leaf in
the subtree rooted at u can be part of at most two consecutive occurrences in D(vd). A single
leaf can thus make at most two consecutive occurrences from D(vd) disappear in D(vd+1)
and at most one new consecutive occurrence appear. If we consider all leaves that leave h,
we therefore get at most three changes per leaf. Thus, for a given heavy path h a leaf in
the subtree of apex(h) can be in at most two consecutive occurrences in D(apex(h)) and
can cause at most three changes of line segments in the line segment data structure for h.
Since any root-to-leaf path can intersect at most logn heavy paths, any leaf can contribute
O(logn) line segments. Overall, this means that there are at most O(n logn) line segments
in total. For a single heavy path h the line segment data structure from Lemma 3 uses linear
space in the number of segments and the length of h. The sum of the lengths of the heavy
paths is O(n), since the heavy paths are disjoint. Thus the total space usage is O(n logn).

3.2 Algorithm
Given a pattern P and an integer k we can now answer a query as follows. We begin by
finding locus(P) in the suffix tree. Let h be the heavy path that the locus is on and let dP
be the depth of locus(P) on h. We do a smallest-segments(dP , k) query on the line segment
data structure stored for h and report the consecutive occurrences corresponding to the
returned line segments.

Correctness

By definition, D(locus(P)) contains the consecutive occurrences of P . Thus, every consec-
utive occurrence of P defines a line segment in the data structure for h and the horizontal
line with y-coordinate set to dP intersects exactly those line segments. Since we set the
x-coordinate of every line segment to the distance of its consecutive occurrence, the line
segments are sorted left-to-right by increasing distance. Thus, the first k line segments inter-
secting the horizontal line at y = dP correspond to the top-k close consecutive occurrences.

FSTTCS 2020

14:8 String Indexing for Top-k Close Consecutive Occurrences

Time analysis

The time for finding locus(P) in the suffix tree is O(m). The time for querying the line
segment data structure from Lemma 3 is O(k), so the total time complexity is O(m + k).
This proves Theorem 1(i).

4 A Linear Space Solution for Fixed k

In this section, we present a linear space and O(m+ k) time solution for the simpler problem
where k is known at construction time. That is, given a string S and a positive integer k,
we preprocess S into a compact data structure such that given a pattern string P , we
can efficiently find the top-k close consecutive occurrences of P in S. This data structure
demonstrates one of the key ideas that our final result builds on.

The main idea behind the data structure is to store the line segment solution from
Section 3 for some path segments of the suffix tree, such that all nodes that are not on
these paths are within small subtrees. For nodes within such small subtrees we can find
all consecutive occurrences without spending too much time. Specifically, we will partition
the suffix tree into clusters, satisfying some properties. We are going to define this cluster
partition next.

4.1 Cluster Partition
For a connected subgraph C ⊆ T , a boundary node v is a node v ∈ C such that either v is the
root of T , or v has an edge leaving C – that is, there exists an edge (v, u) in the tree T such
that u ∈ T \C. A cluster is a connected subgraph C of T with at most two boundary nodes.
A cluster with one boundary node is called a leaf cluster. A cluster with two boundary nodes
is called a path cluster. For a path cluster C, the two boundary nodes are connected by a
unique path. We call this path the spine of C. A cluster partition is a partition of T into
clusters, i.e. a set CP of clusters such that

⋃
C∈CP V (C) = V (T) and

⋃
C∈CP E(C) = E(T)

and no two clusters in CP share any edges. Here, E(G) and V (G) denote the edge and
vertex set of a (sub)graph G, respectively. We need the next lemma which follows from
well-known tree decompositions [1, 2, 3, 15] (see Bille and Gørtz [5] for a direct proof).

I Lemma 4. Given a tree T with n nodes and a parameter τ , there exists a cluster partition
CP such that |CP | = O(n/τ) and every C ∈ CP has at most τ nodes. Furthermore, such a
partition can be computed in O(n) time.

4.2 Data Structure
For the suffix tree of S, we build a clustering as in Lemma 4 with parameter τ set to k to get
O(n/k) clusters of size at most k. For the spine of every path cluster, we build a line segment
data structure similar to the one from Section 3. The difference is that for any depth, we only
maintain the line segments that correspond to the top-k close consecutive occurrences for
that depth. Let v1, . . . , vl denote the nodes on the spine, starting at the top boundary node.
Note that for any consecutive occurrence that appears for the first time in D(vd+1) there is
a consecutive occurrence in D(vd) of smaller distance which is no longer present in D(vd+1).
It follows that, when moving down the spine, once a consecutive occurrence (i, j) is amongst
the k closest, it will stay amongst the k closest until suffix i or j branches off the spine. Thus,
there exists an interval [d1, d2] of consecutive depths such that (i, j) is amongst the k closest
pairs in D(vd) if and only if d ∈ [d1, d2]. For a consecutive occurrence (i, j) that is amongst

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:9

Figure 3 The suffix tree is divided into clusters (grey loops) of size ≤ k which are either leaf
clusters, or path clusters with spines marked in red. For every spine we store a line segment data
structure, also marked in red.

the k closest for any v on the spine, we define a line segment where the x-coordinate is its
distance and the y-coordinate is spanning the interval [d1, d2], where [d1, d2] is the interval
in which (i, j) is amongst the k closest pairs. For these line segments we store the data
structure from Lemma 3. Again, for each line segment we store the pair of occurrences it
represents. We store this data structure for the spine of each cluster and for every node that
is on that spine we store a pointer to the data structure. For boundary nodes that are on
multiple spines we store a pointer to any one of them. See Figure 3 for an illustration of
this structure. Additionally we store the suffix array and the sorted range reporting data
structure of Brodal et al. [10] on the suffix array.

Space analysis

We show that for every path cluster there are O(k) line segments: We still have the property
that a line segment only ends if a corresponding leaf branches off the spine. In that case, it
might be replaced either by a new consecutive occurrence or by a consecutive occurrence
that was there before but was not amongst the k closest. Note that at any node on the spine
except the boundary nodes, any subtrees branching off the spine are fully contained within
the cluster, and as such have total size at most k. Between the top boundary node and the
next node on the spine, we have no bound as to how many leaves can branch off – however,
since we only store line segments corresponding to the top-k consecutive occurrences, at
most k line segments can be replaced by k other line segments. For the rest of the spine, at
most k leaves can branch off in total. Every leaf that branches off can cause at most two line
segments to end and two new line segments to begin. As such there can be at most O(k)
line segments. As the size of the line segment data structure is linear in the number of line
segments and in the length of the spine, any line segment data structure of a path cluster
uses O(k) space. As both the sorted range reporting data structure and the suffix array have
linear space complexity, the complete data structure occupies O((n/k)k + n) = O(n) space.

4.3 Algorithm
Given a pattern P we can now answer the top-k query. We begin by finding locus(P) in
the suffix tree. If the locus is on a spine, we query the line segment data structure for that
spine. Otherwise the locus is either in a subtree hanging off a spine or in a leaf cluster. In

FSTTCS 2020

14:10 String Indexing for Top-k Close Consecutive Occurrences

both cases, there are at most k occurrences of our pattern P . We find all occurrences of P
in text order, using the sorted range reporting data structure. This allows us to report the
consecutive occurrences: Let i1, ..., il denote the leaves in text order, then the consecutive
occurrences are (i1, i2), (i2, i3), ...(il−1, il). Note that l ≤ k, since the size of the subtree is at
most k.

Correctness

By construction, for any depth on a spine, the top-k close consecutive occurrences of the
corresponding substring will have corresponding line segments present at that depth in the
line segment data structure. If the locus is on a spine, then by the arguments in Section 3,
the line segment data structure will report the top-k close consecutive occurrences. If the
locus is not on a spine, then there are at most k occurrences of P in total, since any subtree
hanging off a spine and any leaf cluster has at most k leaves. Thus, by constructing and
reporting all consecutive occurrences of P we report the top-k close consecutive occurrences.

Time analysis

We find the locus in O(m) time. If we land on a spine we report in O(k) time. Otherwise,
we are in a subtree of size at most O(k) and thus P has at most k occurrences. Using sorted
range reporting we can find the occurrences in text order using O(k) time. The total time
for a query is thus O(m+ k).

We are going to use this data structure with different parameters in Section 5. For a
general parameter τ , we have the following lemma:

I Lemma 5. For any positive integer τ , there exists a cluster partition of the suffix tree and
a linear space data structure with the following properties:
1. For any k ≤ τ and P such that locus(P) is on the spine of a cluster, we can report the

top-k close consecutive occurrences in O(m+ k) time.
2. For any P such that locus(P) is not on a spine, we can report the top-k close consecutive

occurrences in O(m+ τ) time.

Proof. We build the data structure described in this section for parameter τ taking the role
of k. In case 1, we query the line segment data structure for the depth of locus(P) on the
path and k. Since k ≤ τ this will correctly output the top-k close consecutive occurrences of
P . In case 2, we have shown that we can construct the top-τ close consecutive occurrences.
Using the linear time selection algorithm by Blum et al. [9] we can find the top-k of those:
We use the algorithm to find the consecutive occurrence of kth smallest distance d; then we
traverse all the consecutive occurrences and output those of distance ≤ d. If needed, we crop
the output to report no more than k consecutive pairs. J

5 An O(n log log n) Space Solution for General k

We now show how to leverage the solution from Lemma 5 to obtain a data structure that
can answer queries for any k. The idea is to recursively cluster the suffix tree, such that we
always either land on a spine with a sufficient number of consecutive occurrences stored, or
in a sufficiently small subtree.

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:11

Figure 4 Here, we see the recursive clustering: The black clustering is the coarsest clustering
and the green and blue are finer sub-clusterings.

5.1 Data Structure
Our data structure consists of the suffix tree decomposed into clusters of decreasing size, with
the line segment data structure stored for every spine as before. We build it in the following
way. First we build the solution from Lemma 5 with parameter τ1 =

√
n, resulting in clusters

of size at most
√
n. For every subtree hanging off a spine and every leaf cluster, we apply the

solution with parameter τ2 = √τ1. We keep recursively applying the solution with parameter
τi = √τi−1 until reaching a constant cluster size. For notational convenience, additionally
define τ0 = n. See Figure 4 for an illustration of this data structure. Again we additionally
store the suffix array and the sorted range reporting data structure of Brodal et al. [10] on
the suffix array.

Space analysis

The suffix array and sorted range reporting structure occupy O(n) space. For a tree of size
ñ and any τ , the data structure from Lemma 5 uses at most O(ñ) space. Since at every
recursion level, we build the data structure from Lemma 5 on non-overlapping subtrees of
the suffix tree, every recursion level uses at most O(n) space. As the cluster size at every
level of recursion is the square root of the previous cluster size, there are at most O(log logn)
levels. The complete data structure thus uses O(n log logn) space.

5.2 Algorithm
Given a query with pattern P and parameter k, we can now answer in the following way.
As before, we begin by finding the locus of the pattern in the suffix tree. This node is now
either on the spine of some cluster or in a cluster of constant size. If it is on the spine of a
cluster of size τi, and if k ≤ τi, then we query the line segment data structure for that spine,
which allows us to report the top-k close consecutive occurrences. Otherwise, we find all
occurrences of P and construct the top-k close consecutive occurrences by using linear time
selection as in the proof of Lemma 5.

Correctness

The correctness of the algorithm follows by the same arguments as previous sections.

FSTTCS 2020

14:12 String Indexing for Top-k Close Consecutive Occurrences

Time analysis

Finding the locus in the suffix tree takes O(m) time. The locus is either on the spine of a
cluster, or within a cluster of constant size. In a constant sized cluster, clearly we can do all
operations described above in constant time. If the locus is on the spine of a cluster with
parameter τi, and k ≤ τi, then we are in case 1 of Lemma 5 with τ = τi and can report the
top-k close consecutive occurrences using a total of O(m+ k) time. If k > τi, then we are
in case 2 of Lemma 5 with τ = τi−1. Note that τi−1 = τ2

i < k2. Therefore, we can find the
top-k close consecutive occurrences in O(m+ τi−1) = O(m+ k2) time. In total, the worst
case query time is then O(m+ k2). In summary, this gives the following result:

I Lemma 6. Given a string S of length n, we can build a data structure that can answer
top-k close consecutive occurrences queries using O(n log logn) space and O(m+ k2) query
time. Here, m is the length of the query pattern.

6 A Linear Space Solution

We now show how to reduce the space consumption of the solution presented in Section 5.
Observe that in any cluster of level i, we only have O(τi) objects. If we can reduce all objects
within a cluster to a “universe size” of O(τi) instead of O(n), we can use O(τi log τi) bits
instead of O(τi logn) bits per cluster. In the following, consider a cluster C of level i.

Reducing the line segment data structure

In the line segment data structure for cluster C, by the analysis of previous sections, there
are at most O(τi) line segments and τi different depths on the path. Let c be a constant such
that there are at most cτi line segments for each cluster. We map every unique x-coordinate
of a line segment to a unique element in {1, . . . , cτi} in a way that preserves order. That
is, map the minimum x-coordinate to 1, the smallest x-coordinate that is bigger than the
minimum to 2, and so on. This gives us a modified line segment data structure that preserves
the properties we need but is restricted to a cτi × τi grid.

Reducing the leaf pointers

For any line segment, we have to store pointers that allow us to report the corresponding
pair of consecutive occurrences. Doing so naively uses 2 logn bits per line segment. In the
following, we show how to reduce that to 4 log τi, for a cluster C of level i. The idea is to
store the offset within the suffix array range defined by the top boundary node r of C. More
precisely, let [ar, br] be the range in the suffix array spanning the leaves below r. Then for
any leaf l in the subtree rooted at r define off(l) = SA−1(l)− ar. By the way our recursion
is defined, C is fully contained in a subtree of size at most τ2

i , and thus r has at most τ2
i

leaves below it. It follows that for any leaf l in the subtree of r, off(l) is a number between
in [0, τ2

i − 1] and can be stored using 2dlog τie bits.

6.1 Data Structure
Our data structure is now defined as follows: We have a clustering of the suffix tree as in
Section 5. For every spine on level i, we store the line segment data structure reduced to a
cτi × τi grid. Every line segment corresponding to a pair (i, j) stores the pair (off(i), off(j))
as additional information. For every node on the spine, we store a pointer to the spine data
structure and to the top boundary node of the spine. Additionally, we store the suffix array
and the sorted range reporting structure, as well as two integers for every node in the suffix
tree, that define the range of leaves below the node in the suffix array.

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:13

Space analysis

The suffix array and the sorted range reporting data structure use space O(n). Storing the
range in the suffix array plus at most two pointers per node uses O(n) space. For a cluster C
of level i, we store the line segment data structure from Lemma 3 for a cτi × τi grid. Since
the data structure from Lemma 3 works in the word RAM model (as do all data structures
presented in this paper), we can store the data structure using O(τi log τi) bits. For each of
the at most cτi line segments we store 4 log τi bits for the encoding of the consecutive pair.
Thus, we can store the data structure for cluster C using O(τi log τi) bits. As in the previous
section, at every recursion level, we cluster non-overlapping subtrees. The reduced cluster
solution of a subtree of size ñ with parameter τi uses O(ñτi τi log τi) = O(ñ log τi) bits. The
total space for all clusters of level i thus becomes O(n log τi). Summing over all recursion
levels, we get

blog lognc∑
i=0

O(n log τi) =
blog lognc∑

i=0
O
(
n logn(1/2i)

)
=
blog lognc∑

i=0

1
2iO(n logn) = O(n logn) bits,

that is, O(n) words.

6.2 Algorithm
We query the data structure as follows: If we land on a spine and k ≤ τi, we query the line
segment data structure and get k pairs of the form (off(i), off(j)). We then use the pointer to
get to the root of the spine and use the range in the suffix array to translate each encoding
back to the original suffix number, using constant time per leaf. Otherwise, we proceed as
described in Section 5. Since the decoding can be done in constant time per leaf, the time
complexities are the same as in Section 5. We have shown the following result:

I Lemma 7. Given a string S of length n, we can build a data structure that can answer
top-k close consecutive occurrences queries using O(n) space and O(m + k2) query time.
Here, m is the length of the query pattern.

In order to get Theorem 1(ii), we cluster according to a parameter ε, 0 < ε ≤ 1, using the
following recursion:

τ0 = n and τi = τ
1

1+ε
i−1 .

Hence, the total space in bits is now:

blog1+ε lognc∑
i=0

O
(
n logn1/(1+ε)i

)
=
∞∑
i=0

(
1

1 + ε

)i
O(n logn) =

(
1 + 1

ε

)
O(n logn),

that is, O
(
n
ε logn

)
bits, so O

(
n
ε

)
words. For the query time, there are again two cases. In

the case where locus(P) is on a spine with k ≤ τi, we get optimal O(m+ k) time, as before.
For the other case, we have at most τi−1 = τ1+ε

i < k1+ε occurrences of P , which gives us a
time complexity of O(m+ k1+ε). This concludes the proof of the main result.

7 Extensions

Our results can be extended to a couple of related problems. We give an overview here and
refer to the full version for details and proofs. In Section 7.1, we introduce the “opposite”
problem of reporting the k consecutive occurrences of largest distance. The extension is

FSTTCS 2020

14:14 String Indexing for Top-k Close Consecutive Occurrences

quite natural, though it does require some careful analysis. In Section 7.2, we then relate the
results from Section 7.1 and the solutions to Sitcco to the problem of finding consecutive
occurrences with distances in a specified interval, considered by Navarro and Thankachan [31].
Our results give improved complexities for the special case where one of the interval bounds
is known at indexing time. Finally, those results can be used to efficiently find all pairs of
non-overlapping consecutive occurrences.

7.1 Top-k Far Consecutive Occurrences
Given a pattern P and an integer parameter k > 0, define the top-k far consecutive occurrences
of P to be the k consecutive occurrences of P in S with the largest distances. Given a string
S the string indexing for top-k far consecutive occurrences problem (Sitfco) is to preprocess
S into a data structure that supports top-k far consecutive occurrences queries. The goal is
to obtain a compact data structure while supporting fast queries in terms of the length of
the pattern P and the number of reported occurrences k.

We can solve the Sitfco problem using the same strategy as for the Sitcco problem,
with small modifications. This yields the following result. The details can be found in the
full version.

I Theorem 8. Given a string S of length n and ε, 0 < ε ≤ 1, we can build a data structure
that can answer top-k far consecutive occurrences queries using either
(i) O(n logn) space and O(m+ k) query time or
(ii) O(nε) space and O(m+ k1+ε) query time.

Here, m is the length of the query pattern.

7.2 Consecutive Occurrences with Gaps
Given a string S the string indexing for consecutive occurrences with gaps problem (Sicog)
is to preprocess S into a compact data structure, such that for any pattern P and a range
[α, β] we can efficiently find all consecutive occurrences of P where the distance lies within
[α, β]. The Sicog problem was considered by Navarro and Thankachan [31] and they give an
O(n logn) space and O(m+ occ) time solution, where occ is the number of consecutive pairs
with distance in [α, β]. Using the data structure from Section 3, we get an O(n logn) space
and O(m+ logn+ occ) time solution for the Sicog problem, which can be optimized using
the same strategy as in [31] to achieve the same complexities. However, for a special case of
the problem where either α or β is known at indexing time we can get a similar trade-off as
for the Sitcco problem. The following theorem follows from our solution to Sitcco. Again,
we refer to the full version for details.

I Theorem 9. Given a string S of length n and α > 0, we can build for any ε satisfying
0 < ε ≤ 1 an O(nε) space data structure that can answer the following query in O(m+occ1+ε)
time: For a query pattern P and β ≥ α, report all consecutive occurrences of P in S where
the distance lies in [α, β]. Here, m is the length of the pattern and occ is the number of
reported occurrences.

Similarly, our result for top-k far consecutive occurrences yields the following result for β
fixed at indexing time:

I Theorem 10. Given a string S of length n and β > 0, we can build for any ε satisfying
0 < ε ≤ 1 an O(nε) space data structure that can answer the following query in O(m+occ1+ε)
time: For a query pattern P and α where 0 < α ≤ β, report all consecutive occurrences of
P in S where the distance lies in [α, β]. Here, m is the length of the pattern and occ is the
number of reported occurrences.

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:15

Non-overlapping consecutive occurrences

A natural and well studied variant of string indexing is the problem of finding sets of
non-overlapping occurrences of a pattern P . Here, a set of non-overlapping occurrences
is a set of occurrences {i1, . . . , ik} of P such that the distance between any two of them
is at least |P |. Several papers study the problem of finding the set of non-overlapping
occurrences of maximum size [13, 17, 22, 24]. Note that Theorem 10 applied to α = |P |
solves a different variant of finding sets of non-overlapping occurrences: Namely, finding all
pairs of non-overlapping consecutive occurrences. We call this problem the string indexing
for non-overlapping consecutive occurrences problem (Sinoco). The Sinoco problem is
inherently different from finding the maximum set of non-overlapping occurrences: For
example, the maximum set of non-overlapping occurrences of the pattern P = NANA in
the string S = NANANANA has size 2. However, there are no non-overlapping consecutive
occurrences. To the best of our knowledge, the Sinoco problem has not been studied before.
An immediate corollary of the results in Navarro and Thankachan [31] and Theorem 10 gives
the following trade-offs for solving Sinoco:

I Corollary 11. Given a string S of length n and ε, 0 < ε ≤ 1, we can build a data structure
that can find all non-overlapping consecutive occurrences of a query pattern P using either
(i) O(n logn) space and O(m+ occ) query time or
(ii) O(nε) space and O(m+ occ1+ε) query time.

Here, m is the length of the query pattern and occ is the number of reported occurrences.

Proof. Apply the results in [31] and Theorem 10 with β = n and α = |P |. J

8 Conclusion and Open Problems

We have introduced the natural problem of string indexing for top-k close consecutive
occurrences, and have given both a near-linear space solution achieving optimal query time
and a linear space solution achieving a query time that is close to optimal. Using these
techniques, we have given new solutions for the problem of string indexing for consecutive
occurrences with gaps (Sicog). Furthermore, we have introduced the problem of finding all
non-overlapping consecutive occurrences of a pattern (Sinoco) and showed that it can be
reduced to a special case of Sicog.

These results open interesting new directions for further research. The most obvious
open problem is to see whether it is possible to further improve the results for the main
problem considered in this paper, especially, achieve linear space and optimal query time
simultaneously. Secondly, it is still open whether it is possible to get an O(m+ occ) time
and linear space solution for the special case of the Sicog problem where one of the interval
endpoints is fixed, or even o(n logn) space for the general problem. For the Sinoco problem,
one might find better solutions that do not reduce it to Sicog but use additional insights
about the specific structure of the problem. Furthermore, there are many unexplored
variations: One could consider indexing for consecutive occurrences of different patterns P1
and P2, chains of consecutive occurrences, together with various distance constraints or top-k
queries.

References
1 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Minimizing

diameters of dynamic trees. In Proc. 24th ICALP, pages 270–280, 1997.

FSTTCS 2020

14:16 String Indexing for Top-k Close Consecutive Occurrences

2 Stephen Alstrup, Jacob Holm, and Mikkel Thorup. Maintaining center and median in dynamic
trees. In Proc. 7th SWAT, pages 46–56, 2000.

3 Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor queries. In Proc.
13th SODA, pages 947–953, 2002.

4 Johannes Bader, Simon Gog, and Matthias Petri. Practical variable length gap pattern
matching. In Proc. 15th SEA, pages 1–16, 2016.

5 Philip Bille and Inge Li Gørtz. The tree inclusion problem: In linear space and faster. ACM
Trans. Algorithms, 7(3):1–47, 2011.

6 Philip Bille and Inge Li Gørtz. Substring range reporting. Algorithmica, 69(2):384–396, 2014.
7 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing for patterns

with wildcards. Theory Comput. Syst., 55(1):41–60, 2014.
8 Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. Ranked document

retrieval for multiple patterns. Theor. Comput. Sci., 746:98–111, 2018.
9 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.

Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.
10 Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro López-Ortiz. Online sorted

range reporting. In Proc. 30th ISAAC, pages 173–182, 2009.
11 Manuel Cáceres, Simon J Puglisi, and Bella Zhukova. Fast indexes for gapped pattern matching.

In Proc. 46th SOFSEM, pages 493–504, 2020.
12 Timothy M Chan. Persistent predecessor search and orthogonal point location on the word

ram. ACM Trans. Algorithms, 9(3):1–22, 2013.
13 Hagai Cohen and Ely Porat. Range non-overlapping indexing. In Proc. 20th ISAAC, pages

1044–1053, 2009.
14 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making

data structures persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.
15 Greg N Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k

smallest spanning trees. SIAM J. Comput., 26(2):484–538, 1997.
16 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)

worst case access time. J. ACM, 31(3):538–544, 1984.
17 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-overlapping indexing.

Algorithmica, 82(1):107–117, 2020.
18 Wing-Kai Hon, Manish Patil, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter.

Indexes for document retrieval with relevance. In Space-Efficient Data Structures, Streams,
and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday,
pages 351–362, 2013.

19 Wing-Kai Hon, Manish Patil, Rahul Shah, and Shih-Bin Wu. Efficient index for retrieving
top-k most frequent documents. J. Discrete Algorithms, 8(4):402–417, 2010.

20 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-efficient
frameworks for top-k string retrieval. J. ACM, 61(2):1–36, 2014. Announced at 50th FOCS.

21 Wing-Kai Hon, Sharma V. Thankachan, Rahul Shah, and Jeffrey Scott Vitter. Faster
compressed top-k document retrieval. In Proc. 23rd DCC, pages 341–350, 2013.

22 Sahar Hooshmand, Paniz Abedin, M. Oguzhan Külekci, and Sharma V. Thankachan. Non-
overlapping indexing - cache obliviously. In Proc. 29th CPM, pages 8:1–8:9, 2018.

23 Costas S Iliopoulos and M Sohel Rahman. Indexing factors with gaps. Algorithmica, 55(1):60–
70, 2009.

24 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. Range non-overlapping indexing and
successive list indexing. In Proc. 11th WADS, pages 625–636, 2007.

25 Moshe Lewenstein. Indexing with gaps. In Proc. 18th SPIRE, pages 135–143, 2011.
26 J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V.

Thankachan. Top-k term-proximity in succinct space. Algorithmica, 78(2):379–393, 2017.
Announced at 25th ISAAC.

P. Bille, I. L. Gørtz, M. R. Pedersen, E. Rotenberg, and T. A. Steiner 14:17

27 J. Ian Munro, Gonzalo Navarro, Rahul Shah, and Sharma V. Thankachan. Ranked document
selection. Theor. Comput. Sci., 812:149–159, 2020.

28 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document retrieval
on sequences. ACM Comput. Surv., 46(4):1–47, 2014.

29 Gonzalo Navarro and Yakov Nekrich. Time-optimal top-k document retrieval. SIAM J.
Comput., 46(1):80–113, 2017. Announced at 23rd SODA.

30 Gonzalo Navarro and Sharma V. Thankachan. New space/time tradeoffs for top-k document
retrieval on sequences. Theor. Comput. Sci., 542:83–97, 2014. Announced at 20th SPIRE.

31 Gonzalo Navarro and Sharma V. Thankachan. Reporting consecutive substring occurrences
under bounded gap constraints. In Proc. 26th CPM, pages 367–373, 2015.

32 Rahul Shah, Cheng Sheng, Sharma V. Thankachan, and Jeffrey Scott Vitter. Top-k document
retrieval in external memory. In Proc. 21st ESA, pages 803–814, 2013.

33 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.

34 Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett., 113(12):440–443,
2013.

35 Peter Weiner. Linear pattern matching algorithms. In Proc. 14th FOCS, pages 1–11, 1973.

FSTTCS 2020

Fair Tree Connection Games with
Topology-Dependent Edge Cost
Davide Bilò
Department of Humanities and Social Sciences, University of Sassari,
Via Roma 151, 07100 Sassari (SS), Italy
davide.bilo@uniss.it

Tobias Friedrich
Hasso Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany
tobias.friedrich@hpi.de

Pascal Lenzner
Hasso Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany
pascal.lenzner@hpi.de

Anna Melnichenko
Hasso Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany
anna.melnichenko@hpi.de

Louise Molitor
Hasso Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany
louise.molitor@hpi.de

Abstract
How do rational agents self-organize when trying to connect to a common target? We study this
question with a simple tree formation game which is related to the well-known fair single-source
connection game by Anshelevich et al. (FOCS’04) and selfish spanning tree games by Gourvès and
Monnot (WINE’08). In our game agents correspond to nodes in a network that activate a single
outgoing edge to connect to the common target node (possibly via other nodes). Agents pay for
their path to the common target, and edge costs are shared fairly among all agents using an edge.
The main novelty of our model is dynamic edge costs that depend on the in-degree of the respective
endpoint. This reflects that connecting to popular nodes that have increased internal coordination
costs is more expensive since they can charge higher prices for their routing service.

In contrast to related models, we show that equilibria are not guaranteed to exist, but we
prove the existence for infinitely many numbers of agents. Moreover, we analyze the structure of
equilibrium trees and employ these insights to prove a constant upper bound on the Price of Anarchy
as well as non-trivial lower bounds on both the Price of Anarchy and the Price of Stability. We
also show that in comparison with the social optimum tree the overall cost of an equilibrium tree
is more fairly shared among the agents. Thus, we prove that self-organization of rational agents
yields on average only slightly higher cost per agent compared to the centralized optimum, and
at the same time, it induces a more fair cost distribution. Moreover, equilibrium trees achieve a
beneficial trade-off between a low height and low maximum degree, and hence these trees might
be of independent interest from a combinatorics point-of-view. We conclude with a discussion of
promising extensions of our model.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Quality of equilibria; Theory of computation → Convergence and learning in games;
Theory of computation → Network formation

Keywords and phrases Network Design Games, Spanning Tree Games, Fair Cost Sharing, Price of
Anarchy, Nash Equilibrium, Algorithmic Game Theory, Combinatorics

© Davide Bilò, Tobias Friedrich, Pascal Lenzner, Anna Melnichenko, and Louise Molitor;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3169-4300
mailto:davide.bilo@uniss.it
https://orcid.org/0000-0003-0076-6308
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0002-3010-1019
mailto:pascal.lenzner@hpi.de
https://orcid.org/0000-0003-1988-0848
mailto:anna.melnichenko@hpi.de
https://orcid.org/0000-0002-9166-9927
mailto:louise.molitor@hpi.de
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Fair Tree Connection Games with Topology-Dependent Edge Cost

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.15

Related Version A full version of the paper is available at [9], http://arxiv.org/abs/2009.10988.

Acknowledgements We thank Warut Suksompong for many interesting discussions. Moreover, we
are grateful to our anonymous reviewers for their valuable suggestions. This work has been partly
supported by COST Action CA16228 European Network for Game Theory (GAMENET).

1 Introduction

Network Design is an important optimization problem where for a given weighted host graph
and a given set of terminal pairs the cheapest subgraph which connects all terminal pairs
has to be found. Besides an abundance of research works with an optimization point-of-view,
e.g. see the survey by Magnanti and Wong [28], a strategic version of the Network Design
problem [5, 4] has kindled significant interest in recent years. In the connection game, a
weighted host graph H is given and n agents with given terminal node pairs (si, ti), for
1 ≤ i ≤ n, strategically select si-ti-paths in H to connect their respective terminal nodes.
The union of the selected paths forms a subgraph G of H which constitutes the actually
designed network. The usage cost of each edge of H corresponds to its weight, and agents
using some edge e in H have to pay this cost. If an edge e is used by more than one agent,
then a cost-sharing protocol determines how the usage cost of e is split among its users. One
of the most common cost-sharing protocols is Shapley cost-sharing where each agent pays a
fair share of the edge cost, i.e., the cost-share is the edge cost divided by the number of users.
This game-theoretic setting, called fair connection game, was investigated by Anshelevich et
al. [4] and has since become an influential paper in Algorithmic Game Theory. An important
special case is the setting in which all the strategic agents want to connect to a common
source node. This variant, where t1 = · · · = tn and where every other node is a terminal
node of some agent, is usually denoted as the (fair) single-source connection game, with
the interpretation that all the agents want to connect to a common source node to receive
broadcast messages and that the edge cost for connecting to the common source is paid by
the downstream users.

A similar related game-theoretic setting are selfish spanning tree games [21]. There a
weighted complete host graph with n+ 1 nodes, consisting of a common target node r and n
nodes which correspond to selfish agents, is given and every selfish agents now selects an
incident edge to connect to the common target node r either directly or indirectly via selected
edges of other agents. The cost of an agent is then determined by its unique path to r. Thus,
in any equilibrium the subgraph of all selected edges forms a spanning tree rooted at r.

This paper sets out to investigate a game-theoretic Network Design model that is closely
related to the fair single-source connection game and to selfish spanning tree games. The main
novel feature of our model is the twist that the cost of the edges in the formed spanning tree
depend on its topology. In particular, we consider dynamic edge costs which are proportional
to the in-degree of the node they connect to. Network nodes with high in-degree can be
considered as popular, and we assume that connecting to popular nodes is more expensive
than connecting to unpopular nodes. These dynamic edge costs can also be understood as
the internal cost of a node for coordinating data traffic coming from different connections.
A node with many incoming edges and thus higher internal coordination cost can charge
higher prices for serving each of the incoming edges.

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.15
http://arxiv.org/abs/2009.10988

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:3

To the best of our knowledge, we define and analyze the first (game-theoretic) Network
Design model where the edge costs depend on the topology of the formed network. We
believe that this model sheds light on settings where the actual charges for establishing links
are determined by supply and demand and the agents act strategically to optimize their cost
for receiving their desired service.

1.1 Model, Definition, Notation
We consider a strategic game called fair tree connection game with topology-dependent edge
cost, or tree connection game (TCG) for short. In the TCG we will consider a given unweighted
complete directed host graph H = (V,E), where V is the set of nodes and E is the set of
edges of H. The host graph H consists of n+ 1 nodes V = {r, v1, . . . , vn} where node r is
the common target node, also called the root, and every node vi, for 1 ≤ i ≤ n, corresponds
to a selfish agent i striving to be connected to the root r. For this, every agent i strategically
activates a single incident edge (vi, si), where si ∈ V \ {vi}. Hence, the strategy space of
each agent is the set of other nodes to connect to. Given a strategy profile s = (s1, . . . , sn),
i.e., an n-dimensional vector where the j-th entry corresponds to the node to which agent
j wants to activate her edge, we consider the directed network T (s) = (V,E(s)) which is
induced by all the activated edges, i.e., E(s) = {(vi, si) | 1 ≤ i ≤ n}. We will see later that
T (s) is a spanning tree rooted at r if s is an equilibrium state of the TCG, hence the name.

The cost of agent i in the network T (s) depends on its unique path Pi in T (s) to the
root r (if such a path exists). In case of existence, the path Pi must be unique, since the
out-degree of every node in T (s) is at most 1. More precisely, let Pi be the directed path
from vi to r in T (s), let indegT (s)(v) denote the number of edges with endpoint v in T (s),
let T (u) denote the subgraph of T (s) rooted at node u, i.e., the subgraph of T (s) induced by
the nodes u and every node which has a directed path to u and let |T (u)| denote the number
of nodes in T (u). See Figure 1.

r = uP
0

uP
1

uP
2

uP
3

uP
4

w

TP
4

TP
3

TP
2

TP
1

T (w)

T (r) = TP
0

Figure 1 Left: T (s) for n = 16 agents. The path P is colored blue and we have dP
0 = 3, dP

1 =
2, dP

2 = dP
3 = 1, dP

4 = 0 and |T P
1 | = 6, |T P

2 | = 3, |T P
3 | = 2, |T P

4 | = 1, |T (w)| = 5. Nodes w and uP
1

and also their corresponding agents are siblings. The shown network T (s) is not stable since the
agent colored red with cost 1 + 2

2 + 3
5 = 13

5 has an improving move. Right: the network after the
agent colored red improved its cost to 1 + 1

2 + 2
3 + 3

7 = 109
42 < 13

5 .

The cost of agent i in T (s) then is costT (s)(i) :=
∑

(u,v)∈Pi

indegT (s)(v)
|T (u)| , if Pi exists and ∞

otherwise. This cost function has the following very natural interpretation: the cost of
activating edge (u, v) from node u to node v is equal to node v’s in-degree, and this cost is
fairly shared by all agents who use edge (u, v) on their path towards the root r, i.e., by all
agents in T (u). We assume that each agent activates a single edge strategically to minimize
its cost in the induced network T (s). Clearly, since every agent i can activate the edge (vi, r),
i can enforce finite cost by enforcing that the path Pi exists.

FSTTCS 2020

15:4 Fair Tree Connection Games with Topology-Dependent Edge Cost

Consider a strategy profile s = (s1, . . . , si−1, si, si+1, . . . , sn). We say that agent i has
an improving move in s if i has some alternative strategy s′i 6= si such that for the induced
strategy profile s′ = (s1, . . . , si−1, s

′
i, si+1, . . . , sn) we have costT (s′)(i) < costT (s)(i), i.e.,

agent i can strictly decrease its cost by activating a different outgoing edge. With this, we
define the strategy profile s to be in pure Nash equilibrium (NE) or to be stable if no agent
has an improving move in s. If the context is clear, we use strategy profiles and their induced
network interchangeably, i.e., we say that the network T (s) is in NE or stable, if s is in NE.
Moreover, when we refer to some network T (s) we will from now on omit the reference to the
strategy profile s and call the network simply T . Every stable network T must be a spanning
tree rooted at r, since every agent i can activate the edge (vi, r) to achieve finite cost.

The social cost SC(T) of a network T is simply the sum over all agents’ costs, i.e.,

SC(T) =
n∑

i=1

costT (i) =
∑

vi∈V

∑
(u,v)∈Pi

indegT (v)
|T (u)| =

∑
(u,v)∈E

indeg(v)
|T (u)| · |T (u)| =

∑
v∈V

(indeg(v))2.

Note that SC(T) nicely reflects the overall cost impact of the nodes’ popularity or coordi-
nation costs which scales quadratically with the in-degree of a node. For a given number
of agents n, let OPTn denote the network which minimizes the social cost. Moreover, if
stable networks exist for n agents, we let worstNEn denote the stable network with the
highest social cost and bestNEn the stable network with the lowest social cost. We define
the Price of Anarchy (PoA) [27] as PoA = supn

SC(worstNEn)
OPTn

and the Price of Stability
(PoS) [4] as PoS = supn

SC(bestNEn)
OPTn

, where the supremum is taken over all n that admit
a stable network. Besides the PoA and the PoS, that both focus on the overall cost and
compare with the cost of a centrally designed social optimum network, we use a measure of
the quality of networks which focuses on the cost distribution among the agents, called the
Fairness Ratio (FR), analogously to the utility uniformity introduced in [19]. For a given
network T , the FR(T) is the ratio between the maximum and the minimum cost incurred
by any agent, i.e.,FR(T) := maxvi∈V costT (i)

minvi∈V costT (i) .
Finally, we introduce some additional notation for arguing about the designed networks

T (s). (See Fig. 1 for an illustration). For our analysis we use directed paths in T (s) which
start at some non-root node z and end at the root r. Let P be such a path of length ` ∈ N.
We denote by uPj the node on P which is at distance j to r, hence the root r is denoted
by uP0 and node z by uP` . Moreover, let TPj := T (uPj) and we use dPj for the in-degree of a
node with distance j from the root r on path P , hence, dPj := indegT (s)(uPj). We omit the
reference to path P whenever it is clear from the context.

1.2 Related Work
Our model is closely related to several models that have been intensively studied.

We start with the (fair) single-source connection game [5, 4] which we already briefly
discussed in the introduction. The key feature of this game is that agents strategically select
a set of edges to connect their respective terminals. The cost of each edge is shared among
all the agents who selected the respected edge. While in [5] and later also in [24] arbitrary
cost sharing is considered, the paper [4] focuses on fair cost sharing which can be derived
from the Shapley value [33]. For this Anshelevich et al. [4] show that stable networks always
exist since the game is a potential game [32], additional they prove that the PoA is n and the
PoS is upper bounded by Hn, where Hn is the n-th harmonic number. For a given directed
host graph this bound on the PoS is tight but the case for undirected host networks is still
a major open problem. More is known for single-source connection games on undirected

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:5

networks. Chekuri et al. [12] show that the PoA is in O(
√
n log2 n) if the agents join the

game sequentially and play their respective best response. A PoS in O(log logn) was proven
by Fiat et al. [20] for the special case where all nodes of the given network correspond to a
terminal of some agent. Finally, Bilò et al. [8] prove a constant PoS for the fair single-source
connection game on undirected networks. Moreover, Albers and Lenzner [1] show that the
optimum is a Hn-approximate Nash equilibrium for the fair single-source connection game.
In contrast to our model, the cost of an edge in the (fair single-source) connection game is
given via a positively weighted host network. Hoefer and Krysta [25] investigate a variant
with edge weights derived from a geometry.

Also selfish spanning tree games [21] are close to our model and we already briefly
discussed them in the introduction. The key difference to our model is that a weighted
complete network is given and that the cost of an agent is defined differently. Gourvès and
Monnot [21] define three variants of the agents’ cost function: either it is the weight of the
first edge on the path to the common root r, or the minimum or maximum weight edge on
the entire path towards r. Cost sharing is not considered. The authors prove bounds on the
PoA which vary from unbounded to 1 depending on the exact setting. The games in [21] are
inspired by the classical problem of allocating the cost of a spanning tree among its nodes
by Claus and Kleitman [13] and its variant from cooperative game theory considered by
Bird [10]. Later, Granot and Huberman [22, 23] considered minimum cost spanning tree
games and different cost allocation protocols for this have been considered by Escoffier et
al. [17]. The key difference of all these models to our model is that a cooperative game is
considered which is a stark contrast to our non-cooperative setting. Also game-theoretic
topology control problems are related to spanning tree games and our model. Eidenbenz et
al. [16] consider a setting where a set of agents which correspond to wireless devices want to
connect terminal nodes, whereas Mittal et al. [31] consider wireless access point selection by
selfish agents.

Also classical network formation games [26, 6, 18] are related to our model. There the
agents correspond to nodes in a network and every agent buys a set of incident edges to
connect to other agents. The goal of each agent is to create a connected network and to
occupy a central position in this network. For the influential network creation game of
Fabrikant et al. [18], that has a parameter α for the trade-off between edge cost and distance
costs, the PoA was shown to be constant for almost all values of α [14, 2]. For high values
of α all equilibrium networks of these games are known to be trees [30, 29, 7]. A variant
of the network creation game where agents can only buy a single edge was considered by
Ehsani et al. [15]. Most notably, the topology dependent edge costs that we employ in our
model were proposed by Chauhan et al. [11] for the network creation game [18]. To the best
of our knowledge, this is the only setting where topology dependent edge costs have been
considered.

1.3 Our Contribution
We study a novel game-theoretic model for the formation of a tree network which is related
to the well-known fair single-source connection game by Anshelevich et al. [4, 5] and to
selfish spanning tree games by Gourvès and Monnot [21]. The key difference of our model is
that we consider dynamic edge costs which depend on the topology of the created spanning
tree. In particular, the cost of an edge is equal to the in-degree of its endpoint. This specific
choice was proposed in [11] for the classical network creation game [18] and we transfer this
idea to the Network Design domain. Our analysis holds for any edge cost function of the
form α times the in-degree of the target node, for any constant α. However, our general
approach is valid also for edge cost functions that depend non-linearly on the degrees of the
involved nodes.

FSTTCS 2020

15:6 Fair Tree Connection Games with Topology-Dependent Edge Cost

Regarding the existence of stable trees we show that our model is in stark contrast to the
models in [4, 18, 21] since in our model stable trees may not exist. In particular, we show
that our game has no NE for n = 16 and n = 18 which implies that the TCG cannot admit
a potential function. This is contrasted with a proof that for infinitely many n stable trees
do exist, and we conjecture that we have found all examples for NE non-existence. Towards
investigating the quality of the equilibrium networks of our model, we first provide a rigorous
study of the structural properties of stable trees. We show that every stable tree consists
of stable subtrees and that the height of any stable tree is in O

(
logn

log logn

)
. For the root r,

which turns out to be the node with the highest in-degree in any stable network, we show
that its in-degree is between Ω

(
logn

log logn

)
and 2O

(√
logn

)
. This shows that the maximum

internal coordination overhead of a single node in any stable tree is rather small.
Our main results are on the quality of equilibrium trees. By using the established

structural properties and a connection to the Riemann zeta function we obtain an upper
bound on the PoA of 8.62 which is contrasted with a lower bound of 2.4317. For the PoS
we derive a lower bound of 7

5 − ε. Moreover, we give for an infinite number of values for n
an upper bound of 2.83 on the PoS. Regarding the Fairness Ratio, we first show that the
socially optimal tree is rather unfair, i.e., having a Fairness Ratio of n ·Hn. In contrast, we
prove that any equilibrium tree has a Fairness Ratio in o(n).

This shows that stable trees have only slightly higher social cost compared to the social
optimum. In particular, on average every agent pays only a constant factor more than the
trivial lower bound for any spanning tree. At the same time stable trees are more fair, have
low height and low in-degrees.

We conclude with a brief discussion of the path version extension of our model, where
agents select paths as strategies as in [5, 4]. This extension seems promising for future work
since we show that allowing a richer strategy space yields a larger set of equilibria and we
give equilibria for n = 16 and n = 18. Hence, in the path-version equilibria may always exist,
but the PoA could be higher.

We refer to [9] for all details which were omitted due to space constraints.

2 Structure and Properties of Equilibrium Trees

It is clear that each agent can compute her best response in polynomial time as the number
of possible strategies for an agent is n, and the agent can easily compute her cost in linear
time. In the following we show that any stable tree consists of stable subtrees, we prove an
upper bound of O

(
logn

log logn

)
to the number of edges of any leaf-to-root path of any stable

network, and in the end, we provide bounds on the degree of the root. We start with the
statement that any stable tree consists of stable subtrees.

I Lemma 1. If T is stable, then any subtree T (x) is stable in the corresponding subgame.

Next, we will consider the height of a stable network and need the following technical lemmas.

I Lemma 2. Let k ∈ N be the length of a fixed leaf-to-root-path P in a stable network T .
Then, for every 1 < i < k, di−1 ≥

|Ti|
|Ti| − |Ti+1|

(di − 1).

Since |Ti+1| > 0, Lemma 2 yields that the sequence d0, d1, . . . , dk, is monotonically decreasing.

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:7

I Corollary 3. Let k ∈ N be the length of a leaf-to-root-path P in a stable network T . Then,
for every 1 < i < k, di ≥ di+1.

The next lemma shows that the in-degree of nodes strictly decreases after a constant number
of hops.

I Lemma 4. Let k ∈ N be the length of a fixed leaf-to-root-path P in a stable network T .
Then, for every subtree T (v) with |T (v)| > 4 and for every 1 < i < k−2 we have di−1 > di+1.

In the following we investigate upper and lower bounds on the in-degree of the root in
stable trees. More precisely, we show an upper bound of 2O(

√
logn) and a lower bound of

Ω(logn/ log logn).

I Theorem 5. The in-degree of the root in a stable network T is at least
ln
(

4
√
n/5
)

ln ln
(

4
√
n/5
) .

To give an upper bound on the in-degree of the root, we first have to provide the following
technical lemmas. The first technical lemma bounds the in-degree of the parent of any leaf.

I Lemma 6. In a stable network T the in-degree of the parent of any leaf is 1.

The second technical lemma shows how the in-degrees of two sibling nodes are related.

I Lemma 7. Consider a subtree T (x) of a stable network T . Then indeg(x) ≤ indeg(v) ·(
1 + |T (u)|

|T (v)|

)
+ 1, where v and u are different children of x.

From Lemma 7, we derive the following remark and corollary.
I Remark 8. Consider a subtree T (x) in a stable network T . Then indeg(x) ≤ 2 · indeg(v)+1,
where v is a root of the second smallest subtree of T (x).

I Corollary 9. If T is a stable network, then every node u in T has at least indeg(u) − 1
children of in-degree at least (indeg(u)− 1)/2.

Now we can prove an upper bound to the in-degree of the root of any stable tree.

I Theorem 10. The in-degree of the root in a stable network T is 2O
(√

logn
)
.

Proof. Let T be a stable tree of height h. Let vh, . . . , v0 be a leaf-to-root path. Note that the
in-degree of the root v0 is maximal if the in-degree of each node in the vh-v0-path is maximal,
i.e., by Lemma 7 and 6, it corresponds to the in-degree sequence D := (0, 1, dh−2, . . . , d0),
where di−1 = 2di + 1.

Next, we show that nodes at distance h− 2 from the root can have an in-degree of at
most 2. Assume to the contrary that there is a node u having an edge to a node x such that
indeg(x) = 3 and x is at distance h− 2 from the root v0. As we have proved above, the in-
degree of all children of x is at most 1. Thus, u can swap to any leaf node of the subtree T (x).
Let T ′ be the tree obtained after u swapped. If u swaps to a child of x, it decreases its cost by
costT (u)−costT ′(u) = 3

2−
1
2−

2
3 > 0, i.e., it is an improving move. The swap to a leaf node at

distance 2 from x implies an improvement by costT (u)−costT ′(u) = 3
2 −

1
2 −

1
3 −

2
4 > 0, i.e., it

is an improvement. Since T is stable, we get a contradiction. Thus, D = (0, 1, 2, 5, 11, . . . , d0),
i.e.,

di = 3 · 2h−i−2 − 1 for i ≤ h− 3, where dh = 0, dh−1 = 1, dh−2 = 2. (1)

FSTTCS 2020

15:8 Fair Tree Connection Games with Topology-Dependent Edge Cost

We now estimate the minimum possible number of nodes in the tree T . By Corollary 9 if
the in-degree of a node is equal to k, then it has at least k − 1 children with an in-degree of
at least (k − 1)/2. Thus, starting from the root, the in-degrees of the nodes on each level
decrease no more than twice. Hence, the total size of the tree is at least

h−1∑
i=1

di
i−1∏
j=0

(dj − 1)

 >

h−1∑
i=1

i−1∏
j=0

2h−j−2 > 2
∑h−3

j=0
(h−j−2) = 2

(h−1)(h−2)
2 ,

where h is the height of T . Thus, h <
3+
√

1+8 logn
2 . With equation (1), this implies

d0 ∈ 2O
(√

logn
)
. J

Now we are able to show that the length of any node-to-root path is O
(

logn
log logn

)
.

I Theorem 11. If T is a stable network, then its height h ∈ O
(

logn
log logn

)
.

Proof. Consider a leaf-to-root path P in T . We show that there are O
(

logn
log logn

)
indices

such that |TPi | − |TPi+1| ≥ 3
√

logn · |TPi+1| and O
(

logn
log logn

)
indices such that |TPi | − |TPi+1| <

3
√

logn · |TPi+1|.
Let k be the number of indices i that satisfy |TPi | − |TPi+1| ≥ 3

√
logn · |TPi+1|. Then we

have that |TPi | = |TPi | − |TPi+1| + |TPi+1| > 3
√

logn · |TPi+1|. Since |TPi | > |TPi+1| for every i,
and because |TPi | ≤ n, we have that |TP0 | > (logn)k/3 and |TP0 | = n + 1, from which we
derive (logn)k/3 ≤ n, i.e., k = O

(
logn

log logn

)
.

By Lemma 4 and Corollary 3, there are O(3
√

logn) = O
(

logn
log logn

)
indices i such that

dPi ≤ 4 3
√

logn. We now prove that there are O
(

logn
log logn

)
indices such that |TPi | − |TPi+1| <

3
√

logn·|TPi+1| and such that dPi ≥ 4 3
√

logn. By Lemma 2 and using the fact that dPi ≥ 4 3
√

logn
and n ≥ 2, we have that

dPi−1 ≥
|TPi |

|TPi | − |TPi+1|
(dPi − 1) ≥ 1 + 3

√
logn

3
√

logn
(dPi − 1) ≥

√
1 + 3
√

logn
3
√

logn
dPi .

By Corollary 3 we have that dPi−1 ≥ dPi for every i. Hence d0 ≥
(

1+ 3
√

logn
3
√

logn

)k/2
. More-

over, by Theorem 10, dP0 ≤ 2α
√

logn for some constant α > 0. As a consequence,

we have that
(

1+ 3
√

logn
3
√

logn

)k/2
≤ 2α

√
logn, i.e., 2

k
2 log 1+ 3√log n

3√log n ≤ 2α
√

logn, which implies,

k ≤ 2α
√

logn
log
(

1+1/ 3
√

logn
) .

We complete the proof by showing that
√

logn

log 1+ 3√log n

3√log n

≤ 3 logn
log logn , i.e., we have to show that

log logn ≤ 3
√

logn · log 1+ 3
√

logn
3
√

logn
. Let M = 3

√
logn. We have to prove that

logM ≤M3/2 log 1 +M

M
= log

(
1 +M

M

)M3/2

. (2)

By Bernoulli’s inequality,
(
1 + 1

M

)M3/2

≥ 2M1/2 ≥ M for M ≥ 16. Thus, inequality (2) is
satisfied. J

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:9

3 Existence of Equilibrium Trees

In this section we analyze whether the TCG admits equilibrium trees for all agent numbers
n. We first show that in general equilibrium existence is not guaranteed since for n = 16 and
n = 18 no stable tree exists. We contrast this negative result with a NE existence proof for
infinitely many agent numbers n. This positive result is achieved for so-called balanced trees,
i.e., trees where all nodes with the same distance to the root have the same in-degree. We
believe that our positive results can be strengthened to proving that stable trees exist for
all n except n = 16 and n = 18, and we leave this as an intriguing open problem. Figure 2
shows sample equilibrium trees for small n.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

n = 13 n = 14 n = 15 n = 17 n = 19 n = 19

(0, 1, 2) (0, 1, 1, 2) (0, 1, 1, 1, 2) (0, 1, 1, 3) (0, 1, 2, 2)

(0, 1, 1, 2, 2) (0, 1, 2, 3)

Figure 2 Sample equilibrium trees for n = 4 to n = 19. All depicted trees for n < 19 are the
unique equilibria for the respective n. For n = 19 two equilibrium trees exist. No stable tree exists
for n = 16 and n = 18. The stable trees for n = 4, 6, 8, 9, 10, 14, 15 are balanced trees and are
annotated with their identifying in-degree sequence of all leaf-to-root paths. (See Section 3.1 for
definitions.)

I Theorem 12. For n = 16 there exists no stable network.

The non-existence of a stable tree for n = 16 directly implies that the TCG cannot have
the finite improvement property, which states that every sequence of improving moves must
be finite, i.e., reaches a Nash equilibrium. Thus, since the finite improvement property is
equivalent to the game admitting a potential function [32] this implies the following statement.

I Corollary 13. The TCG is not a potential game.

I Remark 14. By computational experiments we have obtained equilibrium trees for the TCG
for 1 ≤ n ≤ 100, except for n = 16 and n = 18. For n = 18 we have verified via a brute-force
search over all possible trees that no stable tree exists. Interestingly, for n ≥ 19 equilibrium
trees are no longer unique and in general the number of non-isomorphic equilibrium trees
grows as n grows.

3.1 Balanced Trees
Despite the negative result of the non-existence of a stable tree for n = 16, in this section we
prove the existence of NE’s for infinitely many values of n. We prove this result by showing
an interesting set of conditions for ruling out potential edge swaps; the proved conditions

FSTTCS 2020

15:10 Fair Tree Connection Games with Topology-Dependent Edge Cost

altogether allow us to show that there are infinitely many (balanced) trees that are stable.
More precisely, we say that T is balanced if any two nodes at the same distance from the
root r have equal in-degrees. Note, that any balanced tree T of height h can be uniquely
encoded by a sequence of node degrees (0, dh−1, . . . , d0), where di is an in-degree of nodes at
level i, i.e., at distance i from the root. In this section we show that all the balanced trees of
the form (0, 1, 2, 4, dh−4, . . . , d0) such that di < di−1 ≤ 2di + 1, for every 1 ≤ i ≤ h− 4 are
stable. (See Figure 3 for an example.)

n = 190
(0, 1, 2, 4, 9)

Figure 3 Sample of an extremal balanced tree with degree sequence (0, 1, 2, 4, 9).

I Theorem 15. The balanced tree T with degree sequence (0, 1, 2, 4, dh−4, . . . , d0), where
dj+1 < dj ≤ 2dj+1 + 1 for every j ≤ h− 4, is stable.

From Theorem 15 we derive the following corollary.

I Corollary 16. The TCG with n agents admits a NE for infinitely many values of n ∈ N.

By Corollary 16, we observe that NE exists for all n that admit an existence of a balanced
tree. Intuitively, a minor modification of a balanced tree, e.g., removing a subset of leaf nodes,
keep the tree stable. Moreover, for n ≥ 19 we have found several non-isomorphic equilibrium
trees in each case. The number of non-isomorphic equilibria grows with n, which indicates
that for growing n also the number of possibilities how to combine suitable equilibrium trees
into larger equilibrium trees grows. Therefore, we conjecture the existence of stable trees
for all values of n except for n = 16 and n = 18. We believe that this conjecture can be
proven by a dynamic programming approach that exploits the different possibilities of how
equilibrium sub-trees can be combined into larger equilibrium trees.

I Conjecture 1. For any n ∈ N, with n 6= 16 and n 6= 18 a pure NE exists in the TCG.

4 Quality of Equilibrium Trees

In this section we provide results on the quality of stable networks. In particular, we prove a
constant upper bound on the PoA and give lower bounds on the PoA and PoS. Furthermore,
we prove an upper bound on the PoS for certain balanced trees. We first observe that
any network in which at least one node has in-degree 2 is not a social optimum. Hence, a
Hamilton path is the social optimum.

I Theorem 17. Any Hamiltonian path having the root r as one endnode is a social optimum.

4.1 Price of Anarchy
In every network T for all v ∈ V , indegT (v) ≤ n, since there are exactly n edges. Hence, the
cost of an agent is upper bounded by n and the star graph yields a trivial upper bound of n
for the PoA. However, we prove next a constant upper bound on the PoA.

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:11

I Theorem 18. The PoA is at most 8.62.

Proof. Consider a stable network T = (V,E). By Theorem 17, the social optimum is a path
of cost n. Hence, it is enough to show that in T the maximum cost of an agent is upper
bounded by a constant. We clearly have that the cost incurred by a non-leaf agent is strictly
smaller than the cost incurred by any of its descendants. Therefore, the maximum costs is
achieved by a leaf agent.

Consider two leafs u and v in T such that u pays the maximum cost. Let Pv be the
node-to-root path starting from the parent of v. Since T is stable, costT (u) < 1 + 1/2 +∑

(i,j)∈Pv

indeg(j)
|T (i)| = 1/2 + costT (v). Therefore, we only have to show that there exists a leaf

agent v with a constant cost value.
We now prove that such a leaf agent always exists. By Corollary 9, each node of in-degree d

has at least d − 1 children of in-degree at least d(d − 1)/2e. Consider a root-to-leaf path
P = (r = v0, . . . , vh = v) where each next hop goes always towards the smallest appended
subtree where the root has an in-degree of at least half of the node’s in-degree minus one,
i.e., for any vi ∈ P , vi+1 = argmin{|T (w)| : (w, vi) ∈ E and indeg(w) ≥ (indeg(vi)− 1)/2}.
Then for every 0 ≤ i ≤ h− 1, |T (vi)| ≥ (indeg(vi)− 1)|T (vi+1)|+ 2.

Denote by |tk| the size of the minimum stable tree with a root of in-degree k. Then by
Corollary 9 and Lemma 6 it holds that

|t0| ≥ 1, |t1| ≥ 2, tk ≥ (k − 1) · |td(k−1)/2e|+ 2. (3)

We show via induction that for any k ≥ 11, |tk| ≥ (2k + 1)k2. Indeed, it holds that
|tk+1| ≥ k · |tdk/2e| + 2 > (k + 1)k3/22 ≥ (2(k + 1) + 1)(k + 1)2, where the last inequality
holds for all k ≥ 11.

The overall cost incurred by the leaf v is at most the costs incurred by v for all edges
(vi, vi−1) ∈ P where in-degree of vi−1 is less than the cost incurred by v for all other edges
in P plus 2.

By Lemma 4, each leaf-to-root path has at most three nodes of in-degree 1, which implies
that v pays at most p1 := 11

6 for all edges ending in a node with in-degree equals 1.
By Lemma 4, the in-degrees of the nodes in the leaf-to-root path P strictly increase

with at least every second hop. This implies that for i ≤ h− 4− (11− 1) · 2 = h− 24 it is
guaranteed that indeg(vi) ≥ 11. Hence, starting from the first node having in-degree at least
11 in P , agent v pays

p2 :=
h−24∑
i=1

indeg(vi−1)
|T (vi)|

≤
h−24∑
i=1

2indeg(vi) + 1
|tindeg(vi)|

≤
h−24∑
i=1

1
(indeg(vi))2

≤ 2 ·
∞∑
i=11

1
i2
< 2

(
ζ(2)−

10∑
i=1

1
i2

)
,

where ζ(s) is the Riemann zeta function. Hence, p2 < 0.2.
Finally, we need to evaluate the cost of the path P for all nodes vi with the in-degree

2 ≤ indeg(vi) ≤ 10. Since for every 0 ≤ i ≤ h − 1, |T (vi)| ≥ (indeg(vi) − 1)|T (vi+1)| + 2,
each edge (vi, vi+1) in the path P costs at most

2indeg(vi) + 1
|T (vi)|

≤ 2indeg(vi) + 1
(indeg(vi)− 1)|T (vi+1)| = 2

|T (vi+1)| + 3
(indeg(vi)− 1)|T (vi+1)| .

By applying the inequality (3) and since the in-degrees of the nodes in P increase at
most with every second level, it holds that the total cost of the subpath is at most p3 :=

FSTTCS 2020

15:12 Fair Tree Connection Games with Topology-Dependent Edge Cost

2
9∑
i=2

2
ti

+ 2
t1

+ 2
t10

+
10∑
i=2

(
3

(i−1)ti−1
+ 3

(i−1)ti

)
< 3.12 + 2.975 < 6.01. Therefore, the total cost

of the path P payed by an agent v is strictly less than p1 + p2 + p3 < 8.12. This implies that
the PoA is at most 8.62. J

We now prove a lower bound to the PoA using the extremal stable balanced trees of
Theorem 15. (See Figure 3.) For the rest of this section, let Th denote the extremal balanced
tree of height h ≥ 1 and degree sequence dh = 0, dh−1 = 1, dh−2 = 2 (if h ≥ 2), dh−3 = 4 (if
h ≥ 3), and di = 2di+1 + 1 for every i ≤ h− 4. We will denote by sch and nh the social cost
and the number of nodes (root included) of Th.

I Theorem 19. The PoA is at least 2.4317.

Next, we prove an upper bound to the average agent’s cost in Th and provide an interesting
conjecture. We define ah := sch/(nh − 1) as the average agent’s cost in Th.

I Lemma 20. For every h ≥ 1, ah ≤ 2.4318.

I Conjecture 2. The PoA is equal to limh→∞ ah.

4.2 Price of Stability
We now turn our focus to the PoS and prove a lower bound.

I Theorem 21. The PoS is at least 7
5 − ε, for ε ∈ Θ(1/n).

Next, we investigate the PoS in certain balanced trees and prove an upper bound which is
strictly better than the upper bound on the PoA.

I Theorem 22. For all n ∈ N such that there is a balanced tree T of size n with the in-degree
sequence (0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, the PoS is at most 2.83.

4.3 Fairness measure
We investigate the Fairness Ratio which considers the cost distribution among the agents.
We show that stable trees damit a more fair cost-sharing compared with the social optimum.

I Theorem 23. The Fairness Ratio for OPTn is nHn, where Hn =
n∑
i=1

1
i is the n-th harmonic

number.

We now turn our focus to the analysis of the class of all stable trees and prove that the FR
is in o(n).

I Theorem 24. The Fairness Ratio for any NE is at most 8.62(n−2)·ln ln(4
√
n/5)

ln(4
√
n/5)

− 213 ·

(
1− 2 ln ln(4

√
n/5)

ln(4
√
n/5)

)
·
(

ln(4
√
n/5)

ln ln(4
√
n/5)

)log
(√

ln(4
√

n/5)
ln ln(4

√
n/5)

)
−5.5

, which is at most

8.62 · (n−2)·ln ln(4
√
n/5)

ln(4
√
n/5)

.

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:13

b

d

f

h i

g

e

c h

l

n o

m

k

a j

b

d

f

h i

g

e

c h

l

n

p q

o

m

k

a j

a b

c d

Figure 4 Left: A path-TCG NE that is not a TCG NE for n = 16. Middle: A path-TCG NE
that is not a TCG NE for n = 18. Right: A TCG NE that is not a strong path-TCG NE.

I Theorem 25. The Fairness Ratio for a stable tree is at least n · 2−2
√

2 log(n).

Finally, we investigate the class of stable balanced trees and prove a more precise upper
bound.

I Theorem 26. The Fairness Ratio for a stable balanced tree with the in-degree sequence

(0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, is at most
2.4318n·

(
ln ln(4

√
n/5)

)2(
ln(4
√
n/5)

)2 .

5 Extensions for Future Work: The Path Version and Coalitions

A natural extension of our model is to allow for a richer strategy space. Instead of selecting
a single outgoing edge, agents could strategically select a complete path towards the root
r. This version, called the path-TCG, is closer to the fair single-source connection game by
Anshelevich et al. [5, 4]. See the full version [9] for a formal definition of the path-TCG.

We give some preliminary results relating the equilibria of the TCG to the equilibria
of the path-TCG. Our results indicate that studying the path-TCG, in particular its PoA
and PoS, is a promising next step. We start with showing that also in the path-TCG all
equilibria must be trees.

I Lemma 27. Any equilibrium network in the path-TCG is a tree.

Now we show that the TCG can be considered as a special case of the path-TCG since all
equilibrium trees of the TCG are equilibria in the path-TCG but not vice versa.

I Theorem 28. The set of NE in the path-TCG is a superset of the set of NE in the TCG.

We showed for the TCG that for n = 16 and n = 18 there exists no stable network. We
contrast this negative result with a NE existence proof for the path-TCG for the corresponding
values. Figure 4 (left and middle) show equilibrium trees for the path-TCG for n = 16 and
n = 18, respectively.

I Theorem 29. For n = 16 and n = 18 there exists a stable network for the path-TCG.

Together with Theorem 29 and since any NE in the TCG is a NE in the path-TCG, we
go along with Conjecture 1 and believe that for all values of n stable trees exist for the
path-TCG.

I Conjecture 3. For any n ∈ N a pure NE exists in the path-TCG.

FSTTCS 2020

15:14 Fair Tree Connection Games with Topology-Dependent Edge Cost

An agent a in the TCG benefits from the fact that if a changes her strategy and switches her
edge towards another node the costs of the new edge is also shared among all of a’s ancestors.
It seems natural to consider a strategy change in the TCG as a coalitional strategy change
in the path-TCG by the coalition consisting of agent a and all her ancestors. So NE in the
TCG could be in strong NE [3] for the pathTCG. However, we show that this is not true,
see Figure 4 (right).

I Theorem 30. There is a NE in the TCG which is not in strong NE for the path-TCG.

6 Conclusion

We have studied a tree formation game to investigate how selfish agents self-organize to
connect to a common target in the presence of dynamic edge costs that are sensitive to
node degrees. This mimics settings in which nodes can charge prices for offering their
routing service and where these prices are guided by supply and demand, i.e., more popular
nodes with higher in-degree can charge higher prices to make up for their increased internal
coordination cost.

Our main findings are that our game admits equilibrium trees with intriguing properties
like low height, low maximum degree, almost optimal cost, and a somewhat fair distribution
of the total cost among the agents. The set of equilibrium trees seems to be combinatorially
rich, and characterizing stable trees that are not balanced seems an exciting and challenging
problem for future research. It would also be interesting to study the degree distribution in
stable trees and to evaluate possible connections with power-law degree distributions which
are ubiquitous in real-world networks.

We note in passing that our model can easily be generalized to settings with more than
one target node as long as every possible incident edge may be activated. In this case, several
disjoint trees, one for each target node, will be formed. Things change if target nodes and
agent nodes may be co-located, and exploring this variant might be interesting.

References
1 Susanne Albers and Pascal Lenzner. On Approximate Nash Equilibria in Network Design.

Internet Mathematics, 9(4):384–405, 2013.
2 Carme Àlvarez and Arnau Messegué. On the Price of Anarchy for High-Price Links. In

WINE’19, pages 316–329. Springer, 2019.
3 Nir Andelman, Michal Feldman, and Yishay Mansour. Strong price of anarchy. Games and

Economic Behavior, 65(2):289–317, 2009.
4 Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim

Roughgarden. The Price of Stability for Network Design with Fair Cost Allocation. SIAM
Journal on Computing, 38(4):1602–1623, 2008.

5 Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, and Tom Wexler. Near-Optimal Network
Design with Selfish Agents. Theory of Computing, 4(1):77–109, 2008.

6 Venkatesh Bala and Sanjeev Goyal. A Noncooperative Model of Network Formation. Econo-
metrica, 68(5):1181–1229, 2000.

7 Davide Bilò and Pascal Lenzner. On the Tree Conjecture for the Network Creation Game.
Theory of Computing Systems, 64(3):422–443, 2020.

8 Vittorio Bilò, Michele Flammini, and Luca Moscardelli. The Price of Stability for Undirected
Broadcast Network Design with Fair Cost Allocation is Constant. Games and Economic
Behavior, 2014.

9 Davide Bilò, Tobias Friedrich, Pascal Lenzner, Anna Melnichenko, and Louise Molitor. Fair
tree connection games with topology-dependent edge cost, 2020. arXiv:2009.10988.

http://arxiv.org/abs/2009.10988

D. Bilò, T. Friedrich, P. Lenzner, A. Melnichenko, and L. Molitor 15:15

10 Charles G. Bird. On Cost Allocation for a Spanning Tree: A Game Theoretic Approach.
Networks, 6(4):335–350, 1976.

11 Ankit Chauhan, Pascal Lenzner, Anna Melnichenko, and Louise Molitor. Selfish Network
Creation with Non-uniform Edge Cost. In SAGT’17, pages 160–172. Springer, 2017.

12 Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Non-
cooperative Multicast and Facility Location Games. IEEE Journal on Selected Areas in
Communications, 25(6):1193–1206, 2007.

13 Armin Claus and Daniel J. Kleitman. Cost Allocation for a Spanning Tree. Networks,
3(4):289–304, 1973.

14 Erik D. Demaine, Mohammad Taghi Hajiaghayi, Hamid Mahini, and Morteza Zadimoghaddam.
The Price of Anarchy in Network Creation Games. ACM Transactions on Algorithms, 8(2):13,
2012.

15 Shayan Ehsani, Saber Shokat Fadaee, MohammadAmin Fazli, Abbas Mehrabian,
Sina Sadeghian Sadeghabad, Mohammad Ali Safari, and Morteza Saghafian. A Bounded
Budget Network Creation Game. ACM Transactions on Algorithms, 11(4):1–25, 2015.

16 Stephan Eidenbenz, Sritesh Kumar, and Sibylle Zust. Equilibria in Topology Control Games
for Ad hoc Networks. Mobile Networks and Applications, 11(2):143–159, 2006.

17 Bruno Escoffier, Laurent Gourvès, Jérôme Monnot, and Stefano Moretti. Cost Allocation
Protocols for Network Formation on Connection Situations. In ICST’12, pages 228–234, 2012.

18 Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker.
On a network creation game. In PODC’03, pages 347–351. ACM, 2003.

19 Michal Feldman, Kevin Lai, and Li Zhang. The Proportional-share Allocation Market for
Computational Resources. IEEE Transactions on Parallel and Distributed Systems, 20(8):1075–
1088, 2008.

20 Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo. On the Price
of Stability for Designing Undirected Networks with Fair Cost Allocations. In ICALP’06,
pages 608–618. Springer, 2006.

21 Laurent Gourvès and Jérôme Monnot. Three Selfish Spanning Tree Games. In WINE’08,
pages 465–476. Springer, 2008.

22 Daniel Granot and Gur Huberman. Minimum Cost Spanning Tree Games. Mathematical
programming, 21(1):1–18, 1981.

23 Daniel Granot and Gur Huberman. On the Core and Nucleolus of Minimum Cost Spanning
Tree Games. Mathematical programming, 29(3):323–347, 1984.

24 Martin Hoefer. Non-Cooperative Tree Creation. Algorithmica, 53(1):104–131, 2009.
25 Martin Hoefer and Piotr Krysta. Geometric Network Design with Selfish Agents. In CO-

COON’05, pages 167–178, 2005.
26 Matthew O. Jackson and Asher Wolinsky. A Strategic Model of Social and Economic Networks.

Journal of Economic Theory, 71(1):44–74, 1996.
27 Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In STACS’99, pages

404–413. Springer-Verlag, 1999.
28 Thomas L. Magnanti and Richard T. Wong. Network Design and Transportation Planning:

Models and Algorithms. Transportation Science, 18(1):1–55, 1984.
29 Akaki Mamageishvili, Matúš Mihalák, and Dominik Müller. Tree Nash Equilibria in the

Network Creation Game. In WAW’13, pages 118–129. Springer, 2013.
30 Matúš Mihalák and Jan Christoph Schlegel. The Price of Anarchy in Network Creation Games

is (Mostly) Constant. In SAGT’10, pages 276–287. Springer, 2010.
31 Kimaya Mittal, Elizabeth M. Belding, and Subhash Suri. A Game-theoretic Analysis of Wireless

Access Point Selection by Mobile Users. Computer Communications, 31(10):2049–2062, 2008.
32 Dov Monderer and Lloyd S. Shapley. Potential Games. Games and Economic Behavior,

14(1):124–143, 1996.
33 Hervé Moulin and Scott Shenker. Strategyproof Sharing of Submodular Costs: Budget Balance

versus Efficiency. Economic Theory, 18(3):511–533, 2001.

FSTTCS 2020

Locally Decodable/Correctable Codes for
Insertions and Deletions
Alexander R. Block
Purdue University, West Lafayette, IN, USA
block9@purdue.edu

Jeremiah Blocki
Purdue University, West Lafayette, IN, USA
jblocki@purdue.edu

Elena Grigorescu
Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu

Shubhang Kulkarni1

University of Illinois Urbana-Champaign, IL, USA
smkulka2@illinois.edu

Minshen Zhu
Purdue University, West Lafayette, IN, USA
zhu628@purdue.edu

Abstract
Recent efforts in coding theory have focused on building codes for insertions and deletions, called
insdel codes, with optimal trade-offs between their redundancy and their error-correction capabilities,
as well as efficient encoding and decoding algorithms.

In many applications, polynomial running time may still be prohibitively expensive, which
has motivated the study of codes with super-efficient decoding algorithms. These have led to the
well-studied notions of Locally Decodable Codes (LDCs) and Locally Correctable Codes (LCCs).
Inspired by these notions, Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015)
generalized Hamming LDCs to insertions and deletions. To the best of our knowledge, these are the
only known results that study the analogues of Hamming LDCs in channels performing insertions
and deletions.

Here we continue the study of insdel codes that admit local algorithms. Specifically, we reprove
the results of Ostrovsky and Paskin-Cherniavsky for insdel LDCs using a different set of techniques.
We also observe that the techniques extend to constructions of LCCs. Specifically, we obtain insdel
LDCs and LCCs from their Hamming LDCs and LCCs analogues, respectively. The rate and
error-correction capability blow up only by a constant factor, while the query complexity blows up
by a poly log factor in the block length.

Since insdel locally decodable/correctble codes are scarcely studied in the literature, we believe our
results and techniques may lead to further research. In particular, we conjecture that constant-query
insdel LDCs/LCCs do not exist.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Locally decodable/correctable codes, insert-delete channel

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.16

Funding Alexander R. Block: Supported by NSF CCF-1910659.
Jeremiah Blocki: Supported by NSF CCF-1910659, CNS-1755708, CNS-1704587 and CNS-1931443.
Elena Grigorescu: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Minshen Zhu: Supported by NSF CCF-1910659.

1 Work done while at Purdue University, USA.

© Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and Minshen Zhu;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:block9@purdue.edu
mailto:jblocki@purdue.edu
mailto:elena-g@purdue.edu
mailto:smkulka2@illinois.edu
mailto:zhu628@purdue.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Local InsDel Codes

1 Introduction

Building error-correcting codes that can recover from insertions and deletions (a.k.a. “insdel
codes”) has been a central theme in recent advances in coding theory [29, 24, 15, 18, 13, 12,
20, 19, 3, 14, 17, 16, 30, 11]. Insdel codes are generalizations of Hamming codes, in which
the corruptions may be viewed as deleting symbols and then inserting other symbols at the
deleted locations.

An insdel code is described by an encoding function E : Σk → Σn, which encodes every
message of length k into a codeword of block length n. The rate of the code is the ratio k

n .
Classically, a decoding function D : Σ∗ → Σk takes as input a string w obtained from some
E(m) after δn insertions and deletions and satisfies D(w) = m. A fundamental research
direction is building codes with high communication rate k

n , that are robust against a large
δ fraction of insertions and deletions, which also admit efficient encoding and decoding
algorithms. It is only recently that efficient insdel codes with asymptotically good rate and
error-correction parameters have been well-understood [17, 19, 16, 30, 11].

In modern applications, polynomial-time decoding may still be prohibitively expensive
when working with large data, and instead super-efficient codes are even more desirable. Such
codes admit very fast decoding algorithms that query only few locations into the received
word to recover portions of the data. Ostrovsky and Paskin-Cherniavsky [33] defined the
notion of Locally Decodable Insdel Codes,2 inspired by the notion of Locally Decodable
Codes (LDCs) for Hamming errors [22, 36]. A code defined by an encoding E : Σk → Σn is a
q-query Locally Decodable Insdel Code (Insdel LDC) if there exists a randomized algorithm
D, such that: (1) for each i ∈ [k] and message m ∈ Σk, D can probabilistically recover mi,
given query access to a word w ∈ Σ∗, which was obtained from E(m) corrupted by δ fraction
of insertions and deletions; and (2) D makes only q queries into w. The number of queries q
is called the locality of the code.

The rate, error-correcting capability, and locality of the code are opposing design features,
and optimizing all of them at the same time is impossible. For example, every 2-query LDCs
for Hamming errors must have vanishing rate [23]. While progress in understanding these
trade-offs for Hamming errors has spanned several decades [23, 38, 39, 6, 7, 26] (see surveys
by Yekhanin [39] and by Kopparty and Saraf [27]), in contrast, the literature on the same
trade-offs for the more general insdel codes is scarce. Namely, besides the results of [33], to
the best of our knowledge, only Haeupler and Shahrasbi [19] consider the notion of locality
in building synchronization strings, which are important components of optimal insdel codes.

The results of [33] provide a direct reduction from classical Hamming error LDCs to insdel
LDCs, which preserves the rate of the code and error-correction capabilities up to constant
factors, and whose locality grows only by a polylogarithmic factor in the block length.

In this paper we revisit the results of Ostrovsky and Paskin-Cherniavsky [33] and provide
an alternate proof, using different combinatorial techniques. We also observe that these
results extend to building Locally Correctable Insdel Codes (Insdel LCCs) from Locally
Correctable Codes (LCCs) for Hamming errors. LCCs are a variant of LDCs, in which
the decoder is tasked to locally correct every entry of the encoded message, namely E(m)i,
instead of the entries of the message itself. If the message m is part of the encoding E(m),
then an LCC is also an LDC. In particular, all linear LCCs (i.e, whose codewords form a
vector space) are also LDCs.

2 In [33], they are named Locally Decodable Codes for Edit Distance.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:3

I Theorem 1. If there exist q-query LDCs/LCCs with encoding E : Σk → Σn, that can
correct from δ-fraction of Hamming errors, then there exist binary q · polylog(n)-query
Insdel LDCs/LCCs with codeword length Θ(n log |Σ|), that can correct from Θ(δ)-fraction of
insertions and deletions.

We emphasize that the resulting LDC/LCC of Theorem 1 is a binary code, even if the input
LDC/LCC is over some higher alphabet Σ.

Classical constructions of LDCs/LCCs for Hamming errors fall into three query-complexity
regimes. In the constant-query regime, the best known results are based on matching-vectors
codes, and give encoding that map k symbols into exp(exp(

√
log k log log k)) symbols [38, 6, 7].

Since the best lower bounds are only quadratic [37], for all we know so far, it is possible
that there exist constant-query complexity LDCs with polynomial block length. In the
polylog k-query regime, Reed-Muller codes are examples of logc k-query LDCs/LCCs of block
length k1+ 1

c−1 +o(1) for some c > 0 (e.g., see [39]). Finally, there exist sub-polynomial (but
super logarithmic)-query complexity LDCs/LCCs with constant rate [26]. These relatively
recent developments improved upon the previous constant rate codes in the nε-query regime
achieved by Reed-Muller codes, and later by more efficient constructions (e.g. [28]).

Given that our reduction achieves polylogn-query complexity blow-up, the results above
in conjunction with Theorem 1 give us the following asymptotic results.

I Corollary 2. There exist polylog(k)-query Insdel LDCs/LCCs encoding k symbols into
o(k2) symbols, that can correct a constant fraction of insertions and deletions.

I Corollary 3. There exist (log k)O(log log k)-query Insdel LDCs/LCCs with constant rate,
that can correct from a constant fraction of insertions and deletions.

Our results, similarly to those in [33], do not have implications in the constant-query regime.
We conjecture that there do not exist constant-query LDCs/LCCs, regardless of their rate.
Since achieving locality against insertions and deletions appears to be a difficult task, and the
area is in its infancy, we believe our results and techniques may motivate further research.

1.1 Overview of Techniques
Searching in a Nearly Sorted Array. To build intuition for our local decoding algorithm
we consider the following simpler problem: We are given a nearly sorted array A of n
distinct elements. By nearly sorted we mean that there is another sorted array A′ such
that A′[i] = A[i] on all but n′ indices. Given an input x we would like to quickly find x in
the original array. In the worst case this would require time at least Ω(n′) so we relax the
requirement that we always find x to say that there are at most cn′ items that we will fail to
find for some constant c > 0.

To design our noisy binary search algorithm that meets the requirement we borrow a
notion of local goodness used in the design and analysis of depth-robust graphs a combinatorial
object that has found many applications in cryptography [8, 1, 2]. In particular, fixing A
and A′ (sorted) we say that an index j is corrupted if A[j] 6= A′[j]. We say that an index i is
θ-locally good if for any r ≥ 0 at most θ fraction of the indices j ∈ [i, . . . , i+ r] are corrupted
and at most θ fraction of the indices in [i − r, i] are corrupted. If at most n′ indices are
corrupted then one can prove that at least n− 2n′/θ indices are θ-locally good [8].

As long as the constant θ is suitably small we can design an efficient randomize search
procedure which (whp) will correctly locate x whenever x = A[i] provided that the unknown
index i is θ-locally good. Intuitively, suppose we have already narrowed down our search to
the smaller range I = [i0, i1]. The rank of x = A[i] in A′[i0], . . . , A′[i1] is exactly i−i0+1 since

FSTTCS 2020

16:4 Local InsDel Codes

A[i] is uncorrupted and the rank of x in A[i0], . . . , A[i1] can change by at most ±θ(i− i0 + 1)
– at most θ(i1 − i0 + 1) indices j′ ∈ [i0, i1] can be corrupted since i ∈ [i0, i1] is θ-locally
good. Now suppose that we sample t = polylog(n) indices j1, . . . , jt ∈ [i0, i1] and select the
median ymed of A[j1], . . . , A[jt]. With high probability the rank r of ymed in A[j1], . . . , A[jt]
will be close to (i1 − i0 + 1)/2 i.e., |r − (i1 − i0 + 1)/2| ≤ δ(i1 − i0 + 1) for some arbitrarily
constant δ which may depend on the number of samples t. Thus, for suitable constants θ and
δ whenever x > ymed (resp. x < ymed) we can safely conclude that i > i0 + (i1 − i0 + 1)/8
(resp. i < i1 − (i1 − i0 + 1)/8) and search in the smaller interval I ′ = [i0 + (i1 − i0 + 1)/8, i1]
(resp. I ′ = [i0, i1− (i1− i0 + 1)/8]). In both cases the size of the search space is reduced by a
constant multiplicative factor so the procedure will terminate after O(logn) rounds making
O(t logn) queries. At its core our local decoding algorithm relies on a very similar idea.

Encoding. Our encoder builds off of the known techniques of concatenation codes. First,
a message x is encoded via the outer code to obtain some (intermediate) encoding y. We
then partition y into some number k blocks y = y1 ◦ · · · ◦ yk and append each block yi with
index i to obtain yi ◦ i. Each yi ◦ i is then encoded with the inner encoder to obtain some di.
Then each di is prepended and appended with a run of 0s (i.e., the buffers), to obtain ci.
The encoder then outputs c = c1 ◦ · · · ◦ ck as the final codeword. For our inner encoder, we
in fact use the Schulman-Zuckerman (SZ) [34] edit distance code.

Decoding. Given oracle access to some corrupted codeword c′, on input index i, the decoder
simulates the outer decoder and must answer the outer decoder oracle queries. The decoder
uses the inner decoder to answer these queries. However, there are two major challenges:
(1) Unlike the Hamming-type errors, even only a few insertions and deletions makes it hard
for the decoder to know where to probe; and (2) The boundaries between blocks can be
ambiguous in the presence of insdel errors. We overcome these challenges via a variant of
binary search, which we name NoisyBinarySearch, together with a buffer detection algorithm,
and make use of a block decomposition to facilitate the analysis.

Analysis. The analyses of the binary search and the buffer detection algorithms are based
on the notion of “good blocks” and “locally good blocks”, which are natural extensions of the
notion of θ-locally good discussed above. Recall that our encoder outputs a final codeword
that is a concatenation of k smaller codeword “blocks”; namely Enc(x) = c1 ◦· · ·◦ck. Suppose
c′ is the corrupted codeword obtained by corrupting c with δ-fraction of insertion-deletion
errors, and suppose we have a method of partitioning c′ into k blocks c′1 ◦ · · · ◦ c′k. Then we
say that block c′j is a γ-good block if it is within γ-fractional edit distance to the uncorrupted
block cj . Moreover, c′j is (θ, γ)-locally good if at least (1 − θ) fraction of the blocks in
every neighborhood around c′j are γ-good and if the total number of corruptions in every
neighborhood is bounded. Both notions of good and locally good blocks are necessary to the
success of our binary search algorithm NoisyBinarySearch.

The goal of NoisyBinarySearch is to locate a block with a given index j, and the idea is to
decode the corrupted codeword at random positions to get a list of decoded indices (recall
that the index of each block is appended to it). Since a large fraction of blocks are γ-good
blocks, the sampled indices induce a new search interval for the next iteration. In order to
apply this argument recursively, we need that the error density of the search interval does
not increase in each iteration. Locally good blocks provide precisely this property.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:5

Comparison with the techniques of [33]. The Insdel LDC construction of [33] also uses
Schulman-Zuckerman (SZ) [34] codes, except it opens them up and directly uses the inefficient
greedy inner codes used for the final efficient SZ codes themselves. In our case, we observe
that the efficiently decodable codes of [34] have the additional property described in Lemma 7,
which states that small blocks have large weight. This observation implies a running time that
is polynomial in the query complexity of the final codes, since it helps make the buffer-finding
algorithms local. The analysis of [33] also uses a binary search component, but our analysis
and their analysis differ significantly.

1.2 Related work

The study of codes for insertions and deletions was initiated by Levenstein [29] in the mid
60’s. Since then there has been a large body of works concerning insdel codes, and we
refer the reader to the excellent surveys of [35, 31, 32]. In particular, random codes with
positive rate correcting from a large fraction of deletions were studied in [24, 15]. Efficiently
encodable/decodable codes, with constant rate, and that can withstand a constant fraction
of insertion and deletions were extensively studied in [34, 15, 18, 19, 19, 14, 3, 11]. A recent
area of interest is building “list-decodable” insdel codes, that can withstand a larger fraction
of insertions and deletions, while outputting a small list of potential codewords [20, 11, 30].

In [19], Haeupler and Shahrasbi construct explicit synchronization strings which can be
locally decoded, in the sense that each index of the string can be computed using values
located at only a small number of other indices. Synchronization strings are powerful
combinatorial objects that can be used to index elements in constructions of insdel codes.
These explicit and locally decodable synchronizations strings were then used to imply near
linear time interactive coding scheme for insdel errors.

There are various other notions of “noisy search” that have been studied in the literature.
Dhagat, Gacs, and Winkler [5] consider a noisy version of the game “Twenty Questions”. In
this problem, an algorithm searches an array for some element x, and a bounded number
of incorrect answers can be given to the algorithm queries, and the goal is to minimize the
number of queries made by an algorithm. Feige et al. [9] study the depth of noisy decision
trees: decision trees where each node gives the incorrect answer with some constant probability,
and moreover each node success or failure is independent. Karp and Kleinberg [21] study
noisy binary search where direct comparison between elements is not possible; instead, each
element has an associated biased coin. Given n coins with probabilities p1 ≤ . . . ≤ pn, target
value τ ∈ [0, 1], and error ε, the goal is to design an algorithm which, with high probability,
finds index i such that the intervals [pi, pi+1] and [τ − ε, τ + ε] intersect. Braverman and
Mossel [4], Klein et al. [25] and Geissmann et al. [10] study noisy sorting in the presence
of recurrent random errors: when an element is first queried, it has some (independent)
probability of returning the incorrect answer, and all subsequent queries to this element are
fixed to this answer. We note that each of the above notions of “noisy search” are different
from each other and, in particular, different from our noisy search.

1.3 Organization

We begin with some general preliminaries in Section 2. In Section 3 we present the formal
encoder and decoder. In Section 4 we define block decomposition which play an important
role in our analysis. In Section 5, Section 6, and Section 7 we prove correctness of our local
decoding algorithm in a top-down fashion. All missing proofs are deferred to the full-version.

FSTTCS 2020

16:6 Local InsDel Codes

2 Preliminaries

We now define some notation used throughout this work. We use [n] to represent the set
{1, 2, . . . , n}. More generally, for integers a < b, we let [a, b] denote the set {a, a+ 1, . . . , b}.
All logarithms will be base 2 unless specified otherwise. We denote x ◦ y as the concatenation
of string x with string y. For any x ∈ Σn, x[i] denotes the ith coordinate of x. A function
negl(n) is said to be negligible in n if negl(n) = o

(
n−d

)
for any d ∈ N. For any x, y ∈ Σn,

HAM(x, y) = |{i : x[i] 6= y[i]}| denotes the hamming distance between x and y. Furthermore,
ED(x, y) denotes the edit distance between x and y i.e. the minimum number of symbol
insertions and deletions to transform x into y. For any string x ∈ Σ∗ with finite length,
we denote |x| as the length of x. The fractional Hamming distance (resp., edit distance) is
HAM(x, y)/|x| (resp., ED(x, y)/(2|x|)).

I Definition 4 (Locally Decodable Codes for Hamming and Insdel errors). A code with encoding
function E : Σk

M → Σn
C is a (q, δ, ε)-Locally Decodable Code (LDC) if there exists a

randomized decoder D, such that for every message m ∈ Σk
M and index i ∈ [k], and for

every w ∈ Σ∗C such that dist(w,E(m)) ≤ δ the decoder makes at most q queries to w and
outputs mi with probability 1

2 + ε; when dist is the fractional Hamming distance then this is
a Hamming LDC; when dist is the fractional edit distance then this is an Insdel LDC. We
also say that the code is binary if ΣC = {0, 1}.

I Definition 5 (Locally Correctable Codes for Hamming and Insdel errors). A code with
encoding function E : ΣkM → ΣnC is a (q, δ, ε)-Locally Correctable Code (LCC) if there exists
a randomized decoder D, such that for every message m ∈ Σk

M and index i ∈ [n], and for
every w ∈ Σ∗C such that dist(w,E(m)) ≤ δ the decoder makes at most q queries to w and
outputs E(m)i with probability 1

2 + ε; when dist is the fractional Hamming distance then this
is a Hamming error LCC; when dist is the fractional edit distance then this is an Insdel
LCC. We also say that the code is binary if ΣC = {0, 1}.

Our construction, like most insdel codes in the literature, is obtained via adaptations
of the simple but powerful operation of code concatenation. If Cout is an “outer” code
over alphabet Σout with encoding function Eout : Σk

out → Σn
out, and Cin is an “inner” code

over alphabet Σin with encoding function Ein : Σout → Σp
in, then the concatenated code

Cout • Cin is the code whose codewords lie in Σnp
in , obtained by first applying Eout to the

message, and then applying Ein to each symbol of the resulting outer codeword.

3 Insdel LDCs/LCCs from Hamming LDCs/LCCs

We give our main construction of Insdel LDCs/LCCs from Hamming LDCs/LCCs. Our con-
struction can be viewed as a procedure which, given outer codes Cout and binary inner codes
Cin satisfying certain properties, produces binary codes C(Cout, Cin). This is formulated in
the following theorem, which implies Theorem 1.

I Theorem 6. Let Cout and Cin be codes such that
Cout defined by Encout : Σk → Σm is an a (`out, δout, εout)-LDC/LCC (for Hamming
errors).
Cin is family of binary polynomial-time encodable/decodable codes with rate 1/βin capable
of correcting δin fraction of insdel errors. In addition, there are constants α1, α2 ∈ (0, 1)
such that for any codeword c of Cin, any substring of c with length ≥ α1|c| has fractional
Hamming weight at least α2.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:7

Then C(Cout, Cin) is a binary
(
`out ·O

(
log4 n′

)
,Ω(δoutδin), ε− negl(n′)

)
-Insdel LDC, or

a binary
(
`out ·O

(
log5 n′

)
,Ω(δoutδin), ε− negl(n′)

)
-Insdel LCC, respectively. Here the

codewords of C have length n = βm where β = O
(
βin log |Σ|

)
, and n′ denotes the length of

received word.

For the inner code, we make use of the following efficient code constructed by Schulman-
Zuckerman [34].

I Lemma 7 (SZ-code [34]). There exist constants βin ≥ 1, δin > 0, such that for large
enough values of t > 0, there exists a code SZ(t) = (Enc,Dec) where Enc : {0, 1}t → {0, 1}βint

and Dec : {0, 1}βint → {0, 1}t ∪ {⊥} capable of correcting δin fraction of insdel errors, having
the following properties:
1. Enc and Dec run in time poly(t);
2. For all x ∈ {0, 1}t, every interval of length 2 log t of Enc(x) has fractional Hamming

weight ≥ 2/5.
We formally complete the proof of correctness of Theorem 6 in Section 5. We only prove the
correctness of the LDC decoder since it is cleaner and captures the general strategy of the
LCC decoder as well. We dedicate the remainder of this section to outlining the construction
of the encoding and decoding algorithms.

3.1 Encoding and Decoding Algorithms

In our construction of C(Cout, Cin), we denote the specific code of Lemma 7 as our inner
code Cin = (Encin,Decin). For our purpose, it is convenient to view the message as a pair in
[m]× Σlogm. The encoding function Encin : [m]× Σlogm → {0, 1}βin(1+log |Σ|) logm maps a
logm-long string over alphabet Σ appended with an index from set [m] – i.e. a (padded)
message of bit-length

(
1 + log |Σ|

)
logm – to a binary string of length βin

(
1 + log |Σ|

)
logm.

The inner decoder Decin on input y′ returns x if ED
(
y′, y

)
≤ δin · 2|y| where y = Encin(x).

The information rate of this code is Rin = 1/βin.
We describe our final encoding and decoding algorithms next.

The Encoder (Enc). Given an input string x ∈ Σk and outer code Cout = (Encout,Decout),
our final encoder Enc does the following: (1) Computes the outer encoding of x as s =
Encout(x); (2) For each i ∈ [m/ logm], groups logm symbols s[(i− 1) logm] · · · s[i logm− 1]
into a single block bi ∈ Σlogm; (3) For each i ∈ [m/ logm], computes the ith block of the inner
encoding as Y (i) = Encin(i ◦ bi) – i.e. computes inner encoding of the ith block concatenated
with the (padded) index i; (4) For some constant α ∈ (0, 1) (to be decided), appends a
α logm-long buffer of zeros before and after each block; and (5) Outputs the concatenation
of the buffered blocks (in indexed order) as the final codeword c = Enc(x) ∈ {0, 1}n, where

c =
(

0α logm ◦ Y (1) ◦ 0α logm
)
◦ · · · ◦

(
0α logm ◦ Y (m/ logm) ◦ 0α logm

)
. (1)

Denoting β = 2α+ βin
(
1 + log |Σ|

)
, the length of c is

n =
(

2α logm+ βin
(
1 + log |Σ|

)
logm

)
· m

logm = βm.

FSTTCS 2020

16:8 Local InsDel Codes

The LDC Decoder (Dec). We start off by describing the high-level overview of our decoder
Dec and discuss the challenges and solutions behind its design. As defined in Equation (1),
our encoder Enc, on input x ∈ Σk, outputs a codeword c = c1 ◦ · · · ◦ cd ∈ {0, 1}n where
d = m/ logm. The decoder setting is as follows: on input i ∈ [k] and query access to the
corrupted codeword c′ ∈ {0, 1}n

′
such that ED(c, c′) ≤ 2nδ, our final decoder Dec needs to

output the message symbol x[i] with high probability. Notice that if Dec had access to the
original codeword s = Encout(x), then Dec could simply run Decout(i) while supplying it with
oracle access to this codeword s. This naturally motivates the following decoding strategy –
simulate Decout’s oracle access to the codeword s via answering Decout’s queries by decoding
the appropriate bits using Decin. We give a detailed description of this strategy next.

Let Qi = {q1, . . . , q`out
} ⊂ [m] be a set of indices which Decout(i) makes queries to. 3 We

observe that if our decoder had oracle access to the uncorrupted codeword c, then answering
these queries would be simple:
1. For each q ∈ Qi, let bj = s[(j − 1) logm] · · · s[j logm − 1] be the block which contains

s[q]. In particular, q = (j − 1) logm+ rj for some rj ∈ [0, logm− 1],
2. Obtain block cj by querying oracle c and obtain Y (j) by removing the buffers from cj ,
3. Obtain j ◦ bj by running Decin(Y (j)), then return s[q] = bj [rj] to Decout.

In fact, it suffices for Decout’s queries to be answered with symbols consistent with any
string s′ such that HAM(s, s′) ≤ δoutm – for then, the correctness of the output would follow
from the correctness of Decout. We are still going to carry out the strategy mentioned above,
except that now we are given a corrupted codeword c′.

For the purposes of analysis, we first define the notion of a block decomposition of the
corrupted codeword c′. Informally, a block decomposition is simply a partitioning of c′ into
contiguous blocks. Our first requirement for successful decomposition is that there must exist a
block decomposition c′ = c′1◦· · ·◦c′d that is “not too different” from the original decomposition
c = c1◦· · ·◦cd.4 In particular, we require that

∑
j ED(c′j , cj) ≤ 2nδ. Proposition 9 guarantees

this property. Next, we define the notion of γ-good (see Definition 10). The idea here is that
if a block c′j is γ-good (for appropriate γ), then we can run Decin on c′j and obtain j ◦ bj . As
the total number of errors is bounded, it is easy to see that all but a small fraction of blocks
are γ-good (Lemma 14). At this point, we are essentially done if we can decode c′j for any
given γ-good block j.

An immediate challenge we are facing is that of locating a specific γ-good block c′j , while
maintaining overall locality. The presence of insertions and deletions may result in uneven
block lengths, making the task of locating a specific block non-trivial. However, since the
γ-good blocks, which make up majority of the blocks, must be in the correct relative order,
it is conceivable to perform a binary search type algorithm over the blocks of c′ to find block
c′j . The idea is to maintain a search interval and iteratively reduce its size. In each iteration,
the algorithm samples a small number of blocks and obtains their (appended) indices. As the
vast majority of blocks are γ-good, these indices will guide the binary search algorithm in
narrowing down the search interval. There is one problem with this argument. The density
of γ-good blocks may go down as the search interval gets smaller. In fact, it is impossible to
locally locate a block c′j surrounded by many bad blocks even if it is γ-good. This is where
the notion of (θ, γ)-locally good (see Definition 12) helps us: if a block c′j is (θ, γ)-locally

3 This is for ease of presentation. Our construction also supports adaptive queries.
4 We note that we do not need to know this decomposition explicitly, and that its existence is sufficient

for our analysis.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:9

good, then (1− θ)-fraction of blocks in every neighborhood around c′j are γ-good, and every
neighborhood around c′j has a bounded number of errors. Therefore, as long as the search
interval contains a locally good block, we can lower bound the density of γ-good blocks.

Our noisy binary search algorithm essentially implements this idea. The algorithm on
input block index j, attempts to find block j. If block j is (θ, γ)-locally good, then we can
guarantee that our noisy binary search algorithm will find j except with negligible probability
(see Theorem 18). Thus it is desirable that the number of (θ, γ)-locally good blocks is large;
if this is so, the noisy binary search is effectively providing oracle access to a string s′ which
is close to s in Hamming distance, and thus the outer decoder is able to decode x[i] with
high probability. Lemma 15 exactly guarantees this property.

The discussion above, however, requires knowing the boundaries of each block c′j . As
the decoder is oblivious to the block decomposition, it is going to work with approximate
boundaries which can be found locally by a buffer search algorithm described as follows.
Recall that by construction cj consists of Y (j) surrounded by buffers of (α logm)-length
0-runs. So to find Y (j), it suffices to find the buffers surrounding Y (j). Our buffer search
algorithm can be viewed as a “local variant” of the buffer search algorithm of Schulman
and Zuckerman [34]. It is designed to find approximate buffers surrounding a block c′j if
it is γ-good. Then the string in between two buffers is identified as a corrupted codeword
and is decoded to j ◦ bj . The success of the algorithm depends on γ-goodness of the block
being searched and requires that any substring of a codeword from Cin has “large enough”
Hamming weight. In fact, our inner code given by Lemma 7 gives us this exact guarantee. All
together, this enables the noisy binary search algorithm to use the buffer finding algorithm
to search for a block c′j .

We formalize the decoder outlined above. On input i ∈ [k], Dec simulates Decout(i)
and answers its queries. Whenever Decout(i) queries an index j ∈ [m], Dec expresses j =
(p− 1) logm+ rj for p ∈ [m/ logm] and rj ∈ [0, logm− 1], and runs NoisyBinarySearch(c′, p)
(which calls the Buff-Find algorithm) to obtain a string b′ ∈ Σlogm (or ⊥). Then it feeds
the rj-th symbol of b′ (or ⊥) to Decout(i). Finally, Dec returns the output of Decout(i).

The LCC Decoder (Dec). Similar to the LDC decoder, our LCC decoder Dec does the
following: We denote B = 2α logm + βin

(
1 + log |Σ|

)
logm. On input j ∈ [n], Dec first

expresses j = (p− 1)B + rj for some p ∈ [m/ logm] and 0 ≤ rj < B, and checks whether j
is inside a buffer. Specifically, if rj ∈ [0, logm) ∪ [B − logm,B), it outputs 0. Otherwise, it
simulates Decout((p−1) logm+r) for each 0 ≤ r < logm, and answers their queries. Whenever
Decout queries i ∈ [m], Dec expresses i = (b− 1) logm+ ri for some b ∈ [m/ logm] and 0 ≤
ri < logm, and runs NoisyBinarySearch(c′, b) to obtain a string S ∈ Σlogm (or ⊥), and answers
the query with Sri

(or ⊥). Finally, denoting by sr the output of Decout((p− 1) logm+ r),
Dec returns the (rj − logm+ 1)-th bit of Encin

(
p ◦ s0s1 . . . slogm−1

)
.

Efficiency. We note that the efficiency of our compiler depends on the constituent inner and
outer codes. Let T (Encin, l), T (Encout, l), T (Enc, l) denote the run-times of the inner, outer
and final encoders respectively on inputs of length l. Similarly, let T (Decin, l), T (Decout, l),
T (Dec, l) denote the run-times of the inner, outer and final decoders respectively having
query access to corrupted codewords of length l. Then we have following run-time relations

T (Enc, k) = T (Encout, k) +O(m/ logm) · T (Encin, log |Σ| · logm+ logm),

T (Dec, n′) = T (Decout,m) + `out ·O
(

log3 n′
)
· T (Decin, β logm).

Here, n′ is the length of the corrupted codeword.

FSTTCS 2020

16:10 Local InsDel Codes

4 Block Decomposition of Corrupted Codewords

The analysis of our decoding procedure relies on a so-called buffer finding algorithm and a
noisy binary search algorithm. To analyze these algorithms, we introduce the notion of a
block decomposition for (corrupted) codewords, as well as what it means for a block to be
(locally) good.

For convenience, we now fix some notations for the rest of the paper. We fix an arbitrary
message x ∈ Σk. We use s = Encout(x) ∈ Σm for the encoding of x by the outer encoder.
Let τ = logm be the length of each block and d = m/ logm be the number of blocks. For
i ∈ [d], we let bi ∈ Στ denote the i-th block s[(i− 1)τ]s[(i− 1)τ + 1] . . . s[iτ − 1], and let Y (i)

denote the encoding Encin (i ◦ bi). Recall that ατ is the length of the appended buffers for
some α ∈ (0, 1), and the parameter β = 2α+ βin(1 + log |Σ|). Thus |Y (i)| = (β − 2α)τ . The
final encoding is given by

c = Ỹ (1) ◦ Ỹ (2) ◦ · · · ◦ Ỹ (d),

where Ỹ (j) = 0ατ ◦ Y (j) ◦ 0ατ and |Ỹ (j)| = βτ . The length of c is n = dβτ = βm. We let
c′ ∈ {0, 1}n

′
denote a corrupted codeword satisfying ED

(
c, c′

)
≤ δ · 2n.

A block decomposition of a (corrupted) codeword c′ is a non-decreasing mapping φ : [n′]→
[d] for n′, d ∈ Z+. We say a set I ⊆ [n′] is an interval if I = ∅ (i.e., an empty interval) or
I = {l, l + 1, . . . , r − 1} for some 1 ≤ l < r ≤ n′, in which case we write I = [l, r). For an
interval I = [l, r), we write c′[I] for the substring c′[l]c′[l+ 1] . . . c′[r− 1]. Finally, c[∅] stands
for the empty string.

We remark that since φ is non-decreasing, for every j ∈ [d] the pre-image φ−1(j) is
an interval. Since φ is a total function, it induces a partition of [n′] into d intervals{
φ−1(j) : j ∈ [d]

}
. The following definition plays an important role in the analysis.

I Definition 8 (closure intervals). The closure of an interval I = [l, r) ⊆ [n′] is defined as
∪r−1
i=l φ

−1(φ(i)). An interval I is a closure interval if the closure of I is itself. Equivalently,
every closure interval has the form I[a, b] :=

⋃b
j=a φ

−1(j) for some a, b ∈ [d].

I Proposition 9. There exists a block decomposition φ : [n′]→ [d] such that∑
j∈[d]

ED
(
c′[φ−1(j)], Ỹ (j)

)
≤ δ · 2n.

We now introduce the notion of good blocks. In the following definitions, we also fix an
arbitrary block decomposition φ of c′ enjoying the property guaranteed by Proposition 9.

I Definition 10 (γ-good block). For γ ∈ (0, 1) and j ∈ [d] we say that block j is γ-good if
ED(c′[φ−1(j)], Ỹ (j)) ≤ γατ . Otherwise we say that block j is γ-bad.

I Definition 11 ((θ, γ)-good interval). We say a closure interval I[a, b] is (θ, γ)-good if the
following hold:
1.
∑b
j=a ED

(
c′[φ−1(j)], Ỹ (j)

)
≤ γ · (b− a+ 1)ατ .

2. There are at least (1−θ)-fraction of γ-good blocks among those indexed by {a, a+ 1, · · · , b}.

I Definition 12 ((θ, γ)-local good block). For θ, γ ∈ (0, 1) we say that block j is (θ, γ)-local
good if for every a, b ∈ [d] such that a ≤ j ≤ b the interval I[a, b] is (θ, γ)-good. Otherwise,
block j is (θ, γ)-locally bad.

Note that in Definition 12, if j is (θ, γ)-locally good, then j is also γ-good by taking a = b = j.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:11

I Proposition 13. The following bounds hold:
1. For any γ-good block j, (β − αγ)τ ≤ |φ−1(j)| ≤ (β + αγ)τ .
2. For any (θ, γ)-good interval I[a, b], (b−a+ 1)(β−αγ)τ ≤

∣∣I[a, b]
∣∣ ≤ (b−a+ 1)(β+αγ)τ .

The following lemmas give upper bounds on the number of γ-bad and (θ, γ)-locally bad
blocks.

I Lemma 14. The total fraction of γ-bad blocks is at most 2βδ/(γα).

I Lemma 15. The total fraction of (θ, γ)-local bad blocks is at most (4/γα)(1 + 1/θ)δβ.

5 Outer Decoder

At a high level, the our decoding algorithm Dec the outer decoder Decout and must answer
all oracle queries of Decout by simulating oracle access to some corrupted string s′. Recall
that Cout with encoding function Encout : Σk → Σm is a (`out, δout, εout)-LDC (for Hamming
errors). There is a probabilistic decoder Decout such that for any i ∈ [k] and string
s′ ∈

(
Σ ∪ {⊥}

)m such that HAM
(
s′, s

)
≤ δout ·m for some codeword s = Encout(x), we have

Pr
[
Decs

′

out(i) = x[i]
]
≥ 1

2 + εout.

Additionally, Decout makes at most `out queries to s′.
In order to run Decout, we need to simulate oracle access to such a string s′. To do so,

we present our noisy binary search algorithm Algorithm 1 in Section 6. For now, we assume
Algorithm 1 has the property stated in the following theorem.

I Theorem 16. For j ∈ [d], let bj ∈ Στ ∪ {⊥} be the random variable denoting the output
of Algorithm 1 on input (c′, 1, n′ + 1, j). We have

Pr
[

Pr
j∈[d]

[
bj 6= bj

]
≥ δout

]
≤ negl(n′),

where the probability is taken over the joint distribution of
{

bj : j ∈ [d]
}
.

We note that bj ’s do not need to be independent, i.e. two runs of Algorithm 1 can be
correlated. For example, we can fix the random coin tosses of Algorithm 1 before the first
run and reuse them in each call.

6 Noisy Binary Search

We present Algorithm 1 below. As mentioned in Section 5, the binary search algorithm
discussed in this section can be viewed as providing the outer decoder with oracle access
to some string s′ ∈

(
Σ ∪ {⊥}

)m. Namely whenever the outer decoder queries an index
j ∈ [m] which lies in block p, we run Noisy-Binary-Search on (c′, 1, n′ + 1, p) and obtain
a string b′p ∈ Σlogm which contains the desired symbol s′[j]. For now, we analyze the query
complexity of Algorithm 1.

I Proposition 17. Algorithm 1 has query complexity O
(

log4 n′
)
.

The following theorem shows that the set of indices which can be correctly returned by
Algorithm 1 is captured by the locally good property.

FSTTCS 2020

16:12 Local InsDel Codes

Algorithm 1 Noisy binary search.

Input: An index j ∈ [d], and oracle access to a codeword c′ ∈ {0, 1}n
′
.

Output: A string b ∈ Στ or ⊥.
1: N ← Θ(log2 n′)
2: ρ← min

{
1
4 ·

β−γ
β+γ , 1−

3
4 ·

β+γ
β−γ

}
3: C ← 36(β + γ)τ
4: function Noisy-Binary-Search(c′, l, r, j)
5: if r − l ≤ C then
6: s← Interval-Decode(l, r, j)
7: return s

8: end if
9: m1 ← (1− ρ)l + ρr, m2 ← ρl + (1− ρ)r
10: for t← 1 to N do
11: Randomly sample i from {m1,m1 + 1, . . . ,m2 − 1}
12: jt ← Block-Decode(i)
13: end for
14: j̃ ← median of j1, . . . , jN (ignore jt if jt =⊥)
15: if j ≤ j̃ then
16: return Noisy-Binary-Search(c′, l, m2, j)
17: else
18: return Noisy-Binary-Search(c′, m1, r, j)
19: end if
20: end function

I Theorem 18. If j ∈ [d] is a (θ, γ)-locally-good block, running Algorithm 1 on input
(c′, 1, n′ + 1, j) outputs bj with probability at least 1− negl(n′).

As the only time Algorithm 1 interacts with c′ is when it queries Block-Decode and
Interval-Decode, the properties of these two algorithms are going to be essential to our
proof. We briefly describe these two subroutines now.

Block-Decode On input index i ∈ [n′], Block-Decode tries to find the block j

that contains i, and attempts to decode the block to j ◦ bj . It returns the index j if the
decoding was successful, and ⊥ otherwise.
Interval-Decode On input l, r ∈ [n′] and j ∈ [d], Interval-Decode (roughly) runs
the buffer search algorithm of Schulman and Zuckerman [34] over the substring c′[l, r] to
obtain a set of approximate buffers, and attempts to decode all strings separated by the
approximate buffers. It returns b if any string is decoded to j ◦ b, and ⊥ otherwise.

For convenience, we will model Block-Decode as a function ϕ : [n′]→ [d] ∪ {⊥}, and
model Interval-Decode as a function ψ : [n′]→ Στ ∪ {⊥}. The following properties of ϕ
and ψ are what allow the proof to go through.

I Theorem 19. The functions ϕ and ψ satisfy the following properties:
1. For any γ-good block j we have

Pr
i∈φ−1(j)

[
ϕ(i) 6= j

]
≤ γ.

2. Let [l, r) be an interval with closure I[L,R− 1] such that every block j ∈ {L, . . . , R− 1}
is γ-good. Then for every block j such that φ−1(j) ⊆ [l, r), we have ψ(j, l, r) = bj.

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:13

7 Block Decode Algorithm

A key component of the Noisy Binary Search algorithm is the ability to decode γ-good
blocks in the corrupted codeword c′. In order to do so, our algorithm will take explicit
advantage of the γ-good properties of a block. We present our block decoding algorithm,
named Block-Decode, in Algorithm 2.

Algorithm 2 Block-Decode.

Input: An index i ∈ [n′] and oracle access to (corrupted) codeword c′ ∈ {0, 1}n
′
.

Output: Some string Dec(s) for a substring s of c′, or ⊥.
1: function Block-Decodec′(i)
2: buff ← Buff-Findc

′

η (i)
3: if buff == ⊥ then
4: return ⊥
5: else Parse buff as (a, b), (a′, b′)
6: if b < i < a′ then
7: return Decin(c′[b+ 1, a′ − 1])
8: end if
9: end if
10: return ⊥
11: end function

Algorithm 3 Buff-Findη.

Input: An index i ∈ [n′] and oracle access to (corrupted) codeword c′ ∈ {0, 1}n
′
.

Output: Two consecutive δb-approximate buffers (a, b), (a′, b′), or ⊥.
1: function Buff-Findc′(i)
2: js ← max{1, i− ητ}, je ← min{n′ − τ + 1, i+ ητ}
3: buffs← []
4: while js ≤ je do
5: if ED(0τ , c′[js, js + τ − 1]) ≤ δbατ then
6: buffs.append((js, js + τ − 1))
7: end if
8: js ← js + 1
9: end while
10: for all k ∈

{
0, 1, . . . , |buffs| − 2

}
do

11: (a, b)← buffs[k], (a′, b′)← buffs[k + 1]
12: if b < i < a′ then
13: return (a, b), (a′, b′)
14: end if
15: end for
16: return ⊥
17: end function

7.1 Buff-Find
The algorithm Block-Decode makes use of the sub-routine Buff-Find, presented in
Algorithm 3. At a high-level, the algorithm Buff-Find on input i and given oracle access

FSTTCS 2020

16:14 Local InsDel Codes

to (corrupted) codeword c′ searches the ball c′[i− ητ, i+ ητ] for all δb-approximate buffers
in the interval, where η ≥ 1 is a constant such that if i ∈ φ−1(j) for any good block j then
c′[φ−1(j)] ⊆ c′[i−ητ, i+ητ]. Briefly, for any k ∈ N and δb ∈ (0, 1/2) a string w ∈ {0, 1}k is a
δb-approximate buffer if ED(w, 0k) ≤ δb ·k. For brevity we refer to approximate buffers simply
as buffers. Once all buffers are found, the algorithm attempts to find a pair of consecutive
buffers such that the index i is between these two buffers. If two such buffers are found, then
the algorithm returns these two consecutive buffers. For notational convenience, for integers
a < b we let the tuple (a, b) denote a (approximate) buffer.

I Lemma 20. Let i ∈ [n′] and j ∈ [d]. There exist constants γ < δb ∈ (0, 1/2) such that if
i ∈ φ−1(j) then Buff-Find finds buffers (a1, b1) and (a2, b2) such that Decin(c′[b1 + 1, a2 −
1]) = j ◦ bj. Further, if b1 < i < a2 then Block-Decode outputs j ◦ bj.

8 Parameter Setting and Proof of Theorem 6

In this section we list a set of constraints which our setting of parameters must satisfy, and
then complete the proof of Theorem 6. These constraints are required by different parts of
the analysis. Recall that δout, δin ∈ (0, 1) and βin ≥ 1 are given as parameters of the outer
code and the inner code, and that β = 2α+ βin

(
1 + log |Σ|

)
. We have that β ≥ 2 for any

non-negative α.

I Proposition 21. There exists constants γ, θ ∈ (0, 1) and α = Ω(δin) such that the following
constraints hold:
1. γ ≤ 1/12 and θ < 1/50;
2. (β + γ)/(β − γ) < 4/3;
3. α ≤ 2γ/(γ + 6);
4. α(1 + 3γ)/(β − 2α) < δin.

Proof. For convenience of the reader and simplicity of the presentation we work with explicit
values and verify that they satisfy the constraints in Proposition 21. Let γ = 1/12 and
θ = 1/51, which satisfies constraint (1). Note that γ < 2/7 ≤ β/7, hence

β + γ

β − γ
<

4
3

and constraint (2) is satisfied. We take α = 2γδin/(γ + 6) so that α = Ω(δin) and constraint
(3) is satisfied. Note also that β − 2α = βin(1 + log |Σ|) ≥ 2 which implies

α(1 + 3γ)
β − 2α ≤ α(1 + 3γ)

2 = α(γ + 3γ2)
2γ <

α(γ + 6)
2γ = δin.

Therefore, constraint (4) is also satisfied. J

We let

δ = δoutαγ

2β(1 + 1/θ) = Ω (δinδout) .

We now prove Theorem 6, which shows Theorem 1.

Proof of Theorem 6. Recall that the decoder Dec works as follows. Given input index
i ∈ [k] and oracle access to c′ ∈ {0, 1}n

′
, Decc

′
(i) simulates Decs

′

out(i). Whenever Decs
′

out(i)
queries an index j ∈ [m], the decoder expresses j = (p− 1)τ + rj for p ∈ [d] and 0 ≤ rj < τ ,

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:15

and runs Algorithm 1 on input (c′, 1, n′ + 1, p) to obtain a τ -long string b′p. Then it feeds
the (rj + 1)-th symbol of b′p to Decs

′

out(i). At the end of the simulation, Decc
′
(i) returns the

output of Decs
′

out(i).
For p ∈ [d], let b′p ∈ Στ ∪ {⊥} be a random variable that has the same distribution as the

output of Algorithm 1 on input (c′, 1, n′ + 1, p). Define a random string s′ ∈
(
Σ ∪ {⊥}

)m as
follows. For every i ∈ [m] such that i = (p− 1)τ + r for p ∈ [d] and 0 ≤ r < τ ,

s′[i] =

b′p[r] if b′p 6=⊥,
⊥ if b′p =⊥.

Since b′p = bp implies s′[(p − 1)τ + r] = s[(p − 1)τ + r] for all 0 ≤ r < τ , the event
Es :=

{
Prj∈[m]

[
s′[j] 6= s[j]

]
≤ δout

}
is implied by the event Eb := {Prj∈[d]

[
b′j 6= bj

]
≤ δout}.

Theorem 16 implies that Pr[Es] ≥ Pr[Eb] ≥ 1 − negl(n′). According to the construction
of Dec, from the perspective of the outer decoder, the string s′ is precisely the string it is
interacting with. Hence by properties of Decout we have that

∀i ∈ [k], Pr
[
Decs

′

out(i) = x[i]
∣∣∣ Es] ≥ 1

2 + εout.

Therefore by construction of Dec we have

∀i ∈ [k], Pr
[
Decc

′
(i) = x[i]

]
≥ Pr [Es] · Pr

[
Decs

′

out(i) = x[i]
∣∣∣ Es]

≥
(
1− negl(n′)

)
·
(

1
2 + εout

)
≥ 1

2 + εout − negl(n′).

The query complexity of Dec is `out · O
(

log4 n′
)
since it makes `out calls to Algorithm 1,

which by Proposition 17 has query complexity O
(

log4 n′
)
. J

References
1 Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal side-channel

resistant memory-hard functions. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1001–1017, Dallas, TX, USA, October 31 – November 2 2017. ACM Press.
doi:10.1145/3133956.3134031.

2 Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 99–130, Tel Aviv, Israel,
April 29 – May 3 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78375-8_4.

3 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Trans. Inf. Theory, 64(5):3403–3410, 2018.

4 Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Shang-Teng
Huang, editor, 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 268–276,
San Francisco, CA, USA, January 20–22 2008. ACM-SIAM.

5 Aditi Dhagat, Péter Gács, and Peter Winkler. On playing “twenty questions” with a liar. In
Greg N. Frederickson, editor, 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 16–22, Orlando, Florida, USA, January 27–29 1992. ACM-SIAM.

6 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011.

FSTTCS 2020

https://doi.org/10.1145/3133956.3134031
https://doi.org/10.1007/978-3-319-78375-8_4

16:16 Local InsDel Codes

7 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

8 Paul Erdös, Ronald L. Graham, and Endre Szemerédi. On sparse graphs with dense long
paths, 1975.

9 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM J. Comput., 23(5):1001–1018, October 1994. doi:10.1137/S0097539791195877.

10 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with recurrent
comparison errors, September 2017.

11 Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 524–537. ACM, 2020.

12 Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and online models.
In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 625–643.
SIAM, 2018.

13 Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary deletion
channel. IEEE Transactions on Information Theory, 65(4):2171–2178, 2018.

14 Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary deletion
channel. IEEE Trans. Inf. Theory, 65(4):2171–2178, 2019.

15 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

16 Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 334–347. IEEE
Computer Society, 2019.

17 Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time insertion-
deletion codes and (1+ε)-approximating edit distance via indexing. In Moses Charikar and
Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 697–708. ACM, 2019.

18 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for insertions
and deletions approaching the singleton bound. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 33–46. ACM, 2017.

19 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit construc-
tions, local decoding, and applications. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 841–854. ACM,
2018.

20 Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchronization strings: List
decoding for insertions and deletions. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of
LIPIcs, pages 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

21 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In Nikhil
Bansal, Kirk Pruhs, and Clifford Stein, editors, 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 881–890, New Orleans, LA, USA, January 7–9 2007. ACM-SIAM.

22 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC, pages 80–86, 2000.

23 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.

https://doi.org/10.1137/S0097539791195877

A.R. Block, J. Blocki, E. Grigorescu, S. Kulkarni, and M. Zhu 16:17

24 Marcos Kiwi, Martin Loebl, and Jiri Matousek. Expected length of the longest common
subsequence for large alphabets.

25 Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant algorithms.
In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms – ESA 2011, pages
736–747, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

26 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–11:42,
2017.

27 Swastik Kopparty and Shubhangi Saraf. Guest column: Local testing and decoding of high-rate
error-correcting codes. SIGACT News, 47(3):46–66, 2016.

28 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. J. ACM, 61(5):28:1–28:20, 2014.

29 Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966. Doklady Akademii Nauk SSSR, V163
No4 845-848 1965.

30 Shu Liu, Ivan Tjuawinata, and Chaoping Xing. On list decoding of insertion and deletion
errors. CoRR, abs/1906.09705, 2019. URL: http://arxiv.org/abs/1906.09705.

31 Hugues Mercier, Vijay K. Bhargava, and Vahid Tarokh. A survey of error-correcting codes for
channels with symbol synchronization errors. IEEE Communications Surveys and Tutorials,
12, 2010.

32 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels, July 2008.

33 Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decodable codes for edit distance.
In Anja Lehmann and Stefan Wolf, editors, Information Theoretic Security, pages 236–249,
Cham, 2015. Springer International Publishing.

34 L. J. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, 1999.

35 N.J.A. Sloane. On single-deletion-correcting codes. arXiv: Combinatorics, 2002.
36 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the

XOR lemma (abstract). In CCC, page 4, 1999.
37 David P. Woodruff. A quadratic lower bound for three-query linear locally decodable codes

over any field. J. Comput. Sci. Technol., 27(4):678–686, 2012.
38 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,

55(1):1:1–1:16, 2008.
39 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer

Science, 6(3):139–255, 2012.

FSTTCS 2020

http://arxiv.org/abs/1906.09705

Maximum Clique in Disk-Like Intersection Graphs
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Nicolas Grelier
Department of Computer Science, ETH Zürich, Switzerland
nicolas.grelier@inf.ethz.ch

Tillmann Miltzow
Department of Information and Computing Sciences, Utrecht University, The Netherlands
t.miltzow@googlemail.com

Abstract
We study the complexity of Maximum Clique in intersection graphs of convex objects in the
plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark ’90,
Raghavan and Spinrad ’03] to translates of any fixed convex set. We also generalize the efficient
polynomial-time approximation scheme (EPTAS) and subexponential algorithm for disks [Bonnet et
al. ’18, Bonamy et al. ’18] to homothets of a fixed centrally symmetric convex set.

The main open question on that topic is the complexity of Maximum Clique in disk graphs.
It is not known whether this problem is NP-hard. We observe that, so far, all the hardness proofs
for Maximum Clique in intersection graph classes I follow the same road. They show that, for
every graph G of a large-enough class C, the complement of an even subdivision of G belongs to the
intersection class I. Then they conclude by invoking the hardness of Maximum Independent Set
on the class C, and the fact that the even subdivision preserves that hardness. However there is a
strong evidence that this approach cannot work for disk graphs [Bonnet et al. ’18]. We suggest a
new approach, based on a problem that we dub Max Interval Permutation Avoidance, which
we prove unlikely to have a subexponential-time approximation scheme. We transfer that hardness
to Maximum Clique in intersection graphs of objects which can be either half-planes (or unit disks)
or axis-parallel rectangles. That problem is not amenable to the previous approach. We hope that a
scaled down (merely NP-hard) variant of Max Interval Permutation Avoidance could help
making progress on the disk case, for instance by showing the NP-hardness for (convex) pseudo-disks.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Disk Graphs, Intersection Graphs, Maximum Clique, Algorithms, NP-
hardness, APX-hardness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.17

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.02583.

Funding Nicolas Grelier : Research supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.
Tillmann Miltzow: NWO Veni Eager 016.Veni.192.250

1 Introduction

In an intersection graph, the vertices are represented by sets and there is an edge between
two sets whenever they intersect. Of course if the sets are not restricted, every graph is an
intersection graph. Interesting proper classes of intersection graphs are obtained by restricting
the sets to be some specific geometric objects. This comprises unit interval, interval, multiple-
interval, chordal, unit disk, disk, axis-parallel rectangle, segment, and string graphs, to name

© Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1653-5822
mailto:edouard.bonnet@ens-lyon.fr
mailto:nicolas.grelier@inf.ethz.ch
mailto:t.miltzow@googlemail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.17
https://arxiv.org/abs/2003.02583
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Maximum Clique in Disk-Like Intersection Graphs

a few. For the most part, they transparently consist of all the intersection graphs of the
corresponding objects. Note that strings are (polygonal) curves in the plane, and that chordal
graphs are the intersection graphs of subtrees in a tree. Intersection graphs have given rise
to books (see for instance [39], where applications to biology, psychology, and statistics, are
detailed) chapters in monographs (as in [11]), surveys [24, 29], and theses [50]. In this paper
we consider objects that are convex sets in the plane.

The Maximum Clique problem on geometric intersection graphs is especially interesting
for two reasons. The first reason is that the gap between algorithmic upper and lower bounds
is very large, when compared to other usual algorithmic questions on geometric intersection
graphs. The second reason is that it has a very natural geometric interpretation, as we will
explain below.

We start with a comparison of Maximum Clique with other standard algorithmic
problems. The probably most studied problems on geometric intersection graphs are packing
and covering problems, for which our theoretical understanding is rather comprehensive.
Packing problems (such as Maximum Independent Set) and covering problems (such as
Dominating Set) are often NP-hard in geometric intersection graphs since these problems
are already hard on planar graphs. Note for instance that disk intersection graphs [34]
and segment intersection graphs [17] both contain all the planar graphs. It turns out that
Maximum Independent Set (MIS) and Dominating Set remain intractable in unit
disk, unit square, or segment intersection graphs [37]: Not only are they NP-hard but,
being W[1]-hard, they are unlikely to admit a fixed-parameter tractable (FPT), that is,
f(k)nO(1)-time, algorithm, with n being the input size, k the size of the solution, and f

any computable function. This intractability is sharply complemented by PTASes for many
problems [18, 44, 43, 23, 49, 50], whereas efficient PTASes (EPTASes) are ruled out by the
W[1]-hardness of Marx [37]. The existence or unlikelihood of subexponential algorithms for
various problems on segment and string graphs was investigated in [10].

On the contrary, many questions are still open when it comes to the computational
complexity of Maximum Clique in intersection graphs. Clark et al. [19] show a polynomial-
time algorithm for unit disks. A randomized EPTAS, deterministic PTAS, and subexponential-
time algorithm were recently published, in top-level conferences [7, 6], for general disk graphs.
However neither a polytime algorithm nor NP-hardness is currently known for Maximum
Clique on disk graphs. Making progress on this open question is the main motivation
of the paper. Maximum Clique was shown NP-hard in segment intersection graphs by
Cabello et al. [15]. The proof actually carries over to intersection graphs of unit segments
or rays. The existence of an FPT algorithm or of a subexponential-time algorithm for
Maximum Clique in segment graphs are both open. Maximum Clique can be solved in
polynomial-time in axis-parallel rectangle intersection graphs, since their number of maximal
cliques is at most quadratic (every maximal clique corresponds to a distinct cell in any
representation). This result was generalized to d-dimensional polytopes whose facets are all
parallel to k fixed (d− 1)-dimensional hyperplanes, where Maximum Clique can be solved
in time nO(dkd+1) [13]. Note that if the rectangles may have arbitrary slopes, then Maximum
Clique is NP-hard since the class then contains segment graphs.

The second reason to study Maximum Clique is that it translates into a very natural
question: what is the maximum subset of pairwise intersecting objects? For unit disks, this
is equivalent to looking for the maximum subset of centers with (geometric) diameter 2. This
is a useful primitive in the context of clustering a given set of points. A related question
with a long history is the number of points necessary and sufficient to pierce a collection of
pairwise intersecting disks. Danzer [20] and Stacho [48] independently showed that four points

É. Bonnet, N. Grelier, and T. Miltzow 17:3

are sufficient and sometimes necessary. Recently Har-Peled et al. [27] gave a linear-time
algorithm to find five points piercing a pairwise intersecting collection of disks. A bit later,
Carmi et al. [16] obtained a linear-time algorithm for only four points. Note that this implies
that we can restrict our attention to instances that can be pierced by 4 points, both for
polynomial-time algorithms and hardness reductions.

In this paper, our main focus is the complexity status of Maximum Clique on disk
graphs. This is a long-standing and seemingly difficult open question. As we will detail
in the next paragraphs, there has been basically only one approach to show NP-hardness
of Maximum Clique in geometric intersection graph classes. This approach is somewhat
doomed for the particular case of disk graphs. We develop a new way of showing conditional
lower bounds in geometric intersection graphs. We believe that our approach faces a smaller
barrier on its way to show that Maximum Clique is NP-hard on disk graphs.

A new alternative to the co-2-subdivision approach

Maximum Independent Set (MIS), which boils down to Maximum Clique on the
complement graphs, is APX-hard on subcubic graphs [3]. A folklore self-reduction first
discovered by Poljak [45] consists of subdividing each edge of the input graph twice (or
any even number of times). One can show that this reduction preserves the APX-hardness.
Therefore, a way to establish such an intractability for Maximum Clique on a given
intersection graph class is to show that for every (subcubic) graph G, the complement of its
2-subdivision Subd2(G) (or Subds(G) for a larger even integer s, see [25]) is representable.
MIS admits a PTAS on planar graphs, but remains NP-hard. Hence showing that for every
(subcubic) planar graph G, the complement of an even subdivision of G is representable
shows the simple NP-hardness (see [15, 25]).

So far, representing complements of even subdivisions of graphs belonging to a class on
which MIS is NP-hard (resp. APX-hard) has been the main, if not unique1, approach to
show the NP-hardness (resp. APX-hardness) of Maximum Clique in geometric intersection
graph classes. This approach was used by Middendorf and Pfeiffer [40] for some restriction
of string graphs, the so-called B1-VPG graphs, by Cabello et al. [15] to settle the then
long-standing open question of the complexity of Maximum Clique for segments (with the
class of planar graphs), by Francis et al. [25] for 2-interval, unit 3-interval, 3-track, and unit
4-track graphs (with the class of all graphs; showing APX-hardness), and unit 2-interval and
unit 3-track graphs (with the class of planar graphs; showing only NP-hardness), by Bonnet
et al. [7] for filled ellipses and filled triangles, and by Bonamy et al. [6] for ball graphs, and
4-dimensional unit ball graphs.

One could hope that the same approach would carry over to show NP-hardness for disk
intersection graphs. Bonnet et al. [7] give a structural insight that makes this idea unlikely
to work. They showed that the complement of two mutually induced odd cycles is not a disk
graph. As a consequence, to show the NP-hardness of Maximum Clique on disk graphs
with the described approach, one can only hope to represent all the graphs without two
mutually induced odd cycles. However we do not know if MIS is even NP-hard in that
class. Classifying MIS as NP-hard or polynomial-time solvable on graph classes defined
by a list of forbidden induced subgraphs has a long history. Yet the case when all pairs of
mutually induced odd cycles are forbidden remains open. Specifically, showing NP-hardness
for Maximum Clique on disk intersection graphs would resolve this graph-theoretic problem.

1 Admittedly Butman et al. [14] showed that Maximum Clique is NP-hard on 3-interval graphs, by
reducing from Max 2-DNF-SAT which is very close to Max Cut. However this result was later
subsumed by [25].

FSTTCS 2020

17:4 Maximum Clique in Disk-Like Intersection Graphs

The main conceptual contribution of the paper is to suggest an alternative to the standard
approach. We introduce an intermediate problem that we call Max Interval Permutation
Avoidance (MIPA, for short), which is a convenient way of seeing Max Cut. While the
definition of MIPA may appear a bit technical (see Section 3), it will give a particularly
fitting starting point to design transparent reductions to Maximum Clique in intersection
graph classes (as exemplified by Theorem 8).

We prove that MIPA is NP-hard. We then transfer that lower bound to Maximum
Clique in the intersection graphs of objects that can be either unit disks or axis-parallel
rectangles; a class for which the co-2-subdivision approach does not seem to work. Recall
that when all the objects are unit disks or when all the objects are axis-parallel rectangles,
polynomial-time algorithms are known. The conceptual take-home message is that MIPA
can give rise to new geometric hardness results when the co-2-subdivision approach fails.
For our approach to be applicable to disks as well, it is important that it does not imply
APX-hardness, as there is an EPTAS for Maximum Clique on disk graphs [7, 6]. As we
even prove that MIPA is APX-hard, there are two options to tackle disk intersection graphs:
Either design a reduction which specifically does not preserve the inapproximability gap, or
restrict MIPA to a simpler NP-hard problem, one admitting a PTAS.

The latter idea of scaling MIPA down can, for instance, be done by replacing the arbitrary
matching M by pseudo-disk-like objects, to a NP-hard problem admitting a PTAS. In doing
so, one should keep in mind that Planar Max Cut [22] and Planar Not-All-Equal
SAT [41] are solvable in polynomial-time. A next step could be to show the NP-hardness
of Maximum Clique for (convex) pseudo-disks. It turns out to be already quite delicate.
There is a distinct possibility that convex pseudo-disks have constant induced odd cycle
packing number (see Section 2 for the definitions). This would imply a subexponential-time
algorithm and an EPTAS [7, 6], and that one would need a scaled down version of MIPA to
establish NP-hardness even in that case.

E

V

(a) Co-2-subdivision of subcubic graphs: edges
are represented by an antimatching, vertices, by
a clique.

V

E

(b) MIPA approach: vertices are represented
by an antimatching with constant weight, edges,
by a clique.

Figure 1 Dashed segments represent non-edges. Both the co-2-subdivision and the MIPA
approaches require constructing an antimatching and a clique. In the co-2-subdivision approach, the
clique vertices have co-degree 3 to the antimatching. In the MIPA approach their co-degree is only 2.
While the difference is seemingly small, the graph class formed by axis-parallel rectangles and unit
disks is not amenable to the co-2-subdivision approach (see Section 3).

In summary, our main contribution is a new distinct approach to show hardness of
Maximum Clique in geometric intersection graphs. Although MIPA is only formally defined
in Section 3, one can already see on Figure 1 that both approaches require representing
an antimatching (i.e., a complement of an induced matching), a clique, and some relation
between them. Antimatchings (and obviously cliques) of arbitrary size are representable
by half-planes and unit disks. The difficulty in both cases is to get the right adjacencies
between the antimatching and the clique. The MIPA approach only needs the vertices of
the clique to avoid two vertices in the antimatching, whereas this number is at least three in
the co-2-subdivision approach. This seemingly small difference is actually crucial, as we will
see in Section 3.

É. Bonnet, N. Grelier, and T. Miltzow 17:5

Robustness

Up to this point, we remained vague on how the input intersection graph was given. For,
say, disk graphs, do we receive the mere abstract graph or a list of the disks specified by
their centers and radii? Computing the graph from the geometric representation can be done
efficiently, but not the other way around. Indeed recognizing disk graphs is NP-hard [12] and
even ∃R-complete [32], where ∃R is a class between NP and PSPACE of all the problems
polytime reducible to solving polynomial inequalities over the reals. Recognizing string
graphs is NP-hard [35], and rather unexpectedly in NP [47], while recognizing segment graphs
is ∃R-complete [36]. In this context, an algorithm is said to be robust if it does not require
the geometric representation. A polytime robust algorithm usually decides the problem for
a proper superclass of the intersection graph class at hand, or correctly reports that the
input does not belong to the class. Hence the robust algorithm does not imply an efficient
recognition of the class. The polynomial-time algorithm of Clark et al. [19] for Maximum
Clique in unit disk intersection graphs requires the geometric representation. Raghavan
and Spinrad later extended it to an efficient robust algorithm [46].

Organization of the paper

The rest of the paper is organized as follows. In Section 2, we introduce the relevant set,
graph, and geometry notations and definitions. Then we give the necessary background in
hardness of approximation to get ready for the next section. In Section 3, we introduce the
Max Interval Permutation Avoidance problem and prove that it is unlikely to admit a
subexponential-time approximation scheme. We use it to show that adding half-planes or
unit disks to axis-parallel rectangles is enough for Maximum Clique to go from trivially in
P to APX-hard. This is a proof of concept for a different road-map to the co-even-subdivision
approach, which is compromised for disk graphs. We also observe that if the half-planes are
not allowed to be parallel (hence pairwise intersect), then the problem becomes tractable. In
Section 4, we extend the EPTAS for disks [7, 6] to homothets of a fixed convex centrally
symmetric set. In Section 5, we extend the polytime algorithm for unit disks [19, 46] to
translates of a fixed convex set. Our algorithms are robust and our lower bound also holds
when the geometric representation is given. Due to lack of space, theorems and lemmas
marked with the ? symbol have their proof deferred to the full version of the paper [8]. Some
results had to be moved to the full version entirely.

2 Preliminaries

Sets and graphs

For a pair of positive integers i 6 j, [i, j] denotes the set of all the integers that are at least i
and at most j, and [i] is a short-hand for [1, i]. We overload the notation [·, ·]: If it is explicit
or clear from the context that x or y is non-integral, then [x, y] denotes the set of reals that
are at least x and at most y. We use the usual notations and definitions of graph theory,
as they can be found for example in Diestel’s book [21]. We denote by Kt, Ct, and Ks,t

the complete graph (or clique) on t vertices, the cycle on t vertices, and the biclique on s
and t vertices. The graph G denotes the complement of G, obtained by flipping edges into
non-edges, and non-edges into edges. Subdividing an edge e = uv consists of adding a new
vertex linked to both u and v, and removing the edge e. The 2-subdivision Subd2(G) of a
graph G is obtained by subdividing each of its edges twice, hence replacing them by paths
of three edges. An even subdivision of a graph G consists of subdividing every edge of G

FSTTCS 2020

17:6 Maximum Clique in Disk-Like Intersection Graphs

an even number of times (potentially zero). A cycle is said to be induced if it is chordless.
An odd cycle (resp. even cycle) is a cycle on an odd (resp. even) number of vertices. One
can observe that an odd cycle always contains an induced odd cycle. Two cycles are said
mutually induced if they are chordless and there is no edge linking a vertex of one to a vertex
of the other. The induced odd cycle packing number is the maximum number of disjoint
odd cycles, that are pairwise mutually induced. An antimatching is the complement of an
induced matching (i.e., a disjoint union of edges). We say that a graph G is representable by
some geometric objects, if translates of these objects may have G as intersection graph.

Geometric notations

In this paper, we only consider sets in the plane. For two distinct points a and b, `(a, b)
denotes the line going through a and b. A set S is convex if for any two distinct points a
and b in S, the line segment with endpoints a and b is contained in S. It is bounded, if it
is contained in some disk. A set S is said to be centrally symmetric about the origin if for
any point a in S, −a is also in S. We mostly deal with sets that are bounded, centrally
symmetric, and convex, as they are a natural generalization of disks.

For two sets S1 and S2, we denote by S1 + S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2} their
Minkowski sum. For the sake of simplicity, for any point c and any set S, we denote by
c + S the Minkowski sum of {c} and S. S′ is a translate of S if there exists c such that
S′ = c+ S. Given a positive real number λ, λS denotes the set {λs | s ∈ S}. We say that S′
is a homothet of S if there exist a positive real number λ and a point c such that S′ = c+λS.
Moreover we name c the center of S′, and λ its scaling factor.

Let F be a family of sets in the plane. They form a pseudo-disk arrangement if for any
pair of sets of F , their boundaries intersect at most twice. If the sets are also convex we refer
to them as convex pseudo-disks. They also constitute a natural generalization of disks. A set
of rectangles are axis-parallel if their boundaries all share the same two slopes. A rectangle
is an ε-square if its length divided by its width is smaller than 1 + ε.

Approximation-schemes

A polynomial-time approximation scheme (PTAS) for a maximization problem is an algorithm
which takes, together with its input, a parameter ε > 0 and outputs in time nf(ε) a solution
of value at least (1− ε)OPT, where OPT is the optimum value. An efficient PTAS (EPTAS)
is the same but has running time f(ε)nO(1). Note that the existence of an EPTAS, for a
problem in which the objective value is the size of the solution k, implies an FPT algorithm
in k, by setting ε to 1− 1

k+1 . Indeed in time f(1− 1
k+1)nO(1) = g(k)nO(1), one then obtains

an exact solution. A quasi PTAS (QPTAS) is an approximation scheme with running time
npolylog n, for every ε > 0. Less standardly, we call subexponential AS (SUBEXPAS) an
approximation scheme with running time 2nγ for some γ < 1, for every ε > 0. These
approximation schemes can come deterministic or randomized. A maximization problem Π
is APX-hard if there is a constant γ < 1 such that γ-approximating Π is NP-hard. Unless
P=NP, an APX-hard problem cannot admit a PTAS. Ruling out a SUBEXPAS (under
admittedly a stronger assumption than P 6=NP) constitutes a sharper inapproximability than
the APX-hardness.

Strong inapproximability of Positive Not-All-Equal 3-SAT-3. A longer version of this
subsection can be found in the full version of this paper [8]. The Exponential-Time Hypothesis
(ETH, for short) of Impagliazzo and Paturi [30] asserts that there is an s3 > 0 (taking the same

É. Bonnet, N. Grelier, and T. Miltzow 17:7

notation as in the original paper) such that 3-SAT cannot be solved in time 2s3n on n-variable
instances. By the Sparsification Lemma [31], the ETH implies the same lower bound for
3-SAT-B, in which every variable appears at most a constant B number of times, depending
only on s3. Our starting point combines some sharp polytime inapproximability [28], a PCP
construction [42], and the Sparsification Lemma.

I Theorem 1. [28, 42, 31] Under the ETH, for every δ > 0 one cannot distinguish in time
2n1−δ , n-variable m-clause 3-SAT-instances that are satisfiable from instances where at most
(7/8 + o(1))m clauses can be satisfied, even when each variable appears in at most B clauses.
Thus 3-SAT-B cannot be 7/8 + o(1)-approximated in time 2n1−δ .

We recall the definition of Not-All-Equal k-SAT (NAE k-SAT, for short).

Not-All-Equal k-SAT
Input: A conjunction of m “clauses” φ =

∧
i∈[m] Ci each on at most k literals.

Goal: Find a truth assignment of the n variables such that each “clause” has at least
one satisfied literal and at least one non-satisfied literal.

The Not-All-Equal k-SAT-B-problem is the same but each variable appears in at most
B clauses (similarly as for k-SAT-B). The adjective Positive prepended to a satisfiability
problem means that no negation (or negative literal) can appear in its instances.

I Theorem 2. [?] Under the ETH, for every δ > 0 one cannot distinguish in time 2n1−δ ,
n-variable m-clause Not-All-Equal 4-SAT-instances that are satisfiable from instances
where at most 4991m/5000 clauses can be satisfied, even when each variable appears in at
most B clauses. Thus Not-All-Equal 4-SAT-B cannot be 4991/5000-approximated in
time 2n1−δ .

We now decrease the size of the clauses to at most 3. The next reduction and the
subsequent one are folklore. We give complete proofs both for the sake of self-containment
and to report explicit inapproximability bounds.

I Theorem 3. [?] Under the ETH, for every δ > 0 one cannot distinguish in time 2n1−δ ,
n-variable m-clause Not-All-Equal 3-SAT-instances that are satisfiable from instances
where at most 9991m/10000 clauses can be satisfied, even when each variable appears in at
most B clauses. Thus Not-All-Equal 3-SAT-B cannot be 9991/10000-approximated in
time 2n1−δ .

Finally, by a linear reduction from Not-All-Equal 3-SAT-B to Positive Not-All-
Equal 3-SAT-3, we decrease the maximum number of occurrences per variable to 3, and
we remove the negative literals. A compact yet weaker implication of the following theorem
is that a QPTAS for Positive Not-All-Equal 3-SAT-3 would disprove the ETH.

I Theorem 4. [?] Under the ETH, for every δ > 0 one cannot distinguish in time 2n1−δ ,
n-variable m-clause Positive Not-All-Equal 3-SAT-3-instances that are satisfiable from
instances where at most γm clauses can be satisfied, with γ := (60000B2 − 9)/(60000B2).
Thus Positive Not-All-Equal 3-SAT-3 cannot be γ-approximated in time 2n1−δ .

This last reduction no longer implies APX-hardness. Indeed, the value B in the inapprox-
imability ratio is finite only if s3 > 0. So one should assume the ETH, and not the mere P 6=
NP, to rule out an approximation algorithm with ratio γ < 1. Sacrificing the strong lower
bound in the running time, we can overcome that issue. Berman and Karpinski [5] showed
that it is NP-hard to approximate Max 2-SAT-3 within ratio better than 787/788. Following
the reduction of Theorem 2 from Max 2-SAT-3, we derive the following inapproximability.

FSTTCS 2020

17:8 Maximum Clique in Disk-Like Intersection Graphs

I Corollary 5. Approximating NAE 3-SAT-10 within ratio 51326/51327 is NP-hard.

Proof. Observe that the clause size grows from 2 to 3, and that the variables zj are part of
at most 9 clauses. J

Then following Theorem 4, we get:

I Corollary 6. Approximating Positive NAE 3-SAT-3 within ratio 49888956/49888957 is
NP-hard.

3 Max Interval Permutation Avoidance, unit disks and rectangles

We introduce the Max Interval Permutation Avoidance-problem (MIPA, for short), a
convenient intermediate problem to show APX-hardness for geometric problems. We start
with an informal description. Let M be a perfect matching between the n points [n]× {0}
and [n]× {1}, in N2. This matching can be represented by a permutation σ, such that for
every i ∈ [n], (i, 0) is matched with (σ(i), 1). Imagine now a set of intervals on the line
y = 1/2 whose endpoints are all in [n]. The aim is to move each interval “up” or “down”,
by translating it by (0, 1/2) or by (0,−1/2), respectively, such that the number of edges of
M with no endpoint on a translated interval is maximized. An edge of M with at least one
endpoint in a moved (or positioned) interval is said to be covered or destroyed. The edge is
said to be uncovered or preserved otherwise. Equivalently Max Interval Permutation
Avoidance aims to minimize the number of covered edges, or maximize the number of
uncovered edges. We choose the maximization formulation, since we will both reduce from
a maximization problem (Positive Not-All-Equal 3-SAT-3) and to a maximization
problem (Maximum Clique on disks and rectangles). Thus the objective value will be the
number of uncovered edges.

Max Interval Permutation Avoidance
Input: A permutation σ over [n] representing a perfect matching M between the
points (1, 0), (2, 0), . . . , (n, 0) and (σ(1), 1), (σ(2), 1), . . . , (σ(n), 1) respectively, and a set
of integer ranges I := {I1, . . . , Ih} where Ik := [`k, rk] and 1 6 `k 6 rk 6 n, for every
k ∈ [h].
Goal: A placement function p : I → {0, 1} encoding that interval Ik has its endpoints
positioned in (`k, p(Ik)) and (rk, p(Ik)), which maximizes the number of edges of M with
no endpoint on a positioned interval.

1 2 3 4 5 6 7 8 9 10

Figure 2 An example of a symmetric instance of MIPA with three disjoint ranges. An optimum
solution puts the second interval opposite to the first and third intervals. This leaves 4 edges of the
matching uncovered.

A MIPA-input may interchangeably be given as (σ, I) or as (M, I). One may observe
that a constant placement (i.e., p(I1) = . . . = p(Ih) = 0, or p(I1) = . . . = p(Ih) = 1) is a
worse solution when the intervals of I span [n], since it covers all the edges of M . We say
that the matching M is symmetric if (i, 0)(j, 1) ∈M implies that (i, 1)(j, 0) ∈M , for every

É. Bonnet, N. Grelier, and T. Miltzow 17:9

i, j ∈ [n]; in the geometric viewpoint, it is equivalent to y = 1/2 being a symmetry axis of M ,
and in the permutation viewpoint, it is equivalent to σ being a product of pairwise-disjoint
transpositions. Other handy (as far as hardness of geometric problems is concerned) technical
problems involving intervals and/or permutations include Crossing-Avoiding Matching
in Guśpiel [26] or Crossing-Minimizing Perfect Matching in Guśpiel et al. [2], the
problem of covering a 2-track point set by selecting k 2-track intervals [38] or Structured
2-Track Hitting Set [9]. It is no coincidence that these convenient starting problems
all involve matchings/permutations and/or intervals. Indeed the latter objects are more
easily encoded in a geometric setting than their generalizations: arbitrary binary relations
and arbitrary sets. Later we will see how disks can encode intervals and how rectangles can
encode a permutation, in the context of the Maximum Clique-problem.

We rule out an approximation scheme for Max Interval Permutation Avoidance,
even if subexponential-time is allowed. In particular a QPTAS for MIPA is highly unlikely.
We recall that γ = (60000B2−9)/(60000B2) and that B is a finite integral constant, assuming
the ETH (s3 > 0).

I Lemma 7. For every δ > 0, Max Interval Permutation Avoidance cannot be
γ′-approximated in time 2|M |1−δ , with γ′ := 1 − (1 − γ)/13 < 1, unless the ETH fails.
Furthermore, Max Interval Permutation Avoidance is NP-hard and APX-hard. These
results hold even if the length of every interval of I is at most 5, and the matching M is
symmetric.

Proof. We give a reduction φ from Positive Not-All-Equal 3-SAT-3 to Max Interval
Permutation Avoidance. Let φ be a Positive NAE 3-SAT-3-instance, with variables
x1, . . . , xn and clause C1, . . . , Cm. For every xi ∈ Cj , we denote by occ(xi, Cj) the number
of occurrences of xi in the clauses C1, . . . , Cj . We observe that occ(xi, Cj) ∈ {1, 2, 3}. We
build an instance ρ(φ) := (M, I) of MIPA in the following way. For each variable xi of φ, we
reserve a range [3(i− 1) + 1, 3(i− 1) + 3] with 3 integral points on both lines y = 0 and y = 1.
These points will be matched by M to points in the clause gadgets. We add the interval
Xi := [3(i− 1) + 1, 3(i− 1) + 3] to I. We now describe the 2-clause and the 3-clause gadgets.

For every 2-clause Cj := xa ∨ xb, we allocate a slot Sj of size 10 (on y = 0 and y = 1)
appended to the current last position. The first half of Sj , that is, the indices in [sj , sj + 4]
of Sj correspond to xa, while the indices in [sj + 5, sj + 9] correspond to xb. For every
(d1, d2) ∈ {(0, 1), (1, 0)} and h ∈ [4], we add to M the edge between (sj + h, d1) and
(sj + 5 + h, d2). We add the intervals Cj(xa) := [sj , sj + 4] and Cj(xb) := [sj + 5, sj + 9] to
I. Finally for each (d1, d2) ∈ {(0, 1), (1, 0)}, we add to M the edges between (sj , d1) and
(3(a− 1) + occ(xa, Cj), d2), and between (sj + 5, d1) and (3(b− 1) + occ(xb, Cj), d2).

For every 3-clause Cj := xa ∨ xb ∨ xc, we allocate a slot Sj of size 15 (on y = 0 and
y = 1) appended to the current last position. The first third of Sj , that is, the indices in
[sj , sj + 4] of Sj correspond to xa, the second third, the indices in [sj + 5, sj + 9] correspond
to xb, and the last third, the indices in [sj + 10, sj + 14] correspond to xc. We add the
intervals Cj(xa) := [sj , sj + 4], Cj(xb) := [sj + 5, sj + 9], and Cj(xc) := [sj + 10, sj + 14] to I.
Similarly for every (d1, d2) ∈ {(0, 1), (1, 0)} and (h, p) ∈ {(a, 0), (b, 1), (c, 2)}, we add to M
the edge between (sj + 5p, d1) and (3(h− 1) + occ(xh, Cj), d2). We call these edges internal
(same for the 2-clause gadget). Finally we add to M four edges from every pair of ranges
in {[sj , sj + 4], [sj + 5, sj + 9], [sj + 10, sj + 14]}, two starting on the line y = 0 (ending on
y = 1) and two starting on y = 1 (ending on y = 0). We call these edges variable-clause
(same for the 2-clause gadget).

For each variable xi with only two occurrences in φ, we link its third occurrence pair
to a dummy pair (di, 0), (di, 1), appended to the current last position. That is, we add the
edges (3(i− 1) + 3, 0)(di, 1) and (3(i− 1) + 3, 1)(di, 0) to M . Although not needed, we also

FSTTCS 2020

17:10 Maximum Clique in Disk-Like Intersection Graphs

add the singleton interval Di := {di} to I. We call it dummy gadget and consider it as a
special case of a clause gadget. This finishes the construction of the MIPA-instance (M, I).
Observe that every point is matched, and that all the intervals of I are pairwise disjoint, and
of length at most 5. The perfect matching M comprises at most 3n+ 15m+ n 6 49n edges.

We assume that φ is satisfiable, and let V be a satisfying assignment. We build the
following solution to the MIPA-instance. We push the interval Xi up (to the line y = 1)
if xi is set to true by V, and we push it down (to the line y = 0) otherwise. In the clause
gadgets (and dummy gadgets), we do the opposite: we push Cj(xi) (Di) down if xi is set to
true, and up if xi is set to false. This solution preserves four edges within each clause gadget,
and an additional 3n edges between the variable gadgets and the clause gadgets. Hence the
total number of preserved edges is 4m+ 3n.

We now assume that at most γm clauses of φ are satisfiable. Let p be a placement
function of the intervals of I, maximizing the number of preserved edges of M . We first
argue that not giving the same placement (up/1 or down/0) to the three (resp. two) intervals
Cj(xa), Cj(xb), Cj(xc) (resp. Cj(xa), Cj(xb)) of a 3-clause gadget (resp. 2-clause gadget)
is always better. Note that any equal placement destroys all the edges of M internal to
the clause gadget of Cj , and preserves at most three variable-clause edges. On the other
hand, a placement with at least one interval on each side preserves already four internal
edges. We can then assume that p does not give equal placement in any clause gadget. Let
V be the assignment of the variables of φ which sets xi to true if p(Xi) = 1, and to false, if
p(Xi) = 0. By assumption V does not satisfy at least (1−γ)m clauses. In each corresponding
clause gadget, one can preserve at most two variable-clause edges of M . Indeed, since φ is
a Positive NAE 3-SAT-3-instance, all three variable-clause edges incident to the clause
gadget and not covered by the placement of the Xi land on the same side. By the previous
remark, at least one such edge should be destroyed (to preserve four internal edges). Thus
the placement p preserves at most 3n+ 4m− (1− γ)m edges.

Since |M |= O(n+m) = O(n) and 3n+4m−(1−γ)m
3n+4m 6 1− 1−γ

13 , by Theorem 4 MIPA cannot
be γ′-approximated in time 2|M |1−δ , under the ETH. Besides, by Corollary 6, MIPA cannot
be 648556435/648556436-approximated in polynomial-time, unless P=NP. In particular, this
problem is NP-hard and even APX-hard. J

We recall that Maximum Clique can be solved in polynomial-time in unit disk graphs [19,
46] and in axis-parallel rectangle intersection graphs [13]. Now if the objects can be unit
disks and axis-parallel rectangles, we show that even a SUBEXPAS is unlikely. We denote
by {Obj,Obj’}-Maximum Clique the clique problem in the intersection graphs of objects
that can be either Obj or Obj’.

I Theorem 8. For every δ > 0, Maximum Clique in intersection graphs G of unit
disks and axis-parallel rectangles cannot be c-approximated in time 2|V (G)|1−δ , with c :=
1− (1−γ)/153 < 1, unless the ETH fails. Moreover, this problem is NP-hard and APX-hard.

Proof. We give a reduction from Max Interval Permutation Avoidance to {Unit Disks,
Axis-Parallel Rectangles}-Maximum Clique or {Half-Planes, Axis-Parallel
Rectangles}-Maximum Clique. Let (M, I) be an instance of MIPA over [n], where M
is symmetric, and all the intervals of I have size at most 5. We build the following set of
axis-parallel rectangles R and half-planes H. See Figure 3 for an illustration.

Let O be the origin of the plane. We place from left to right n+2 points p0, p1, . . . , pn, pn+1
on a convex curve in the top-left quadrant, say x 7→ −1/x on [−(1 + λ),−1] for some small
λ > 0. We wiggle the points pi so that for every i 6 j ∈ [n], the slope of the line passing
through middle(pi−1, pi) and middle(pj , pj+1) has a distinct value, where middle(p, q) denotes

É. Bonnet, N. Grelier, and T. Miltzow 17:11

the midpoint of the segment with endpoints p and q. We define q0, q1, . . . , qn, qn+1, such that
O is the middle of the segment piqi for every i ∈ [0, n+ 1]. In other words, this new chain is
obtained by central symmetry about O. Observe that sorted by x-coordinates, these 2n+ 4
points read p0, p1, . . . , pn, pn+1, qn+1, qn, . . . , q1, q0. The points p1, . . . , pn represent [n]× {0}
in the MIPA-instance, while the points q1, . . . , qn represent [n]× {1}.

For every pair i 6 j ∈ [n], we can associate a line `p(i, j) passing through middle(pi−1, pi)
and middle(pj , pj+1). Notice that, by convexity, `p(i, j) separates the points pi, pi+1, . . . , pj−1,

pj (below it) from the points p1, . . . , pi−1, pj+1, . . . , pn (above it). We similarly define `q(i, j)
as the line passing through middle(qi−1, qi) and middle(qj , qj+1). We observe that `p(i, j) and
`q(i, j) are parallel. For every interval I = [i, j] ∈ I, we introduce in the Maximum Clique-
instance the half-plane hp(I) := hp(i, j) as the closed upper half-plane whose boundary is
`p(i, j), and hq(I) := hq(i, j) as the closed lower half-plane whose boundary is `q(i, j). We
give these two objects weight 5 by superimposing 5 copies of them. All pairs of introduced
half-planes intersect, except the pairs {hp(i, j), hq(i, j)}.

Finally for every edge (i, 0)(j, 1) of the matching M (with i, j ∈ [n]), we add an axis-
parallel rectangle R(i, j) whose top-left corner is pi and bottom-right corner is qj . This
finishes the construction of (R,H). When λ tends to 0, the rectangles are arbitrary close to
squares of equal side-length. In other words, for any ε > 0, the axis-parallel rectangles can
be made ε-squares. The half-planes can be turned into unit disks, making the side-length
of the rectangles very small compared to 1. We denote by (R,D) the corresponding sets of
axis-parallel rectangles and unit disks, and by G their intersection graph.

p10

q10

p9

q9

p8

q8

p7

q7

p6

q6

p5

q5

p4

q4

p3

q3

p2

q2

p1

q1

Figure 3 The output of the reduction on the instance of Figure 2.

Let us consider instances of MIPA produced by the previous reduction from Positive
NAE 3-SAT-3, on ν-variable µ-clause formulas that are either satisfiable or with at least
(1 − γ)µ non satisfiable clauses. We call yes-instances the former MIPA-instances, and
no-instances, the latter. If (M, I) is a yes-instance, we claim that G has a clique of size
5|I|+3ν + 4µ. Indeed there is a placement p that preserves 3ν + 4µ edges of M . We start
by taking in the clique all the half-planes (or corresponding unit disks) hp(I) whenever
p(I) = 0, and hq(I) whenever p(I) = 1. Since these objects have weight 5 (actually 5 stacked
copies), this amounts to 5|I| vertices. The corresponding half-planes pairwise intersect since
their boundaries have distinct slopes. Then we include to the clique the 3ν + 4µ rectangles
R(i, j) ∈ R such that (i, 0)(j, 1) is preserved by p. All the rectangles pairwise intersect since
they all contain the origin O. Every pair of chosen half-plane hz(I) (z ∈ {p, q}) and rectangle
R(a, b) intersects, otherwise the placement of I would cover (a, 0)(b, 1). Thus we exhibited a
clique of size 5|I|+3ν + 4µ in G.

FSTTCS 2020

17:12 Maximum Clique in Disk-Like Intersection Graphs

We now assume that (M, I) is a no-instance, and we claim that G has no clique larger
than 5|I|+3ν + 4µ− (1− γ)µ. Let us see how to build a clique in G. One can take at most
one object between hp(I) and hq(I) (since they do not intersect). There is a maximum
clique that takes at least one of hp(I) and hq(I) since hp(I) has weight 5 and intersects every
object but hq(I) plus at most 5 rectangles (recall that the intervals of I have size at most 5).
Thus we assume that our maximum clique takes exactly one object between hp(I) and hq(I),
for every I ∈ I. We consider the placement p defined as p(I) = 0 if hp(I) is in the clique,
and p(I) = 1 if hq(I) is in the clique. Now the rectangles R(i, j) that are adjacent to the
chosen half-planes of H (or unit disks of D) correspond to the edges (i, 0)(j, 1) of M which
are preserved. By Lemma 7, there are at most 3ν + 4µ− (1− γ)µ such rectangles.

Since |V (G)|= |H|+|R|= 10|I|+|M |= O(ν + µ) = O(ν) and 5|I|+3ν+4µ−(1−γ)µ
5|I|+3ν+4µ 6 1 −

(1−γ)µ
140µ+9µ+4µ = 1− 1−γ

153 = c, by Theorem 4, {Half-Planes/Unit Disks, Axis-Parallel
Rectangles}-Maximum Clique cannot be c-approximated in time 2|V (G)|1−δ , under
the ETH. Additionally, by Corollary 6, this problem cannot be 7633010347/7633010348-
approximated in polynomial-time, unless P=NP. In particular, it is NP-hard and even
APX-hard. J

We observe that if all the half-planes pairwise intersect (for instance because their
boundaries are assumed to have distinct slopes), then there is a polynomial-time algorithm,
given a geometric representation. Let again H be the half-planes and R, the axis-parallel
rectangles, in the representation of the graph G. Recall that the number of maximal cliques
in G[R] is polynomial, and that they can be enumerated efficiently. For each maximal clique
Rc ⊆ R, we compute the maximum clique in the co-bipartite graph G[H ∪Rc]. This is thus
equivalent to computing MIS in a bipartite graph. Due to Kőnig’s theorem, this can be done
in polynomial-time by a matching algorithm. We output C the largest clique that we find.
C is a maximum clique in G, since C ∩ R is by definition a clique, so it is contained in a
maximal clique of G[R].

Let us briefly discuss the issue the co-2-subdivision approach encounters for {Half-
Planes, Axis-Parallel Rectangles}-Maximum Clique. Axis-parallel rectangles cannot
represent a large antimatching (they already cannot represent 3K2). Hence, as in our
construction, the large antimatching has to be, for the most part, realized by half-planes.
Now in the MIPA approach, the axis-parallel rectangles can avoid two arbitrary half-planes
with the freedom of their top-left and bottom-right corners. In the co-2-subdivision approach,
they would have to avoid at least three arbitrary half-planes, and do not have enough degrees
of freedom for that.

4 Homothets of a centrally symmetric convex set

Here we observe that the EPTAS for Maximum Clique in disk graphs extends to the
intersection graphs of homothets of a centrally symmetric convex set. Bonamy et al. show:

I Theorem 9 ([6]). For any constants d ∈ N, 0 < β 6 1, for every 0 < ε < 1, there is a
randomized (1−ε)-approximation algorithm running in time 2Õ(1/ε3)nO(1), and a deterministic
PTAS running in time nÕ(1/ε3) for Maximum Clique on n-vertex graphs G satisfying the
following conditions:

there are no two mutually induced odd cycles in G (the complement of G),
the VC-dimension of the neighborhood hypergraph {N [v] | v ∈ V (G)} is at most d, and
G has a clique of size at least βn.

É. Bonnet, N. Grelier, and T. Miltzow 17:13

The first item is enough to obtain a subexponential-algorithm [7] and boils down to
proving a structural lemma on the representation of K2,2 (see Lemma 11). We show that
the previous theorem applies to more general shapes than disks.

I Theorem 10. Maximum Clique admits a subexponential-time algorithm and an EPTAS
in intersection graphs of homothets of a fixed bounded centrally symmetric convex set S.

Let S be a centrally symmetric, bounded, convex set. We can define a corresponding
norm as follow: for any x ∈ R2, let ‖x‖ be equal to inf{λ > 0 | x ∈ λS}. This is well-defined
since S is bounded. It is absolutely homogeneous because S is centrally symmetric, and it is
subadditive because S is convex. Therefore ‖.‖ is a norm. We use the norm we have defined,
and check the three conditions of Theorem 9.

I Lemma 11. In a representation of K2,2 with homothets of S placing the four centers in
convex position, the non-edges are between vertices corresponding to opposite corners of the
quadrangle.

c1 c2

c3
c4

> λ1 + λ2

> λ3 + λ4

c

Figure 4 Illustration of the proof of Lemma 11. Non-edges are dotted and edges are dashed.

Proof. Let S1, S2, S3 and S4 be the four homothets. We denote by ci the center of Si, and
by λi its scaling factor. Let us assume by contradiction that they appear in this order on
the convex hull, that S1 and S2 make one non-edge, and that S3 and S4 make the other.
By assumption, we have ‖c1 − c2‖> λ1 + λ2, and likewise ‖c3 − c4‖> λ3 + λ4. Let us
denote by c the intersection of the lines `(c1, c3) and `(c2, c4), where `(p, q) denotes the
line going through two distinct points p and q. We have ‖c1 − c‖+‖c− c2‖> ‖c1 − c2‖ by
triangular inequality. Likewise it holds ‖c3 − c‖+‖c− c4‖> ‖c3 − c4‖. We therefore obtain
λ1+λ2+λ3+λ4 < ‖c1−c‖+‖c−c2‖+‖c3−c‖+‖c−c4‖= ‖c1−c3‖+‖c2−c4‖6 λ1+λ3+λ2+λ4,
which is a contradiction. J

Lemma 11 implies by some parity arguments that the first condition of Theorem 9 holds
(see Theorem 6 in [7]). It is well known that a family of homothets forms a pseudo-disk
arrangement. Therefore the second property holds as shown by Aronov et al. [4]. Finally
we enforce the third condition of Theorem 9, by using a chi-boundedness result of Kim et
al. [33].

I Lemma 12. With a polynomial multiplicative factor in the running time, one can reduce
to instances satisfying the third condition of Theorem 9 with β = 1/36.

Proof. Kim et al. [33] show that in any representation of an intersection graph G of homothets
of a convex set, a homothet S with a smallest scaling factor has degree at most 6ω(G)− 7,
where ω(G) denotes the clique number of G. Their proof also implies that the independence
number of its neighborhood is at most 6. By degenerence, the coloring number, denoted
by χ(G) is at most 6ω(G) − 6. First we find in polynomial-time a vertex v such that the
independence number of its neighborhood is at most 6. Let us denote by Gv the subgraph
induced by its neighborhood, and n denotes its number of vertices. We denote by α(.) the

FSTTCS 2020

17:14 Maximum Clique in Disk-Like Intersection Graphs

independence number of a graph. As Gv has a representation with homothets of S, we have
χ(Gv) 6 6ω(Gv). Therefore α(Gv)ω(Gv) > 1

6α(Gv)χ(Gv) > 1
6n. Thus by assumption we

have ω(Gv) > 1
36n. Then we can compute a maximum clique that contains v, or remove v

from the graph and iterate. The EPTAS of Bonamy et al. is called linearly many times. J

5 Translates of a convex set

We show in this section that we can extend the algorithm of Clark et al. [19] and its robust
version [46] from unit disks to any centrally symmetric, bounded, convex set.

I Theorem 13. Maximum Clique admits a robust polynomial-time algorithm in intersection
graphs of translates of a fixed centrally symmetric, bounded, convex set.

Moreover, as shown by Aamand et al. [1], for every bounded and convex set S1, there
exists a centrally symmetric, bounded and convex set S2 such that GS1 = GS2 , where GS
denotes the intersection graphs class of translates of S. Thus we obtain the immediate
corollary:

I Corollary 14. Maximum Clique admits a robust polynomial-time algorithm in intersection
graphs of translates of a fixed bounded and convex set.

We prove Theorem 13 in two steps. First we show how to compute in polynomial time a
maximum clique when a representation is given. Secondly we use the result by Raghavan
and Spinrad [46] to obtain a robust algorithm.

Let S be a centrally symmetric, bounded, convex set. We use the norm defined in
Section 4: for any x ∈ R2, let ‖x‖ be equal to inf{λ > 0 | x ∈ λS}. Let S1 and S2 be two
translates of S, with respective centers c1 and c2. Remark that S1 and S2 intersect if and
only if ‖c1 − c2‖ 6 2. Let us assume that d := ‖c1 − c2‖ 6 2. We denote by S′ the set S
scaled by d: S′ := dS, and we then define: D := {x ∈ R2 | ‖x − c1‖ 6 d, ‖x − c2‖ 6 d}.
Equivalently we have D = (c1 + S′) ∩ (c2 + S′). If S was a unit disk, D would be the
intersection of two disks with radius d, such that the boundary of one contains the center of
the other.

c1

c2

c1

c2

c1

c2
D1

x y

t t

c1

c2

x

c

x

(c2 − x) ∈ S′

∈ (c1 + S′)

a) b)

c) d)

Figure 5 a) The gray sets are scaled about their center so that the center of one set is on the
boundary of the other. b) the intersection D. c) Illustration of Lemma 15. d) Illustration of
Lemma 17.

I Lemma 15. The set D is centrally symmetric around c := (c1 + c2)/2.

É. Bonnet, N. Grelier, and T. Miltzow 17:15

Proof. Let x be a point in D, we need to show that x̄ := x + 2(c − x) is in D too. As
D = (c1 +S′)∩ (c2 +S′), it is sufficient to show x̄ ∈ c1 +S′ and x̄ ∈ c2 +S′. By definition, x̄
is equal to c1 + c2 − x. Since x is in D, then ‖c2 − x‖ 6 d, which implies that c2 − x is in S′.
Therefore x̄ is in c1 + S′. By the symmetry of the arguments, we obtain that x̄ is in D. J

I Lemma 16. The tangents to D at c1 and c2 are parallel.

Proof. Let us denote by `1 the tangent to D at c1. Then we denote by `2 the line parallel to
`1 that contains c2. We claim that `2 is tangent to D. By construction D is convex, as the
intersection of two convex sets. This implies that `2 is tangent to D if and only if D ∩ `2 is a
line segment that contains c2. This line segment may be only one point. Let x be a point
in D ∩ `2. By Lemma 15, D is centrally symmetric around c. Therefore x+ 2(c− x) is in
D, and by construction it is also in `1. Since D ∩ `1 is a line segment that contains c1, thus
D ∩ `2 is a line segment that contains c2. J

We cut D along the line ` going through c1 and c2, and split D into two sets denoted by
D1 and D2. We define D1 as the set of points below this line, and D2 as the set of points
not below.

I Lemma 17. Let i be in {1, 2}, and let x and y be in Di. Then we have ‖x− y‖ 6 d.

Proof. We do the proof for i = 1, and the case i = 2 can be done symmetrically. By Lemma 16,
the tangents `1 and `2 of D at c1 and c2 are parallel. Without loss of generality, let us
assume that they are vertical, that c1 is to the left of c2 and x to the left of y. We denote by
x̃ (respectively ỹ) the vertical projection of x (respectively y) on `. Without loss of generality
‖x− x̃‖6 ‖y− ỹ‖. We define t = x− x̃. Note that ‖x−y‖= ‖(x− t)− (y− t)‖= ‖x̃− (y− t)‖.
Furthermore, we can move x̃ on ` towards c1 and this will only increase the distance to
(y − t). We get ‖x̃ − (y − t)‖6 ‖c1 − (y − t)‖. By definition (y − t) ∈ D1 ⊂ D and thus
‖c1 − (y − t)‖6 d. This implies ‖x− y‖6 d and finishes the proof. J

Following the arguments of Clark et al. [19], one first guesses in quadratic time S1
and S2 in a maximum clique C such that the distance between their centers ‖c1 − c2‖ is
maximized among the pairs S1, S2 ∈ C. One can then remove all the objects not centered in
D. By Lemma 17, the intersection graph induced by the sets centered in D is cobipartite.
Since computing an independent set in a bipartite graph can be done in polynomial time,
then one can compute a maximum clique in G in polynomial time.

Before explaining how to compute a maximum clique when no representation is given, we
need to introduce a few definitions. Let Λ = e1, e2, . . . , em be an ordering of the m edges
of G. Let GΛ(k) be the subgraph of G with edge-set {ek, ek+1, . . . , em}. For each ek = uv,
NΛ,k is defined as the set of vertices adjacent to u and v in GΛ(k).

I Definition 18 (Raghavan and Spinrad [46]). An edge ordering Λ = e1, e2, . . . , em is a
cobipartite neighborhood edge elimination ordering (CNEEO), if for each ek, NΛ,k induces a
cobipartite graph in G.

Proof of Theorem 13. Raghavan and Spinrad have given a polynomial time algorithm that
takes an abstract graph as input, and returns a CNEEO or a certificate that no CNEEO
exists for the graph. Secondly, they showed how to compute in polynomial time a maximum
clique when given a graph and a CNEEO on it. Therefore, it is sufficient to show that for
any centrally symmetric, bounded, convex set S, and any intersection graph G of translated
of S, there exists a CNEEO on G. Let us consider such a graph G with a representation.
Arguing with Lemma 17 as previously, ordering the edges by non-increasing length gives a
CNEEO, where the length of an edge is the distance between the two centers. J

FSTTCS 2020

17:16 Maximum Clique in Disk-Like Intersection Graphs

References
1 Anders Aamand, Mikkel Abrahamsen, Jakob B. T. Knudsen, and Peter M. R. Rasmussen.

Classifying convex bodies by their contact and intersection graphs. CoRR, abs/1902.01732,
2019. arXiv:1902.01732.

2 Akanksha Agrawal, Grzegorz Guspiel, Jayakrishnan Madathil, Saket Saurabh, and Meirav
Zehavi. Connecting the dots (with minimum crossings). In 35th International Symposium
on Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon, USA., pages
7:1–7:17, 2019. doi:10.4230/LIPIcs.SoCG.2019.7.

3 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theor.
Comput. Sci., 237(1-2):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.

4 Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi. On pseudo-disk hyper-
graphs. arXiv preprint arXiv:1802.08799, 2018.

5 Piotr Berman and Marek Karpinski. Efficient amplifiers and bounded degree optimization.
Electronic Colloquium on Computational Complexity (ECCC), 8(53), 2001. URL: http:
//eccc.hpi-web.de/eccc-reports/2001/TR01-053/index.html.

6 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, and Stéphan Thomassé.
EPTAS for max clique on disks and unit balls. In 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 568–579, 2018.
doi:10.1109/FOCS.2018.00060.

7 Édouard Bonnet, Panos Giannopoulos, Eun Jung Kim, Paweł Rzążewski, and Florian Sikora.
QPTAS and subexponential algorithm for maximum clique on disk graphs. In 34th International
Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,
pages 12:1–12:15, 2018. doi:10.4230/LIPIcs.SoCG.2018.12.

8 Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow. Maximum clique in disk-like
intersection graphs. arXiv preprint arXiv:2003.02583, 2020.

9 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. In
24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, pages 19:1–19:17, 2016. doi:10.4230/LIPIcs.ESA.2016.19.

10 Édouard Bonnet and Paweł Rzążewski. Optimality program in segment and string graphs.
Algorithmica, 81(7):3047–3073, 2019. doi:10.1007/s00453-019-00568-7.

11 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM,
1999.

12 Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput.
Geom., 9(1-2):3–24, 1998. doi:10.1016/S0925-7721(97)00014-X.

13 Valentin E. Brimkov, Konstanty Junosza-Szaniawski, Sean Kafer, Jan Kratochvíl, Martin
Pergel, Paweł Rzążewski, Matthew Szczepankiewicz, and Joshua Terhaar. Homothetic polygons
and beyond: Maximal cliques in intersection graphs. Discrete Applied Mathematics, 247:263–
277, 2018. doi:10.1016/j.dam.2018.03.046.

14 Ayelet Butman, Danny Hermelin, Moshe Lewenstein, and Dror Rawitz. Optimization problems
in multiple-interval graphs. ACM Trans. Algorithms, 6(2):40:1–40:18, 2010. doi:10.1145/
1721837.1721856.

15 Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray inter-
section graphs. Discrete & Computational Geometry, 50(3):771–783, 2013. doi:10.1007/
s00454-013-9538-5.

16 Paz Carmi, Matthew J. Katz, and Pat Morin. Stabbing pairwise intersecting disks by four
points. CoRR, abs/1812.06907, 2018. arXiv:1812.06907.

17 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of
segments in the plane: extended abstract. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
631–638, 2009. doi:10.1145/1536414.1536500.

18 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

http://arxiv.org/abs/1902.01732
https://doi.org/10.4230/LIPIcs.SoCG.2019.7
https://doi.org/10.1016/S0304-3975(98)00158-3
http://eccc.hpi-web.de/eccc-reports/2001/TR01-053/index.html
http://eccc.hpi-web.de/eccc-reports/2001/TR01-053/index.html
https://doi.org/10.1109/FOCS.2018.00060
https://doi.org/10.4230/LIPIcs.SoCG.2018.12
https://doi.org/10.4230/LIPIcs.ESA.2016.19
https://doi.org/10.1007/s00453-019-00568-7
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/j.dam.2018.03.046
https://doi.org/10.1145/1721837.1721856
https://doi.org/10.1145/1721837.1721856
https://doi.org/10.1007/s00454-013-9538-5
https://doi.org/10.1007/s00454-013-9538-5
http://arxiv.org/abs/1812.06907
https://doi.org/10.1145/1536414.1536500
https://doi.org/10.1016/S0196-6774(02)00294-8

É. Bonnet, N. Grelier, and T. Miltzow 17:17

19 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

20 Ludwig Danzer. Zur lösung des gallaischen problems über kreisscheiben in der euklidischen
ebene. Studia Sci. Math. Hungar, 21(1-2):111–134, 1986.

21 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

22 Y. G. Dorfman and G. I. Orlova. Finding the maximal cut in a graph. Engineering Cybernetics,
10:502–506, 1972.

23 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

24 Aleksei V. Fishkin. Disk graphs: A short survey. In Approximation and Online Algorithms,
First International Workshop, WAOA 2003, Budapest, Hungary, September 16-18, 2003,
Revised Papers, pages 260–264, 2003. doi:10.1007/978-3-540-24592-6_23.

25 Mathew C. Francis, Daniel Gonçalves, and Pascal Ochem. The Maximum Clique Prob-
lem in Multiple Interval Graphs. Algorithmica, 71(4):812–836, 2015. doi:10.1007/
s00453-013-9828-6.

26 Grzegorz Guspiel. Complexity of finding perfect bipartite matchings minimizing the number
of intersecting edges. CoRR, abs/1709.06805, 2017. arXiv:1709.06805.

27 Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir,
and Max Willert. Stabbing pairwise intersecting disks by five points. In 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, pages 50:1–50:12, 2018. doi:10.4230/LIPIcs.ISAAC.2018.50.

28 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

29 Petr Hlinený and Jan Kratochvíl. Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Mathematics, 229(1-3):101–124, 2001. doi:10.1016/
S0012-365X(00)00204-1.

30 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, December
2001.

32 Ross J. Kang and Tobias Müller. Sphere and Dot Product Representations of Graphs. Discrete
& Computational Geometry, 47(3):548–568, 2012. doi:10.1007/s00454-012-9394-8.

33 Seog-Jin Kim, Alexandr Kostochka, and Kittikorn Nakprasit. On the chromatic number
of intersection graphs of convex sets in the plane. the electronic journal of combinatorics,
11(1):52, 2004.

34 Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen
der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physikalische Klasse,
88:141–164, 1936.

35 Jan Kratochvíl. String graphs. II. recognizing string graphs is NP-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991. doi:10.1016/0095-8956(91)90091-W.

36 Jan Kratochvíl and Jiří Matoušek. Intersection graphs of segments. J. Comb. Theory, Ser. B,
62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

37 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Parameterized and Exact Computation, Second International Workshop, IWPEC
2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, pages 154–165, 2006. doi:
10.1007/11847250_14.

38 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In Algorithms - ESA 2015 - 23rd Annual European

FSTTCS 2020

https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1007/978-3-540-24592-6_23
https://doi.org/10.1007/s00453-013-9828-6
https://doi.org/10.1007/s00453-013-9828-6
http://arxiv.org/abs/1709.06805
https://doi.org/10.4230/LIPIcs.ISAAC.2018.50
https://doi.org/10.1145/502090.502098
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/11847250_14

17:18 Maximum Clique in Disk-Like Intersection Graphs

Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 865–877, 2015. doi:
10.1007/978-3-662-48350-3_72.

39 Terry A. McKee and Fred R. McMorris. Topics in intersection graph theory. SIAM, 1999.
40 Matthias Middendorf and Frank Pfeiffer. The max clique problem in classes of string-graphs.

Discrete Mathematics, 108(1-3):365–372, 1992. doi:10.1016/0012-365X(92)90688-C.
41 Bernard M. E. Moret. Planar NAE3SAT is in P. ACM SIGACT News, 19(2):51–54, 1988.
42 Dana Moshkovitz and Ran Raz. Sub-constant error probabilistically checkable proof

of almost-linear size. Computational Complexity, 19(3):367–422, 2010. doi:10.1007/
s00037-009-0278-0.

43 Tim Nieberg and Johann Hurink. A PTAS for the minimum dominating set problem in unit
disk graphs. In Approximation and Online Algorithms, Third International Workshop, WAOA
2005, Palma de Mallorca, Spain, October 6-7, 2005, Revised Papers, pages 296–306, 2005.
doi:10.1007/11671411_23.

44 Tim Nieberg, Johann Hurink, and Walter Kern. A robust PTAS for maximum weight
independent sets in unit disk graphs. In Graph-Theoretic Concepts in Computer Science, 30th
International Workshop, WG 2004, Bad Honnef, Germany, June 21-23, 2004, Revised Papers,
pages 214–221, 2004. doi:10.1007/978-3-540-30559-0_18.

45 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

46 Vijay Raghavan and Jeremy P. Spinrad. Robust algorithms for restricted domains. J.
Algorithms, 48(1):160–172, 2003. doi:10.1016/S0196-6774(03)00048-8.

47 Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing string graphs in NP. J.
Comput. Syst. Sci., 67(2):365–380, 2003. doi:10.1016/S0022-0000(03)00045-X.

48 Lajos Stachó. A solution of gallai’s problem on pinning down circles. Mat. Lapok, 32(1-3):19–47,
1981.

49 Erik Jan van Leeuwen. Better approximation schemes for disk graphs. In Algorithm Theory -
SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory, Riga, Latvia, July 6-8, 2006,
Proceedings, pages 316–327, 2006. doi:10.1007/11785293_30.

50 Erik Jan van Leeuwen. Optimization and Approximation on Systems of Geometric Objects.
PhD thesis, Utrecht University, 2009.

https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1016/0012-365X(92)90688-C
https://doi.org/10.1007/s00037-009-0278-0
https://doi.org/10.1007/s00037-009-0278-0
https://doi.org/10.1007/11671411_23
https://doi.org/10.1007/978-3-540-30559-0_18
https://doi.org/10.1016/S0196-6774(03)00048-8
https://doi.org/10.1016/S0022-0000(03)00045-X
https://doi.org/10.1007/11785293_30

Parameterized Complexity of Feedback Vertex
Sets on Hypergraphs
Pratibha Choudhary
Indian Institute of Technology Jodhpur, Jodhpur, India
pratibhac247@gmail.com

Lawqueen Kanesh
Institute of Mathematical Sciences, HBNI, Chennai, India
lawqueen@imsc.res.in

Daniel Lokshtanov
University of California Santa Barbara, Santa Barbara, USA
daniello@ucsb.edu

Fahad Panolan
Indian Institute of Technology Hyderabad, India
fahad@cse.iith.ac.in

Saket Saurabh
Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Abstract
A feedback vertex set in a hypergraph H is a set of vertices S such that deleting S from H results
in an acyclic hypergraph. Here, deleting a vertex means removing the vertex and all incident
hyperedges, and a hypergraph is acyclic if its vertex-edge incidence graph is acyclic. We study the
(parameterized complexity of) the Hypergraph Feedback Vertex Set (HFVS) problem: given
as input a hypergraph H and an integer k, determine whether H has a feedback vertex set of size at
most k. It is easy to see that this problem generalizes the classic Feedback Vertex Set (FVS)
problem on graphs. Remarkably, despite the central role of FVS in parameterized algorithms and
complexity, the parameterized complexity of a generalization of FVS to hypergraphs has not been
studied previously. In this paper, we fill this void. Our main results are as follows

HFVS is W[2]-hard (as opposed to FVS, which is fixed parameter tractable).
If the input hypergraph is restricted to a linear hypergraph (no two hyperedges intersect in more
than one vertex), HFVS admits a randomized algorithm with running time 2O(k3 log k)nO(1).
If the input hypergraph is restricted to a d-hypergraph (hyperedges have cardinality at most d),
then HFVS admits a deterministic algorithm with running time dO(k)nO(1).

The algorithm for linear hypergraphs combines ideas from the randomized algorithm for FVS by
Becker et al. [J. Artif. Intell. Res., 2000] with the branching algorithm for Point Line Cover by
Langerman and Morin [Discrete & Computational Geometry, 2005].

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases feedback vertex sets, hypergraphs, FPT, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.18

Funding Saket Saurabh: Received funding from European Research Council (ERC) under the

 European Union’s Horizon 2020 research and innovation programme (grant no. 819416), and

Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

Acknowledgements We thank the anonymous referees of an earlier version of the paper. Their
comments helped us a lot in improving the paper.

© Pratibha Choudhary, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pratibhac247@gmail.com
mailto:lawqueen@imsc.res.in
mailto:daniello@ucsb.edu
mailto:fahad@cse.iith.ac.in
mailto: saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 FVS in Hypergraphs

1 Introduction

It would be an understatement to say that Vertex Cover (VC) and Feedback Vertex
Set (FVS) have played a pivotal roles in the development of the field of Parameterized
Complexity. Vertex Cover asks if given an undirected graph G and a positive integer k,
there exists a set S of k vertices which intersects every edge in G. Feedback Vertex Set
asks if given an undirected graph G and a positive integer k, there exists a set S (called
feedback vertex set or in short fvs) of k vertices which intersects every cycle in G. While there
has been no improvement in the parameterized algorithm for VC in the last 14 years [9] (the
conference version appeared in MFCS 2006), faster algorithms for FVS have been developed
over the last decade. The best known algorithm for VC runs in time O(1.2738k + kn) [9].
On the other hand, for FVS, the first deterministic O(cknO(1)) algorithm was designed only
in 2005; independently by Dehne et al. [13] and Guo et al. [20]. It is important to note here
that a randomized algorithm for FVS with running time O(4knO(1)) [5] was known in as
early as 1999. The deterministic algorithms led to the race of improving the base of the
exponent for FVS algorithms and several algorithms [6, 7, 8, 11, 21, 25, 27], both deterministic
and randomized, have been designed. Until few months ago the best known deterministic
algorithm for FVS ran in time 3.619knO(1) [25], while the Cut and Count technique by Cygan
et al. [11] gave the best known randomized algorithm running in time 3knO(1). However,
just in last few months both these algorithms have been improved; Iwata and Kobayashi [21,
IPEC 2019] designed the fastest known deterministic algorithm with running time O(3.460kn)
and Li and Nederlof [27, SODA 2020] designed the fastest known randomized algorithm
with running time 2.7knO(1). We would like to remark that many variants of FVS have
been studied in literature such as Connected FVS [11, 31], Independent FVS [2, 28, 30],
Simultaneous FVS [4, 34] and Subset FVS [12, 22, 23, 24, 29].

The main objective of this paper is a study of FVS on hypergraphs. A hypergraph is a
set family H with a universe V (H) and a family of hyperedges E(H), where each hyperedge
(or edge) is a subset of V (H). If every hyperedge in E(H) is of size at most d, it is known as
a d-hypergraph. Observe that if each hyperedge is of size exactly two, we get an undirected
graph. The natural question is, how does VC generalize to hypergraphs. If (G, k) is an
instance of VC, we can view VC as the following problem: Given a hypergraph with vertex
set V (G) and the set of hyperedges E(G), does there exist a set of k vertices that intersects
every hyperedge. Thus, VC is a special case of Hitting Set (HS): Given a hypergraph H
and a positive integer k, does there exist a set of k vertices that intersects every hyperedge. If
the size of each hyperedge is upper bounded by d, we refer to the problem as the d-Hitting
Set (d-HS) problem. Observe that VC is equivalent to the 2-HS problem. It is well known
that HS does not admit an algorithm with running time f(k)nO(1), where the function f
depends only on k due to Exponential Time Hypothesis (ETH). That is, the problem is
known to be W[2]-hard. On the other hand, d-HS is solvable in time dknO(1) and admits
a kernel of size O(kd) [1, 17]. It is worth noting that d-HS does not admit a kernel of size
O(kd−ε) under plausible complexity theory assumptions [14]. Thus, generalization of VC on
hypergraphs is well studied. However, there is very little study of FVS on hypergraphs. The
only known algorithmic result is a factor d approximation for FVS on d-hypergraphs [19].
Upper bounds on minimum fvs in 3-uniform linear hypergraphs are studied in [15].

The objective of this paper is to study the hypergraph variant of the Feedback
Vertex Set problem from the viewpoint of Parameterized Complexity.

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:3

One of the main reasons for the lack of study of FVS on hypergraphs is that it is
not as natural to define the generalization of FVS in hypergraphs, as it is for the case
of VC (generalizing to HS and d-HS) in hypergraphs. To generalize the notion of fvs to
hypergraphs, we need to have notions of cycles and forests in hypergraphs. For cycles,
we use the same notion as that in graph theory [15]: a cycle in a hypergraph H is a
sequence (v0, e0, v1, . . . , v`, e`, v0) such that v0, . . . , v` are distinct vertices, e0, . . . , e` are
distinct hyperedges, ` ≥ 1 and vi, v(i+1) mod (`+1) ∈ ei for any i ∈ {0, . . . , `}. Given the
above definition of cycle, a subset S of vertices in a hypergraph H is called a feedback vertex
set, if there does not exist a cycle in the hypergraph obtained after deleting vertices in S.
The next natural question is what do we mean by deletion of a vertex in a hypergraph. There
are two ways to define the vertex deletion operation in hypergraphs:

1. Strong deletion or simply deletion of a vertex v implies deleting v along with all the
hyperedges containing the vertex v.

2. Weak deletion of a vertex v implies deleting v without deleting the hyperedges that
contain v. That is, the hypergraph H ′ obtained after weak deletion of a vertex v from H

has vertex set V (H) and edge set {e ∈ E(H) : v /∈ e}∪{e \ {v} : e ∈ E(H), v ∈ e, |e| > 2}.

For a hypergraph H we use the notation H − S to denote the graph obtained after
(weak/strong) deletion of the vertices in S. Consequently, there are two ways one may define
the Feedback Vertex Set problem – Weak FVS and Strong FVS.

Our Results and Methods. Given a hypergraph H, the incidence graph G corresponding
to H is the bipartite graph with bipartition V (G) = A]B where A = V (H) and B = E(H),
and for any v ∈ V (H) and e ∈ E(H), ve is an edge in G if and only if v ∈ e in H. Observe
that Weak FVS corresponds to finding a fvs S in G of size at most k, such that S ⊆ A

and G − S is a forest. Using the best known algorithm for Weighted FVS [3] running
in 3.618knO(1) time, we can solve Weak FVS in 3.618knO(1) time, by transforming the
problem to Weighted FVS. To transform Weak FVS to Weighted FVS we assign every
vertex in B a weight of k+ 1, every vertex in A a weight of 1. Now the problem of finding an
fvs of weight at most k will be equivalent to solving Weak FVS for the original hypergraph.
Thus Weak FVS is not challenging as a parameterized problem.

Hence, we only consider FVS on hypergraphs with respect to strong deletion. In partic-
ular, we study Hypergraph Feedback Vertex Set (HFVS). Here, given an n-vertex
hypergraph H and a positive integer k, the objective is to check whether there exists a set
S ⊆ V (H) of size at most k, such that H − S is acyclic. As in the case of HS, it is expected
that HFVS is W[2]-hard and this can be proven using a parameter preserving reduction
from Set Cover (which is “equivalent” to HS). We prove the following theorem in the full
version of the paper.

I Theorem 1 (♣1). HFVS is W[2]-hard when parameterized by k.

Theorem 1 is not surprising as a generalization of even VC to hypergraphs i.e. HS, is
W[2]-hard.

1 Proofs of results marked with ♣ can be found in the full version of the paper.

FSTTCS 2020

18:4 FVS in Hypergraphs

FVS is a deeply studied problem in Parameterized Complexity, and thus, we tried
to generalize the existing algorithms as much as possible. However, considering the
problem on general hypergraphs is pushing it too far (Theorem 1). This motivated us
to look for families of hypergraphs, which are a strict generalization of graphs and
where FVS turns out to be tractable. Specifically, we study the problem for the cases
when the input is restricted to linear hypergraphs and d-hypergraphs.

A hypergraph H is linear if |e ∩ e′| ≤ 1 for any two distinct hyperedges e, e′ ∈ E(H). We
show that for both these families, HFVS admits fixed parameter tractable (FPT) algorithms.
Our main result is a randomized algorithm for the case when the input hypergraph is linear,
and the size of the hyperedges is not bounded. Thus our positive results are the following.

I Theorem 2 (♣). There exists a deterministic algorithm for HFVS on d-hypergraphs,
running in time dO(k)nO(1).

I Theorem 3. There exists an O?(2O(k3 log k)) time2 randomized algorithm for HFVS on
linear hypergraphs, which produces a false negative output with probability at most 1

nO(1) , and
no false positive output.

The restriction to linear hypergraphs corresponds to exclusion of C4 or K2,2 in the
corresponding incidence graph. Ki,j refers to the complete bipartite graph with partitions of
sizes i and j. There has been extensive work on Red-Blue Dominating Set for Ki,j free
graphs [10, 18, 32, 33]. Theorem 3 can be viewed as an analog of Red-Blue Dominating
Set results for K2,2 free graphs.

The starting point of both the above mentioned algorithms (Theorems 2 and 3) is recasting
HFVS as an appropriate problem on the incidence graph G of the given hypergraph H. Proof
of Theorem 3 starts with the observation that for any subset S ⊆ V (H), H − S is acyclic if
and only if G−NG[S] (notations defined in Section 2) is acyclic. Consequently, HFVS is
same as the following problem (proof to be given in the full version of the paper).

Dominating FVS on Bipartite Graphs (DFVSB) Parameter: k

Input: A bipartite graph G with bipartition V (G) = A]B and k ∈ N.
Question: Is there a subset S ⊆ A of size at most k such that G−NG[S] is acyclic?

For a bipartite graph G = (A]B,E), we say that a subset S ⊆ A is a dominating feedback
vertex set (dfvs) for G if G−N [S] is acyclic. Let G be the incidence graph of a hypergraph
H. Then, notice that H is a d-hypergraph if and only if maxe∈E(H) dG(e) ≤ d. Also, H is
linear if and only if G is C4-free. As a result HFVS on d-hypergraphs and linear hypergraphs
are equivalent to DFVSB on bipartite graphs G = (A]B,E) with maxw∈B d(w) ≤ d and
on C4-free bipartite graphs, respectively.

Theorem 2 shows that for d-hypergraphs, HFVS is similar to d-HS. Proof of Theorem 2
utilizes iterative compression. The compression step involves a branching strategy that uses a
measure more generalized than the one used in known FVS algorithms for undirected graphs.

Our proof for Theorem 3 is inspired by the randomized algorithm of Becker et al. [5] that
runs in O(4knO(1)) time and the branching algorithm for Point Line Cover by Langerman

2 Polynomial dependency on n is hidden in O? notation.

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:5

and Morin [26]. The algorithm of Becker et al. [5] first preprocesses the input graph and
transforms it into a graph with minimum degree at least 3 and then shows that for any fvs,
at least half the edges in a preprocessed graph are incident to the vertex set of the fvs. This
immediately gives the following algorithm: “pick an edge uniformly at random, then pick a
vertex that is an endpoint of this edge uniformly at random and add it to a solution, and
recurse”. Let G be the incidence graph of a hypergraph H. First we preprocess G and show
that in the preprocessed graph (say G) for any dfvs S of size at most k, at least 1/poly(k)
fraction of all the edges are incident to N [S]. Here, poly denotes a polynomial function. We
call this property α-covering, with α being poly(k). Let S be a fixed fvs of size at most k. We
now compute the probability of finding S. Note that if we randomly pick an edge f (that is,
pick an edge from graph G uniformly at random and then select f as the hyperedge incident
to the selected edge), then with probability 1/poly(k) there exists a vertex incident to f that
is contained in S. However, unlike the case of FVS in graphs, here we cannot randomly
select a vertex from f , as the size of f could be independent of k. However, for now let us
assume that we can preprocess G− f such that the α-covering property holds even after we
delete f from G. We assume that α-covering property holds recursively after each iteration
of preprocessing. Suppose we do this process k2 + 1 times. Then we have a collection of
hyperedges F = {f1, . . . , fk2+1} such that each of them has a non-trivial intersection with S.
Observe that the pairwise intersection of these hyperedges cannot be more than one, since G
excludes C4 as a subgraph (H being a linear hypergraph). However, S is a solution of size at
most k, and hence there exist k + 1 hyperedges f ′1, . . . , f ′k+1 in F such that |f ′i ∩ f ′j | = {v},
i 6= j for some v ∈ A = V (H). This implies that v must belong to S, as each of f ′1, . . . , f ′k+1
has a non-trivial intersection with S and if we don’t pick v, then every solution is of size at
least k + 1. Hence, we delete v along with all those edges in H that v participates in, and
recursively find a solution of size k − 1 in the reduced hypergraph.

However, unlike the case with FVS for graphs, in HFVS we cannot delete degree 1 vertices
or contract degree 2 vertices directly. When we delete a hyperedge, we need to remember
that we are seeking a solution that is a dfvs as well as a hitting set for the selected set. To
implement this idea in our algorithm, we maintain a family F such that our solution is a
dfvs for G as well as a hitting set for F . We exploit the fact that |F| ≤ k2 + 1 and design
reduction rules to get rid of certain degree 1 vertices and shorten degree 2 paths, as well as
caterpillars (defined later) like degree 2 paths. We can show that after these reduction rules
are performed, the α-covering property holds for the preprocessed graph, α being poly(k).

2 Preliminaries

For a positive integer ` ∈ N, we use [`] to denote the set {1, 2, . . . , `}. We use the term graph
to denote a simple graph without multiple edges, loops and labels. For the notations related
to graphs that are not explicitly stated here, we refer to the book [16]. For a graph G and a
subset of vertices U ⊆ V (G), NG(U) and NG[U] denote the open neighborhood and closed
neighborhood of U , respectively. That is, NG(U) = {v ∈ V (G) : u ∈ U and uv ∈ E(G)} \ U
and NG[U] = NG(U) ∪ U . If U = {u}, then we write NG(u) = NG(U) and NG[u] = NG[U].
Also, we omit the subscript G, if the graph in consideration is clear from the context. For a
graph G, a vertex subset X ⊆ V (G), and an edge subset F ⊆ E(G), we use G[X], G−X,
and G − F to denote the graph induced by X, the graph induced by V (G) \ X, and the
graph with vertex set V (G) and edge set E(G) \ F , respectively. Moreover, if X = {v}, then
we write G− v = G−X. For a graph G, X,Y ⊆ V (G), and X ∩ Y = ∅, E(X,Y) ⊆ E(G)
denotes the set of edges in G whose one endpoint is in X and the other one is in Y . For a

FSTTCS 2020

18:6 FVS in Hypergraphs

graph G and a non-edge uv in G, we use G+ uv to denote the graph with vertex set V (G)
and edge set E(G) ∪ {uv}. A path P in a graph G is a sequence of distinct vertices u1 . . . u`
such that for all i ∈ [`− 1], uiui+1 ∈ E(G). We say that a path P = u1 . . . u` in a graph G
is a degree two path in G, if for each i ∈ [`], the degree of ui in G, denoted by dG(ui), is
equal to 2. For a path/cycle P , we use V (P) to denote the set of vertices present in P . A
triangle is a cycle consisting of exactly 3 edges. A bipartite graph G = (A]B,E) is called
a d-bipartite graph if dG(b) ≤ d for all b ∈ B. For two hypergraphs H1 and H2, H1 ∪H2
denotes the hypergraph with the vertex set V (H1)∪ V (H2) and the edge set E(H1)∪E(H2).

3 Feedback Vertex Sets on Linear Hypergraphs

In this section we design an FPT algorithm for HFVS on linear hypergraphs. Towards this,
we prove the following result about DFVSB, from which Theorem 3 follows as a corollary.

I Theorem 4. There exists an O?(2O(k3 log k)) time randomized algorithm for DFVSB on
C4-free bipartite graphs, which produces a false negative output with probability at most 1

nO(1) ,
and no false positive output.

To prove Theorem 4, we first define a few generalizations of these problems that appear
naturally in the recursive steps. Let F be a family of sets over a universe A, then we
define a bipartite graph GF as follows. Let the bipartition of V (GF) be AF] BF , where
AF = A and BF = F . Edge set E(GF) = {{u, Y } : u ∈ A, u ∈ Y ∈ F}. Let G be a C4 free
bipartite graph with bipartition V (G) = A]B, and F be a family of sets over the universe
A. We define the graph G ∪GF = (A∗]B∗, E∗) as follows. Let A∗ = A,B∗ = B]BF and
E∗ = E(G) ∪ E(GF). The following problem generalizes HFVS on linear hypergraphs.

Hitting Hypergraph Feedback Vertex Set (HHFVS) Parameter: k + |E(H2)|
Input: Two linear hypergraphsH1,H2 such that V (H1) = V (H2), E(H1)∩E(H2) = ∅,
and H1 ∪H2 is a linear hypergraph, k ∈ N.
Question: Does there exist a set S ⊆ V (H1) of size at most k, such that H1 − S is
acyclic and S is a hitting set for E(H2)?

Observe that, if H2 = ∅, HHFVS is the same as HFVS (for linear hypergraphs). Next,
we define the “graph” version of HHFVS, which generalizes DFVSB on C4-free graphs.

Hitting Dominating Bipartite FVS (HDBFVS) Parameter: k + |F|
Input: A C4 free bipartite graph G with bipartition V (G) = A]B, a family F of
subsets of A such that the graph G ∪GF is a C4 free bipartite graph, k ∈ N.
Question: Does there exist a set S ⊆ A of size at most k, such that G−N [S] is a
forest and S is a hitting set for F?

We say that an instance (G = (A]B,E),F , k) is a valid instance of HDBFVS, if F is a
family of subsets of A such that the graph G ∪GF is a C4-free bipartite graph.

In the rest of the section, whenever we say I = (G = (A]B,E),F , k) is an instance
of HDBFVS, it implies that I is a valid instance of HDBFVS. Further, after each
application of a reduction rule, we ensure that the instance remains valid.

The proof of the following simple observation follows from the fact that G∪GF is C4-free.

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:7

I Observation 3.1. If (G = (A]B,E),F , k) is an instance of HDBFVS, then (i) pairwise
intersection of sets in F is of size at most 1, and (ii) for every vertex b ∈ B and F ∈ F ,
|N(b) ∩ F | is at most one.

Given an instance (H1, H2, k) of HHFVS, we can obtain an instance, (G,F , k), of
HDBFVS in a canonical way. Next lemma shows their equivalence.

I Lemma 5 (♣). (H1, H2, k) is a YES-instance of HHFVS if and only if (G,F = E(H2), k)
is a YES-instance of HDBFVS, where G is the incidence graph of the hypergraph H1.

The rest of the section is devoted to designing an FPT algorithm for HDBFVS. Given
an instance (G = (A]B,E),F , k) of HDBFVS, we first define some notations. For a vertex
v ∈ A, Xv denotes the set {Y | Y ∈ F , v ∈ Y }. We distinguish the vertices in A as follows.

If |Xv| ≥ 2, i.e., v is in at least two sets in F , then we say that v is a special vertex.
If |Xv| = 1, i.e., v is in exactly one set in F , then we say that v is an easy vertex.
Otherwise, we say that v is a trivial vertex.

Let V (F) = {v ∈ A | v ∈ Y where Y ∈ F}. For a graph G?, the notations V0(G?), V=1(G?),
V=2(G?), and V≥3(G?) denote the set of isolated vertices, the set of vertices of degree 1, the
set of vertices of degree 2, and the set of vertices of degree at least 3 in G?, respectively.

I Lemma 6. Let (G = (A]B,E),F , k) be an instance of HDBFVS. Then, the number of
special vertices in A is upper bounded by

(|F|
2
)
.

Proof. For contradiction, assume that the number of special vertices in A is more than
(|F|

2
)
.

By pigeonhole principle there exist two special vertices u, v ∈ A, such that |Xu ∩Xv| ≥ 2.
Let Y1, Y2 ∈ Xu ∩Xv. This implies that u, v ∈ Y1 ∩ Y2, contradicting Observation 3.1(i). J

Now we state some reduction rules that are applied exhaustively by the algorithm in the
order in which they appear. Let (G,F , k) be an instance of HDBFVS and (G′,F ′, k) be the
resultant instance after application of a reduction rule. To show that a reduction rule is safe,
we will prove that (G,F , k) is a YES-instance if and only if (G′,F ′, k) is a YES-instance.

I Reduction Rule 3.1. If one of the following holds, then return a trivial NO-instance: (i)
k < 0; (ii) k = 0 and G is not acyclic; and (ii) k = 0 and F is not empty.

I Reduction Rule 3.2. If k ≥ 0, G is acyclic and F is empty, then return a trivial YES-
instance.

I Reduction Rule 3.3. Let (G = (A]B,E),F , k) be an instance of HDBFVS and b ∈ B
be a vertex that does not participate in any cycle in G. Then, output (G− b,F , k).

I Reduction Rule 3.4. Let (G = (A]B,E),F , k) be an instance of HDBFVS and v ∈ A
be an isolated vertex in G. If v is a trivial vertex, then output (G− v,F , k).

It is easy to see that the above reduction rules are safe and can be applied in polynomial
time. Observe that, when Reduction Rules 3.3 and 3.4 are no longer applicable, then
V0(G) ⊆ A and each isolated vertex in G is either easy or special. Next, we state a reduction
rule that will help to bound the number of easy isolated vertices in G.

I Reduction Rule 3.5 (?3). Let (G = (A] B,E),F , k) be an instance of HDBFVS and
v ∈ A be an isolated vertex in G. Suppose v is an easy vertex, Xv = {Y }, and |Y | > 1. Then
output (G′,F ′, k), where G′ = G− v and F ′ = (F \ {Y }) ∪ {(Y \ {v})}.

3 The safeness proofs of reduction rules marked with ? can be found in the full version of the paper.

FSTTCS 2020

18:8 FVS in Hypergraphs

I Reduction Rule 3.6 (?). Let (G = (A] B,E),F , k) be an instance of HDBFVS and
v ∈ A be a vertex of degree 1 in G. If v is a trivial vertex, then output (G′ = G− v,F , k).

Observe that when Reduction Rules 3.1 to 3.6 are no longer applicable, the following holds.

I Lemma 7. Let (G,F , k) be an instance reduced with respect to Reduction Rules 3.1 to 3.6.
Then, the following holds.
1. V0(G) ∪ V=1(G) ⊆ A, all vertices in V0(G) ∪ V=1(G) are either easy or special.
2. |V0(G)| ≤ |F|+

(|F|
2
)
.

I Lemma 8. For any vertex b ∈ B, |NG(b) ∩ V=1(G)| ≤ |F|.

Proof. If there exists a vertex v ∈ NG(b) ∩ V=1(G) which is a trivial vertex, then Reduction
Rule 3.6 is applicable. Thus, (i) for all v ∈ NG(b) ∩ V=1(G), v belongs to some set in F .
For contradiction, let b ∈ B be a vertex such that NG(b) contains at least |F|+ 1 vertices
of degree 1 in G. Then, by pigeonhole principle and statement (i), at least two degree 1
vertices say u, v ∈ NG(b) are contained in a set Y ∈ F , which is a contradiction to item (ii)
of Observation 3.1. This completes the proof of the lemma. J

Recall that, P is a degree two path in G if each vertex in P has degree exactly two in G.
Next we state the reduction rules that help us bound the length of long degree two paths
in G − V=1(G), i.e., to bound the length of degree two paths in the graph obtained after
deleting vertices of degree 1 from G. Towards this, we first define the notion of a nice path.

I Definition 9. We say that P is a nice path in G, if P does not have any special
vertex and the degree of each vertex in P in the graph G−V=1(G) is exactly 2. A nice
path P in G is a degree two nice path if each vertex in P has degree exactly 2 in G.

I Reduction Rule 3.7 (?). Let (G = (A] B,E),F , k) be an instance of HDBFVS, P be
a nice path in G and b, b′ ∈ B be two vertices in P . If there exist two easy vertices u, u′
whose degree is 1 in G, adjacent to b, b′, respectively, such that Xu = Xu′ = {Y }, then return
(G′,F ′, k), where G′ = G− u, F ′ = (F \ {Y }) ∪ {Y \ {u}}.

I Lemma 10. Let (G = (A]B,E),F , k) be an instance of HDBFVS reduced with respect
to Reduction Rules 3.1 to 3.7. Then, in any nice path P in G, the number of vertices that
are adjacent to a vertex of degree 1 in G is bounded by

(|F|
2
)

+ |F|.

Proof. From statement 1 in Lemma 7, we have that V=1(G)⊆A. This implies, NG(V=1(G))⊆
B. Also, each vertex in V=1(G) is either easy or special. By Lemma 6, the number of vertices
that are special is bounded by

(|F|
2
)
. Therefore, the number of vertices in P that are adjacent

to special degree 1 vertices is at most
(|F|

2
)
. Since Reduction Rule 3.7 is no longer applicable,

we have that corresponding to each set Y ∈ F , there exists at most 1 vertex in P that has a
degree 1 neighbor u such that Xu = {Y }. This implies that at most |F| vertices in P can be
adjacent to degree 1 easy vertices, resulting in the mentioned upper bound. J

The next reduction rule helps us in upper bounding the length of degree two paths in G.

I Reduction Rule 3.8 (?). Let (G = (A] B,E),F , k) be an instance of HDBFVS and
P = v0b1v1 . . . v`−1b` be a degree two nice path in G, where {b1, . . . , b`} ⊆ B, {v0, . . . , v`−1} ⊆
A, and ` ≥ 5. Let vi, vj ∈ A ∩ (V (P) \ {v0, v1}) be two distinct easy vertices such that
Xvi = Xvj = {Y } for some Y ∈ F and i < j. Then, return (G′,F ′, k), where G′ and F ′ are
defined as follows.

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:9

b

u ∈ Y

b′

u′ ∈ Y

...

b

b′

u′ ∈ Y

...

(a)

v0 b1 v1

vi−2

bi−1

vi−1

bi

vi ∈ Y

bi+1 vj ∈ Y v`−1b`...

v0 b1 v1 vi−2 bi+1 vj ∈ Y v`−1b`...

(c)

v0 b1 v1

vi−1 bi

vi ∈ Y

bi+1

vj ∈ Y v`−1b`...

v0 b1 v1 vi−1 bi+1 vj ∈ Y v`−1b`...

(b)

b1 v1 b2 v2 b3 v3 b4

b1 v1 b3 v3 b4

(d)

Figure 1 (a) is an illustration of Reduction Rule 3.7, (b) and (c) are illustrations of two cases of
Reduction Rule 3.8, (d) is an illustration of Reduction Rule 3.9. In (a), (b) and (c) blue vertices
denote easy vertices, and in (d) green vertices denote trivial vertices.

If Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = ∅, then let G′ = (G− {bi, vi}) + vi−1bi+1 (i.e., G′
be the graph obtained by deleting the vertices bi, vi from G and by adding a new edge
vi−1bi+1) and F ′ = (F \ {Y }) ∪ {Y \ {vi}}.
Otherwise, Xvi−1 = Xvi+1 = {Y ?}, then let G′ = (G−{bi−1, vi−1, bi, vi}) + vi−2bi+1 (i.e.,
G′ be the graph obtained by deleting the vertices bi−1, vi−1, bi, vi from G and by adding a
new edge vi−1bi+1) and F ′ = (F \ {Y, Y ?}) ∪ {Y ? \ {vi−1}, Y \ {vi}}.

Let (G = (A]B,E),F , k) be an instance of HDBFVS reduced with respect to Reduction
Rules 3.1 to 3.8. Observe that, for each set Y ∈ F and a degree two nice path P in G, the
number of easy vertices among the last |V (P)| − 3 vertices in V (P) that belong to Y , is
upper bounded by one. Reduction Rule 3.8 leads us to the following observation.

I Observation 3.2. Let (G = (A] B,E),F , k) be a reduced instance of HDBFVS with
respect to Reduction Rules 3.1 to 3.8. Then, in any degree two nice path P of length at least
10 in G, the number of easy vertices is bounded by |F|+ 2.

I Reduction Rule 3.9 (?). Let (G = (A]B,E),F , k) be an instance of HDBFVS and P =
b1v1b2v2b3v3b4 be a degree two nice path in G, such that {b1, . . . , b4} ⊆ B, {v1, v2, v3} ⊆ A

and v1, v2, v3 are trivial vertices. Then, return (G′,F , k), where G′ is the graph obtained by
deleting the vertices b2, v2 from G and adding a new edge v1b3 (i.e., G′ = (G−{v2, b2})+v1b3).

I Observation 3.3. Let (G = (A]B,E),F , k) be an instance of HDBFVS and let (G′ =
(A′]B′, E′),F ′, k′) be the reduced instance of HDBFVS obtained from (G = (A]B,E),F , k),
by exhaustive applications of Reduction Rules 3.1 to 3.9. Then, |F ′| = |F| and k′ ≤ k.

We now bound the size of degree 2 path, when there is no degree 1 vertex in the graph.

I Lemma 11 (♣). Let (G = (A] B,E),F , k) be an instance of HDBFVS reduced with
respect to Reduction Rules 3.1 to 3.9. Then, the number of vertices in a degree two path P
in G− V=1(G) is bounded by 63|F|5 + 21.

From now on, we say that (G = (A]B,E),F , k) is a reduced instance of HDBFVS if it
is reduced with respect to Reduction Rules 3.1 to 3.9. In the following lemma, we observe
that, if (G = (A]B,E),F , k) is a YES-instance of HDBFVS, then a large number of edges
in G is incident to the neighborhood of the solution.

FSTTCS 2020

18:10 FVS in Hypergraphs

I Lemma 12. Let (G = (A]B,E),F , k) be a reduced instance of HDBFVS where G is not
a forest. Then, for any solution S, at least 1/(445|F|6 + 68) fraction of the total edges in E
are incident to N [S].

Proof. Let ES be the set of edges incident to all the vertices of N [S] in G. Observe that,
E(G) = ES] E(G − N [S]). Since G − N [S] is a forest, we have that |E(G − N [S])| <
|V (G−(N [S]∪V0(G)))|. We aim to show that |V (G−(N [S]∪V0(G)))| ≤ (445|F|6 +67) · |ES |.
Let V ? be the set of vertices of degree 1 in G−N [S]. Let V ?1 ⊆ V ? be the set of vertices that
have some neighbor in N [S] and V ?2 = V ? \ V ?1 . That is, V ?2 ⊆ V=1(G). Since the vertices in
V ?1 have neighbors in N [S], they contribute at least one edge to the set ES and these edges
are distinct. Hence, |V ?1 | ≤ |ES |.

Since V ?2 ⊆ V=1(G), by Lemma 7, we have that V ?2 ⊆ A. Thus, V ?2 have neighbors only
in the set B ∩ V (G − N [S]). Also, by Lemma 8, any vertex in B can be adjacent to at
most |F| vertices of degree 1 in G. Hence, each vertex in B ∩ V (G−N [S]) can be adjacent
to at most |F| vertices of V ?2 . Thus, we have that |V ?2 | ≤ |F| · |B ∩ V (G − N [S])|. Let
G′ be the graph G − (V0(G) ∪ V ?2). Since V0(G) ∪ V ?2 ⊆ A, we have that, B ⊆ V (G′) and
B ∩ V (G−N [S]) = B ∩ V (G′ −N [S]). Hence, we obtain the following.

|V ?2 | ≤ |F| · |B ∩ V (G′ −N [S])| ≤ |F| · |V (G′ −N [S])| (1)
|V ?| = |V ?1 |+ |V ?2 | ≤ |F| · |V (G′ −N [S])|+ |ES | (By (1) and |V ?1 | ≤ |ES |) (2)

Since the graph G′ is obtained from G by deleting a subset of vertices that are contained in
V0(G) ∪ V=1(G) ⊆ A, the vertices that are degree 1 in G′ −N [S] are either degree 1 vertices
in G − N [S] and are contained in A, in particular in V ?1 , or they are contained in B and
are neighbors of vertices in V ?2 in G. Let L be the set of leaves (vertices of degree 1) in
G′ −N [S]. We claim that L = V ?1 . For contradiction, assume that a vertex b ∈ B ∩L. Since
Reduction Rule 3.3 is no longer applicable, we have that each vertex in B participates in a
cycle in G and hence, participates in a cycle in G′. Therefore, degree of b is at least 2 in G′.
Observe that b cannot have a neighbor in S, otherwise b ∈ N [S]. This implies that b has 2
neighbors in G′ −N [S], which contradicts that b ∈ L. Observe that each vertex in V ?1 is a
leaf vertex in G′ −N [S]. Hence L = V ?1 . Therefore, we obtain the following.

|L| ≤ |ES |. (3)
V≥3(G′ −N [S]) ≤ |ES | (Since, G′ −N [S] is a forest, V≥3(G′ −N [S]) ≤ |L|) (4)

Next we bound |V0(G′−N [S])|. Since, for any vertex v in G′−N [S], dG(v) ≥ 1, we have
that any vertex w ∈ V0(G′ −N [S]) is adjacent to some vertex in N [S]. Then, each vertex in
V0(G′ −N [S]) contributes at least 1 edge to the set ES and these edges are distinct.

Therefore, |V0(G′ −N [S])| ≤ |ES |. (5)

Let V 1
=2(G′) be the set of vertices of degree 2 in G′ −N [S] that have a neighbor in N [S].

Then, each vertex in V 1
=2(G′) contributes at least 1 edge to the set ES . Therefore, we have

|V 1
=2(G′)| ≤ |ES |. (6)

Let V 2
=2(G′) be the set of vertices of degree 2 in G′ − N [S], that do not have a neighbor

in N [S]. Then, each vertex in V 2
=2(G′) is contained in some maximal degree two path not

containing any vertex of V 1
=2(G′) in G′ −N [S]. Observe that, since G′ −N [S] is a forest, (i)

the number of maximal degree two paths not containing any vertex of V 1
=2(G′) in G′ −N [S]

is bounded by |L ∪ V≥3(G′) ∪ V 1
=2(G′)| and hence bounded by 3|ES | (because of (3),(4), and

(6)). Observe that a degree two path not containing any vertex of V 1
=2(G′) in G′ −N [S] is

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:11

also a degree two path in G− V=1(G). By Lemma 11, (ii) the number of vertices in a degree
two path in G− V=1(G) is bounded by 63|F|5 + 21. So, statements (i) and (ii) imply that

|V 2
=2(G′)| ≤ (189|F|5 + 63)|ES | (7)

Observe that V=2(G′ −N [S]) = V 1
=2(G′) ∪ V 2

=2(G′). By (6) and (7), we get the following.

|V=2(G′ −N [S])| = |V 1
=2(G′)|+ |V 2

=2(G′)| ≤ (189|F|5 + 64)|ES | (8)

Note that, V (G′−N [S]) = V0(G′−N [S])∪L∪V≥3(G′−N [S])∪V=2(G′−N [S]). Hence,
we obtain the following using (3), (5), (4), and (8).

|V (G′ −N [S])| = |V0(G′ −N [S])|+ |L|+ |V≥3(G′ −N [S])|+ |V=2(G′ −N [S])|
≤ |ES |+ |ES |+ |ES |+ (189|F|5 + 64)|ES |
≤ (189|F|5 + 67)|ES | (9)

Using (1) and (9), we obtain the following.

|V (G− (N [S] ∪ V0(G)))| ≤ |V (G′ −N [S])|+ |V ?2 |
≤ (|F|+ 1)|V (G′ −N [S])| (By (1))
≤ (|F|+ 1)((189|F|5 + 67)|ES |)
≤ (445|F|6 + 67)|ES |

Thus, |E(G)| = |ES |+ |E(G−N [S])|
≤ |ES |+ |V (G− (N [S] ∪ V0(G))| ≤ (445|F|6 + 68)|ES |.

This concludes the proof. J

I Lemma 13. Let (G = (A]B,E),F , k) be an instance of HDBFVS, where G is a forest
and |F| ≤ k2. Then, there exists an algorithm which solves the instance in O?((2k4)k) time.

Proof. The Algorithm first applies Reduction Rules 3.1 to 3.9 exhaustively in the order in
which they are stated. If any reduction rule solves the instance, then output YES and NO
accordingly. All the reduction rules are safe, and can be applied in polynomial time, and
they can be applied only polynomial many times since each reduction rule decreases the
size of the graph. Let (G′ = (A′]B′, E′),F ′, k′) be the reduced instance. Since Reduction
Rule 3.3 is no longer applicable, B′ = ∅, and hence G′ is an edgeless graph with vertex
set A′. By Lemma 7, |V (G′)| = |A′| ≤ |F ′| +

(|F ′|
2
)
. By Observation 3.3, we have that

|F ′| = |F| ≤ k2 and hence, |V (G′)| ≤ 2k4. We enumerate all the subsets of V (G′) of size at
most k and check if they form a solution; else return a NO-instance. The algorithm runs in
time

(2k4

k

)
nO(1) = O?((2k4)k). This completes the proof. J

I Lemma 14. There is a randomized algorithm that takes an instance (G = (A]B,E),F , k)
of HDBFVS as input, runs in O∗((2k4)k) time, and outputs either YES, or NO, or an instance
(G? = (A?]B?, E?),F?, k?) of HDBFVS where k? < k, with the following guarantee.

If (G,F , k) is a YES-instance, then the output is YES or an equivalent YES-instance
(G?,F?, k?) where k? < k, with probability at least (445k12 + 68)−(k2+1).
If (G,F , k) is a NO-instance, then the output is NO or an equivalent NO-instance
(G?,F?, k?) where k? < k, with probability 1.

Proof. Let (G = (A]B,E),F , k) be an input instance of HDBFVS. Recall that, for any
v ∈ A, Xv = {F ∈ F : v ∈ F}. The algorithm applies the following iterative procedure.

FSTTCS 2020

18:12 FVS in Hypergraphs

Step 1. If G is acyclic and |F| ≤ k2, then apply Lemma 13 and solve the instance.
Step 2. If |F| ≥ k2 + 1;

(i) If there exists a vertex v such that |Xv| ≥ k+1, return (G−N [v],F \Xv, k−1).
(ii) Otherwise, return that (G = (A]B,E),F , k) is a NO-instance of HDBFVS.

Step 3. Apply Reduction Rules 3.1 to 3.9 exhaustively in the order in which they are stated.
If any reduction rule solves the instance, then output YES and NO accordingly. Let
(G′ = (A′]B′, E′),F ′, k′) be the reduced instance.

Step 4. Pick an edge e = ub in E(G′) uniformly at random, where u ∈ A′, b ∈ B′. Set
G := G′ − b,F := F ′ ∪ {NG′(b)}, and k := k′. Go to Step 1.

Now we prove the correctness of the algorithm. Correctness of Step 1 follows from
Lemma 13. Next assume that |F| ≥ k2 + 1. Let v be a vertex that is contained in at
least k + 1 sets in F . By Observation 3.1, pairwise intersection of two sets in F is at most
1. Thus, if we do not pick v in our solution, then we have to pick at least k + 1 vertices
to hit the sets in Xv. Thus v belongs to every solution of (G,F , k) of HDBFVS. Hence,
(G,F , k) is a YES-instance of HDBFVS if and only if (G−v,F \Xv, k−1) is a YES-instance
of HDBFVS, and correctness of Step 2i follows. Suppose each vertex in A is contained
in at most k sets of F . Thus no set of size at most k can hit k2 + 1 sets of F . Hence,
(G,F , k) is a NO-instance of HDBFVS, and correctness of Step 2ii follows. Correctness of
the Step 3 is implied by the safeness of reduction rules. Suppose the algorithm does not
stop in Step 3. Let (G′,F ′, k′) be the reduced instance, where k′ ≤ k. Now, let S be a
hypothetical solution to (G′,F ′, k′). By Lemma 12, the picked edge e = ub is incident to a
vertex in NG′ [S] with probability at least 1/(445|F|6 +68). This implies that with probability
at least 1/(445|F|6 + 68) a vertex in NG′(b) is contained in S. Hence, if (G′,F ′, k′) is a
YES-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a YES-instance, with probability at least
1/(445|F|6 + 68). Also, notice that any solution to (G′− b,F ′∪{NG(b)}, k′) is also a solution
to (G′,F ′, k′). Hence, if (G′,F ′, k′) is a NO-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a
NO-instance, with probability 1. Consequently, if (G,F , k) is a NO-instance, then the output
is NO or a NO-instance (G?,F?, k?) with probability 1.

Let (G,F , k) be a YES-instance. By Observation 3.3, after the application of Reduction
Rules 3.1 to 3.9, in the reduced instance, |F ′| = |F|. Thus, Step 4 is applied at most k2 + 1
times. Each execution of Step 4 is a success with probability at least 1/(445|F̂ |6 + 68),
where F̂ is the family in the instance considered in that step. In Step 4, the size of the
family of any instance is bounded by k2, due to Step 2. Hence each execution of Step 4 is
a success with probability at least 1/(445k12 + 68). This implies that either our algorithm
outputs YES or a YES-instance (G?,F?, k?) with probability at least (445k12 + 68)−(k2+1).
By Observation 3.3, we know that after the application of Reduction Rules 3.1 to 3.9, the
parameter k′ in the reduced instance is at most the parameter k in the original instance.
Moreover, if the algorithm outputs an instance, then that will happen in Step 2i and there k
decreases by 1. Thus k? < k. This proves the correctness of the algorithm.

By Lemma 13, Step 1 runs in O?((2k4)k) time. Observe that, Step 2 runs in polynomial
time. All the reduction rules run in polynomial time, and are applied only polynomially many
times. Step 4 runs in polynomial time, and we have at most k2 + 1 iterations. Therefore, the
total running time is O?((2k4)k). This completes the proof. J

By applying Lemma 14 at most k times, we can show the following.

I Lemma 15. There exists a randomized algorithm B that takes an instance (G = (A]
B,E),F , k) of HDBFVS as input, runs in O?((2k4)k) time, and outputs either YES or NO
with the following guarantee. If (G,F , k) is a YES-instance, then the output is YES with
probability at least (445k12 + 68)−k(k2+1). If (G,F , k) is a NO-instance, then the output is
NO with probability 1.

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:13

Let τ(k) = (445k12 +68)k(k2+1). To boost the success probability of algorithm B, we repeat it
O(τ(k) logn) times. After applying algorithm B O(τ(k) logn) times, the success probability

is at least 1−
(

1− 1
τ(k)

)O(τ(k) logn)
≥ 1− 1

2O(log n) ≥ 1− 1
nO(1) .

Thus, we have the following result.

I Theorem 16. There exists a randomized algorithm A that takes an instance (G = (A]
B,E),F , k) of HDBFVS as input, runs in O?(2O(k3 log k)) time, and outputs either YES or
NO with the following guarantee.

If (G,F , k) is a YES-instance, then the output is YES with probability at least 1− 1
nO(1) .

If (G,F , k) is a NO-instance, then the output is NO with probability 1.

4 Conclusion and Open Problems

In this paper, we initiated the study of Feedback Vertex Set problem on hypergraphs.
We showed that the problem is W[2]-hard on general hypergraphs. However, when the input
is restricted to d-hypergraphs and linear hypergraphs, which are a strict generalization of
graphs, FVS turns out to be tractable (FPT). Derandomization of the randomized FVS
algorithm given in this paper is yet to be explored. We believe that this opens up a new
direction in the study of parameterized algorithms. That is, extending the study of other
graph problems, in the realm of Parameterized Complexity, to hypergraphs. Designing
substantially faster algorithms for HFVS on linear hypergraphs and designing polynomial
kernels remain interesting questions for the future.

References
1 Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,

76(7):524–531, 2010.
2 Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma. Improved al-

gorithms and combinatorial bounds for independent feedback vertex set. In 11th International
Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aar-
hus, Denmark, volume 63, pages 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

3 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT
algorithm and a smaller kernel for block graph vertex deletion. In LATIN 2016: Theoret-
ical Informatics - 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016,
Proceedings, volume 9644 of Lecture Notes in Computer Science, pages 1–13. Springer, 2016.

4 Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultaneous
feedback vertex set: A parameterized perspective. TOCT, 10(4):18:1–18:25, 2018.

5 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop cutset
problem. J. Artif. Intell. Res., 12:219–234, 2000.

6 Yixin Cao. A naive algorithm for feedback vertex set. In 1st Symposium on Simplicity in
Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61, pages
1:1–1:9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

7 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015.

8 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.

9 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010.

10 Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems on
graphs with small degeneracy. ACM Trans. Algorithms, 13(3):43:1–43:22, 2017.

FSTTCS 2020

18:14 FVS in Hypergraphs

11 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159. IEEE
Computer Society, 2011.

12 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309, 2013.

13 Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and
Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem.
Theory Comput. Syst., 41(3):479–492, 2007.

14 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

15 Zhuo Diao and Zhongzheng Tang. On the feedback number of 3-uniform hypergraph. CoRR,
abs/1807.10456, 2018. arXiv:1807.10456.

16 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
2012.

17 J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag, 2006.

18 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

19 Toshihiro Fujito. Approximating minimum feedback vertex sets in hypergraphs. Theoretical
Computer Science, 246(1):107–116, 2000.

20 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput.
Syst. Sci., 72(8):1386–1396, 2006.

21 Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback
vertex set. In 14th International Symposium on Parameterized and Exact Computation, IPEC
2019, September 11-13, 2019, Munich, Germany, pages 22:1–22:11, 2019.

22 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016.

23 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, half-integral a-path
packing, and linear-time FPT algorithms. In 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 462–473. IEEE
Computer Society, 2018.

24 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the subset
feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B, 102(4):1020–
1034, 2012.

25 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014.

26 Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational
Geometry, 33(4):717–729, 2005.

27 Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O*(2.7k) time. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 971–989, 2020.

28 Shaohua Li and Marcin Pilipczuk. An improved FPT algorithm for independent feedback
vertex set. In Graph-Theoretic Concepts in Computer Science - 44th International Workshop,
WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings, volume 11159, pages 344–355.
Springer, 2018.

29 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. ACM Trans. Algorithms, 14(1):7:1–7:37, 2018.

30 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On parameterized
independent feedback vertex set. Theor. Comput. Sci., 461:65–75, 2012.

http://arxiv.org/abs/1807.10456

P. Choudhary, L. Kanesh, D. Lokshtanov, F. Panolan, and S. Saurabh 18:15

31 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath Sikdar.
FPT algorithms for connected feedback vertex set. J. Comb. Optim., 24(2):131–146, 2012.

32 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):11:1–11:23,
2012.

33 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in sparse graphs and
beyond. Theor. Comput. Sci., 770:62–68, 2019.

34 Junjie Ye. A note on finding dual feedback vertex set. CoRR, abs/1510.00773, 2015. arXiv:
1510.00773.

FSTTCS 2020

http://arxiv.org/abs/1510.00773
http://arxiv.org/abs/1510.00773

Size Bounds on Low Depth Circuits for Promise
Majority
Joshua Cook
The University Of Texas At Austin, TX, USA
https://www.cs.utexas.edu/~jacook7/
jac22855@utexas.edu

Abstract
We give two results on the size of AC0 circuits computing promise majority. ε-promise majority is
majority promised that either at most an ε fraction of the input bits are 1 or at most ε are 0.

First, we show super-quadratic size lower bounds on both monotone and general depth-3 circuits
for promise majority.

For any ε ∈ (0, 1/2), monotone depth-3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε)
ln(ε)

)
.

For any ε ∈ (0, 1/2), general depth-3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε2)
2 ln(ε)

)
.

These are the first quadratic size lower bounds for depth-3 ε-promise majority circuits for
ε < 0.49.
Second, we give both uniform and non-uniform sub-quadratic size constant-depth circuits for
promise majority.

For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone non uniform AC0 circuits
of depth-(2 + 2k) computing ε-promise majority with size

Õ
(
n

1
1−2−k

)
.

For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone uniform AC0 circuit of
depth-(2 + 2k) computing ε-promise majority with size

n

1
1−(2

3)k
+o(1)

.

These circuits are based on incremental improvements to existing depth-3 circuits for promise
majority given by Ajtai [2] and Viola [14] combined with a divide and conquer strategy.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases AC0, Approximate Counting, Approximate Majority, Promise Majority,
Depth 3 Circuits, Circuit Lower Bound

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.19

Related Version A full version of the paper is available at [7], https://eccc.weizmann.ac.il/
report/2020/122/.

Funding This research was supported by NSF grant number 1705028.

Acknowledgements Thanks to Dana Moshkovitz for suggesting I study the size cost of derandomizing
AC0 circuits. Thanks to Justin Yirka, Amanda Priestly and an anonymous reviewer for feedback on
this paper.

© Joshua Cook;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.utexas.edu/~jacook7/
mailto:jac22855@utexas.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.19
https://eccc.weizmann.ac.il/report/2020/122/
https://eccc.weizmann.ac.il/report/2020/122/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Size Bounds on Low Depth Circuits for Promise Majority

1 Introduction

The majority function is a classic function that cannot be computed in AC0 [9]. But AC0
can compute majority promised the input is either mostly 1s or mostly 0s.

I Definition 1 (ε-Promise Majority). Let W : {0, 1}n → [n] be the function giving the number
of ones in the input1. Let ε ∈ (0, 1/2). Then define the ε promise inputs to be:

Maj0ε ={x ∈ {0, 1}n : W (x) ≤ εn}
Maj1ε ={x ∈ {0, 1}n : W (x) ≥ (1− ε)n}
Majε =Maj0ε ∪Maj1ε

We say that function f solves the ε-promise majority2 problem if:

f(Maj0ε) = 0

f(Maj1ε) = 1

That is, f computes the majority promised the input is in Majε.

We give size3 lower bounds to depth-3 circuits4 computing ε-promise majority. Then we
give small circuits solving promise majority with larger depth.

1.1 Motivation
Promise majority is an important tool in derandomizing circuits. We say a function f :
{0, 1}n × {0, 1}m → {0, 1} is a randomized function for g : {0, 1}n → {0, 1} if for all x ∈
{0, 1}n, Prr∈{0,1}m [f(x, r) = g(x)] ≥ 2/3. A circuit implementing f is called a randomized
circuit for g. We call r ∈ {0, 1}m a seed for f .

Adleman [1] showed that for any randomized function f : {0, 1}n × {0, 1}m → {0, 1},
implementing some g : {0, 1}n → {0, 1}, there is some choice of seeds R ⊆ {0, 1}m with |R| =
O(n) such that for all x and the majority of seeds in R, f computes g, i.e., Prr∈R[f(x, r) =
g(x)] > 1/2. If f has size-O(n) random circuits, this gives a size-O(n2) deterministic circuits
by computing majority of |R| copies of f and taking majority.

Unfortunately, AC0 cannot compute majority, but it can compute ε-promise majority.
With the same argument, we can getR with |R| = O(n) such that Prr∈R[f(x, r) = g(x)] > 3/5.
So, we only need to compute 2/5-promise majority since f only outputs the wrong bit for at
most 2/5 of r ∈ R.

Ajtai [2] gave depth-3 circuits of size O
(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
solving the ε-promise majority

problem. Applying a depth-d promise majority circuit, M , to the output of a depth-k circuit,
C, gives a depth-(k + d− 1) circuit since the kind of gate at the lowest level of M can be
made the same as the top level of C. Combining this result with Adleman takes a size-O(n),
depth-d randomized circuit and gives a depth-(d+ 2), size-O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
deterministic

circuit. This is bigger than the ideal O(n2) size from the unbounded depth setting.

1 For functions and circuits, we implicitly refer to a family of functions, one for each size n where n is
implicit. The same holds for Majε.

2 Prior work often called promise majority “approximate majority” [14, 15]. But, approximate majority
also refers to the standard notion of approximating a Boolean function [5]. To avoid confusion, we follow
the convention suggested in [11] to refer to the promise problem version of majority as promise majority.

3 In this paper, we use size of a circuit to mean the number of gates.
4 In this paper, all circuits are constant depth alternating circuits (AC0 circuits) unless stated otherwise.

J. Cook 19:3

This paper gives new, super-quadratic size lower bounds for depth-3 circuits computing
ε-promise majority. Thus applying Adleman’s technique on AC0 circuits to get size-O(n2)
deterministic circuits using promise majority requires a depth-3 increase. We show this is
tight by giving size-O(n2) depth-4 circuits for ε-promise majority. Thus Adleman’s technique
can be used to get size-O(n2) deterministic circuits with a depth-3 increase.

1.2 Our Results
For notation, let Õ(x) indicate order x up to polylogarithmic factors:

I Definition 2. f(n) = Õ(g(n)) if for some integer c, f = O(g(n) ln(n)c).
f(n) = Ω̃(g(n)) if for some integer c, f = Ω(g(n) ln(n)c).

First, we give a size lower bound for monotone, depth-3 circuits for promise majority.
Note that the best known depth-3 circuits are monotone.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth-3 circuit solving the ε-promise
majority problem must have size Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
.

We follow this up with some weaker, but still super-quadratic, size lower bounds for
depth-3 circuits computing promise majority.

I Theorem 4. For any ε ∈ (0, 1/2), a depth-3 circuit solving the ε-promise majority problem

must have size Ω̃
(
ε3n2+ ln(1−ε2)

2 ln(ε)

)
.

Minor improvements to Ajtai’s promise majority circuits [2] gives depth-4, quadratic size,
promise majority circuits.

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-4,
size-O

(
n2) circuits solving the ε-promise majority problem.

We then show how to solve ε-promise majority with even smaller circuits with larger
depths using a divide and conquer strategy.

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-(2 + 2k)
circuits solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

The above circuits are not explicit, or uniform: we do not know how to construct it
efficiently. However, we next give P-Uniform circuits for promise majority: circuits with a
polynomial-time algorithm to construct them. These circuits use a slight improvement to
Viola’s depth-3 promise majority circuits [14] with a divide and conquer strategy.

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-(2 + 2k)

circuits solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

For k = 2, this gives depth-6, size-o(n2), P-uniform, monotone circuits for promise
majority.

I Corollary 8. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-6 circuits
solving the ε-promise majority problem with size n 9

5 +o(1).

Thus a P-uniform PRG withO(n) seeds for AC0 could derandomize linear-size, randomized
circuits to get quadratic-size, deterministic circuits with a depth increase of 5. Finding such
PRGs, or even PRGs with polynomially many seeds, is still open. Though, work by Dean
Doron, Dana Moshkovitz, Justin Oh and David Zuckerman constructs nearly quadratic PRGs
conditioned on some complexity theoretic assumptions [8].

FSTTCS 2020

19:4 Size Bounds on Low Depth Circuits for Promise Majority

1.3 Related Work

There are well known polynomial-size AC0 circuits for promise majority. First, Ajtai gave
polynomial size, depth-3 circuits for ε-promise majority [2]. Ajtai later gave uniform, even
deterministic log time uniform, AC0 circuits for promise majority [3]. But, these uniform
circuits have large depth and their constructions are complicated. Viola later gave simpler
P-Uniform, depth-3 AC0 circuits for promise majority [14].

Chaudhuri and Radhakrishnan [6] proved that any depth-d circuit computing ε-promise
majority must have size Ω

(
(εn)

1
1−1/4d − n

)
. This gives super-linear lower bounds for depth-3

circuits, but not close to quadratic. Their paper uses deterministic restrictions for lower
bounds similar to ours, but our paper uses fan-in lower bounds from Viola [14] and different
restrictions to get better depth-3 lower bounds.

In the same work [6], Chaudhuri and Radhakrishnan gave, for any k, depth-O(k) circuits
with size O

(
n1+ 1

2k
)
for ε-promise majority. Like our paper, it uses a recursive strategy, but

we use a different recursive strategy that gives shallower circuits.
Exact threshold functions in AC0 have been studied extensively. Ragde and Wigderson

[13] show that for integer r > 0, the ln(n)r threshold function, which computes whether
W (x) > ln(n)r, has AC0 circuits with depth O(r) and size o(n). This improves on a
result by Ajtai and Ben-Or [4]. Further, Håstad, Wegener, Wurm, and Yi [10] show that
polylogarithmic threshold functions have sub-polynomial size, constant-depth circuits.

Results by Amano [5] building on work by O’Donnell and Wimmer [12] prove the minimum
size for a depth-d circuit computing majority on most inputs is Θ

(
n

1
2d−1

)
. This is consistent

with promise majority results because most inputs are close to balanced, within a O(1/
√
n)

factor, but promise majority is only guaranteed to give majority on inputs that are far from
balanced.

For ε =
(

1
2 −

1
ln(n)k

)
, Viola proved that randomized, depth-(k + 1), polynomial-size

circuits can solve ε-promise majority, but deterministic, depth-(k + 2), polynomial-size
circuits cannot. Further, there are deterministic, depth-(k + 3), polynomial-size circuits for
ε-promise majority [15].

The same work [15] gave size lower bounds for depth-3 ε-promise majority circuits, but
the bounds are less than linear for ε < 0.49. Closer analysis gives better lower bounds, but
we could not get quadratic lower bounds for ε < 0.49 with this technique.

A later work by Limaye, Srinivasan and Tripathi [11] showed that deterministic, depth-
(k+1), polynomial-size AC0 circuits with parity gates also cannot solve

(
1
2 −

1
ln(n)k

)
-promise

majority.

2 Proof Ideas

2.1 Monotone Depth-3 Circuit Lower Bounds

For depth-3 promise majority circuits, without loss of generality, assume the first level of
gates are AND gates5. Call the inputs “variables”, the first level gates “clauses”, and the
second level gates “DNFs”.

5 Switching the ANDs to ORs and ORs to ANDs in a circuit solving ε-promise majority still solves
ε-promise majority. To see this, observe that flipping all the input bits will flip a Maj1ε input to a Maj0ε
input. Then apply de Morgan’s law.

J. Cook 19:5

To prove lower bounds for a depth-3 circuit, we construct adversarial restrictions that
simplify the circuit while setting too few variables to violate the promise. To do this, we use
two main tools. The first is a lemma from Viola [14] that we use to remove gates with very
small fan in at the first level.

The second is a greedy set cover algorithm which shows that any collections of large
subsets of variables can have a large fraction of the subsets hit by a small fraction of variables.
To do this, we repeatedly select a variable in at least the average number of sets per variable.

First, we show DNFs have Ω̃(n1+α) clauses for some α > 0. To do this, we eliminate
small clauses using the first idea, then eliminate a large fraction of clauses with few 0s using
the second idea. This leaves many clauses while eliminating a large fraction of clauses, thus
we started with many clauses.

Then, we show the circuit has Ω̃(n2+α) clauses. First, we use the second idea to remove
any very large clauses. This lets us fix clauses to 1 without using too many variables. Then,
using the second idea again, we can hit many DNFs using few clauses. Thus there must be
many clauses so we can not hit every DNF using few clauses.

We generally will not worry about integrality. This only becomes an issue when ε =
Õ
(
n−1/2) as some restrictions would not have size greater than one. In that case, our lower

bounds hold trivially as εn gates can be fixed to a constant assigning only εn variables.

2.2 General Depth-3 Circuit Lower Bounds
The proof for non-monotone circuits is similar but with an additional hurdle. In monotone
circuits, setting variables to 0 only makes clauses 0. But with negations, we can actually
shrink clauses without eliminating them. This is an issue for showing DNFs must be large,
but the rest of the argument only needs minor changes.

The solution is to set adversarial bits probabilistically. We independently set each bit to
1 with probability ε. With good probability, this will give an input in Maj0ε . Some DNFs
then must have a good probability of “noticing” and becoming 0.

With high probability, fixing a small fraction of variables according to Dε will eliminate
many clauses. For some α > 0, if a DNF is smaller than n1+α this will make it constant.
With good probability, setting the rest of the variables gives an input this DNF must “notice”
and become 0. Thus, if the DNF is small, for some input it will be fixed to the constant 0
with only a few variables fixed. This cannot happen, so the DNF must be larger than n1+α.

2.3 Small Sized Circuits
To get small circuits, first we amplify the ε promise input to a 1

polylog(n) promise input by
taking majority over O(ln(ln(n))) length walks on an expander graph. Then we separate our
input into polynomially small groups and run a 1

ln(n) -promise majority on each. This gives a
polynomially smaller layer which satisfies just an ln(n) factor worse promise. Applying this
several times computes majority of the promise input.

Ajtai’s promise majority strategy gives a quadratic-sized 1
ln(n) -promise majority circuit.

Using this with the divide and conquer strategy above gives non uniform small circuits.
For our uniform circuit, we look at Viola’s circuit [14]. It uses a hitting property that

requires n3+o(1) many random walks for each of our n bits, requiring an overall size of n4+o(1).
We reduce this by showing it suffices to let each bit only range over random walks starting
at that bit, giving a size-n3+o(1) circuit for 1

ln(n) -promise majority.
Applying this improved version of Viola’s depth-3 circuit with our divide and conquer

strategy gives our uniform small circuits.

FSTTCS 2020

19:6 Size Bounds on Low Depth Circuits for Promise Majority

2.4 Terminology
We will use biased inputs in our proofs.

I Definition 9 (ε Biased Input). For any ε ∈ [0, 1] the ε biased input Dε is a random variable
over {0, 1}n where each bit independently is 1 with probability ε.

As with Maj0ε and Maj1ε , n in Dε is implicit. Dε is related to Maj0ε by a central limit
theorem: Pr[Dε ∈ Maj0ε] > 1

3 for large enough n.
We will make sub DNFs by only taking some clauses from a larger DNF.

I Definition 10 (Sub DNF). Let G be a DNF with clauses C = {Ci : i ∈ [k]} so that
G =

∨
i∈[k] Ci. Let Λ ⊆ [k] and H be a DNF with H =

∨
i∈Λ Ci.

Then we say that H is sub DNF of G or G has sub DNF H.

Restrictions fix some bits in the input to a function. We formalize this as a function that
takes unrestricted bits as input and outputs the restricted and unrestricted bits together6.

I Definition 11 (Restriction). A restriction ρ on n variables of size m is a function ρ :
{0, 1}n−m → {0, 1}n such that for some c ∈ {0, 1}m and some permutation of [n], π, for all
x ∈ {0, 1}n−m and i ∈ n:

ρ(x)i =
{
cπi πi ≤ m
xπi−m πi > m

We write the size of ρ as |ρ| = m and define f �ρ= f ◦ ρ.

When we apply a restriction, ρ, to a DNF, F , we let F �ρ be the DNF which is F with
variables restricted in ρ set to their restricted value. We simplify such a DNF to remove any
clause that has been set to 0. We count the size of a DNF by its number of clauses.

I Definition 12 (DNF Size and Width). For a DNF F , the size of F , |F |, is the number of
clauses in F . Any DNF that is the constant 1 or 0 function has size 0.

We say a DNF F has width w if no clause in F has width greater than w.

3 Monotone Depth-3 Circuit Size Lower Bounds

3.1 Removing Small Clauses
We use a result from Viola [14], Lemma 11 therein. Intuitively, this lemma says for a DNF
with small width, either there is some setting to a small number of variables that makes it 0,
or under a randomized input it is unlikely to be 0.

I Lemma 13. Let G be a DNF with a sub DNF F . Assume for some positive integers w and
m, F has width at most w and Pr[G(Dε) = 0] ≥ e−εw·m/w2 . Then there exists a restriction ρ
with |ρ| ≤ m such that F �ρ= 0 and Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0].

Our result is slightly generalized over the original. See the full version of this paper for
details. As a corollary, we can can apply small restrictions to eliminate small width clauses.

6 This is an equivalent but slightly nonstandard way to define restrictions.

J. Cook 19:7

I Corollary 14. Suppose we have ε ∈ (0, 1/2), DNF F and constant α > 0 such that
Pr[F (Dε) = 0] ≥ n−α. Then for sufficiently large n and

w = logε
(

ln(n)5

nε ln(ε)2

)
there is a restriction ρ restricting at most m = εn

ln(n) variables so that any clause C in F
with width less than w has C �ρ= 0 and Pr[F �ρ (Dε) = 0] ≥ Pr[F (Dε) = 0].

Proof. Let F ′ be the sub DNF of F with clauses of width less than w. Then

E[F (Dε) = 0] ≥ n−α = e−α ln(n) = e
−α ln(n)5

nε ln(ε)2
εn

ln(n)
ln(ε)2

ln(n)3 = e
−αεwm ln(ε)2

ln(n)3 ≥ e−ε
wm 1

w2

From Lemma 13, there is a restriction ρ of size m with E[F �ρ (Dε) = 0] ≥ E[F (Dε) = 0]
setting F ′ �ρ= 0. Any width w clause C would be in F ′, thus C �ρ= 0 since F ′ �ρ= 0. J

3.2 Covering Many Large Sets with Few Elements
We prove the simplest version of the clause elimination result, but slight variations will be
used in multiple places. In particular, in the non-monotone lower bounds, we can’t quite
reduce the problem to set cover, but the same algorithm still works with a similar bound.
Since the proofs look very similar, we only present one in detail. We show how to remove
many clauses from a monotone DNF with a small restriction

I Lemma 15. Let F be a monotone DNF where each clause has width at least w. Then for
any positive integer b, there is some restriction ρ with |ρ| = b only fixing variables to 0 such
that |F �ρ| < |F |ew ln(1− b

n+1)

Proof. The idea is to restrict the variable that intersects the most clauses to 0. This removes
at least the average number of clauses per variable, which when we have m clauses and have
fixed i variables is at least mw

n−i . After b restrictions, we get ρ with |ρ| = b and

|F �ρ| ≤ |F |
b−1∏
i=0

(
1− w

n− i

)
.

We prove this by induction then simplify. For the base case where b = 0, F is unchanged
and we get the empty product, so the inequality holds.

For b > 0, we have some ρ′ restricting b− 1 variables with |F �ρ′ | ≤ |F |
∏b−2
i=0

(
1− w

n−i

)
.

Then F �ρ′ is a function on n+ 1− b variables. Let s be the variable in the most clauses of
F �ρ′ . Then s is in at least |F �ρ′ | w

n+1−b clauses. Let ρ be ρ′ also fixing s to 0. Then:

|F �ρ| ≤ |F �ρ′ | − |F �ρ′ |
w

n+ 1− b = |F |
b−1∏
i=0

(
1− w

n− i

)
,

completing our induction. The above equation simplifies to:

|F �ρ| = |F |
b−1∏
i=0

(
1− w

n− i

)
< |F |e

∑b−1
i=0
− w
n−i = |F |e−w

∑n

i=n+1−b
1/i
. (1)

From calculus we have
b∑
i=a

1
i
≥
∫ b+1

a

1
x
dx = ln

(
b+ 1
a

)
,

FSTTCS 2020

19:8 Size Bounds on Low Depth Circuits for Promise Majority

which applied to Equation (1) gives

|F �ρ| < |F |e
−w
∑n

i=n+1−b
1
i ≤ |F |e−w ln(n+1

n+1−b) = |F |ew ln(1− b
n+1). J

The same idea gives the simpler bound:

I Corollary 16. Let F be a monotone DNF where each clause has width at least w. Then
for any integer b there is some restriction ρ with |ρ| ≤ b such that |F �ρ| < |F |e−wb/n.

With this idea, we can remove all large clauses fixing few variables. For the non-monotone
case, we only remove half the average number of clauses with each variable, giving:

I Corollary 17. Let F be a collection of clauses. Then there is some restriction ρ fixing n/p
variables such that F �ρ has width w = 2 ln(|F |)p.

3.3 Monotone DNF Size

We prove that any DNF with a good chance of “noticing” inputs from Dε has a large size.

I Lemma 18. Suppose for ε ∈ (0, 1/2), there is a monotone DNF F with F (Maj1ε) = 1 and
Pr[F (Dε) = 0] ≥ 1/nα for constant α. Then F has Ω̃

(
εn1+ ln(1−ε)

ln(ε)

)
clauses.

Proof. The idea is to restrict our function until we are only promised it outputs 1 on an
Maj1ε/ ln(n) input. Using Lemma 15, we can do this in such a way that eliminates a large
fraction of clauses. Then since we still need to output 1 if we have fewer than εn

ln(n) more
zeros, we can choose these remaining εn

ln(n) zeros to each eliminate one clause, showing that
there are still εn

ln(n) clauses left. This will imply that we must have started with the claimed
number of clauses.

For w = logε
(

ln(n)5

nε ln(ε)2

)
, by Corollary 14, there is restriction ρ with |ρ| ≤ εn

ln(n) and F �ρ

that has no clauses smaller than w. Denote F2 = F �ρ. Note F2 solves F2

(
Maj1ε(1−1/ ln(n))

)
=

1 and has no clauses smaller than w.
Now we use Lemma 15 to get restriction ρ2 that assigns εn(1− 2/ ln(n)) variables and:

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
.

Now we simplify the above exponent. For 0 < x < 1
2 and 0 < y, by a Taylor argument

we have ln(1− x+ y) ≤ ln(1− x) + 2y. Then for sufficiently large n:

ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
= ln

(
1− ε+ ε

n+ 1 + 2εn
n+ 1

1
ln(n)

)
≤ ln(1− ε) + 5ε

ln(n) .

Now including w,

w ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
≤

ln(n)− ln
(

ln(n)5

ε ln(ε)2

)
ln(1/ε)

(
ln(1− ε) + 5ε

ln(n)

)

<
ln(n) ln(1− ε)

ln(1/ε) −
ln
(

ln(n)5

ε ln(ε)2

)
ln(1− ε)

ln(1/ε) + 5
ln(1/ε) .

J. Cook 19:9

Then applying this to our size bound

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
<|F2|e

ln(n) ln(1−ε)
ln(1/ε) −

ln

(
ln(n)5

ε ln(ε)2

)
ln(1−ε)

ln(1/ε) + 5
ln(1/ε)

<|F2|n
ln(1−ε)
ln(1/ε) 2 ln(n)5e8.

Since ρ and ρ2 only restricts εn
(

1− 1
ln(n)

)
clauses, F2 �ρ2 (Maj1ε/ ln(n)) = 1. Further,

since F is monotone, ρ and ρ2 only fixed variables to 0. Therefore, F2 �ρ2 6= 1. Then F2 �ρ2

must have at least εn
ln(n) clauses. Thus:

εn

ln(n) ≤ |F2 �ρ2 | ≤ e8|F2|n
ln(1−ε)
ln(1/ε) 2 ln(n)5

εn1+ ln(1−ε)
ln(ε)

2e8 ln(n)6 ≤|F2|.

F has at least as many clauses as F2, thus |F | = Ω̃
(
εn1+ ln(1−ε)

ln(ε)

)
. J

3.4 Monotone Circuit Size Lower Bounds
Now we prove the monotone depth-3 promise majority circuit lower bounds.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth-3 circuit solving the ε-promise
majority problem must have size Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
.

Proof. Let F be a monotone depth-3 circuit computing ε-promise majority. We will refer
to the first level gates as clauses, and the second level gates as DNFs. Let |F | refer to the
number of clauses in F , and ‖F‖ refer to the number of DNFs. If F has more than n2+α

gates, we are done. So suppose it does not.
Let α = ln(1−ε+3ε/ ln(n))

ln(ε−3ε/ ln(n)) . We can show that

α >
ln(1− ε)

ln(ε) −O
(

1
ln(n)

)
.

So if we show |F | = Ω̃
(
ε3n2+α), then the second term in α becomes a constant.

First, from Corollary 17, we have a restriction ρ fixing εn
ln(n) variables such that any

clause wider than w = 2 ln(|F |) ln(n)
ε is set to 0. Let F2 = F �ρ. See that F2 solves the

ε
(

1− 1
ln(n)

)
-promise majority problem and has no clauses wider than 6 ln(n)2

ε .
By Lemma 18, every DNF G with Pr[G(Dε(1−3/ ln(n))) = 0] ≥ 1/n3+α has at least cεn1+α

clauses for some polylogarithm c. Let F3 be the sub circuit of F2 with only the DNFs of F2
larger than cεn1+α.

Since no clauses are wider than w, we can set any m clauses in F3 to 0 by fixing only
mw variables. Then, analogous to Corollary 16, there exists a restriction ρ2 fixing εn/ ln(n)
variables to 1 such that:

‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α(|ρ2|/w)/|F3|,

where ‖F3 �ρ2 ‖ is the number of DNFs in F3 not fixed to 1 or 0 under the restriction ρ2.

FSTTCS 2020

19:10 Size Bounds on Low Depth Circuits for Promise Majority

See that F2 �ρ2 still solves the ε(1−2/ ln(n))-majority problem. By a central limit theorem,
Dε(1−2/ ln(n)) has a constant nonzero probability of being in Maj0ε(1−2/ ln(n)). Since F2 has
fewer than n2+α DNFs (by assumption), some DNF in F2, A, must be 0 on Dε(1−2/ ln(n))
with probability greater than 1/n3+α. By Lemma 18, A has size at least cεn1+α. Thus A
must also be in F3. Thus ‖F3 �ρ2 ‖ ≥ 1.

Now we can compute a lower bound for |F3|:

1 ≤‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α |ρ2|

w|F3|

e
cε2n2+α 1

w|F3| ln(n) ≤‖F3‖

cε3n2+α 1
2 ln(|F |) ln(n)|F3| ln(n) ≤ ln (‖F3‖)

Ω̃
(
ε3n2+α) ≤|F3|.

Using the definition of α and that |F | > |F3| we get:

|F | ≥ Ω̃
(
ε3n2+α) ≥ Ω̃

(
ε3n

2+ ln(1−ε)
ln(ε) −O

(
1

ln(n)

))
≥ Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
. J

4 General Depth-3 Circuits

The proof of the size lower bound for general depth-3 circuits computing promise majority is
almost the same as the monotone case, except for the proof that DNFs must be large. We
only prove our DNF size lower bound here, the circuit lower bound follows similar to the
proof of Theorem 3.

I Lemma 19. Suppose ε ∈ (0, 1/2), and F is a DNF such that Pr[F (Dε) = 0] ≥ 1/nα for

some constant α and F (Maj1ε) = 1. Then F has size at least Ω̃
(
εn1+ ln(1−ε2)

2 ln(ε)

)
.

Proof. First, see that if F (Maj1ε) = 1 and F 6= 1, there must be at least εn clauses. Otherwise
we could fix one variable in each clause to 0 using fewer than nε zeros. Then for ε = Õ

(
1√
n

)
the lemma is satisfied. So take ε = ω

(
ln(n)3
√
n

)
.

Let m = εn(1−2/ ln(n)) and w = logε(
ln(n)5

nε ln(ε)2). We will define a sequence of probabilistic
restrictions, ρ0, ..., ρm, each restricting one more variable according to Dε. At the same time
we will construct a sequence of sub DNFs of F , F0, ..., Fm, each a subset of the last, so that
each Fi �ρi has width at least w.

Informally, with decent probability each Fi is significantly smaller than the last. Thus by
a Chernoff bound, with high probability Fm has a small fraction of the clauses of F . Then we
use Corollary 14 to eliminate the small width clauses in Fm �ρm . With good probability the
DNF will still not be 1, in which case it must still have an almost linear number of clauses.
Thus there must have been many clauses to destroy so many and have so many left.

Let ρ0 restrict no variables and F0 be F restricted to clauses wider than w. Then for any i,
let ρi be ρi−1 plus restricting whichever variable appears in the most clauses in Fi−1 �ρi−1 to
one with probability ε and 0 otherwise. Then let Fi be the clauses such that they have width
greater than w in F �ρi . See that Fi ⊆ Fi−1, since further restrictions will only decrease the
size and number of clauses.

With probability at least ε, ρi will eliminate at least |Fi−1|w
2(n−i+1) clauses. Thus:

Pr
[
|Fi+1| ≤ |Fi|

(
1− w

2(n− i)

)]
≥ ε.

J. Cook 19:11

Let k be the number of times the above inequality holds. By an argument similar to
Lemma 15:

|Fm| ≤ |F0|
k−1∏
i=0

(
1− w

2(n− i)

)k
≤ |F0|e

w
2 ln(1− k

n+1).

See the expected value of k is at least mε. By a Chernoff bound, we have:

Pr[k < (1− 1
ln(n))εm] ≤ e−

εm
2 ln(n)2 < e

− ε2n
ln(n)3 .

Now, notice that ρm only sets variables according to an ε biased distribution. So if we
just finish sampling the rest of the variables from Dε, it is the same as sampling all the
variables from Dε. Thus:

Eρm [Pr[F �ρm (Dε) = 0]] = Pr[F (Dε) = 0].

We need high probability that F �ρm still outputs 0 with polynomial probability on Dε.
Applying the above equation and our assumption we get:

1
nα
≤Eρm [Pr[F �ρm (Dε) = 0]]

≤ 1
n2α + Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]
1
nα
− 1
n2α ≤Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]
.

The probability that ρm has both Pr[F �ρm (Dε) = 0] > 1/n2α and k > (1− 1
ln(n))εm is

at least 1
nα −

1
n2α − e

− ε2n
ln(n)3 , which for large n is positive. Then take such ρm as ρ.

By Corollary 14, we have a restriction of F |ρ, ρ′, which restricts εn/ ln(n) variables and
leaves no clauses of width less than w, and has

Pr[F �ρ�ρ′ (Dε) = 0] ≥ Pr[F �ρ (Dε) = 0] ≥ 1
n2α .

Now call F ′ = F �ρ�ρ′ . See that F ′ has fixed εn(1− 1
ln(n)) variables. Thus it still satisfies

F ′(Maj1ε/ ln(n)) = 1. Since F ′ 6= 1, |F ′| ≥ εn/ ln(n). The clauses in F ′ had width greater
than w in Fm, otherwise ρ′ would have set them to 0. Thus |Fm| ≥ εn/ ln(n). Together we
have:

εn

ln(n) ≤|F0|e
w
2 ln(1− k

n+1)

≤|F0|e
w
2 ln
(

1− (1−1/ ln(n))εm
n+1

)
≤|F0|e

ln

(
nε ln(ε)2

ln(n)5

)
2 ln(1/ε) (ln(1−ε2)+6ε2/ ln(n))

Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
≤|F0|.

Thus F has at least Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
clauses. J

FSTTCS 2020

19:12 Size Bounds on Low Depth Circuits for Promise Majority

5 Circuit Upper Bounds

This section mostly uses standard techniques and the details are left for the full paper. A
close analysis of Ajtai’s [2] promise majority circuits gives:

I Theorem 20. For any ε ∈ (0, 1/2), there exists monotone, depth-3 circuits solving the
ε-promise majority problem with size O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

This also gives the corollary we will use for our stronger upper bounds for higher depth.

I Corollary 21. For any ε = O
(

ln(ln(n))
ln(n)

)
, there are monotone, depth-3 circuits solving the

ε-promise majority problem with size O
(
n2).

Using random walks on expander graphs, we can amplify our promise. The polylogarithmic
factor in the size depends on ε and k.

I Lemma 22. For any constant k and ε ∈ (0, 1/2), there exists P-Uniform, monotone,
depth-3 circuits with size Õ(n) amplifying a Maj0ε input to a Maj0 1

ln(n)k
output and a Maj1ε

input to a Maj1 1
ln(n)k

output.

With amplification and quadratic-size circuits, we can trivially prove the existence of
depth-4, size-Õ(n2) circuits for promise majority. But the circuit size only depends on the
number of potential inputs (not the number of bits used to represent them). Thus the circuit
has size O(n2).

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-4,
size-O

(
n2) circuits solving the ε-promise majority problem.

We can apply promise majority circuits in a divide and conquer fashion to get the
following:

I Lemma 23. If there are depth-3 circuits with size nα solving 1
ln(n) -promise majority, then

for any positive integer k, there are depth-(1 + 2k) circuits solving 1
ln(n)k -promise majority

with size

kn

1

1−(α−1
α)k ,

which is uniform and monotone if the depth-3 circuits are uniform and monotone.

Combining Lemma 23 with amplification and our quadratic-sized majority gives:

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-(2 + 2k)
circuits solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

For uniform circuits, we refine Viola’s result [14] by giving a more efficient way to use the
random walks in the existing algorithm.

I Theorem 24. There exists P-uniform, monotone, depth-3, size-O
(
n3+o(1)) circuits solving

the 1
ln(n) -promise majority problem.

Again applying amplification and divide and conquer we get:

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-(2 + 2k)

circuits solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

J. Cook 19:13

6 Closing Statements & Open Problems

Some technical details, especially the upper bounds, have been left to the full version of the
paper [7] on ECCC at https://eccc.weizmann.ac.il/report/2020/122/.

These results are essentially tight in the following sense. For a wide range of ε, between
ε = o(1) and ε = n−o(1), the optimal size of depth-3 circuits for ε-promise majority is n2±o(1).

These lower bounds do not obviously extend to depth-4 circuits, so the right size for
promise majority at higher depths is less clear. Better amplification plus Ajtai’s promise
majority circuit can actually achieve circuits with size significantly smaller than n2. So our
upper bounds are not optimal for depths greater than 3.

For depth-3 circuits computing promise majority, we gave four different size bounds: a
lower bound for monotone circuits, a lower bound for general circuits, an upper bound for
monotone circuits, and an upper bound for uniform monotone circuits. Each of these bounds
differs by a polynomial factor, but we suspect they are equal.

Finally, here are some open problems:
1. Is there a way to derandomize any depth-d, size-O(n), randomized circuit to get a

depth-(d+ 2), size-O(n2), deterministic circuit?
We did not find any function f that has a randomized, depth-d, size-O(n) circuit, R,
computing f , but no deterministic, depth-(d+ 2), size-O(n2) circuit computing f . We
only showed that taking promise majority over O(n) copies of R (as you would with
an ideal PRG) would give super-quadratic circuits. There may always be some other
deterministic, depth-(d+ 2), size-O(n2) circuit computing f .

2. Do negations help solve promise majority?
Our lower bounds for monotone circuits are better than our general lower bounds. It
does not seem like negations should help, but we were unable to rule it out.

3. What is optimal size for depth-3 circuits computing ε-promise majority?
For constant ε ∈ (0, 1/2), there is a polynomial gap between even our monotone lower
bounds Ω̃

(
n2+ ln(1−ε)

ln(ε)

)
, and upper bounds O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
.

For constant α ∈ (0, 1/2) and ε = n−α, there is a polynomial gap between our lower
bounds Ω̃

(
n2−3α) and our upper bounds Õ

(
n2−2α).

4. What is the optimal size for depth greater than 3?
Chaudhuri and Radhakrishnan [6] gave size lower bounds of roughly Ω

(
n1+ 1

22d
)
for

depth-d ε-promise majority circuits, while we only achieve upper bounds of roughly
Ω
(
n

1+ 1
2d/2−1

)
.

5. Do these bounds extend to AC0 with parity, or other circuit classes below TC0?
6. Are there uniform depth-3 circuits for promise majority with the same size as Ajtai’s

construction? Can we get uniform, depth-4, quadratic size circuits for promise majority?

References
1 Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

Annual Symposium on Foundations of Computer Science, SFCS ’78, page 75–83, USA, 1978.
IEEE Computer Society.

2 Miklós Ajtai. Sigma11-formulae on finite structures. Ann. Pure Appl. Log., 24:1–48, 1983.
3 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In

Computational Complexity Theory, volume 13, pages 1–20, 1993.
4 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.

In STOC ’84, pages 471–474, 1984.

FSTTCS 2020

19:14 Size Bounds on Low Depth Circuits for Promise Majority

5 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority. In
Proceedings of the 36th International Colloquium on Automata, Languages and Programming:
Part I, ICALP ’09, page 59–70, Berlin, Heidelberg, 2009. Springer-Verlag.

6 Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit complexity.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, page 30–36, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/237814.237824.

7 Joshua Cook. Size bounds on low depth circuits for promise majority. In The Electronic
Colloquium on Computational Complexity, 2020.

8 Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudor-
andomness from hardness. In To appear in The proceedings of the 61st IEEE Symposium on
Foundations of Computer Science, 2020.

9 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, page 6–20, New
York, NY, USA, 1986. Association for Computing Machinery.

10 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin. Yi. Optimal depth, very small
size circuits for symmetrical functions in ac0. Information and Computation, 108(2):200–211,
1994.

11 Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi. More on AC0[⊕] and variants
of the majority function. In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2019), volume 150, pages 22:1–22:14,
2019.

12 Ryan O’Donnell and Karl Wimmer. Approximation by dnf: Examples and counterexamples. In
Proceedings of the 34th International Conference on Automata, Languages and Programming,
ICALP’07, page 195–206, Berlin, Heidelberg, 2007. Springer-Verlag.

13 Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-threshold circuits.
Information Processing Letters, 39:143–146, 1991.

14 Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18:337–375, 2009.

15 Emanuele Viola. Randomness buys depth for approximate counting. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 230–239, 2011.

https://doi.org/10.1145/237814.237824

Lower Bounds for Semi-adaptive Data Structures
via Corruption
Pavel Dvořák
Charles University, Prague, Czech Republic
koblich@iuuk.mff.cuni.cz

Bruno Loff
INESC-Tec and University of Porto, Portugal
bruno.loff@gmail.com

Abstract
In a dynamic data structure problem we wish to maintain an encoding of some data in memory,
in such a way that we may efficiently carry out a sequence of queries and updates to the data. A
long-standing open problem in this area is to prove an unconditional polynomial lower bound of
a trade-off between the update time and the query time of an adaptive dynamic data structure
computing some explicit function. Ko and Weinstein provided such lower bound for a restricted
class of semi-adaptive data structures, which compute the Disjointness function. There, the data
are subsets x1, . . . , xk and y of {1, . . . , n}, the updates can modify y (by inserting and removing
elements), and the queries are an index i ∈ {1, . . . , k} (query i should answer whether xi and y are
disjoint, i.e., it should compute the Disjointness function applied to (xi, y)). The semi-adaptiveness
places a restriction in how the data structure can be accessed in order to answer a query. We
generalize the lower bound of Ko and Weinstein to work not just for the Disjointness, but for any
function having high complexity under the smooth corruption bound.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases semi-adaptive dynamic data structure, polynomial lower bound, corruption
bound, information theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.20

Funding Pavel Dvořák: Supported by Czech Science Foundation GAČR (grant #19-27871X).
Bruno Loff : This project was financed by the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia, through national funds, and co-funded by the FEDER, where applicable.
Bruno Loff was the recipient of the postdoctoral FCT fellowship number SFRH/BPD/116010/2016.

Acknowledgements We would like to thank Michal Koucký, who worked with us on this paper
until the coronavirus pandemic forced him busily away. We would also like to thank Arkadev
Chattopadhyay for helpful pointers.

1 Introduction

In a dynamic data structure problem we wish to maintain an encoding of some data in
memory, in such a way that we may efficiently carry out a sequence of queries and updates
to the data. A suitable computational model to study dynamic data structures is the cell
probe model of Yao [21]. Here we think of the memory divided into registers, or cells, where
each cell can carry w bits, and we measure efficiency by counting the number of memory
accesses, or probes, needed for each query and each update – these are respectively called the
query time tq and update time tu. The main goal of this line of research is to understand the
inherent trade-off between w, tq and tu, for various interesting problems. Specifically, one
would like to show lower bounds on t = max{tq, tu} for reasonable choices of w (which is
typically logarithmic in the size of the data).

© Pavel Dvořák and Bruno Loff;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koblich@iuuk.mff.cuni.cz
mailto:bruno.loff@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Lower Bounds for Semi-adaptive Data Structures via Corruption

The first lower bound for this setting was proven by Fredman and Saks [8], which proved
t = Ω

(
logn/ log logn

)
for various problems. These lower bounds were successively improved

[15, 17, 13, 14], and we are now able to show that certain problems with non-Boolean
queries require t = Ω

(
(logn/ log logn)2), and certain problems with Boolean queries require

t = Ω
(
(logn/ log logn)3/2).

The major unsolved question in this area is to prove a polynomial lower bound on t. For
example, consider the dynamic reachability problem, where we wish to maintain a directed
n-vertex graph in memory, under edge insertions and deletions, while being able to answer
reachability queries (“is vertex i connected to vertex j?”). Is it true that any scheme for the
dynamic reachability problem requires t = Ω(nδ), for some constant δ > 0? Indeed, such
a lower bound is known under various complexity-theoretic assumptions1, the question is
whether such a lower bound may be proven unconditionally.

In an influential paper [18], Mihai Pătraşcu proposed an approach to this unsolved question.
He defines a data structure problem, called the multiphase problem. Let us represent partial
functions f : {0, 1}n × {0, 1}n → {0, 1} as total functions f ′ : {0, 1}n × {0, 1}n → {0, 1, ∗}
where f ′(x, y) = ∗ if f(x, y) is not defined. Then associated with a partial Boolean function
f : {0, 1}n ×{0, 1}n → {0, 1, ∗}, and a natural number k ≥ 1, we may define a corresponding
multiphase problem of f as the following dynamic process:
Phase I - Initialization. We are given k inputs x1, . . . , xk ∈ {0, 1}n, and are allowed to

preprocess this input in time nk · tp.
Phase II - Update. We are then given another input y ∈ {0, 1}n, and we have time n · tu to

read and update the memory locations from the data structure constructed in Phase I.
Phase III - Query. Finally, we are given a query i ∈ [k], we have time tq to answer the

question whether f(xi, y) = 1. If f(xi, y) is not defined, the answer can be arbitrary.
Typically we will have k = poly(n). Let us be more precise, and consider randomized
solutions to the above problem.

I Definition 1 (Scheme for the multiphase problem of f). Let f : {0, 1}n×{0, 1}n → {0, 1, ∗}
be a partial Boolean function. A scheme for the multiphase problem of f with preprocessing
time tp, update time tu and query time tq is a triple D =

(
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)
, where:

E :
(
{0, 1}n

)k → (
{0, 1}w

)s maps the input x to the memory contents E(x), where
each of the s memory locations holds w bits. E must be computed in time nk · tp by a
Random-Access Machine (RAM).
For each y ∈ {0, 1}n, Uy :

(
{0, 1}w

)s → (
{0, 1}w

)u is a decision-tree of depth ≤ n · tu,
which reads E(x) and produces a sequence Uy

(
E(x)

)
of u updates.2

For each i ∈ [k], Qi :
(
{0, 1}w

)s × ({0, 1}w)u → {0, 1} is a decision-tree of depth ≤ tq.3

For all x ∈
(
{0, 1}n

)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) 6= ∗ =⇒ Qi
(
E(x), Uy(E(x))

)
= f(xi, y).

1 See [16, 1]. Strictly speaking, these conditional lower bounds only work if the preprocessing time, which
is the time taken to encode the data into memory, is also bounded. But we will ignore this distinction.

2 In the usual way of defining the update phase, we have a read/write decision-tree Uy which changes the
very same cells that it reads. But when w = Ω(log s), this can be seen to be equivalent, up to constant
factors, to the definition we present here, where we have a decision-tree Uy that writes the updates on a
separate location. In order to simulate a scheme that uses a read/write decision-tree, we may use a hash
table with O(1) worst-case lookup time, such as cuckoo hashing. Then we have a read-only decision-tree
U ′

y(E(x)) whose output is the hash table containing all the i ∈ [s] which were updated by Uy(E(x)),
associated with their final value in the execution of Uy(E(x)). Note that the hash table itself is static.

3 All our results will hold even if Qi is allowed to depend arbitrarily on xi. This makes for a less natural
model, however, so we omit this from the definitions.

P. Dvořák and B. Loff 20:3

In a randomized scheme for the multiphase problem of f , each Uy and Qi are distributions
over decision trees, and it must hold that for all x ∈

(
{0, 1}n

)k, y ∈ {0, 1}n, and i ∈ [k],

f(xi, y) 6= ∗ =⇒ Pr
Qi,Uy

[
Qi
(
E(x), Uy(E(x))

)
= f(xi, y)

]
≥ 1− ε.

The value ε is called the error probability of the scheme.

Pătraşcu [18] considered this problem where f = DISJ is the Disjointness function:

DISJ(x, y) =
{

0 if there exists i ∈ [n] such that xi = yi = 1
1 otherwise

He conjectured that any scheme for the multiphase problem of DISJ will necessarily have
max{tp, tu, tq} ≥ nδ for some constant δ > 0.

Pătraşcu shows that such lower bounds on the multiphase problem for DISJ would imply
polynomial lower bounds for various dynamic data structure problems. For example such
lower bounds would imply that dynamic reachability requires t = Ω(nδ). He also shows
that these lower bounds hold true under the assumption that 3SUM has no sub-quadratic
algorithms.

Finally, Pătraşcu then defines a 3-player Number-On-Forehead (NOF) communication
game, such that lower bounds on this game imply matching lower bounds for the multiphase
problem. The game associated with a function f : {0, 1}n × {0, 1}n → {0, 1} is as follows:
1. Alice is given x1, . . . , xk ∈ {0, 1}n and i ∈ [k], Bob gets y ∈ {0, 1}n and i ∈ [k] and

Charlie gets x1, . . . , xk and y.
2. Charlie sends a private message of `1 bits to Bob and then he is silent.
3. Alice and Bob communicate `2 bits and want to compute f(xi, y).
Pătraşcu [18] conjectured that if `1 is o(k), then `2 has to be bigger than the communication
complexity of f . However, this conjecture turned out to be false. The randomized com-
munication complexity of DISJ is Ω(n) [19, 10, 3], but Chattopadhyay et al. [6] construct
a protocol for f = DISJ where both `1, `2 = O

(√
n · log k

)
. They further show that any

randomized scheme in the above model can be derandomized.
So the above communication model is more powerful than it appears at first glance.4

However, a recent paper by Ko and Weinstein [11] succeeds in proving lower bounds for a
simpler version of the multiphase problem, which translate to lower bounds for a restricted
class of dynamic data structure schemes. They manage to prove a lower bound of Ω(

√
n)

for the simpler version of the multiphase problem which is associated with the Disjointness
function f = DISJ. Our paper generalizes their result:

We generalize their lower bound to any function f having large complexity according
to the smooth corruption bound, under a product distribution. Disjointness is such a
function [2], but so is Inner Product, Gap Orthogonality, and Gap Hamming Distance [20].
The new lower-bounds we obtain (for Inner-product, Gap Orthogonality, and Gap
Hamming Distance) are stronger – Ω(n) instead of the lower-bound Ω(

√
n) for disjointness.

As far as was known before our result, it could well have been that every function
had a scheme for the simpler version of the multiphase problem using only O(

√
n)

communication.

4 The conjecture remains that if `1 = o(k), then `2 has to be larger than the maximum distributional
communication complexity of f under a product distribution. This is Θ̃

(√
n
)
for Disjointness [2].

FSTTCS 2020

20:4 Lower Bounds for Semi-adaptive Data Structures via Corruption

Ko and Weinstein derive their lower-bound via a cut-and-paste lemma which works
specifically for disjointness. This cut-and-paste lemma is a more robust version of the
one appearing in [3], made to work not only for protocols, where the inputs x and y are
independent given the transcript z of the protocol, but also for random-variables that are
“protocol-like”, namely any (x,y, z) where I(x : y | z) is close to 0. Instead, we directly
derive the existence of a large nearly-monochromatic rectangle, from the existence of such
protocol-like random-variables, which is what then allows us to use the smooth corruption
bound. This result is our core technical contribution, and may be of independent interest.

All of the above lower bounds will be shown to hold also for randomized schemes, and
not just for deterministic schemes.

1.1 Semi-adaptive Multiphase Problem
Let us provide rigorous definitions.

I Definition 2 (Semi-adaptive random data structure [11]). Let f : {0, 1}n×{0, 1}n → {0, 1, ∗}
be a partial function. A scheme D =

(
E, {Uy}y∈{0,1}n , {Qi}i∈[k]

)
for the multiphase problem

of f is called semi-adaptive if any path on the decision-tree Qi :
(
{0, 1}w

)s × ({0, 1}w)u →
{0, 1} first queries the first part of the input (the E(x) part), and then queries the second
part of the input (the U(E(x)) part). If D is randomized, then this property must hold for
every randomized choice of Qi.

We point out that the reading of the cells in each part is completely adaptive. The restriction
is only that the data structure cannot read cells of E(x) if it already started to read cells of
U(E(x)). Ko and Weinstein state their result for deterministic data structures, i.e., ε = 0
thus the data structure always returns the correct answer.

I Theorem 3 (Theorem 4.9 of Ko and Weinstein [11]). Let k ≥ ω(n). Any semi-adaptive
deterministic data structure that solves the multiphase problem of the DISJ function, must
have either tu · n ≥ Ω

(
k/w

)
or tq ≥ Ω

(√
n/w

)
.

To prove the lower bound they reduce the semi-adaptive data structure into a low correlation
random process.

I Theorem 4 (Reformulation of Lemma 4.1 of Ko and Weinstein [11]). Let x1, . . . ,xk be
random variables over {0, 1}n and each of them is independently distributed according to
the same distribution µ1 and let y be a random variable over {0, 1}n distributed according
to µ2 (independently of x1, . . . ,xk). Let D be a randomized semi-adaptive scheme for the
multiphase problem for a partial function f : {0, 1}n×{0, 1}n → {0, 1, ∗} with error probability
bounded by ε. Then, for any p ≤ o(k) there is a random variable z ∈ {0, 1}m and i ∈ [k] such
that:
1. Pr

[
f(xi,y) 6= ∗, zm 6= f(xi,y)

]
≤ ε.

2. I
(
xi : y z

)
≤ tq · w + o(tq · w).

3. I
(
y : z

)
≤ tq · w.

4. I
(
xi : y | z

)
≤ O

(
tu·n·w
p

)
.

Above, I stands for mutual information between random variables, see Section 2.2 for the
definition. The random variable z consists of some xj ’s and transcripts of query phases of D
for some j ∈ [k]. The theorem can be interpreted as saying that the last bit of z predicts
f(xi,y), z has little information about xi and y, and the triple (xi,y, z) is “protocol-like”,
in the sense that xi and y are close to being independent given z. Ko and Weinstein [11]

P. Dvořák and B. Loff 20:5

proved Theorem 4 for the deterministic schemes for the DISJ function and in the case where
µ1 = µ2. However, their proof actually works for any (partial) function f and for any two,
possibly distinct distributions µ1 and µ2. Moreover, their proof also works for randomized
schemes. The resulting statement for randomized schemes for any function f is what we
have given above. To complete the proof of their lower bound, Ko and Weinstein proved
that if we set p (and k) large enough so that I

(
xi : y | z

)
≤ o(1) then such random variable

z cannot exist when f is the DISJ function. It is this second step which we generalize.
Let f : X × Y → {0, 1} be a function and µ be a distribution over X × Y . A set

R ⊆ X × Y is a rectangle if there exist sets A ⊆ X and B ⊆ Y such that R = A×B. For
b ∈ {0, 1} and 0 ≤ ρ ≤ 1, we say the rectangle R is ρ-error b-monochromatic for f under µ if
µ
(
R ∩ f−1(1− b)

)
≤ ρ · µ

(
R
)
. We say the distribution µ is a product distribution if there are

two independent distribution µ1 over X and µ2 over Y such that µ(x, y) = µ1(x)× µ2(y).
For 0 ≤ α ≤ 1

2 , the distribution µ is α-balanced according to f if µ
(
f−1(0)

)
, µ
(
f−1(1)

)
≥ α.

We will prove that the existence of a random variable z given by Theorem 4 implies that, for
any b ∈ {0, 1}, any balanced product distribution µ and any function g which is “close” to
f , there is a large (according to µ) ρ-error b-monochromatic rectangle for g in terms of tq.
This technique is known as smooth corruption bound [4, 5] or smooth rectangle bound [9].
We denote the smooth corruption bound of f as scbρ,λµ . Informally, scbρ,λµ (f) ≥ s if there is
b ∈ {0, 1} and a partial function g : X × Y → {0, 1, ∗} which is close5 to f such that any
ρ-error b-monochromatic rectangle R ⊆ X × Y for g has size (under µ) at most 2−s. We will
define smooth corruption bound formally in the next section. Thus, if we use Theorem 4 as
a black box we generalize Theorem 3 for any function of large corruption bound.

I Theorem 5 (Main Result). Let λ, ε̃, α̃ ≥ 0 such that α ≥ 2ε for ε = ε̃+λ, α = α̃−λ. Let µ
be a product distribution over {0, 1}n×{0, 1}n such that µ is α̃-balanced according to a partial
function f : {0, 1}n × {0, 1}n → {0, 1, ∗}. Any semi-adaptive randomized scheme for the
multiphase problem of f , with error probability bounded by ε̃, must have either tu ·n ≥ Ω

(
k/w

)
,

or

tq · w ≥ Ω
(
α · scbO(ε/α),λ

µ (f)
)
.

We point out that Ω and O in the bound given above hide absolute constants independent of
α, ε and λ.

As a consequence of our main result, and of previously-known bounds on corruption,
we are able to show new lower-bounds of tq = Ω(nw) against semi-adaptive schemes for the
multiphase problem of the Inner Product, Gap Orthogonality and Gap Hamming Distance
functions (where the gap is

√
n). These lower-bounds hold assuming that tu = o(k

wn). They
follow from the small discrepancy of Inner Product, and from a bound shown by Sherstov on
the corruption of Gap Orthogonality, followed by a reduction to Gap Hamming Distance
[20]. This result also gives an alternative proof of the same lower-bound proven by Ko and
Weinstein [11], for the Disjointness function, of tq = Ω(

√
n
w). This follows from the bound on

corruption of Disjointness under a product distribution, shown by Babai et al. [2].
The paper is organized as follows. In Section 2 we give important notation, and the basic

definitions from information theory and communication complexity. The proof of Theorem 5
appears in Section 3. The various applications appear in Section 4.

5 “Closeness” is measured by the parameter λ ∈ R, see Section 2.1 for the formal definition.

FSTTCS 2020

20:6 Lower Bounds for Semi-adaptive Data Structures via Corruption

2 Preliminaries

We use a notational scheme where sets are denoted by uppercase letters, such as X and Y ,
elements of the sets are denoted by the same lowercase letters, such as x ∈ X and y ∈ Y , and
random variables are denoted by the same lowercase boldface letters, such as x and y. We
will use lowercase greek letters, such as µ, to denote distributions. If µ is a distribution over
a product set, such as X×Y ×Z, and (x, y, z) ∈ X×Y ×Z, then µ(x, y, z) is the probability
of seeing (x, y, z) under µ. We will sometimes denote µ by µ(x, y, z), using non-italicized
lowercase letters corresponding to X ×Y ×Z. This allows us to to use the notation µ(x) and
µ(y) to denote the x and y-marginals of µ, for example; then if we use the same notation
with italicized lowercase letters, we get the marginal probabilities, i.e., for each x ∈ X and
y ∈ Y

µ(x) =
∑
y,z

µ(x, y, z) µ(y) =
∑
x,z

µ(x, y, z).

If y ∈ Y , then we will also use the notation µ(x | y) to denote the x-marginal of µ conditioned
seeing the specific value y. Then for each x ∈ X and y ∈ Y , we have

µ(x | y) =
∑
z

µ(x, y, z).

We will also write (x,y, z) ∼ µ to mean that (x,y, z) are random variables chosen according to
the distribution µ(x, y, z), i.e., for all (x, y, z) ∈ X×Y ×Z, Pr[x = x,y = y, z = z] = µ(x, y, z).
Naturally if A ⊆ X × Y × Z, then µ(A) =

∑
(x,y,z)∈A µ(x, y, z). We let supp(µ) denote the

support of µ, i.e., the set of (x, y, z) with µ(x, y, z) > 0.
We now formally define the smooth corruption bound and related measures from commu-

nication complexity, and refer the book by Kushilevitz and Nisan [12] for more details. At
the end of this section we provide necessary notions of information theory which are used in
the paper, and for more details on these we refer to the book by Cover and Thomas [7].

2.1 Rectangle Measures
Let f : X × Y → {0, 1, ∗} be a partial function, where f(x, y) = ∗ means f is not defined
on (x, y). Let µ(x, y) be a distribution over X × Y . We say that f is λ-close to a partial
function g : X × Y → {0, 1, ∗} under µ if

Pr
(x,y)∼µ

[
f(x, y) 6= g(x, y)

]
≤ λ.

For b ∈ {0, 1}, ρ ∈ [0, 1], let

Rρ,bµ (f) =
{
R ⊆ X × Y rectangle | µ

(
R ∩ f−1(1− b)

)
≤ ρ · µ

(
R
)}

be the set of ρ-error b-monochromatic rectangles for f under µ. The complexity measure
mono quantifies how large almost b-monochromatic rectangles can be for both b ∈ {0, 1}:

monoρµ(f) = min
b∈{0,1}

max
R∈Rρ,bµ (f)

µ(R)

Using mono we can define the corruption bound of a function as cbρµ(f) = log 1
monoρµ(f) and

the smooth corruption bound as

scbρ,λµ (f) = max
g: λ-close to f under µ

cbρµ(g).

Thus, if scbρ,λµ (f) ≥ s then there is a b ∈ {0, 1} and a function g which λ-close to f under µ
such that for any ρ-error b-monochromatic rectangle for g under µ it holds that µ(R) ≤ 2−s.

P. Dvořák and B. Loff 20:7

I Remark. In Razborov’s paper where an Ω(n) lower-bound for disjointness is first proven
[19], the (implicitly given) definition of a ρ-error b-monochromatic rectangle is µ(R∩ f−1(1−
b)) ≤ ρ · µ(R ∩ f−1(b)). Later, a strong direct product theorem for corruption (under
product distributions) was proven by Beame et al. [4], which uses instead the condition
that µ(R \ f−1(b)) ≤ ρ · µ(R). The definition we present above comes from [20], where the
condition is (we repeat it here) that µ(R ∩ f−1(1− b)) ≤ ρ · µ(R). So we have three different
definitions of ρ-error b-monochromatic rectangle, and thus three different corruption bounds.
Now, if the distribution µ is supported on the domain of f , all these three definitions result
in (roughly) equivalent complexity measures. But if µ attributes some mass to inputs where
f is undefined (which is sometimes useful if µ is a product distribution, as in our case), then
the definitions are no longer equivalent. Our lower-bound will hold for any of the definitions,
but the proof is somewhat simpler for the definition used in Sherstov’s paper [20], which is
the only corruption-based lower-bound we use, where µ attributes mass to undefined inputs.

The notion monoρµ is related to the discrepancy of a function:

discµ(f) = max
R : rectangle of X × Y

∣∣∣µ(R ∩ f−1(0)
)
− µ

(
R ∩ f−1(1)

)∣∣∣.
It is easy to see that for a total function f holds that discµ(f) ≥ (1− 2ρ) ·monoρµ(f) for any
ρ. Thus, Theorem 5 will give us lower bounds also for functions of small discrepancy.

2.2 Information Theory
We define several measures from information theory. If µ′(z), µ(z) are two distributions such
that supp(µ′) ⊆ supp(µ), then the Kullback-Leibler divergence of µ′ from µ is

DKL
(
µ′ ‖ µ

)
=
∑
z

µ′(z) log µ
′(z)
µ(z) .

With Kullback-Leibler divergence we can define the mutual information, which measures
how close (according to KL divergence) is a joint distribution to the product of its marginals.
If we have two random variables (x,y) ∼ µ(x, y), then we define their mutual information to
be

I
(
x : y

)
= DKL

(
µ(x, y) ‖ µ(x)× µ(y)

)
= E
y∼µ(y)

[
DKL

(
µ(x | y) ‖ µ(x)

)]
.

If we have three random variables (x,y, z) ∼ µ(x, y, z), then the mutual information of x
and y conditioned by z is

I
(
x : y | z

)
= E
z∼µ(z)

[
I
(
x : y | z = z

)]
= E
z∼µ(z)

[
DKL

(
µ(x, y | z) ‖ µ(x | z)× µ(y | z)

)]
We present several facts about mutual information, the proofs can be found in the book of
Cover and Thomas [7].

I Fact 6 (Chain Rule). For any random variables x1,x2,y and z holds that

I
(
x1x2 : y | z

)
= I
(
x1 : y | z

)
+ I
(
x2 : y | z,x1

)
.

Since mutual information is never negative, we have the following corollary.

I Corollary 7. For any random variables x,y and z holds that I
(
x : y

)
≤ I
(
x : y z

)
.

FSTTCS 2020

20:8 Lower Bounds for Semi-adaptive Data Structures via Corruption

The `1-distance between two distributions is defined as∥∥µ′(z)− µ(z)
∥∥

1 =
∑
z

∣∣µ′(z)− µ(z)
∣∣.

There is a relation between `1-distance and Kullback-Leibler divergence.

I Fact 8 (Pinsker’s Inequality). For any two distributions µ′(z) and µ(z), we have∥∥µ′(z)− µ(z)
∥∥

1 ≤
√

2 · DKL
(
µ′(z) ‖ µ(z)

)
3 The Proof of Theorem 5

Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a partial function. Suppose there is a semi-adaptive
random scheme D for the multiphase problem of f with error probability bounded by ε̃
such that tu · n ≤ o

(
k/w

)
. Let µ(x, y) = µ1(x) × µ2(y) be a product distribution over

{0, 1}n × {0, 1}n, such that µ(x, y) is α̃-balanced according to f . Let b ∈ {0, 1} and
g : {0, 1}n × {0, 1}n → {0, 1, ∗} be a partial function which is λ-close to f under µ. We will
prove there is a large almost b-monochromatic rectangle for g.

Let x1, . . . ,xk be independent random variables each of them distributed according to
µ1 and y be an independent random variable distributed according to µ2. Let the random
variable z ∈ {0, 1}m and the index i ∈ [k] be given by Theorem 4 applied to the random
variables x1, . . . ,xk,y and the function f . For simplicity we denote x = xi.

We will denote the joint distribution of (x1, . . . ,xk,y, z) by µ(x1, . . . , xk, y, z). Note
that here the notation is consistent, in the sense that µ(xi, y) = µ1(xi) × µ2(y) for all
i ∈ [k], x, y ∈ {0, 1}n. We will then need to keep in mind that µ(z) is the z-marginal of the
joint distribution of (x1, . . . ,xk,y, z).

By f(x,y) 6=∗ zm we denote the event that the random variable zm gives us the wrong
answer on an input from the support of f , i.e. f(x,y) 6= ∗ and f(x,y) 6= zm hold simultane-
ously. By Theorem 4 we know that Pr

[
f(x,y) 6=∗ zm

]
≤ ε̃. Since f and g are λ-close under

µ, we have that µ is still balanced according to g and g(x,y) 6=∗ zm with small probability,
as stated in the next observation.

I Observation 9. Let α = α̃− λ and ε = ε̃+ λ. For the function g it holds that
1. The distribution µ(x, y) is α-balanced according to g.
2. Pr

[
g(x,y) 6=∗ zm

]
≤ ε.

Proof. Let b′ ∈ {0, 1}. We will bound µ
(
g−1(b′)

)
.

α̃ ≤ Pr
[
f(x,y) = b′

]
= Pr

[
f(x,y) = b′, f(x,y) = g(x,y)

]
+ Pr

[
f(x,y) = b′, f(x,y) 6= g(x,y)

]
≤Pr

[
g(x,y) = b′

]
+ λ.

Thus, by rearranging we get µ
(
g−1(b′)

)
≥ α̃ − λ = α. The proof of the second bound is

similar:

Pr
[
g(x,y) 6=∗ zm

]
= Pr

[
f(x,y) 6=∗ zm, f(x,y) = g(x,y)

]
+ Pr

[
g(x,y) 6=∗ zm, f(x,y) 6= g(x,y)

]
≤ ε̃+ λ = ε. J

Let c be the bound on I
(
x : y z

)
and I

(
y : z

)
given by Theorem 4. Since I

(
x : z

)
≤

I
(
x : y z

)
, we have I

(
x : z

)
, I
(
y : z

)
≤ tq ·w+ o(tq ·w) = c. We will prove that if we assume

that tu · n < o
(
k/w

)
and we choose p large enough (p of Theorem 4) then we can find a

P. Dvořák and B. Loff 20:9

rectangle R ⊆ X × Y such that R is O
(
ε/α

)
-error b-monochromatic for g and µ(R) ≥ 1

2c′

for c′ = O
(tq·w

α

)
. Thus, we have monoO(ε/α)

µ (g) ≥ 2−c′ and consequently

scbO(ε/α),λ
µ (f) ≤ O

(
tq · w
α

)
.

By rearranging, we get the bound of Theorem 5.
Let us sketch the proof of how we can find such a rectangle R. We will first fix the

random variable z to z such that x and y are not very correlated conditioned on z = z,
i.e., the joint distribution µ(x, y | z) is very similar to the product distribution of the
marginals µ(x | z)× µ(y | z). Moreover, we will pick z in such a way the probability of error
Pr
[
g(x,y) 6=∗ zm|z = z

]
is still small. Then, since µ(x, y | z) is close to µ(x | z)× µ(y | z),

the probability of error under the latter distribution will be small as well, i.e., if (x′,y′) ∼
µ(x | z)× µ(y | z), then Pr

[
g(x′,y′) 6=∗ zm

]
will also be small. Finally, we will find subsets

A ⊆ supp
(
µ(x | z)

)
, B ⊆ supp

(
µ(y | z)

)
of large mass (under the original distributions µ1

and µ2), while keeping the probability of error on the rectangle R = A×B sufficiently small.
Let us then proceed to implement this plan. Let β = α − ε. We will show that β is a

lower bound for the probability that zm is equal to b. Let γ be the bound on I
(
x : y | z

)
given by Theorem 4, i.e., I

(
xi : y | z

)
≤ γ = O

(
tu·n·w
p

)
.

I Lemma 10. There exists z ∈ Z such that
1. zm = b.
2. I

(
x : y | z = z

)
≤ 5

β · γ.
3. DKL

(
µ(x | z) ‖ µ(x)

)
,DKL

(
µ(y | z) ‖ µ(y)

)
≤ 5

β · c.
4. Pr

[
g(x,y) 6=∗ zm | z = z

]
≤ 5

β · ε.

Proof. Since µ is α-balanced according to g, we find that

α ≤ Pr
[
g(x,y) = b

]
= Pr

[
g(x,y) = b, zm = b

]
+ Pr

[
g(x,y) = b, zm 6= b

]
≤ Pr

[
zm = b

]
+ ε.

Thus, by rearranging we get Pr
[
zm = b

]
≥ α − ε = β. By expanding the information

I
(
x : y | z

)
we find

γ ≥ I
(
x : y | z

)
= E
z∼µ(z)

[
I
(
x : y | z = z

)]
and by the Markov inequality we get that

Pr
z∼µ(z)

[
I
(
x : y | z = z

)
≥ 5
β
· γ
]
≤ β

5 .

Similarly, for the information I
(
x : z

)
:

c ≥ I
(
x y : z

)
≥ I
(
x : z

)
= E
z∼µ(z)

[
DKL

(
µ(x | z) ‖ µ(x)

)]
and so

Pr
z∼µ(z)

[
DKL

(
µ(x | z) ‖ µ(x)

)
≥ 5
β
· c
]
≤ β

5 .

FSTTCS 2020

20:10 Lower Bounds for Semi-adaptive Data Structures via Corruption

The bound for I
(
y : z

)
is analogous. Let ez = Prµ

[
g(x,y) 6=∗ zm|z = z

]
. Then,

ε ≥ Pr
[
g(x,y) 6=∗ zm

]
=
∑
z∈Z

µ(z) · ez = E
z∼µ(z)

[
ez
]

Pr
z∼µ(z)

[
ez ≥

5
β
· ε
]
≤ β

5 .

Thus, by a union bound we may infer the existence of the sought z ∈ Z. J

Let us now fix z ∈ Z from the previous lemma. Let µz(x, y) = µ(x, y | z) be the
distribution µ(x, y) conditioned on z = z, and let µ′z(x, y) = µ(x | z)×µ(y | z) be the product
of its marginals. Let S be the support of µz(x, y), and let Sx and Sy be the supports of µ′z(x)
and µ′z(y), respectively, i.e., Sx and Sy are the projections of S into X and Y .

Then Pinsker’s inequality will give us that µz and µ′z are very close. Let δ =
√

10
β · γ.

I Lemma 11.
∥∥∥µz(x, y)− µ′z(x, y)

∥∥∥
1
≤ δ

Proof. Indeed, by Pinsker’s inequality,∥∥∥µz(x, y)− µ′z(x, y)
∥∥∥

1
≤
√

2 · DKL
(
µz(x, y) ‖ µ′z(x, y)

)
.

The right-hand side is
√

2 · DKL
(
µ(x, y | z) ‖ µ(x | z)× µ(y | z)

)
, which by definition of mu-

tual information equals
√

2 · I
(
x : y | z = z

)
, and by Lemma 10 this is ≤

√
10
β · γ = δ. J

For the sake of reasoning, let (x′,y′) ∼ µ′z(x, y) be random variables chosen according to
to µ′z. Let ε′ = 5

β · ε+ δ. It then follows from Lemma 10 and Lemma 11 that:

I Lemma 12. Pr
[
g(x′,y′) 6=∗ zm

]
≤ ε′.

Proof. We prove that∣∣∣Pr
[
g(x,y) 6=∗ zm | z = z

]
− Pr

[
g(x′,y′) 6=∗ zm

]∣∣∣ ≤ δ.
Since Pr

[
g(x,y) 6=∗ zm | z = z

]
≤ 5

β · ε by Lemma 10, the lemma follows. Let

B =
{

(x, y) ∈ Sx × Sy : g(x, y) 6= zm, g(x, y) 6= ∗
}
.

∣∣∣Pr
[
g(x,y) 6=∗ zm | z = z

]
− Pr

[
g(x′,y′) 6=∗ zm

]∣∣∣
=
∣∣∣ ∑
(x,y)∈B

µz(x, y)− µ′z(x, y)
∣∣∣

≤
∑

(x,y)∈B

∣∣∣µz(x, y)− µ′z(x, y)
∣∣∣ ≤ δ by the triangle inequality and Lemma 11

J

Let c′ = 5
β · c. We will prove the ratio between µ′z(x′) and µ(x′) is larger than 2O(c′) with

only small probability (when x′ ∼ µ′z(x)). The same holds for µ′z(y′) and µ(y′).

I Lemma 13. Pr
[
µ′z(x′) ≥ 26c′ · µ(x′)

]
,Pr

[
µ′z(y′) ≥ 26c′ · µ(y′)

]
≤ 1

6 .

P. Dvořák and B. Loff 20:11

Proof. We prove the lemma for µ′z(x′), the proof for µ′z(y′) is analogous. By Lemma 10 we
know that DKL

(
µ(x | z) ‖ µ(x)

)
= DKL

(
µz(x) ‖ µ(x)

)
= DKL

(
µ′z(x) ‖ µ(x)

)
≤ c′. We expand

the Kullback-Leibler divergence:

c′ ≥ DKL
(
µ′z(x) ‖ µ(x)

)
=
∑
x∈Sx

µ′z(x) log µ
′
z(x)
µ(x) = E

[
log µ

′
z(x′)
µ(x′)

]
,

and then use the Markov inequality:

Pr
[
µ′z(x′) ≥ 26c′

· µ(x′)
]

= Pr
[
log µ

′
z(x′)
µ(x′) ≥ 6c′

]
≤ 1

6 . J

We now split Sx and Sy into buckets Cx
` and Cy

` (for ` ≥ 1), where the `-th buckets are

Cx
` =

{
x ∈ Sx

∣∣∣ (`− 1)
2c′ <

µ′z(x)
µ(x) ≤

`

2c′

}
,

Cy
` =

{
y ∈ Sy

∣∣∣ (`− 1)
2c′ <

µ′z(y)
µ(y) ≤

`

2c′

}
.

In a bucket Cx
` there are elements of Sx such that their probability under µ′z(x) is approxi-

mately `
2c′ -times bigger than their probability under µ(x). By Lemma 13, it holds that with

high probability the elements x ∈ Sx, y ∈ Sy are in the buckets Cx
`1

and Cy
`2

for `1, `2 ≤ 27c′ .
Thus, if we find a bucket Cx

`1
for `1 ≤ 27c′ which has probability at least 1

2O(c′) under µ′z(x),
then it has also probability at least 1

2O(c′) under µ(x). The same holds also for buckets Cy
` .

In the next lemma we will show that there are buckets Cx
`1

and Cy
`2

of large probability under
µ′z such that the probability of error on Cx

`1
× Cy

`2
is still small.

I Lemma 14. There exist buckets Cx
`1

and Cy
`2

such that
1. 1 < `1, `2 ≤ 27c′ .
2. Pr

[
x′ ∈ Cx

`1

]
,Pr
[
y′ ∈ Cy

`2

]
≥ 1

6·27c′ .
3. Pr

[
g(x′,y′) 6=∗ zm, (x′,y′) ∈ Cx

`1
× Cy

`2

]
≤ 6ε′ · Pr

[
(x′,y′) ∈ Cx

`1
× Cy

`2

]
.

Proof. We prove that `1, `2 exist via the probabilistic method. Let `1 and `2 be the buckets
of x′ and y′, respectively. Thus Pr

[
`1 = `

]
= Pr

[
x′ ∈ Cx

`

]
and Pr

[
`2 = `

]
= Pr

[
y′ ∈ Cy

`

]
.

Let B1, B2 ⊆ L′ = {1, . . . , 27c′} be sets of indices of small probability, i.e., for i ∈ {1, 2}

Bi =
{
` ∈ L′

∣∣ Pr[`i = `] ≤ 1
6 · 27c′

}
.

We will prove that with high probability we have 27c′ ≥ `1 > 1 and `1 6∈ B1. The proof for
`2 is analogous.

Pr
[
`1 = 1

]
= Pr

[
x′ ∈ Cx

1
]

=
∑
x∈Cx

1

µ′z(x) ≤
∑
x∈Cx

1
µ(x)

2c′ ≤ 1
2c′

By Lemma 13, we get Pr
[
`1 > 27c′] = Pr

[
µ′z(x′) ≥ 26c′ · µ(x′)

]
≤ 1

6 . There is only small
probability that `1 is in B1.

Pr
[
`1 ∈ B1

]
=
∑
`∈B1

Pr[`1 = `] ≤ |L′|
6 · 27c′ = 1

6

Thus, we have that `i ∈ Bi or `i = 1 or `i > 27c′ with probability at most 2
3 + 2

2c′ .

FSTTCS 2020

20:12 Lower Bounds for Semi-adaptive Data Structures via Corruption

By Lemma 12, we have that Pr
[
g(x′,y′) 6=∗ zm

]
≤ ε′. By expanding the probability and

by Markov inequality we will now get the last inequality for Cx
`1

and Cy
`2
. Let

e(`1, `2) = Pr
[
g(x′,y′) 6=∗ zm | x′ ∈ Cx

`1
,y′ ∈ Cy

`2

]
.

We will prove there is `1 and `2 such that e(`1, `2) ≤ 6ε′. This is equivalent to the third
bound of the lemma. We have: ε′ ≥ Pr

[
g(x′,y′) 6=∗ zm

]
= E

[
e(`1, `2)

]
and thus, by Markov,

Pr
[
e(`1, `2) > 6ε′

]
≤ 1

6 . By a union bound we conclude that there must exist 1 < `1, `2 ≤ 27c′

such that Pr[`1 = `1],Pr[`2 = `2] ≥ 1
6·27c′ and e(`1, `2) ≤ 6ε′. J

As a corollary we will prove that the rectangle Cx
`1
×Cy

`2
(given by the previous lemma) is

a good rectangle under the original distribution µ. We remark that the proof of the following
corollary is the only place where we use the fact that x and y are independent.

I Corollary 15. There exists a rectangle R ⊆ Sx × Sy such that
1. Pr

[
(x,y) ∈ R

]
≥ 1

36·226c′ .

2. Pr
[
g(x,y) 6=∗ zm, (x,y) ∈ R

]
≤ 24ε′ · Pr

[
(x,y) ∈ R

]
.

Proof. Let R = Cx
`1
×Cy

`2
where Cx

`1
and Cy

`2
are buckets given by Lemma 14. By Lemma 14,

we get

1
6 · 27c′ ≤ Pr

[
x′ ∈ Cx

`1

]
=
∑
x∈Cx

`1

µ′z(x) ≤
∑
x∈Cx

`1

`1 · µ(x)
2c′ = Pr

[
x ∈ Cx

`1

]
· `12c′ .

By rearranging we get

Pr
[
x ∈ Cx

`1

]
≥ 2c′

6`1 · 27c′ ≥
1

6 · 213c′

The bound for Pr
[
y ∈ Cy

`2

]
is analogous, thus we have Pr

[
(x,y) ∈ R

]
≥ 1

36·226c′ . (Here and
below, we crucially use the fact that x,y are given by a product distribution.) Now we prove
the second bound for R. Let B =

{
(x, y) ∈ R : g(x, y) 6= zm, g(x, y) 6= ∗

}
.

6ε′ · Pr
[
(x,y) ∈ R

]
· `1`222c′ ≥ 6ε′ · Pr

[
(x′,y′) ∈ R

]
by definition of buckets

≥ Pr
[
(x′,y′) ∈ B

]
by Lemma 14

≥ Pr
[
(x,y) ∈ B

]
· (`1 − 1)(`2 − 1)

22c′ by definition of buckets

Thus, by rearranging we get

Pr
[
(x,y) ∈ B] ≤ 6ε′ · Pr

[
(x,y) ∈ R

]
· `1`2

(`1 − 1)(`2 − 1) ≤ 24ε′ · Pr
[
(x,y) ∈ R

]
,

as `1`2
(`1−1)(`2−1) ≤ 4 for `1, `2 > 1 by Lemma 14. J

Proof of Theorem 5. Suppose that tu · n ≤ o
(
k/w

)
. Let R be the rectangle given by

Corollary 15. It holds that the rectangle R is 24ε′-error b-monochromatic for g under µ.
Therefore, for the function g holds that

mono24ε′

µ (g) ≥ Pr
[
(x,y) ∈ R

]
≥ 1

36 · 226c′ . (1)

We need to argue that ε′ is O(ε/α). By definition,

ε′ = 5
α− ε

· ε+ δ.

P. Dvořák and B. Loff 20:13

We recall that

δ = O

(√
tu · n · w

p

)
≤

√
o(k)
p
.

Thus, we can set p to be large enough so that δ is smaller than arbitrary constant and
still p ≤ o(k). By the assumption we have 2ε < α. Thus, ε

α−ε ≤
2ε
α and we conclude

that ε′ is O
(
ε/α

)
. Since c′ = O

(tq·w
α·(1−ε)

)
= O

(tq·w
α

)
, we get the result by rearranging

Inequality (1). J

4 Applications

In this section we apply Theorem 5 to derive lower bounds for several explicit functions
– Inner Product (IP), Disjointness (DISJ), Gap Orthogonality (ORT) and Gap Hamming
Distance (GHD):

IP(x, y) =
∑
i∈n

xi · yi mod 2,

GHDn(x, y) =
{

1 if ∆H(x, y) ≥ n
2 +
√
n,

0 if ∆H(x, y) ≤ n
2 −
√
n.

The function ∆H is the Hamming Distance of two strings, i.e., ∆H(x, y) is a number of
indices i ∈ [n] such that xi 6= yi. For IPR(x, y) =

∑
i∈[n](−1)xi+yi we define

ORTn,d(x, y) =
{

1 if
∣∣IPR(x, y)

∣∣ ≥ 2d ·
√
n

0 if
∣∣IPR(x, y)

∣∣ ≤ d · √n.
The standard value for d is 1, thus we denote ORTn = ORTn,1. Note that ∆H(x, y) =
n−IPR(x,y)

2 and IPR(x, y) is the Inner Product of x′, y′ over R where x′ and y′ arise from x and
y by replacing 0 by 1 and 1 by −1. We present previous results with bounds for measures of
interest under hard distributions.

I Theorem 16 ([12]). Let µ1 be a uniform distribution on {0, 1}n × {0, 1}n. Then,

discµ1(IP) ≤ 1
2n/2

.

I Theorem 17 (Babai et al. [2]). Let ρ < 1/100 and µ2 be a a uniform distribution over
S × S, where S consists of n-bit strings containing exactly

√
n 1’s. Then,

monoρµ2
(DISJ) ≤ 1

2Ω(
√
n) .

Sherstov [20] provided a lower bound of communication complexity of GHD by lower bound
of corruption bound of ORTn, 1

8
following by reduction to GHD.

I Theorem 18 (Sherstov [20]). Let ρ > 0 be sufficiently small and µ3 be a uniform distribution
over {0, 1}n × {0, 1}n. Then,

cbρµ3
(ORTn, 1

8
) ≥ ρ · n.

FSTTCS 2020

20:14 Lower Bounds for Semi-adaptive Data Structures via Corruption

By this theorem and Theorem 5 we get a lower bound for data structures for ORTn, 1
8
.

By reductions used by Sherstov [20] we also get a lower bounds for ORT and GHD.

ORTn, 1
8
(x, y) = ORT64n

(
x64, y64)

ORTn(x, y) = GHD10n+15
√
n

(
x10115

√
n, y10015

√
n
)

∧ ¬GHD10n+15
√
n

(
x10015

√
n, y10015

√
n
)

Where si denote i copies of s concatenated together. Let D be a semi-adaptive random
scheme for the multiphase problem of the presented functions with sufficiently small error
probability. By the theorems presented in this section and by Theorem 5, we can derive the
following lower bounds for tq · w, assuming that tu · n ≤ o

(
k/w

)
.

Function f Ballancedness Lower bound
of the hard distribution of tq · w

IP 1
2 Ω(n)

DISJ ∼ 1
e

Ω(
√
n)

ORTn Θ(1) Ω(n)
GHDn N/A (lower-bound is via reduction) Ω(n)

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proceedings of the 55th FOCS, pages 434–443, 2014.
2 Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity

theory. In Proceedings of the 27th FOCS, page 337–347, 1986.
3 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. In Proceedings of the 43rd FOCS,
page 209–218, 2002.

4 Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A strong direct prod-
uct theorem for corruption and the multiparty communication complexity of disjointness.
Computational Complexity, 15(4):391–432, 2006.

5 Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang. Information complexity
versus corruption and applications to orthogonality and gap-hamming. In Proceedings of the
16th RANDOM, pages 483–494. Springer, 2012.

6 Arkadev Chattopadhyay, Jeff Edmonds, Faith Ellen, and Toniann Pitassi. A Little Advice
Can Be Very Helpful. In Proceedings of the 23rd SODA, pages 615–625, 2012.

7 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

8 Michael Fredman and Michael Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the 21st STOC, pages 345–354, 1989.

9 Rahul Jain and Hartmut Klauck. The partition bound for classical communication complexity
and query complexity. In Proceedings of the 25th CCC, page 247–258, 2010.

10 Bala Kalyanasundaram and Georg Schintger. The Probabilistic Communication Complexity
of Set Intersection. SIAM Journal of Discrete Mathematics, 5(4):545–557, 1992.

11 Young Kun Ko and Omri Weinstein. An Adaptive Step Toward the Multiphase Conjecture,
2019. arXiv:1910.13543.

12 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996.

13 Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Proceedings
of the 44th STOC, pages 85–94, 2012.

http://arxiv.org/abs/1910.13543

P. Dvořák and B. Loff 20:15

14 Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the logarithmic barrier
for dynamic boolean data structure lower bounds. SIAM Journal on Computing, 2020.

15 Mihai Păatraşcu and Erik D Demaine. Tight bounds for the partial-sums problem. In
Proceedings of the 15th SODA, pages 20–29, 2004.

16 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the 42nd STOC, pages 603–610, 2010.

17 Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

18 Mihai Pătraşcu. Towards Polynomial Lower Bounds for Dynamic Problems. In Proceedings of
the 42nd STOC, pages 603–610, 2010.

19 Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106:385–390, 1992.

20 Alexander A Sherstov. The communication complexity of gap hamming distance. Theory of
Computing, 8(1):197–208, 2012.

21 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (prelimi-
nary report). In Proceedings of the 11h STOC, pages 209–213, 1979.

FSTTCS 2020

Stability-Preserving, Time-Efficient Mechanisms
for School Choice in Two Rounds
Karthik Gajulapalli
Department of Computer Science, University of California Irvine, CA, US
kgajulap@uci.edu

James A. Liu
K-Sky Limited, Hong Kong, Hong Kong
james@k-sky.hk

Tung Mai
Adobe Research, San Jose, CA, US
tumai@adobe.com

Vijay V. Vazirani
Department of Computer Science, University of California Irvine, CA, US
vazirani@ics.uci.edu

Abstract
We address the following dynamic version of the school choice question: a city, named City, admits
students in two temporally-separated rounds, denoted R1 and R2. In round R1, the capacity of
each school is fixed and mechanism M1 finds a student optimal stable matching. In round R2,
certain parameters change, e.g., new students move into the City or the City is happy to allocate
extra seats to specific schools. We study a number of Settings of this kind and give polynomial time
algorithms for obtaining a stable matching for the new situations.

It is well established that switching the school of a student midway, unsynchronized with her
classmates, can cause traumatic effects. This fact guides us to two types of results: the first simply
disallows any re-allocations in round R2, and the second asks for a stable matching that minimizes
the number of re-allocations. For the latter, we prove that the stable matchings which minimize the
number of re-allocations form a sublattice of the lattice of stable matchings. Observations about
incentive compatibility are woven into these results. We also give a third type of results, namely
proofs of NP-hardness for a mechanism for round R2 under certain settings.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases stable matching, mechanism design, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.21

Related Version Full version: https://arxiv.org/abs/1904.04431.

1 Introduction

School choice is among the most consequential events in a child’s upbringing, whether it
is admission to elementary, middle or high school, and hence has been accorded its due
importance not only in the education literature but also in game theory and economics. In
order to deal with the flaws in the practices of the day, the seminal paper of Abdulkadiroglu
and Sonmez [3] formulated this as a mechanism design problem. This approach has been
enormously successful, especially in large cities involving the admission of tens of thousands
of students into hundreds of schools, e.g., see [2, 1, 4, 18], and today occupies a key place in
the area of market design in economics, e.g., see [23, 21, 22, 13].

Once the basic game-theoretic issues in school choice were adequately addressed, research-
ers turned attention to the next level of questions. In this vein, in a recent paper, Feigenbaum
et. al. [12] remarked, “However, most models considered in this literature are essentially

© Karthik Gajulapalli, James A. Liu, Tung Mai, and Vijay V. Vazirani;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kgajulap@uci.edu
mailto:james@k-sky.hk
mailto:tumai@adobe.com
mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.21
https://arxiv.org/abs/1904.04431
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

static. Incorporating dynamic considerations in designing assignment mechanisms ... is an
important aspect that has only recently started to be addressed.”

Our paper deals with precisely this. We define several settings for school choice in which
an instance is made available in the first round R1 and at a later time, in the second round
R2, some of the parameters change. Each setting asks for a pair of mechanisms, (M1, M2)
for finding matchings of students to schools in these two rounds. All our settings insist that
the matchings found in both rounds are stable. It will be convenient to classify our results
into three types. In Type A and B, both mechanismsM1 andM2 are required to run in
polynomial time.
1. Type A: MechanismM2 is disallowed to reassign the school of any student matched by
M1. We present two settings, A1 and A2.

2. Type B: MechanismM2 is allowed to reassign the school of students matched byM1;
however, it needs to (provably) minimize the number of such reassignments. We present
two settings, B1 and B2.

3. Type C: These are NP-hardness results – of mechanismM2 for four problems and of a
fifth problem, which involves only one round.

1.1 Our model and its justification
Our solutions to Type A and B results will strictly adhere to the following tenets; we justify
them below.

1. Tenet 1: All matchings produced by our mechanisms need to be stable.
2. Tenet 2: In Type A results, mechanismM2 is disallowed to reassign the school of any

student matched byM1, and in Type B results,M2 must provably minimize the number
of such reassignments.

3. Tenet 3: We want all our mechanisms to run in polynomial time.

The use of the classic Gale-Shapley [14] Deferred Acceptance Algorithm has emerged
as a method of choice in the literature. Our mechanisms also use this algorithm. Stability
comes with key advantages: First, no student and school, who are not matched to each other,
will have the incentive to go outside the mechanism to strike a deal. Second, it eliminates
justified envy, i.e., the following situation cannot arise: there is a student si who prefers
another student sj ’s school assignment, say hk, while being fully aware that hk preferred her
to sj .

Switching the school of a student midway, unsynchronized with her classmates – such as
when the entire class moves from elementary to middle or from middle to high school – is
well-known to cause traumatic effects, e.g., see [15]. It is for these reasons that in Type A
results, mechanismM2 is disallowed to reassign the school of any student matched byM1
and in Type B results,M2 must provably minimize the number of such reassignments. For
Type A results, we say thatM2 extends M to a stable matching M ′. For Type B results,
we say thatM2 computes a minimum stable re-allocation M ′ of M .

The strongest notion of incentive compatibility for a mechanism is dominant strategy
incentive compatible (DSIC), for students. This entails that regardless of the preferences
reported by other students, a student can do no better than report her true preference list,
i.e., truth-telling is a dominant strategy for all students. This immediately simplifies the task
of students and their parents, since they don’t need to waste any effort trying to game the
system. Furthermore, if students are forced to adjust their choices in an attempt to gain a
better matching, the mechanism, dealing with choices reported to it, may be forced to make
matches that are suboptimal for students as well as schools.

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:3

Gale and Shapley [14] proved that if the Differed Acceptance Algorithm is run with
students proposing, it will yield a student-optimal matching, i.e., each student will get the
best possible school, according to her preference list, among all stable matchings. However,
this matching may be extremely unfavorable to an individual student – it may be matched
to a school which is very low on her preference list, giving her incentive to cheat, i.e., provide
a false preference list, in order to get a better matching. Almost two decades after the
Gale-Shapley result, Dubins and Freedman [8] proved, via a highly non-trivial analysis, that
this algorithm is DSIC for students. This ground-breaking result opened up the Gale-Shapley
algorithm to a host of highly consequential applications, including school choice.

In all of our results of Type A and B, mechanism M1 finds a student-optimal stable
matching using the Gale-Shapley Differed Acceptance Algorithm and is therefore DSIC for
students. For Setting B2 we provide a mechanism for round R2 that is DSIC. However, our
mechanisms for round R2 for the remaining three settings do not achieve this. Our main
open problem is to fix this. For completeness, and in order to motivate this open problem,
we discuss incentive-compatibility for each of these setting in Section 6.

It is well known that the set of Stable Matchings of a given instance forms a finite
distributive lattice [16]. By orienting the underlying partial order of this lattice appropriately,
the student-optimal stable matching can be made the top element of this lattice and the school
optimal matching the bottom element. For both Settings of Type B, we show that the set of
minimum stable re-allocations form a sublattice of this lattice. We provide polynomial-time
mechanisms for computing the top and bottom elements of this sublattice. For Setting B1,
we show that the top of the sublattice is also the top of the whole lattice, i.e., it is the
student-optimal stable matching; this is crucial for showing DSIC for B1.

1.1.1 Type A and B settings
The four settings involve the admission of students of a city, named City, into schools; the
preference lists of both students and schools are provided to the mechanisms. M1 computes
a student-optimal stable matching, M , over all the participants in R1. In R2 some of the
parameters over which M was defined are updated. M2 then modifies the matching M to
produce a new matching M ′ that is stable over the new parameters defined in R2.

For Settings of Type A, in round R1, the capacity of each school is fixed but in round
R2, the City is happy to allocate extra seats to specific schools per the recommendation of
mechanismM2, which in turn has to meet specified requirements imposed by the City. Let
L be the set of left-over students, those who could not be admitted in round R1.

In round R2 of Setting A1, the problem is to maximize the number of students admitted
from L, by extending M in a stability-preserving manner. In Setting A2, a set N of new
students also arrive from other cities and their preference lists are revealed to M2. The
requirement now is to admit as few students as possible from N and subject to that, as many
as possible from L, again in a stability-preserving manner. Finally, we give a procedure that
outputs all possible stability-preserving extensions of a given stable matching (which may be
exponentially many) with polynomial delay.

For Settings of Type B, the capacity of each school is fixed in R1, but in R2 the City
has to deal with the arrival of new students and new schools. This could lead the matching
found byM1 to no longer be stable.

In round R2 of Setting B1, a set N of new students arrive and their preference lists are
revealed to M2. The capacity of schools remain unchanged and the problem is to find a
matching, M ′ that is stable under the arrival of new students which minimizes the number of
students who are assigned to a different school in M ′. In Setting B2, a set H ′ of new schools

FSTTCS 2020

21:4 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

arrive and the City allows the capacities of the original schools to increase. The preference
lists of the students are updated to reflect these new schools, we again require that M2
compute a new stable matching, M ′ over the updated preference lists that minimizes the
number of students who get matched to a different school in M ′.

1.2 Related work
Besides the references pointed out above on school choice, in this section, we will concentrate
on recent work on dynamic matching markets, especially those pertaining to school choice.
Feigenbaum et. al. [12] study the following issue that arises in NYC public high schools,
which admits over 80,000 students annually: after the initial centralized allocation, about 10%
of the students choose not attend the school allocated to them, instead going to private or
charter schools. To deal with this, [12] give a two-round solution which maintains truthfulness
and efficiency and minimizes the movement of students between schools.

An interesting phenomena that has been observed in matching markets is unraveling, under
which matches are made early to beat the competition, even though it leads to inefficiencies
due to unavailability of full information. A classic case, indeed one that motivated the
formation of centralized clearing houses, is that of the market for medical interns in which
contracts for interns were signed two years before the future interns would even graduate
[19]. A theoretical explanation of this phenomena was recently provided by [11].

[17] point out that stable pairings may not necessarily last forever, e.g., a student may
switch from private to public school or a married couple may divorce. They study dynamic,
multi-period, bilateral matching markets and they define and identify sufficient conditions
for the existence of a dynamically stable matching.

[7] develops a notion of stability that applies in markets where matching opportunities
arrive over time, much like the seats in our work. One of the things shown in this paper is
that agents’ incentive to wait for better matching opportunities can make achieving stability
very difficult. Indeed, the notion of dynamic stability given in this paper is a necessary
condition which a matching must satisfy in order that agents do not to find it profitable to
game a mechanism by showing up in later rounds.

A number of recent papers [24, 6, 5, 10] consider the consequences of having a mechanism
that repeats the Gale-Shapley Deferred Acceptance algorithm multiple times, similar to our
work. Note that Deferred Acceptance is not consistent in that if one runs it, then removes
some agents and their assignments, and runs it again on the remaining agents, one does
not obtain the same assignment restricted to the left-over agents. In these papers, the
authors show that there is room for manipulation by submitting empty lists in the first round.
However, unlike our model in which changes are introduced in round R2, in all these papers,
there is nothing that motivates running Deferred Acceptance twice, namely no arrivals of
new students, no change in capacities, no changes in preferences, etc.

1.3 Overview of structural and algorithmic ideas
The main idea for obtaining a stability-preserving mechanism in round R2 for Settings A1
and A2 lies in the notion of a barrier which ensures that students admitted in R2 do not
form blocking pairs. A crucial issue is to place barriers optimally to ensure that the number
of students admitted is optimized (minimized or maximized) appropriately.

The algorithm for enumerating stable extensions of a stable matching, given in Section 4.3,
relies heavily on the fundamental structural property of stable matchings. Enumerated
matchings are extended by only one student in an iteration. At each step, the algorithm

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:5

finds all such feasible extensions by one student in a way such that there must be at least one
feasible assignment, for any student, at each step. This assurance is crucial in guaranteeing
that the delay between any two enumerated matchings is polynomial.

For Settings B1 and B2, the mechanism proceeds by iteratively resolving blocking pairs.
Structurally, we show that the set of all minimum stable re-allocations forms a sublattice
of the stable matching lattice. Our analysis relies on the fact that the set of students who
are assigned to a different school in round R2 cannot be matched to their original school in
any minimum stable re-allocation. This lets us divide the set of students into two groups,
students matched to the same school (fixed students), and students matched to different
schools (moving students). We then construct a smaller stable matching instance, I, over the
set of moving students. By appropriately placing barriers for each student and school in I

we can ensure that the union of any stable matching in I and the matching restricted to the
fixed students will also be stable. This stable matching is a minimum stable re-allocation
and defines a bijection between the set of minimum stable re-allocations and set of stable
matchings in I, we exploit the lattice structure of the latter.

2 Preliminaries

2.1 The stable matching problem for school choice
The stable matching problem takes as input a set H = {h1, h2, . . . , hm} of m public schools
and a set S = {s1, s2, . . . , sn} of n students who are seeking admission to the schools. Each
school hj ∈ H has an integer-valued capacity, c(j), stating the maximum number of students
that can be assigned to it. If hj is assigned c(j) students, we will say that hj is filled, and
otherwise it is under-filled.

Each student si ∈ S has a strict and complete preference list, l(si), over H ∪ {∅}. If
si prefers ∅ to hj , then it prefers remaining unassigned rather being assigned to school hj .
We will assume that the list l(si) is ordered by decreasing preferences. Therefore, if si

prefers hj to hk, we can equivalently say that hj appears before hk or hk appears after hj

on si’s preference list. Clearly, the order among the schools occurring after ∅ on si’s list is
immaterial, since si prefers remaining unassigned rather than being assigned to any one of
them. Similarly, each school hj ∈ H has a strict and complete preference list, l(hj), over
S ∪ {∅}. Once again, for each student si occurring after ∅, hj prefers remaining under-filled
rather than admitting si, and the order among these students is of no consequence.

Given a set of schools, H ′ ⊆ H, by the best school for si in H ′ we mean the school that
si prefers the most among the schools in H ′. Similarly, given a set of students, S′ ⊆ S, by
the best student for hj in S′ we mean the student whom hj prefers the most among the
students in S′.

A matching M is a function, M : S → H ∪ {∅} such that if M(si) = hj then it must be
the case that si prefers hj to ∅ and hj prefers si to ∅; if so, we say that student si is assigned
to school hj . If M(si) = ∅, then si is not assigned to any school. The matching M also has
to ensure that the number of students assigned to each school hj is at most c(j).

For a matching M , a student-school pair (si, hj) is said to be a blocking pair if si is not
assigned to hj , si prefers hj to M(si) and one of the following conditions holds:
1. hj prefers si to one of the students assigned to hj , or
2. hj is under-filled and hj prefers si to ∅.
The blocking pair is said to be type 1 (type 2) if the first (second) condition holds. A
matching M is said to be stable if there is no blocking pair for it.

FSTTCS 2020

21:6 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

I Theorem 1 (Rural Hospitals Theorem [20]).
1. Over all the stable matchings of the given instance: the set of matched students is the

same and the number of students matched to each school is also the same.
2. Assume that school h is not matched to capacity in a stable matching. Then, the set of

students matched to h is the same over all stable matchings.

2.2 The Stable Matching Lattice
I Definition 2. A Lattice L = (S,�), is defined over a finite set S, and a partial order �,
if for every pair of elements a, b ∈ S, there exists a unique least upperbound and a unique
greatest lowerbound. We call the least upperbound the join of a and b and denote it by a ∨ b,
and anagolously call the least lowerbound the meet of a and b and denote it by a ∧ b

I Definition 3. Let SM denote the set of stable matchings over given instance (S, H, c),
then for two stable matchings M, M ′ ⊆ SM , M � M ′, if and only if ∀ si ∈ S, si weakly
prefers M(si) to M ′(si)

Given two stable matchings M and M ′ consider two new maps MU and ML, defined as
follows:

MU (si) = max(M(si), M ′(si))
ML(si) = min(M(si), M ′(si))

where max is the partner si weakly prefers between M and M ′, and min is the complement
of max.

I Theorem 4 ([16]). The set of stable matchings (SM,�) characterizes a finite distributive
lattice. Morever ML, MU represent the meet and join of any two stable matchings in the
lattice.

3 Our Results for the Four Settings

In round R1, the setup defined in Section 2.1 prevails andM1 simply computes the student-
optimal stable matching respecting the capacity of each school, namely c(j) for hj . Let this
matching be denoted by M , SM ⊆ S be the set of students assigned to schools by M and
L = (S − SM) be the set of left-over students. As shown in [9],M1 is DSIC for students.

For Settings of Type A, in round R2, the City has decided to extend matching M in a
stable manner without any restrictions on extra capacity added to each school.

For Settings of Type B, in round R2 a change is made to the sets of participants, which
may cause M to no longer be a valid or stable matching. M2 then updates M to M ′ in order
to ensure a stable matching. By allowing updates, we let some students in M get unmatched
in M ′, or get matched to different schools. The City would like to minimize the number of
students who would have to change schools, or no longer be matched to a school, in going
from M to M ′. We call M ′ a minimum stable re-allocation of M . Formally, M’ is a
minimum stable re-allocation of M if M ′ is a stable matching over all participants and the
number of students si ∈ SM where M(si) 6= M ′(si) is minimized.

3.1 Type A and B Settings
Setting A1. In this setting, in round R2, the City wants to admit as many students from
L as possible in a stablity-preserving manner. We will call this problem MaxL. We will
prove the following:

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:7

I Theorem 5. There is a polynomial time mechanismM2 that extends matching M to M ′

so that M ′ is stable w.r.t. students S and schools H. Furthermore, M2 yields the largest
matching that can be obtained by a mechanism satisfying the stated conditions.

Let k be the maximum number of students that can be added from L, as per Theorem 5.
Next, suppose that the City can only afford to add k′ < k extra seats. We show in Section
4.1 how this can be achieved while maintaining all the properties stated in Theorem 5.

Setting A2. In this setting, in round R2, in addition to the leftover set L, a set N of new
students arrive from other cities and their preference lists are revealed to mechanismM2.
Additionally, the schools also update their preference lists to include the new students. In
this setting, the City wants to give preference to students who were not matched in round
R1, i.e., L, over the new students, N . Thus it seeks the subset of N that must be admitted
to avoid blocking pairs and subject to that, maximize the subset of L that can be added,
again in a stability-preserving manner. We will call this problem MinN MaxL. We will prove
the following:

I Theorem 6. There is a polynomial time mechanismM2 that accomplishes the following:
1. It finds smallest subset N ′ ⊆ N with which the current matching M needs to be extended

in a stability-preserving manner.
2. Subject to the previous extension, it finds the largest subset L′ ⊆ L with which the

matching can be extended further in a stability-preserving manner.

Setting B1. In this setting, a set N of new students arrive from other cities in round R2.
The preference lists of schools are also updated to include students in N , though their relative
preferences between students in S ∪ {∅} are unchanged. The City wants to find a stable
matching over students S ∪N and schools H that minimizes the number of students who
are re-allocated from their original school in M .

I Theorem 7. There is a polynomial time mechanism M2 that finds a minimum stable
reallocation with respect to Round R1 matching M , students S ∪N , and schools H.

Setting B2. In this setting, the City has some new schools H ′ that have opened up in R2.
The preference lists of students are updated to include schools in H ′, though their relative
preferences between schools in H ∪ {∅} are unchanged. The City also allows schools in H to
increase their capacity in round R2. The City wants to find a stable matching over students
S and schools H ∪H ′ that minimizes the number of students who are re-allocated from their
original school in M .

I Theorem 8. There is a polynomial time mechanism M2 that finds a minimum stable
reallocation with respect to Round R1 matching M , students S, and schools H ∪H ′.

4 Mechanisms for Type A Settings

4.1 Setting A1
We will first characterize situations under which a matching is not stable, i.e., admits a
blocking pair. This characterization will be used for proving stability of matchings constructed
in round R2. For this purpose, assume that M is an arbitrary matching, not necessarily
stable nor related to the matching computed in round R1. For each school hj ∈ H, define the
least preferred student assigned to hj , denoted LPS-Assigned(hj), to be the student whom
hj prefers the least among the students that are assigned to hj .

FSTTCS 2020

21:8 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

MaxL(M, L):
Input: Stable matching M and set L.
Output: Stable, MaxL extension of M .

1. ∀si ∈ SM : M ′(si)←M(si)
2. ∀hj ∈ H : Barrier(hj)← BS-Preferring(hj).
3. L′ ← {si ∈ L | ∃hj s.t. si appears before Barrier(hj) in l(hj),

and hj appears before ∅ in l(si)}.
4. ∀si ∈ L′ : Feasible-Schools(si)← {hj | si appears before Barrier(hj) in l(hj)}.
5. ∀si ∈ L′ : M ′(si)← Best school for si in Feasible-Schools(si).
6. ∀si ∈ (L− L′) : M ′(si)← ∅.
7. Return M ′.

Figure 1 Mechanism for round R2 for problem MaxL in Setting A1.

Next, for each student si ∈ SM , define the set of schools preferred by si, denoted
Preferred-Schools(si) by {hj | si prefers hj to M(si)}; note that M(si) = ∅ is allowed in
this definition. Further, for each school hj ∈ H, define the set of students that prefer
hj over the school they are assigned to, denoted Preferring-Students(hj) to be {si | hj ∈
Preferred-Schools(si)}. Finally, define best student preferring hj , denoted BS-Preferring(hj),
to be the student whom hj prefers the best in the set Preferring-Students(hj). If Preferring-
Students(hj) = ∅ then we will define BS-Preferring(hj) = ∅; in particular, this happens if hj

is under-filled.
The mechanism M2 for round R2 for MaxL in Setting A1 is given in Figure 1. Step

1 simply ensures that the matching found byM2 extends the round R1 matching. Step 2
defines the Barrier for each school to be BS-Preferring(hj); observe that this could be ∅. Step
3 determines the set L′ ⊆ L that can be assigned schools in a stability-preserving manner
and Step 5 computes the school for each student in this subset.

For the problem of admitting fewer students, we give the following:

I Proposition 9. Let k be the total number of students added from L in round R2 in
the previous theorem and let k′ < k. There is a polynomial time mechanism M2 that is
stability-preserving, and extends matching M to M ′ so that |M ′| − |M | = k′.

4.2 Setting A2
The mechanism for round R2 for MinN MaxL in Setting A2 is given in Figure 2 provided in
the appendix. Suppose there is a school hj , student sk ∈ SM is assigned to it and there is a
student si ∈ N such that hj prefers si to sk. Now, if si is kept unmatched, (si, hj) will form
a blocking pair of type 1. Next suppose hj is under-filled and there is a student si ∈ N such
that hj and si prefer each other to ∅. This time, if si is kept unmatched, (si, hj) will form a
blocking pair of type 2. Motivated by this, for a student si, define the set of schools forming
blocking pairs with si, denoted Schools-FBPairs(si), to be:

Schools-FBPairs(si) = {hj ∈ H | hj prefers si to LPS-Assigned(hj), si prefers hj to ∅}⋃
{hj ∈ H | hj is under-filled and hj and si prefer each other to ∅}.

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:9

MinN MaxL(M, N, L):
Input: Stable matching M , and sets N and L.
Output: Stable, MinN MaxL extension of M .

1. ∀si ∈ SM : M ′(si)←M(si)
2. ∀hj ∈ H : Barrier1(hj)← BS-Preferring(hj).
3. N ′ ← {si ∈ N | Schools-FBPairs(si) is non-empty}.
4. ∀hj ∈ H : Barrier2(hj)← Best student for hj in (N −N ′).
5. ∀hj ∈ H : Barrier(hj)← Best student for hj in {Barrier1(hj), Barrier2(hj) }.
6. L′ ← {si ∈ L | ∃hj s.t. si appears before Barrier(hj) in l(hj),

and hj appears before ∅ in l(si)}.
7. ∀si ∈ (N ′ ∪ L′) : Feasible-Schools(si) ← {hj | si appears before Barrier(hj) in

l(hj) }
8. ∀si ∈ (N ′ ∪ L′) : M ′(si)← Best school for si in Feasible-Schools(si).
9. ∀si ∈ ((L− L′) ∪ (N −N ′)) : M ′(si)← ∅.
10. Return M ′.

Figure 2 Mechanism for round R2 for MinN MaxL in Setting A2.

Therefore, all students in N ′, computed in Step 3, need to be matched. Our mechanism
keeps all students in N −N ′ unmatched, thereby minimizing the number of students matched
from N .

We next describe the various barriers that need to be defined. The first one, defined in Step
2, plays the same role as that in Figure 1. As before, if hj is under-filled, Barrier1(hj) = ∅.
If a student si ∈ (N ′ ∪ L′) appears after Barrier1(hj) in l(hj) and is assigned to hj , then
(Barrier1(hj), hj) will form a blocking pair. The second one, Barrier2(hj) in (N−N ′) defined
in Step 4. Again, if si ∈ (N ′ ∪ L′) appears after Barrier2(hj) in l(hj) and is assigned to hj ,
then (Barrier2(hj), hj) will form a blocking pair. In step 5, Barrier(Hj) is defined to be the
more stringent of these two barriers.

The final question is which school should si ∈ N ′ be matched to? One possibility is to
compute for each student si the set

T (si) = {hj ∈ H | ∃sk s.t. M(sk) = hj , hj prefers si to sk, and si prefers hj to ∅},

and match si to her best school in T (si).
Assume that si is matched to hj under this scheme. A blocking pair may arise as follows:

Assume si prefers school hk to hj (of course, hk /∈ T (si)), some student sl ∈ L′ has been
assigned to hk and hk prefers si to sl. If so, (si, hk) will form a blocking pair. One remedy is
to redefine the barrier for hk so sl is not assigned to hk. However, this will make the barrier
more stringent and the resulting mechanism will, in general, match fewer students from L

than our mechanism. The latter is as follows: simply match si to the best school which
prefers her to the Barrier of that school.

I Theorem 10. There is a polynomial time mechanismM2 that finds the largest subset of
(N ∪ L) that can be matched to schools and added to the current matching while maintaining
stability. This mechanism also solves MaxN MaxL and MaxLMaxN .

FSTTCS 2020

21:10 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

StableExtension(M, c, N):
Input: Stable matching M , capacity c, new students N = {s1, s2 . . . sk}.
Output: Stable extensions of M , with polynomial delay.
M0 ←M

A1 = FeasibleAssignment(M0, c, s1)
For i1 in A1:

M1 ← Starting from M0, match s1 to i1.
A2 = FeasibleAssignment(M1, c, s2).
For i2 in A2:

...
Ak = FeasibleAssignment(Mk−1, c, sk).
For ik in Ak:

Mk ← Starting from Mk−1, match sk to ik.
Enumerate Mk.

Figure 3 Algorithm for enumerating stable extensions of M .

4.3 Enumeration of Stable Extensions
In this section we show how to enumerate all the possible stable extensions of a given stable
matching with polynomial delay between any two enumerated matchings. Specifically, the
algorithm takes as input a stable matching M from S to H satisfying capacity c and a set of
new students N = {s1, s2 . . . sk} that can be added to the schools. Here the preference lists
of all schools and students are also given. The algorithm enumerates all solutions M ′ from
S ∪N to H ∪ {∅} such that:

all assignments in M are preserved in M ′, and
M ′ is stable with respect to capacity c′ where

c′(j) =
{∣∣M ′−1(hj)

∣∣ if
∣∣M ′−1(hj)

∣∣ > c(j),
c(j) otherwise.

(1)

Note that M ′−1(hj) is the set of students assigned to hj under M ′. We say that M ′ is a
stable extension of M with respect to N .

The complete algorithm StableExtension(M, c, N) is given in Figure 3 (Appendix).
At a high level, the algorithm maintains a stable extension Me of M with respect to a subset
N ′ of N . At each step, a student si is added to N ′ and all possible assignments A of si

that are compatible to Me are identified. In other words, adding each assignment in A to
Me gives a stable extension of M with respect to N ′ ∪ {si}. The algorithm branches to an
assignment in A and continues to the next student. When N ′ = N , the current matching is
returned. The algorithm then backtracks to a previous branching point and continues.

Figure 4 gives the subroutine for finding compatible assignments. Initially, Ai is set to
be an empty set. The subroutine then goes through the preference list of si one by one in
decreasing order. The considered school h is added to Ai and the subroutine terminates if at
least one of the following happens:

h is ∅,
h is under-filled,
h prefers si to LPS-Assigned(h) with respect to Me.

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:11

FeasibleAssignment(Me, c, si):
Input: Stable matching Me, capacity c, student si.
Output: Set Ai of all possible assignments for si. Adding any assignment in Ai to
Me preserves stability.

1. Initilize Ai to the empty set.
2. For each h in l(si), in decreasing order of preferences, do:

a. If h = ∅ then Return Ai ∪ {∅}.
b. Else h = hj :

i. If
∣∣M−1

e (hj)
∣∣ < c(j) then Return Ai ∪ {hj}.

ii. If si appears before LPS-Assigned(hj) then Return Ai ∪ {hj}.
iii. If si appears after LPS-Assigned(hj) and before BS-Preferring(hj) then

Ai ← Ai ∪ {hj}.

Figure 4 Algorithm for finding feasible matches of si w.r.t. current matching Mc.

Notice that in the last two scenarios above, if si was assigned to any school after h in her
preference list, (si, h) would form a blocking pair. Assume none of the above scenarios
happens. The subroutine adds h to A and continues if h prefers si to BS-Preferring(h).
Otherwise, h prefers BS-Preferring(h) to si. Hence, assigning si to h would create a blocking
pair. The subroutine continues to the next school in this case. The following lemma says
that FeasibleAssignment correctly finds all possible assignments of a student, given the
current matching, at each step.

I Lemma 11. Let N ′ be the set of students assigned (possibly to ∅) in Me, i.e., Me is a
stable extension of M with respect to N ′. FeasibleAssignment(Me, c, si) finds all possible
assignments of si to H ∪{∅} such that adding each assignment to Me gives a stable extension
of M with respect to N ′ ∪ {si}.

I Lemma 12. FeasibleAssignment(Me, c, si) returns at least one possible assignment.

From Lemmas 11 and 12, we can prove the main theorem of this section:

I Theorem 13. StableExtension(M, c, N) enumerates all possible stable extension of M

with respect to N . Moreover, the time between any two enumerations is O((k + n)m).

5 Mechanisms for Type B Settings

5.1 Setting B1
We first show some structural properties of minimum stable re-allocations in this setting.
N ′ ⊆ N , defines the set of students who form blocking pairs with the current matching
M . SM denote the set of stable matchings over the instance I = (S ∪N, H, c), and MSR

represents the set of all minimum stable re-allocations of M . For all si ∈ N we set M(si) = ∅.

I Definition 14. si ∈ S ∪N is moved in M ′ ∈MSR, if M(si) 6= M ′(si)

I Lemma 15. All minimum stable re-allocations of M move the same set of students, SR.

FSTTCS 2020

21:12 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

Let HR, be the set of schools that students in SR are matched to in some minimum stable
re-allocation then as an application of the Rural Hospitals Theorem we have:

I Corollary 16. All students si ∈ S∪N−SR are matched to the same school in all minimum
stable re-allocations. All minimum stable re-allocations will match students in SR to schools
in HR. Moreover, if k students from SR are matched to a school hj ∈ HR, then all minimum
stable re-allocations will have k students from SR matched to HR.

We denote the students in S∪N−SR as SF , and let MF represent the matching restricted
to these students. Then for all M ′ ∈MSR and si ∈ SF , MF (si) = M(si) = M ′(si).

Consider the stable matching instance I ′, defined below:
(a) ∀si ∈ SR, Barrier(si) = Best hj ∈ Schools-FBPairs(si) over all hj ∈ H −HR

(b) ∀hj ∈ HR, Barrier(hj) = BS-Preferring(hj) among students in SF

(c) ∀si ∈ SR, l′(si) = l(si). Place the ∅ to the immediate left of Barrier(si)
(d) ∀hj ∈ HR l′(hj) = l(hj). Place the ∅ to the immediate left of Barrier(hj)
(e) Let M ′ be some MSR, then c′(hj) = |{si ∈ SR | M ′(si) = hj}|

I ′ = (SR, HR, c′) with preference lists l′(si), l′(hj) defines a stable matching instance,
with SMI′ denoting the set of all stable matchings over I ′.

I Lemma 17. ∀ MI′ ∈ SMI′ , M ′ = MI′ ∪MF is a minimum stable re-allocation. Moreover
any M ′ ∈MSR can be decomposed into MI′ ∪MF , where MI′ ∈ SMI′ .

I Lemma 18. (MSR,�) defines a sublattice of (SM,�).

Adding New Students(M, N):
Input: Stable matching M and set N .
Output: Minimum stable re-allocation of M .

1. ∀si ∈ SM : M ′(si)←M(si)
2. While ∃si unmatched and (si, hj) form a blocking pair do

a. h← Best possible hi in Schools-FBPairs(si)
b. if h is filled to capacity then unmatch LPS-Assigned(h)
c. M ′(si)← h

3. Return M ′.

Figure 5 Mechanism M2 for adding new students in round R2.

The proof thatM2 finds a MSR is provided in the Appendix. As a corollary of our proof
we get:

I Corollary 19. M2 produces a student-optimal minimum stable re-allocation.

I Lemma 20. There exists a mechanismM3, that finds a school-optimal minimum stable
re-allocation in polynomial time.

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:13

5.2 Setting B2
A first approach to finding a minimum stable re-allocation in Setting B2 would be to run
Gale-Shapley over the whole instance. However unlike Setting B1, Example 21 shows that
this could require as many as |S| possible re-allocations.

I Example 21. Let there be n+1 students and schools. The preference lists (mod n+1) for any
student si is (hi−1, hi, ..., hi−2) and the preference list for any school hj is (sj , sj+1, ..., sj−1).
In round R1, all participants but hn+1 are present and each school has 1 seat. In round R2,
hn+1 arrives with capacity 1. The only stable matching from round R1 would match each si

to hi and sn+1 would remain unmatched. Assigning sn+1 to hn+1 would result in a stable
matching requiring no re-allocations. However, running Gale-Shapley over all participants
would yield a matching of each si to hi−1, but this matching requires n re-allocations.

I Lemma 22. Each student weakly improves in any minimum stable reallocation.

I Remark 23. The lattice structure shown in the previous section carries over to this Setting
as well. This follows since both Settings B1 and B2 can be reduced to an instance where
schools have unit capacity. Consider the unit capacity setting: a stable matching is found in
round R1, and in round R2 a set of new participants arrive on one side. Since each school
has unit capacity, schools and students become interchangeable.

I Lemma 24. (MSR,�) is a sublattice of (SM,�). MoreoverM2 finds the school-optimal
minimal stable re-allocation.

Adding New Schools(M, H ′):
Input: Stable matching M and set H ′.
Output: Minimum stable re-allocation of M .

1. ∀si ∈ SM : M ′(si)←M(si)
2. While ∃hj ∈ H ∪H ′ with unmet-capacity and BS-Preferring(hj) 6= ∅:

a. Break current match if exists of BS-Preferring(hj)
b. M ′ ←M ′ ∪ (BS-Preferring(hj), hj)

3. Return M ′.

Figure 6 Mechanism M2 for adding new schools in round R2.

I Lemma 25. There exists a mechanismM3, that finds a student-optimal minimum stable
re-allocation in polynomial time.

6 Incentive Compatibility

For the four settings discussed, it would be highly desirable if we could prove that mechanism
M2 in round R2 is DSIC. We show that for Setting B1 that this truly is the case. Unfortu-
nately for Settings A1, A2 and B2 we show that the current mechanisms outlined above are
not incentive compatible. We relax DSIC and consider the weaker notion of a mechanism
for which incentive compatibility is a Nash equilibrium (ICNE). Under such a mechanism, a
student cannot gain by misreporting her choices, if all other students are truthful. We show
that no mechanisms in round R2 for Setting A1, A2 and B2 can be even ICNE.

FSTTCS 2020

21:14 Stability-Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds

I Lemma 26. M2 in Setting B1 is DSIC for students.

I Lemma 27. There is no pair of stability-preserving, ICNE mechanism (M1,M2) for
Setting A1 and A2.

I Lemma 28. There is no pair of stability-preserving, ICNE mechanism (M1,M2) for
Setting B2.

The key distinction for incentive compatibility between Setting A1,A2 and B1, is that
in B1 if a student is unmatched after round R1 it will remain unmatched after round R2.
However in Settings A1, A2 we try to accommodate students who were unmatched after
round R1, so they still have a chance to get matched in R2. This providies the possibility of
affecting the matching produced in R1 by misreporting their preference list so as to make
the Barriers computed byM2 more favorable for them.

7 NP-Hardness Results

I Problem 29. A different version of Setting A2, the City wants to extend original matching
M so that it maximizes the number of students who get matched from L, and subject to this,
minimize the number of students who get matched from N . (maxLminN)

I Problem 30. Same setting as Problem 29, but the City wants to maximize the number of
students who get matched from N , and subject to this, minimize the number of students who
get matched from L. (maxN minL)

I Problem 31. A set of new students N arrive in round R2. The City wants to extend
the matching to include k students from N , such that it maximizes the number of students
matched from L.

I Problem 32. In round R2, we are allowed to re-allocate some students matched in round R1
in order to match more students from L. Find a stable matching that maximizes the number
of students matched from L, and subject to this, minimizes the number of re-allocations made.

I Problem 33. In the single round setting, given a set of students, and schools with strictly
ordered preference lists l(s), l(h) respectively, and a weight function w(j) over the edges of
students to schools, find a vector of capacities for the schools and a stable matching with
respect to this vector that maximizes the total weight.

I Theorem 34. Problems 29, 30, 31, 32, and 33 are NP-hard.

References
1 Atila Abdulkadiroglu, Yeon-Koo Che, Parag A Pathak, Alvin E Roth, and Olivier Tercieux.

Minimizing justified envy in school choice: The design of new orleans’ oneapp. Technical
report, National Bureau of Economic Research, 2017.

2 Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. Strategy-proofness versus efficiency
in matching with indifferences: Redesigning the NYC high school match. American Economic
Review, 99(5):1954–78, 2009.

3 Atila Abdulkadiroğlu and Tayfun Sonmez. School choice: A mechanism design approach.
American economic review, 93(3):729–747, 2003.

4 Atila Abdulkadiroglu and Tayfun Sonmez. Matching markets: Theory and practice. Advances
in Economics and Econometrics, 1:3–47, 2013.

5 Tommy Andersson, Umut Dur, Sinan Ertemel, Onur Kesten, et al. Sequential school choice
with public and private schools. Technical report, Lund University, 2018.

K. Gajulapalli, J. A. Liu, T. Mai, and V. V. Vazirani 21:15

6 Battal Dogan and M Bumin Yenmez. When does an additional stage improve welfare in
centralized assignment?, 2018.

7 Laura Doval. A theory of stability in dynamic matching markets. Technical report, Technical
report, mimeo, 2018.

8 Lester E Dubins and David A Freedman. Machiavelli and the gale-shapley algorithm. The
American Mathematical Monthly, 88(7):485–494, 1981.

9 Lester E Dubins and David A Freedman. Machiavelli and the Gale-Shapley algorithm. The
American Mathematical Monthly, 88(7):485–494, 1981.

10 Umut Dur and Onur Kesten. Sequential versus simultaneous assignment systems and two
applications. Economic Theory, pages 1–33, 2014.

11 Federico Echenique and Juan Sebastián Pereyra. Strategic complementarities and unraveling
in matching markets. Theoretical Economics, 11(1):1–39, 2016.

12 Itai Feigenbaum, Yash Kanoria, Irene Lo, and Jay Sethuraman. Dynamic matching in school
choice: Efficient seat reallocation after late cancellations, 2018.

13 Simons Institute for the Theory of Computing. Online and matching-based market design,
2019. URL: https://simons.berkeley.edu/programs/market2019.

14 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

15 Joseph Gasper, Stefanie DeLuca, and Angela Estacion. Switching schools: Revisiting the
relationship between school mobility and high school dropout. American Educational Research
Journal, 49(3):487–519, 2012.

16 Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms.
MIT press, 1989.

17 Sangram V Kadam and Maciej H Kotowski. Multiperiod matching. International Economic
Review, 59(4):1927–1947, 2018.

18 Parag A Pathak. The mechanism design approach to student assignment. Annu. Rev. Econ.,
3(1):513–536, 2011.

19 Alvin E. Roth. Stability and polarization of interests in job matching. Econometrica: Journal
of the Econometric Society, pages 47–57, 1984.

20 Alvin E Roth. On the allocation of residents to rural hospitals: a general property of two-sided
matching markets. Econometrica: Journal of the Econometric Society, pages 425–427, 1986.

21 Alvin E Roth. What have we learned from market design? Innovations: Technology,
Governance, Globalization, 3(1):119–147, 2008.

22 Alvin E. Roth. Al Roth’s game theory, experimental economics, and market design page, 2016.
URL: http://stanford.edu/~alroth/alroth.html#MarketDesign.

23 Alvin E. Roth and LLoyd S. Shapley. Nobel Memorial Prize in Economics, 2012. URL:
https://www.nobelprize.org/prizes/economic-sciences/2012/summary/.

24 Alexander Westkamp. An analysis of the german university admissions system. Economic
Theory, 53(3):561–589, 2013.

FSTTCS 2020

https://simons.berkeley.edu/programs/market2019
http://stanford.edu/~alroth/alroth.html#MarketDesign
https://www.nobelprize.org/prizes/economic-sciences/2012/summary/

New Verification Schemes for Frequency-Based
Functions on Data Streams
Prantar Ghosh
Dartmouth College, Hanover, NH, USA
prantar.ghosh.gr@dartmouth.edu

Abstract
We study the general problem of computing frequency-based functions, i.e., the sum of any given
function of data stream frequencies. Special cases include fundamental data stream problems such
as computing the number of distinct elements (F0), frequency moments (Fk), and heavy-hitters. It
can also be applied to calculate the maximum frequency of an element (F∞).

Given that exact computation of most of these special cases provably do not admit any sublinear
space algorithm, a natural approach is to consider them in an enhanced data streaming model,
where we have a computationally unbounded but untrusted prover that can send proofs or help
messages to ease the computation. Think of a memory-restricted client delegating the computation
to a powerful cloud service. The client does not blindly trust the cloud, and with its limited memory,
it wants to verify the proof that the cloud sends. Chakrabarti et al. (ICALP ’09) introduced this
model as the annotated data streaming model and showed that multiple problems including exact
computation of frequency-based functions – that have no sublinear algorithms in basic streaming –
do have algorithms, also called schemes, in the annotated streaming model with both space and
proof-length sublinear in the input size.

We give a general scheme for computing any frequency-based function with both space usage
and proof-size of O(n2/3 log n) bits, where n is the size of the universe. This improves upon the best
known bound of O(n2/3 log4/3 n) given by the seminal paper of Chakrabarti et al. and as a result,
also improves upon the best known bounds for the important special cases of computing F0 and
F∞. We emphasize that while being quantitatively better, our scheme is also qualitatively better
in the sense that it is simpler than the previously best scheme that uses intricate data structures
and elaborate subroutines. Our scheme uses a simple technique tailored for this model: the verifier
solves the problem partially by running an algorithm known to be helpful for it in the basic (sans
prover) streaming model and then takes the prover’s help to solve the remaining part.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Interactive proof systems; Computer systems organization → Cloud computing

Keywords and phrases data streams, interactive proofs, Arthur-Merlin

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.22

Funding Prantar Ghosh: Work supported in part by NSF under award CCF-1907738

Acknowledgements The author would like to thank Amit Chakrabarti and Justin Thaler for several
helpful discussions. He is also grateful to the anonymous FSTTCS 2020 reviewers for their valuable
comments, especially to the reviewer who gave a sketch of a scheme using a randomized estimation
algorithm, pointing out that it can handle longer streams and that determinism isn’t strictly necessary
for the subroutine.

1 Introduction

Interactive proof systems have contributed a very important conceptual message to computer
science: it is possible for a computationally bounded entity to reduce its computational cost
for a problem if it is only required to verify a proof of the solution instead of finding a solution
on its own. This concept led to celebrated results such as IP = PSPACE [28] and the PCP
Theorems [3, 4]. It is natural to incorporate this idea to deal with challenging problems in

© Prantar Ghosh;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prantar.ghosh.gr@dartmouth.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 New Verification Schemes for Frequency-Based Functions on Data Streams

massive data streams so as to reduce the impractical computational costs for such problems.
This incorporation led to the following setting: a space-restricted client reading a huge data
stream outsources the computation to a more powerful entity, such as a cloud service, with
unbounded space. The cloud sends the result of the computation to the client who refuses to
blindly trust it since it might be malicious or might have incurred some hardware failure.
Therefore, the cloud (henceforth named “Prover”) also sends the client (henceforth named
“Verifier”) a proof in support of its results. Verifier needs to use his limited space to collect
sufficient information from the stream so as to verify the proof. In the case that Prover is
honest, Verifier can use it as a help message to find the solution to the underlying problem.
Otherwise, he rejects the proof. This combination of data streaming with prover-verifier
systems has been fruitful: multiple works [1, 6, 7, 8, 9, 10, 12, 14, 21, 22, 30] have shown that
several problems that are provably intractable in the basic data streaming model turn out to
be solvable in prover-enhanced models using verification space and proof-length sublinear in
the input size.

Chakrabarti et al. [7] formally defined this enhanced data streaming model as the annotated
data streaming model. An algorithm in this model is called a scheme. In designing a scheme,
the two important complexity parameters that we need to focus on are the space used by
Verifier and the size of the proof sent by Prover. A scheme that has a proof-length of O(h)
bits and uses O(v) bits of space is called an (h, v)-scheme.

Since its inception, data streaming algorithms have been extensively studied for funda-
mental statistical problems such as counting the number of distinct elements in a stream
(F0) [2, 5, 15, 20], the kth frequency moment for k > 0 (Fk) [2, 16, 18, 32], the maximum
frequency of an element (F∞) [2, 19], and the `p-norm of the frequency vector for some p > 0
[19, 20, 26]. All of these problems are special cases of (or can be solved by easily applying) the
general problem of computing frequency-based functions: given a function g : Z→ Z+, find∑n
j=1 g(fj), where, for each j in the universe {1, . . . , n}, fj is the frequency of the jth ele-

ment. This general problem was notably addressed by the celebrated seminal paper by Alon,
Matias, and Szegedy [2]: they asked for a characterization of precisely which frequency-based
functions can be approximated efficiently in the basic streaming model. The aforementioned
paper by Chakrabarti et al. [7] studied such statistical problems in the annotated streaming
setting and gave several interesting schemes. In particular, for the general problem of com-
puting frequency-based functions, they gave an (n2/3 log4/3 n, n2/3 log4/3 n)-scheme. Their
scheme uses an intricate data structure with binary trees and calls upon a subroutine for
heavy-hitters that uses an elaborate framework called hierarchical heavy hitters.

Given how general the problem is, with several important special cases having numerous
applications, it is important and beneficial to have a simple scheme for the general problem. In
this work, we design such a simple scheme that uses the most basic and classical data structure
for frequency estimation: the Misra-Gries summary [25]. Our scheme ends up improving the
best known complexity bounds for the problem: we give an (n2/3 logn, n2/3 logn)-scheme.
No better bounds or simpler algorithms were known even for the special cases of computing
F0 or F∞. Our result thus simplifies and improves the bounds for these problems as well.

The aforementioned scheme works for streams of length m = O(n), an assumption that
was also made by Chakrabarti et al. [7]. However, their scheme can be made to work for
longer turnstile streams as long as ‖f‖1 = O(n). We show how to use the Count-Median
Sketch [13], an estimation algorithm with stronger guarantees than Misra-Gries, to get a
scheme with similar complexity bounds for these long streams. But since the Count-Median
Sketch is randomized (contrary to Misra-Gries), we incur a non-zero completeness error for
this scheme. The high-level idea of both our schemes is the following: we use the estimation
algorithm as a primitive to “partially” solve the problem. Prover then helps Verifier with the
“remaining” unsolved part.

P. Ghosh 22:3

1.1 Setup and Terminology
We formalize the setting described above. A scheme for computing a function g(σ) of the
input stream σ is a triple (H,A, out), where H is a function that Prover uses to generate
the help message or proof-stream for σ, given by H(σ), A is a data streaming algorithm
that Verifier runs on the stream σ using a random string R to produce a summary AR(σ),
and out is a streaming algorithm that Verifier runs on the proof-stream H(σ) and also uses
AR(σ) and R to generate an output outR(H(σ),AR(σ)) in range(g) ∪ ⊥, where the symbol
⊥ denotes rejection of the proof. Note that if the proof-length |H(σ)| is larger than the
memory of Verifier, then he needs to process H(σ) as a stream.

A scheme (H,A, out) has completeness error εc and soundness error εs if it satisfies
(completeness) ∀σ : PrR[outR(AR(σ),H(σ)) = g(σ)] > 1− εc;
(soundness) ∀σ,H : PrR[outR(AR(σ), H) /∈ {g(σ),⊥}] 6 εs.

Informally, this means that an honest Prover can convince Verifier to produce the correct
output with high probability. Again, if Prover is dishonest, then, with high probability,
Verifier rejects the proof. We usually aim for εc, εs 6 1/3 (they can be boosted down using
standard techniques incurring a small increase in the space usage). A scheme is said to have
perfect completeness if εc = 0.

The hcost (short for “help cost”) of a scheme (H,A, out) is defined as maxσ |H(σ)|, i.e.,
the maximum number of bits required to express a proof. The vcost (short for “verification
cost”) is the maximum bits of space used by the algorithms AR(σ) and outR(σ), where the
maximum is taken over all inputs σ and possible random strings R. A scheme with hcost
O(h) and vcost O(v) is called an (h, v)-scheme. An (h, v)-scheme is interesting if h > 0 and
v is asymptotically smaller than the best bound achievable for h = 0, i.e., in the basic (sans
prover) streaming model.

1.2 Our Results and Techniques
In this section, we state our results and give an overview of our techniques.

Results. Given a stream with elements in [n], let f denote its frequency vector 〈f1, f2, . . . , fn〉,
where fj is the frequency of the jth element. A frequency-based function is a function G(f)
of the form G(f) :=

∑n
j=1 g(fj) for some function g : Z→ Z+.

Our main result is captured in the following theorem which we prove in Section 3.2.1.

I Theorem 1. There is an (n2/3 logn, n2/3 logn)-scheme for computing any frequency-based
function in any turnstile stream of length m = O(n). The scheme is perfectly complete and
has soundness error at most 1/poly(n).

With some modifications, we obtain a similar scheme for longer streams at the cost of
imperfect completeness. This is given by the following theorem which we prove in Section 3.2.2.

I Theorem 2. There is an (n2/3 logn, n2/3 logn)-scheme for computing any frequency-based
function in any turnstile stream with ‖f‖1 = O(n). The scheme has completeness and
soundness errors at most 1/3.

As a consequence, we get schemes with the same complexity bounds for the problems of
computing F0, F∞, and checking multiset inclusion (see Corollary 5 for formal definition).
Just as for frequency-based functions, our schemes also improve upon the best known bounds
for these special cases and applications1. We discuss these results in detail in Section 3.3.

1 Computing Fk for constant k > 0 is a well-studied special case for which better bounds are known [7].

FSTTCS 2020

22:4 New Verification Schemes for Frequency-Based Functions on Data Streams

I Corollary 3. For any turnstile stream with ‖f‖1 = O(n), there is an (n2/3 logn, n2/3 logn)-
scheme for computing F0, the number of distinct elements with non-zero frequency, with
completeness and soundness errors at most 1/3. The scheme can be made perfectly complete
with soundness error 1/poly(n) if the stream has length m = O(n).

I Corollary 4. For any turnstile stream with ‖f‖1 = O(n), there is an (n2/3 logn, n2/3 logn)-
scheme for computing F∞, the maximum frequency of an element, with completeness and
soundness errors at most 1/3. The scheme can be made perfectly complete with soundness
error 1/poly(n) if the stream has length m = O(n).

I Corollary 5. Let X,Y ⊆ [n] be multisets of size O(n). Given a stream where elements
of X and Y arrive in interleaved manner, there is an (n2/3 logn, n2/3 logn)-scheme for
determining whether X ⊆ Y .

Techniques. Computing frequency-based functions is challenging simply because we don’t
have enough space to store all the exact frequencies. However, there are efficient small-
space algorithms – e.g., Misra-Gries algorithm [25], Count-Median Sketch [13] – that return
reasonably good estimates of the frequencies. We use such an algorithm as a primitive in
our schemes. The estimates returned partially solve the problem by helping us identify the
“heavy-hitters” or the most frequent items. There cannot be too many heavy-hitters and
hence, the all-powerful Prover can send Verifier the exact frequencies of these elements (which
of course need to be verified) without too much communication. On the other hand, the rest
of the elements, though large in number, have relatively small frequency. We show a way
to encode the answer in terms of a low-degree polynomial when the frequencies are small.
Prover can then send us this polynomial using few bits, enabling us to solve the problem
with small communication overall.

We remark that the high-level technique used in our first scheme – using Misra-Gries as
a subroutine – might be more widely applicable than that used in the second one, i.e., using
Count-Median Sketch. This is because Misra-Gries is deterministic while Count-Median is
randomized. In general, both Prover and Verifier can locally run a deterministic algorithm
on the input, and then, Prover can send messages based on the final state of that algorithm.
Note that it isn’t clear if a randomized algorithm can always help in this regard since we
assume that Prover and Verifer do not have access to shared randomness2. Hence, the final
states of the algorithm might vary drastically for Prover and Verifier if they run it locally
with their own private randomness. For our problem, we don’t run into this issue since we
don’t require Prover to know the exact output of the Verifier’s local estimation algorithm.

Other techniques used are pretty standard in this area. We use techniques based on the
famous sum-check protocol of Lund et al. [24] that encodes answers as sum of low-degree
polynomials. In our case, where Prover sends only a single message to Verifier, a quantity of
interest is expressed as the sum of evaluations of a low-degree univariate polynomial. Since
the polynomial has low-degree, it can be expressed with a small number of monomials. Thus,
Prover needs only a few bits to express the set of coefficients that describe the polynomial,
leading to short proof-length. Moreover, to verify the authenticity of the polynomial, Verifier
needs to evaluate it at just a single random point, the space for which he can afford. The main
challenge in this technique is to find the proper low-degree polynomials to encode the answer,

2 This assumption is made so that it corresponds to the MA communication model. Access to shared
randomness corresponds to the AMA communication model where better bounds are known [17].

P. Ghosh 22:5

and in this work, we give such new polynomial encodings for the underlying sub-problems.
Another standard technique we use is the shaping technique that transforms a one-dimensional
vector into a two-dimensional array. On a high level, this helps in “distributing” the work
between Prover and Verifier as they each “take care of” a single dimension. Pertaining to the
streaming model, we exploit the popular technique of linear sketching where we express a
quantity of interest as a linear combination of the stream updates, which helps us to maintain
the quantity dynamically as the stream arrives.

1.3 Related Work

Early works on the concept of stream outsourcing and verification were done by the database
community [23, 27, 31, 33]. Motivated by these works, Chakrabarti et al. [7] abstracted out
and formalised the theoretical aspects of the settings. They defined two types of stream
verification settings: (i) the annotated data streaming setting – calling the schemes as online
schemes – where Prover and Verfier read the input stream together and Prover sends help
messages during and/or after the stream arrival based on the part of the stream she has
seen so far, and (ii) the prescient setting where Prover knows the entire stream upfront, i.e.,
before Verifies sees it, and can send help messages accordingly. Several subsequent works
[6, 9, 10, 12, 21, 30] studied these non-interactive models. Natural generalizations of the
model, where we allow multiple rounds of interaction between Prover and Verifier, have also
been explored. These include Arthur-Merlin streaming protocols (Prover is named “Merlin”
and Verifier is named “Arthur” following a long-standing tradition in complexity theory) of
Gur and Raz [17] and the streaming interactive proofs (SIP) of Cormode et al. [14]. The
latter setting was further studied by multiple works [1, 8, 22]. We refer the reader to the
expository article by Thaler [29] for a detailed survey of this area.

We state the results with the standard assumption [7, 14] that m = O(n). Chakrabarti
et al. [7] gave two schemes for computing any general frequency-based function: an on-
line (n2/3 log4/3 n, n2/3 log4/3 n)-scheme and a prescient (n2/3 logn, n2/3 logn)-scheme. They
noted that the schemes apply to get best known schemes for the special cases of computing the
number of distinct elements (F0), the maximum frequency (F∞), and for checking multiset
inclusion. They also showed a lower bound that any online or prescient (h, v)-scheme for
the problem (even for the aforementioned special cases) requires hv > n. They designed
schemes with better bounds for certain other frequency-based functions, often matching
this lower bound up to polylogarithmic factors. For instance, for any hv = n, they gave
an online (k2h logn, kv logn)-scheme for calculating the kth frequency moment Fk for any
positive integer k, and a (φ−1 log2 n + h logn, v logn)-scheme for computing the φ-heavy
hitters (elements with frequency of at least a φ-fraction of the stream length).

The specific problem of computing F0 has been studied by multiple works in various
stream verification models. Cormode, Mitzenmacher, and Thaler [11] studied the problem
in the stronger SIP-model and gave a (log3 n, log2 n)-SIP with O(log2 n) rounds of com-
munication. For the case where we restrict the number of rounds to O(logn), Cormode,
Thaler, and Yi [14] gave a (

√
n log2 n, log2 n)-SIP. Klauck and Prakash [22] improved this to

a (log4 n log logn, log2 n log logn)-SIP. Gur and Raz [17] designed an (Õ(
√
n), Õ(

√
n))-AMA-

streaming protocol3 (the Õ(·) notation hides polylog(n) factors) for F0.

3 AMA stands for the communication pattern Arthur-Merlin-Arthur

FSTTCS 2020

22:6 New Verification Schemes for Frequency-Based Functions on Data Streams

2 Preliminaries

Here, we discuss the streaming models we study and some standard results that we use in
our schemes.

Throughout this paper, the stream elements come from the universe [n] := {1, . . . , n}
and the stream length is m. In the turnstile streaming model, tokens are of the form
(j,∆) ∈ [n]× Z, which means ∆ copies of the element j are inserted (resp. deleted) if ∆ > 0
(resp. ∆ < 0). The cash register or insert-only streaming model is the special case when ∆
is always positive. In this paper, for simplicity, we assume unit updates, i.e., ∆ ∈ {−1, 1}
always. The assumption can be easily removed by looking at an update as a collection of
multiple unit updates.

For a stream σ = 〈(a1,∆1), . . . , (am,∆m)〉, the frequency vector f(σ) is defined as
〈f1, . . . , fn〉 where fj is the frequency of element j, given by fj :=

∑
i∈[m]:
ai=j

∆i. We denote

estimates of fj by f̂j . We drop the argument σ from f(σ) when the stream is clear from the
context.

In our schemes, we use the standard technique of sketching a frequency vector by
evaluating its low-degree extension at a random point. We explain what this means. We
transform (or shape) our frequency vector of length n into a 2-dimensional d1 × d2 array f ,
where d1d2 = n, using some canonical bijection from [n] to [d1] × [d2]. This means that
the domain of the function f can now be seen as [d1] × [d2]. We work on a finite field F
with large enough characteristic such that the values don’t “wrap around” under operations
in F. By Lagrange’s interpolation, there is a unique polynomial f̃(X,Y) ∈ F[X,Y] with
degX(f̃) = d1− 1 and degY (f̃) = d2− 1 such that f̃(x, y) = f(x, y) for all (x, y) ∈ [d1]× [d2].
We call f̃ the low-degree F-extension of f . For each (x, y) ∈ [d1]× [d2], we have “Lagrange
basis polynomials” defined as

δx,y(X,Y) :=

 ∏
xi∈[d1]\{x}

X − xi
x− xi

 ·
 ∏
yi∈[d2]\{y}

Y − yi
y − xi

 (1)

We can write f̃ as a linear combination of these polynomials as follows:

f̃(X,Y) =
∑

(x,y)∈[d1]×[d2]

f(x, y) δx,y(X,Y)

In particular, if f is built up from a stream of turnstile updates 〈((x, y)j ,∆j)〉, then

f̃(X,Y) =
∑
j

∆j δ(x,y)j
(X,Y) . (2)

Thus, we can use Equation (2) to maintain f̃(x∗, y∗) at some fixed point (x∗, y∗) dynamically
with stream updates. We formalize this in the following fact.

I Fact 6. Given a point (x∗, y∗) ∈ F2 and a stream of updates to an initially-zero d1 × d2-
dimensional array f , we can maintain f̃(x∗, y∗) using O(log |F|) space. For implementation
details and generalizations, see Cormode et al. [14].

An important subroutine in one of our schemes is the classic Misra-Gries algorithm for
frequency estimation [25] which, given an input stream of m elements and a fraction φ,
estimates the frequency of the stream elements within an additive factor of φm. We recall
this algorithm in Algorithm 1.

P. Ghosh 22:7

Informally, the algorithm does the following: it keeps an array or “dictionary” K indexed
by “keys” that are elements of the stream and each of them has an associated counter K[i].
At any point of time, the array has at most dφ−1e keys. When a stream element arrives, it
increments the counter for the element if it’s present in the keys (it includes it in the keys
if there are less than dφ−1e keys), and otherwise decrements the counter of every key. If a
counter for a key becomes 0, it is removed from K. Finally, the estimate f̂j is given by K[j]
(which is 0 if j is not in the keys). The guarantees of the algorithm is given in Fact 7.

Algorithm 1 [25] Misra-Gries algorithm for frequency estimates in insert-only streams.

Input: Stream σ; φ 6 1
1: Initialize K ← empty array

Process(token j ∈ σ):
2: if j ∈ keys(K) then
3: K[j]← K[j] + 1
4: else
5: if |keys(K)| < dφ−1e then
6: K[j]← 1
7: else
8: for i ∈ keys(K) do:
9: K[i]← K[i]− 1
10: if K[i] = 0 then remove i from keys(K)
Output:
11: for j ∈ [n] do:
12: if j ∈ keys(K) then return f̂j = K[j]; else return f̂j = 0

I Fact 7 ([25]). For an insert-only stream of m elements in [n], given any φ 6 1, Algorithm 1
uses O(φ−1(logn+ logm)) space and returns frequency estimates 〈f̂j : j ∈ [n]〉 such that, for
all tokens j ∈ [n], we have fj − φm 6 f̂j 6 fj.

Note that this algorithm was designed for insert-only streams and doesn’t work for turnstile
streams. To use it for turnstile streams, we need to make appropriate modifications (which
we do in Section 3.1).

3 Computing Frequency-based Functions in Turnstile Streams

Let f be the frequency vector of a stream as defined in Section 2. Recall that a frequency-based
function is a function G(f) of the form G(f) :=

∑
j∈[n] g(fj) for some function g : Z→ Z+.

In this section, we obtain an improved (n2/3 logn, n2/3 logn)-scheme for computing any
frequency-based function for some predetermined function g. As stated earlier, we design a
scheme exploiting the Misra-Gries algorithm (Algorithm 1). We want to use it as a subroutine
in our problem for turnstile streams, but it works only in the insert-only model. Therefore, in
Section 3.1, we provide a simple extension of the algorithm that attains a similar guarantee
for turnstile streams. In Section 3.2, first, we use this extended Misra-Gries (EMG) algorithm
as a subroutine for our scheme for computing frequency-based functions. Next, we show
that we can instead use the Count-Median Sketch [13] to make our scheme work for longer
streams. In Section 3.3, we discuss some important applications of our schemes.

FSTTCS 2020

22:8 New Verification Schemes for Frequency-Based Functions on Data Streams

3.1 Extension of Misra-Gries Algorithm for Turnstile Streams
The extended Misra-Gries algorithm (henceforth called “EMG algorithm”) works as follows:
we process the positive and negative updates separately in two parallel copies of Algorithm 1
to estimate the total positive update and (absolute value of) the total negative update. In
the second copy, we can actually think of the updates as “increments” since only negative
updates are processed there. Thus, what we are actually estimating is the absolute value of
the total negative update.

For each j, let the total positive update be f+
j and (absolute value of) the total negative

update f−j . Then, the actual frequency is fj = f+
j − f

−
j . Denote the corresponding estimates

given by the copies of Algorithm 1 by f̂+
j and f̂−j . Then f̂j := f̂+

j − f̂
−
j gives a similar

guarantee as Fact 7 for turnstile streams; this time, we also incur an additive error of φm on
the upper bound.

To see this, note that by Fact 7, we have, ∀j ∈ [n],

f+
j − φm 6 f̂+

j 6 f+
j (3)

f−j − φm 6 f̂−j 6 f−j (4)

Thus, Equations (3) and (4) give f+
j − f

−
j − φm 6 f̂+

j − f̂
−
j 6 f+

j − f
−
j + φm, i.e.,

fj − φm 6 f̂j 6 fj + φm (5)

Hence, this time we get double sided error. This estimate would suffice for getting our
desired scheme. Therefore, we get the following lemma.

I Lemma 8. Given a turnstile stream of m elements in [n], the EMG algorithm uses
O(φ−1(logn+ logm)) space and returns a summary 〈f̂j : j ∈ [n]〉 such that, for all j ∈ [n],
we have fj − φm 6 f̂j 6 fj + φm.

I Remark 9. The guarantee given by the EMG algorithm may not be very useful in general for
turnstile streams. This is because the total number of stream updates m can be huge, whereas
the frequency of each token can be small since we allow both increments and decrements in
the turnstile model. The classic Misra-Gries algorithm for insert-only model, on the other
hand, has a good guarantee (Fact 7) since m = ‖f‖1 in this model. However, for our purpose,
the guarantee in Lemma 8 is good enough since we assume that m = O(n).

3.2 Schemes for Frequency-based Functions
First, in Section 3.2.1, we describe a protocol for computing frequency-based functions in
turnstile streams of length O(n) and prove Theorem 1. Next, in Section 3.2.2, we show that
the scheme can be modified to work for any turnstile stream with ‖f‖1 = O(n), proving
Theorem 2. The completeness error in the latter scheme is, however, non-zero.

3.2.1 Perfectly Complete Scheme for O(n)-Length Streams
As in prior works [7, 14], we solve the problem for stream length m = O(n). Hence, by
Lemma 8, the EMG algorithm takes O(φ−1 logn) space and gives, for some constant c,

∀j ∈ [n] : fj − φcn 6 f̂j 6 fj + φcn . (6)

Set φ = (cn2/3)−1. Therefore, we have an O(n2/3 logn) space algorithm that guarantees

∀j ∈ [n] : fj − n1/3 6 f̂j 6 fj + n1/3 .

P. Ghosh 22:9

Let K denote the set of keys in the final state of the EMG algorithm for the setting of φ =
1/(cn2/3). Observe that if f̂j = 0 for some j (i.e., j 6∈ K), we know that fj ∈ [−n1/3, n1/3].

Define h(j) = I{j 6∈ K} where I is the 0-1 indicator function. We have∑
j∈[n]

g(f(j)) =
∑
j∈K

g(f(j)) +
∑
j 6∈K

g(f(j)) =
∑
j∈K

g(f(j)) +
∑
j∈[n]

g(f(j))h(j)

Let L :=
∑
j∈K g(f(j)) and R :=

∑
j∈[n] g(f(j))h(j). We shall compute L and R

separately and add them to get the desired answer.
We shape (see Section 2) the 1D array [n] into a 2D n1/3 × n2/3 array. Thus, we get

R =
∑

x∈[n1/3]

∑
y∈[n2/3]

g(f(x, y))h(x, y)

As is standard [7], we assume that the range of the function g is upper bounded by some
polynomial in n, say np. Pick a prime q such that np+1 < q < 2np+1. We will work in
the finite field Fq and the upper bound on the range of g ensures that G(f) will not “wrap
around” under arithmetic in Fq.

Let f̃ , h̃ be polynomials of lowest degree over the finite field Fq that agree with f, h

respectively at all values in [n1/3]× [n2/3]. Note that, by Lagrange’s interpolation, both f̃
and h̃ have degrees n1/3 − 1 and n2/3 − 1 in the two variables (see Section 2). Again, let
g̃ denote the polynomial of lowest degree that agrees with g at all values in [−n1/3, n1/3].
Thus, g̃ has degree 2n1/3.

Therefore, we have

R =
∑

x∈[n1/3]

∑
y∈[n2/3]

g̃(f̃(x, y))h̃(x, y)

i.e., we can write

R =
∑

x∈[n1/3]

P (x) , (7)

where the polynomial P is given by

P (X) =
∑

y∈[n2/3]

g̃(f̃(X, y))h̃(X, y) (8)

To compute L, it suffices to obtain the values fj for all j ∈ K since g is predetermined.
In our protocol, Prover would send values f ′j that she claims to be fj for all j ∈ K. Define

T :=
∑
j∈K

(fj − f ′j)2

Note that we have fj = f ′j for each j if and only if T = 0. Set f ′j := 0 for all j 6∈ K. Thus,
we can rewrite T as

T =
∑
j∈[n]

(fj − f ′j)2(1− h(j))

Using shaping as before, we get

T =
∑

x∈[n1/3]

∑
y∈[n2/3]

(f(x, y)− f ′(x, y))2(1− h(x, y)) (9)

FSTTCS 2020

22:10 New Verification Schemes for Frequency-Based Functions on Data Streams

Let f̃ ′ denote the polynomial of lowest degree over Fq that agrees with f ′ at all values in
[n1/3]× [n2/3]. Therefore, we have

T =
∑

x∈[n1/3]

Q(x) (10)

where the polynomial Q is given by

Q(X) =
∑

y∈[n2/3]

(f̃(X, y)− f̃ ′(X, y))2(1− h̃(X, y)) . (11)

We are now ready to describe the protocol.
Stream processing. Verifier picks r ∈ Fq uniformly at random. As the stream arrives, he

maintains f̃(r, y) for all y ∈ [n2/3] (Fact 6). In parallel, he runs the EMG algorithm
setting φ = (cn2/3)−1.

Help message. Prover sends polynomials P ′ and Q′, and values f ′j for all j ∈ K. She claims
that P ′, Q′, f ′ are identical to P,Q, f respectively. The polynomials are sent as streams
of their coefficients following some canonical order of their monomials. Verifier evaluates
P ′(r) and Q′(r) as the polynomials are streamed.

Verification and output. Looking at the final state of the EMG subroutine, Verifier con-
structs h̃(r, y) for all y ∈ [n2/3] (he can treat the keys as a stream and use Fact 6).
Also, from the values f ′j , he constructs f̃ ′(r, y) for all y ∈ [n2/3]. The O(n1/3)-degree
polynomial g̃ is computed and stored in advance (we need to evaluate g at all points in
[−n1/3, n1/3] and then use Lagrange interpolation to get g̃).
Thus, Verifier can now use Equation (8) to compute P (r) and Equation (11) to compute
Q(r). He checks whether P (r) = P ′(r) and Q(r) = Q′(r). If the checks pass, he believes
P ′, Q′ are correct. He further checks whether

∑
x∈[n1/3] Q

′(x) = 0, i.e., by Equation (10),
whether T = 0. If so, he believes that f ′j = fj for all j ∈ K. Next, he computes
L =

∑
j∈K g(f ′(j)), and using Equation (7), he computes R =

∑
x∈[n1/3] P

′(x). Finally,
L+R gives the answer.

Error probability. The correctness analysis follows along standard lines of sum-check proto-
cols. The scheme is perfectly complete since it follows from above that we always output
correctly if Prover is honest. For soundness, note that the protocol fails if either P 6= P ′ or
Q 6= Q′, but P (r) = P ′(r) and Q(r) = Q′(r). Then, r is a root of the non-zero polynomial
P − P ′ or Q−Q′. Since degree of P − P ′ is O(n2/3) and that of Q−Q′ is O(n1/3), they
have at most O(n2/3) roots in total. Since r is drawn uniformly at random from Fq, where
q > np+1, the probability that r is such a root is at most O(n2/3)/np+1 6 1/poly(n) for
sufficiently large n. Thus, the soundness error is at most 1/poly(n).

Help and Verification costs. The polynomials P and Q have degree O(n2/3) and O(n1/3)
respectively. Thus, it requires O(n2/3 logn) bits in total to express their coefficients
since each coefficient comes from Fq that has size poly(n). Recall that for the setting of
φ = (cn2/3)−1, there are O(φ−1) = O(n2/3) keys in the EMG algorithm. Prover sends f ′j
for each j ∈ K, and since each frequency is at most m = O(n), this requires O(n2/3 logn)
bits to communicate. Therefore, the total hcost is O(n2/3 logn).
As noted above, the invocation of EMG algorithm takes O(n2/3 logn) space. Verifier
maintains f̃(r, y) and stores the values h̃(r, y) and f̃ ′(r, y) for all y ∈ [n2/3]. Each value is
an element in Fq, and hence they take up O(n2/3 logn) space in total. The O(n1/3)-degree
polynomial g̃ takes O(n1/3 logn) space to store. Hence, the total vcost is O(n2/3 logn).

Thus, we have proved the following theorem.

P. Ghosh 22:11

I Theorem 1. There is an (n2/3 logn, n2/3 logn)-scheme for computing any frequency-based
function in any turnstile stream of length m = O(n). The scheme is perfectly complete and
has soundness error at most 1/poly(n).

3.2.2 Handling longer streams at the cost of imperfect completeness
The scheme in Section 3.2.1 requires stream length m = O(n). Note that a turnstile stream
with massive cancellations can have length m� n, but ‖f‖1 can still be O(n). Chakrabarti
et al. [7] presented their scheme under the assumption of m = O(n), but their scheme can
be made to work for longer streams as long as ‖f‖1 = O(n). We can modify our scheme
to handle such streams as well without increasing the costs, but we no longer have perfect
completeness. We give a sketch of this scheme below highlighting the modifications.

We cannot use the EMG algorithm anymore because it doesn’t give a strong guarantee
with respect to ‖f‖1 for turnstile streams. We use the Count-Median Sketch instead which
gives the following guarantee.

I Fact 10 (Count-Median Sketch [13]). For all φ, ε > 0, there exists an algorithm that, given
a turnstile stream of elements in [n] with ‖f‖1 = O(n), uses O(φ−1 log(ε−1) logn) space and
returns frequency estimates 〈f̂j : j ∈ [n]〉 such that, with probability at least 1 − ε, for all
tokens j ∈ [n], we have fj − φ‖f‖1 6 f̂j 6 fj + φ‖f‖1.

If ‖f‖1 6 cn for some constant c, then setting φ = (4cn2/3)−1 and ε = 1/4, we get that
there is an O(n2/3 logn) space algorithm that, with probability at least 3/4, gives

∀j ∈ [n] : fj − n1/3/4 6 f̂j 6 fj + n1/3/4 (12)

For this protocol, redefine the set K as K := {j : |fj | > n1/3/2}. Prover sends a set
K ′ that she claims is identical to K. Let M denote the set {j : |f̂j | > 3n1/3/4}. Verifier
checks whether M ⊆ K ′, and if the check passes, he computes

∑
j∈K′ g(fj) and

∑
j 6∈K′ g(fj)

separately, similar to the earlier protocol, and adds them to obtain the answer.

Error probability. For completeness, note that if Prover is honest and K ′ = K, then with
probability at least 3/4, we have M ⊆ K ′. To see this, observe that, by the guarantees
of the Count-Median Sketch (Equation (12)), for all j ∈ [n] with |f̂j | > 3n1/3/4, we have
|fj | > n1/3/2 with probability at least 3/4. The rest of the completeness analysis is as before,
and hence, there is no additional completeness error. Thus, the total completeness error of
the scheme is at most 1/4.

For soundness, suppose that K ′ 6= K. By the guarantees of the Count-Median Sketch,
for all j ∈ [n] with |fj | > n1/3, we have |f̂j | > 3n1/3/4 with probability at least 3/4. Thus,
{j : |fj | > n1/3} ⊆ M . Hence, if the check M ⊆ K ′ passes, then with probability at least
3/4, we have {j : |fj | > n1/3} ⊆ K ′. Thus, if j 6∈ K ′, we have |fj | < n1/3. Therefore, the
computation of

∑
j 6∈K′ g(fj) goes through as before. The additional soundness error is at

most 1/poly(n) as analyzed earlier. Thus, the total soundness error of the protocol is at
most 1/4 + 1/poly(n) < 1/3.

Help and Verification costs. Clearly, since ‖f‖1 6 cn, we have |K| = O(n2/3) which adds
O(n2/3 logn) bits to the hcost. The Count-Median Sketch takes space O(n2/3 logn), similar
to the EMG algorithm. The rest of the cost analysis is as before, and hence we have an
(n2/3 logn, n2/3 logn)-scheme.

Thus, we have the following theorem.

FSTTCS 2020

22:12 New Verification Schemes for Frequency-Based Functions on Data Streams

I Theorem 2. There is an (n2/3 logn, n2/3 logn)-scheme for computing any frequency-based
function in any turnstile stream with ‖f‖1 = O(n). The scheme has completeness and
soundness errors at most 1/3.

I Remark 11. We compare the schemes for Theorem 1 and Theorem 2 (call them Scheme
1 and Scheme 2 respectively). Scheme 2 works for streams of length m � n as long as
‖f‖1 = O(n), while Scheme 1 requires m = O(n). On the negative side, Scheme 2 has
imperfect completeness contrary to Scheme 1. Furthermore, the space dependence on the
error ε for Scheme 2 is worse than Scheme 1: given any ε, Scheme 2 uses O(n2/3 logn log(ε−1))
space to bound the completeness and soundness errors by at most ε, while Scheme 1 takes
O
(
n2/3(logn+ log(ε−1))

)
space to bound the soundness error by ε. This means that to

bound the error by 1/poly(n), Scheme 2 takes O(n2/3 log2 n) space, making it weaker (though
simpler) than the scheme of Chakrabarti et al. [7], which takes O(n2/3 log4/3 n) space for the
same and is also perfectly complete. For this, Scheme 1 takes only O(n2/3 logn) space.

3.3 Special Instances and Applications
Here, we note important implications of Theorems 1 and 2. They can be applied to get
similar results for multiple well-studied problems such as computing the number of distinct
elements in the stream (F0), the highest frequency of an element in the stream (F∞), and
checking multiset inclusions. Note that for these problems, to the best of our knowledge, the
best-known schemes were (n2/3 log4/3 n, n2/3 log4/3 n)-schemes obtained by direct application
of the general scheme. Hence, we improve the bounds and simplify the schemes for these
problems as well.

As a direct corollary of Theorems 1 and 2, we get the same bounds for F0. It is an
extensively studied problem in both basic streaming and stream verification. It is the special
case of frequency-based functions where the function g is defined as g(x) = 0 if x = 0, and
g(x) = 1 otherwise. Therefore, we obtain the following result.

I Corollary 3. For any turnstile stream with ‖f‖1 = O(n), there is an (n2/3 logn, n2/3 logn)-
scheme for computing F0, the number of distinct elements with non-zero frequency, with
completeness and soundness errors at most 1/3. The scheme can be made perfectly complete
with soundness error 1/poly(n) if the stream has length m = O(n).

Another well-studied problem related to frequency-based functions is computing F∞.
Unlike F0, it is not a direct special case, but a protocol for it follows by easily applying a
scheme for frequency-based functions. Chakrabarti et al. [7] noted one way in which it can be
applied to solve F∞. Here, we note a slightly alternate way which doesn’t use a subroutine
that their scheme uses and is tailored to our protocols: Prover sends the element j∗ ∈ [n]
that she claims has the highest frequency and a value f ′j∗ that she claims to be equal to
fj∗ . By the above protocols, Verifier can check whether f ′j∗ = fj∗ . If the check passes, he
computes G(f) :=

∑n
j=1 g(fj) using the scheme above, where g is defined as g(x) = 0 if

x 6 f ′j∗ and g(x) = 1 otherwise. He accepts Prover’s claim if G(f) = 0. Thus, we get the
following result.

I Corollary 4. For any turnstile stream with ‖f‖1 = O(n), there is an (n2/3 logn, n2/3 logn)-
scheme for computing F∞, the maximum frequency of an element, with completeness and
soundness errors at most 1/3. The scheme can be made perfectly complete with soundness
error 1/poly(n) if the stream has length m = O(n).

The problem of checking multiset inclusion has two multisets arriving in a stream
arbitrarily interleaved between each other, and we need to check if one of them is contained
in the other. This abstract problem is used as a subroutine in several other problems, e.g.,

P. Ghosh 22:13

some graph problems considered in the annotated settings [7, 9, 10]. Thus, an improved
scheme for multiset inclusion implies improved subroutines for the corresponding problems.
It can be solved by easy application of frequency-based functions. The reduction is already
noted in Chakrabarti et al. [7], but we repeat it here for the sake of completeness.

I Corollary 5. Let X,Y ⊆ [n] be multisets of size O(n). Given a stream where elements
of X and Y arrive in interleaved manner, there is an (n2/3 logn, n2/3 logn)-scheme for
determining whether X ⊆ Y .

Proof. Think of X and Y as n-length characteristic vector representations of the multisets
(with an entry denoting the multiplicity of the corresponding element). Then, X ⊆ Y if and
only if Xj 6 Yj for each j ∈ [n]. As the elements arrive, we increment an entry if belongs to
Y and decrement it if it belongs to X. Thus, the vector f is given by fj = Yj −Xj . Define g
as g(x) = 0 if x > 0 and g(x) = 1 otherwise. Therefore, computing G(f) :=

∑n
j=1 g(fj) and

checking if it equals 0 solves the problem. The multisets having size O(n) ensures that the
length of the stream is O(n), and so we can safely apply our scheme. J

4 Conclusions and Open Problems

In this work, we designed two new schemes for the broad class of frequency-based functions.
These schemes are much simpler than the previously best scheme known for the problem, and
furthermore, they even improve upon the complexity bound for space usage and proof-size
from O(n2/3 log4/3 n) to O(n2/3 logn). The best known upper bound for prescient schemes,
given by Chakrabarti et al. [7], is O(n2/3 logn) for both of these complexity parameters.
Hence, we also close this small gap between the prescient and online scheme complexities,
and show that prescience is not necessary here to bring the polylogarithmic factor down to
logn. Additionally, the high-level framework used in our schemes is generic enough to be
applicable for multiple other problems.

An important open problem in this area is to determine the asymptotic complexity
of the general problem of computing frequency-based functions in the stream verification
settings. Chakrabarti et al. [7] showed that any online or prescient (h, v)-scheme for the
problem requires hv > n. Note that this lower bound leaves open the possibility of a
(
√
n,
√
n)-scheme, while the best known scheme achieves (Õ(n2/3), Õ(n2/3)) for both online

and prescient settings. Can we match the lower bound (up to polylogarithmic factors) and
get an (Õ(

√
n), Õ(

√
n))-scheme for the problem, even if prescient? What about for even

special cases like F0 or F∞? Recall that there exist such online schemes for the kth frequency
moment for some constant k ∈ Z+ [7]. Also, it is possible to get such a scheme for F0 if
we allow multiple rounds of interaction [17]. Any strict improvement on the lower bound
would be extremely interesting and a breakthrough. Currently, we don’t know of a function
in the turnstile streaming model for which any online (h, v)-scheme must have total cost
h + v > ω(

√
N) where N is the lower bound on its basic streaming complexity. This is

related to the major open question of breaking the “
√
N barrier” for the Merlin-Arthur (MA)

communication model.

References
1 Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian.

Streaming verification of graph properties. In Proc. 27th International Symposium on Al-
gorithms and Computation, pages 3:1–3:14, 2016.

FSTTCS 2020

22:14 New Verification Schemes for Frequency-Based Functions on Data Streams

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary version in Proc.
28th Annual ACM Symposium on the Theory of Computing, pages 20–29, 1996.

3 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
Preliminary version in Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, pages 14–23, 1992.

4 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. Preliminary version in Proc. 33rd Annual IEEE Symposium
on Foundations of Computer Science, pages 2–13, 1992.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Proc. 6th International Workshop on Randomization
and Approximation Techniques in Computer Science, pages 128–137, 2002.

6 Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations for sparse
data streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
687–706, 2014.

7 Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. Annotations in
data streams. ACM Trans. Alg., 11(1):Article 7, 2014.

8 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Venkata-
subramanian. Verifiable stream computation and Arthur-Merlin communication. In Proc. 30th
Annual IEEE Conference on Computational Complexity, pages 217–243, 2015.

9 Amit Chakrabarti and Prantar Ghosh. Streaming verification of graph computations via
graph structure. In Proc. 33rd International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 70:1–70:20, 2019.

10 Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for graph
problems: Optimal tradeoffs and nonlinear sketches. To appear in RANDOM, 2020. arXiv:
2007.03039.

11 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming graph computations
with a helpful advisor. In Proc. 18th Annual European Symposium on Algorithms, pages
231–242, 2010.

12 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming graph computations
with a helpful advisor. Algorithmica, 65(2):409–442, 2013.

13 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Alg., 55(1):58–75, 2005. Preliminary version in Proc. 6th Latin
American Theoretical Informatics Symposium, pages 29–38, 2004.

14 Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proc. VLDB Endowment, 5(1):25–36, 2011.

15 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

16 Sumit Ganguly and Graham Cormode. On estimating frequency moments of data streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
10th International Workshop, APPROX 2007, and 11th International Workshop, RANDOM
2007, volume 4627 of Lecture Notes in Computer Science, pages 479–493, 2007.

17 Tom Gur and Ran Raz. Arthur–Merlin streaming complexity. In Proc. 40th International
Colloquium on Automata, Languages and Programming, pages 528–539, 2013.

18 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proc. 37th Annual ACM Symposium on the Theory of Computing, pages
202–208, 2005.

19 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proc. 21st Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1161–1178, 2010.

http://arxiv.org/abs/2007.03039
http://arxiv.org/abs/2007.03039

P. Ghosh 22:15

20 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proc. 29th ACM Symposium on Principles of Database Systems, pages
41–52, 2010.

21 Hartmut Klauck and Ved Prakash. Streaming computations with a loquacious prover. In
Proc. 4th Conference on Innovations in Theoretical Computer Science, pages 305–320, 2013.

22 Hartmut Klauck and Ved Prakash. An improved interactive streaming algorithm for the
distinct elements problem. In Automata, Languages, and Programming - 41st International
Colloquium (ICALP), volume 8572 of LNCS, pages 919–930, 2014.

23 Feifei Li, Ke Yi, Marios Hadjieleftheriou, and George Kollios. Proof-infused streams: Enabling
authentication of sliding window queries on streams. In Proc. 33rd International Conference
on Very Large Data Bases, pages 147–158, 2007.

24 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

25 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–
152, 1982.

26 Jelani Nelson, Huy L. Nguyên, and David P. Woodruff. On deterministic sketching and
streaming for sparse recovery and norm estimation. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop,
APPROX 2012, and 16th International Workshop, RANDOM 2012, volume 7408 of Lecture
Notes in Computer Science, pages 627–638, 2012.

27 Stavros Papadopoulos, Yin Yang, and Dimitris Papadias. Cads: Continuous authentication
on data streams. In Proc. 33rd International Conference on Very Large Data Bases, pages
135–146, 2007.

28 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
29 Justin Thaler. Data stream verification. In Encyclopedia of Algorithms, pages 494–499. Springer

Berlin Heidelberg, 2016.
30 Justin Thaler. Semi-streaming algorithms for annotated graph streams. In Proc. 43rd

International Colloquium on Automata, Languages and Programming, pages 59:1–59:14, 2016.
31 Peter A. Tucker, David Maier, Lois M. L. Delcambre, Tim Sheard, Jennifer Widom, and

Mark P. Jones. Punctuated data streams, 2005.
32 David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proc. 15th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 167–175, 2004.
33 Ke Yi, Feifei Li, Marios Hadjieleftheriou, George Kollios, and Divesh Srivastava. Randomized

synopses for query assurance on data streams. In Proc. 24th International Conference on Data
Engineering, pages 416–425, 2008.

FSTTCS 2020

Online Carpooling Using Expander
Decompositions
Anupam Gupta
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
anupamg@cs.cmu.edu

Ravishankar Krishnaswamy
Microsoft Research, Bengaluru, India
rakri@microsoft.com

Amit Kumar
Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India
amitk@cse.iitd.ernet.in

Sahil Singla
Department of Computer Science, Princeton University, NJ, USA
singla@cs.princeton.edu

Abstract

We consider the online carpooling problem: given n vertices, a sequence of edges arrive over time.
When an edge et = (ut, vt) arrives at time step t, the algorithm must orient the edge either as
vt → ut or ut → vt, with the objective of minimizing the maximum discrepancy of any vertex, i.e.,
the absolute difference between its in-degree and out-degree. Edges correspond to pairs of persons
wanting to ride together, and orienting denotes designating the driver. The discrepancy objective
then corresponds to every person driving close to their fair share of rides they participate in.

In this paper, we design efficient algorithms which can maintain polylog(n, T) maximum discrep-
ancy (w.h.p) over any sequence of T arrivals, when the arriving edges are sampled independently
and uniformly from any given graph G. This provides the first polylogarithmic bounds for the
online (stochastic) carpooling problem. Prior to this work, the best known bounds were O(

√
n logn)-

discrepancy for any adversarial sequence of arrivals, or O(loglogn)-discrepancy bounds for the
stochastic arrivals when G is the complete graph.

The technical crux of our paper is in showing that the simple greedy algorithm, which has
provably good discrepancy bounds when the arriving edges are drawn uniformly at random from the
complete graph, also has polylog discrepancy when G is an expander graph. We then combine this
with known expander-decomposition results to design our overall algorithm.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online Algorithms, Discrepancy Minimization, Carpooling

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.23

Related Version https://arxiv.org/abs/2007.10545.

Funding This research was done under the auspices of the Indo-US Virtual Networked Joint Center
IUSSTF/JC-017/2017.
Anupam Gupta: Supported in part by NSF awards CCF-1907820, CCF1955785, and CCF-2006953.
Sahil Singla: Supported in part by the Schmidt Foundation.

Acknowledgements We thank Thatchaphol Saranurak for explaining and pointing us to [7, The-
orem 5.6]. The last author would like to thank Navin Goyal for introducing him to [1].

© Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
mailto:rakri@microsoft.com
mailto:amitk@cse.iitd.ernet.in
mailto:singla@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.23
https://arxiv.org/abs/2007.10545
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Online Carpooling Using Expander Decompositions

1 Introduction

Consider the following edge orientation problem: we are given a set V of n nodes, and
undirected edges arrive online one-by-one. Upon arrival of an edge {u, v}, it has to be
oriented as either u → v or v → u, immediately and irrevocably. The goal is to minimize
the discrepancy of this orientation at any time t ∈ [T] during the arrival process, i.e., the
maximum imbalance between the in-degree and out-degree of any node. Formally, if we let
χt to denote the orientation at time t and δ−t (v) (resp. δ+

t (v)) to denote the number of
in-edges (resp. out-edges) incident to v in χt, then we want to minimize

max
t

disc(χt) := max
t

max
v
|δ−t (v)− δ+

t (v)|.

If the entire sequence of edges is known up-front, one can use a simple cycle-and-path-peeling
argument to show that any set of edges admit a discrepancy of at most 1. The main focus of
this work is in understanding how much loss is caused by the presence of uncertainty, since
we don’t have knowledge of future arrivals when we irrevocably orient an edge.

This problem was proposed by Ajtai et al. [1] as a special case of the carpooling problem
where hyperedges arrive online, each representing a carpool where one person must be
designated as a driver. The “fair share” of driving for person i can be defined as

∑
e:i∈e 1/|e|,

and we would like each person to drive approximately this many times. In the case of graphs
where each carpool is of size |e| = 2, this carpooling problem is easily transformed into the
edge-orientation problem.

Ajtai et al. showed that while deterministic algorithms cannot have an o(n) discrepancy,
they gave a randomized “local greedy” which has an expected discrepancy (for any T ≥ 1) of
O(
√
n logn) for any online input sequence of T arrivals. Indeed, note that the discrepancy

bound is independent of the length of the sequence T , and depends only on the number
of nodes, thus giving a non-trivial improvement over the naive random assignment, which
will incur a discrepancy of O(

√
T logn). Intriguingly, the lower bound they show for online

algorithms is only Ω((logn)1/3) – leaving a large gap between the upper and lower bounds.
Given its apparent difficulty in the adversarial online model, Ajtai et al. proposed a

stochastic model, where each edge is an independent draw from some underlying probability
distribution over pairs of vertices. They considered the the uniform distribution, which is
the same as presenting a uniformly random edge of the complete graph at each time. In
this special case, they showed that the greedy algorithm (which orients each edge towards
the endpoint with lower in-degree minus out-degree) has expected discrepancy Θ(loglogn).
Their analysis crucially relies on the structure and symmetry of the complete graph.

In this paper, we consider this stochastic version of the problem for general graphs:
i.e., given an arbitrary simple graph G, the online input is a sequence of edges chosen
independently and uniformly at random (with replacement) from the edges of this graph G1.
Our main result is the following:

I Theorem 1 (Main Theorem). There is an efficient algorithm for the edge-orientation
problem that maintains, w.h.p, a maximum discrepancy of O(poly log(nT)) on input sequences
formed by i.i.d. draws from the edges of a given graph G.

1 It is possible to extend our results, by losing a log T factor, to edge-weighted distributions where an edge
is drawn i.i.d. with probability proportional to its weight. Since this extension uses standard ideas like
bucketing edges with similar weights, we restrict our attention to arrivals from a graph G for simplicity.

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:3

1.1 Our Techniques
Let us fix some notation. Given a (multi)graph G = (V,E) with |V | = n, the algorithm is
presented with a vector vt at each time as follows. A uniformly random edge (u, v) ∈ G is
sampled, and the associated characteristic vector vt = eu − ev is presented to the algorithm,
where eu ∈ Rn has all zeros except index u being 1. The algorithm must immediately sign
vt with χt ∈ {−1, 1}, to keep the discrepancy bounded at all times t. Here the discrepancy
of node u at time t is the uth entry of the vector

∑
s≤t χ

svs (which could be negative), and
the discrepancy of the algorithm is the maximum absolute discrepancy over all vertices, i.e.,∥∥∥∑s≤t χ

svs
∥∥∥
∞

.
A natural algorithm is to pick a uniformly random orientation for each arriving edge. This

maintains zero expected discrepancy at each node. However, the large variance may cause
the maximum discrepancy over nodes to be as large as Ω(

√
T), where T the total number

of edges (which is the same as the number of time-steps). For example, this happens even
on T parallel edges between two nodes. In this case, however, the greedy algorithm which
orients the edge from the vertex of larger discrepancy to that of smaller discrepancy works
well. Indeed it is not known to be bad for stochastic instances. (Since it is a deterministic
algorithm, it can perform poorly on adversarial inputs due to known o(n) lower bounds [1].)

Building on the work of Ajtai et al. who consider stochastic arrivals on complete graphs,
the first step towards our overall algorithm is to consider the problem on expander graphs. At
a high level, one hurdle to achieving low discrepancy in the stochastic case is that we reach
states where both endpoints of a randomly-chosen edge already have equally high discrepancy.
Then, no matter how we orient the edge, we increase the maximum discrepancy. But this
should not happen in expander graphs: if S is the set of “high” discrepancy vertices, then
the expansion of the graph implies that |∂S| must be a large fraction of the total number of
edges incident to S. Therefore, intuitively, we have a good chance of reducing the discrepancy
if we get edges that go from S to low-degree nodes. To make this idea formal, we relate
the greedy process on expander graphs G to the so-called (1 + β)-process over an easier
arrival sequence where the end-points of a new edge are chosen from a product distribution,
where the probability of choosing a vertex is proportional to its degree in G. However, in the
(1 + β)-process2, the algorithm orients a new edge greedily with only probability β for some
small value of β, and does a random orientation with the remaining probability (1− β).

Indeed, we compare these two processes by showing that (a) the expected increase of a
natural potential Φ :=

∑
v cosh(λ discrepancy(v)) – which can be thought of as a soft-max

function – is lower for the greedy algorithm on expanders when compared to the (1 + β)-
process on the product distribution, and (b) the same potential increases very slowly (if at
all) on the product distribution. A similar idea was used by Peres et al. [13] for a related
stochastic load balancing problem; however, many of the technical details are different.

The second component of the algorithm is to decompose a general graph into expanders.
This uses the (by-now commonly used) idea of expander decompositions. Loosely speaking,
this says that the edges of any graph can be decomposed into some number of smaller graphs
(each being defined on some subset of vertices), such that (a) each of these graphs is an
expander, and (b) each vertex appears in only a poly-logarithmic number of these expanders.
Our arguments for expanders require certain weak-regularity properties – namely the degrees
of vertices should not be too small compared to the average degree – and hence some care is
required in obtaining decompositions into such expanders. These details appear in the full
version.

2 The name (1 + β)-process stems from the notion for an analogous load-balancing (or) balls-and-bins
setting [13], this process would be like the (1 + β)-fractional version of the power-of-two choices process.

FSTTCS 2020

23:4 Online Carpooling Using Expander Decompositions

Our overall algorithm can then be summarized in Algorithm 1.

Algorithm 1 DivideAndGreedy (graph G = (V,E)).

1: run the expander-decomposition algorithm in Theorem 19 (in Section 2.5) on G to obtain
a collection P = {G1, G2, . . . , Gk} of edge-disjoint expander graphs.

2: initialize H = {H1, H2, . . . Hk} to be a collection of empty graphs, where Hi is the
directed multi-graph consisting of all edges which have arrived corresponding to base
graph Gi, along with their orientations assigned by the algorithm upon arrival.

3: for each new edge e ≡ {u, v} that arrives at time-step t do
4: let i denote the index such that e ∈ Gi according to our decomposition.
5: add e to Hi, and orient e in a greedy manner w.r.t Hi, i.e., from u to v if discHi

(u) ≥
discHi(v), where discH(w) = δin

Hi
(w)− δout

Hi
(w) is the in-degree minus out-degree of any

vertex w in the current sub-graph Hi maintained by the algorithm.
6: end for

1.2 Related Work

The study of discrepancy problems has a long history; see the books [12, 8] for details on the
classical work. The problem of online discrepancy minimization was studied by Spencer [14],
who showed an Ω(

√
T) lower bound for for adaptive adversarial arrivals. More refined lower

bounds were given by Bárány [6]; see [4] for many other references. Much more recently,
Bansal and Spencer [5] and Bansal et al. [4] consider a more general vector-balancing problem,
where each request is a vector vt ∈ Rn with ‖vt‖∞ ≤ 1, and the goal is to assign a sign
χt ∈ {−1, 1} to each vector to minimize ‖

∑
t χ

tvt‖∞, i.e., the largest coordinate of the
signed sum. Imagining each edge et = {u, v} to be the vector 1√

2 (eu − ev) (where this initial
sign is chosen arbitrarily) captures the edge-orientation problem up to constant factors.
Bansal et al. gave an O(n2 log(nT))-discrepancy algorithm for the natural stochastic version
of the problem under general distributions. For some special geometric problems, they gave
an algorithm that maintains poly(s, log T, logn) discrepancy for sparse vectors that have
only s non-zero coordinates. These improve on the work of Jiang et al. [11], who give a
sub-polynomial discrepancy coloring for online arrivals of points on a line. A related variant
of these geometric problems was also studied in Dwivedi et al. [9].

Very recently, an independent and exciting work of Alweiss, Liu, and Sawhney [2] gave a
randomized algorithm that maintains a discrepancy of O(log(nT)/δ) for any input sequence
chosen by an oblivious adversary with probability 1− δ, even for the more general vector-
balancing problem for vectors of unit Euclidean norm (the so-called Kómlós setting). Instead
of a potential based analysis like ours, they directly argue why a carefully chosen randomized
greedy algorithm ensures w.h.p. that the discrepancy vector is always sub-Gaussian. A
concurrent work of Bansal et al. [3] also obtains similar results for i.i.d. arrivals, but they
use a very different potential than our expander-decomposition approach. It is an interesting
open question to extend our approach to hypergraphs and re-derive their results.

1.3 Notation

We now define some graph-theoretic terms that are useful for the remainder of the paper.

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:5

I Definition 2 (Volume and α-expansion). Given any graph G = (V,E), and set S ⊆ V its
volume is defined to be vol(S) :=

∑
v∈S degree(v). We say G is an α-expander if

min
S⊆V

|E(S, V \ S)|
min{vol(S), vol(V \ S)} ≥ α.

We will also need the following definition of “weakly-regular” graphs, which are graphs
where every vertex has degree at least a constant factor of the average degree. Note that the
maximum degree can be arbitrarily larger than the average degree.

I Definition 3 (γ-weakly-regular). For γ ∈ [0, 1], a graph G = (V,E) is called γ-weakly-regular
if every vertex v ∈ V has degree at least γ ·

∑
u∈V degree(u)/|V |.

I Definition 4 (Discrepancy Vector). Given any directed graph H = (V,A) (representing all
the oriented edges until any particular time-step), let d ∈ Z|V | represent the discrepancy
vector of the current graph, i.e. the vth entry of d, denoted by dv is the difference between
the number of in-edges incident at v and the number of out-endges incident at v in H.

2 The Greedy Algorithm on Expander Graphs

In this section, we consider the special case when the graph G is an expander. More formally,
we show that the greedy algorithm is actually good for such graphs.

I Definition 5 (Expander Greedy Process). The greedy algorithm maintains a current dis-
crepancy dtv for each vertex v, which is the in-degree minus out-degree of every vertex among
the previously arrived edges. Initially, d1

v = 0 for every vertex v at the beginning of time-step
1. At each time t ≥ 1, a uniformly random edge e ∈ G with end-points {u, v} is presented
to the algorithm, and suppose w.l.o.g. dtu ≥ dtv, i.e., u has larger discrepancy (ties broken
arbitrarily). Then, the algorithm orients the edge from u to v. The discrepancies of u and v
become dt+1

u = dtu − 1 and dt+1
v = dtu + 1, and other vertices’ discrepancies are unchanged.

I Theorem 6. Consider any γ-weakly-regular α-expander G, and suppose edges are arriving
as independent samples from G over a horizon of T time-steps. Then, the greedy algorithm
maintains a discrepancy dtv of O(log5 nT) for every time t in [0 . . . T] and every vertex v, as
long as α ≥ 6λ, γ ≥ λ1/4, where λ = O(log−4 nT).

For the sake of concreteness, it might be instructive to assume α ≈ γ ≈ O(1
logn), which

is roughly what we will obtain from our expander-decomposition process.

2.1 Setting Up The Proof
Our main idea is to introduce another random process called the (1+β)-process, and show that
the (1 +β)-process stochastically dominates the expander-greedy process in a certain manner,
and separately bound the behaviour of the (1 + β)-process subsequently. By combining these
two, we get our overall analysis of the expander-greedy process.

To this end, we first define a random arrival sequence where the end-points of each new
edge are actually sampled independently from a product distribution.

I Definition 7 (Product Distribution). Given a set V of vertices with associated weights
{wv ≥ 0 | v ∈ V }, at each time t, we select two vertices u, v as two independent samples
from V , according to the distribution where any vertex v ∈ V is chosen with probability

wv∑
v′∈V

wv′
, and the vector vt := χu − χv is presented to the algorithm.

FSTTCS 2020

23:6 Online Carpooling Using Expander Decompositions

We next define the (1 + β)-process, which will be crucial for the analysis.

I Definition 8 ((1 + β)-process on product distributions). Consider a product distribution
over a set of vertices V . When presented with a vector vt := χu − χv from this product
distribution at time t, the (1 + β)-process assigns a sign to the vector vt as follows: with
probability (1− β), it assigns it uniformly ±1, and only with the remaining probability β it
uses the greedy algorithm to sign this vector.

Note that setting β = 1 gives us back the greedy algorithm, and β = 0 gives an algorithm
that assigns a random sign to each vector.
I Remark 9. The original (1 + β)-process was in fact introduced in [13], where Peres et al.
analyzed a general load-balancing process over n bins (corresponding to vertices), and balls
arrive sequentially. Upon each arrival, the algorithm gets to sample a random edge from a
k-regular expander3 G over the bins, and places the ball in the lighter loaded bin among the
two end-points of the edge. They show that this process maintains a small maximum load,
by relating it to an analogous (1 +β)-process, where instead of sampling an edge from G, two
bins are chosen uniformly at random, and the algorithm places the ball into a random bin
with probability 1− β, and the lesser loaded bin with probability β. Note that their analysis
inherently assumed that the two vertices are sampled from the uniform distribution where all
weights wu are equal. By considering arbitrary product distributions, we are able to handle
arbitrary graphs with a non-trivial conductance, i.e., even those that do not satisfy the
k-regularity property. This is crucial for us because the expander decomposition algorithms,
which reduce general graphs to a collection of expanders, do not output regular expanders.

Our analysis will also involve a potential function (intuitively the soft-max of the vertex
discrepancies) for both the expander-greedy process as well as the (1 + β)-process.

I Definition 10 (Potential Function). Given vertex discrepancies d ∈ Z|V |, define

Φ(d) :=
∑
v

cosh(λdv), (1)

where λ < 1 is a suitable parameter to be optimized.

Following many prior works, we use the hyperbolic cosine function to symmetrize for positive
and negative discrepancy values. When d is clear from the context, we will write Φ(d) as Φ.
We will also use dt to refer to the discrepancy vector at time t, and dtu to the discrepancy of
u at time t. We will often ignore the superscript t if it is clear from the context.

We are now ready to define the appropriate parameters of the (1 + β)-process. Indeed,
given the expander-greedy process defined on graph G, we construct an associated (1 + β)-
process where for each vertex v, the probability of sampling any vertex in the product
distribution is proportional to its degree in G, i.e., wv = degreeG(v) for all v ∈ V . We also
set the β parameter equal to α, the conductance of the graph G.

2.2 One-Step Change in Potential
The main idea of the proof is to use a majorization argument to argue that the expected
one-step change in potential of the expander process can be upper bounded by that of
the (1 + β)-process, if the two processes start at the same discrepancy configuration dt.
Subsequently, we bound the one-step change for the (1 + β)-process in Section 2.4.

3 Actually their proof works for a slightly more general notion of expanders, but which is still insufficient
for our purpose.

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:7

To this end, consider a time-step t, where the current discrepancy vector of the expander
process is dt. Suppose the next edge in the expander process is (i, j), where dti > dtj . Then
the greedy algorithm will always choose a sign such that di decreases by 1, and dj increases
by 1. Indeed, this ensures the overall potential is non-increasing unless di = dj . More
importantly, the potential term for other vertices remains unchanged, and so we can express
the expected change in potential as having contributions from precisely two terms, one due
to di → di− 1 (called the decrease term), and denoted as ∆−1(t), and one due to dj → dj + 1
(the increase term), denoted as ∆+1(t):

E(i,j)∼G[∆Φ] = E(i,j)∼G

[
Φ(dt+1)− Φ(dt)

]
= E(i,j)

[
cosh(λ(di − 1))− cosh(λ(di))

]
︸ ︷︷ ︸

=:∆−1(dt)

+E(i,j)

[
cosh(λ(dj + 1))− cosh(λ(dj))

]
︸ ︷︷ ︸

=:∆+1(dt)

.

Now, consider the (1 + β)-process on the vertex set V , where the product distribution is
given by weights wu = deg(u) for each u ∈ V , starting with the same discrepancy vector dt as
the expander process at time t. Then, if u and v are the two vertices sampled independently
according to the product distribution, then by its definition, the (1 + β)-process signs this
pair randomly with probability (1 − β), and greedily with probability β. For the sake of
analysis, we define two terms analogous to ∆−1(dt) and ∆+1(dt) for the (1 + β)-process. To
this end, let i ∈ {u, v} denote the identity of the random vertex to which the (1 + β)-process
assigns +1. Define

∆̃+1(dt) := E(u,v)∼w×w

[
cosh(λ(di + 1))− cosh(λ(di))

]
, (2)

where w×w refers to two independent choices from the product distribution corresponding
to w. Similarly let j ∈ {u, v} denote the identity of the random vertex to which the
(1 + β)-process assigns −1, and define

∆̃−1(dt) := E(u,v)∼w×w

[
cosh(λ(dj − 1))− cosh(λ(dj))

]
. (3)

In what follows, we bound ∆−1(dt) ≤ ∆̃−1(dt) through a coupling argument, and similarly
bound ∆+1(dt) ≤ ∆̃+1(dt) using a separate coupling.

A subtlety: the expected one-step change in Φ in the expander process precisely equals
∆−1(dt)+∆+1(dt). However, if we define an analogous potential for the (1+β)-process, then
the one-step change in potential there does not equal the sum ∆̃−1(dt) + ∆̃+1(dt). Indeed,
we sample u and v i.i.d. in the (1 + β)-process, it is possible that u = v and therefore the
one-step change in potential is 0, while the sum ∆̃−1(dt) + ∆̃+1(dt) will be non-zero. Hence
the following lemma does not bound the expected potential change for the expander process
by that for the (1 + β)-process (both starting from the same state), but by this surrogate
∆̃−1(dt) + ∆̃+1(dt), and it is this surrogate sum that we bound in Section 2.4.

2.3 The Coupling Argument
We now show a coupling between the expander-greedy process and the (1+β)-process defined
in Section 2.1, to bound the expected one-step change in potential for the expander process.

I Lemma 11. Given an α-expander G = (V,E), let dt ≡ (dv : v ∈ V) denote the current
discrepancies of the vertices at any time step t for the expander-greedy process. Consider a
hypothetical (1 + β)-process on vertex set V with β = α, the weight of vertex v ∈ V set to
wv = deg(v), and starting from the same discrepancy state dt. Then:

FSTTCS 2020

23:8 Online Carpooling Using Expander Decompositions

(a) ∆−1(dt) ≤ ∆̃−1(dt), and (b) ∆+1(dt) ≤ ∆̃+1(dt).
Hence the expected one-step change in potential E[Φ(dt+1)− Φ(dt)] ≤ ∆̃−1(dt) + ∆̃+1(dt).

Proof. We start by renaming the vertices in V such that dn ≤ dn−1 ≤ . . . ≤ d1. Suppose the
next edge in the expander process corresponds to indices i, j where i < j. We prove the lemma
statement by two separate coupling arguments, which crucially depend on the following
claim. Intuitively, this claim shows that a −1 is more likely to appear among the high
discrepancy vertices of G in the expander process than the (1 + β)-process (thereby having
a lower potential), and similarly a +1 is more likely to appear among the low discrepancy
vertices of G in the expander process than in the (1 + β)-process. Peres et al. [13] also prove
a similar claim for stochastic load balancing, but they only consider uniform distributions.

B Claim 12. For any k ∈ [n], if Sk denotes the set of vertices with indices k′ ∈ [k] (the k
highest discrepancy vertices) and Tk denotes V \ Sk, then

Pr
(i,j)∼G

[−1 ∈ Sk] ≥ Pr
(u,v)∼w×w

[−1 ∈ Sk] and Pr
(i,j)∼G

[+1 ∈ Tk] ≥ Pr
(u,v)∼w×w

[+1 ∈ Tk] .

Above, we abuse notation and use the terminology “−1 ∈ Sk” to denote that the vertex
whose discrepancy decreases falls in the set Sk in the corresponding process.

Proof. Fix an index k, and let ρ := vol(Sk)
vol(V) be the relative volume of Sk, i.e., the fraction of

edges of G incident to the k nodes of highest degree. First we consider the (1 + β)-process
on V . With (1− β), probability we assign a sign to the input vector uniformly at random.
Therefore, conditioned on this choice, a vertex in Sk will get a −1 sign with probability

1
2 · Pr[u ∈ Sk] + 1

2 Pr[v ∈ Sk] = vol(Sk)
vol(V) = ρ,

where u and v denote the two vertices chosen by the (1+β)-process process. With probability
β, we will use the greedy algorithm, and so −1 will appear on a vertex in Sk iff at least one
of the two chosen vertices lie in Sk. Putting it together, we get

Pr
(u,v)∼w×w

[−1 ∈ Sk] = (1− β) · vol(Sk)
vol(V) + β · Pr

(u,v)∼w×w
[{u, v} ∩ Sk 6= ∅]

= (1− β) · ρ+ β ·
(
1− (1− ρ)2) = (1 + β − β · ρ) · ρ. (4)

Now we consider the expander process. A vertex in Sk gets -1 iff the chosen edge has at
least one end-point in Sk. Therefore,

Pr
(i,j)∼G

[−1 ∈ Sk] = Pr[i ∈ Sk] = |E(Sk, Sk)|+ |E(Sk, V \ Sk)|
|E|

=
(
2|E(Sk, Sk)|+ |E(Sk, V \ Sk)|

)
+ |E(Sk, V \ Sk)|

2|E| = vol(Sk) + |E(Sk, V \ Sk)|
vol(V) .

Recalling that β = α, and that G is an α-expander, we consider two cases:
Case 1: If vol(Sk) ≤ vol(V \ Sk), we use

Pr
(i,j)∼G

[−1 ∈ Sk] = vol(Sk) + |E(Sk, V \ Sk)|
vol(V)

≥ (1 + α)vol(Sk)
vol(V) = (1 + β)ρ ≥ Pr

(u,v)∼w×w
[−1 ∈ Sk].

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:9

Case 2: If vol(Sk) > vol(V \ Sk), we use

Pr
(i,j)∼G

[−1 ∈ Sk] = vol(Sk) + |E(Sk, V \ Sk)|
vol(V) ≥ vol(Sk) + α · vol(V \ Sk)

vol(V)

≥
(

1 + β · vol(V \ Sk)
vol(V)

)
· ρ = Pr

(i,j)∼w×w
[−1 ∈ Sk],

where the last equality uses (4).
This completes the proof of Pr(i,j)∼G[−1 ∈ Sk] ≥ Pr(i,j)∼w[−1 ∈ Sk]. One can similarly show
Pr(i,j)∼G[+1 ∈ Tk] ≥ Pr(u,v)∼w×w[+1 ∈ Tk], which completes the proof of the claim. C

Claim 12 shows that we can establish a coupling between the two processes such that
if −1 belongs to Sk in (1 + β)-process, then the same happens in the expander process. In
other words, there is a joint sample space Ω such that for any outcome ω ∈ Ω, if vertices va
and vb get sign −1 in the expander process and the (1 + β)-process respectively, then a ≤ b.

Let d and d̃ denote the discrepancy vectors in the expander process and the (1+β)-process
after the -1 sign has been assigned, respectively. Now, since both the processes start with the
same discrepancy vector dt, we see that for any fixed outcome ω ∈ Ω, the vector d̃ majorizes
d in the following sense.

I Definition 13 (Majorization). Let a and b be two real vectors of the same length n. Let
−→a and

−→
b denote the vectors a and b with coordinates rearranged in descending order

respectively. We say that a majorizes b, written a � b, if for all i, 1 ≤ i ≤ n, we have∑i
j=1
−→a j ≥

∑i
j=1
−→
b j .

One of the properties of majorization [10] is that any convex and symmetric function of
the discrepancy vector (which Φ is) satisfies that Φ(d) ≤ Φ(d̃). Thus, for any fixed outcome
ω, the change in potential in the expander process is at most that of the surrogate potential
in the (1 + β)-process. Since ∆−1(dt) and ∆̃−1(dt) are just the expected change of these
quantities in the two processes (due to assignment of -1 sign), the first statement of the
lemma follows. Using an almost identical proof, we can also show the second statement.
(Note that we may need to redefine the coupling between the two processes to ensure that if
vertices va, vb get sign +1 as above, then b ≤ a.) J

2.4 Analyzing One-Step ∆Φ of the (1 + β)-process
Finally we bound the one-step change in (surrogate) potential of the (1 + β)-process starting
at discrepancy vector dt; recall the definitions of ∆̃−1(dt) and ∆̃+1(dt) from Section 2.2.

I Lemma 14. If Φ(dt) ≤ (nT)10, and if the weights wv are such that for all v, wv∑
v′
wv′
≥ γ

n

(i.e., the minimum weight is at least a γ fraction of the average weight), then we have that

∆̃−1(dt) + ∆̃+1(dt) ≤ O(1),

as long as β ≥ 6λ, γ ≥ 16λ1/4, and λ = O(log−4 nT).

Proof. Let u be an arbitrary vertex in V , and we condition on the fact that the first vertex
chosen by the (1 + β)-process is u. Then, we show that

Ev∼w

[
cosh(λ(di − 1))− cosh(λ(di)) + cosh(λ(dj + 1))− cosh(λ(dj))

∣∣∣u is sampled first
]
,

FSTTCS 2020

23:10 Online Carpooling Using Expander Decompositions

is O(1) regardless of the choice of u, where we assume that i is the random vertex which is
assigned −1 by the (1 + β)-process, and j is the random vertex which is assigned +1. The
proof of the lemma then follows by removing the conditioning on u.

Following [5, 4], we use the first two terms of the Taylor expansion of cosh(·) to upper
bound the difference terms of the form cosh(x+ 1)− cosh(x) and cosh(x− 1)− cosh(x). To
this end, note that, if |ε| ≤ 1 and λ < 1, we have that

cosh(λ(x+ ε))− cosh(λx) ≤ ελ sinh(λx) + ε2

2!λ
2 cosh(λx) + ε3

3!λ
3 sinh(λx) + . . .

≤ ελ sinh(λx) + ε2λ2 cosh(λx).

Using this, we proceed to bound the following quantity (by setting ε = −1 and 1 respectively):

Ev∼w

[
−λ
(

sinh(λdi)− sinh(λdj)
)︸ ︷︷ ︸

=:−L

+λ2(cosh(λdi) + cosh(λdj)
)︸ ︷︷ ︸

=:Q

∣∣∣u is sampled first
]
.

We refer to L = λ
(

sinh(λdi)− sinh(λdj)
)
and Q = λ2(cosh(λ(di)) + cosh(λdj)

)
as the linear

and quadratic terms, since they arise from the first- and second-order derivatives in the
Taylor expansion.

To further simplify our exposition, we define the following random variables:
(i) u> is the identity of the vertex among u, v with higher discrepancy, and u< is the other
vertex. Hence we have that du> ≥ du< .
(ii) G denotes the random variable λ

(
sinh(λdu>

) − sinh(λdu<
)
)
, which indicates an

analogous term to L, but if we exclusively did a greedy signing always (recall that the
greedy algorithm would always decrease the larger discrepancy, but the (1 + β)-process
follows a uniformly random signing with probability (1− β) and follows the greedy rule
only with probability β).
Finally, for any vertex w ∈ V , we let Danger(w) = {v : |dw − dv| < 2

λ} to denote the set
of vertices with discrepancy close to that of w, where the gains from the term corresponding
to βG are insufficient to compensate for the increase due to Q.

We are now ready to proceed with the proof. Firstly, note that, since the (1 + β)-process
follows the greedy algorithm with probability β (independent of the choice of the sampled
vertices u and v), we have that

Ev[L | u is sampled first] = (1− β)0 + βEv[G | u is sampled first]. (5)

Intuitively, the remainder of the proof proceeds as follows: suppose du>
and du<

are
both non-negative (the intuition for the other cases are similar). Then, Q is proportional to
λ2 cosh(λdu>

). Now, if du>
−du<

is sufficiently large, then G is proportional to λ sinh(λdu>
),

which in turn is close to λ cosh(λdu>). As a result, we get that as long as λ = O(β), the
term −βG+Q can be bounded by 0 for each choice of v such that du>

− du<
is large.

However, what happens when du>
− du<

is small, i.e., when v falls in Danger(u)? Here,
the Q term is proportional to λ2 cosh(λdu), but the G term might be close to 0, and so we
can’t argue that −βG+Q ≤ O(1) in these events. Hence, we resort to an amortized analysis
by showing that (i) when v /∈ Danger(u), −βG can not just compensate for Q, it can in fact
compensate for 1√

λ
Q ≥ 1√

λ
· λ2 cosh(λdu), and secondly, (ii) the probability over a random

choice of v of v /∈ Danger(u) is at least
√
λ, provided Φ is bounded to begin with. The overall

proof then follows from taking an average over all v.
Hence, in what follows, we will show that in expectation the magnitude of βG can

compensate for a suitably large multiple of Q when v /∈ Danger(u).

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:11

B Claim 15. Let β ≥ 6λ. For any fixed choice of vertices u and v such that v /∈ Danger(u),
we have G := λ

(
sinh(λdu>

)− sinh(λdu<
)
)
≥ λ

3 (cosh(λdu) + cosh(λdv)− 4).

Proof. The proof is a simple convexity argument. To this end, suppose both du, dv ≥ 0.
Then since sinh(x) is convex when x ≥ 0 and its derivative is cosh(x), we get that

sinh(λdu>
)− sinh(λdu<

) ≥ λ cosh(λdu<
) · |du − dv| ≥ 2 cosh(λdu<

),

using v /∈ Danger(u). But since
∣∣| sinh(x)| − cosh(x)

∣∣ ≤ 1, we get that

sinh(λdu>
)− sinh(λdu<

) ≥ 2 sinh(λdu<
)− 2.

Therefore, sinh(λdu<) ≤ 1
3 (sinh(λdu>) + 1). Now substituting, and using the monotonicity

of sinh and its closeness to cosh, we get G is at least

2λ
3 (sinh(λdu>)− 1) ≥ λ

3 (sinh(λdu>) + sinh(λdu<)− 2) ≥ λ

3

(
cosh(λdu)+cosh(λdv)−4

)
.

The case of du, dv ≤ 0 follows from setting d′u = |du|, d′v = |dv| and using the above
calculations, keeping in mind that sinh is an odd function but cosh is even. Finally, when
du< is negative but du> is positive,

G = λ(
(

sinh(λdu>
)− sinh(λdu<

)
)

= λ
(

sinh(λdu>
) + sinh(λ|du<

|)
)

≥ λ

3
(

cosh(λdu>) + cosh(λdu<)− 2
)
≥ λ

3

(
cosh(λdu) + cosh(λdv)− 4

)
. J

B Claim 16. Let β ≥ 6λ. For any fixed choice of vertices u and v such that v /∈ Danger(u),
we have −βG+

(
1 + 1√

λ

)
Q ≤ O(1).

Proof. Recall that G = λ
(

sinh(λdu>
) − sinh(λdu<

)
)
. Now, let A denote cosh(λdu) +

cosh(λdv). Then, by definition of Q and from Claim 15, we have that

−βG+
(

1 + 1√
λ

)
Q ≤ −βλ3 (A−4)+

(
1 + 1√

λ

)
λ2A ≤ 4λβ

3 +
(
λ2 + λ

3
2 − λβ

3

)
A ≤ λβ

is at most O(1), assuming β ≥ 6λ ≥ 3(λ+
√
λ), and recalling that λ, β are at most 1. C

We now proceed with our proof using two cases:
Case (i): |du| ≤ 10

λ . In this case, note that the Q term is

Ev[Q | u is sampled first]
= Ev[Q | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[Q | v /∈ Danger(u)u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]
≤ O(1) + Ev[Q | v /∈ Danger(u), u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

Here the inequality uses v ∈ Danger(u) and |du| ≤ 10
λ to infer that that both |du| and

|dv| are ≤ 12
λ . Hence the Q term in this scenario will simply be a constant.

Next we analyze the L term. For the following, we observe that the algorithm chooses
a random ±1 signing with probability (1 − β), and chooses the greedy signing with
probability β, and moreover, this choice is independent of the random choices of u and
v. Hence, the expected L term conditioned on the algorithm choosing a random signing
is simply 0, and the expected L term conditioned on the algorithm choosing the greedy
signing is simply the term E[G]. Hence, we can conclude that:

FSTTCS 2020

23:12 Online Carpooling Using Expander Decompositions

Ev[−L | u is sampled first]
= Ev[−L | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[−L | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]
≤ Ev[−βG | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

Adding the inequalities and applying Claim 16, we get Ev[−L+Q |u is sampled first] ≤
O(1).

Case (ii): |du| > 10
λ . We first prove two easy claims.

B Claim 17. Suppose v ∈ Danger(u). Then cosh(λdv) ≤ 8 cosh(λdu).

Proof. Assume w.l.o.g. that du, dv ≥ 0. Also, assume that dv ≥ du, otherwise there is
nothing to prove. Now dv ≤ du + 2

λ . So
cosh(λdv)
cosh(λdu) ≤ supx

cosh(x+2)
cosh(x) . The supremum on

the right happens when x→∞, and then the ratio approaches e2 < 8. C

B Claim 18. For any discrepancy vector dt such that Φ(dt) ≤ O((nT)10), and for any u
such that |du| > 10

λ , we have Pr[v /∈ Danger(u)] ≥ 8
√
λ, as long as λ = O(log−4 nT).

Proof. We consider the case that du > 10
λ ; the case were du < − 10

λ is similar.
Assume for a contradiction that Pr[v ∈ Danger(u)] ≥ 1−8

√
λ, and so Pr[v /∈ Danger(u)] ≤

8
√
λ. We first show that the cardinality of the set |w /∈ Danger(u)| is small. Indeed,

this follows immediately from our assumption on the minimum weight of any vertex in
the statement of Lemma 14 being at least γ/n times the total weight. So we have that
for every w, the probability of sampling w in the (1 + β)-process is at least πw ≥ γ/n,
implying that the total number of vertices not in Danger(u) must be at most 8

√
λ·n
γ . This

also means that the total number of vertices in Danger(u) ≥ n
2 since γ ≥ λ1/4 ≥ 16

√
λ

for sufficiently small λ.
Since du > 10

λ , we get that any vertex v ∈ Danger(u) satisfies dv ≥ du− 2
λ ≥

8
λ . Moreover,

since
∑
v dv = 0, it must be that the negative discrepancies must in total compensate

for the total sum of discrepancies of the vertices in Danger(u). Hence, we have that∑
w:dw<0 |dw| ≥

∑
v∈Danger(u) dv ≥ |{v : v ∈ Danger(u)}| · 8

λ ≥ 0.5n · 8
λ .

From the last inequality, and since |{w : dw < 0}| ≤ |{w : w 6∈ Danger(u)}| ≤ 8
√
λn
γ ,

we get that there exists a vertex w̃ s.t d
w̃
< 0 and |d

w̃
| ≥ γ

8
√
λn
· 4n
λ = γ

2λ3/2 . But this

implies Φ(dt) ≥ cosh(λd
w̃

) ≥ cosh
(

γ

2
√
λ

)
> (nT)10, using that λ = O(log−4 nT) and

that γ ≥ λ1/4. So we get a contradiction on the assumption that Φ(dt) ≤ (nT)10. C

Returning to the proof for the case of |du| ≥ 10
λ , we get that

Ev[Q | u is sampled first]
= Ev[Q | v ∈ Danger(u) , u is sampled first] · Pr[v ∈ Danger(u) | u is sampled first]

+ Ev[Q | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first]

≤ 8λ2 cosh(λdu)
+ E[Q | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first],

where the first term in inequality follows from Claim 17.
Next we analyze the L term similarly:

A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla 23:13

Ev[−L | u is sampled first]
= Ev[−L | v ∈ Danger(u), u is sampled first] · Pr[v ∈ Danger(u)u is sampled first]

+ Ev[−L | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u)u is sampled first]
≤ Ev[−βG | v /∈ Danger(u) , u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first],

where the last inequality follows using the same arguments as in case (i). Adding these
inequalities and applying Claim 16, we get that

Ev[−L+Q | u is sampled first] ≤ O(1) + 8λ2 cosh(λdu)

− 1√
λ
· Ev[Q | u is sampled first] · Pr[v /∈ Danger(u) | u is sampled first].

To complete the proof of Lemma 14, we note that Q ≥ λ2 cosh(λdu), and use Claim 18
to infer that Pr[v /∈ Danger(u)] ≥ 8

√
λ. This implies

Ev[−L+Q | u is sampled first] ≤ O(1) + 8λ2 cosh(λdu)− 8λ2 cosh(λdu) ≤ O(1).J

We now can use this one-step expected potential change for the (1 + β)-process to get
the following result for the original expander process:

Proof of Theorem 6. Combining Lemma 14 and Lemma 11, we get that in the expander
process, if we condition on the random choices made until time t, if Φ(dt) ≤ (nT)10, then
E[Φ(dt+1) − Φ(dt)] ≤ C for some constant C. The potential starts off at n, so if it ever
exceeds C T (nT)5 in T steps, there must be a time t such that Φ(dt) ≤ C t (nT)5 and
the increase is at least C(nT)5. But the expected increase at this step is at most C, so
by Markov’s inequality the probability of increasing by C(nT)5 is at most 1/(nT)5. Now
a union bound over all times t gives that the potential exceeds C T (nT)5 ≤ (nT)10 with
probability at most T/(nT)5 = 1/ poly(nT). But then cosh(λdtv) ≤ (nT)10, and therefore
dtv ≤ O(λ log(nT)10) = O(log3 nT) for all vertices v and time t. J

In summary, if the underlying graph is γ-weakly-regular for γ ≥ Ω(log−1 nT), and has
expansion α ≥ Ω(log−2 nT), the greedy process maintains a poly-logarithmic discrepancy.

2.5 Putting It Together
We briefly describe the expander decomposition procedure and summarize the final algorithm.

I Theorem 19 (Decomposition into Weakly-Regular Expanders). Any graph G = (V,E) can
be decomposed into an edge-disjoint union of smaller graphs G1] G2 . . .] Gk such that
each vertex appears in at most O(log2 n) many smaller graphs, and (b) each of the smaller
subgraphs Gi is a α

4 -weakly regular α-expander, where α = O(1/ logn).

The proof is in the full version. So, given a graph G = (V,E), we use Theorem 19 to
partition the edges into a union of α4 -weakly regular α-expanders, namely H1, . . . ,Hs, where
α = O(1/ logn). Further, each vertex in V appears in at most O(log2 n) of these expanders.
For each graph Hi, we run the greedy algorithm independently. More formally, when an edge
e arrives, it belongs to exactly one of the subgraphs Hi. We orient this edge with respect to
the greedy algorithm running on Hi. Theorem 6 shows that the discrepancy of each vertex in
Hi remains O(log5(nT)) for each time t ∈ [0 . . . T] with high probability. Since each vertex
in G appears in at most O(log2 n) such expanders, it follows that the discrepancy of any
vertex in G remains O(log7 n+ log5 T) with high probability. This proves Theorem 1.

FSTTCS 2020

23:14 Online Carpooling Using Expander Decompositions

References
1 Miklós Ajtai, James Aspnes, Moni Naor, Yuval Rabani, Leonard J. Schulman, and Orli Waarts.

Fairness in scheduling. J. Algorithms, 29(2):306–357, 1998.
2 Ryan Alweiss, Yang P. Liu, and Mehtaab Sawhney. Discrepancy minimization via a self-

balancing walk. CoRR, abs/2006.14009, 2020.
3 Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Online

discrepancy minimization for stochastic arrivals. CoRR, abs/2007.10622, 2020.
4 Nikhil Bansal, Haotian Jiang, Sahil Singla, and Makrand Sinha. Online vector balancing and

geometric discrepancy. In Proceedings of STOC, 2020.
5 Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. CoRR, abs/1903.06898,

2019. URL: http://arxiv.org/abs/1903.06898.
6 Imre Bárány. On a Class of Balancing Games. J. Comb. Theory, Ser. A, 26(2):115–126, 1979.
7 Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai,

Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against
an adaptive adversary. CoRR, abs/2004.08432, 2020. arXiv:2004.08432.

8 Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge University
Press, 2001.

9 Raaz Dwivedi, Ohad N. Feldheim, Ori Gurel-Gurevich, and Aaditya Ramdas. The power of
online thinning in reducing discrepancy. Probability Theory and Related Fields, 174:103–131,
2019.

10 G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 2
edition, 1952.

11 Haotian Jiang, Janardhan Kulkarni, and Sahil Singla. Online geometric discrepancy for
stochastic arrivals with applications to envy minimization. CoRR, abs/1910.01073, 2019.

12 Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science &
Business Media, 2009.

13 Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the (1 +
β)-choice process. Random Struct. Algorithms, 47(4):760–775, 2015.

14 Joel Spencer. Balancing games. J. Comb. Theory, Ser. B, 23(1):68–74, 1977.

http://arxiv.org/abs/1903.06898
http://arxiv.org/abs/2004.08432

On the (Parameterized) Complexity of Almost
Stable Marriage
Sushmita Gupta
The Institute of Mathematical Sciences, HBNI, Chennai, India
sushmitagupta@imsc.res.in

Pallavi Jain
Indian Institute of Technology Jodhpur, India
pallavi@iitj.ac.in

Sanjukta Roy
The Institute of Mathematical Sciences, HBNI, Chennai, India
sanjukta@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Meirav Zehavi
Ben Gurion University of the Negev, Beer Sheva, Israel
meiravze@bgu.ac.il

Abstract
In the Stable Marriage problem, when the preference lists are complete, all agents of the smaller
side can be matched. However, this need not be true when preference lists are incomplete. In most
real-life situations, where agents participate in the matching market voluntarily and submit their
preferences, it is natural to assume that each agent wants to be matched to someone in his/her
preference list as opposed to being unmatched. In light of the Rural Hospital Theorem, we have
to relax the “no blocking pair” condition for stable matchings in order to match more agents. In
this paper, we study the question of matching more agents with fewest possible blocking edges. In
particular, the goal is to find a matching whose size exceeds that of a stable matching in the graph
by at least t and has at most k blocking edges. We study this question in the realm of parameterized
complexity with respect to several natural parameters, k, t, d, where d is the maximum length of a
preference list. Unfortunately, the problem remains intractable even for the combined parameter
k + t+ d. Thus, we extend our study to the local search variant of this problem, in which we search
for a matching that not only fulfills each of the above conditions but is “closest”, in terms of its
symmetric difference to the given stable matching, and obtain an FPT algorithm.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Stable Matching, Parameterized Complexity, Local Search

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.24

Related Version A full version of the paper is available at https://arxiv.org/pdf/2005.08150.pdf.

Funding Sushmita Gupta: was supported by SERB-Starting Research Grant (SRG/2019/001870).
Saket Saurabh: Received funding from European Research Council (ERC) under the European

 Union’s Horizon 2020 research and innovation programme (grant no. 819416), and Swarnajayanti

Fellowship grant DST/SJF/MSA-01/2017-18.
Meirav Zehavi: was supported by ISF grant (no.1176/18) and BSF grant no. 2018302).

© Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sushmitagupta@imsc.res.in
mailto:pallavi@iitj.ac.in
mailto:sanjukta@imsc.res.in
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.24
https://arxiv.org/pdf/2005.08150.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 On the (Parameterized) Complexity of Almost Stable Marriage

1 Introduction

Matching various entities to available resources is of great practical importance, exemplified
in matching college applicants to college seats, medical residents to hospitals, preschoolers to
kindergartens, unemployed workers to jobs, organ donors to recipients, and so on [2, 14, 19, 21].
It is noteworthy that in the applications mentioned above, it is not enough to merely match
an entity to any of the available resources. It is imperative, in fact, mission-critical, to
create matches that fulfil some predefined notions of compatibility, suitability, acceptability,
and so on. Gale and Shapley introduced the fundamental theoretical framework to study
such two-sided matching markets in the 1960s. They envisioned a matching outcome as a
marriage between the members of the two sides, and a desirable outcome representing a stable
marriage. The algorithm proffered by them has since attained wide-scale recognition as the
Gale-Shapley stable marriage/matching algorithm [14]. Stability is one of the acceptability
criteria for matching in which an unmatched pair of agent should not prefer each other over
their matched partner.

Of the many characteristic features of the two-sided matching markets, there are certain
aspects that stand out and are supported by both theoretical and empirical evidence –
particularly notable is the curious aspect that for a given market with strict preferences
on both sides,1 no matter what the stable matching outcome is, the specific number of
resources matched on either side always remains the same. This fact encapsulated by The
Rural Hospital’s Theorem [30, 31] states that no matter what stable matching algorithm
is deployed, the exact set (rather than only the number) of resources that are matched on
either side is the same. In other words, there is a trade-off between size and stability such
that any increase in size must be paid for by sacrificing stability. Indeed, it is not hard to
find instances in which as much as half of the available resources are unmatched in every
stable matching. Such gross underutilization of critical and potentially expensive resources
has not gone unaddressed by researchers. In light of The Rural Hospital Theorem, many
variations have been considered, some important ones being: enforcing lower and upper
capacities, forcing some matches, forbidding some matches, relaxing the notion of stability,
and finally foregoing stability altogether in favor of size [2, 3, 7, 16, 22, 34].

We formalize the trade-off mentioned above between size and stability in terms of the
Almost Stable Marriage problem. The classical Stable Marriage problem takes as
an instance a bipartite graph G = (A ∪ B,E), where A and B denote the set of vertices
representing the agents on the two sides and E denotes the set of edges representing acceptable
matches between vertices on different sides, and a preference list of every vertex in G over its
neighbors. Thus, the length of the preference list of a vertex is the same as its degree in the
graph. A matching is defined as a subset of the set of edges E such that no vertex appears
in more than one edge in the matching. An edge in a matching represents a match such that
the endpoints of a matching edge are said to be the matching partners of each other, and an
unmatched vertex is deemed to be self-matched. A matching µ is said to be stable in G if
there does not exist a blocking edge with respect to µ, defined to be an edge e ∈ E \ µ whose
endpoints rank each other higher (in their respective preference lists) than their matching
partners in µ.2 The goal of the Stable Marriage problem is to find a stable matching.
We define the Almost Stable Marriage problem as follows.

1 In most real-life applications, it is unreasonable if not unrealistic to expect each of the agents to rank
all the agents on the other side. That is, the graph G is highly unlikely to be complete.

2 Every candidate is assumed to prefer being matched to any of its neighbors to being self-matched.

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:3

Almost Stable Marriage (ASM)
Input: A bipartite graph G = (A ∪B,E), a set L containing the preference list of
each vertex, and non-negative integers k and t.
Question: Does there exist a matching whose size is at least t more than the size of
a stable matching in G such that the matching has at most k blocking edges?

In ASM, we hope for a matching that is larger than a stable matching but may contain
some blocking edges. The above problem quantifies these two variables: t and k denote the
minimum increase in the size and the allowable number of blocking edges, respectively.

We note that Biró et al. [3] considered the problem of finding, among all matchings
of maximum size, one that has the fewest blocking edges, and showed the NP-hardness
of the problem even when the degree of the graph is at most three. Since one can find a
maximum matching and a stable matching in the given graph in polynomial time [27, 14],
their NP-hardness result implies NP-hardness for ASM even when the degree is at most
three by setting t to be the difference between the size of a maximum matching and the size
of a stable matching.

Our Contribution and Methods. We study the parameterized complexity of ASM with
respect to parameters k and t; a combination that is not settled by Biró et al. [3]. Our first
result exhibits a strong guarantee of intractability. We exhibit parameterized intractability
of ASM in a very restrictive setting where the degree of the given graph is three.

I Theorem 1. ASM is W[1]-hard with respect to k + t, even when the maximum degree of
the given graph is at most three.

We prove Theorem 1 by showing a polynomial-time many-to-one parameter preserving
reduction from the Multicolored Clique (MCQ, in short) problem to ASM. In the
Multicolored Clique problem, given a graph G = (V,E) and a partition of V (G) into
k parts, say V1, . . . , Vk; the goal is to decide the existence of a set S ⊆ V (G) such that
|S ∩ Vi| = 1, for all i ∈ [k], and G[S] induces a clique, that is, there is an edge between every
pair of vertices in G[S]. MCQ is known to be W[1]-hard [29, 12] with respect to k.

In light of the intractability result in Theorem 1, we are hard pressed to recalibrate our
expectations of what is algorithmically feasible in an efficient manner. Therefore, we consider
a local search approach for this problem, in which, instead of finding any matching whose
size is at least t larger than the size of stable matching, we also want this matching to be
“closest” in terms of its symmetric difference, to a stable matching. Such framework of local
search has also been studied for other variants of the Stable Marriage problem by Marx
and Schlotter [26, 25]. We would like to emphasize that the notion of local search used here
is different from the classical notion of local search heuristics/algorithms commonly used in
practice [33]. We use the notion of local search that is well-defined and widely used in the
domain of parameterized complexity, as exemplified by Marx and Schlotter [26, 25], and has
also been applied to study several other optimization problems [11, 18, 20, 23, 24, 25, 32].
The question is formally defined as follows.

Local Search-ASM (LS-ASM)
Input: A bipartite graph G = (A ∪B,E), a set L containing the preference list of
every vertex, a stable matching µ, and non-negative integers k, q, and t.
Question: Does there exist a matching η of size at least |µ| + t with at most k
blocking edges such that the symmetric difference between µ and η is at most q?

FSTTCS 2020

24:4 On the (Parameterized) Complexity of Almost Stable Marriage

Unsurprisingly perhaps, the existence of a stable matching in the proximity of which
we wish to find a solution does not readily mitigate the computational hardness of the
problem, as evidenced by Theorem 2. This result is a consequence of the properties of the
reduction used in the proof of Theorem 1. The NP-hardness of LS-ASM also follows from
the NP-hardness of ASM as we can set q to be 2n, the maximum possible size of µ ∪ η.

I Theorem 2 (♣).3 LS-ASM is W[1]-hard with respect to k + t, even when the maximum
degree of the given graph is at most three.

In our quest for a parameterization that makes the problem tractable, we investigate LS-ASM
with respect to k + q + t.

I Theorem 3 (♣). LS-ASM is W[1]-hard with respect to k + q + t.

To prove Theorem 3, we give a polynomial-time many-to-one parameter preserving
reduction from MCQ to LS-ASM. In the instance constructed to prove Theorem 1, q is not
a function of k. We mimic the idea of gadget construction in that proof and ensure that q is
a function of k. However, in this effort, the degree of the graph increases. Consequently, the
result in Theorem 3 does not hold for constant degree graphs or even when the degree is a
function of k. This trade-off between q and the degree of the graph in the instances that
establish intractability is not a coincidence, as implied by our next result.

I Theorem 4. There exists an algorithm that, given an instance of LS-ASM, solves the
instance in 2O(q log d)+o(dq)nO(1) time, where n is the number of vertices in the given graph,
and d is the maximum degree of the given graph.

To prove Theorem 4, we begin by using the technique of random separation based on
color coding, in which the underlying idea is to highlight the solution that we are looking
for with high probability. Suppose that η is a hypothetical solution to the given instance
of LS-ASM. Note that to find the matching η, it is enough to find the edges that are in
the symmetric difference of µ and η, denoted by µ4η. Thus, using the technique of random
separation, we wish to highlight the edges in µ4η. We achieve this goal using two layers
of randomization. The first one separates vertices that appear in µ4η, denoted by the set
V (µ4η), from its neighbors, by independently coloring vertices 1 or 2. Let the vertices
appearing in V (µ4η) be colored 1 and its neighbors that are not in V (µ4η) be colored 2.
Observe that the matching partner of the vertices which are not in V (µ4η) is the same in
both µ and η. Therefore, we search for a solution locally in vertices that are colored 1. Let
G1 be the graph induced on the vertices that are colored 1. At this stage we use a second
layer of randomization on edges of G1, and independently color each edge with 1 or 2. This
separates edges that belong to µ4η (say colored 1) from those that do not belong to µ4η.
Now for each component of G1, we look at the edges that have been colored 1, and compute
the number of blocking edges, the increase in size and increase in the symmetric difference,
if we modify using the µ-alternating paths/cycle that are present in this component. This
leads to an instance of the Two-Dimensional Knapsack (2D-KP) problem, which we
solve in polynomial time using a known pseudo-polynomial time algorithm for 2D-KP [17].
We derandomize this algorithm using the notion of an n-p-q-lopsided universal family [13].
Table 1 summarizes the results for ASM and LS-ASM.

3 Proofs marked by [♣] are deferred to the full version of the paper.

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:5

Table 1 Summary of the results for ASM and LS-ASM. Results in blue row are implied from
Theorem 7 in [3].

ASM LS-ASM
NP-hard for d = 3 [3] NP-hard for d = 3 [3]

W[1]-hard for d = 3 wrt k + t [Thm. 1] W[1]-hard wrt k + q + t [Thm. 3]
FPT wrt q + d [Thm. 4]

Related Work. We present here some variants of the Stable Marriage problem which
are closely related to our model. In the past, the notion of “almost stability” is defined for
the Stable Roommate problem [1]. In the Stable Roommate problem, the goal is to
find a stable matching in an arbitrary graph. As opposed to Stable Marriage, in which
the graph is a bipartite graph, an instance of Stable Roommate might not admit a stable
matching. Therefore, the notion of almost stability is defined for the Stable Roommate
problem, in which the goal is to find a matching with a minimum number of blocking edges.
This problem is known as the Almost Stable Roommate problem. Abraham et al. [1]
proved that the Almost Stable Roommate problem is NP-hard. Biro et al. [4] proved
that the problem remains NP-hard even for constant-sized preference lists and studied it in
the realm of approximation algorithms. Chen et al. [5] studied this problem in the realm
of parameterized complexity and showed that the problem is W[1]-hard with respect to the
number of blocking edges even when the maximum length of every preference list is five.

Later in 2010, Biró et al. [3] considered the problem of finding, among all matchings of
the maximum size, one that has the fewest blocking edges, in a bipartite graph and showed
that the problem is NP-hard and not approximable within n1−ε, for any ε > 0 unless P=NP.

The problem of finding the maximum sized stable matching in the presence of ties and
incomplete preference lists, maxSMTI, has striking resemblance with ASM. In maxSMTI,
the decision of resolving each tie comes down to deciding who should be at the top of each of
tied lists, mirrors the choice we have to make in ASM in rematching the vertices who will
be part of a blocking edge in the new matching. Despite this similarity, the W[1]-hardness
result presented in [26, Theorem 7] does not yield the hardness result of ASM and LS-ASM
as the reduction is not likely to be parameteric in terms of k + t and k + t+ q, or have the
degree bounded by a constant. For other variants of the Stable Marriage problem, we
refer the reader to [6, 21, 15, 19].

2 Preliminaries

Sets. We denote the set of natural numbers {1, . . . , `} by [`]. For two sets X and Y , we use
notation X4Y to denote the symmetric difference between X and Y . For any ordered set X,
and an appropriately defined value t, X(t) denotes the tth element of the set X. Conversely,
suppose that x is tth element of the set X, then σ(X,x) = t.

Graphs. Let G be an undirected graph. We denote an edge between u and v as uv. The
neighborhood of a vertex v, denoted by NG(v), is the set of all vertices adjacent to it.
Analogously, the (open) neighborhood of a subset S ⊆ V , denoted by NG(S), is the set of
vertices outside S that are adjacent to some vertex in S. A component of G is a maximal
subgraph in which any two vertices are connected by a path. Let H be a subgraph of G.
For a component C in H, we set NG(C) = NG(V (C)). The subscript may be omitted if the
graph under consideration is clear from the context.

FSTTCS 2020

24:6 On the (Parameterized) Complexity of Almost Stable Marriage

Figure 1 Depiction of the top three layers of special vertices associated with the vertices of G′,
as explained on page 7, where t = log2(n/2). Yellow labels denote vertex labels and numbers on
edges denote preferences. Analogously, we can depict the layers of the special vertices associated
with the edges of G.

In the preference list of a vertex u, if v appears before w, then we say that u prefers v to
w, and denote it as v �u w. We call an edge in the graph a static edge if its endpoints prefer
each other over any other vertex in the graph. For a matching µ, V (µ) = {u, v : uv ∈ µ}. If
an edge uv ∈ µ, then µ(u) = v and µ(v) = u. A vertex is called saturated in a matching µ, if
it is an endpoint of one of the edges in the matching µ, otherwise it is an unsaturated vertex
in µ. If u is an unsaturated vertex in a matching µ, then we write µ(u) = ∅. For a matching
µ in G, a µ-alternating path (cycle) is a path (cycle) whose edges alternate between matching
edges of µ and non-matching edges. A µ-augmenting path is a µ-alternating path that starts
and ends at an unmatched vertex in µ.

Unless specified, we will be using all general graph terminologies from the book of
Diestel [9]. For parameterized complexity related definitions, we refer the reader to [8, 10, 28].

We conclude this section with a result that is used extensively in our analysis.

I Proposition 1 (♣). Let µ and µ′ denote two matchings in G such that µ is stable and
µ′ is not. Then, for each blocking edge with respect to µ′ we know that at least one of the
endpoints has different matching partners in µ and µ′.

3 W[1]-hardness of ASM

We give a polynomial-time parameter preserving many-to-one reduction from the W[1]-hard
problem Multicolored Clique (MCQ) [29, 12] in which we are given a regular graph
G = (V,E) and a partition of V (G) into k parts, V1, . . . , Vk, and the objective is to decide
if there exists a subset S ⊆ V (G) such that |S ∩ Vi| = 1, for each i ∈ [k], and the induced
subgraph G[S] is a clique. Given an instance I = (G, (V1, . . . , Vk)) of MCQ, we will next
describe the construction of an instance J = (G′,L, k′, t) of ASM.

Construction. We begin by introducing some notations. For any {i, j} ⊆ [k], such that
i < j, we use Eij to denote the set of edges between sets Vi and Vj . For each i ∈ [k], we
have |Vi| = n = 2p, and for each {i, j} ⊆ [k], we have |Eij | = m = 2p′ , for some positive
integers p and p′ greater than one.4 We assume that sets Vi (for each i ∈ [k]) and Eij (for

4 Let m′ be the maximum number of edges in any Eij , where {i, j} ⊆ [k]. Let p′ be the smallest positive
integer greater than one such that m′ ≤ 2p′

. Then, for every {i, j} ⊆ [k], add 2p′
− |Eij | isolated edges

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:7

p11

p12

p̃11

p̃12

a11,1

a11,2

ã11,1

ã11,2
b11,1 b̃11,1

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

p21

p22

p̃21

p̃22

a21,1

a21,2

ã21,1

ã21,2
b21,1 b̃21,1

u′
1 u′

2 u′
3 u′

4 u′
5 u′

6

v′1 v′2 v′3 v′4 v′5 v′6

z′1 z′2 z′3 z′4 z′5 z′6

w′
1 w′

2 w′
3 w′

4 w′
5 w′

6

e1 e2 e3 e4

e′1 e′2 e′3 e′4

ẽ1 ẽ2 ẽ3 ẽ4

ê1 ê2 ê3 ê4

q121 q̃121

q122 q̃122

c121,1 c̃121,1

c121,2 c̃121,2
d121,1 d̃121,1

1

2

12 3

1

2
12 1 2

1

2

3 1 3

2

1
2

3

1

2 1 2

1

2

1

2

1
2

3

1

2

1

2

3
1 2 1

2

3 1
2

3

1

2 1
2

1

2

Figure 2 An illustration of construction of graph G′ in the proof of W[1]-hardness of ASM for
constant sized preference list. Here, blue colored edges belong to the stable matching µ. Here, n = 4,
m = 4, and ru = 2, for all u ∈ V (G).

each {i, j} ⊆ [k], i < j) have a canonical order, and thus for an appropriately defined value t,
Vi(t) (Eij(t)) and σ(Vi, v) (σ(Eij , e)), where v ∈ Vi and e ∈ Eij , are uniquely defined. For
each vertex u ∈ V (G), let ru denotes the degree of u in the graph G.

For each j ∈ [log2(n/2)], let βj = n/2j, and γj = βj/2. For each j ∈ [log2(m/2)], let
ρj = m/2j, and τj = ρj/2. Next, we are ready to describe the construction of the graph G′.

Base vertices.
For each vertex u ∈ V (G), we add 2ru + 2 vertices in G′, denoted by {ui : i ∈ [2ru + 2]},
connected via a path: (u1, . . . , u2ru+2).
For each edge e ∈ E(G), we have four vertices in G′, denoted by {ei : i ∈ [4]}, connected
via a path: (e1, e2, e3, e4).

For each vertex u ∈ V (G), we define a set Eu ⊆ V (G′) as follows. Let u ∈ Vi, for some
i ∈ [k]. Then, for any edge e(= uv) ∈ Eij , where j ∈ [k], j > i, we have that the vertex
e1 ∈ Eu; and for any edge e(= uv) ∈ Eji, where j ∈ [k], j < i, we have that the vertex
e3 ∈ Eu. Formally,

Eu = {e1 ∈ V (G′) : e = uv ∈ Eij} ∪ {e3 ∈ V (G′) : e = uv ∈ Eji}

We assume that the set Eu has a canonical ordering. We encode the vertex-edge incidence
relation in the graph G as follows: For each vertex u ∈ V (G) and value h ∈ [ru], the vertex
u2h+1 in G′ is a neighbor of the vertex Eu(h). Thus, the fact that the edge e is incident to a
vertex u in G, is captured by the fact that a “copy” of e (namely e1 or e3) is adjacent to a
“copy” of u in G′.

Special vertices. For each i ∈ [k], we create the following special vertices associated with
the vertices in Vi.

For each ` ∈ [β1], we add vertices pi` and p̃i` in V (G′). Let u and v denote the 2`− 1st
and the 2`th vertices in Vi, respectively. Then, the vertex pi` is a neighbor of vertices u1
and v1; and the vertex p̃i` is a neighbor of vertices u2ru+2 and v2rv+2 in G′.

(an edge whose endpoints are of degree exactly one) to Eij . Similarly, let n′ be the maximum number
of vertices in any Vi, where i ∈ [k]. Let p be the smallest positive integer greater than one such that
n′ ≤ 2p. Then, for every i ∈ [k], add 2p − |Vi| isolated vertices to Vi. Note that if (G, (V1, . . . , Vk)) was
a W[1]-hard instance of MCQ earlier, then so is the modified instance.

FSTTCS 2020

24:8 On the (Parameterized) Complexity of Almost Stable Marriage

For each j ∈ [log2(n/2)], we add vertices in G′ in layers, where the value of j gives the
layer. Vertices in layer j are {bij,` : ` ∈ [βj/2]} ∪ {aij,` : ` ∈ [βj]}. In the 1st layer, ai1,` is a
neighbor of pi`. In the top layer, i.e., j = log2(n/2), bij,1 is a neighbor of aij,1 and aij,2. In
intermediate layers, i.e., 1 < j < log2(n/2), vertex bij,` is adjacent to two vertices in its
layer, namely aij,2`−1, aij,2` as well as one vertex from layer j + 1, namely aij+1,`. Refer to
Figure (1) for a depiction of two layers.
Symmetrically, we define vertices {b̃ij,` : ` ∈ [βj/2]} ∪ {ãij,` : ` ∈ [βj]} and define similar
adjacencies for them as well; details are in Table 2.

For each {i, j} ⊆ [k], where i < j, we create the following special vertices associated with
the edges in Eij .
For each ` ∈ [ρ1], we add vertices qij` and q̃ij` to V (G′).
Moreover, let e and e′ denote the 2`− 1st and 2`th elements of Eij , respectively. Then,
qij` is a neighbor of e1 and e′1; and symmetrically q̃ij` is a neighbor of e4 and e′4 in G′.
As before, for each h ∈ [log2(m/2)], we add vertices in G′ in layers, where the value of h
indicates the layer. Vertices in layer h are {cijh,` : ` ∈ [ρj/2]} ∪ {dijh,` : ` ∈ [ρj]}. In the 1st

layer, vertex cij1,` is a neighbor of qij` . In the top layer, i.e., h = log2(m/2), vertex dijh,1 is a
neighbor of cijh,1 and cijh,2. In intermediate layers, i.e., 1 < h < log2(m/2), vertex dijh,` is
adjacent to two vertices in its layer, namely cijh,2`−1, c

ij
h,2` as well as one vertex from layer

h+ 1, namely cijh+1,`.
Symmetrically, we define vertices {c̃ijh,` : ` ∈ [ρj/2]} ∪ {d̃ih,` : ` ∈ [ρj]} and define similar
adjacencies for these vertices; details are in Table 2.

Figure 2 illustrates the construction of G′. The preference list of each vertex in G′ is
presented in Table 2.

Parameter: We set k′ = k2, and t = k + k(k−1)/2. This completes the construction of an
instance of ASM. Clearly, this construction can be carried out in polynomial time. Since
|Vi| = n and |Eij | = m, for every {i, j} ⊆ [k], we have 2nk + 4mk(k − 1) many base vertices
and 4nk + 2mk(k − 1)− 3k − 3k2 many special vertices. Thus, in total we have

|V (G′)| = 6mk(k − 1) + 6nk − 3k − 3k2. (I)

The rest of the proof of Theorem 1 is deferred to the full version of the paper.

4 FPT Algorithm for LS-ASM

In this section, we give an FPT algorithm for LS-ASM with respect to q + d (Theorem 4).
Recall that d is the degree of the graph G, and q is the symmetric difference between a
solution matching and the given stable matching µ. Before presenting our algorithm, we
prove that there exists a solution, γ, to (G,L, µ, k, q, t) such that in every component of
G[V (µ4γ)], the number of γ-edges (edges that are in γ) is more than the number of µ-edges
in this component. We will need such a solution for a technical purpose which will be cleared
later in Phase III of the algorithm.

I Lemma 5. There exists a solution γ to (G,L, µ, k, q, t) such that for every component C
of G[V (µ4γ)], |E(C) ∩ γ| > |E(C) ∩ µ|.

The proof of Lemma 5 follows by starting with a solution γ and then replacing the edges in
µ with the edges in γ only in those components of G[V (µ4γ)], where |γ| > |µ|.

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:9

We begin with the description of a randomized algorithm which will be derandomized
later using n-p-q-lopsided universal family [13]. Our algorithm has three phases: Vertex
Separation, Edge Separation, and Size-Fitting. Given an instance (G,L, µ, k, q, t) of LS-ASM,
we proceed as follows.

Phase I: Vertex Separation. We start with the following assumption.

Table 2 Preference lists in the proof of Theorem 1. Here, for a set S, the notation 〈S〉 denotes
the order of preference over the vertices in this set.

For each vertex u ∈ Vi, where i ∈ [k], we have the following preferences:
u1: 〈u2, p

i
d`/2e〉 where for some ` ∈ [n], u = Vi(`).

u2h+1: 〈u2h, Eu(h), u2h+2〉 where h ∈ [ru]
u2h: 〈u2h−1, u2h+1〉 where h ∈ [ru]
u2ru+2: 〈u2ru+1, p̃

i
d /̀2e〉 where for some ` ∈ [n], u = Vi(`).

For the special vertices associated with Vi, we have the following preferences:
pi

`: 〈u1, v1, a
i
1,`〉 where ` ∈ [n/2], u = Vi(2`− 1) and v = Vi(2`)

p̃i
`: 〈u2ru+2, v2rv+2, ã

i
1,`〉 where ` ∈ [n/2], u = Vi(2`− 1) and v = Vi(2`)

ai
1,`: 〈pi

`, b
i
1,d`/2e〉 where ` ∈ [n/2]

ãi
1,`: 〈p̃i

`, b̃
i
1,d /̀2e〉 where ` ∈ [n/2]

ai
j,`: 〈bi

j−1,`, b
i
j,d /̀2e〉 where j ∈ [log2(n/2)] \ {1} and ` ∈ [n/2j]

ãi
j,`: 〈b̃i

j−1,`, b̃
i
j,d`/2e〉 where j ∈ [log2(n/2)] \ {1} and ` ∈ [n/2j]

bi
j,`: 〈ai

j,2`−1, a
i
j,2`, a

i
j+1,`〉 where j ∈ [log2(n/2)−1] and ` ∈ [n/2j+1]

b̃i
j,`: 〈ãi

j,2`−1, ã
i
j,2`, ã

i
j+1,`〉 where j ∈ [log2(n/2)−1] and ` ∈ [n/2j+1]

bi
j,1: 〈ai

j,1, a
i
j,2〉 where j = log2(n/2)

b̃i
j,1: 〈ãi

j,1, ã
i
j,2〉 where j = log2(n/2)

For each edge e ∈ Eij , 1 ≤ i < j ≤ k, we have the following preferences:
e1: 〈e2, u2h+1, q

ij
d`/2e〉 where for some ` ∈ [m], e = uv = Eij(`) s.t. u ∈ Vi and

for some h ∈ [ru], e1 = Eu(h)
e2: 〈e1, e3〉
e3: 〈e4, v2h+1, e2〉 where e = uv s.t v ∈ Vj and

for some h ∈ [rv], e3 = Ev(h).
e4: 〈e3, q̃

ij
d`/2e〉 where for some ` ∈ [m], e = uv = Eij(`)

For the special vertices associated with Eij , we have the following preferences:
qij

` : 〈e1, e
′
1, c

ij
1,`〉 where ` ∈ [m/2], e = σ(Eij , 2`− 1) and e′ = σ(Eij , 2`)

q̃ij
` : 〈e4, e

′
4, c̃

ij
1,`〉 where ` ∈ [m/2], e = σ(Eij , 2`− 1) and e′ = σ(Eij , 2`)

cij
1,`: 〈qij

` , d
ij
1,d`/2e〉 where ` ∈ [m/2]

c̃ij
1,`: 〈q̃ij

` , d̃
ij
1,d`/2e〉 where ` ∈ [m/2]

cij
h,`: 〈dij

h−1,`, d
ij
h,d`/2e〉 where h ∈ [log2(m/2)] \ {1}, ` ∈ [m/2h]

c̃ij
h,`: 〈d̃ij

h−1,`, d̃
ij
h,d`/2e〉 where h ∈ [log2(m/2)] \ {1} and ` ∈ [m/2h]

dij
h,`: 〈cij

h,2`−1, c
ij
h,2`, c

ij
h+1,`〉 where h ∈ [log2(m/2)−1] and ` ∈ [m/2h+1]

d̃ij
h,`: 〈c̃ij

h,2`−1, c̃
ij
h,2`, c̃

ij
h+1,`〉 where h ∈ [log2(m/2)−1] and ` ∈ [m/2h+1]

dij
h,1: 〈cij

h,1, c
ij
h,2〉 where h = log2(m/2)

d̃ij
h,1: 〈c̃ij

h,1, c̃
ij
h,2〉 where h = log2(m/2)

FSTTCS 2020

24:10 On the (Parameterized) Complexity of Almost Stable Marriage

Throughout this section we assume that there exists solution η, and everything will
be defined with respect to η. In fact, we assume that η is a hypothetical solution to
(G,L, µ, k, q, t) such that in every component of G[V (µ4η)], the number of η-edges is
more than the number of µ-edges in this component, that is, η satisfies the property
specified in Lemma 5.

We start by defining a notion of good coloring.

I Definition 6. A function f : V (G) → {0, 1} is called a good coloring, if the following
properties are satisfied.
1. Every vertex in V (µ4η) is colored 1.
2. Let border be the set of neighbors of the vertices in V (µ4η) outside the set V (µ4η), that

is, border = NG(V (µ4η)), and bordermates be the set of matching partners (if they exist)
of the vertices in border in µ. Every vertex in border ∪ bordermates is colored 2.

We will show that a random function f that assigns each vertex of the graph G inde-
pendently with color 1 or 2 with probability5 1/2 each is a good function with probability
depending only on q and d. In particular, we can say the following about f .

Every vertex in V (µ4η) is colored 1 w.p. at least 1
22q .

Every vertex in border ∪ bordermates is colored 2 w.p. at least 1
24qd . To see this, note

that |µ4η| ≤ q and the maximum degree of a vertex in the graph G is d, and so
|border ∪ bordermates| ≤ 2|border| = 2|NG(V (µ4η))| ≤ 4qd.

For each i ∈ [2], let Vi denotes the set of vertices of the graph G that are colored i using the
function f . Summarizing the above mentioned properties we get the following.

I Lemma 7. Let V1, V2, border and bordermates be as defined above. Then, w.p. at least
1

22q+4qd , V (µ4η) ⊆ V1 and border ∪ bordermates ⊆ V2. Thus, f is a good coloring w.p. at
least 1

22q+4qd .

Due to Lemma 7, we have the following:

I Corollary 8. Every component in G[V (µ4η)] is a component in G[V1] w.p. at least 1
22q+4qd .

The proof of Corollary 8 follows from the fact that V (µ4η) ⊆ V1 and border =
NG(V (µ4η)) is a subset of V2 w.p. at least 1

22q+4qd . Due to Corollary 8, if there exists
a component C in G[V1] containing a vertex u ∈ V (G) that is saturated in µ, such that
µ(u) /∈ C, then C is not a component in G[V (µ4η)]. This leads to the following definition.
A component C in G[V1] is called a colored-component, if for every vertex v ∈ C, we have
that µ(v) ∈ C. Thus, we get the following lemma.

I Lemma 9. Let G be a graph and f : V (G) → {0, 1} be a good function. Then, every
component C of G[V (µ4η)] is also a component of G[V1] and further it is a colored-component.

Let (G, f) be a pair such that G is the input graph and f is a good coloring function
on V (G). We call such (G, f) as a colored instance.

In light of Corollary 8, to find µ4η, in Phase II, we color the edges of G[V1] in order to
identify the components of the graph that only contain edges of µ4η. Let G1 = G[V1] and
G′ = G1[V (µ4η)].

5 Henceforth, we will use the shortened form w.p. for “with probability”.

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:11

Phase II: Edge Separation. We first define a notion of edge-colored instance.

I Definition 10. Let f : V (G)→ {0, 1} and g : E(G)→ {Red,Green,Blue} be two functions.
An instance (G, f, g) is called an edge-colored instance if the following properties are satisfied.
1. (G, f) is a colored instance.
2. Every edge in µ4η is colored Red.
3. Every edge in E(G′) \(µ4η) is colored Green.
4. Every edge in E(G) \ E(G1) is colored Blue.

Given a colored instance (G, f), we select a function g, as explained below, such that
(G, f, g) becomes an edge-colored instance with high probability.

Let g be a function that colors each edge of the subgraph G1 independently with
colors Red or Green with probability 1/2 each. Furthermore, g colors every edge in
E(G) \ E(G1) with Blue.

The following properties hold for the graph G1 that is colored using the function g:

Every edge in µ4η is colored Red with probability at least 1
2q .

Every edge in E(G′) \(µ4η) is colored Green with probability at least 1
22qd , because

|V (µ4η)| ≤ 2q and d is the maximum degree of a vertex in the graph G, so |E(G′)| ≤ 2qd.
Every edge in E(G) \ E(G1) has been colored Blue w.p. 1.

For i ∈ {Red,Green,Blue}, let Ei denotes the set of edges of the graph G that are colored
i using the function g. Then, due to the above mentioned coloring properties of the graph
G1, we have the following result.

I Lemma 11. Let (G, f) be a colored instance. Furthermore, let G′, ERed, EGreen, and EBlue
be as defined above. Then, w.p. at least 1

2q+2qd , µ4η ⊆ ERed, E(G′) \(µ4η) ⊆ EGreen, and
E(G) \ E(G1) ⊆ EBlue. Thus, (G, f, g) is an edge-colored instance w.p. at least 1

2q+2qd .

Note that the edges in µ4η form vertex-disjoint maximal µ-alternating paths/cycles. A
component may have several µ-alternating paths and cycles. Let C be a colored-component.
In what follows, we provide conditions such that if C satisfies either of them, then they do
not belong to G[V (µ4η)]. Such a colored-component is called malformed.
1. If the set of Red edges in C do not form vertex disjoint maximal µ-alternating paths or

cycles, then the component does not belong to G[V (µ4η)].
2. Furthermore, due to our assumption on the hypothetical solution η, if the number of Red

edges in C that are not in µ is at most the number of Red edges in C that are in µ, then
C does not belong to G[V (µ4η)].

3. If C does not have any Red edge, then it does not belong to G[V (µ4η)].

A component C in G1 that is not malformed is called an edge-colored-component
(edge-colored-comp).

The next observation follows from the properties of an edge-colored component.

I Observation 1. Let (G, f, g) be an edge-colored instance. Then, for every edge-colored-
comp C of G1, the following holds: (a) The set of Red colored edges form a collection of
µ-alternating path/cycle; and (b) every vertex in C is incident to at least one Red edge.

FSTTCS 2020

24:12 On the (Parameterized) Complexity of Almost Stable Marriage

Let Cecc be the set of components of G1 that are edge-colored-comp. In light of Obser-
vation 1, our goal is reduced to finding a family of components, C , in Cecc that contain
the edges of µ4η. Indeed, to obtain a matching of size at least |µ|+ t, we need to choose
t′ ≤ t components of G[V1] that have µ-augmenting paths (a µ-alternating path starting and
ending with edges not in µ). However, choosing t′ components arbitrarily might lead to a
large number of blocking edges in the solution matching. Thus, to choose the components
appropriately, we move to Phase III. In particular we show that if (G, f, g) is an edge-colored
instance, then we can solve the problem in polynomial time.

Phase III: Size-Fitting with respect to g. Let (G,L, µ, k, q, t) be an instance to LS-ASM
and η be a hypothetical solution to the problem that satisfies the condition in Lemma 5.
Further, let (G, f, g) be an edge-colored instance and Cecc be the set of components of G1
that are edge-colored-comp.

We reduce our problem to Two-Dimensional Knapsack (2D-KP), and after that use
an algorithm for 2D-KP, described in Proposition 2, as a subroutine.

Two-Dimensional Knapsack (2D-KP)
Input: A set of tuples, X = {(ai, bi, pi) ∈ N3 : i ∈ [n]}, and non-negative integers
c1, c2 and p.
Question: Does there exist a set Z ⊆ [n] such that

∑
i∈Z ai ≤ c1,

∑
i∈Z bi ≤ c2, and∑

i∈Z pi ≥ p?

I Proposition 2. [17] There exists an algorithm A that given an instance (X , c1, c2, p) of
2D-KP, in time O(nc1c2), outputs a solution if it is a Yes-instance of 2D-KP; otherwise A
outputs “no”.

Construction 2D-Knapsack. We construct an instance of 2D-KP as follows. Let C1, . . . , C`
be the components in Cecc. Intuitively, we construct a family of tuples X = {(ki, qi, ti) : i ∈ [`]}
such that ki denotes the number of blocking edges that we encounter if we add edges that
are not in µ but are present in µ-alternating paths/cycles in Ci to our solution. Similarly, qi
and ti denote the number of edges in the symmetric difference and the increase in the size of
the matching due to this alternation operation. By our choice of the components in Cecc all
these values are positive integers. Indeed, this is why we selected a hypothetical solution
with an additional property. Next, we describe the construction of an instance of 2D-KP.

For each i ∈ [`], let qi be the number of Red colored edges in Ci and ti = qi − 2|µi|
where µi denotes the edges of µ in Ci. Next, to compute ki, for each i ∈ [`], we construct
a matching ξi as follows. We add all the Red colored edges in Ci that are not in µ to ξi.
Next, we make another matching Γi, that has all the edges in ξi, and additionally, we add
all the edges in µ to Γi whose both endpoints are outside the components in Cecc, and at
least one of the endpoints is a neighbor of a vertex in Ci. Clearly, Γi is a matching in the
graph G. To ease notation, we let Gi denote the graph G[V (Γi) ∪ V (Ci) ∪NG(V (Ci))]. We
set ki as the number of blocking edges with respect to Γi in the graph Gi. Basically, the
graph Gi contains all the vertices in Ci, their neighbors in border, the µ-partners of these
border vertices in bordermates, and the neighbors of Ci which are unsaturated in µ. That is,
the number of blocking edges (with respect to Γi) incident on the vertices in the set V (ξi) is
ki in Gi. To see this note that there is no blocking edge with both endpoints in V (Γi \ ξi)

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:13

(Proposition 1). The only reason to define Γi is to define the value of ki in a clean fashion.
We next state a simple lemma that shows that no blocking edge is counted twice.

I Lemma 12 (Locally Pairwise Disjoint Blocking Edges). Let (G,L, µ, k, q, t) be an instance
of LS-ASM and (G, f, g) be an edge-colored instance. Further, let Ci, Cj ∈ Cecc, i 6= j, and
for ` ∈ {i, j}, B` denote the set of blocking edges with respect to Γ` in G[V (Γ`) ∪ V (C`) ∪
N(V (C`))]. Then, Bi ∩Bj = ∅.

Proof. Due to the construction of the matching Γi, for all the blocking edges in Bi, at least
one of its endpoints is in Ci. Similarly, for all the blocking edges in Bj , at least one of its
endpoints is in Cj . Since Ci are Cj are distinct components in Cecc, we infer Bi∩Bj = ∅. J

Let X = {(ki, qi, ti) : i ∈ [`]}. This completes the construction of an instance (X , k, q, t)
of 2D-KP. We invoke the algorithm A given in Proposition 2 on the instance (X , k, q, t)
of 2D-KP. If A returns a set Z, then we return “yes”. Otherwise, we report failure of the
algorithm. It is relatively straightforward to create the solution η̂ when the answer is “yes”.
Next, we prove the correctness of Phase III.

I Lemma 13. Let (G, f, g) be an edge-colored instance. Then, (X , k, q, t) is a yes-instance
of 2D-KP.

Proof. Since (G, f, g) is an edge-colored instance, due to the definition of edge-colored
instance (Definition 10), (G, f) is a colored-instance. Thus, due to the definition of a
colored-instance and Lemma 9, every component in G[V (µ4η)] is also a component in G1.

Clearly, for every component C in G[V (µ4η)], if a vertex u ∈ C, then µ(u) ∈ C.
Therefore, all the components in G[V (µ4η)] are colored component. Next, we note that due
to Definition 10, all the edges in the set µ4η are colored Red. Thus, for every component C in
G[V (µ4η)], Red colored edges in C form vertex disjoint maximal µ-alternating paths/cycles.
Further, every component C in G[V (µ4η)] has at least one Red edge. Also, due to our
choice of η, the number of Red edges in C, which are not in µ, are less than the one that are
in µ. Therefore, all the components in G[V (µ4η)] are edge-colored-comp. Without loss of
generality, let C1, . . . , Cˆ̀ be the components in Cecc that are also in G[V (µ4η)]. Let us note
that Cecc may contain several other components. Let S = {i ∈ [ˆ̀] : (ki, qi, ti) ∈ X}. We claim
that S is a solution to (X , k, q, t).

Due to the construction of the instance (X , k, q, t), and the facts that η is a solution to
(G,L, µ, k, q, t) and (G, f, g) is an edge-colored instance, clearly,

∑
i∈S qi ≤ q and

∑
i∈S ti ≥ t.

We next show that
∑
i∈S ki ≤ k. Recall the definition of ξi and Γi. We show that every

blocking edge with respect to Γi in the graph Gi is also a blocking edge with respect to
η in the graph G. Let uv be a blocking edge with respect to Γi in the graph Gi. Then,
v �u Γi(u) and u �v Γi(v). Due to Proposition 1 and the definition of the matching Γi, at
least one of the endpoint of the edge uv is in the component Ci. Without loss of generality,
let u ∈ V (Ci). Since Ci is also a component in G[V (µ4η)], we can infer that η(u) = Γi(u).
If the vertex v is also in the component Ci, then using the same argument as above, we know
that η(v) = Γi(v). Thus, uv is also a blocking edge with respect η in the graph G. Suppose
that v /∈ V (Ci). Then, since v ∈ V (Γi) ∪ V (Ci), Γi(v) = µ(v). Since Ci is a component
in G[V (µ4η)] and u ∈ V (Ci) but v /∈ Ci, we can infer that η(v) = µ(v). Since u and v

have same matching partners in both the matchings η and Γi, we can infer that uv is also a
blocking edge with respect η in the graph G. Since ki is the the number of blocking edges
with respect to Γi, we infer

∑
i∈S ki ≤ k. Hence, (X , k, q, t) is a Yes-instance of 2D-KP. J

I Lemma 14. Suppose that (χ, k, q, t) is a Yes-instance of 2D-KP. Then, (G,L, µ, k, q, t) is
a Yes-instance of LS-ASM.

FSTTCS 2020

24:14 On the (Parameterized) Complexity of Almost Stable Marriage

Proof. Suppose that the algorithm A in Proposition 2 returns the set Z. Given the set
Z, we obtain the matching η̃ as follows. Let Z(C) denotes the family of components in
Cecc corresponding to the indices in Z. Formally, Z(C) = {Ci ∈ Cecc : i ∈ Z}. For each
component C ∈ Z(C), we add all the Red edges in C that are not in µ, to η̃. That is,
η̃ = ∪i∈Zξi. Additionally, we add all the edges in µ to η̃ whose both endpoints are outside
the components in Z(C). We next prove that η̃ is a solution to (G,L, µ, k, q, t).

B Claim 15. η̃ is a matching.

Proof. Towards the contradiction, suppose that uv, uw ∈ η̃, that is, there exists a pair of
edges in η̃ that shares an endpoint. Due to Observation 1, in every component of Z(C),
the Red edges form µ-alternating path/cycle. Therefore, uv and uw both cannot be in a
component of Z(C). Suppose that uv is in a component C in Z(C), but uw does not belong
to C. Then, due to the construction of η̃, uw ∈ µ. This contradicts Lemma 9, as C is a
component in Cecc. If uv and uw are outside the components in Z(C), then due to the
construction of η̃, uv and uw both are in µ. This contradicts that µ is a matching. C

B Claim 16. |µ4η̃| ≤ q and |η̃| ≥ |µ|+ t.

Proof. Let C be a component in Z(C). Let ERed(C) denote the set of Red edges in the
component C. For each component Ci ∈ Z(C), let µi = µ ∩ERed(Ci), that is, µi is the set
of Red edges in Ci that are in µ. Let µ̃ be the set of edges in µ that does not belong to any
component in Z(C). Thus, µ =]Ci∈Z(C)µi] µ̃. Due to the construction of η̃, we have that
η̃ =]Ci∈Z(C)(ERed(Ci) \ µi)] µ̃. Thus, µ4η̃ =]Ci∈Z(C)ERed(Ci). Hence,

|µ4η̃| =
∑

Ci∈Z(C)

|ERed(Ci)| =
∑
i∈Z

qi

as qi = |ERed(Ci)| for every component Ci ∈ Cecc. Since S is a solution to (X , k, q, t),∑
i∈Z qi ≤ q. Therefore, |µ4η̃| ≤ q. Next, we show that |η̃| ≥ |µ| + t. Due to the

construction of η̃, we know that

|η̃| = |µ̃|+
∑

Ci∈Z(C)

|ERed(Ci) \ µi| = |µ̃|+
∑

Ci∈Z(C)

(qi − |µi|) = |µ̃|+
∑

Ci∈Z(C)

(ti + |µi|)

as ti = qi − 2|µi|. Since
∑
i∈Z ti ≥ t, we obtained that |η̃| ≥ |µ|+ t. C

B Claim 17. There are at most k blocking edges with respect to η̃.

Proof. Due to the construction of the matching η̃ and Proposition 1, we know that if uv is a
blocking edge with respect to η̃, then at least one of its endpoint, that is vertex u or v, is in
Ci, for some Ci ∈ Z(C). Without loss of generality, let the vertex u is in the component
Ci. Then, due to the definition of the matching Γi and the construction of the matching
η̃, we have that η̃(u) = Γi(u). Now, if v is also in the component Ci, then using the same
argument η̃(v) = Γi(v). Suppose that v is not in the component Ci, then its µ-partner,
that is µ(v) is also not present in Cecc due the the definition of colored-components. Thus,
η̃(v) = Γi(v) = µ(v). Since the matching partners of u and v are same in both the matchings
η and Γi, we have uv is also a blocking edge with respect to matching Γi. Thus, every
blocking edge with respect to η̃ is also a blocking edge with respect to Γi, for some Ci ∈ Z(C).
Recall that ki is the number of blocking edges with respect to Γi in Gi. Therefore, the
number of blocking edges with respect to η̃ is at most

∑
i∈Z ki ≤ k. C

Due to Claims 15, 16, and 17, we can infer that η̃ is a solution to (G,L, µ, k, q, t). J

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:15

Due to Lemmas 7 and 11, we obtain a polynomial-time randomized algorithm for LS-ASM
which succeeds with probability 1

23q+6qd . Therefore, by repeating the algorithm independently
23q+6dq times, where n is the number of vertices in the graph, we obtain the following result:

I Theorem 18. There exists a randomized algorithm that given an instance of LS-ASM
runs in 23q+6dqnO(1) time, where n is the number of vertices in the given graph, and either
reports a failure or outputs “yes”. Moreover, if the algorithm is given a Yes-instance of the
problem, then it returns “yes” with a constant probability.

Proof. Let (G,L, µ, k, q, t) be an instance to LS-ASM and η be a hypothetical solution to
the problem. If (G,L, µ, k, q, t) is a Yes-instance then by Lemmas 7 and 11, we can get
an edge-colored instance, (G, f, g), w.p. at least 1

23q+6qd . Given an edge-colored instance
(G, f, g), we apply Construction 2D-Knapsack and construct an instance of 2D-KP with
a family of tuples X = {(ki, qi, ti) : i ∈ [`]}. Here, (X , k, q, t) is a yes-instance of 2D-KP.
We can solve the instance in polynomial time using Proposition 2. Correctness of this step
follows from Lemmas 13 and 14. Thus, if (G,L, µ, k, q, t) is a Yes-instance, then we return
that it is a Yes-instance with probability at least 1

23q+6qd . Indeed, if (G,L, µ, k, q, t) is a
No-instance, then we return that it is a No-instance with probability 1. Thus, to boast the
success probability to a constant, we repeat the algorithm independently 23q+6dq(logn)O(1)

times, where n is the number of vertices in G. Indeed, the success probability is at least

1−
(

1− 1
23q+6qd

)23q+6dq(logn)O(1)

≥ 1− 1
nO(1) .

This concludes the proof. J

The derandomization of the algorithm is in the full version.

5 In Conclusion

In this paper, we initiated the study of the computational complexity of the trade-off between
size and stability through the lenses of both multivariate analysis and local search. Since
ASM is NP-hard for a graph in which every vertex has degree at most three, the natural
question that arises here is: Is ASM polynomial-time solvable for the graph in which every
vertex has degree at most two? It is worth mentioning that there is a fairly straightforward
dynamic programming algorithm that solves this question in polynomial time. The basis
idea is as follows. This graph, quite clearly, is a disjoint union of paths and cycles.

Consider a hypothetical solution η in the path or cycle Xn in G. Suppose that we know
the submatching of η, call it η′, that is contained in a subpath of Xn as well as the subset
of blocking edges with respect to η that are in this subpath. Then, we can extend η′ to η
by keeping all the necessary partial solutions. We can briefly sketch this idea as follows.
Suppose that ηi is a matching in the subpath Pi = (1, . . . , i). We want to extend ηi for the
subpath Pi+1. If vi is saturated in ηi, then we cannot add edge vivi+1 to ηi+1 and we can
easily check if it is a blocking edge with respect to ηi+1 in Pi+1. If vi is unsaturated in ηi,
then we have two possibilities: edge vivi+1 is and is not in ηi+1. If it is, then we can check
if vivi−1 is a blocking edge with respect to ηi+1 in Pi+1. Otherwise, vivi+1 is a blocking
edge with respect to ηi+1 in Pi+1. All these possibilities can be taken care by appropriately
defining the table entries. In the table, however, we do not need to store the whole matching.
We only need to remember the matching partner of vertices, such as vi−1, as that will help
in checking if vivi+1 is a blocking edge. We can similarly argue for a cycle in G.

FSTTCS 2020

24:16 On the (Parameterized) Complexity of Almost Stable Marriage

Next, we would like to point out that our hardness results, that is, Theorems 1, 2, and
3 hold even when the preference lists of the vertices in each side of the partition respect a
master ordering of vertices i.e., the relative ordering of the vertices in a preference list is
same as that of a fixed ordering of all the vertices on the other side. We discuss it in details
in the full version of the paper.

Future work. We conclude the paper with a few directions for further research.
In certain scenarios, the “satisfaction” of the agents (there exist several measures such as
egalitarian, sex-equal, balance) might be of importance. Then, it might be of interest to
study the tradeoff between t and k, tradeoff between egalitarian/sex-equal/balance cost
and k.
The formulation of ASM can be generalized to the case where the input contains a utility
function on the edges and the objective is to maximize the value of a solution matching
subject to this function.

References
1 D. J. Abraham, P. Biró, and D. F. Manlove. “Almost stable” matchings in the roommates

problem. In International Workshop on Approximation and Online Algorithms (WG), pages
1–14, 2005.

2 P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove. The college admissions problem with
lower and common quotas. Theoretical Computer Science, 411(34-36):3136–3153, 2010.

3 P. Biró, D. Manlove, and S. Mittal. Size versus stability in the marriage problem. Theoretical
Computer Science, 411(16-18):1828–1841, 2010.

4 P. Biró, D. F. Manlove, and E. J. McDermid. “Almost stable” matchings in the roommates
problem with bounded preference lists. Theoretical Computer Science, 432:10–20, 2012.

5 J. Chen, D. Hermelin, M. Sorge, and H. Yedidsion. How hard is it to satisfy (almost)
all roommates? In International Colloquium on Automata, Languages, and Programming,
(ICALP), pages 35:1–35:15, 2018.

6 J. Chen, P. Skowron, and M. Sorge. Matchings under preferences: Strength of stability and
trade-offs. In ACM Conference on Economics and Computation (EC), pages 41–59, 2019.

7 Á. Cseh and D. F. Manlove. Stable marriage and roommates problems with restricted edges:
Complexity and approximability. Discrete Optimization, 20:62–89, 2016.

8 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

9 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

10 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013.

11 M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A. Rosamond, S. Saurabh, and Y. Villange.
Local search: Is brute-force avoidable? Journal of Computer and System Sciences, 78(3):707–
719, 2012.

12 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009.

13 F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient computation of represent-
ative families with applications in parameterized and exact algorithms. Journal of the ACM,
63(4):29:1–29:60, 2016.

14 D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:17

15 D. Gusfield and R. W. Irving. The stable marriage problem: structure and algorithms. MIT
press, 1989.

16 R. W. Irving and D. Manlove. Finding large stable matchings. ACM Journal of Experimental
Algorithmics, 2009.

17 H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.
18 S. Khuller, R. Bhatia, and R. Pless. On local search and placement of meters in networks.

SIAM journal on computing, 32(2):470–487, 2003.
19 D. E. Knuth. Marriages stables. Technical report, 1976.
20 A. Krokhin and D. Marx. On the hardness of losing weight. ACM Transactions on Algorithms,

8(2):1–18, 2012.
21 D. Manlove. Algorithmics of matching under preferences, volume 2. World Scientific, 2013.
22 D. F. Manlove, I. McBride, and J. Trimble. "Almost-stable" matchings in the Hospitals/Resid-

ents problem with couples. Constraints, 22(1):50–72, 2017.
23 D. Marx. Local search. Parameterized Complexity News, 3:7–8, 2008.
24 D. Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research

Letters, 36(1):31–36, 2008.
25 D. Marx and I. Schlotter. Parameterized complexity and local search approaches for the stable

marriage problem with ties. Algorithmica, 58(1):170–187, 2010.
26 D. Marx and I. Schlotter. Stable assignment with couples: Parameterized complexity and

local search. Discrete Optimization, 8(1):25–40, 2011.
27 S. Micali and V. V. Vazirani. An O(

√
|V ||E|) algorithm for finding maximum matching in

general graphs. In Foundations of Computer Science (FOCS), pages 17–27, 1980.
28 R. Neidermeier. Invitation to fixed-parameter algorithms. Springer, 2006.
29 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common

supersequence and longest common subsequence problems. J. Comput. Syst. Sci., 67(4):757–
771, 2003.

30 A. E. Roth. The evolution of the labor market for medical interns and residents: a case study
in game theory. Journal of Political Economy, 92(6), 1984.

31 A. E. Roth. On the allocation of residents to rural hospitals: A general property of two-sided
matching markets. Econometrica: Journal of the Econometric Society, 54(2):425–427, 1986.

32 S. Szeider. The parameterized complexity of k-flip local search for sat and max sat. Discrete
Optimization, 8(1):139–145, 2011.

33 El-Ghazali Talbi. Metaheuristics: From design to implementation, volume 74. John Wiley &
Sons, 2009.

34 K. Tomoeda. Finding a stable matching under type-specific minimum quotas. Journal of
Economic Theory, 176:81–117, 2018.

FSTTCS 2020

Min-Cost Popular Matchings
Telikepalli Kavitha
Tata Institute of Fundamental Research, Mumbai, India
kavitha@tifr.res.in

Abstract
Let G = (A ∪B, E) be a bipartite graph on n vertices where every vertex ranks its neighbors in a
strict order of preference. A matching M in G is popular if there is no matching N such that vertices
that prefer N to M outnumber those that prefer M to N . Popular matchings always exist in G

since every stable matching is popular. Thus it is easy to find a popular matching in G – however it
is NP-hard to compute a min-cost popular matching in G when there is a cost function on the edge
set; moreover it is NP-hard to approximate this to any multiplicative factor. An O∗(2n) algorithm
to compute a min-cost popular matching in G follows from known results. Here we show:

an algorithm with running time O∗(2n/4) ≈ O∗(1.19n) to compute a min-cost popular matching;
assume all edge costs are non-negative – then given ε > 0, a randomized algorithm with running
time poly(n, 1

ε
) to compute a matching M such that cost(M) is at most twice the optimal cost

and with high probability, the fraction of all matchings more popular than M is at most 1
2 + ε.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Bipartite graphs, Stable matchings, Dual certificates

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.25

Funding We acknowledge support of the Department of Atomic Energy, Government of India, under
project no. RTI4001.

Acknowledgements Thanks to Jannik Matuschke for conversations on semi-popular matchings and
to Piyush Srivastava for helpful discussions on sampling matchings. Thanks to the reviewers for
their helpful comments.

1 Introduction

Consider a matching problem in a bipartite graph G = (A ∪ B,E) on n vertices where
every vertex has a strict ranking of its neighbors. Matching M is stable if M admits no
blocking edge – an edge (a, b) is a blocking edge to M if a and b prefer each other to their
respective assignments in M . Stable matchings always exist in G and one such matching can
be computed in linear time by the classical Gale-Shapley algorithm [14]. Suppose there is a
cost function on the edge set E. Computing a min-cost stable matching in G is a well-studied
problem and there are several polynomial time algorithms to compute a min-cost stable
matching and special variants of this problem [10, 11, 12, 21, 29, 30, 31].

Stability or absence of blocking edges is a rather strict notion – it is known that all stable
matchings have the same size and match the same subset of vertices [15]. Consider the instance
G = (A ∪ B,E) where A = {a1, a2}, B = {b1, b2}, and E = {(a1, b1), (a1, b2), (a2, b1)}.
Suppose a1 prefers b1 to b2 and similarly, b1 prefers a1 to a2. The only stable matching here
is {(a1, b1)} whose size is half the size of the perfect matching {(a1, b2), (a2, b1)}.

A relaxation. In applications such as matching students to advisers, we would like to
replace the notion of “no blocking edges” with a more relaxed notion of stability for the
sake of obtaining a larger matching, or more generally, a more optimal matching. A natural
relaxation of stability is the notion of popularity introduced by Gärdenfors [16] in 1975.

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha@tifr.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Min-Cost Popular Matchings

Roughly speaking, a matching is popular if there is no matching that makes more vertices
happier. More formally, we say a vertex u ∈ A ∪ B prefers matching M to matching N if
either (i) u is matched in M and unmatched in N or (ii) u is matched in both M and N
and u prefers its partner in M to its partner in N . For any two matchings M and N , let
φ(M,N) be the number of vertices that prefer M to N .

I Definition 1. A matching M is popular if φ(M,N) ≥ φ(N,M) for every matching N in
G, i.e., ∆(M,N) ≥ 0 where ∆(M,N) = φ(M,N)− φ(N,M).

In an election betweenM and N where vertices cast votes, φ(M,N) is the number of votes
for M and φ(N,M) is the number of votes for N . A popular matching never loses an election
against another matching: thus it is a weak Condorcet winner [3, 4] in the corresponding
voting instance. Although (weak) Condorcet winners need not exist in a general voting
instance, popular matchings always exist in a bipartite graph since every stable matching is
popular [16]. In fact, a stable matching is a min-size popular matching [19]. In the example
described earlier, the perfect matching {(a1, b2), (a2, b1)} is unstable but popular.

Efficient algorithms are known to compute a max-size popular matching in G [19, 23].
Though computing a min-size/max-size popular matching is easy, surprisingly, it is NP-hard
to decide if G admits a popular matching that is not a min-size/max-size popular matching [9].
Also, computing a min-cost popular matching is NP-hard [9] when there is a cost function on
the edge set. The min-cost popular matching problem includes other optimization problems
such as computing a popular matching with forced/forbidden edges or one with max-utility
as special cases and these variants are also NP-hard [9].

In applications such as matching students to advisers or medical residents to hospitals,
where matchings have a long-term impact, it may be worthwhile to spend (exponential) time
and compute an optimal popular matching in G. It follows from recent work on finding
popular matchings in non-bipartite graphs [25] that there is an O∗(2n) time algorithm for
the min-cost popular matching problem in a bipartite graph on n vertices (note that O∗(2n)
stands for O(2n ·poly(n))). Here we study faster exponential time algorithms for this problem
and show the following result.

I Theorem 2. Given a bipartite graph G = (A ∪B,E) on n vertices where every vertex has
a strict preference list ranking its neighbors and a function cost : E → R, a min-cost popular
matching in G can be computed in O∗(2n/4) ≈ O∗(1.19n) time.

The running time of our algorithm is O(2p · poly(n)) where p is the number of connected
components of size at least 4 in a special subgraph of G. Thus our algorithm is an FPT
algorithm parameterized by p and when p = O(logn), this is a polynomial time algorithm.

When edge costs are non-negative, the max-cost popular matching problem in G admits
an efficient 1/2-approximation algorithm – however the min-cost popular matching problem
is NP-hard to approximate within any multiplicative factor even when edge costs are in
{0, 1} [9]. This motivates the following question: when edge costs are non-negative, is there
an efficient algorithm to compute an approximately popular matching whose cost is O(opt),
where opt is the cost of a min-cost popular matching?

There are several ways to define an approximately popular matching and we choose the
following novel definition: a matching M such that φ(M,N) ≥ φ(N,M) for a majority of
matchings N in G. This motivates the definition of a semi-popular matching as follows.

I Definition 3. Call a matching M in G = (A ∪B,E) semi-popular if φ(M,N) ≥ φ(N,M)
for at least half the matchings N in G.

T. Kavitha 25:3

Though semi-popularity is a natural relaxation of popularity, the set of semi-popular
matchings seems to lack the structure of the set of popular matchings. We do not know how
to efficiently test if a given matching is semi-popular or not. We show the following result on
computing an almost semi-popular matching in an instance G with non-negative edge costs.
I Theorem 4. Given a bipartite graph G = (A ∪ B,E) with cost : E → R≥0 and ε > 0, a
matching M can be computed in poly(n, 1

ε) time such that cost(M) ≤ 2opt and with high
probability M is undefeated by at least 1/2− ε fraction of all matchings in G.

Using the notation of bi-criteria approximation algorithms (see [27]), the above result is
with high probability a (2, 1

2 − ε) approximation of a min-cost popular matching, where the
first coordinate is the ratio of the cost of our matching and opt and the second coordinate
is a measure of popularity of our matching, more precisely, it is the fraction of matchings
in G that our matching does not lose to. Designing an efficient algorithm to compute an
(O(1), 1− ε) bi-criteria approximation is an open problem.

1.1 Background and Related Results
Algorithmic questions in the domain of popular matchings have been studied in the last
10-15 years. We refer to [5] for a survey. Initially, algorithms for popular matchings in
instances with one-sided preferences (only vertices in A have preferences) were studied [1].
In the domain of two-sided preferences with ties, it is NP-complete to decide if popular
matchings exist or not [2, 6]. The problem of deciding if a non-bipartite graph with strict
preferences admits a popular matching is NP-complete [9, 17]. Popular matchings always
exist in bipartite graphs with strict preferences [16]. However, as mentioned earlier, it is
NP-hard to compute or approximate a min-cost popular matching. In order to cope with this
hardness of approximation, a relaxation of popularity called quasi-popularity was considered
in [8].

A matching M is quasi-popular if φ(N,M) ≤ 2 · φ(M,N) for all matchings N . That is,
M may lose many elections, however the factor of defeat, i.e., the ratio of number of votes
won by the rival matching and the number of votes won by M , is bounded by 2. On the
other hand, a semi-popular matching does not lose too many elections. A polynomial time
algorithm to compute a quasi-popular matching of cost at most opt was given in [8].

There is a vast literature on fast exponential time algorithms for NP-hard problems
and we refer to the book [13] on this subject. An algorithm with running time O∗(cn),
where c = O(1), was given in [25] to decide if a non-bipartite graph on n vertices with strict
preferences has a popular matching or not. Fast exponential time algorithms for other hard
problems in matchings under preferences are also known, e.g., the sex-equal stable marriage
problem in bipartite graphs where the objective is to find a fair stable matching – a fast
exponential time algorithm is known for this problem when the length of preference lists of
vertices on one side of the bipartite graph is bounded from above by a small value [28].

1.2 Techniques
An O∗(2n) time algorithm was given in [25] to decide if a special popular matching called
a truly popular matching exists or not in a general graph (not necessarily bipartite) on
n vertices. A truly popular matching is a matching that is popular fractional (defined in
Section 4). In bipartite graphs, every popular matching is truly popular and so this algorithm
leads to an algorithm with running time O∗(2n) to compute a min-cost popular matching
in the bipartite graph G. Our faster exponential time algorithm is an extension of this
algorithm.

FSTTCS 2020

25:4 Min-Cost Popular Matchings

The earlier algorithm. The O∗(2n) time algorithm uses dual certificates or witnesses for
popular matchings, where a witness ~α is a vector in {0,±1}n that obeys certain constraints
(see Theorem 5). Corresponding to each of the 2n parity combinations – whether αu is
0 or ±1 for each vertex u – the O∗(2n) algorithm constructs a stable matching instance
and shows that every stable matching in this instance that avoids certain edges maps to a
popular matching in G. Conversely, every popular matching in G can be realized as a stable
matching that avoids certain edges in one of these 2n instances. Computing a min-cost stable
matching that excludes certain edges in each of these 2n instances and taking the least cost
such matching leads us to a min-cost popular matching in G.

Our faster algorithm. It was shown in [8] that all vertices in the same connected component
in a subgraph G0 of G called its “popular subgraph” have the same parity of their α-values.
So instead of considering individual vertices, we consider non-trivial connected components
in G0 as our “units”. Our main idea is that it suffices for the algorithm to go through parity
combinations of α-values only for connected components in G0 of size at least 4. So our
algorithm constructs at most 2n/4 stable matching instances. However our stable matching
instances are more elaborate than in the earlier algorithm and the most technical part of the
analysis is the proof that stable matchings that avoid certain edges in such an instance map
to popular matchings in G. The algorithm and its proof of correctness are given in Section 3.

Our bi-criteria approximation algorithm. Unlike the popular matching polytope, the pop-
ular fractional matching polytope has a compact extended formulation [26]. Thus a min-cost
popular fractional matching can be computed in polynomial time by linear programming
over this polytope. It is known that this polytope is half-integral [20]. Thus we can efficiently
find two matchings M1,M2 in G such that (IM1 + IM2)/2 is a min-cost popular fractional
matching in G, where IM is the edge incidence vector of matching M . This implies that one
of M1,M2 is semi-popular.

Interestingly, we do not know how to efficiently decide which of M1,M2 is semi-popular.
We use the random sampler from [22] to sample matchings from a distribution close to the
uniform distribution – this allows us to decide with high probability whether both M1 and
M2 are almost semi-popular or one of them is not. This result is given in Section 4.

2 Popular Matchings and Witnesses

Let G̃ be the graph G augmented with self-loops. We assume that each vertex is its own last
choice neighbor. Any matching M in G can henceforth be regarded as a perfect matching M̃
in G̃ by adding self-loops for all vertices left unmatched in M . The following edge weight
function wtM in G̃ will be useful to us. For any edge (a, b) in G, define:

wtM (a, b) =


2 if (a, b) is a blocking edge to M ;
−2 if both a and b prefer their respective partners in M to each other;
0 otherwise.

So wtM (e) = 0 for every edge e ∈ M . We need to define wtM on self-loops also.
For any vertex u ∈ A ∪ B, let wtM (u, u) = 0 if (u, u) ∈ M̃ , else wtM (u, u) = −1. Let
Ẽ = E ∪ {(u, u) : u ∈ A ∪B}. For any matching N in G, we have:

wtM (Ñ) =
∑
e∈Ñ

wtM (e) = φ(N,M)− φ(M,N) = ∆(N,M).

T. Kavitha 25:5

Hence M is popular in G if and only if every perfect matching in the graph G̃ (with edge
weights given by wtM) has weight at most 0. Consider the max-weight perfect matching LP in
the graph G̃: this is (LP1) given below in variables xe for e ∈ Ẽ. Here δ̃(u) = δ(u)∪ {(u, u)}
for u ∈ A ∪B. The linear program (LP2) in variables αu for u ∈ A ∪B is the dual LP.

max
∑
e∈Ẽ

wtM (e) · xe (LP1)

s.t.
∑
e∈δ̃(u)

xe = 1 ∀u ∈ A ∪B

xe ≥ 0 ∀ e ∈ Ẽ.

min
∑
u∈V

αu (LP2)

s.t. αa + αb ≥ wtM (a, b) ∀ (a, b) ∈ E
αu ≥ wtM (u, u) ∀u ∈ A ∪B

The characterization of popular matchings given in Theorem 5 follows from LP-duality
and total unimodularity of the system. Recall that |A ∪B| = n.

I Theorem 5 ([24, 26]). A matching M in G = (A ∪B,E) is popular if and only if there
exists a vector ~α ∈ {0,±1}n such that

∑
u∈A∪B αu = 0,

αa + αb ≥ wtM (a, b) ∀ (a, b) ∈ E and αu ≥ wtM (u, u) ∀u ∈ A ∪B.

Proof. The linear program (LP2) admits an optimal solution that is integral since its
constraint matrix is totally unimodular. The vector ~α is an integral optimal solution of
(LP2). We have αu ≥ wtM (u, u) ≥ −1 for all u.

Since M̃ is an optimal solution to (LP1), complementary slackness implies αu + αv =
wtM (u, v) = 0 for each edge (u, v) ∈ M . Thus αu = −αv ≤ 1 for every vertex u matched
to a non-trivial neighbor v in M . Regarding any vertex u such that (u, u) ∈ M̃ , we have
αu = wtM (u, u) = 0 (by complementary slackness). Hence ~α ∈ {0,±1}n. J

I Definition 6. For any popular matching M , a vector ~α ∈ {0,±1}n as given in Theorem 5
is called a witness of M .

A popular matching may have several witnesses. A stable matching S has ~0 as a witness,
since wtS(e) ≤ 0 for all edges e in G̃. Call an edge e in G = (A ∪B,E) popular if there is
some popular matching in G that contains e. Let E0 be the set of popular edges in G. The
set E0 can be computed in linear time [7]. Call the subgraph G0 = (A ∪B,E0) the popular
subgraph of G. The following property will be very useful.

I Lemma 7 ([8]). Let M be any popular matching in G and let ~α be any witness of M . In
any connected component C in the popular subgraph G0: either (i) αu = 0 for all u ∈ C or
(ii) αu ∈ {±1} for all u ∈ C.

Proof. Consider any popular edge (a, b). So there is some popular matching N that contains
(a, b). Since wtM (Ñ) = ∆(N,M) = 0 (because M and N are popular matchings), Ñ is an
optimal solution to (LP1). We know that ~α is an optimal solution to (LP2). So it follows
from complementary slackness that αa +αb = wtM (a, b). Since wtM (a, b) ∈ {±2, 0} (an even
number), the integers αa and αb have the same parity.

Let u and v be any 2 vertices in the same connected component in the popular subgraph
G0. So there is a u-v path ρ in G such that every edge in ρ is a popular edge. We have just
seen that the endpoints of each popular edge have the same parity in ~α. Hence αu and αv
have the same parity. Thus either αu = 0 for all u ∈ C or αu ∈ {±1} for all u ∈ C. J

FSTTCS 2020

25:6 Min-Cost Popular Matchings

3 A fast exponential time algorithm for min-cost popular matching

Let C1, . . . , Cr be the connected components in the popular subgraph G0. Assume C1, . . . , Cq
are the non-trivial components, i.e., |Ci| ≥ 2 for 1 ≤ i ≤ q and |Ci| = 1 for q + 1 ≤ i ≤ r.
So each of Cq+1, . . . , Cr consists of a single vertex that is left unmatched in all popular
matchings in G. Call such a vertex unpopular. Let U be the set of unpopular vertices. The
following two observations will be useful.

I Observation 1. Let M be a popular matching with ~α as a witness. If u ∈ U then αu = 0.

Proof. Since M leaves u unmatched, the self-loop (u, u) ∈ M̃ . Observe that M̃ is an optimal
solution to (LP1) and ~α is an optimal solution to (LP2). So αu = wtM (u, u) = 0 by
complementary slackness. C

I Observation 2. Every non-trivial component C in the popular subgraph G0 has an even
number of vertices.

Proof. All max-size popular matchings in G leave the same vertices unmatched and these
unmatched vertices are unpopular [18]. Thus a max-size popular matching M restricted
to every non-trivial component C in G0 is perfect, i.e., all vertices in C are matched in M .
Hence |C| is even. C

Let C1, . . . , Cp be the components in G0 of size greater than 2. This means |Ci| ≥ 4 for
i ∈ [p] (by Observation 2). So Cp+1, . . . , Cq are the components in G0 of size exactly 2.

For every subset I ⊆ {1, . . . , p}, our algorithm builds a corresponding graph GI . Among
all stable matchings in GI that satisfy certain constraints, our algorithm finds a min-cost
matching (call it NI). It will be shown that among all subsets I ⊆ [p], the matching NI with
the least cost will map to a min-cost popular matching in G.

The new instance GI . Let I ⊆ [p]. Partition the vertices in A ∪B into three subsets:

S0 = ∪i∈ICi ∪ U, S1 = ∪i∈[p]\ICi, and S2 = ∪qi=p+1Ci.

Our goal is to build GI such that all popular matchings in G that admit witnesses ~α
where αu = 0 for u ∈ S0 and αu ∈ {±1} for u ∈ S1 become stable matchings in GI . For
vertices in S2, we do not a priori commit any particular α-value. This is reflected in the
vertex set VI :

VI = {u0 : u ∈ S0 ∪ S2} ∪ {u+, u−, d(u) : u ∈ S1 ∪ S2} ∪ {d′(u) : u ∈ S2}.

The set VI contains a single vertex u0 for every u ∈ S0, three vertices u+, u−, d(u) for
every u ∈ S1, and five vertices u+, u−, u0, d(u), d′(u) for every u ∈ S2. Since the α-value of
every u ∈ S0 is fixed to be 0, we have a unique vertex u0 in GI for each u ∈ S0.

Since the α-value of every u ∈ S1 is either 1 or −1, there are two vertices u+, u− in GI
for each u ∈ S1. However in order to map stable matchings in GI to matchings in G, we
want at most one of u+, u− to be matched in any stable matching in GI : this is achieved by
using a dummy vertex d(u). Preferences will be such that one of u+, u− has to be matched
to d(u) in any stable matching in GI . So every stable matching in GI matches at most one
of u+, u− to a non-dummy neighbor.

Since the α-value of every u ∈ S2 is one of 0,±1, we have three vertices u+, u−, u0 in
GI for each u ∈ S2. However we want at most one of u+, u−, u0 to be matched in any
stable matching in GI and this is achieved by using two dummy vertices d(u) and d′(u).

T. Kavitha 25:7

Preferences will be such that two of u+, u−, u0 have to be matched to d(u) and d′(u) in any
stable matching in GI . So every stable matching in GI matches at most one of u+, u−, u0 to
a non-dummy neighbor.

The edge set EI of the instance GI is defined as follows. For every (u, v) ∈ E, the edge
set EI consists of one or more of the following edges: (i) (u0, v0), (ii) (u+, v0), (iii) (u0, v+),
(iv) (u−, v+), (v) (u+, v−).

In more detail, let u ∈ A ∪B. Let v be a neighbor of u in G.
if u, v ∈ S0 then (u0, v0) is in EI .
if u ∈ S1 and v ∈ S0 then (u+, v0) is in EI .
if u, v ∈ S1 and u prefers v to every neighbor in S0 then (u−, v+) is in EI .

The edges in GI that correspond to edges (u, v) in G with an endpoint, say u ∈ A ∪B,
in S2 are described below.

let v ∈ S0. If u prefers v to its “popular partner”1 then the edge (u+, v0) ∈ EI ; else the
edge (u0, v0) ∈ EI .
let v ∈ S1. If u prefers v to its popular partner then the edge (u0, v+) ∈ EI . If v prefers
u to every neighbor in S0 then the edge (u+, v−) ∈ EI .
let v ∈ S2. If either v is u’s popular partner or one of u, v prefers the other to its popular
partner2 then the edge (u0, v0) ∈ EI . Moreover, if u prefers v to every neighbor in S0
then the edge (u−, v+) ∈ EI .

For every u ∈ S1: the edges (u+, d(u)) and (u−, d(u)) are in EI . For every u ∈ S2: the
edges (u+, d(u)), (u0, d(u)) and the edges (u0, d

′(u)), (u−, d′(u)) are in EI .

Vertex preferences. We will first list preference orders for dummy vertices.
For u ∈ S1: d(u)’s preference order is u+ � u−, i.e., top choice u+ followed by u−.
For u ∈ S2: d(u)’s preference order is u+ � u0 and d′(u)’s preference order is u0 � u−.

Let u ∈ A ∪B. We now list preference orders for u+, u0, and u−. An observation that
will be useful here is that for any two adjacent vertices u, v in G, there is at most one element
in {v0, v+, v−} in the preference list of u+; similarly, in the preference lists of u0 and u−.

1. For u ∈ S0: u0’s preference order among its neighbors in GI is as per u’s preference order
in G, i.e., ignore subscripts of vertices and arrange them as per u’s preference order in G.

2. For u ∈ S1 ∪ S2: u+’s preference order among its neighbors in GI is as per u’s preference
order in G with d(u) as its least preferred neighbor.

3. For u ∈ S1 (resp., u ∈ S2): u−’s preference order among its neighbors in GI is d(u)
(resp., d′(u)) as its top choice neighbor followed by its other neighbors in GI as per u’s
preference order in G.

4. For u ∈ S2: u0’s order among its neighbors in GI is d(u) as its top choice neighbor
followed by its other neighbors in GI as per u’s preference order in G and d′(u) as its
least preferred neighbor.

For (a, b) ∈ E and x, x′ ∈ {0,±}, for every (ax, bx′) ∈ EI , we set cost(ax, bx′) = cost(a, b).
Also, the cost of any edge incident to a dummy vertex is 0.

1 u ∈ S2: so u ∈ Cj where |Cj | = 2; hence all popular matchings in G match u to the same neighbor.
2 Note that both u and v cannot prefer each other to their respective popular partners since that would

make (u, v) a blocking edge to every stable matching in G.

FSTTCS 2020

25:8 Min-Cost Popular Matchings

I Theorem 8. Let M be a popular matching in G = (A∪B,E) with a witness ~α ∈ {0,±1}n
where αv = 0 for v ∈ S0 and αv ∈ {±1} for v ∈ S1. Then there exists a stable matching NI
in GI such that cost(NI) = cost(M) and the following three properties are satisfied:
1. NI avoids all edges between a subscript + vertex and a subscript 0 vertex,
2. NI matches all subscript − vertices, and
3. NI includes q − p edges from the set ∪qi=p+1{(a+, b−), (a0, b0), (a−, b+) : a, b ∈ Ci}.

Proof. M is a popular matching in G = (A ∪B,E) with a witness ~α ∈ {0,±1}n. For any
u ∈ A ∪B, we will define su = +/−/0 corresponding to αu = +1/−1/0, respectively. That
is, (i) αu = 1 implies su = +, (ii) αu = −1 implies su = −, and (iii) αu = 0 implies su = 0.

For u ∈ S1: if su = + then let tu = − else let tu = +.
For u ∈ S2: if su = + then let tu = 0 and t′u = −; if su = 0 then let tu = + and t′u = −;
if su = − then let tu = + and t′u = 0.

Define the set NI as follows:

NI = {(asa
, bsb

) : (a, b) ∈M} ∪ {(utu , d(u)) : u ∈ S1 ∪ S2} ∪ {(ut′u , d
′(u)) : u ∈ S2}.

We need to show that NI ⊆ EI , i.e., for every (a, b) ∈M , the edge (asa , bsb
) is present in GI .

Observe that M̃ and ~α are optimal solutions of (LP1) and (LP2), respectively. It follows
from complementary slackness that αa + αb = wtM (a, b) = 0 for every (a, b) ∈ M . Thus
either αa = αb = 0 or {αa, αb} = {−1, 1}.

For every edge (a, b) in M where αa = αb = 0 (each such edge is in (S0×S0)∪ (S2×S2)),
observe that the edge (a0, b0) is in GI . In particular, if (a, b) ∈ (S2 × S2) ∩M , then we have
Ci = {a, b} for some i ∈ {p+ 1, . . . , q} and we always include the edge (a0, b0) in GI .

Consider an edge (a, b) inM where αa or αb is −1 (each such edge is in (S1×S1)∪(S2×S2)).
Assume wlog that αa = −1. Since ~α is a witness of M , for every neighbor c ∈ S0 of a, we
have wtM (a, c) ≤ αa + αc = −1 + 0 = −1. This means wtM (a, c) = −2, i.e., a prefers its
partner in M (this is b) to c. The constraint wtM (a, c) = −2 holds for every neighbor c of a
that is in S0. Hence it follows from the definition of the edge set of GI that (a−, b+) is in GI .

Thus every edge of NI is present in GI , hence NI is a matching in GI . We will now show
that NI obeys properties (1)-(3) given in the statement of the theorem.
1. For every edge (a, b) ∈M , we have αa+αb = wtM (a, b) = 0 (by complementary slackness).

Thus every edge in NI that is not incident to any dummy vertex is of the type (a+, b−)
or (a0, b0) or (a−, b+). Hence NI avoids all edges between a subscript 0 vertex and a
subscript + vertex.

2. For any vertex u left unmatched in M , we have αu = wtM (u, u) = 0 (by complementary
slackness). So u ∈ S0 ∪ S2. Since every vertex in S2 is matched to its popular partner in
all popular matchings in G, the unmatched vertex u ∈ S0. Thus for every u ∈ (A∪B)\S0,
we have (u, v) ∈ M for some neighbor v: if αu = −1 then (u−, v+) ∈ NI else either
(u−, d(u)) or (u−, d′(u)) is in NI . Thus all subscript − vertices are matched in NI .

3. For every connected component Ci = {a, b} in G0, where p + 1 ≤ i ≤ q, we know that
(a, b) ∈ M . Thus one of (a+, b−), (a0, b0), (a−, b+) is in NI . So NI includes q − p edges
from the set ∪qi=p+1{(a+, b−), (a0, b0), (a−, b+) : a, b ∈ Ci}.

We will now show that NI is a stable matching in GI . For any u ∈ A ∪B, it is easy to
see there is no blocking edge with a dummy vertex as an endpoint. This is because a dummy
vertex has only two neighbors and when it is matched to its second choice neighbor, its top
choice neighbor is matched to a more preferred neighbor.

T. Kavitha 25:9

Regarding edges in EI that correspond to edges in E, note that EI contains certain edges
of the form (a0, b0), (a+, b0), (a0, b+), (a+, b−), (a−, b+) for (a, b) ∈ E. We now need to show
that no such edge in EI blocks NI . Consider any (a, b) ∈ E.
1. Both a and b are in S0: so αa = αb = 0. We need to show that (a0, b0) is not a blocking

edge to NI . Since wtM (a, b) ≤ αa + αb = 0, either (a, b) ∈M or (at least) one of a, b is
matched in M to a more preferred neighbor. That is, either (a0, b0) ∈ NI or one of a0, b0
is matched in NI to a more preferred neighbor. So (a0, b0) does not block NI .

2. One of a, b is in S0 and the other is in S1: assume wlog that a ∈ S0 and b ∈ S1. So
αa = 0 and αb ∈ {±1}. We need to show that (a0, b+) is not a blocking edge to NI .
There are two subcases here: (i) αb = 1 and (ii) αb = −1.
In the first subcase, wtM (a, b) ≤ αa + αb = 1 which implies wtM (a, b) ≤ 0. So one of a, b
is matched in M to a more preferred neighbor. So one of a0, b+ is matched in NI to a
more preferred neighbor. Hence (a0, b+) does not block NI .
In the second subcase, wtM (a, b) ≤ αa + αb = −1 which implies wtM (a, b) = −2. So both
a and b are matched in M to more preferred neighbors. In particular, a0 is matched in
NI to a neighbor preferred to b+. Hence (a0, b+) does not block NI .

3. Both a and b are in S1: so αa, αb ∈ {±1}. We need to show that the edges (a−, b+) and
(a+, b−) (whichever of these is in EI) do not block NI . If αa = αb = 1 then both a−
and b− are matched to their top choice neighbors d(a) and d(b), respectively. So neither
(a−, b+) nor (a+, b−) blocks NI .
If αa = 1 and αb = −1 then wtM (a, b) ≤ 0. So either (a, b) ∈M or one of a, b is matched
in M to a more preferred neighbor in G. That is, either (a+, b−) ∈ NI or one of a+, b− is
matched in NI to a more preferred neighbor in GI . Moreover, the edge (a−, b+) cannot
block NI since a− is matched in NI to its top choice neighbor d(a). The subcase when
αa = −1 and αb = 1 is symmetric.
The last subcase is αa = αb = −1. So wtM (a, b) = −2. Hence both a and b are matched
in M to more preferred neighbors, i.e., both a− and b− are matched in NI to neighbors
preferred to b+ and a+, respectively. So neither (a−, b+) nor (a+, b−) blocks NI .

The proofs for the remaining three cases (when at least one of a, b is in S2) are given below
in Claims 9-11. Thus NI is a stable matching in GI . J

B Claim 9. Suppose one of a, b (say, b) is in S0 and a is in S2. Then neither (a+, b0) nor
(a0, b0) blocks NI .

Proof. Since a ∈ S2 and b ∈ S0, we have αa ∈ {0,±1} and αb = 0. Suppose αa = −1. Then
wtM (a, b) ≤ −1, i.e., wtM (a, b) = −2. So both a and b are matched in M to more preferred
neighbors. Since M always matches a to its popular partner, it means a prefers its popular
partner to b. Thus (a0, b0) is in EI and b0 is matched in NI to a neighbor preferred to a0.

Suppose αa ∈ {0, 1}. Then wtM (a, b) ≤ 1, i.e., wtM (a, b) ≤ 0. So one of a, b is matched
in M to a more preferred neighbor. Either (i) (a0, b0) is in EI and so a0 is matched in NI to
a more preferred neighbor (its popular partner or d(a)) than b0 or (ii) (a+, b0) is in EI , in
which case a prefers b to its popular partner – so b has to be matched in M to a neighbor
preferred to a, i.e., b0 is matched in NI to a neighbor preferred to a+. Hence neither (a+, b0)
nor (a0, b0) (whichever is present in EI) blocks NI . C

B Claim 10. Suppose one of a, b (say, b) is in S1 and a is in S2. Then neither (a0, b+) nor
(a+, b−) blocks NI .

Proof. Since a ∈ S2 and b ∈ S1, we have αa ∈ {0,±1} and αb ∈ {±1}. Suppose a prefers b
to its popular partner. Then (a0, b+) is in EI and also wtM (a, b) ≥ 0. If αa = 1 then a0 is
matched to its most preferred neighbor d(a) and so (a0, b+) does not block NI . If αa ≤ 0

FSTTCS 2020

25:10 Min-Cost Popular Matchings

then αb = 1 since αa + αb ≥ wtM (a, b) ≥ 0. Also wtM (a, b) ≤ 1 since αa + αb = 1, i.e.,
wtM (a, b) = 0. So b has to be matched in M to a neighbor preferred to a, i.e., b+ has to be
matched in NI to a neighbor preferred to a0. Hence (a0, b+) does not block NI .

Suppose b prefers a to all neighbors in S0. Then (a+, b−) is in EI . If αb = 1 then b−
is matched to its most preferred neighbor d′(b) in NI . Suppose αb = −1. If αa ∈ {0,−1}
then wtM (a, b) ≤ αa + αb ≤ −1. So wtM (a, b) = −2. This means both a, b are matched in
M to more preferred neighbors. Hence b− is matched in NI to a neighbor preferred to a+.
Suppose αa = 1. Then wtM (a, b) ≤ 0: so one of a, b is matched in M to a more preferred
neighbor. So one of a+, b− is matched in NI to a more preferred neighbor. Thus the edge
(a+, b−) does not block NI . C

B Claim 11. Suppose both a and b are in S2. Then none of the edges (a0, b0), (a+, b−), (a−, b+)
blocks NI .
Proof. Since a, b are in S2, we have αa, αb ∈ {0,±1}. If a, b are each other’s popular partners
or one of them prefers the other to its popular partner then the edge (a0, b0) is in EI and also
wtM (a, b) ≥ 0. So either αa = αb = 0 or at least one of αa, αb is 1. So either (a0, b0) ∈ NI or
one of a0, b0 is matched in NI to a more preferred neighbor. Thus (a0, b0) does not block NI .

If a prefers b to all its neighbors in S0 then the edge (a−, b+) is in EI . If αa ∈ {0, 1} then
a− is matched to its most preferred neighbor d′(a) in NI . So the edge (a−, b+) does not block
NI . Suppose αa = −1. If αb ∈ {0,−1} then wtM (a, b) ≤ αa + αb ≤ −1. So wtM (a, b) = −2.
This means both a, b are matched in M to more preferred neighbors. Hence a− is matched
in NI to a neighbor preferred to b+. Suppose αb = 1. Then wtM (a, b) ≤ 0: so one of a, b is
matched in M to a more preferred neighbor. So one of a−, b+ is matched in NI to a more
preferred neighbor. Thus the edge (a−, b+) does not block NI .

The analysis that (a+, b−) does not block NI when b prefers a to all neighbors in S0 is
analogous. C

Let us call a stable matching in GI that satisfies the three properties given in Theorem 8
a desired stable matching. Theorem 12 proves the converse of Theorem 8.
I Theorem 12. Suppose GI admits a desired stable matching, say NI . Then NI can be
mapped to a popular matching M in G such that cost(NI) = cost(M).
Proof. The matching M will be defined as follows:

M = {(a, b) : (asa , bsb
) ∈ NI for sa, sb ∈ {0,±}}.

For any u ∈ A ∪B, at most one of u+, u0, u− can be matched to a non-dummy neighbor
in NI . Thus M is a valid matching in G. In order to prove M ’s popularity, we will show
a witness ~α ∈ {0,±1}n. Define αu = 0 for all u ∈ S0. Let u ∈ S1. Since NI is stable, the
vertex d(u) (as the top choice neighbor of u−) has to be matched in NI . So for u ∈ S1, define
αu as follows:

let αu =
{
−1 if (u+, d(u)) ∈ NI
1 if (u−, d(u)) ∈ NI .

Let u ∈ S2. Then there are two dummy vertices d(u) and d′(u) for u and both of them
(as the top choice neighbors of u0 and u−, resp.) have to be matched in NI . So for u ∈ S2,
define αu as follows:

let αu =


−1 if (u+, d(u)) and (u0, d

′(u)) are in NI
0 if (u+, d(u)) and (u−, d′(u)) are in NI
1 if (u0, d(u)) and (u−, d′(u)) are in NI .

T. Kavitha 25:11

We will now show that ~α is a witness of M ’s popularity. Observe that all edges in NI not
involving any dummy vertex are of the form (a+, b−) or (a0, b0) or (a−, b+). This is because
NI avoids all edges of the type (a+, b0) and (a0, b+) (by property (1)). Thus αa + αb = 0 for
all (a, b) ∈M . Due to property (2), property (3), and NI ’s stability, it follows that for any
vertex u left unmatched in M , we have u ∈ S0, i.e., αu = 0. So

∑
u∈A∪B αu = 0.

It is also easy to see that αu ≥ wtM (u, u) for every vertex u. This is because every vertex
u ∈ (A ∪B) \ S0 is matched in M and so we have αu ≥ −1 = wtM (u, u) for these vertices.
For any vertex u ∈ S0, we have αu = 0 ≥ wtM (u, u).

What is left to show is that every edge (a, b) in G is covered, i.e., αa + αb ≥ wtM (a, b).
This is proved below in Lemma 13. Thus ~α is a witness of M (by Theorem 5). So M is a
popular matching; also cost(M) = cost(NI). This finishes the proof of Theorem 12. J

I Lemma 13. We have αa + αb ≥ wtM (a, b) for every edge (a, b) in G.

Proof. Recall that wtM (a, b) ∈ {0,±2}. Any edge (a, b) where αa = αb = 1 is obviously
covered since wtM (a, b) ≤ 2. The proofs for other cases of (αa, αb) are given in Claims 14-18.

B Claim 14. Any edge (a, b) where {αa, αb} = {0, 1} is covered.

Proof. Assume without loss of generality αa = 1 and αb = 0: so a ∈ S1 ∪ S2 and b ∈ S0 ∪ S2.
If the edge (a+, b0) is in EI then the stability of NI implies that either (i) a+ is matched in
NI to a neighbor preferred to b0 or (ii) b0 is matched in NI to a neighbor preferred to a+
(moreover, a non-dummy neighbor since αb = 0). So at least one of a, b is matched in M to
a more preferred neighbor. Thus wtM (a, b) ≤ 0.

The edge (a+, b0) is not present in GI in the following 2 cases:
1. both a, b are in S2 and either (i) a, b are each other’s popular partners or (ii) at least one

of a, b prefers its popular partner to the other (see footnote 2). By property (3), every
vertex in S2 is matched in M to its popular partner. Hence wtM (a, b) ≤ 0.

2. either (i) a ∈ S2 prefers its popular partner (call it y) to b ∈ S0 or (ii) b ∈ S2 prefers its
popular partner (call it z) to a ∈ S1; property (3) forces (a, y) to be in M in the first
case and (z, b) to be in M in the second case. So wtM (a, b) ≤ 0.

Hence in all cases, we have wtM (a, b) ≤ 0 < 1 = αa + αb. C

B Claim 15. Any edge (a, b) where αa = αb = 0 is covered.

Proof. Since αa = αb = 0, we have a, b ∈ S0 ∪ S2. If the edge (a0, b0) is in GI , then it
follows from the stability of NI that (a0, b0) ∈ NI or one of a0, b0 is matched in NI to a
more preferred (non-dummy) neighbor, i.e., at least one of a, b is matched in M to a more
preferred neighbor. Thus wtM (a, b) ≤ 0.

The edge (a0, b0) is not present in GI in the following 2 cases:
1. a ∈ S2 prefers b ∈ S0 to its popular partner: in this case (a+, b0) is in GI . Since αa = 0,

the vertex a+ is matched in NI to its least preferred neighbor d(a). Thus it follows
from the stability of NI that b0 is matched to a more preferred neighbor than a+, so
wtM (a, b) ≤ 0. It is similar when b ∈ S2 prefers a ∈ S0 to its popular partner.

2. both a, b are in S2 and they prefer their respective popular partners to each other: in
this case wtM (a, b) = −2.

Hence in all cases, we have wtM (a, b) ≤ 0 = αa + αb. C

B Claim 16. Any edge (a, b) where {αa, αb} = {−1, 1} is covered.

FSTTCS 2020

25:12 Min-Cost Popular Matchings

Proof. Assume without loss of generality that αa = 1 and αb = −1. We need to show that
wtM (a, b) ≤ 0. Either (i) (a+, b−) ∈ NI or (ii) (a+, y−) and (z+, b−) are in NI for some
neighbors y, z of a, b, respectively. In case (i), wtM (a, b) = 0. In case (ii), we will consider 2
subcases.
1. Suppose a, b ∈ S1 or a, b ∈ S2 or a ∈ S2 and b ∈ S1. Since the edge (z+, b−) is in GI , b

prefers z to all its neighbors in S0. Hence if b prefers a to z then the edge (a+, b−) has
to be present in GI . It follows from the stability of NI that a+ prefers y− to b−, i.e., a
prefers y to b. Hence wtM (a, b) ≤ 0.

2. The remaining case is when a ∈ S1 and b ∈ S2. So z is b’s popular partner. If b prefers a
to z then the edge (a+, b0) is present in GI . Since b0 is matched to its least preferred
neighbor d′(b) in NI , the stability of NI implies that a+ prefers y− to b0, i.e., a prefers y
to b. Hence wtM (a, b) ≤ 0.

Hence in all cases, we have wtM (a, b) ≤ 0 = αa + αb. C

B Claim 17. Any edge (a, b) where αa = αb = −1 is covered.

Proof. So (a−, y+) and (z+, b−) are in NI for some neighbors y, z of a, b, respectively. There
are 3 cases here:
1. Both a and b are in S1. Suppose a prefers b to y. Then the edge (a−, b+) is present in

GI since a prefers y (and thus b) to all neighbors in S0; moreover, b+ prefers a− to d(b).
Hence (a−, b+) would be a blocking edge to NI , contradicting its stability. So a prefers y
to b. Similarly, b prefers z to a. Thus wtM (a, b) = −2.

2. Both a and b are in S2. Either both a and b prefer their popular partners (y and z, resp.)
to each other or the edge (a0, b0) is in GI . In the latter case, (a0, b0) would be blocking
edge to NI since NI contains (a0, d

′(a)) and (b0, d
′(b)). Thus both a and b prefer their

popular partners to each other, so wtM (a, b) = −2.
3. One of a, b is in S2 and the other is in S1: assume wlog that a ∈ S2 and b ∈ S1. We claim

that b prefers z to a. Otherwise the edge (a+, b−) would be in GI since b prefers z (and
thus a) to all neighbors in S0. Note that (a+, b−) would block NI since (a+, d(a)) ∈ NI .
We next claim that a prefers y to b. Otherwise the edge (a0, b+) would be in GI and this
would be a blocking edge to NI since (a0, d

′(a)) and (b+, d(b)) are in NI . Thus both a
and b prefer their partners in M to each other, so wtM (a, b) = −2.

Hence in all cases, we have wtM (a, b) = −2 = αa + αb. C

B Claim 18. Any edge (a, b) where {αa, αb} = {−1, 0} is covered.

Proof. Assume wlog αa = −1 and αb = 0. So (a−, y+) ∈ NI for some neighbor y of a. Also
(a+, d(a)) ∈ NI . Observe that b0 has to be matched in NI , otherwise one of (a+, b0), (a0, b0)
– whichever is present in GI – would be a blocking edge to NI . So (z0, b0) is in NI for some
neighbor z of b.

If the edge (a+, b0) is present in EI then it follows from the stability of NI that b0 prefers
z0 to a+, i.e., b prefers z to a. Moreover, it follows from the existence of the edge (a−, y+) in
EI that a prefers y to all its neighbors in S0, i.e., a prefers y to b if b ∈ S0. If b ∈ S2 and a
prefers b to y then a prefers b to all neighbors in S0 and so the edge (a−, b+) would have
been present in EI . This would have been a blocking edge to NI since a− prefers b+ to y+
and b+ prefers a− to d(b). Thus a prefers y to b and so wtM (a, b) = −2.

The cases when (a+, b0) is not present in GI are the following:
1. Both a, b are in S2: there are two subcases here. In the first subcase, both a and b prefer

their popular partners to each other and so wtM (a, b) = −2. In the second subcase, one
of a, b prefers the other to its popular partner. Then the edge (a0, b0) is in EI and the

T. Kavitha 25:13

stability of NI implies that b0 prefers z0 to a0 since (a0, d
′(a)) ∈ NI . Thus b prefers z

to a. This means that a prefers b to y and the edge (a−, b+) has to be in EI since a
prefers y (and thus b) to all neighbors in S0. This makes (a−, b+) a blocking edge to
NI , a contradiction. Hence both a, b prefer their popular partners to each other, i.e., the
second subcase does not arise. Thus wtM (a, b) = −2.

2. b ∈ S2 prefers its popular partner to a ∈ S1: so b prefers z to a and we have to argue
that a prefers y to b. Suppose not, i.e., a prefers b to y. Since the edge (a−, y+) is in EI ,
a prefers y (and thus b) to all neighbors in S0. So the edge (a−, b+) is in EI and this
is a blocking edge to NI since (b+, d(b)) and (a−, y+) are in NI . This contradicts NI ’s
stability, hence a prefers y to b. Thus wtM (a, b) = −2.

3. a ∈ S2 prefers its popular partner to b ∈ S0: so a prefers y to b. Then the edge (a0, b0)
is in GI . Since a0 is matched to its least preferred neighbor d′(a), it follows from the
stability of NI that b0 prefers z0 to a0, i.e., b prefers z to a. Thus wtM (a, b) = −2.

Hence in all cases, we have wtM (a, b) = −2 < −1 = αa + αb. C

This finishes the proof of Lemma 13. J

Finding a min-cost desired stable matching in GI . We first check that all subscript −
vertices are stable in GI . This is easily done by running Gale-Shapley algorithm in GI
and using the fact that all stable matchings leave the same vertices unmatched [15]. This
ensures property (2). Then we solve a min-cost stable matching problem in GI with forbidden
edges. There are two types of forbidden edges here: the first type are all edges between a
subscript + vertex and a subscript 0 vertex in GI . Forbidding these edges ensures property (1).
The second type of forbidden edges are described below. Forbidding these edges ensures
property (3).

Ensuring property (3). For any u ∈ S2, all edges incident to any vertex u+, u0, u− are
marked forbidden except for the following edges, where v is u’s popular partner:

the edges among (u+, v−), (u0, v0), (u−, v+) that are in EI ;
the pair of edges (u+, d(u)), (u0, d(u)) and the pair of edges (u0, d

′(u)), (u−, d′(u)).

For u ∈ S2, every stable matching in GI has to match u+, u0, d(u), d′(u) since these
are top choice neighbors for some vertices. Moreover, we have already checked that all
subscript − vertices are stable in GI . Thus all the five vertices u+, u0, u−, d(u), d′(u) have
to be matched in every stable matching in GI . In particular, two of u+, u0, u− are matched
to d(u), d′(u). Thus any stable matching in GI that avoids forbidden edges of the second
type has to contain one of (u+, v−), (u0, v0), (u−, v+).

Desired stable matchings. We have seen that all stable matchings of GI that satisfy the 3
properties given in Theorem 8 are precisely those stable matchings in GI that avoid edges that
we marked forbidden. Consider the stable matching polytope S of GI : we know that xe ≥ 0
for any edge e is a valid inequality for S, hence the intersection of S with the constraints
xe = 0 for every forbidden edge e is a face F of S. Since F is an integral polytope and
every integral point in F is a stable matching in GI that avoids forbidden edges, NI can be
computed in polynomial time by linear programming over the constraints defining F . These
are the constraints of the stable matching polytope S along with the constraints xe = 0 for
every forbidden edge e. A min-cost desired stable matching NI over all I ⊆ [p] maps to a
min-cost popular matching in G (by Theorem 8 and Theorem 12).

FSTTCS 2020

25:14 Min-Cost Popular Matchings

As mentioned earlier, the popular subgraph G0 can be constructed in linear time [7].
Then we identify the connected components C1, . . . , Cp of size at least 4 in G0. The number
of sets I that we need to go through is 2p, thus our algorithm runs in 2p · poly(n) time. Since
p ≤ n/4, this proves Theorem 2 stated in Section 1.

4 Semi-popular matchings

In this section we consider the problem of computing an almost semi-popular matching of
cost at most 2opt. Our input is a bipartite graph G = (A ∪B,E) where vertices have strict
preferences and we have cost : E → R≥0. We are also given a parameter ε ∈ (0, 1/2).

Popular fractional matchings. The notion of popularity can be extended to fractional
matchings. A vector ~x ∈ R|E|≥0 that satisfies

∑
e∈δ(u) xe ≤ 1 for all vertices u is a fractional

matching in G. The fractional matching ~x is popular if ∆(~x,N) ≥ 0 for all matchings N ,
where ∆(~x,N) is defined as follows: ~x is a convex combination of matchings (Birkhoff-von
Neumann theorem), so ~x =

∑
i piIMi

for some matchings Mi where
∑
i pi = 1, each pi ≥ 0,

and ∆(~x,N) is defined as
∑
i pi ·∆(Mi, N). Since the fractional matching ~x can possibly

be expressed in multiple ways as convex combinations of matchings, ∆(~x,N) may seem
ill-defined. However this is well-defined and we refer to [26, Lemma 1] for details.

Let opt∗ be the cost of a min-cost popular fractional matching in G and let ~q be a min-cost
popular fractional matching. The fractional matching ~q can be efficiently computed [26]. We
have cost(~q) = opt∗ ≤ opt where opt is the cost of a min-cost popular matching.

It was shown in [20] that the popular fractional matching polytope is half-integral. Thus
we can assume that ~q is half-integral. So ~q = (IM1 + IM2)/2 where M1 and M2 are two
matchings in G. We know that ∆(~q,N) ≥ 0 for all matchings N in G.

I Observation 3. There is a matching M ∈ {M1,M2} such that M is semi-popular.

Proof. Since ∆(~q,N) = (∆(M1, N) + ∆(M2, N))/2 and ∆(~q,N) ≥ 0 for every matching N ,
we have either ∆(M1, N) ≥ 0 or ∆(M2, N) ≥ 0 for every matching N . Hence one of M1,M2
is undefeated by at least half the matchings in G. C

Since all edge costs are non-negative and cost(~q) = (cost(M1) + cost(M2))/2, we have
cost(M1) ≤ 2 · cost(~q) and cost(M2) ≤ 2 · cost(~q). So there is M ∈ {M1,M2} such that (i) M
is semi-popular and (ii) cost(M) ≤ 2opt.

The problem here is to efficiently decide which of M1,M2 is semi-popular. We do not
know how to answer this question exactly. However we can decide with high probability
whether both M1 and M2 are close to being semi-popular or one of them is not - in which
case the other matching has to be semi-popular (by Observation 3). Here we will use the
classical result from [22] that shows a polynomial time algorithm to sample matchings from
a distribution that is close to the uniform distribution in total variation distance (see [22,
Corollary 4.3]).

The input is G = (A∪B,E) with non-negative edge costs and ε ∈ (0, 1/2). Our algorithm
is as follows:
1. Compute a min-cost popular half-integral matching ~q in G. Let ~q = (IM1 + IM2)/2 where

M1 and M2 are matchings in G.
2. Produce a sample S of s = 64 · d(lnn)/ε2e matchings from a distribution that is ε/4-close

to the uniform distribution (on all matchings in G) in total variation distance.
3. If both M1 and M2 are undefeated by more than s · (1 − ε)/2 of matchings in S then

return the matching in {M1,M2} with lower cost.
4. Else return the matching in {M1,M2} undefeated by a majority of matchings in S.

T. Kavitha 25:15

In Step 2, we use the random sampler in [22] that constructs the sample S in poly(n, 1
ε)

time. It is easy to see that the running time of our algorithm is poly(n, 1
ε). Lemma 19 and

Lemma 20 bound the probability that our algorithm makes an error.

I Lemma 19. Suppose M ∈ {M1,M2} is defeated by more than 1/2 + ε fraction of all
matchings in G. Then our algorithm returns M in step 3 with probability at most 1/n.

Proof. Since M is defeated by more than 1/2 + ε fraction of all matchings in G, the expected
number of matchings that defeat M from a set of s matchings, where each matching is chosen
uniformly at random from the set of all matchings in G is more than s · (1/2 + ε). The set S
is formed by sampling s matchings from a distribution ε/4-close to the uniform distribution
in total variation distance. Hence the expected number of matchings from S that defeat M
is more than s · (1/2 + ε− ε/4) = s · (2 + 3ε)/4.

If M was returned in step 3 then M was undefeated by more than s · (1− ε)/2 matchings
from S. Equivalently, less than s · (1 + ε)/2 matchings from S defeated M . By Chernoff
bound, the probability of this event is at most exp(−s ·ε2/(16+24ε)). Since s ≥ 64 · (lnn)/ε2,
this probability is at most 1/n. J

The next lemma bounds the error when our algorithm reaches step 4.

I Lemma 20. Suppose M ∈ {M1,M2} is not semi-popular. Then our algorithm returns M
in step 4 with probability at most 1/n.

Proof. Since M is defeated by more than half the matchings in G, the expected number of
matchings that defeat M from a set of s matchings, where each matching is chosen uniformly
at random from the set of all matchings in G, is more than s/2. Since the set S is formed
by sampling s matchings from a distribution ε/4-close to the uniform distribution in total
variation distance, the expected number of matchings that defeat N from S is more than
s · (2− ε)/4.

The algorithm reached step 4 and M was the matching that was undefeated by a majority
of matchings in S. Observe that M defeated more than s · (1 + ε)/2 matchings in the set S.
This is because the matching in {M1,M2} \ {M} was defeated by more than s · (1 + ε)/2
matchings in S – otherwise we would not have reached step 4. Since M defeats more than
s(1+ε)/2 matchings from S, less than s(1−ε)/2 matchings from S defeated M . By Chernoff
bound, the probability of this event is at most exp(−s ·ε2/(64−32ε)). Since s ≥ 64 ·(lnn)/ε2,
this probability is at most 1/n. J

Lemma 19 and Lemma 20 bound the error probability of our algorithm. Thus we have
proved Theorem 4 stated in Section 1.

References
1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM

Journal on Computing, 37(4):1030–1045, 2007.
2 P. Biro, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates

problems. In Proceedings of the seventh International Conference on Algorithms and Complexity
(CIAC), pages 97–108, 2010.

3 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

4 Condorcet method. https://en.wikipedia.org/wiki/Condorcet_method.
5 Á. Cseh. Popular matchings. Trends in Computational Social Choice, Ulle Endriss (ed.), 2017.

FSTTCS 2020

https://en.wikipedia.org/wiki/Condorcet_method

25:16 Min-Cost Popular Matchings

6 Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and
one-sided ties. SIAM Journal on Discrete Mathematics, 31(4):2348–2377, 2017.

7 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Programming,
172(1):209–229, 2018.

8 Y. Faenza and T. Kavitha. Quasi-popular matchings, optimality, and extended formulations.
In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 325–344, 2020.

9 Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular matchings and limits to tractability.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2790–2809, 2019.

10 T. Feder. A new fixed point approach for stable networks and stable marriages. Journal of
Computer and System Sciences, 45(2):233–284, 1992.

11 T. Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319, 1994.
12 T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics

of Operations Research, 28(1):103–126, 2003.
13 F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer-Verlag New York, Inc.,

New York, 2010.
14 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69(1):9–15, 1962.
15 D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Applied

Mathematics, 11:223–232, 1985.
16 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,

20:166–173, 1975.
17 S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular matching in roommates setting is

np-hard. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2810–2822, 2019.

18 M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On the structure of popular
matchings in the stable marriage problem - who can join a popular matching? In the 3rd
International Workshop on Matching Under Preferences (MATCH-UP), 2015.

19 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information
and Computation, 222:180–194, 2013.

20 C.-C. Huang and T. Kavitha. Popularity, mixed matchings, and self-duality. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2294–2310,
2017.

21 R. W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal” stable
marriage. Journal of the ACM, 34(3):532–543, 1987.

22 M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing,
18(6):1149–1178, 1989.

23 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

24 T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 22:1–22:13, 2016.

25 T. Kavitha. Popular roommates in simply exponential time. In Proceedings of the 39th
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 20:1–20:15, 2019.

26 T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science,
412:2679–2690, 2011.

27 K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward. A bi-criteria approximation
algorithm for k-means. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), pages 14:1–14:20, 2016.

28 E. McDermid and R. W. Irving. Sex-equal stable matchings: Complexity and exact algorithms.
Algorithmica, 68(3):545–570, 2014.

T. Kavitha 25:17

29 U. G. Rothblum. Characterization of stable matchings as extreme points of a polytope.
Mathematical Programming, 54:57–67, 1992.

30 C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23(4):874–891, 1998.

31 J. H. Vande Vate. Linear programming brings marital bliss. Operations Research Letters,
8(3):147–153, 1989.

FSTTCS 2020

Constructing Large Matchings via Query Access
to a Maximal Matching Oracle
Lidiya Khalidah binti Khalil
Department of Computer Science, University of Bristol, UK
lb17727@bristol.ac.uk

Christian Konrad1

Department of Computer Science, University of Bristol, UK
http://people.cs.bris.ac.uk/~konrad/
christian.konrad@bristol.ac.uk

Abstract
Multi-pass streaming algorithm for Maximum Matching have been studied since more than 15 years
and various algorithmic results are known today, including 2-pass streaming algorithms that break
the 1/2-approximation barrier, and (1−ε)-approximation streaming algorithms that run in O(poly 1

ε
)

passes in bipartite graphs and in O((1
ε
) 1

ε) or O(poly(1
ε
) · logn) passes in general graphs, where

n is the number of vertices of the input graph. However, proving impossibility results for such
algorithms has so far been elusive, and, for example, even the existence of 2-pass small space
streaming algorithms with approximation factor 0.999 has not yet been ruled out.

The key building block of all multi-pass streaming algorithms for Maximum Matching is the
Greedy matching algorithm. Our aim is to understand the limitations of this approach: How many
passes are required if the algorithm solely relies on the invocation of the Greedy algorithm?

In this paper, we initiate the study of lower bounds for restricted families of multi-pass streaming
algorithms for Maximum Matching. We focus on the simple yet powerful class of algorithms that in
each pass run Greedy on a vertex-induced subgraph of the input graph. In bipartite graphs, we
show that 3 passes are necessary and sufficient to improve on the trivial approximation factor of 1/2:
We give a lower bound of 0.6 on the approximation ratio of such algorithms, which is optimal. We
further show that Ω(1

ε
) passes are required for computing a (1− ε)-approximation, even in bipartite

graphs. Last, the considered class of algorithms is not well-suited to general graphs: We show that
Ω(n) passes are required in order to improve on the trivial approximation factor of 1/2.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Maximum matching approximation, Query model, Streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.26

1 Introduction

The Greedy matching algorithm is the key building block of most published streaming
algorithms for approximate Maximum Matching [16, 26, 13, 25, 2, 14, 21, 24]. Given a graph
G = (V,E), Greedy scans the set of edges E in arbitrary order and inserts the current edge
e ∈ E into an initially empty matching M if possible, i.e., if both endpoints of e are not yet
matched by an edge in M . Greedy produces a maximal matching, which is known to be at
least half as large as a matching of largest size.

The Greedy matching algorithm is well-suited for implementation in the streaming model
of computation. A streaming algorithm processing a graph G = (V,E) with |V | = n receives
a potentially adversarially ordered sequence of the edges of the input graph, and the objective

1 Corresponding author

© Lidiya Khalidah binti Khalil and Christian Konrad;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lb17727@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
http://people.cs.bris.ac.uk/~konrad/
mailto:christian.konrad@bristol.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

is to solve a graph problem using as little space as possible. Many graph problems require
space Ω(n logn) to be solved in the streaming model [28], and streaming algorithms that
use space O(npoly logn) are referred to as semi-streaming algorithms. Multi-pass streaming
algorithms process the input stream multiple times. Observe that Greedy constitutes a
one-pass semi-streaming algorithm for Maximum Matching with approximation factor 1

2 .
The Maximum Matching problem is the most studied graph problem in the streaming model,

and despite intense research efforts, the Greedy algorithm is the best one-pass streaming
algorithm known today, even if space O(n2−δ) is allowed, for any δ > 0. Performing multiple
passes over the input allows improving the approximation factor. The main questions
addressed in the literature are: (1) What can be achieved in p passes, for small p (e.g.
p ∈ {2, 3}), and (2) How many passes are required in order to obtain a (1− ε)-approximation,
for any ε > 0. See Table 1 for an overview of the currently best results.

Table 1 State of the art semi-streaming algorithms for Maximum Matching.

passes Approximation det/rand Reference See also
Bipartite Graphs
1 1

2 deterministic Greedy, folklore
2 2−

√
2 ≈ 0.5857 randomized Konrad [24] [25, 14, 21]

3 0.6067 randomized Konrad [24] [14, 21]
2
3ε

2
3 − ε deterministic Kale and Tirodkar [21] [16]

O(1
ε2 log log ε) 1− ε deterministic Ahn and Guha [2] [13]

General Graphs
1 1

2 deterministic Greedy, folklore
2 0.53125 deterministic Kale and Tirodkar [21] [25]
1
ε

O(1
ε

) 1− ε deterministic Tirodkar [29] [26]
O(1

ε4 logn) 1− ε deterministic Ahn and Guha [2]

Only few lower bounds are known: We know that one-pass semi-streaming algorithms
cannot have an approximation factor larger than 1− 1

e [22] (see also [18]). The only multi-
pass lower bound known addresses the exact version of Maximum Matching, showing that
computing a maximum matching in p passes requires space n1+Ω(1/p)/pO(1) [20]. No lower
bound is known for multiple passes and approximations, and, for example, the existence of a
2-pass 0.999-approximation semi-streaming algorithm has not yet been ruled out.

The Greedy algorithm is the key building block of all algorithms referenced in Table 1
(including those mentioned in the “See also” column). In many cases, the presented algorithms
collect edges by solely executing Greedy on specific subgraphs in each pass and output
a large matching computed from the edges produced by Greedy. In this paper, we are
interested in the limitations of this approach: How large a matching can be computed if
Greedy is executed at most p times?

Known streaming algorithms apply Greedy in different ways. For example, the 2-pass
and 3-pass algorithms by Konrad [24] run Greedy on randomly sampled subgraphs that
depend on a previously computed maximal matching. The multi-pass algorithms by Ahn and
Guha [2] maintain vertex weights ∈ [0, 1] over the course of the algorithm and run Greedy
on a threshold subgraph, i.e., on the set of edges uv so that the sum of the current weights
associated with u and v is at most 1. The algorithm by Eggert et al. [13] runs Greedy on
an edge-induced subgraph in order to find augmenting paths.

In this paper, we initiate the study of lower bounds for restricted families of multi-pass
streaming algorithms for Maximum Matching that are based on Greedy. We start this
line of research by addressing the probably simplest and most natural approach, which is

L. K. b. Khalil and C. Konrad 26:3

nevertheless surprisingly powerful: the class of deterministic algorithms that run Greedy
on a vertex-induced subgraph in each pass. Two known streaming algorithms fit our model:

1. A 3-pass 0.6-approximation streaming algorithm for bipartite graphs that is implicit in [16],
explicitly mentioned in [25], and analyzed in [21]. Given a bipartite graph G = (A,B,E),
the algorithm first computes a maximal matching in G, i.e., M ← Greedy(G). Then, the
algorithm attempts to find length-3 augmenting paths by invoking Greedy twice more:
ML ← Greedy(G[A(M) ∪B(M)]), where A(M) are the matched A-vertices and B(M)
are the unmatched B-vertices. Last, MR ← Greedy(A(M), B′), where B′ ⊆ B(M) are
those matched B vertices that are endpoints in length-2 paths in ML ∪M . Kale and
Tirodkar showed that M ∪ML ∪MR contains a 0.6-approximate matching [21]. We will
denote this algorithm by 3RoundMatch.

2. The (1 − ε)-approximation O(1
ε5)-passes streaming algorithm for bipartite graphs by

Eggert et al. [13] can be adapted to fit our model using O(1
ε6) invocations of Greedy.

We abstract this approach as a game between a player and an oracle: Let G be a graph
with vertex set V . The player initially knows V . In each round i the player sends a query
query(Vi) to the oracle, where Vi ⊆ V . The oracle returns a maximal matching in the
vertex-induced subgraph G[Vi]. For this model to yield lower bounds for the streaming model,
we impose that the oracle is streaming-consistent, i.e., there exists a stream of edges π so
that the oracle’s answers to the queries (query(Vi))i equal runs of Greedy on the respective
substream of edges G[Vi] of π (see preliminaries for a more detailed definition). We denote
this model as the vertex-query model (as opposed to an edge-query model, where the player
may ask for maximal matchings in a subgraph spanned by a subset of edges).

Player Oracle

query(Vr)

response: maximal matching in G[Vr]

Figure 1 Illustration of the game between the player and oracle in the vertex-query model.

Our Results. In bipartite graphs, we show that at least 3 rounds are required to improve
on the approximation factor of 1/2, and we give a lower bound of 0.6 on the approximation
factor of 3 round algorithms. This is optimal, as demonstrated by the previously mentioned
algorithm 3RoundMatch. We also show that Ω(1

ε) rounds are required for computing a
(1− ε)-approximation. This polynomial lower bound is in line with the poly 1

ε rounds upper
bound by Eggert et al. [13]. Last, we demonstrate that our query model is not well-suited to
general graphs: We show that improving on a factor of 1/2 requires Ω(n) rounds.

Further Related Work. Besides the adversarial one-pass and multi-pass streaming models,
Maximum Matching has also been studied in the random order [25, 24, 17, 4, 15, 8] and the
insertion-deletion settings [23, 9, 6, 12]. In the random order model, where edges arrive in
uniform random order, Konrad et al. [25] were the first to give a semi-streaming algorithms
with approximation ratio above 1/2. Very recently, Bernstein showed that an approximation
ratio of 2/3 can be achieved in random order streams [8]. In light of the lower bound

FSTTCS 2020

26:4 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

by Kapralov [22], this result separates the adversarial and the random order settings. In
insertion-deletion streams, edges that have previously been inserted may be deleted again.
Assadi et al. [6] showed that, up to sub-polynomial factors, space n2−3ε is necessary and
sufficient for computing a nε-approximation (see [12] for a slightly improved lower bound).

Many works allow only query access to the input graph. For example, cross-additive
queries, bipartite independent set queries, additive queries, cut-queries, and edge-detection
queries have been considered [19, 3, 11, 10, 7, 27, 1], however, mainly for graph reconstruction
problems. Very recently, linear queries and or-queries have been considered for graph
connectivity [5].

Outline. In Section 2, we give notation and definitions. We also define the vertex-query
model and provide a construction mechanism that ensures that our oracles are streaming-
consistent. Then, in Section 3 we prove that 3 rounds are required to improve on 1/2 and
give a lower bound of 0.6 on the approximation ratio achievable in three rounds. In Section 4,
we show that Ω(1

ε) rounds are needed for computing a (1−ε)-approximation, and in Section 5
we show that improving on 1

2 in general graphs requires Ω(n) rounds. Finally, we conclude
in Section 6 and give open questions.

2 Preliminaries

Matchings. Let G = (V,E) be a graph with |V | = n. A matching M ⊆ E is a subset of
vertex-disjoint edges. Matching M is maximal if for every e ∈ E \M : M ∪ {e} is not a
matching. A maximum matching is one of largest cardinality. If the size of a matching M is
n/2, i.e., it matches all vertices of the graph, then M is a perfect matching.

Notation. We write V (M) to denote the set of vertices incident to the edges of a matching
M . For a subset of vertices V ′ ⊆ V , we denote by G[V ′] the vertex-induced subgraph of G
by vertices V ′, i.e., G[V ′] = (V ′, (V ′ × V ′) ∩ E). For a set of edges E′ ⊆ E, we denote by
OPT (E′) the size of a maximum matching in the subgraph of G spanned by the edges E′.
For an integer n, we define [n] := {1, 2, . . . , n}.

The Vertex-query Model. In the vertex-query model, a player and an oracle play a rounds-
based matching game on a vertex set V of size n that is initially known to both parties. Over
the course of the game, the oracle makes up a graph G = (V,E). The objective of the player
is to learn a large matching in G. The way the player learns edges is as follows:

In each round 1 ≤ i ≤ r, where r is the total number of rounds played, the player submits
a query query(Vi) to the oracle, for some Vi ⊆ V . The oracle then determines a set of edges
Mi, which is guaranteed to be a maximal matching in the vertex-induced subgraph G[Vi].
Observe that in doing so, the oracle not only commits to the fact that Mi ⊆ E, but also
that the vertices Vi \ V (Mi) form an independent set (which follows from the fact that Mi is
maximal). Furthermore, we impose that the answers to all queries are consistent with graph
G and that G has a perfect matching.

After the r query rounds, the player reports a largest matching MP that can be formed
using the edges ∪i≤rMi. The approximation ratio of the solution obtained is |MP |/(1

2n).
We are interested in oracles that are consistent with the streaming model. We say that

an oracle is streaming-consistent, if there exists an ordering π of the edges E so that, for
every round i, Mi is produced by running Greedy on the substream of π consisting of the
edges of G[Vi]. We will ensure that all our oracles are streaming-consistent.

L. K. b. Khalil and C. Konrad 26:5

Construction of Streaming-consistent Oracles. We will construct streaming-consistent
oracles as follows. Upon query V1, the oracle answers withM1 and placesM1 in the beginning
of the stream π. Next, given query Vi, for some i ≥ 2, the oracle first runs Greedy on
the substream of π consisting of the edges G[Vi] which produces an intermediate matching
M ′, thereby attempting to match Vi using edges of previous matchings ∪j<iMj . The oracle
then extends M ′ to a matching Mi. Edges Mi \M ′ are then introduced at the end of the
stream π. This construction procedure guarantees that our oracles are streaming-consistent.
Furthermore, it allows us to simplify our arguments, since it is enough to restrict our
considerations to queries with the following property:

I Observation 1. Suppose that the oracle is constructed as above. Then, given the sequence
of queries V1, . . . , Vr and matchings M1, . . . ,Mr, there exists a sequence of queries Ṽ1, . . . , Ṽr
that produces matchings M̃1, . . . , M̃r such that:

The player learns the same set of edges, i.e., for every i ≤ r :
⋃
j≤iMj =

⋃
j≤i M̃j, and

No query Ṽi contains a pair of vertices u, v such that uv ∈ ∪j<iM̃j.

We can therefore assume that the player never includes a pair of vertices u, v into a query
so that the edge uv is contained in a previous answer from the oracle.

3 Lower Bound for Few Round Algorithms in Bipartite Graphs

In this section, we show that the player cannot produce an approximation ratio better than 1
2

in two rounds, even on bipartite graphs. We also show that three rounds do not allow for an
approximation ratio better than 0.6, which is achieved by the algorithm 3RoundMatching.

In order to keep track of the information learned by the player, we will make use of
structure graphs, which we discuss first.

3.1 Structure Graphs
Observe that when the oracle answers the query query(Vi) and returns a maximal matching
Mi, the player not only learns that the edges Mi are contained in the input graph G, but
also learns that the vertices Vi \ V (Mi) form an independent set in G (due to the maximality
of Mi). We maintain the structure learned by the player and the structure committed to by
the oracle (which do not have to be identical) using structure graphs:

I Definition 2 (Structure graph). A 4-tuple (A,B,E, F) is a bipartite structure graph if:
A,B are disjoint sets of vertices,
E,F are disjoint sets of edges such that (A,B,E) and (A,B, F) are bipartite graphs,
The structure graph admits a perfect matching, i.e., there exists a set of edges M∗ such
that M∗ ∩ F = ∅ and M∗ is a perfect matching in the bipartite graph (A,B,E ∪M∗) .

From the perspective of the player, the set E corresponds to the edges returned by the
oracle so far, i.e., E = ∪j≤iMj , and the set F corresponds to guaranteed non-edges, i.e.,
F = ∪j≤iC(Vi \ V (Mi)), where C(V ′) denotes a biclique (respecting the bipartition A,B)
among the vertices V ′.

In the following, we will denote the structure graph after round i learned by the player
by H̃i = (A,B, Ẽi, F̃i), i.e., Ẽi = ∪j≤iMj and F̃i = ∪j≤iC(Vi \ V (Mi)). The oracle will
also maintain a sequence of structure graphs (Hi)i with Hi = (A,B,Ei, Fi) such that Hi

dominates H̃i, for every 1 ≤ i ≤ r. We say that a structure graph H = (A,B,E, F) dominates
a structure graph H̃ = (A,B, Ẽ, F̃), if Ẽ ⊆ E and F̃ ⊆ F . This notion allows the oracle
to commit to edges and non-edges that the player has not yet learned. This domination
property allows us to simplify our arguments.

FSTTCS 2020

26:6 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout Ain Bin Aout

MM∗L M∗R

Figure 2 Illustration of the structure graph
H1 on a graph on 16 vertices. The matching M
is half the size of the matchingM∗ = M∗

L∪M∗
R.

Bout Ain Bin Aout

MM∗L M∗R

Figure 3 Matching M2 (in red) returned by
the oracle. The red vertices constitute A2 ∪B2,
i.e., the vertices of the second query. The case
|Ain2 | ≥ |Bin2 | is illustrated here. We see that no
edges from Bin × Aout are returned, and that
M2 does not allow us to increase the size of M .

In our lower bound arguments, we make use of the following two assumptions:

I Assumption 1. After round i, the player knows the structure graph Hi.

This is a valid assumption since Hi dominates H̃i and thus contains at least as much
information as H̃i. This assumption therefore only strengthens the player. Furthermore, we
will also assume a slightly strengthened property of the property discussed in Observation 1:

I Assumption 2. For every 1 ≤ i ≤ r, we assume that query Vi does not contain a pair of
vertices u, v ∈ Vi such that uv ∈ Ei−1.

This is a valid assumption, since if such a pair u, v of vertices existed in Vi, the oracle
could simply match u to v in Mi and the algorithm would not learn any new information.

Last, observe that the approximation ratio of the player’s strategy is completely determined
by Hr, the oracle’s structure graph after the last round. Since Hr dominates H̃r, the player’s
largest matching is of size at most OPT (Er). Since by definition of a structure graph, Hr

admits a perfect matching, the approximation ratio achieved is 2 ·OPT (Er)/n.

3.2 Lower Bound for Two Rounds
Assume that n is a multiple of 4. The player and the oracle play the matching game on a
bipartite vertex set V = A ∪̇ B with |A| = |B| = n/2. Consider the structure graph:

H1 = (Ain ∪Aout, Bin ∪Bout,M,Aout ×Bout) ,

where |Ain| = |Aout| = |Bin| = |Bout| = n/4, and M is a perfect matching between Ain and
Bin. Observe that there exists anM∗ outside Aout×Bout such thatM∗ is a perfect matching
in (A,B,M ∪M∗), namely, M∗ consists of the two perfect matchings M∗L connecting Bout
to Ain and M∗R connecting Bin to Aout. See Figure 2 for an illustration.

We have:

I Lemma 3. There is a structure graph isomorphic to H1 that dominates H̃1.

Proof. Denote the first query by A1, B1 (A1 ⊆ A, and B1 ⊆ B). We will argue that we can
relabel the sets Ain, Aout, Bin, Bout so that H1 dominates H̃1:

L. K. b. Khalil and C. Konrad 26:7

If A1 ≤ n/4 then let Ain be an arbitrary subset of the A vertices of size n/4 that contains
A1, and let Aout be the remaining A-vertices. If A1 > n/4 then let Aout be an arbitrary
subset of A vertices of size n/4 that contains A \A1, and let Ain be the remaining A-vertices.
Proceed similarly for B1. The oracle returns the subset M1 ⊆ M where each edge has
one endpoint in A1 and one endpoint in B1, which is clearly maximal given that edges in
Aout ×Bout are forbidden. J

Since OPT (M) = |M | = 1
4n, Lemma 3 implies the unsurprising fact that no one round

algorithm has an approximation ratio better than 2· 14n
n = 1

2 . We argue now that an additional
round does not help with increasing the approximation factor.

I Theorem 4. The best approximation ratio achievable in two rounds is 1/2.

Proof. Let A2, B2 be the vertices of the second query. By Lemma 3, H1 dominates H̃1, and
by Assumption 1 we can assume that the player already knows H1. Let Ain2 = A2 ∩ Ain,
Aout2 = A2 ∩Aout and define Bin2 and Bout2 similarly.

Suppose first that |Ain2 | ≥ |Bin2 |. Then the oracle returns a matching M2 that matches
an arbitrary subset of Ain2 of size |Bin2 | to Bin2 , and matches max{|Bout2 |, |Ain2 | − |Bin2 |} of
the remaining Ain2 vertices arbitrarily to vertices in Bout2 . In doing so, either all Ain2 vertices
or all B2 vertices are matched. Since H1 indicates that there are no edges connecting the
“out”-vertices, M2 is therefore maximal.

Observe further that M ∪M2 does not match any vertex in Aout, and, hence, only half
of the A-vertices are matched in M ∪M2. The player thus cannot report any matching of
size larger than |M |, which constitutes a 1/2-approximation.

Last, the case |Ain2 | < |Bin2 | is identical with roles of A and B vertices reversed. J

3.3 Lower Bound for Three Rounds
In this section, we work with a vertex set V = A ∪̇ B with |A| = |B| = 5 (and thus
|V | = n = 10). By choosing disjoint copies of this vertex set, our result can be extended to
graphs with an arbitrarily large number of vertices.

First Query. Similar to the two round case, we define the structure graph H1 = (Ain ∪
Aout, Bin∪Bout,M,Aout×Bout), however, this time |Ain| = |Bin| = 3 and |Aout| = |Bout| = 2.
The matching M matches Ain to Bin, see Figure 4a.

It shall be convenient to assign labels to the vertices in our structure graph. In our
arguments below, in order to avoid symmetric cases, we relabel the vertices of our structure
graph as we see fit, however, we always ensure that the structure graph after relabeling is
isomorphic to the structure graph before the relabeling.

First, similar to Lemma 3, it is not hard to see that a structure graph isomorphic to H1
dominates H̃1 (proof omitted).

I Lemma 5. There is a structure graph isomorphic to H1 that dominates H̃1.

Second Query. We assume that the player knows H1 after the first query (Assumption 1).
Next, we define structure graph H2 = (Ain ∪ Aout, Bin ∪ Bout,M ∪ E2, Aout × Bout ∪ F2),
where E2 = {a1b5, a2b3}, and F2 = {a2b4, a3b4}. It is easy to see that H2 is indeed a structure
graph (see Figures 4b and 4c).

We shall prove that there is a structure graph isomorphic to H2 that dominates H̃2.
Lemma 6 considers the case when the second query V2 contains exactly three “in”-vertices, i.e.,
vertices from Ain ∪Bin, and Lemma 7 considers the case when there are fewer “in”-vertices.

FSTTCS 2020

26:8 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

M

(a) H1: The blue edges constitute
a perfect matching that does not
use any edges connecting Aout to
Bout.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(b) H2: black edges are inM , red
edges in E2, gray edges in F2.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(c) H2: The blue dotted edges
and the edge a2b3 constitute a
maximum matching.

Figure 4 Illustrations of structure graphs H1 and H2.

By Assumption 2, we do not need to consider the cases when more than three “in”-vertices
are contained in V2 since then V2 necessarily contains a pair of vertices u, v such that uv ∈M .

I Lemma 6. If the player queries exactly 3 “in”-vertices (i.e., vertices from Ain ∪Bin) in
their second query then there exists a structure graph isomorphic to H2 that dominates H̃2.

Proof. The player can either query more vertices in Ain or in Bin, and these cases are
symmetrical. Hence we only consider the case when the player queries more vertices in Ain.
Due to Assumption 2, for queries that contain vertices in both Ain and Bin, we assume these
vertices do not form any edges seen in M .

Since we will not match any vertices in Aout, we do not need to distinguish between cases
where the player queries different numbers of vertices in Aout. We distinguish between the
following cases:
1. Player queries all vertices in Ain and the query includes b5: the oracle returnsM2 = {a1b5}.
2. Player queries all vertices in Ain and only b4 in Bout: relabel b4 as b5 and proceed as in

case (1).
3. Player queries all vertices in Ain and no vertices in Bout: the oracle returns M2 = ∅.
4. Player queries two vertices in Ain, one vertex in Bin and the query includes b5: relabel

the “in” vertices so that after relabeling the vertices a1, a2 and b3 are included in the
query. The oracle returns M2 = E2.

5. Player queries two vertices in Ain, one vertex in Bin and only b4 in Bout: relabel b4 as b5
and proceed as in case (4).

6. Player queries two vertices in Ain, one vertex in Bin and no vertices in Bout: relabel “in”
vertices so that after relabeling the vertices a2 and b3 are included in the query. The
oracle returns M2 = {a2b3}.

In all cases considered, observe that M2 ⊆ E2. Further, edges F2 ensure that M2 is
maximal. J

We argue now that querying three “in”-vertices in the second round is best possible in
the sense that querying fewer (or more) “in”-vertices does not yield more information.

I Lemma 7. If the player queries fewer than 3 “in”-vertices (i.e., vertices from Ain ∪Bin)
then there exists a structure graph isomorphic to H2 that dominates H̃2.

Proof. Clearly if the player does not query any “in”-vertices, no matching will be found
i.e. M2 = ∅. If the player queries exactly one vertex in Ain, we can relabel this vertex as
a1 and if the query contains a vertex in Bout, relabel this one to be b5. Then the matching

L. K. b. Khalil and C. Konrad 26:9

found will be a subset of E2. If the player queries exactly two “in” vertices there are two
cases to consider. If they are both in Ain, we ensure one of these vertices is a1 by relabeling,
and, if at least one vertex in Bout is queried, potentially relabel this vertex to be b5 and
return the edge a1b5. If the player queried one vertex in Ain and one in Bin, we relabel these
vertices as a2, b3 and return the edge between them, a2b3. Hence the edges learned by the
player are always a subset of E2. In all cases considered, edges F2 ensure that matching M2
is maximal. J

Third Query. We assume that the player knows structure graph H2. Similar to the second
query, we distinguish between the cases where the player queries exactly three “in”-vertices
and fewer “in”-vertices. Again, by Assumption 2, we do not need to consider the case where
the player queries more than three “in”-vertices. In the following proofs, we will define
different structure graphs H3 that depend on the individual query.

I Lemma 8. If the player queries exactly 3 “in”-vertices in the third round, then the player
cannot output a matching of size larger than 3.

Proof. We provide the oracle’s answers when the player queries exactly three “in”-vertices.
Among those cases, there are three cases to consider where the player queries more vertices
in Bin than in Ain:
1. Case 1: Player queries b1, b2, b3. The oracle defines H3 = (A,B,E3, F3) such that

E3 = M ∪E2∪{a4b2, a5b3} and F3 = Aout×Bout∪F2. If the player queried both vertices
in Aout, the oracle returns M3 = {a4b2, a5b3}. Otherwise M3 would consist of one or zero
edges depending on the player’s query. In particular, we have M3 ⊂ E3.
In cases 2 and 3, we do not define any edges involving vertices from Aout or Bout, so the
oracle proceeds regardless of which vertices in Aout, Bout the player queried.

2. Case 2: Player queries a1, b2, b3. The oracle defines H3 = (A,B,E3, F3) such that
E3 = M ∪ E2 ∪ {a1b2} and F3 = Aout × Bout ∪ F2 ∪ {a4b3, a5b3}. The oracle returns
M3 = {a1b2}.

3. Case 3: Player queries b1, b2, a3. The oracle defines H3 = (A,B,E3, F3) such that
E3 = M ∪ E2 ∪ {a3b2} and F3 = Aout × Bout ∪ F2 ∪ {a4b1, a5b1}. The oracle returns
M3 = {a3b2}.

Observe that the case b1, a2, b3 ∈ V3 is not relevant, since a2b3 ∈M2 and Assumption 2.
Figure 5 shows that in these three cases, H3 is a structure graph and the largest matching
that the player thus able to return is of size 3.

If the player queries more vertices in Ain than in Bin, we will argue that the player will
not learn any edges connecting to vertices in Aout, and since the player then only holds edges
incident to 3 of the 5 A-vertices, the player cannot report a matching larger than of size 3.

If the player queries all three vertices in Ain then he clearly cannot learn any edges
connecting to Aout. If the player queries a vertex in Bin, note that we can match it with a
vertex queried in Ain, and there will be no vertices left to match with vertices in Aout (see
Figure 6). Since no more non-edges are defined, it is easy to see that edges can be added to
create a perfect matching. J

I Lemma 9. If the player queries fewer than three “in”-vertices in the third round, then the
player cannot output a matching of size larger than 3.

FSTTCS 2020

26:10 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(a) Case 1: Query V3 includes {b1, b2, b3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(b) Case 1: blue dashed edges together with a4b2, a2b3
constitute a perfect matching.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(c) Case 2: Query V3 includes {a1, b2, b3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(d) Case 2: blue dashed edges together with a2b3
constitute a perfect matching.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(e) Case 3: Query V3 includes {b1, b2, a3}.

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

(f) Case 3: blue dashed edges form a perfect match-
ing.

Figure 5 Round 3 cases. Green vertices are queried by the player in round 3. Red edges are in
E2 \E1, orange is E3 \E2, grey is F3. The blue dashed edges can be added to the graph to create a
perfect matching.

Proof. We distinguish the following cases:
1. If the player queries no “in” vertices, this is obvious, and we would have M3 = ∅.
2. If the player queries exactly one “in” vertex, the only possible way to obtain a larger

matching than one of size 3 is to find an edge incident to b1, i.e., by querying b1, but we
can define F3 = Aout ×Bout ∪ F2 ∪ {a4b1, a5b1} and then M3 = ∅.

3. If the player queries one vertex in Ain and one in Bin, we can connect them by an edge,
say e, and then M3 = {e} does not help increasing the size of a matching.

4. If the player queries two vertices in Ain, the player will not be able to learn any edges to
vertices in Aout, and so Aout remains unmatched, which implies that the player cannot
return a matching of size larger than 3.

5. If the player queries two vertices in Bin, the oracle defines H3 as in Case 1 of Lemma 8,
and the matching returned is a subset of E3. J

Hence we have shown that no matter what queries are made in the second and third
rounds, the player cannot increase the size of the matching learned within the 10-vertex
subgraph. This then holds for a graph with |A| = |B| = n where 5|n and the theorem follows.

L. K. b. Khalil and C. Konrad 26:11

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5
a3 b3

a5

Figure 6 An example of how the oracle behaves when the player queries more vertices in Ain
than in Bin during the third round. Green vertices are queried by the player. Red edges are in
E2 \E1, orange is E3 \E2, gray is F3. The player learns no edges incident to Aout and can therefore
only report a matching of size 3.

I Theorem 10. The best approximation factor achievable in three rounds is 3/5.

4 (1 − ε)-approximation in Bipartite Graphs Requires Ω(1
ε
) Rounds

Let Gc = (A,B,E) with A = B = [c] be the semi-complete graph on 2c vertices, i.e., vertices
a ∈ A and b ∈ B are connected if and only if b ≥ a. Observe that Gc has a unique perfect
matching M∗ = {(i, i) ∈ E | i ∈ [c]}.

Let G be the disjoint union of n/(2c) copies of Gc (assuming for simplicity that n is a
multiple of 2c). We will refer to a copy of Gc in G as a gadget. We now show that computing
a (1− ε)-approximation requires Ω(1

ε) queries on G.

I Theorem 11. Any query algorithm with approximation factor 1− ε requires at least 1
ε − 1

queries, even in bipartite graphs.

Proof. Let c = 1
ε − 1. We consider the graph G. First, suppose that the algorithm does not

compute a perfect matching in any of the n/(2c) gadgets. Then, the computed matching is
of size at most c−1

c
n
2 and thus constitutes at best a c−1

c = 1− ε
1−ε < 1− ε approximation.

The algorithm therefore needs to compute a perfect matching in at least one gadget. Since
all gadgets are disjoint, we now argue that it requires at least c queries in order to compute a
perfect matching in one gadget. Consider thus the gadget Gc and denote by M∗ the perfect
matching in Gc. We claim that each query may produce at most one edge of the perfect
matching M∗ in Gc:

Indeed, let A′ = {a1, a2, . . . , ak} ⊆ A and B′ = {b1, b2, . . . , b`} ⊆ B be so that A′ ∪ B′
is any query submitted to the oracle. Further, suppose that a1 < a2 < · · · < ak and
b1 < b2 < · · · < b`. The oracle will return the following matching M :

M = {aib`+1−i | i ∈ [min{k, `}]} ∩ E .

We will now argue thatM is maximal and |M∩M∗| ≤ 1. To this end, let j be the largest index
such that ajb`+1−j ∈ E, which is equivalent to j being the largest index so that aj ≤ b`+1−j .
Observe that since the (ai)i and (bi)i are increasing, we have aj′b`+1−j′ ∈ E ⇔ j′ ≤ j, which
also implies that vertices aj′ are matched, for every j′ ≤ j. Consider now a vertex aq, for
some q > j. Since aj+1 > b`−j and aq ≥ aj+1, it follows that there is no edge between aq
and any of the unmatched B′-vertices {b1, b2, . . . , b`−j}. This implies that the matching M
is maximal. Next, suppose that M contains at least one edge from M∗ and let q be the
smallest index such that aq = b`+1−q, i.e., (aq, b`+1−q) ∈M∗. Then, for any q′ > q, we have

aq′ > aq = b`+1−q > b`+1−q′ ,

FSTTCS 2020

26:12 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

which implies that aq′ 6= b`+1−q′ . Hence, at most one edge from M∗ is returned per query.
Last, we argue that the oracle can be made streaming-consistent: Consider any ordering

of the edges so that edge ij arrives before edge ik, for every k < j. J

Using the oracle described in the previous proof on a single gadget Gn/2, we obtain the
following corollary:

I Corollary 12. Any query algorithm that produces a maximum matching requires at least
n/2 queries (on a graph on n vertices), even on bipartite graphs.

5 Improving on 1/2 in General Graphs Requires Ω(n) Queries

Let G be a bomb graph on n (n even) vertices U ∪ V with |U | = |V | = [n/2], where G[V]
is a clique, G[U] is an independent set, and u ∈ U and v ∈ V are connected if and only if
u = v (U and V are connected via a perfect matching). Denote by M∗ the perfect matching
between U and V and by C the edges of the clique G[V].

In the next lemma, we show that any large matching in G must contain a large number
of edges from M∗.

I Lemma 13. Let M be a matching in G. Then: |M | ≤ n
4 + 1

2 |M ∩M
∗| .

Proof. Observe that |M | = |M ∩M∗|+ |M ∩C|, and since there are n/2−|M ∩M∗| vertices
in V that are not matched to a vertex in U , we have |M ∩C| ≤ (n/2− |M ∩M∗|)/2. Hence:

|M | = |M ∩M∗|+ |M ∩ C| ≤ |M ∩M∗|+ (n/2− |M ∩M∗|)/2 = n

4 + 1
2 |M ∩M

∗| . J

I Theorem 14. Any r-round query algorithm on general graphs has approximation ratio at
most 1

2 + r
n (on an n-vertex input graph).

Proof. Consider an arbitrary query U ′ ∪ V ′ so that U ′ ⊆ U and V ′ ⊆ V . The oracle returns
the following matching: First, the oracle arbitrarily pairs up all vertices of V ′ except possibly
one in case |V ′| is odd. Let M denote this matching. If |V ′| is even then M is returned.
Suppose now that |V ′| is odd and let v ∈ V ′ be the vertex that is not matched in M . Then,
if v’s partner u ∈ U in M∗ is contained in U ′, then return M ∪ {uv}, otherwise return M .

It is easy to see that, by construction, the returned matching is maximal and contains
at most one edge from M∗. Hence, in r-rounds the algorithm can learn at most r edges
from M∗. By Lemma 13, the returned matching is therefore of size at most n

4 + 1
2r, which

constitutes a 1
2 + r

n -approximation.
The oracle can be made streaming-consistent: Consider any edge order where we first

have edges C in arbitrary order followed by M∗ in arbitrary order. J

6 Conclusion

In this paper, we introduced a new query model that allows us to prove lower bounds for
streaming algorithms for Maximum Matching that repeatedly run the Greedy matching
algorithm on a vertex-induced subgraph of the input graph. We showed that the three
rounds algorithm 3RoundMatch with approximation factor 0.6 is optimal for this class
of algorithms. We also showed that computing a (1− ε)-approximation in bipartite graphs
requires Ω(1

ε) rounds, and computing an approximation strictly better than 1
2 in general

graphs requires Ω(n) rounds. We conclude with open questions:

L. K. b. Khalil and C. Konrad 26:13

Can we prove that computing a maximum matching in the vertex-query model in bipartite
graphs requires Ω(n2) rounds, or is there an algorithm that requires only o(n2) rounds?
Can we prove a Ω(1

ε2) lower bound for computing a (1− ε)-approximation in bipartite
graphs?

References
1 Hasan Abasi and Nader H. Bshouty. On learning graphs with edge-detecting queries. In

Aurélien Garivier and Satyen Kale, editors, Algorithmic Learning Theory, ALT 2019, 22-24
March 2019, Chicago, Illinois, USA, volume 98 of Proceedings of Machine Learning Research,
pages 3–30. PMLR, 2019. URL: http://proceedings.mlr.press/v98/abasi19a.html.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Information and Computation, 222:59–79,
2013. 38th International Colloquium on Automata, Languages and Programming (ICALP
2011). doi:10.1016/j.ic.2012.10.006.

3 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a
hidden matching. SIAM J. Comput., 33(2):487–501, 2004. doi:10.1137/S0097539702420139.

4 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1616–1635. SIAM, 2019. doi:10.1137/1.9781611975482.98.

5 Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and single
element recovery via linear and or queries, 2020. arXiv:2007.06098.

6 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016. doi:10.1137/1.9781611974331.ch93.

7 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. In Anna R. Karlin, editor,
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 38:1–38:21, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2018.38.

8 Aaron Bernstein. Improved Bounds for Matching in Random-Order Streams. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:13, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.12.

9 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016. doi:10.1137/1.9781611974331.ch92.

10 Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary
real weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, COLT 2013 - The 26th
Annual Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA,
volume 30 of JMLR Workshop and Conference Proceedings, pages 797–818. JMLR.org, 2013.
URL: http://proceedings.mlr.press/v30/Choi13.html.

11 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC

FSTTCS 2020

http://proceedings.mlr.press/v98/abasi19a.html
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/1.9781611975482.98
http://arxiv.org/abs/2007.06098
https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.4230/LIPIcs.ITCS.2018.38
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1137/1.9781611974331.ch92
http://proceedings.mlr.press/v30/Choi13.html

26:14 Constructing Large Matchings via Query Access to a Maximal Matching Oracle

’08, page 749–758, New York, NY, USA, 2008. Association for Computing Machinery. doi:
10.1145/1374376.1374484.

12 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in
dynamic graph streams. In 35th Computational Complexity Conference, CCC 2020, LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

13 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1–2):490–508, June 2012.

14 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016. doi:10.1109/ICDMW.
2016.0092.

15 Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page 1773–1785, USA,
2020. Society for Industrial and Applied Mathematics.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, December
2005. doi:10.1016/j.tcs.2005.09.013.

17 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, page 491–500, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293611.3331603.

18 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 468–485. SIAM, 2012. doi:10.1137/1.9781611973099.41.

19 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/s004530010033.

20 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76(3):654–683, 2016. doi:10.1007/s00453-016-0138-7.

21 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more
passes over graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and
Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.15.

22 Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697.
SIAM, 2013. doi:10.1137/1.9781611973105.121.

23 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages
840–852. Springer, 2015. doi:10.1007/978-3-662-48350-3_70.

24 Christian Konrad. A Simple Augmentation Method for Matchings with Applications to
Streaming Algorithms. In Igor Potapov, Paul Spirakis, and James Worrell, editors, 43rd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages 74:1–74:16,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.MFCS.2018.74.

https://doi.org/10.1145/1374376.1374484
https://doi.org/10.1145/1374376.1374484
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1007/s004530010033
https://doi.org/10.1007/s00453-016-0138-7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.4230/LIPIcs.MFCS.2018.74

L. K. b. Khalil and C. Konrad 26:15

25 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and
Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial Optimiz-
ation. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th
International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-
ceedings, volume 7408 of Lecture Notes in Computer Science, pages 231–242. Springer, 2012.
doi:10.1007/978-3-642-32512-0_20.

26 Andrew McGregor. Finding graph matchings in data streams. In Proceedings of the 8th Interna-
tional Workshop on Approximation, Randomization and Combinatorial Optimization Problems,
and Proceedings of the 9th International Conference on Randamization and Computation:
Algorithms and Techniques, APPROX’05/RANDOM’05, page 170–181, Berlin, Heidelberg,
2005. Springer-Verlag. doi:10.1007/11538462_15.

27 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing Exact Minimum
Cuts Without Knowing the Graph. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 39:1–39:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2018.39.

28 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion
Streams. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 435–448, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.435.

29 Sumedh Tirodkar. Deterministic Algorithms for Maximum Matching on General Graphs in
the Semi-Streaming Model. In Sumit Ganguly and Paritosh Pandya, editors, 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018), volume 122 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 39:1–39:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSTTCS.2018.39.

FSTTCS 2020

https://doi.org/10.1007/978-3-642-32512-0_20
https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/LIPIcs.ITCS.2018.39
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.39

Planted Models for the Densest k-Subgraph
Problem
Yash Khanna
Indian Institute of Science, Bangalore, India
yashkhanna@iisc.ac.in

Anand Louis
Indian Institute of Science, Bangalore, India
anandl@iisc.ac.in

Abstract
Given an undirected graph G, the Densest k-subgraph problem (DkS) asks to compute a set
S ⊂ V of cardinality |S| ≤ k such that the weight of edges inside S is maximized. This is a
fundamental NP-hard problem whose approximability, inspite of many decades of research, is yet
to be settled. The current best known approximation algorithm due to Bhaskara et al. (2010)
computes a O

(
n1/4+ε) approximation in time nO(1/ε), for any ε > 0.

We ask what are some “easier” instances of this problem? We propose some natural semi-
random models of instances with a planted dense subgraph, and study approximation algorithms for
computing the densest subgraph in them. These models are inspired by the semi-random models
of instances studied for various other graph problems such as the independent set problem, graph
partitioning problems etc. For a large range of parameters of these models, we get significantly better
approximation factors for the Densest k-subgraph problem. Moreover, our algorithm recovers a
large part of the planted solution.

2012 ACM Subject Classification Theory of computation → Semidefinite programming; Theory of
computation → Discrete optimization; Theory of computation → Graph algorithms analysis

Keywords and phrases Densest k-Subgraph, Semi-Random models, Planted Models, Semidefinite
Programming, Approximation Algorithms, Beyond Worst Case Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.27

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.13978.

Funding Anand Louis: AL was supported in part by SERB Award ECR/2017/003296 and a Pratiksha
Trust Young Investigator Award.

Acknowledgements We thank Rakesh Venkat for helpful discussions. We also thank the anonymous
reviewers for their suggestions and comments on earlier versions of this paper.

1 Introduction

Given a weighted undirected graph G = (V,E,w) with non-negative edge weights given
by w : E → R+, and an integer k ∈ Z+, the Densest k-subgraph problem (DkS) asks
to compute a set S ⊂ V of cardinality |S| ≤ k such that the weight of edges inside S
(i.e.,

∑
i,j∈S w ({i, j})) is maximized (if {i, j} /∈ E, we assume w.l.o.g. that w ({i, j}) = 0).

Computing the DkS of a graph is a fundamental NP-hard problem. There has been a lot of
work on studying approximation algorithms for DkS, we give a brief survey in Section 1.3.

The current best known approximation algorithm [6] computes an O
(
n1/4+ε) approx-

imation in time nO(1/ε) for any ε > 0. On the hardness side, Manurangsi [31] showed that
assuming the exponential time hypothesis (ETH), there is no polynomial time algorithm
that approximates this to within n1/(log logn)c factor where c > 0 is some fixed constant.
There are hardness of approximation results known for this problem assuming various other

© Yash Khanna and Anand Louis;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yashkhanna@iisc.ac.in
mailto:anandl@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.27
https://arxiv.org/abs/2004.13978
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Planted Models for the Densest k-Subgraph Problem

hardness assumptions, see Section 1.3 for a brief survey. But there is still a huge gap between
the upper and lower bounds on the approximability of this problem.

Given this status of the approximability of the Densest k-subgraph problem, we ask
what are some “easier” instances of this problem? We propose some natural semi-random
models of instances with a planted dense subgraph, and study approximation algorithms for
computing the densest subgraph in them. Studying semi-random models of instances has been
a very fruitful direction of study towards understanding the complexity for various NP-hard
problems such as graph partitioning problems [28, 29, 26, 27], independent sets [13, 32], graph
coloring [1, 11, 12], etc. By studying algorithms for instances where some parts are chosen
to be arbitrary and some parts are chosen to be random, one can understand which aspects
of the problem make it computationally intractable. Besides being of natural theoretical
interest, studying approximation algorithms for semi-random models of instances can also be
practically useful since some natural semi-random models of instances can be better models
of instances arising in practice than the worst-case instances. Therefore, designing algorithms
specifically for such models can help to bridge the gap between theory and practice in the
study of algorithms. Some random and semi-random models of instances of the Densest
k-subgraph problem (and its many variants) have been studied in [2, 6, 8, 19, 20, 21, 33, 34],
we discuss them in Section 1.3. Our models are primarily inspired by the densest subgraph
models mentioned above as well as the semi-random models of instances for other problems
[13, 32] studied in the literature. For a large range of parameters of these models, we get
significantly better approximation factors for the Densest k-subgraph problem, and also
show that we can recover a large part of the planted solution.

We note that semidefinite programming (SDP) based methods have been popularly used
in many randomized models for different problems, including the Densest k-subgraph
problem [19, 20, 21]. And thus, another motivation for our work is to understand the power
of SDPs in approximating the Densest k-subgraph problem. Since even strong SDP
relaxations of the problem have a large integrality gap [7] for worst case instances (see
Section 1.3), we ask what families of instances can SDPs approximate well? In addition to
being of theoretical interest, algorithms using the basic SDP also have a smaller running time.
In comparison, the algorithm of [6] produces an O

(
n1/4+ε) approximation for worst-case

instances in time nO(1/ε); their algorithm is based on rounding an LP hierarchy, but they
also show that their algorithm can be executed without solving an LP and obtain the same
guarantees.

1.1 Our models and results
The main inspiration for our models are the semi-random models of instances for the
independent set problem [13, 32]. Their instances are constructed as follows. Starting with
a set of vertices V , a subset of k vertices is chosen to form the independent set S, and
edges are added between each pair in S × (V \ S) independently with probability p. Finally,
an arbitrary graph is added on V \ S. They study the values of k and p for which they
can recover a large independent set. Our models can be viewed as analogs of this model
to the Densest k-subgraph problem: edges are added between each pair in S × (V \ S)
independently with probability p, and then edges are added in S to form a dense subset.
Since we also guarantee that we can recover a large part of the planted dense subgraph S,
we also need to assume that the graph induced on V \ S is “far” from containing a dense
subgraph. We now define our models.

I Definition 1.1 (DkSExp(n, k, d, δ, d′, λ)). An instance of DkSExp(n, k, d, δ, d′, λ) is gener-
ated as follows,

Y. Khanna and A. Louis 27:3

1. We partition V into two sets, S and V \ S with |S| = k. We add edges (of weight 1)
between pairs in S × (V \ S) independently with probability p def= δd/k.

2. We add edges of arbitrary non-negative weights between arbitrary pairs of vertices in S
such that the graph induced on S has average weighted degree d.

3. We add edges of arbitrary non-negative weights between arbitrary pairs of vertices in
V \ S such that the graph induced on V \ S is a (d′, λ)-expander (see Definition 1.10 for
definition).

4. (Monotone adversary) Arbitrarily delete any of the edges added in step 1 and step 3.
5. Output the resulting graph.

We note that the step 2, step 3, and step 4 in the construction of the instance above are
adversarial steps.

DkSExp(n, k, d, δ, d′, λ) are a class of instances that have a prominent dense subset of
size k. Note that, since the graph induced on V \ S is a subset of an expander graph, it
would not have any dense subsets. We also note that the monotone adversary can make
significant changes to graph structure. For example, the graph induced on V \ S can be
neither d′-regular nor an expander after the action of the monotone adversary.

We require δ < 1 in step 1 for the following reason. For any fixed set S′ ⊂ V \ S such
that |S′| = O (k), the expected weight of edges in the bipartite graph induced on S ∪ S′ is
O (δkd). Since we want the graph induced on S to be the densest k-subgraph (the total of
edges in the graph induced on S is kd/2), we restrict δ to be at most 1.

We present our main results below, note that our algorithm outputs a dense subgraph of
size k and its performance is measured with respect to the density of the planted subgraph
G[S], i.e. kd/2.

I Definition 1.2. We define ρ(V ′) def=
(∑

i,j∈V ′ w ({i, j})
)
/2 for any V ′ ⊆ V .

I Theorem 1.3 (Informal version of Theorem 2.1). Given an instance of
DkSExp(n, k, d, δ, d′, λ)where

δ = Θ
(
kd′

nd

)
,

δd

k
= Ω

(
logn
n

)
, and ν = Θ

√δ + λ+
√
d′

d

 ,

there exists a deterministic polynomial time algorithm that outputs with high probability (over
the instance) a vertex set Q of size k such that ρ (Q) ≥ (1− ν) kd2 . The above algorithm also
computes a vertex set T such that

(a) |T | ≤ (1 +O (ν)) k . (b) ρ(T ∩ S) ≥ (1−O (ν)) kd2 .

I Remark 1.4. In Theorem 1.3, we restrict the range of δ for the following reason. An
interesting setting of parameters is when the average degree of vertices in S and V \ S are
within constant factors of each other. Then the expected average degree of a vertex in S is
d+ p(n− k). And for a vertex in V \ S, the expected average degree is d′ + kp. Thus setting,

d+ p(n− k) = Θ(d′ + kp) =⇒ δ = Θ
(
kd′

nd

) (
Recall, p = δd

k

)
.

We also study another interesting model with a different assumption on the subgraph
G[V \ S].

FSTTCS 2020

27:4 Planted Models for the Densest k-Subgraph Problem

I Definition 1.5. DkS(n, k, d, δ, γ) is generated similarly to DkSExp(n, k, d, δ, d′, λ) except
in step 3, where we add edges between arbitrary pairs of vertices in V \ S such that the graph
induced on V \ S has the following property : ρ(V ′) ≤ γd |V ′| ∀V ′ ⊆ V \ S .

By construction, the graph induced on V \ S does not have very dense subsets.

I Theorem 1.6. Given an instance of DkS(n, k, d, δ, γ) where

δ = Θ
(
k

n

)
,

δd

k
= Ω

(
logn
n

)
, and τ = Θ

(√
δ + γ + 1√

d

)
,

there is a deterministic polynomial time algorithm that outputs with high probability (over the
instance) a vertex set Q of size k such that ρ (Q) ≥ (1− τ) kd2 . The above algorithm also
computes a vertex set T such that

(a) |T | ≤ (1 +O (τ)) k . (b) ρ(T ∩ S) ≥ (1−O (τ)) kd2 .

Other results
We also study two variants of DkSExp(n, k, d, δ, d′, λ) and DkS(n, k, d, δ, γ) where the sub-
graph G[S] is d-regular.

1. DkSExpReg(n, k, d, δ, d′, λ) is same as DkSExp(n, k, d, δ, d′, λ) except in step 2, which
requires the subgraph G[S] to be an arbitrary d−regular graph.
I Theorem 1.7. Given an instance of DkSExpReg(n, k, d, δ, d′, λ)where

δ = Θ
(
kd′

nd

)
,

δd

k
= Ω

(
logn
n

)
, and ν′ = Θ


√
d′

d

(
1− δ − λ

d

)
 ,

there is a deterministic polynomial time algorithm that outputs with high probability (over
the instance) a vertex set Q of size k such that

a. ρ (Q) ≥ (1− ν′) kd2 . b. |Q ∩ S| ≥ (1−O (ν′)) k .

2. DkSReg(n, k, d, δ, γ) is same as DkS(n, k, d, δ, γ) except in step 2, which requires the
subgraph G[S] to be an arbitrary d−regular graph.
I Theorem 1.8. Given an instance of DkSReg(n, k, d, δ, γ)where

δ = Θ
(
k

n

)
,

δd

k
= Ω

(
logn
n

)
, and τ ′ = Θ

(
1√

d (1− γ − δ)

)
,

there is a deterministic polynomial time algorithm that outputs with high probability (over
the instance) a vertex set Q of size k such that

a. ρ (Q) ≥ (1− τ ′) kd2 . b. |Q ∩ S| ≥ (1−O (τ ′)) k .

We will show that for most natural regime of parameters, we get a better approximation
factors in the case when G[S] is a d-regular graph.

Y. Khanna and A. Louis 27:5

I Remark 1.9. It has been pointed out to us by anonymous reviewers that for a large range of
parameters of the DkS(n, k, d, δ, γ) and DkSReg(n, k, d, δ, γ) models, arg maxW⊆V ρ(W)/ |W |
will be a subset of S; for any graph G = (V,E), the algorithm due to Charikar [10] can be
used to compute arg maxW⊆V ρ(W)/ |W | in polynomial time. It is plausible that using this
algorithm iteratively, one can recover a “large” part of S. However the algorithm described
in Theorem 1.6 and Theorem 1.8 gives a more direct approach to recover a large part of S.

1.2 Notation
We use n def= |V |, and use V and [n] def= {1, 2, . . . , n} interchangeably. We assume w.l.o.g.
that G is a complete graph: if {i, j} /∈ E, we add {i, j} to E and set w ({i, j}) = 0. We use
A to denote the weighted adjacency matrix of G, i.e. Aij = w ({i, j}) ∀i, j ∈ V . The degree
of vertex i is defined as di

def=
∑
j∈V

w ({i, j}).

For V ′ ⊆ V , we use G[V ′] to denote the subgraph induced on V ′ and V ′ to denote V \V ′.
For a vector v, we use ‖v‖ to denote the ‖v‖2. For a matrix A, we use ‖A‖ to denote the

spectral norm ‖A‖ def= max
x 6=0

‖Ax‖
‖x‖

.

We define probability distributions µ over finite sets Ω. For a random variable (r.v.)
X : Ω → R, its expectation is denoted by Eω∼µ[X]. In particular, we define the two
distributions which we use below.
1. For a vertex set V ′ ⊆ V , we define a probability (uniform) distribution (fV ′) on the

vertex set V ′ as follows. For a vertex i ∈ V ′, fV ′(i) = 1
|V ′|

. We use i ∼ V ′ to denote

i ∼ fV ′ for clarity.
2. For a vertex set V ′ ⊆ V , we define a probability distribution (fE(G[V ′])) on the edges

of G[V ′] as follows. For an edge e ∈ E(G[V ′]), fE(G[V ′])(e) = w (e)
ρ(V ′) . Again, we use

e ∼ E(G[V ′]) to denote e ∼ fE(G[V ′]) for convenience.

I Definition 1.10 ((d, λ)-expanders). A graph H = (V,E,w) is said to be a (d, λ)-expander
if H is d-regular and |λi| ≤ λ, ∀i ∈ [n] \ {1}, where λ1 ≥ λ2 . . . ≥ λn are the eigenvalues of
the weighted adjacency matrix of H.

1.3 Related Work
Densest k-subgraph. There has been a lot of work on the Densest k-subgraph prob-
lem and its variants. The current best known approximation algorithm, due to Bhaskara et
al. [6], gives an approximation ratio of O(n1/4+ε) in time nO(1/ε), for all values of ε > 0 (for
ε = 1/ logn, we get a ratio of O

(
n1/4)). They also extend their approach to give a O(n1/4−ε)

approximation algorithm which runs in time 2nO(ε) . They improved the prior results of Feige
et al. [14] which gave a n1/3−ε approximation for some small ε > 0. [14] also give a greedy
algorithm which has an approximation factor of O (n/k).

When k = Θ(n), Asahiro et al. [3] gave a constant factor approximation algorithm. Many
other works have looked at this problem using linear and semidefinite programming techniques.
Srivastav et al. [37] gave a randomized rounding algorithm using a SDP relaxation in the
case when k = n/c for c > 1, they improved the constants for certain values of k over the
results of [3]. Feige and Langberg [15] use a different SDP to get an approximation of slightly
above k/n for the case when k is roughly n/2. Feige and Seltser [16] construct examples for
which their SDP has an integrality gap of Ω(n1/3).

FSTTCS 2020

27:6 Planted Models for the Densest k-Subgraph Problem

There has been work done on a related problem called the maximum density subgraph,
where the objective is to find a subgraph which maximizes the ratio of number of edges to
the number of vertices. Goldberg [18] and Gallo et al. [17] had given an algorithm to solve
this problem exactly using maximum flow techniques. Later, Charikar [10] gave an algorithm
based on a linear programming method. This paper also solves the problem for directed
graphs using a notion of density given by Kannan and Vinay [22]. Khuller and Saha [24]
gave a max-flow based algorithm in the directed setting.

On the hardness side, Khot [23] showed that it does not have a PTAS unless NP has
subexponential algorithms. There has been some works based on some other hardness
assumptions. Assuming the small-set expansion hypothesis, Raghavendra and Steurer [35]
show that it is NP-hard to approximate DkS to any constant factor. Under the deterministic
ETH assumption, Braverman et al. [9] show that it requires nΩ(logn) time to approximate
DkS with perfect completeness to within 1 + ε factor (for a universal constant ε > 0). More
recently Manurangsi [31] showed assuming the exponential time hypothesis (ETH), that
there is no polynomial time algorithm that approximates this to within n1/(log logn)c factor
where c > 0 is some fixed constant independent of n.

Bhaskara et al. [7] study strong SDP relaxations of the problem and show that the
integrality gap of DkS remains nΩε(1) even after n1−ε rounds of the Lasserre hierarchy. Also
for nΩ(ε) rounds, the gap is as large as n2/53−ε. Moreover for the Sherali-Adams relaxation,
they show a lower bound of Ω

(
n1/4/ log3 n

)
on the integrality gap for Ω (logn/ log logn)

rounds.
Ames [2] studies the planted DkS problem using a non-SDP convex relaxation for instances

of the following kind. Let S be the planted dense subgraph (of size k), they claim that if
G[S] contains at least

(
k
2
)
− c1k2 edges and the subgraph G[V \ S] contains at most c2k2

edges where c1, c2 are constants depending on other parameters of the graph like the density
of the subgraph G[S] etc, then under some mild technical conditions, they show that the
unique optimal solution to their convex program is integral and corresponds to the set S.
They also study analogous models for bipartite graphs.

Random models for DkS. Bhaskara et al. [6] study a few random models of instances for
the Densest k-subgraph problem, we describe them here. Let D1 denote the distribution of
Erdős-Rényi random graphs G(n, p) and let D2 denote the distribution of graphs constructed
as follows. Starting with a “host graph” of average degree D (D def= np), a set S of k vertices
is chosen arbitrarily and the subgraph on S is replaced with a dense subgraph of average
degree d. Given G1 ∼ D1 and G2 ∼ D2, the problem is to distinguish between the two
distributions. They consider this problem in three different models with varying assumptions
on D2, (i) Random Planted Model : the host graph and the planted dense subgraph are
random, (ii) Dense in Random Model : an arbitrary dense graph is planted inside a random
graph, and (iii) Dense vs Random Model : an arbitrary dense graph is planted inside an
arbitrary graph.

The planted dense subgraph recovery problem is similar in spirit to the Random Planted
Model where the goal is to recover a hidden community of size k within a larger graph which
is constructed as follows : two vertices are connected by an edge with probability p if they
belong to the same community and with probability q otherwise. The typical setting of
parameters is, p > q. The works by [33, 20, 34, 19, 21, 8, 2] studies this problem using SDP
based, spectral, statistical, message passing algorithms etc.

We give a brief overview of their distinguishing algorithms in the three models. Given
a graph on n vertices with average degree davg, its log-density is defined as log davg

logn . Let

Y. Khanna and A. Louis 27:7

Θ1 and Θ2 denote the log-density of G1 and the log-density of the planted subgraph G2[S]
respectively. Their algorithm is based on the counts of a specially constructed small-sized
tree (the size of which is parameterized by relatively prime integers r, s such that s > r > 0)
as a subgraph in G1 and G2. They show that if Θ1 ≤ r/s, then G1 will have at most poly-
logarithmic (O (logn)s−r) number of such subtrees. On the other hand, when Θ2 ≥ r/s+ ε

where ε > 0 is a small constant, they show that there at least kε such subtrees (even in the
Dense vs Random Model). Now if k > (logn)ω(1), they use this difference in the log-densities
to show the gap between counts of such trees in G1 and G2, and hence are able to distinguish
between the two distributions. They show that the running time of this algorithm is nO(r).
Also for constant Θ1 and Θ2, the running time is nO(1/(Θ2−Θ1)) ([6, 5]). We call this algorithm
the “subgraph counting” algorithm.

The distinguishing problem can be restated as the following : For a given n, k, p, we are
interested in finding the smallest value of d for which the problem can be solved. For a certain
range of parameters, spectral, SDP based methods, etc. can be used to work for small values
of d. For example, in the Dense vs Random Model, when k >

√
n a natural SDP relaxation

of DkS can be used to distinguish between G1 and G2 for d >
√
D+ kD/n (which is smaller

than Dlogn k, the threshold of the subgraph counting algorithm). They upper bound the cost
of the optimal SDP solution for a random graph G1, by constructing a feasible dual solution
which certifies (w.h.p.) that it cannot contain a k-subgraph with density more than that
of
√
D + kD/n. We use their results in bounding the cost of the SDP contribution from

G[V \ S] in the DkSExp(n, k, d, δ, d′, λ) and DkSExpReg(n, k, d, δ, d′, λ) models.
The distribution D2 of graphs considered in the Dense in Random Model (arbitrary dense

graph planted in a random graph) is similar to a subset of DkSExp(n, k, d, δ, d′, λ) instances
since G[S] is an arbitrary dense subgraph in both models and G[S, V \ S] is a random graph
in both the models. The difference is in the subgraph G[V \S], where this is a random graph
in the Dense in Random model whereas our models require it to be a regular expander.
While our proofs require the expander to be regular, they can also be made to work for
random graphs since we use the bound on the SDP value from [6] (analysis in Section 2.2).
We note that while random graphs are good expanders w.h.p., the converse of this fact is
not true in general, since there are known deterministic constructions of expander graphs.

We look at the range of parameters where the following two algorithms can be used to
solve the Dense in Random problem. One is the SDP based algorithm proposed in our
work (closely related to DkSExp(n, k, d, δ, d′, λ) model) and second is the subgraph counting
algorithm which uses the difference in the log-densities of the planted subgraph and the host
graph to distinguish the two distributions from [6, 5]. For the purposes of comparison, we
consider the case when k, d = poly(n) and p = 1/poly(n). Also we ignore the low-order terms
in these expressions. In this regime, our algorithms’ threshold is

d = Ω (max {pk,√np}) (1)

since we can use the objective value of the SDP 1.11 to distinguish between the cases in this
range of d. For G1, this value is at most k

(
pk +√np

)
/2 (Lemma 2.12) while for G2 it is at

least kd/2. Moreover, Algorithm 1 can be used to recover a part of the planted solution as
the value of ν is small (when d satisfies Equation (1), ν is bounded away and smaller than 1)
in this regime (see Section 2 and Theorem 2.1).

The counting algorithms’ threshold (or the log-density threshold) is

log d
log k −

lognp
logn > 0 ⇐⇒ log d > log k lognp

logn ⇐⇒ d = Ω
(
(np)logn k

)

FSTTCS 2020

27:8 Planted Models for the Densest k-Subgraph Problem

and its running time is n
O

(1
logk d− logn np

)
. We look at different ranges of k and compare

the values of d for which the two algorithms can solve the distinguishing problem.

1. k = Θ (
√
n).

In this case, max
{
pk,
√
np
}

= √np. This matches with the log-density threshold. Note
that for p = Θ (1/

√
n), we get d = Ω

(
n1/4). To the best of our knowledge, there is no

poly-time algorithm which beats this lower bound.
2. k = ω (

√
n).

In this setting, (np)logn k = ω
(√
np
)
. Also, (np)logn k = k(p)logn k = ω (pk). Thus our

algorithm has a better threshold in this regime. There is a spectral algorithm, see Section
6.2 of [6], which uses the second eigenvalue of the adjacency matrix which can distinguish
with the same threshold as our algorithm in this regime.

3. k = o (
√
n).

In this case, (np)logn k = o
(√
np
)
. Here the log-density threshold is smaller than our

threshold. Therefore the algorithm by Bhaskara et al. [6] works for a larger range of
parameters than our algorithms.

Other semi-random models. Semi-random instances of many other fundamental problems
have been studied in the literature. This includes the unique games problem [25], graph
coloring [1, 11, 12], graph partitioning problems such as balanced-cut, multi-cut, small set
expansion [28, 29, 26, 27], etc. [30] studies the problem of learning communities in the
Stochastic Block Model in the presence of adversarial errors.

McKenzie, Mehta and Trevisan [32] study the complexity of the independent set problem
in the Feige-Killian model [13]. Instead of using a SDP relaxation for the problem, they use a
“crude” SDP (introduced in [25]) which exploits the geometry of vectors (orthogonality etc.)
to reveal the planted set. They bound the SDP contribution by the vertex pairs, S × V \ S
using the Grothendieck inequality and thereby showing that the vectors in S are “clustered”
together. Their algorithm outputs w.h.p. a large independent set when k = Ω

(
n2/3/p1/3).

Also, for the parameter range k = Ω
(
n2/3/p

)
, it outputs a list of at most n independent sets

of size k, one of which is the planted one.

Semi-random models for graph partitioning problems. The problem of DkS is very closely
related to the Small Set Expansion problem (SSE, henceforth). This problem has been
very well studied in the literature. At the first glance, the problem of DkS can be thought
of as finding a small set S of size k which is non-expanding. The densest set is typically
a non-expanding set because most of the edges incident on S would remain inside it than
leaving it. But the converse is not true, since all sets of cardinality k which have small
expansion are not dense. In particular, in our model, by the action of the monotone adversary
on V \ S, there can exist many small sets (of size O (k)) which not only have a very small
fraction of edges going outside but can have very few edges left inside as well. This makes the
problem of DkS very different from the SSE problem. Nevertheless, we survey some related
works of semi-random models of SSE. The works [36, 4] study the worst-case approximation
factors for the SSE problem and give bi-criteria approximation algorithms for the same.
Their algorithms are also based on rounding a SDP relaxation.

Makarychev, Markarychev and Vijayaraghavan [28] study the complexity of many graph
partitioning problems including balanced cut, SSE, and multi-cut etc. They consider the
following model : Partition V into (S, V \S) such that G[S] and G[V \S] are arbitrary while

Y. Khanna and A. Louis 27:9

G[S, V \ S] is a random graph with some probability ε. They allow an adversary to add
edges within S and V \ S, and delete any edges across these sets. They get constant factor
bi-criteria approximation algorithms (under some mild technical conditions) in this model.
In the case of balanced cut and SSE problems, when the partitions themselves have enough
expansion within them, they can recover the planted cut upto a small error.

Louis and Venkat [26] study the problem of balanced vertex expansion in a natural
semi-random model and get a bi-criteria approximation algorithm for the same. They even
get an exact recovery for a restricted set of parameters in their model. Their proof consisted
of constructing an optimal solution to the dual of the SDP relaxation and using it to show
the integrality of the optimal primal solution. In [27], they study the problem for a general,
balanced k−way vertex (and edge) expansion and give efficient algorithms for the same.
Their construction consists of k (almost) regular expander graphs (over vertices {Si}ki=1,
each of size n/k) and then adding edges across them ensuring that the expansion of each
of the G[Si]′s is small. Their algorithm is based on rounding a SDP relaxation and then
showing that the vertices of each Si are “clustered” together around the mean vector µi and
for different sets Si and Sj , µi and µj are sufficiently apart. This gives a way to recover
a good solution. Our approach also shows that the SDP vectors for the vertices in S are
“clustered” together. However arriving at such a conclusion requires different ideas because
of the new challenges posed by the nature of the problem and assumptions on our models.

1.4 SDP formulation
We use the following Semidefinite/Vector Programming relaxation for our problem, over the
vectors Xi (i ∈ [n]) and I.

I SDP 1.11.

maximize 1
2

n∑
i,j=1

Aij 〈Xi, Xj〉 (2)

subject to
n∑
i=1
〈Xi, Xi〉 = k (3)

n∑
j=1
〈Xi, Xj〉 ≤ k 〈Xi, Xi〉 ∀i ∈ [n] (4)

0 ≤ 〈Xi, Xj〉 ≤ 〈Xi, Xi〉 ∀i, j ∈ [n], (i 6= j) (5)
〈Xi, Xi〉 ≤ 1 ∀i ∈ [n] (6)
〈Xi, I〉 = 〈Xi, Xi〉 ∀i ∈ [n] (7)
〈I, I〉 = 1 (8)

We note that these programs can be solved efficiently using standard algorithms, like ellipsoid
and interior point methods. To see, why the above SDP 1.11 is a relaxation, let S be the
optimal set and v be any unit vector. It is easy to verify the solution set,

Xi =
{
v i ∈ S
0 i ∈ V \ S

and I = v .

is feasible for SDP 1.11 and gives the objective value equal to its optimal density.

FSTTCS 2020

27:10 Planted Models for the Densest k-Subgraph Problem

1.5 Proof Overview
Our algorithms are based on rounding an SDP relaxation (SDP 1.11) for the Densest
k-subgraph problem. At a high level, we show that most of the SDP mass is concentrated
on the vertices in S (Proposition 2.16). To show this, we begin by observing that the SDP
objective value is at least kd/2 since the integer optimal solution to the SDP has value at
least kd/2. Therefore, by proving an appropriate upper bound on the SDP value from edges
in S × (V \ S) (Proposition 2.2) and the edges in V \ S (Proposition 2.11), we can get a
lower bound on the SDP value from the edges inside S.

The edges in S × (V \ S) form a random bipartite graph. We can bound the contribution
towards the SDP mass from this part by bounding the contribution from the “expected
graph” (Lemma 2.5) and the contribution from the random graph minus the expected graph
(Corollary 2.10). The contribution from the latter part can be bounded using bounds on the
spectra of random matrices (Corollary 2.8). Since the expected graph is a complete weighted
graph with edge weights equal to the edge probability, the contribution from this part can
be bounded using the SDP constraints (Lemma 2.5).

For DkSExp(n, k, d, δ, d′, λ) and DkSExpReg(n, k, d, δ, d′, λ), we use a result by [6]. They
construct a feasible solution to the dual of the SDP for random graphs, thereby bounding
the cost of the optimal solution of the primal. Their proof only uses a bound on the spectral
gap of the graph, and therefore, holds also for expander graphs. Therefore, this result
gives us the desired bound on the SDP value on the edges inside V \ S in these models
(Proposition 2.11). We also give an alternate proof of the same result using the spectral
properties of the adjacency matrix of V \ S in the full version of the paper; this approach is
similar in spirit to the proof of the classical expander mixing lemma.

For DkS(n, k, d, δ, γ) and DkSReg(n, k, d, δ, γ), we bound the SDP value on the edges
inside V \S using a result of Charikar [10]. This work showed that for a graph H = (V ′, E′),
a natural LP relaxation can be used to compute maxW⊆V ′ ρ(W)/ |W |. We show that we
can use our SDP solution to construct a feasible solution for this LP. Since ρ(W)/ |W | ≤ γd,
∀W ⊂ V \ S in this model, Charikar’s result [10] implies that the cost of any feasible LP
solution can be bounded by γd. This gives us the desired bound on the SDP value on the
edges inside V \ S in these models.

These bounds establish that most of the SDP mass is on the edges inside S. Using the
SDP constraints, we show that the set of vertices corresponding to all the “long” vectors
will contain a large weight of edges inside S (Corollary 2.19). Moreover, since the sum of
squared lengths of the vectors is k (from the SDP constraints), we can only have O (k) long
vectors (Lemma 2.20). Using standard techniques from the literature, we can prune this set
to obtain a set of size at most k and having large density [37]. In the case when the graph
induced on S is d-regular, we show that if a set contains a large fraction of the edges inside
S, then it must also have a large intersection with S. We present our complete procedure in
Algorithm 1.

We note that while this framework for showing that the SDP mass is concentrated on
the planted solution has been used for designing algorithms for semi-random instances of
other problems as well, proving quantitative bounds is problem-specific and model-specific:
different problems and different models require different approaches.

Organization of the paper

Due to space constraints, we present the complete version (with all the details and proofs)
of Section 2 in the full version of the paper, however we do state the key technical results

Y. Khanna and A. Louis 27:11

here with the proof of Theorem 2.1. We state and prove the formal versions of Theorem 1.6,
Theorem 1.7, and Theorem 1.8 in the full version of the paper.

2 Analysis of DkSExp(n, k, d, δ, d′, λ)

In this section, we will analyse the DkSExp(n, k, d, δ, d′, λ) model. Our main result is the
following.

I Theorem 2.1 (Formal version of Theorem 1.3). There exist universal constants κ, ξ ∈ R+ and
a deterministic polynomial time algorithm, which takes an instance of DkSExp(n, k, d, δ, d′, λ)
where

ν = 2

√√√√3
(

6δ + ξ

√
δn

dk
+ λ

d
+ d′k

(n− k) d

)
,

satisfying ν ∈ (0, 1), and δd/k ∈ [κ logn/n, 1), and outputs with high probability (over the
instance) a vertex set Q of size k such that

ρ(Q) ≥ (1− ν) kd2 .

The above algorithm also computes a vertex set T such that

(a) |T | ≤ k
(

1 + ν

5

)
. (b) ρ(T ∩ S) ≥

(
1− ν

2

) kd
2 .

In the analysis below, without loss of generality we can ignore the adversarial action
(step 4 of the model construction) to have taken place. Let us assume the montone adversary
removes edges arbitrarily from the subgraphs G[V \ S] & G[S, V \ S] and the new resulting
adjacency matrix is A′. Then for any feasible solution {{Yi}ni=1 , I} of the SDP, we have∑
i∈P,j∈Q

A′ij 〈Yi, Yj〉 ≤
∑

i∈P,j∈Q
Aij 〈Yi, Yj〉 for ∀P,Q ⊆ V . This holds because of the non-

negativity constraint Equation (5). Thus the upper bounds on SDP contribution by vectors
in G[S, V \ S] and G[V \ S] as claimed by Proposition 2.2 and Proposition 2.11 respectively
are intact and the rest of the proof follows exactly. Hence, without loss of generality, we can
ignore this step in the analysis of our algorithm.

2.1 Edges between S and V \ S
In this section, we show an upper bound on

∑
i∈S,j∈V \S

Aij 〈Xi, Xj〉.

I Proposition 2.2. W.h.p. (over the choice of the graph), we have∑
i∈S,j∈V \S

Aij 〈Xi, Xj〉 ≤ 3pk2
(

1− E
i∼S
‖Xi‖2

)
+ ξk

√
np

√(
E
i∼S
‖Xi‖2

)(
1− E

i∼S
‖Xi‖2

)
.

Note that∑
i∈S,j∈V \S

Aij 〈Xi, Xj〉 = p
∑

i∈S,j∈V \S

〈Xi, Xj〉+
∑

i∈S,j∈V \S

(Aij − p) 〈Xi, Xj〉 . (9)

We will bound the two terms in the R.H.S. of Equation (9) separately. The first term relies
only on the expected graph and can be bounded using the SDP constraints. We use bounds
on the eigenvalues of random bipartite graphs to bound the second term.

FSTTCS 2020

27:12 Planted Models for the Densest k-Subgraph Problem

Bound the contribution from the expected graph
We first prove some properties of the SDP solutions that we will use to bound this term.
The following lemma shows that if the expected value of the squared norm of the vectors
corresponding to the set S is “large”, then their expected pairwise inner product is “large”
as well.

I Lemma 2.3. Let {{Yi}ni=1 , I} be any feasible solution of SDP 1.11 and T ⊆ V such that,
E
i∼T
‖Yi‖2 ≥ 1− ε where 0 ≤ ε ≤ 1, then E

i,j∼T
〈Yi, Yj〉 ≥ 1− 4ε.

I Corollary 2.4.

E
i,j∼S

〈Xi, Xj〉 ≥ 4 E
i∼S
‖Xi‖2 − 3 .

We are now ready to bound the first term in Equation (9).

I Lemma 2.5.∑
i∈S,j∈V \S

〈Xi, Xj〉 ≤ 3k2
(

1− E
i∼S
‖Xi‖2

)
.

Bounding the deviation from the expected graph
We now prove the following lemmas which we will use to bound the second term in Equa-
tion (9). Let B be the n× n matrix defined as follows.

Bij
def=
{
Aij − p i ∈ S, j ∈ V \ S or i ∈ V \ S, j ∈ S
0 otherwise

.

I Lemma 2.6.∑
i,j∈V

Bij 〈Xi, Xj〉 ≤ 2k ‖B‖
√(

E
i∼S
‖Xi‖2

)(
1− E

i∼S
‖Xi‖2

)
.

Now, we use the following folklore result to bound ‖B‖.

I Theorem 2.7 ([21], Lemma 30). Let M be a symmetric matrix of size n × n with zero
diagonals and independent entries such that Mij = Mji ∼ Bern (pij) for all i < j with
pij ∈ [0, 1]. Assume pij (1− pij) ≤ r for all i < j and nr = Ω (logn). Then, with high
probability (over the randomness of matrix M),

‖M − E[M]‖ ≤ O (1)
√
nr .

I Corollary 2.8. There exists universal constants κ, ξ ∈ R+ such that if p ∈
[
κ logn
n

, 1
)
,

then

‖B‖ ≤ ξ√np

with high probability (over the choice of the graph).

I Remark 2.9. Note that, Corollary 2.8 holds with high probability when p = Ω (logn/n).
In the rest of the paper, we work in the range of parameters where this lower bound on p is
satisfied. However, we do restate it when explicitly using this bound.

I Corollary 2.10. W.h.p. (over the choice of the graph),∑
i,j∈V

Bij 〈Xi, Xj〉 ≤ 2ξk√np
√(

E
i∼S
‖Xi‖2

)(
1− E

i∼S
‖Xi‖2

)
.

Y. Khanna and A. Louis 27:13

2.2 Edges in V \ S
We recall, the subgraph G[V \S] is a (d′, λ)−expander in the DkSExp(n, k, d, δ, d′, λ) model.
We show the following upper bound on the SDP mass contribution by the vectors in V \ S.

I Proposition 2.11.

∑
i,j∈V \S

Aij 〈Xi, Xj〉 ≤
(
λk + d′k2

n− k

)(
1− E

i∼S
‖Xi‖2

)
.

To prove the above proposition, we use the following results from the Bhaskara et al. [6]
paper.

I Lemma 2.12 ([6], Theorem 6.1). For a G(n, p) (Erdős-Rényi model) graph, the value of
the SDP (SDP 1.11) is at most k2p+O

(
k
√
np
)
with high probability when p = Ω (logn/n).

I Lemma 2.13 ([6], Theorem 6.1). For a (d′, λ)-expander graph on n vertices, the value of

the SDP (SDP 1.11) is at most k
2d′

n
+ kλ .

We note that, though the statement proved in [6] is about random graphs (Lemma 2.12),
their proof follows as is for an expander graph. Since, we are only applying Lemma 2.13 to the
subgraph G[V \S], we use a scaling factor of

(
1− Ei∼S ‖Xi‖2

)
. The proof of Proposition 2.11

follows directly from the above lemma. We also provide an alternate proof of this in the full
version of the paper.

I Remark 2.14. If the subgraph, G[V \ S] is a random graph (G(n− k, p)) as considered in
our discussion in Section 1.3, we can analogously use Lemma 2.12 to get upper bounds on∑
i,j∈V \S Aij 〈Xi, Xj〉.

2.3 Putting things together
We have shown upper bounds on the SDP mass from the edges in S×(V \S) (Proposition 2.2)
and from the edges in V \ S (Proposition 2.11). We combine these results to show that the
average value of 〈Xu, Xv〉 where {u, v} ∈ E (G[S]) is “large” (Proposition 2.16). The SDP
constraint Equation (5) implies the corresponding vertices, u and v have large squared norms
as well. This immediately guides us towards a selection criteria/recovery algorithm. However
we need to output a vertex set of size at most k, we prune this set using a greedy strategy
(Algorithm 1).

I Lemma 2.15.∑
i,j∈S

Aij 〈Xi, Xj〉 = (kd) E
{i,j}∼E(G[S])

〈Xi, Xj〉 .

I Proposition 2.16. W.h.p. (over the choice of the graph), we have E
{i,j}∼E(G[S])

〈Xi, Xj〉 ≥

1− η, where

η = 6δ + ξ

√
δn

dk
+ λ

d
+ d′k

(n− k)d .

Now, we present the complete algorithm below.

FSTTCS 2020

27:14 Planted Models for the Densest k-Subgraph Problem

Algorithm 1 Recovering a dense set Q.

Input: An Instance of DkSExp(n, k, d, δ, d′, λ) / DkSExpReg(n, k, d, δ, d′, λ) /
DkS(n, k, d, δ, γ) / DkSReg(n, k, d, δ, γ) and a parameter 0 < η < 1.

Output: A vertex set Q of size k.
1: Solve SDP 1.11 to get the vectors

{
{Xi}ni=1 , I

}
.

2: α =

{
1/
√

3η For instances of type, DkSExp(n, k, d, δ, d′, λ) or DkS(n, k, d, δ, γ) .
2/√η For instances of type, DkSExpReg(n, k, d, δ, d′, λ) or DkSReg(n, k, d, δ, γ).

3: Let T =
{
i ∈ V : ‖Xi‖2 ≥ 1− αη

}
.

4: Initialize Q = T .
5: if |Q| < k then
6: Arbitrarily add remaining vertices to set Q to make its size k.
7: else
8: while |Q| 6= k do
9: Remove the minimum weighted vertex from the set Q.
10: end while
11: end if
12: Return Q.

Note that if η = 0, the SDP returns an integral solution and we can recover the set S
exactly. Therefore, w.l.o.g. we assume η 6= 0, 1.

To analyse the cost of the solution returned by Algorithm 1, we define two sets as follows.

T ′
def= {{i, j} ∈ E : 〈Xi, Xj〉 ≥ 1− αη} and T

def=
{
i ∈ V : ‖Xi‖2 ≥ 1− αη

}
,

where 1 < α < 1/η is a parameter to be fixed later.
We show that a large weight of the edges inside S also lies in the set T ′.

I Lemma 2.17. W.h.p. (over the choice of the graph),∑
e∈T ′∩E(G[S])

w(e) ≥ kd

2

(
1− 1

α

)
.

The following lemma shows that the subgraph induced on T ∩ S contains all the edges in
T ′ ∩ E (G[S]).

I Lemma 2.18. W.h.p. (over the choice of the graph),

T ′ ∩ E (G[S]) ⊆ E(G[T ∩ S]) .

I Corollary 2.19. W.h.p. (over the choice of the graph),

ρ (T) ≥ ρ (T ∩ S) ≥ kd

2

(
1− 1

α

)
.

We have shown that the subgraph induced on T has a large weight (≈ kd/2). In the next
lemma, we show that the size of set T is not too large compared to k.

I Lemma 2.20. W.h.p. (over the choice of the graph),

|T | ≤ k

1− αη .

To prune the set T and obtain a set of size k, we use a lemma from the work by Srivastav
et al. [37].

Y. Khanna and A. Louis 27:15

I Lemma 2.21 ([37], Lemma 1). Let V ′, V ′′ ⊆ V be non-emply subsets such that |V ′′| ≥ |V ′|,
then the greedy procedure which picks the lowest weighted vertex from V ′′ and removes it

iteratively till we have |V ′| vertices left ensures, ρ (V ′) ≥ |V
′| (|V ′| − 1)

|V ′′| (|V ′′| − 1) ρ (V ′′) .

We are now ready to prove the main result which gives the approximation guarantee of
our algorithm. We also set the value of parameter α which maximizes the density of the
output graph.

Proof of Theorem 2.1. We run Algorithm 1 on DkSExp(n, k, d, δ, d′, λ) with η as given in
Proposition 2.16. From Lemma 2.21, we have a handle on the density of the new set (Q)
after pruning T to a set of size k. The algorithm performs this exactly in the steps 5 to 11.
Let ALG denote the density of this new set (output of Algorithm 1). We have,

ALG ≥
(

k(k − 1)
|T | (|T | − 1)

)(
1− 1

α

)
kd

2 (by Corollary 2.19 and Lemma 2.21)

≥
(

(1− αη)2

1 + αη/(k − 1)

)(
1− 1

α

)
kd

2 (by Lemma 2.20 and dividing by k − 1)

≥
(

(1− αη)2

1 + αη

)(
1− 1

α

)
kd

2 (w.l.o.g., k ≥ 2)

≥ (1− 2αη) (1− αη)
(

1− 1
α

)
kd

2

(
(1− x)2 ≥ 1− 2x & 1

1 + x
≥ 1− x, ∀x ∈ R≥0

)
≥
(

1− 3αη − 1
α

)
kd

2 (rearranging and bounding the positive terms by 0)

=
(

1− 2
√

3η
)
kd

2

(
we fix α = 1/

√
3η
)
.

Letting ν def= 2
√

3η, we get that ALG ≥ (1− τ) kd/2 where

ν = 2

√√√√3
(

6δ + ξ

√
δn

dk
+ λ

d
+ d′k

(n− k)d

)
(using the value of η from Proposition 2.16) .

From Lemma 2.20, |T | ≤ k

1− αη = k

1− (ν/6) ≤ k
(

1 + ν

5

)
. And from Corollary 2.19,

ρ (T ∩ S) ≥ kd

2

(
1− 1

α

)
= kd

2

(
1− ν

2

)
. J

Note that for the parameter range 0 < 2
√

3η < 1 ⇐⇒ 0 < ν < 1, the value of α (= 1/
√

3η)
fixed by the algorithm lies in the interval (1, 1/η) as required.

I Remark 2.22 (on Theorem 1.3). In the restricted parameter case, we simplify the arguments
in our informal theorem statements, i.e. the case when the average degree of vertices in

S and V \ S is close, we have δ = Θ
(
kd′

nd

)
. Assuming ν = 2

√
3η, we rewrite δn

dk
as d′

d2

from the above value of δ and the term (d′ − λ) k
(n− k) d is at most a constant for “large” n. So,

the new value of τ is Θ
(√

δ + λ+
√
d′

d

)
. A similar argument gives the new value of ν′ in

Theorem 1.7.

FSTTCS 2020

27:16 Planted Models for the Densest k-Subgraph Problem

References
1 Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable graphs.

SIAM J. Comput., 26(6):1733–1748, December 1997. doi:10.1137/S0097539794270248.
2 Brendan P. Ames. Guaranteed recovery of planted cliques and dense subgraphs by con-

vex relaxation. J. Optim. Theory Appl., 167(2):653–675, November 2015. doi:10.1007/
s10957-015-0777-x.

3 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. In Algorithm Theory — SWAT’96, pages 136–148, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

4 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Nagara-
jan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion.
SIAM J. Comput., 43(2):872–904, 2014. doi:10.1137/120873996.

5 Aditya Bhaskara. Finding dense structures in graphs and matrices. PhD thesis, Princeton
University, 2012. URL: https://www.cs.utah.edu/~bhaskara/files/thesis.pdf.

6 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 201–210, 2010. doi:10.1145/1806689.1806719.

7 Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and
Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, page 388–405, USA, 2012. Society for Industrial and Applied Mathematics.

8 Polina Bombina and Brendan Ames. Convex optimization for the densest subgraph and
densest submatrix problems, 2019. arXiv:1904.03272.

9 Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hardness for
densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 1326–1341, Philadelphia,
PA, USA, 2017. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3039686.3039772.

10 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proceedings of the Third International Workshop on Approximation Algorithms for Combin-
atorial Optimization, APPROX ’00, pages 84–95, Berlin, Heidelberg, 2000. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=646688.702972.

11 Amin Coja-Oghlan. Colouring semirandom graphs. Comb. Probab. Comput., 16(4):515–552,
July 2007. doi:10.1017/S0963548306007917.

12 Roee David and Uriel Feige. On the effect of randomness on planted 3-coloring models. In
Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16,
pages 77–90, New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897561.

13 Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput. Syst. Sci.,
63(4):639–671, December 2001. doi:10.1006/jcss.2001.1773.

14 Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001. doi:10.1007/s004530010050.

15 Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001. doi:10.1006/jagm.
2001.1183.

16 Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Algorithmica, 29:2001,
1997.

17 G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30–55, February 1989. doi:10.1137/0218003.

18 A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of
California at Berkeley, Berkeley, CA, USA, 1984.

https://doi.org/10.1137/S0097539794270248
https://doi.org/10.1007/s10957-015-0777-x
https://doi.org/10.1007/s10957-015-0777-x
https://doi.org/10.1137/120873996
https://www.cs.utah.edu/~bhaskara/files/thesis.pdf
https://doi.org/10.1145/1806689.1806719
http://arxiv.org/abs/1904.03272
http://dl.acm.org/citation.cfm?id=3039686.3039772
http://dl.acm.org/citation.cfm?id=3039686.3039772
http://dl.acm.org/citation.cfm?id=646688.702972
https://doi.org/10.1017/S0963548306007917
https://doi.org/10.1145/2897518.2897561
https://doi.org/10.1006/jcss.2001.1773
https://doi.org/10.1007/s004530010050
https://doi.org/10.1006/jagm.2001.1183
https://doi.org/10.1006/jagm.2001.1183
https://doi.org/10.1137/0218003

Y. Khanna and A. Louis 27:17

19 B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite
programming: Extensions. IEEE Transactions on Information Theory, 62(10):5918–5937,
2016.

20 Bruce Hajek, Yihong Wu, and Jiaming Xu. Computational Lower Bounds for Community
Detection on Random Graphs. arXiv e-prints, page arXiv:1406.6625, June 2014. arXiv:
1406.6625.

21 Bruce Hajek, Yihong Wu, and Jiaming Xu. Semidefinite programs for exact recovery of a
hidden community. Journal of Machine Learning Research, 49(June):1051–1095, June 2016.
29th Conference on Learning Theory, COLT 2016 ; Conference date: 23-06-2016 Through
26-06-2016.

22 Ravi Kannan and V Vinay. Analyzing the structure of large graphs. Rheinische Friedrich-
Wilhelms-Universität Bonn Bonn, 1999.

23 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput., 36(4):1025–1071, December 2006. doi:10.1137/S0097539705447037.

24 Samir Khuller and Barna Saha. On finding dense subgraphs. In Proceedings of the 36th
International Colloquium on Automata, Languages and Programming: Part I, ICALP ’09, pages
597–608, Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-02927-1_50.

25 Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique games
against a semi-random adversary: Study of semi-random models of unique games. In IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 443–452, 2011. doi:10.1109/FOCS.2011.78.

26 Anand Louis and Rakesh Venkat. Semi-random graphs with planted sparse vertex cuts:
Algorithms for exact and approximate recovery. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages
101:1–101:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.101.

27 Anand Louis and Rakesh Venkat. Planted models for k-way edge and vertex expansion.
In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India, pages 23:1–23:15,
2019. doi:10.4230/LIPIcs.FSTTCS.2019.23.

28 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation
algorithms for semi-random partitioning problems. In Proceedings of the Forty-fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 367–384, New York, NY, USA,
2012. ACM. doi:10.1145/2213977.2214013.

29 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Constant factor
approximation for balanced cut in the pie model. In Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 41–49, New York, NY, USA,
2014. ACM. doi:10.1145/2591796.2591841.

30 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Learning com-
munities in the presence of errors. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1258–1291, Columbia University, New York, New York, USA, 2016.
PMLR. URL: http://proceedings.mlr.press/v49/makarychev16.html.

31 Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 954–961, 2017. doi:10.1145/3055399.
3055412.

32 Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the robust semi-
random independent set problem. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 738–746,
2020. doi:10.1137/1.9781611975994.45.

33 F. McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 529–537, 2001.

FSTTCS 2020

http://arxiv.org/abs/1406.6625
http://arxiv.org/abs/1406.6625
https://doi.org/10.1137/S0097539705447037
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1109/FOCS.2011.78
https://doi.org/10.4230/LIPIcs.ICALP.2018.101
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.23
https://doi.org/10.1145/2213977.2214013
https://doi.org/10.1145/2591796.2591841
http://proceedings.mlr.press/v49/makarychev16.html
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1137/1.9781611975994.45

27:18 Planted Models for the Densest k-Subgraph Problem

34 Andrea Montanari. Finding one community in a sparse graph. Journal of Statistical Physics,
161, February 2015. doi:10.1007/s10955-015-1338-2.

35 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 755–764, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.1806792.

36 Prasad Raghavendra, David Steurer, and Prasad Tetali. Approximations for the isoperimetric
and spectral profile of graphs and related parameters. In Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, STOC ’10, page 631–640, New York, NY, USA,
2010. Association for Computing Machinery. doi:10.1145/1806689.1806776.

37 Anand Srivastav and Katja Wolf. Finding dense subgraphs with semidefinite programming.
In Proceedings of the International Workshop on Approximation Algorithms for Combinatorial
Optimization, APPROX ’98, pages 181–191, London, UK, UK, 1998. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=646687.702946.

https://doi.org/10.1007/s10955-015-1338-2
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806776
http://dl.acm.org/citation.cfm?id=646687.702946

Sample-And-Gather: Fast Ruling Set Algorithms
in the Low-Memory MPC Model
Kishore Kothapalli
IIIT Hyderabad, India
kkishore@iiit.ac.in

Shreyas Pai
The University of Iowa, Iowa City, IA, USA
shreyas-pai@uiowa.edu

Sriram V. Pemmaraju
The University of Iowa, Iowa City, IA, USA
sriram-pemmaraju@uiowa.edu

Abstract

Motivated by recent progress on symmetry breaking problems such as maximal independent set
(MIS) and maximal matching in the low-memory Massively Parallel Computation (MPC) model
(e.g., Behnezhad et al. PODC 2019; Ghaffari-Uitto SODA 2019), we investigate the complexity
of ruling set problems in this model. The MPC model has become very popular as a model for
large-scale distributed computing and it comes with the constraint that the memory-per-machine is
strongly sublinear in the input size. For graph problems, extremely fast MPC algorithms have been
designed assuming Ω̃(n) memory-per-machine, where n is the number of nodes in the graph (e.g.,
the O(log logn) MIS algorithm of Ghaffari et al., PODC 2018). However, it has proven much more
difficult to design fast MPC algorithms for graph problems in the low-memory MPC model, where
the memory-per-machine is restricted to being strongly sublinear in the number of nodes, i.e., O(nε)
for constant 0 < ε < 1.

In this paper, we present an algorithm for the 2-ruling set problem, running in Õ(log1/6 ∆) rounds
whp, in the low-memory MPC model. Here ∆ is the maximum degree of the graph. We then extend
this result to β-ruling sets for any integer β > 1. Specifically, we show that a β-ruling set can be
computed in the low-memory MPC model with O(nε) memory-per-machine in Õ(β · log1/(2β+1−2) ∆)
rounds, whp. From this it immediately follows that a β-ruling set for β = Ω(log log log ∆)-ruling set
can be computed in in just O(β log logn) rounds whp. The above results assume a total memory of
Õ(m+n1+ε). We also present algorithms for β-ruling sets in the low-memory MPC model assuming
that the total memory over all machines is restricted to Õ(m). For β > 1, these algorithms are all
substantially faster than the Ghaffari-Uitto Õ(

√
log ∆)-round MIS algorithm in the low-memory

MPC model.

All our results follow from a Sample-and-Gather Simulation Theorem that shows how random-
sampling-based Congest algorithms can be efficiently simulated in the low-memory MPC model.
We expect this simulation theorem to be of independent interest beyond the ruling set algorithms
derived here.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Massively Parallel Computation, Ruling Set, Simulation Theorems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.28

Related Version A full version of this paper is available at: https://arxiv.org/abs/2009.12477.

Funding This work is funded in part by the Department of Science and Technology, Government of
India, via Grant number MTR/2017/000849.

© Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kkishore@iiit.ac.in
https://orcid.org/0000-0003-2409-7807
mailto:shreyas-pai@uiowa.edu
mailto:sriram-pemmaraju@uiowa.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.28
https://arxiv.org/abs/2009.12477
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

1 Introduction

There has been considerable recent progress in the design and study of large-scale distributed
computing models that are closer to reality, yet mathematically tractable. Of these, the
Massively Parallel Computing (MPC) model [24, 37] has gained significant attention due to
its flexibility and its ability to closely model existing distributed computing frameworks used
in practice such as MapReduce [14], Spark [38], Pregel [32], and Giraph [11].

The MPC model is defined by a set of machines, each having at most S words of
memory. The machines are connected to each other via an all-to-all communication network.
Communication and computation in this model are synchronous. In each round, each machine
receives up to S words from other machines, performs local computation, and sends up to S
words to other machines. The key characteristic of the MPC model is that both the memory
upper bound S and the number of machines used are assumed to be strongly sublinear in the
input size N , i.e., bounded by O(N1−ε) for some constant ε, 0 < ε < 1. This characteristic
models the fact that in modern large-scale computational problems the input is too large to
fit in a single machine and is much larger than the number of available machines.

Even though the MPC model is relatively new, a wide variety of classical graph problems
have been studied in this model. This stream of research includes the design of fast
algorithms [4, 6, 13, 12, 21] as well as lower bound constructions [10, 20, 35]. A particular,
though not exclusive, focus of this research has been on symmetry breaking problems such as
maximal independent set (MIS) [6, 21, 18], maximal matching [7], and (∆ + 1)-coloring [9, 3],
along with related graph optimization problems such as minimum vertex cover and maximum
matching.

For graph problems, the input size is Õ(m + n) where m is the number of edges and
n is the number of nodes of the input graph. Thus, O((m + n)1−ε), for some constant ε,
0 < ε < 1, is an upper bound on both the number of machines that can be used and the size S
of memory per machine. It turns out that the difficulty of graph problems varies significantly
based on how S relates to the number of nodes (n) of the input graph. Specifically, three
regimes for S have been considered in the literature.

Strongly superlinear memory (S = O(n1+ε)): For this regime to make sense in the
MPC model, the input graph needs to be highly dense, i.e., m � S � n such that S
is strongly sublinear in m. Even though the input graph is dense, the fact that each
machine has O(n1+ε) local memory makes this model quite powerful. For example, in
this model, problems such as minimum spanning tree, MIS, and 2-approximate minimum
vertex cover, all have O(1)-round algorithms [24, 22].
Near-linear memory (S = Õ(n)): Problems become harder in this regime, but
symmetry breaking problems such as MIS, approximate minimum vertex cover, and
maximal matching can still be solved in O(log logn) rounds [13, 2, 17, 19]. Furthermore,
recently Assadi, Chen, and Khanna [3] presented an O(1)-round algorithm for (∆ + 1)-
vertex coloring.
Strongly sublinear memory (S = O(nε)): Problems seem to get much harder in this
regime and whether there are sublogarithmic-round algorithms for certain graph problems
in this regime is an important research direction. For example, it is conjectured that
the problem of distinguishing if the input graph is a single cycle vs two disjoint cycles of
length n/2 requires Ω(logn) rounds [37, 20]. However, even in this regime, Ghaffari and
Uitto [21] have recently shown that MIS does have a sublogarithmic-round algorithm,
running in Õ(

√
log ∆) rounds, where ∆ is the maximum degree of the input graph. This

particular result serves as a launching point for the results in this paper.

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:3

The MIS problem has been called “a central problem in the area of locality in distributed
computing” (2016 Dijkstra award citation). Starting with the elegant, randomized MIS
algorithms from the mid-1980s by Luby [31] and by Alon et al. [1], several decades of
research has now been devoted to designing MIS algorithms in various models of parallel
and distributed computing (e.g., PRAM, Local, Congest, Congested-Clique, and
MPC). A ruling set is a natural relaxation of an MIS and considerable research has been
devoted to solving the ruling set problem in different models of distributed computation
as well [5, 26, 8, 15]. An (α, β)-ruling set of a graph G = (V,E) is a subset S ⊆ V such
that (i) every pair of nodes in S are at distance at least α from each other and (ii) every
node in V is at distance at most β from some node in S. An MIS is just a (2, 1)-ruling
set. Research on the ruling set problem has focused on the question of how much faster
distributed ruling set algorithms can be relative to MIS algorithms and whether there is
a provable separation in the distributed complexity of these problems in different models
of distributed computing. For example, in the Local model1, Kuhn, Moscibroda, and
Wattenhofer [27, 28] show an Ω

(
min

{
log ∆

log log ∆ ,
√

logn
log logn

})
lower bound for MIS, even for

randomized algorithms. However, combining the recursive sparsification procedure of Bisht
et al. [8] with the improved MIS algorithm of Ghaffari [15] and the recent deterministic
network decomposition algorithm of Rozhon and Ghaffari [36], it is possible to compute
β-ruling sets in O(β log1/β ∆ +polyloglog(n)) rounds, thus establishing a separation between
these problems, even for β = 2, in the Local model. In this paper, we are interested only in
(2, β)-ruling sets and so as a short hand, we drop the first parameter “2” and call these objects
β-ruling sets. Also as a short hand, we will use low-memory MPC model to refer to the
strongly sublinear memory MPC model. As mentioned earlier, Ghaffari and Uitto [21] recently
presented an algorithm that solves MIS in the low-memory MPC model in Õ(

√
log ∆) rounds.

However, nothing more is known about the 2-ruling set problem in this model and the fastest
2-ruling set algorithm in the low-memory MPC model is just the above-mentioned MIS
algorithm. This is in contrast to the situation in the linear-memory MPC model. In this
model, the fastest algorithm for solving MIS runs in O(log logn) rounds [17], whereas the
fastest 2-ruling set algorithm runs in O(log log logn) rounds [23]. This distinction between
the status of MIS and 2-ruling sets in the linear-memory MPC model prompts the following
related questions.

Is it possible to design an o(
√

log ∆)-round, 2-ruling set algorithm in the low-memory
MPC model? Could we in fact design 2-ruling set algorithms in the low-memory MPC
model that run in O(polyloglog(n)) rounds?

1.1 Main Results
We make progress on the above question via the following results proved in this paper.
1. We show (in Theorem 19 part (i)) that a 2-ruling set of a graph G can be computed in

Õ(log1/6 ∆) rounds in the low-memory MPC model. We generalize this result to β-ruling
sets, for β ≥ 2 (in Theorem 23 part (i)), and show that a β-ruling set of a graph G can be
computed in Õ(log1/(2β+1−2) ∆) rounds in the low-memory MPC model. These algorithms
are substantially faster than the MIS algorithm [21] for the low-memory MPC model. The
inverse exponential dependency on β in the running time of the β-ruling set algorithm is

1 The Local model is a synchronous, message passing model of distributed computation [29, 34] with
unbounded messages. See Section 1.2 for definitions of related models of computation.

FSTTCS 2020

28:4 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

worth noting. This dependency implies that for any β = Ω(log log log ∆), we can compute
a β-ruling set in only O(β ·polyloglog(n)) rounds. This is in contrast to the situation in the
Local model; using the O(β · log1/β ∆ + polyloglog(n))-round β-ruling set algorithm in
the Local model mentioned earlier, one can obtain an O(polyloglog(n))-round algorithm
only for β = Ω(log log ∆).

2. Even though the above-mentioned results are in the low-memory MPC model, they assume
no restrictions on the total memory used by all the machines put together. Specifically,
we obtain the above results allowing a total of Õ(m+n1+ε) memory. Note that the input
uses Õ(m) memory and thus these algorithms make use of Õ(n1+ε) extra total memory.
If we place the restriction that the total memory cannot exceed the input size, i.e., Õ(m),
then we get slightly weaker results. Specifically, we show (in Theorem 19 part (ii)) that a
2-ruling set can be computed in Õ(log1/4 ∆) rounds in the low-memory MPC model using
Õ(m) total memory. Additionally, we show (in Theorem 23 part (ii)) that a β-ruling set,
for any β ≥ 1, can be computed in Õ(log1/2β ∆) rounds in the low-memory MPC model
using Õ(m) total memory. Note that even though these results are weaker than those
we obtain in the setting where total memory is unrestricted, for β > 1, these algorithms
are much faster than the Õ(

√
log ∆)-round, low-memory MPC model algorithm for MIS

by Ghaffari and Uitto [21] that uses Õ(m) total memory. Also note that by plugging in
β = 1, we recover the Ghaffari-Uitto MIS algorithm.

Technical Contributions. We obtain all of these results by applying new Simulation The-
orems (Theorems 9 and 12) that we develop and prove. These Simulation Theorems provide
a general method for deriving fast MPC algorithms from known distributed algorithms in
the Congest model2 and they form the main technical contribution of this paper.

A well-known technique [16, 21, 23, 33] for designing fast algorithms in “all-to-all” com-
munication models such as MPC is the following “ball doubling” technique. Informally
speaking, if every node v knows the state of the k-neighborhood around v, then by exchan-
ging this information with all nodes, ideally in O(1) rounds, it is possible to learn the state
of the 2k-neighborhood around each node. In this manner, nodes can learn the state their
`-neighborhood in O(log `) rounds. Then it is possible to simply use local computation at
each node to “fast forward” the algorithm by ` rounds, without any further communication.
In this manner, a phase consisting of ` rounds in the Congest model can be compressed
into O(log `) rounds in the MPC model. This description of the “ball doubling” technique
completely ignores the main obstacle to using this technique: the k-neighborhoods around
nodes may be so large that bandwidth constraints of the communication network may disallow
rapid exchange of these k-neighborhoods.

Our main contribution is to note that in many randomized, distributed algorithms in
the Congest model, there is a natural sparsification that occurs, i.e., in each round a
randomly sampled subset of the nodes are active, and the rest are silent. This implies that
the k-neighborhoods that are exchanged only need to involve sparse subgraphs induced by
the sampled nodes. A technical challenge we need to overcome is that the subgraph induced
by sampled nodes is not just from the next round, but from the ` future rounds; so we need
to be able to estimate which nodes will be sampled in the future. On the basis of this idea,
we introduce the notion of α-sparsity of a randomized Congest algorithm, for a parameter
α; basically smaller the α greater the sparsification induced by random sampling. We present

2 The Congest model [34] is similar to the Local model except that in the Congest model there is an
O(logn) bound on the size of each message.

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:5

Sample-and-Gather Simulation Theorems in which, roughly speaking, an R-round Congest
algorithm is simulated in Õ(R/

√
logα n) rounds (respectively, Õ(R/

√
logα ∆) rounds) in the

low-memory MPC model, where the total memory is Õ(m+ n1+ε) (respectively, Õ(m)).
Our Simulations Theorems are inspired by a Simulation Theorem due to Behnehzhad et

al. [6, Lemma 5.5]. Using their Simulation Theorem, an R-round state-congested algorithm
can be simulated in (roughly)R/ log∆ n low-memory MPC rounds. In contrast, our Simulation
Theorem (Theorem 9) yields a running time of (roughly) R/

√
logα n, where α is a sparsity

parameter. When the input graph has high maximum degree, but the state-congested
algorithm samples a very sparse subgraph (i.e., α is small) then our Simulation Theorems
provide a huge advantage over the Behnehzhad et al. Simulation Theorems.

To obtain our results for ruling sets, we apply the Sample-and-Gather Simulation Theorems
to the sparsification procedure of Kothapalli and Pemmaraju [26] and Bisht et al. [8] and to
the sparsified MIS algorithm of Ghaffari [16]. We note that by applying the Sample-and-
Gather Simulation Theorems to the sparsified MIS algorithm of Ghaffari [16], we recover the
Ghaffari-Uitto low-memory MPC algorithm for MIS [21], built from scratch. We believe that
the Sample-and-Gather Theorems will be of independent interest because they simplify the
design of fast MPC algorithms.

1.2 Technical Preliminaries
Notation. For a node v ∈ V we denote its non-inclusive neighborhood in G by Nbr(v).
Moreover, we define Nbr+(v) = Nbr(v) ∪ {v}, Nbr(S) =

⋃
v∈S Nbr(v), Nbr+(S) =⋃

v∈S Nbr+(v). The standard usage of the Õ(f(n)) notation is to denote O(poly log(f(n)) ·
f(n)). But, because our round and memory complexity bounds involve multiple parameters
(e.g., n, m, and ∆), we abuse notation and use the Õ(·) notation to hide poly logn or
poly log logn factors, as appropriate (e.g., Õ(log1/6 ∆) denotes O(log1/6 ∆ · poly log logn)).
Moreover, we consider ε to be a constant in (0, 1) and hence, we don’t explicit mention ε
dependency in the run time results. However the dependency on epsilon is of the form 1/εc
for some small constant c ≥ 1 (and not 2−eps).

Distributed Computing Models. In the Congest model [34] a communication network is
abstracted as an n-node graph. In synchronous rounds each node can send a O(logn) bit
message to each of its neighbors. The Congested-Clique model is similar to the Congest
model, but nodes can send O(logn)-bits messages to all other nodes, not only to its neighbors
in the input graph G [30]. The Local model [29] is the same as the Congest model, except
the message sizes can be unbounded.

MPC model. Typically, in the MPC model, it is assumed that the input graph is distributed
in a node-centric manner among the machines. In other words, for each node v, there is a
machine Mv that hosts it and Mv knows all the neighbors of v and the machines that host
these neighbors. However, this scheme cannot be implemented as-is in the low-memory MPC
model because the degree of a node could be larger than the memory volume nε of a machine.
To deal with this issue, we first assume that a node v with deg(v) > nε is split into copies
that are distributed among different machines and we have a virtual O(1/ε)-depth balanced
tree on these copies of v. The root of this tree coordinates communication between v and
its neighbors in the input graph. By itself, this is insufficient because information from v’s
neighbors cannot travel up v’s tree without running into a memory bottleneck. However, if
computation at each node can be described by a separable function, then this is possible.

FSTTCS 2020

28:6 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

The following definition of separable functions captures functions such as max, min, sum,
etc. This issue and the proposed solution have been discussed in [21, 6].

I Definition 1. Let f : 2R → R denote a set function. We call f separable iff for any set of
reals A and for any B ⊆ A, we have f(A) = f

(
f(B), f(A \B)

)
.

The following lemma [6] shows that it is possible to compute the value of a separable function
f on each of the nodes in merely O(1/ε) rounds. The bigger implication of this lemma is
that a single round of a Congest algorithm can be simulated in O(1/ε) low-memory MPC
rounds.

I Lemma 2 ([6]). Suppose that on each node v ∈ V , we have a number xv of size O(logn)
bits and let f be a separable function. There exists an algorithm that in O(1/ε) rounds of
MPC, for every node v, computes f({xu |u ∈ Nbr(v)}) whp in the low-memory MPC model
with Õ(m) total memory.

Note about proofs. Due to space constraints, we only include two proofs of the main
Sample-and-Gather Simulation Theorem in the paper; a full version of the paper, with all
proofs, is available at https://arxiv.org/abs/2009.12477, [25].

2 The Sample-and-Gather Simulation

Our simulation theorems apply to a subclass of Congest model algorithms called state-
congested algorithms [6].

I Definition 3. An algorithm in the Congest model is said to be state-congested if
(i) by the end of round r, for any r, at each node v, the algorithm stores a state σr(v) of size

O(deg(v)polylog(n)) bits, i.e., an average of O(polylog(n)) bits per neighbor. The initial
state σ0(v) of each node v is its ID. Furthermore, the computation performed by each
node v in each round r uses an additional temporary space of size O(deg(v) · polylog(n))
bits.

(ii) The states of the nodes after the last round of the algorithm are sufficient in determining,
collectively, the output of the algorithm.

A key feature of a state-congested algorithm is that the local state at each node stays bounded
in size throughout the execution of the algorithm.

We inductively design a fast low-memory MPC algorithm that simulates a given state-
congested algorithm. For this purpose, we start by assuming that we have a state-congested,
possibly randomized, algorithm Alg, whose first t rounds have been correctly simulated in
the low-memory MPC model. Our goal now is to simulate a phase consisting of the next `
rounds of Alg, i.e., rounds t+ 1, t+ 2, . . . , t+ `, in just O(log `) low-memory MPC rounds.
We categorize each node u in a round τ , t+ 1 ≤ τ ≤ t+ `, based on its activity in round τ .
Specifically, a node u is a sending node in round τ if sends at least one message in round
τ . Moreover, a node is called a oblivious node if it does not update its state in round τ . In
other words, an oblivious node ignores any messages it receives in round τ .

Consider a node u at the start of the phase we want to compress. Since this is immediately
after round t, node u knows its local state σt(u). Let pt+1(u) denote the probability that
node u is a sending node in round t+ 1. We call this the activation probability of node u
in round t+ 1. Also, for any node v, let At+1(v) :=

∑
u∈Nbr(v) pt+1(u) denote the activity

level in v’s neighborhood in round t + 1. Note that pt+1(u) is completely determined by
σt(u) and so node u can locally calculate pt+1(u) after round t. In order to simulate rounds

https://arxiv.org/abs/2009.12477

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:7

t + 1, t + 2, . . . , t + ` in a compressed fashion in the MPC model, every node u needs to
know the probability of it being a sending node in each of these rounds. But, rounds
t + 2, t + 3, . . . , t + ` are in the future and so node u, using current knowledge, can only
estimate an upper bound p̃τ (u) on the probability that it will be a sending node in round τ ,
t+ 2 ≤ τ ≤ t+ `.

In general, doing this estimation can be difficult because sampling probabilities of a node
u in the ` future rounds depend on current states of nodes in an `-radius neighborhood
around node u. The volume of such a neighborhood may be too high to fit in the memory of
any machine in the low-memory MPC model. In fact, our Sample-and-Gather Simulation
Theorems are designed to avoid exactly this type of ball gathering of potentially dense
neighborhoods. It turns out that this estimation is essentially trivial for the two applications
of our Simulation Theorem described in Section 3.1. This is because for these algorithms,
sampling probabilities for all active nodes increase by a known multiplicative factor in each
round. Thus independent of a node u’s future state (e.g., whether it is active), it is possible
to obtain an upper bound, denoted p̃τ (u), that node u will be a sending node in round τ , for
rounds τ = t+ 2, t+ 3, . . . , t+ `. For round τ = t+ 1, we simply set p̃t+1(u) := pt+1(u), i.e.,
the estimated activation probability in round t+ 1 is the actual activation probability.

For any τ , t + 1 ≤ τ ≤ t + `, for any node v, let Ãτ (v) :=
∑
u∈Nbr(v) p̃τ (u) denote the

estimated activity level in node v’s neighborhood in round τ . Note that for the first round in
the phase, τ = t+ 1, the estimated and actual activity levels are identical. Finally, let Ãτ be
the maximum Ãτ (v), where the maximum is taken over all nodes v that are not oblivious
nodes. The maximum being taken over all non-oblivious nodes is motivated by the fact
that if a node is oblivious, it does not update its state and therefore the activity level in its
neighborhood is not relevant.

I Lemma 4. Suppose ` is such that(
t+∑̀

τ=t+1
Ãτ logn

)`
≤ O(nε/2). (1)

Then the next phase of the algorithm Alg consisting of rounds t+ 1, t+ 2, . . . , t+ ` can be
simulated in O(log `) rounds in the low-memory MPC model with Õ(m+n1+ε) total memory.

Proof. Simulating rounds t+ 1, t+ 2, . . . , t+ ` of algorithm Alg is equivalent to computing
the state σt+`(v) for every node v ∈ V . We use the 2-step algorithm below to do this
computation. First, we introduce some notation. Let BG(v, `) denote the labeled subgraph
of G, induced by nodes that are at most ` hops from v in G and in which each node u is
labeled with its local state σt(u) after round t.
Step 1: For each node v ∈ V , designate a distinct machineMv at which we gather a “sampled”

subgraph SG(v, `) of BG(v, `). The definition of SG(v, `) is provided below.
Step 2: Using the subgraph SG(v, `), machineMv locally simulates rounds t+1, t+2, . . . , t+`

of Alg and computes σt+`(v).

In the rest of the proof, we will first define the subgraph SG(v, `). We will then show in
Claim 5 that using this subgraph, it is possible for machine Mv to locally simulate rounds
t+ 1, t+ 2, . . . , t+ ` of Alg. We then show in Claim 6 that assuming ` satisfies (1), the size
of SG(v, `) is O(nε) whp. Finally, in Claim 7, we show that the subgraph SG(v, `) can be
gathered at each machine Mv in parallel in O(log `) rounds. These claims together complete
the proof of the lemma.

FSTTCS 2020

28:8 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Each node u ∈ V generates a sequence of uniformly distributed random bits r1
τ (u),

r2
τ (u), . . ., rc·logn

τ (u) for a large enough constant c. These bits are designated for round τ ,
t+ 1 ≤ τ ≤ t+ ` and they serve two purposes: (i) they are used to randomly sample u based
on the estimate p̃τ (u) that u will be a sending node in round τ , and (ii) they are used to
simulate u’s actions in round τ . It is important that the same bits be used for both purposes
so that there is consistency in u’s random actions. Specifically, u constructs a real number
Rτ (u) that is uniformly distributed over {i/2c logn | 0 ≤ i < c logn} using these bits. Node
u adds these O(` · logn) bits to its local state after round t, σt(u). Node u then marks itself
for round τ if Rτ (u) ≤ pτ (u). If a node u marks itself for a round τ it means that in u’s
estimate after round t, u will be a sending node in round τ . Further, node u is marked if it
is marked for round τ for any τ , t+ 1 ≤ τ ≤ t+ `. The “sampled” subgraph SG(v, `) is the
subgraph of BG(v, `) induced by v along with all nodes u in BG(v, `) that are marked.

B Claim 5. For any node v ∈ V , information in SG(v, `) is enough to locally compute
σt+`(v).

Proof. We prove this claim inductively. Specifically, we prove the following:

For any i, 0 < i ≤ `, in addition to knowing SG(v, `), if we know the states σt+`−i(u)
for all u ∈ SG(v, i) then we can compute the states σt+`−i+1(u) for all u ∈ SG(v, i−1).

The premise of this statement is true for i = ` because SG(v, `) contains the round-t local
states σt(u) for all u ∈ SG(v, `). For i = 1 this claim is equivalent to saying that in addition
to SG(v, `), if we know σt+`−1(u) for all neighbors of v in SG(v, `) then we can compute
σt+`(v). This is what we need to show.

To be able to compute σt+`−i+1(u) for any u in SG(v, i− 1), we need to know the round-
(t + ` − i) local states σt+`−i(w) for all neighbors w of u that are sending nodes in round
t+ `− i. With high probability, the probability pw that a neighbor w of u sends messages in
round t+ `− i is upper bounded by the estimate p̃t+`−i(w) that w computed after round
t. Node w sends messages in round t+ `− i if Rt+`−i(w) ≤ pw. Since pw ≤ p̃t+`−i(w), we
know that Rt+`−i(w) ≤ p̃t+`−i(w) and therefore w is marked and included in SG(v, `). Also
note that since u ∈ SG(v, i − 1) and w is a neighbor of u, we see that w ∈ SG(v, i). Thus
any node w that sends a message to node u in round t + ` − i belongs to SG(v, i) and by
the hypothesis of the inductive claim we know σt+`−i(w). With the knowledge of σt+`−i(w),
we can simulate round t+ `− i+ 1 at each node w, using the random real Rt+`−i+1(w) to
execute any random actions w may take. Then using the message received by u from all such
neighbors w in round t+ `− i+ 1, we can update u’s local state, thus computing σt+`−i+1(u).

C

B Claim 6. For any node v ∈ V , the size of SG(v, `) is at most
(∑t+`

τ=t+1 Ãτ logn
)`

whp.

Proof. Consider an arbitrary v ∈ V and u ∈ BG(v, `) and a round t+ 1 ≤ τ ≤ t+ `. Node
u is marked for round τ with probability pτ (u). Recalling that Nbr(u) denotes the set
of neighbors of u in G, we see that expected number of neighbors of u marked for round
t+ 1 ≤ τ ≤ t+ ` is at most∑

w∈Nbr(u)

pτ (w) ≤ Ãτ (u) ≤ Ãτ .

Furthermore, since neighbors of u are marked for round τ independently, by Chernoff bounds
we see that the number of neighbors that u has in SG(v, `) that are marked for round τ

is Ãτ logn whp. By the union bound this means that the number of neighbors that u
has in SG(v, `) is

∑t+`
τ=t+1 Ãτ logn whp. From this it follows that the size of SG(v, `) is(∑t+`

τ=t+1 Ãτ logn
)`
. C

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:9

B Claim 7. For every node v ∈ V , the graph SG(v, `) can be gathered at Mv in at most
O(log `) rounds.

Proof. Here we use the “ball doubling” technique that appears in a number of papers on
algorithms in “all-to-all” communication models (e.g., [16, 21, 23, 33]). Suppose that each
machine Mv knows SG(v, i) for some 0 ≤ i ≤ `/2. Each machine Mv then sends SG(v, i)
to machine Mu for every node u in SG(v, i). After this communication is completed, each
machine Mv can construct SG(v, 2i) from the information it has received because SG(v, 2i)
is contained in the union of SG(u, i) for all u in SG(v, i).

We now argue that this communication can be performed in O(1) rounds. First, note
that the size of SG(v, i) is bounded above by O(nε/2). This also means that SG(v, i) contains
O(nε/2) nodes. Therefore, Mv needs to send a total of O(nε/2) × O(nε/2) = O(nε) words.
A symmetric argument shows an O(nε) bound on the number of words Mv receives. Since
O(nε) words can be sent and received in each communication round, this communication
can be completed in O(1) rounds. C

With the claims proven, we finish the proof of the Lemma. J

The biggest benefit from using this “sample-and-gather” simulation approach is for state-
congested algorithms that sample a sparse subgraph and all activity occurs on this subgraph.
We formalize this sparse sampling property as follows.

I Definition 8. Consider a state-congested algorithm Alg that completes in R rounds. For
a parameter α ≥ 2, we say that Alg is α-sparse if for all positive integers, t and ` satisfying
t+ ` ≤ R, for a length-` phase of Alg starting at round t+ 1 the following two properties
hold.
(a) Bounded activity level: The activity level in the first round of the phase, At+1, satisfies

the property: At+1 = O(α` · logn).
(b) Bounded growth of estimated activity level: The estimated activity level Ãτ , t+1 ≤

τ ≤ t+`, shows bounded growth. Specifically, Ãτ+1 ≤ αÃτ for for all t+1 ≤ τ ≤ t+`−1.
Together these properties require the activity level in each neighborhood to be low (Property
(a)), but also that the estimated activity level of each node does not grow too fast in future
rounds (Property (b)). When these two properties hold, Lemma 4 can be applied inductively
to obtain the following theorem. The fact that we use a single parameter α as an upper bound
for both Properties (a) and (b) is just a matter of convenience and leads to an easy-to-state
bound on number of rounds in this theorem.

I Theorem 9 (Sample-and-Gather Theorem v1). Let Alg be an α-sparse state-congested
algorithm that completes in R rounds. Then Alg can be simulated in the low-memory MPC
model with Õ(m+ n1+ε) total memory, for constant 0 < ε < 1, in O

(
R log logn/

√
logα n

)
rounds.

Proof. Let ` = b
√

ε
8 · logα nc. Partition the R rounds of Alg into dR/`e phases, where Phase

i, 1 ≤ i < dR/`e, consists of the ` rounds (i − 1) · ` + 1, (i − 1) · ` + 2, . . . , i · ` and Phase
dR/`e consists of at most ` rounds (dR/`e − 1) · `+ 1, (dR/`e − 1) · `+ 2, . . . , R.

FSTTCS 2020

28:10 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

We now use the fact that Alg is α-sparse to show, via series of inequalities, that ` satisfies
Inequality (1).(

t+∑̀
τ=t+1

Ãτ · logn
)`

≤

(
Ãt+1 · logn ·

`−1∑
i=0

αi

)`
(by Property (b) of being α-sparse)

≤

(
At+1 · logn ·

`−1∑
i=0

αi

)`
(by Ãt+1 = At+1)

≤

(
α` · log2 n ·

`−1∑
i=0

αi

)`
(by Property (a) of being α-sparse)

=
(
α` · log2 n · α

` − 1
α− 1

)`
(by geometric series)

≤ α2`2
· (log2 n)` (by ` ≥ 1, α ≥ 2)

≤ nε/4 · no(1) (by ` =
⌊√

ε

8 · logα n
⌋
)

≤ nε/2.

By using Lemma 4, this implies that each phase can be simulated in the MPC models with
O(nε) memory per machine in O(log `) = O(log logn) rounds. Given that the R rounds of
Alg are partitioned into dR/`e phases, we see that Alg can be implemented in the MPC
model with O(nε) memory per machine in O(R log logn/

√
ε logα n) rounds. J

Theorem 9 provides a Simulation Theorem for the MPC model in which machines use
O(nε) memory per machine. However, the total memory used by MPC algorithms that result
from this theorem is Õ(m+ n1+ε). We now show that under fairly general circumstances, it
is possible to obtain a Simulation Theorem yielding low-memory MPC algorithms that use
only Õ(m) total memory, while taking slightly more time.

I Definition 10. A Congest algorithm Alg is said to be degree-ordered if it satisfies two
properties.
(a) The execution of Alg can be partitioned into Stages 1, 2, . . . such that in Stage i the

only active nodes are those whose degree is greater than ∆1/2i and other nodes that are
neighbors of these “high degree” nodes.

(b) Let Ri be the number of rounds in Stage i. Then Ri ≤ Ri−1/2.
A lot of symmetry breaking algorithms are either inherently degree-ordered or can be made
so with small modifications – this can be seen in the applications of the Sample-and-Gather
Theorems in Section 3.1. The fact that our definition permits activity in a stage not just at
nodes that are “high degree” for that stage, but even at other nodes that are neighbors of
high degree nodes, provides the flexibility we need for our applications. In fact, it is possible
to further relax this definition and allow all nodes within O(1) hops of “high degree” nodes
to be active in a stage; for ease of exposition we just work with the current definition. For
algorithms that are degree-ordered, we can gather balls centered at active nodes, whose
volume is at most the degree threshold for the current stage. This allows us to use a simple
charging scheme to charge the sizes of the balls to the memory already allocated for the
neighborhoods of the active nodes. This in turn yields the Õ(m) total memory bound.
Property (b) holds for algorithms whose running time is dominated by O(log ∆). Given that
the degree threshold in Property (a) falls as ∆1/2i , the running time of each stage falls by a
factor of 2.

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:11

I Lemma 11. Suppose that Alg is a state-congested, degree-ordered algorithm. Consider a
phase of `− 1 rounds t+ 1, t+ 2, . . . , t+ `− 1 with a Stage i. If ` satisfies(

t+∑̀
τ=t+1

Ãτ logn
)`
≤ min

{
nε/2,∆1/2i

}
, (2)

then this phase can be simulated in O(log `) rounds in the low-memory MPC model with a
total of Õ(m) memory over all the machines.

Finally, if Alg is a state-congested algorithm that is α-sparse and degree-ordered, we obtain
the following Simulation Theorem that guarantees an Õ(m) total memory usage.

I Theorem 12 (Sample-and-Gather Theorem v2). Let Alg be a state-congested, α-sparse,
degree-ordered algorithm that completes in R rounds. Let α′ = α · log2 n. Then Alg can be
simulated in the MPC model with O(nε) memory per machine, for constant 0 < ε < 1 and
Õ(m) total memory, in O

(
R log log ∆/

√
logα′ ∆

)
rounds.

3 Fast 2-Ruling Set Algorithms

Our 2-ruling set algorithms consist of 3 parts. In Part 1, we sparsify the input graph, in Part
2 we “shatter” the graph still active after Part 1, and in Part 3 we deterministically finish off
the computation. Part 1 is a modification of Sparsify, a Congest model algorithm due to
Kothapalli and Pemmaraju [26]; Part 2 is a sparsified MIS algorithm, also in the Congest
model, due to Ghaffari [15, 16]. Our main contribution in this section is to show that these
algorithms are state-congested, α-sparse for small α, and degree-ordered. As a result, we can
apply the Sample-and-Gather Simulation Theorems (Theorems 9 and 12) to these algorithms
to obtain fast low-memory MPC algorithms. Part 3 – in which we finish off the computation
– is easy to directly implement in the MPC model.

3.1 Simulating Sparsify in low-memory MPC
Algorithm 1 is a modified version of the Sparsify algorithm of Kothapalli and Pemmaraju [26].
The algorithm computes a “sparse” set of vertices U that dominates all the vertices in the
graph (i.e. Nbr+(U) = V , see Lemma 13). In each iteration, “high degree” nodes and their
neighbors are sampled and the sampled nodes are added to U . In successive iterations, the
threshold for being a high degree node falls by a factor f and the sampling probability grows
by a factor f . The neighbors of the nodes that successfully join U are deactivated. The
parameter f takes on different values in different instantiations of this algorithm, though
always satisfying log f = logδ ∆ for some constant 0 < δ < 1. For example, f is set to
2(log ∆)2/3 (respectively, 2(log ∆)1/2) to obtain Theorem 19 part (i) (respectively, part (ii)).

DegOrderedSparsify fits nicely within the framework of the Sample-and-Gather
Simulation Theorems from Section 2. The state of each vertex stays small throughout the
algorithm (just ID plus O(1) bits), making DegOrderedSparsify state-congested. The
activity level in any iteration is bounded by O(f logn), because we show in Lemma 13 that in
any neighborhood only O(f logn) vertices are sampled whp and only these sampled vertices
need be active in that iteration. Furthermore, since the sampling probability grows by a
factor f in each iteration, the estimated neighborhood activity levels also grow by a factor
f , as we consider future iterations of DegOrderedSparsify. As shown in Lemma 13,
this makes DegOrderedSparsify f -sparse. In the Sparsify algorithm [26] all nodes,

FSTTCS 2020

28:12 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Algorithm 1 DegOrderedSparsify(G, f).

1 U ← ∅
2 V0 ← V // Initially all nodes are active
3 for i = 1 to dlogf ∆e do
4 Let Hi be the nodes in Vi−1 with degree at least ∆/f i in G[Vi−1]
5 Each node in Nbr+(Hi) ∩ Vi−1 joins Ui with probability f i · c lnn/∆, where c is a

fixed constant
6 Vi ← Vi−1 \Nbr+(Ui) // Nodes with at least one neighbor in Ui

deactivate themselves
7 U ← U ∪ Ui
8 end
9 return U

independent of their degrees, sample themselves (as in Line 5). Here, in order to make
Algorithm DegOrderedSparsify degree-ordered, we make a small modification and permit
only high degree nodes and their neighbors to sample themselves. As we show in Lemma 13,
the algorithm continues to behave as before, but is now degree-ordered.

I Lemma 13. Given a graph G = (V,E) and a parameter f > 3, a subset U ⊆ V can be
computed in O(logf ∆) rounds such that for every v ∈ V , N+(v) ∩ U 6= ∅, and for every
v ∈ U , degU (v) ≤ 2cf lnn, with probability at least 1− n−c+2.

It is easy to see that Algorithm DegOrderedSparsify(G, f) can be implemented in
the Congest model in O(logf ∆) rounds because each iteration of the for-loop takes O(1)
rounds in Congest. Furthermore, since each node can update its state by simply knowing
if it or a neighbor has joined set Ui, the update function at each node is separable (see
Definition 1). Therefore, DegOrderedSparsify(G, f) can be faithfully simulated in the
low-memory MPC model in O(logf ∆) rounds.

We now show that Algorithm DegOrderedSparsify has the three properties needed
for round compression via our Simulation Theorems and this leads to a substantial speedup.

I Lemma 14. Algorithm DegOrderedSparsify(G, f) is a state-congested, f -sparse, degree-
ordered algorithm.

Using Theorem 9 and Theorem 12, we obtain the following theorem.

I Theorem 15. Algorithm DegOrderedSparsify(G, f) can be implemented in the low-

memory MPC model in (i) O
(

logf ∆√
logf n

log logn
)

rounds whp using Õ(m+n1+ε) total memory

and (ii) O
(√

logf ∆ · log log ∆
)
rounds whp using Õ(m) total memory.

3.2 Simulating Sparsified Graph Shattering in low-memory MPC
Distributed graph shattering has become an important algorithmic technique for symmetry
breaking problems [5, 16, 20]. In this section, we use a sparsified graph shattering algorithm
due to Ghaffari [16] to process the graph G[U] returned by DegOrderedSparsify. The
output of the shattering algorithm consists of an independent set I ⊆ U such that the graph
induced by the remaining set of vertices S = U \ Nbr+(I) contains only small connected
components.

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:13

Ghaffari’s sparsified shattering algorithm [16] is shown in Algorithm 2. At the start of
each round t, each node v has a desire-level pt(v) for joining the independent set I, and
initially this is set to p1(v) = 1/2. The independent set I is also initialized to the empty set.
The algorithm runs in phases, with each phase having ` :=

√
δ logn/10 rounds for a small

constant δ.
Several aspects of the algorithm make it nicely fit the Sample-and-Gather framework

from Section 2. We now point these out. (i) The desire-level pτ (u) for t+ 1 ≤ τ ≤ t+ ` can
be viewed the probability of sampling u; after the initial communication amongst neighbors
(Line 1), only sampled nodes send messages (beeps) and all other nodes remain silent. (ii)
The quantity dt+1(u) is identical to the activity level At+1(u) in u’s neighborhood, defined
in Section 2. (iii) Nodes with a high activity level, i.e., dt+1(u) ≥ 2

√
logn/5 (aka super-heavy

nodes), are oblivious nodes and are therefore excluded in the definition of At+1. As a result
At+1 ≤ 2

√
logn/5. (iv) In each iteration in a phase, the sampling probability grows by a

factor of at most 2 (Line 8). This implies that the estimated activity levels grow by a factor
of 2 in future rounds.

Algorithm 2 Shatter(G): (one phase, starting at iteration t+ 1).

1 Each node u sends its current desire-level pt+1(u) to all its neighbors
2 Each node u computes dt+1(u) =

∑
v∈Nbr(u) pt+1(v)

3 If node u has dt+1(u) ≥ 2
√

logn/5 then u is called a super-heavy node
4 ` =

√
δ logn/10 ; // δ is a small constant

5 for τ = t+ 1, t+ 2, . . . , t+ ` iterations do
// Round 1

6 Each node u beeps with probability pτ (u) and remains silent otherwise.
7 Node u is added to I if it is not super-heavy, it beeps, and none of its neighbors

beep
8 Node u sets pτ+1(u) as follows:

pτ+1(u) =
{
pτ (u)/2 if u is super-heavy, or a neighbor of u beeps
min{1/2, 2 · pτ (u)} otherwise

// Round 2
9 Node u beeps if it joins I in this iteration.

10 Neighbors of node u that are not in I become inactive on hearing the beep from u

11 end

The first four steps of Algorithm 2 do not fit into the Sample-and-Gather framework since
each node needs to send its pt+1 value to its neighbors. But the nodes are computing dt+1(u) =∑
v∈Nbr(u) pt+1(v) which is a separable function (sum). Therefore, we can implement the

first two steps in O(1/ε) rounds using Lemma 2, and use the Sample-and-Gather framework
to simulate the for-loop of the algorithm. These observations are formalized in the lemma
below to show that Shatter is 2-sparse. Additionally, the lemma shows that the algorithm
is state-congested.

I Lemma 16. Algorithm 2 is a state-congested algorithm whose for-loop is 2-sparse.

A total of O(log ∆/
√

logn) repeated applications of Shatter (i.e. a total of O(log ∆)
iterations) suffice to shatter the graph into small-sized components [16, 21].

FSTTCS 2020

28:14 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Using Lemma 16 and Theorem 9, we obtain the following lemma that shows that Shatter
can be simulated efficiently in the low-memory MPC model.

I Lemma 17. We can simulate a total O(log ∆) iterations of Algorithm Shatter in the

low-memory MPC model with Õ(m+ n1+ε) total memory in O
(

log ∆·log logn√
logn

)
rounds whp.

Ghaffari and Uitto [21] present a variant of Algorithm Shatter and show (in Theorem 3.7)
that this variant can be simulated in O(

√
log ∆ · log log ∆) rounds in the low-memory MPC

model, while using only Õ(m) total memory. While they describe their MPC implementation
from scratch, this MPC implementation can also be obtained by applying our Sample-
and-Gather Theorem (specifically, Theorem 12). It can be shown that this variant is
state-congested and has the same sparsity property as Algorithm Shatter, i.e., it is 2-sparse.
Furthermore, it can also be made degree-ordered by simply processing nodes in degree buckets
(∆1/2i ,∆1/2i−1], in the order i = 1, 2, . . . , O(log log ∆).

I Lemma 18 (Ghaffari-Uitto [21]). There is a variant of Algorithm Shatter can be simulated
in the low-memory MPC model with Õ(m) total memory in O(

√
log ∆ · log log ∆) rounds

whp.

3.3 Finishing off the 2-ruling set computation
After applying DegOrderedSparsify to the input graph G = (V,E) and then Shatter
to the subgraph G[U], induced by the subset U ⊆ V output by DegOrderedSparsify,
we are left with a number of small-sized components. Ghaffari and Uitto [21, Theorem 3.7]
show that given the properties that the remaining graph has after Shatter, it is possible
to simply (and deterministically) gather each component at a machine and find an MIS of
the component locally in O(

√
log logn) rounds in the low-memory MPC model using Õ(m)

memory. Applying this “finishing off” computation completes our 2-ruling set algorithm.
The output of the algorithm is the union of the independent set output by Shatter and the
independent set output by the “finishing off” computation.

I Theorem 19. A 2-ruling set can be computed whp in the low-memory MPC model in
(i) O((log ∆)1/6 log logn) rounds using Õ(m+ n1+ε) total memory and in
(ii) O((log ∆)1/4 log log ∆ +

√
log logn log log ∆) rounds using Õ(m) total memory.

I Remark. We note that by just running Shatter on an input graph followed by the
“finishing off” computation, we get an MIS of the input graph. So our approach yields MIS
algorithms in the low-memory MPC model via the Sample-and-Gather Simulation Theorems.

I Theorem 20. An MIS of a graph G can be found in the low-memory MPC model in:

(i) O
(

log ∆·log logn√
logn

+
√

log logn
)

rounds whp using Õ(m+ n1+ε) total memory and

(ii) O(
√

log ∆ log log ∆ +
√

log logn) rounds whp using Õ(m) total memory.
As far as we know, the MIS result for the Õ(m+ n1+ε) total memory setting is new, but the
result for the Õ(m) total memory setting simply recovers the result from [21].

4 Fast β-ruling Set Algorithms

We now extend the 2-ruling set low-memory MPC algorithm in the previous section to
obtain a β-ruling set low-memory MPC algorithm for any integer β ≥ 2. The overall idea
is to repeatedly use Algorithm DegOrderedSparsify, as in [8]. We start by running a

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:15

low-memory MPC implementation of DegOrderedSparsify with a parameter f1; this
call returns a set of nodes S1. Once this phase ends, the remaining graph G[S1] has degree
at most O(f1 · logn), by Lemma 13. We then run DegOrderedSparsify on the graph
G[S1] with a parameter f2 and this yields a set of nodes S2. This process continues for β − 1
phases at the end of which the graph G[Sβ−1] has a maximum degree O(fβ−1 · logn). We
now proceed to run a low-memory MPC implementation of an MIS algorithm on G[Sβ−1].

The correctness of the β-ruling set algorithm can be noted from Lemma 13. The set Si
covers all the nodes in Si−1 which means that all the nodes in S0 = V are at most β − 1
hops away from the nodes in Sβ−1. Therefore all the nodes of V are at most β hops away
from the MIS C of G[Sβ−1]. This means that the set C that the above technique returns is
a β-ruling set of G. In the following, we analyze the round complexity of the β-ruling set
algorithm in the low-memory MPC model.

I Lemma 21. Let f0 = ∆. The β-ruling set algorithm runs in

O

((
β−1∑
i=1

log(fi−1 logn)√
log fi · logn

+ log(fβ−1 logn)√
logn

)
log logn

)
(3)

rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

I Lemma 22. Let f0 = ∆. The β-ruling set algorithm runs in

O

((
β−1∑
i=1

√
log(fi−1 logn)

log fi
+
√

log(fβ−1 logn)
)

log log ∆ +
√

log logn
)

(4)

rounds whp in the low-memory MPC model with Õ(m) total memory.

We now instantiate the parameters f1, f2, . . . , fβ−1 so as to minimize the running times
in Lemmas 21 and 22. This leads to the following corollaries.

I Theorem 23. A β-ruling set of a graph G can be found whp in the low-memory MPC
model in
(i) O

(
β · log1/(2β+1−2) ∆ · log logn

)
rounds with Õ(m+ n1+ε) total memory and in

(ii) O
(
β ·
(

log1/2β ∆ · log log ∆ +
√

log logn
)
· log log ∆

)
rounds with Õ(m) total memory.

4.1 β-ruling sets in O(polyloglog(n)) rounds
As mentioned in the Introduction, this research is partly motivated by the question of whether
ruling set problems can be solved in the low-memory MPC model in O(polyloglog(n)) rounds.
Using our results we identify two interesting circumstances under which β-ruling sets can be
computed in the low-memory MPC model in O(polyloglog(n)) rounds. First, because the
running time in Theorem 23 part (i) has an inverse exponential dependency on β, we get the
following corollary.

I Corollary 24. For β ∈ Ω(log log log ∆), a β-ruling set of a graph G can be computed in
O(β log logn) rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

Second, we can also show that for graphs with bounded ∆, we can compute a β-ruling set
in O(β log logn) rounds, however this bound increases quickly with β, giving us the following
corollary.

I Corollary 25. If we have that ∆ = O

(
2log

1− 1
2β n

)
, then a β-ruling set can be computed in

O(β log logn) rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

FSTTCS 2020

28:16 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

References

1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, December 1986.
doi:10.1016/0196-6774(86)90019-2.

2 Sepehr Assadi. Simple round compression for parallel vertex cover. CoRR, abs/1709.04599,
2017. arXiv:1709.04599.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages 767–786,
2019. doi:10.1137/1.9781611975482.48.

4 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing, pages 461–470, 2019. doi:10.1145/3293611.3331596.

5 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. J. ACM, 63(3):20:1–20:45, 2016. doi:10.1145/2903137.

6 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching and
mis in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, page 481–490, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293611.3331609.

7 Soheil Behnezhad, Mohammadtaghi Hajiaghayi, and David G. Harris. Exponentially Faster
Massively Parallel Maximal Matching. In Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, volume 2019-November, pages 1637–1649, 2019.
doi:10.1109/FOCS.2019.00096.

8 Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. Brief announcement: Super-fast
t-ruling sets. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages
379–381. ACM, 2014. doi:10.1145/2611462.2611512.

9 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (δ + 1) coloring in congested clique, massively parallel computation, and
centralized local computation. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, page 471–480, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293611.3331607.

10 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive
massively parallel computation. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’20, page 141–151, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3350755.3400230.

11 Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proc. VLDB Endow., 8(12):1804–1815,
August 2015. doi:10.14778/2824032.2824077.

12 Artur Czumaj, Peter Davies, and Merav Parter. Graph Sparsification for Derandomizing
Massively Parallel Computation with Low Space, 2019. arXiv:1912.05390.

13 Artur Czumaj, Slobodan Mitrovic, Jakub Ła̧cki, Krzysztof Onak, Aleksander Ma̧dry, and Piotr
Sankowski. Round compression for parallel matching algorithms. Proceedings of the Annual
ACM Symposium on Theory of Computing, pages 471–484, 2018. doi:10.1145/3188745.
3188764.

14 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

15 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, page 270–277, USA, 2016. Society for Industrial and Applied Mathematics.

https://doi.org/10.1016/0196-6774(86)90019-2
http://arxiv.org/abs/1709.04599
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.1145/2903137
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.1145/2611462.2611512
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3350755.3400230
https://doi.org/10.14778/2824032.2824077
http://arxiv.org/abs/1912.05390
https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/1327452.1327492

K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:17

16 Mohsen Ghaffari. Distributed MIS via all-to-all communication. Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing, Part F129314:141–150, 2017. doi:
10.1145/3087801.3087830.

17 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for MIS, matching, and vertex
cover. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing,
pages 129–138, 2018. doi:10.1145/3212734.3212743.

18 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS,
Matching, and Coloring on Trees and Beyond. CoRR, 2020. arXiv:2002.09610.

19 Mohsen Ghaffari, Ce Jin, and Daan Nilis. A massively parallel algorithm for minimum weight
vertex cover. In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15-17,
2020, pages 259–268. ACM, 2020. doi:10.1145/3350755.3400260.

20 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In Proceedings - Annual IEEE Symposium
on Foundations of Computer Science, FOCS, volume 2019-November, pages 1650–1663, 2019.
doi:10.1109/FOCS.2019.00097.

21 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1636–1653, July 2019. doi:
10.1137/1.9781611975482.99.

22 Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms
in the mapreduce model. In Proceedings of the 30th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, page 43–52, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3210377.3210386.

23 James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-constant-time
distributed algorithms on a congested clique. CoRR, abs/1408.2071, 2014. arXiv:1408.2071.

24 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 938–948, Philadelphia, PA, January 2010. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9781611973075.76.

25 Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju. Sample-and-gather: Fast ruling
set algorithms in the low-memory MPC model, 2020. arXiv:2009.12477.

26 Kishore Kothapalli and Sriram V. Pemmaraju. Super-fast 3-ruling sets. In Deepak D’Souza,
Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, Decem-
ber 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 136–147. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.136.

27 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally!
In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, page 300–309, New York, NY, USA, 2004. Association for Computing
Machinery. doi:10.1145/1011767.1011811.

28 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. J. ACM, 63(2), March 2016. doi:10.1145/2742012.

29 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
February 1992. doi:10.1137/0221015.

30 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in o(log log
n) communication rounds. In SPAA, pages 94–100, 2003. doi:10.1145/777412.777428.

31 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/0215074.

32 Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In

FSTTCS 2020

https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3212734.3212743
http://arxiv.org/abs/2002.09610
https://doi.org/10.1145/3350755.3400260
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1145/3210377.3210386
http://arxiv.org/abs/1408.2071
https://doi.org/10.1137/1.9781611973075.76
http://arxiv.org/abs/2009.12477
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136
https://doi.org/10.1145/1011767.1011811
https://doi.org/10.1145/2742012
https://doi.org/10.1137/0221015
https://doi.org/10.1145/777412.777428
https://doi.org/10.1137/0215074

28:18 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, page 135–146, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1807167.1807184.

33 Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. In Ulrich
Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing,
DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages
40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
DISC.2018.40.

34 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
35 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on

lower bounds for modern parallel computation). J. ACM, 65(6), November 2018. doi:
10.1145/3232536.

36 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompos-
ition and distributed derandomization. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
350–363, 2020. doi:10.1145/3357713.3384298.

37 Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness
for single-linkage clustering under `p distances. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5596–5605. PMLR, 2018. URL: http://proceedings.mlr.press/
v80/yaroslavtsev18a.html.

38 Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,
Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, October 2016. doi:10.1145/2934664.

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3357713.3384298
http://proceedings.mlr.press/v80/yaroslavtsev18a.html
http://proceedings.mlr.press/v80/yaroslavtsev18a.html
https://doi.org/10.1145/2934664

On Parity Decision Trees for Fourier-Sparse
Boolean Functions
Nikhil S. Mande
Georgetown University, Washington, DC, USA
http://nikhil.georgetown.domains/
nikhil.mande@georgetown.edu

Swagato Sanyal
Indian Institute of Technology Kharagpur, India
swagato@cse.iitkgp.ac.in

Abstract
We study parity decision trees for Boolean functions. The motivation of our study is the log-
rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree
complexity. Our contributions are as follows. Let f : Fn

2 → {−1, 1} be a Boolean function with
Fourier support S and Fourier sparsity k.

We prove via the probabilistic method that there exists a parity decision tree of depth O(
√
k) that

computes f . This matches the best known upper bound on the parity decision tree complexity
of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous
constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build
the trees by carefully choosing the parities to be queried in each step, our proof shows that a
naive sampling of the parities suffices.
We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy
a natural “folding property”, then the above proof can be adapted to establish existence of a
tree of complexity polynomially smaller than O(

√
k). More concretely, the folding property we

consider is that for most distinct γ, δ in S, there are at least a polynomial (in k) number of
pairs (α, β) of parities in S such that α+ β = γ + δ. We make a conjecture in this regard which,
if true, implies that the communication complexity of an XOR function is bounded above by
the fourth root of the rank of its communication matrix, improving upon the previously known
upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016).
Motivated by the above, we present some structural results about the Fourier spectra of Boolean
functions. It can be shown by elementary techniques that for any Boolean function f and all
(α, β) in

(S
2

)
, there exists another pair (γ, δ) in

(S
2

)
such that α + β = γ + δ. One can view

this as a “trivial” folding property that all Boolean functions satisfy. Prior to our work, it
was conceivable that for all (α, β) ∈

(S
2

)
, there exists exactly one other pair (γ, δ) ∈

(S
2

)
with

α+ β = γ + δ. We show, among other results, that there must exist several γ ∈ Fn
2 such that

there are at least three pairs of parities (α1, α2) ∈
(S

2

)
with α1 + α2 = γ. This, in particular,

rules out the possibility stated earlier.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Parity decision trees, log-rank conjecture, analysis of Boolean functions,
communication complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.29

Related Version A full version of the paper is available at https://arxiv.org/abs/2008.00266.

Funding Swagato Sanyal: Supported by an ISIRD Grant from Sponsored Research and Industrial
Consultancy, IIT Kharagpur.

Acknowledgements We thank Prahladh Harsha, Srikanth Srinivasan, Sourav Chakraborty and
Manaswi Paraashar for useful discussions.

© Nikhil S. Mande and Swagato Sanyal;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://nikhil.georgetown.domains/
mailto:nikhil.mande@georgetown.edu
mailto:swagato@cse.iitkgp.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.29
https://arxiv.org/abs/2008.00266
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On Parity Decision Trees for Fourier-Sparse Boolean Functions

1 Introduction

The log-rank conjecture [6] is a fundamental unsolved question in communication complexity
that states that the deterministic communication complexity of a Boolean function is
polynomially related to the logarithm of the rank (over real numbers) of its communication
matrix. The importance of the conjecture stems from the fact that it proposes to characterize
communication complexity, which is an interactive complexity measure, by the rank of a
matrix which is a traditional and well-understood algebraic measure. In this work we focus
on the important and well-studied class of XOR functions. Consider a two-party function
F : Fn2 × Fn2 → {−1, 1} whose value on any input (x, y) depends only on the bitwise XOR of
x and y, i.e., there exists a function f : Fn2 → {−1, 1} such that for each (x, y) ∈ Fn2 × Fn2 ,
F (x, y) = f(x⊕y). Such a function F is called an XOR function, and is denoted as F = f ◦⊕.
The log-rank conjecture and communication complexity of such an XOR function F has
interesting connections with the Fourier spectrum of f . For example, it is known that
the rank of the communication matrix of F equals the Fourier sparsity of f (henceforth
referred to as k) [2]. The natural randomized analogue of the log-rank conjecture is the
log-approximate-rank conjecture [5], which was recently refuted by Chattopadhyay, Mande,
and Sherif [3]. The quantum analogue of the log-rank conjecture was subsequently also
refuted by Sinha and de Wolf [12] and Anshu, Boddu, and Touchette [1]. It is worth noting
that an XOR function was used to refute these conjectures.

To design a cheap communication protocol for F , an approach adopted by many works [11,
14, 9] is to design a small-depth parity decision tree (henceforth referred to as PDT) for
f , and having a communication protocol simulate the tree; it is easy to see that the parity
of a subset of bits of the string x ⊕ y can be computed by the communicating parties by
interchanging two bits. The parity decision tree complexity (henceforth referred to as PDT(·))
of f thus places an asymptotic upper bound on the communication complexity of F . The
work of Hatami, Hosseini and Lovett [4] shows that this approach is polynomially tight; they
showed that PDT(f) is polynomially related to the deterministic communication complexity
of F . In light of this, the log-rank conjecture for XOR functions F = f ◦ ⊕ is readily seen to
be equivalent to PDT(f) being polylogarithmic in k.

However, we are currently very far from achieving this goal. Lovett [7] showed that the
deterministic communication complexity of any Boolean function F is bounded above by
O(
√

rank(F) log rank(F)). In particular, this implies that that the deterministic communica-
tion complexity of F = f ◦⊕ is O(

√
k log k). Tsang et al. [14] showed that PDT(f) = O(

√
k)

(a quantitatively weaker bound was shown in a simultaneous and independent work of Shpilka
et al. [11]). In addition to bounding PDT(f) instead of the communication complexity of
F , Tsang et al. achieved a quantitative improvement by a logarithmic factor over Lovett’s
bound for the class of XOR functions. Sanyal [10] showed that the simultaneous communic-
ation complexity of F (characterized by the Fourier dimension of f) is bounded above by
O(
√
k log k), and is tight (up to the log k factor) for the addressing function.

In this work we derive new understanding about the structure of Fourier spectra of
Boolean functions. Aided by this insight we reprove the O(

√
k) upper bound on PDT(f) (see

Sections 3.1 and 3.2). We conditionally improve this bound by a polynomial factor, assuming
a “folding property” of the Fourier spectra of Boolean functions (see Section 3.3). To prove
these results, we make use of a simple necessary condition for a function to be Boolean
(see Proposition 5). While we show that it is not a sufficient condition (see Theorem 27),
it does enable us to prove the above results. In these proofs, we use Proposition 5 in
conjunction with probabilistic and combinatorial arguments. Finally, we make progress

N. S. Mande and S. Sanyal 29:3

towards establishing the folding property (see Section 3.4). To prove these results, we use the
well-known characterization of Boolean functions given by two conditions, namely Parseval’s
identity (Equation (2)) and a condition attributed to Titsworth (Equation (3)), in conjunction
with combinatorial arguments.

1.1 Organization of this paper
In Section 2 we review some preliminaries and introduce the notation that we use in this
paper. In this section we also introduce definitions and concepts that are needed to state our
results formally. In Section 3 we motivate and formally state our results, and discuss proof
techniques. The formal proofs of our main results can be found in Sections 4 and 5 of this
paper, and in Sections 5 and 6 of the full version of this paper [8].

2 Notation and preliminaries

All logarithms in this paper are taken with base 2. We use the phrase “k is sufficiently large”
to mean that there exists a universal constant C > 0 such that k > C. As is standard,
we use the notation f(n) = Õ(h(n)) (f(n) = Θ̃(·), f(n) = Ω̃(·)) to convey that there
exists a constant c ≥ 0 such that that f(n) = O(h(n) logc h(n)) (f(n) = Θ(h(n) logc h(n)),
f(n) = Ω(h(n) logc h(n)), respectively). We use the notation [n] to denote the set {1, 2, . . . , n}.
For any set S, we use the notation

(
S
2
)
to denote the set of all subsets of S of size exactly 2.

We abuse notation and denote a generic element of
(
S
2
)
as (a, b) rather than {a, b}. When

we use the notation Ex∈X [·], the underlying distribution corresponds to x being sampled
uniformly at random from X. For a ∈ F2, we let an denote the n-bit string (a, a, . . . , a). We
use the symbol “+” to denote both coordinate-wise addition over F2 as well as addition over
reals; the meaning in use will be clear from context. For sets A,B ⊆ Fn2 , A + B denotes
the sumset defined by {α+ β | α ∈ A, β ∈ B}. For a set A ⊆ Fn2 and γ ∈ Fn2 , we denote by
A+ γ the set A+ {γ}. The above convention also extends to the symbol “

∑
”. For a set of

vectors Γ ∈ Fn2 , we define span Γ to be the set of all F2-linear combinations of vectors in Γ,
i.e., span Γ =

{∑
γ∈Γ cγ · γ

∣∣∣ cγ ∈ F2 for γ ∈ Γ
}
.

Consider the vector space of functions from Fn2 to R, equipped with the following inner
product.

〈f, g〉 := Ex∈Fn
2
[f(x)g(x)] = 1

2n
∑
x∈Fn

2

f(x)g(x).

Let x = (x1, . . . , xn) ∈ Fn2 . For each α = (α1, . . . , αn) ∈ Fn2 , define α(x) :=
∑n
i=1 αixi (mod

2), and the associated character χα : Fn2 → {−1, 1} by χα(x) := (−1)α(x). Observe that
χα(x) is the ±1-valued parity of the bits {xi | αi = 1}; due to this we will also refer to
characters as parities. The set of parities {χα | α ∈ Fn2} forms an orthonormal (with respect
to the above inner product) basis for this vector space. Hence, every function f : Fn2 → R
can be uniquely written as f =

∑
α∈Fn

2
f̂(α)χα, where f̂(α) = 〈f, χα〉 = Ex∈Fn

2
[f(x)χα(x)].

The coefficients
{
f̂(α)

∣∣∣ α ∈ Fn2
}
are called the Fourier coefficients of f .

For any function f : Fn2 → {−1, 1} and any set A ⊆ Fn2 , define the function f |A: A →
{−1, 1} by f |A (x) = f(x) for all x ∈ A. In other words, f |A denotes the restriction of f to
A.

Throughout this paper, for any Boolean function f : Fn2 → {−1, 1}, we denote by S the
Fourier support of f , i.e. S =

{
α ∈ Fn2

∣∣∣ f̂(α) 6= 0
}
. We also denote by k the Fourier sparsity

of f , i.e. k = |S|. The dependence of S and k on f is suppressed and the underlying function
will be clear from context.

FSTTCS 2020

29:4 On Parity Decision Trees for Fourier-Sparse Boolean Functions

The representation of Fourier coefficients as an expectation (over x ∈ Fn2) immediately
yields the following observation about granularity of Fourier coefficients of Boolean functions.

I Observation 1. Let f : Fn2 → {−1, 1} be any Boolean function. Then, for all α ∈ Fn2 , f̂(α)
is an integral multiple of 1/2n.

We next define plateaued functions.

I Definition 2 (Plateaued functions). A Boolean function f : Fn2 → {−1, 1} is said to be
plateaued if there exists x ∈ R such that f̂(α) ∈ {0, x,−x} for all α ∈ Fn2 .

Next we define the addressing function.

I Definition 3 (Addressing function). Let k be an even power of 2. The addressing function
ADDk : F

1
2 log k+

√
k

2 → {−1, 1} is defined as

ADDk(x, y1, . . . , y√k) := (−1)yint(x) ,

where x ∈ F
1
2 log k
2 , yi ∈ F2 for i = 1, . . . ,

√
k, and int(x) is the unique integer in

{
1, . . . ,

√
k
}

whose binary representation is x.

The Fourier sparsity of ADDk can be verified to be k. We now define a notion of equivalence
on elements of

(S
2
)
.

I Definition 4. For any Boolean function f : Fn2 → {−1, 1}, we say a pair (α1, α2) ∈
(S

2
)
is

equivalent to (α3, α4) ∈
(S

2
)
if α1 + α2 = α3 + α4.

In the above definition, if α1 + α2 = α3 + α4 = γ, then we say that the pairs (α1, α2) and
(α3, α4) fold in the direction γ. We also say that the elements α1, α2, α3, and α4 participate
in the folding direction γ. It is not hard to verify that the notion of equivalence defined
above does indeed form an equivalence relation. We will denote by Dγ the equivalence class
of pairs that fold in the direction γ, i.e.,

Dγ :=
{

(α, β) ∈
(
S
2

) ∣∣∣∣ α+ β = γ

}
.

We suppress the dependence of Dγ on the underlying function f , which will be clear from
context. Unless mentioned otherwise, these are the equivalence classes under consideration
throughout this paper.

For any Boolean function f : Fn2 → {−1, 1}, we have for each x ∈ Fn2 :

1 = f2(x) =
∑
γ∈Fn

2

 ∑
(α1,α2)∈Fn

2×Fn
2 :α1+α2=γ

f̂(α1)f̂(α2)

χγ(x). (1)

Matching the constant term of each side of the above identity we have∑
α∈Fn

2

f̂(α)2 = 1, (2)

which is commonly referred to as Parseval’s identity for Boolean functions. By matching the
coefficient of each non-constant χγ on each side of Equation (1) we obtain

∀γ 6= 0n,
∑

(α1,α2)∈Fn
2×Fn

2 :α1+α2=γ

f̂(α1)f̂(α2) = 0. (3)

Equation (3) is attributed to Titsworth [13]. The following proposition is an easy consequence
of Equation (3). It provides a necessary condition for a subset of Fn2 to be the Fourier support
of a Boolean function.

N. S. Mande and S. Sanyal 29:5

I Proposition 5. Let f : Fn2 → {−1, 1} be a Boolean function. Then, for all (α, β) ∈
(S

2
)
,

there exists (γ, δ) 6= (α, β) ∈
(S

2
)
such that α+ β = γ + δ. In other words, |Dα+β | ≥ 2.

The Fourier `1-norm of f is defined as ‖f̂‖1 :=
∑
α∈Fn

2
|f̂(α)|. By the Cauchy-Schwarz

inequality and Equation (2), we have

‖f̂‖1 ≤
√
k

√∑
α∈Fn

2

f̂(α)2 =
√
k. (4)

We next formally define parity decision trees.
A parity decision tree (PDT) is a binary tree whose leaf nodes are labeled in {−1, 1}, each

internal node is labeled by a parity χα and has two outgoing edges, labeled −1 and 1. On an
input x ∈ Fn2 , the tree’s computation proceeds from the root down as follows: compute χα(x)
as indicated by the node’s label and following the edge indicated by the value output, and
continue in a similar fashion until a reaching a leaf, at which point the value of the leaf is
output. When the computation reaches a particular internal node, the PDT is said to query
the parity label of that node. The PDT is said to compute a function f : Fn2 → {−1, 1} if
its output equals the value of f for all x ∈ Fn2 . The parity decision tree complexity of f ,
denoted PDT(f) is defined as

PDT(f) := min
T :T is a PDT computing f

depth(T).

2.1 Restriction to an affine subspace
In this section we discuss the effect of restricting a function f : Fn2 → R to an affine subspace,
on the Fourier spectrum of f .

I Definition 6 (Affine subspace). A set V ⊆ Fn2 is called an affine subspace if there exist
linearly independent vectors `1, . . . , `t ∈ Fn2 and elements a1, . . . , at ∈ F2 such that V =
{x ∈ Fn2 | `i(x) = ai ∀i ∈ {1, . . . , t}}. t is called the co-dimension of V .

Consider a set Γ := {γ1, . . . , γt} of vectors in Fn2 . Define G := span Γ, and C :=
{G + β | β ∈ Fn2 , (G + β) ∩ S 6= ∅} to be the cosets of G that have non-trivial intersection
with S. For each C ∈ C, let α(C) denote an arbitrary but fixed element in C ∩ S. In light of
this, we write the Fourier transform of f as

f(x) =
∑
C∈C

∑
γ∈G

f̂(α(C) + γ)χγ(x)

χα(C)(x), (5)

For any such fixed C, the value of the sum
∑
γ∈G f̂(α(C) + γ)χγ(x) that appears in Equa-

tion (5) is determined by the values γ1(x), . . . , γt(x). Denote this sum by PC(γ1(x), . . . , γt(x)).
For b := (b1, . . . , bt) ∈ Ft2, let Hb be the affine subspace {x ∈ Fn2 | γ1(x) = b1, . . . , γt(x) = bt}.
It follows immediately that the Fourier transform of f |Hb is given by

f |Hb (x) =
∑
C∈C

PC(b1, . . . , bt)χα(C)(x). (6)

In particular, for each b, the Fourier sparsity of f |Hb is bounded above by |C|.
We note here that each element in S is mapped to a unique element in C. The elements

of C can thus be thought of as buckets that form a partition of S. Keeping this view in mind
we define the following.

FSTTCS 2020

29:6 On Parity Decision Trees for Fourier-Sparse Boolean Functions

I Definition 7 (Bucket complexity). Let f : Fn2 → {−1, 1} be any Boolean function. Consider
a set of vectors Γ = {γ1, . . . , γt} in Fn2 . Let G := span Γ, and let C denote the set of cosets of
G that have non-empty intersection with S, that is, C := {G + β | β ∈ Fn2 , (G + β) ∩ S 6= ∅}.
Define the bucket complexity of f with respect to G, denoted B(f,G), as

B(f,G) = |C|.

We now make the following useful observation, which follows from Equation (6).

I Observation 8. Let Γ and G be as in Definition 7. Let b = (b1, . . . , bt) ∈ Ft2 be arbitrary.
Let V be the affine subspace {x ∈ Fn2 | γ1(x) = b1, . . . , γt(x) = bt}. Let k′ be the Fourier
sparsity of f |V . Then k′ ≤ B(f,G).

I Definition 9 (Identification of characters). For f,G, and C as in Definition 7 and any
β, δ ∈ S, we say that β and δ are identified with respect to G if β + δ ∈ G, or equivalently, if
β and δ belong to the same coset in C.

The following observation plays a key role in the results discussed in this paper.

I Observation 10. Let f,G and C be as in Definition 7. If there exists a set L ⊆ S of
size h such that each β ∈ L is identified with some other δ ∈ S with respect to G, then
B(f,G) ≤ k − h

2 .

Proof. Since |L| = k−h, there are at most k−h cosets in C that contain at least one element
from L. Next, each coset in C that contains only elements from L has at least 2 elements (by
the hypothesis). Hence, the number of cosets containing only elements from L is at most
h/2. Combining the above two, we have that |C| ≤ (k − h) + h

2 = k − h
2 . J

2.2 Folding properties of Boolean functions
I Definition 11. Let f : Fn2 → {−1, 1} be any Boolean function. We say that f is (δ, `)-
folding if∣∣∣∣{(α, β) ∈

(
S
2

) ∣∣∣∣ |Dα+β | ≥ k` + 1
}∣∣∣∣ ≥ δ(k2

)
.

Proposition 5 implies that any Boolean function is (1, 0)-folding.
We next show by a simple averaging argument that if f has “good folding properties”,

then there are many α ∈ S, such that |Dα+β | is large for many β ∈ S \ {α}.

B Claim 12. Let f : Fn2 → {−1, 1} be (δ, `)-folding and k ≥ 6. Define

U :=
{
α ∈ S

∣∣ there exist at least δk/2 many β ∈ S \ {α} with |Dα+β | ≥ k` + 1
}
.

Then |U | ≥ δk
3 .

Proof. For each α ∈ S, define t(α) := |
{
β ∈ S \ {α}

∣∣ |Dα+β | ≥ k` + 1
}
|. By the hypothesis,∑

α∈S t(α) ≥ δk(k − 1). We have

|U | · k + (k − |U |) · δk2 ≥
∑
α∈S

t(α) ≥ δk(k − 1)

=⇒ |U |
(
k − δk

2

)
≥ δk2 − δk − δk2

2 =⇒ |U | ≥ δ(k − 2)
2− δ ,

implying |U | ≥ δk
3 for k ≥ 6.

C

N. S. Mande and S. Sanyal 29:7

3 Our contributions

In this section we give a high-level account of our contributions in this paper. In Section 3.1
we discuss the PDT construction of Tsang et al. We motivate, state our results, and briefly
discuss proof ideas in Sections 3.2, 3.3, and 3.4.

3.1 Low bucket complexity implies shallow PDTs
The following lemma follows from [14, Lemma 28] and Equation (4).

I Lemma 13 (Tsang, Wong, Xie, and Zhang). Let f : Fn2 → {−1, 1} be any Boolean function.
Then there exists an affine subspace V of Fn2 of co-dimension O(

√
k) such that f is constant

on V .

Let V = {x ∈ Fn2 | γ1(x) = b1, . . . , γt(x) = bt} be the affine subspace V obtained from
Lemma 13, where t = O(

√
k). Define G := span {γ1, . . . , γt}. We next observe that B(f,G) ≤

k/2. To see this, note that since f |V is constant, we have from Equation (6) that for each
coset C ∈ C and any (b1, . . . , bt) ∈ Ft2,

PC(b1, . . . , bt) =
{
±1 if 0n ∈ C
0 otherwise.

Since f is a non-constant function, this implies that each PC(·) has at least 2 terms, i.e.,
each β ∈ S is identified with some other δ ∈ S with respect to G. Observation 10 implies
that B(f,G) ≤ k/2. Observation 8 implies that the Fourier sparsity of the restriction of f to
each coset of V is at most k/2.

This immediately leads to a recursive construction of a PDT for f of depth O(
√
k) as

follows. The first step is to query the parities γ1, . . . , γt. After this step, each leaf of the
partial tree obtained is a restriction of f to some coset of V . Next we recursively compute
each leaf. Since after each batch of queries, the sparsity reduces by a factor of 2, the depth

of the tree thus obtained is O
(√

k +
√

k
2 +

√
k
22 + · · ·

)
= O(

√
k).

3.2 A random set of parities achieves low bucket complexity
Tsang et al. proved Lemma 13 by an iterative procedure in each step of which a single
parity is carefully chosen. We show in this paper that a randomly sampled set of parities
achieves the desired bucket complexity upper bound with high probability. More specific-
ally, for a parameter p ∈ [0, 1], consider the procedure SampleParity(f, p) described in
Algorithm 1. Our first result shows that the set R returned by SampleParity

(
f, 1

Θ(
√
k)

)
Algorithm 1

procedure SampleParity (f, p)
R ← ∅;
for each α ∈ S do

independently with probability p,R ← R∪ {α};
end for
Return R;

end procedure

satisfies B(f, span R) ≤ (1− Ω(1))k with high probability.

FSTTCS 2020

29:8 On Parity Decision Trees for Fourier-Sparse Boolean Functions

I Theorem 14. Let f : Fn2 → {−1, 1} be a Boolean function and k be sufficiently large. Let
p = 1

2k1/2 and R be the random set of parities returned by SampleParity(f, p). There exists
a constant c ∈ [0, 1) such that

E[B(f, span R)] ≤ ck.

With high probability we have |R| = O(
√
k). By an argument analogous to the discussion

in the previous section, Theorem 14 recovers the O(
√
k) upper bound on PDT(f). An

additional insight that our work provides is that a PDT of depth O(
√
k) can be obtained by

a naive sampling procedure applied iteratively.
We note here that while Tsang et al. prove a bucket complexity upper bound of k/2 via

Lemma 13 which restricts the function to a constant, we derive a bucket complexity upper
bound of (1− Ω(1))k by analyzing the procedure SampleParity.

Proof idea

Fix any α ∈ S. Proposition 5 implies that for every β ∈ S \ {α}, there exists (γ, δ) ∈(S
2
)
\ {(α, β)} such that α+ β = γ + δ. Observe that if two parities in the set A := {β, γ, δ}

are chosen in R, then α is identified with the third parity in A w.r.t. span R. Now, the
expected number of β ∈ S \ {α} for which the aforementioned identification occurs is seen by
linearity of expectation to be Ω(kp2), which is Ω(1) by the choice of p. The crux of the proof
is in strengthening this bound on expectation to conclude that with constant probability,
there exists at least one β ∈ S \ {α} such that the above identification occurs. Theorem 14
follows by linearity of expectation over α ∈ S, and an invocation of Observation 10.

We prove Theorem 14 in Section 4.2. In Section 4.1 we prove a weaker statement that
admits a simpler proof, and yet contains some key ideas that go into the proof of Theorem 14.

3.3 Good folding yields better PDTs
Assume that for any Boolean function f there exist α1, α2 ∈ S such that |Dα1+α2 | ≥ k` + 1.
This is a weaker assumption on f than it being (δ, `)-folding. Observation 10 implies that
B(f, {0n, α1 + α2}) ≤ k − k` − 1 ≤ k(1− k−(1−`)). This suggests the following PDT for f .
First the parity α1 +α2 is queried at the root. Observation 8 implies that the Fourier sparsity
of f restricted to the affine subspace (of co-dimension 1) corresponding to each outcome of
this query is at most k(1− k−(1−`)). Repeating this heuristic recursively for each leaf leads
to a PDT of depth O(k1−` log k).

We have now set up the backdrop to introduce our next contribution. In the preceding
discussion we had assumed the following about any Boolean function f : there exists a pair
in
(S

2
)
with a large equivalence class. One implication of our next result is that if we instead

assume that any Boolean function is (Ω(1), `)-folding, the procedure SampleParity with
p set to 1/Θ̃(k(1+`)/2) achieves a bucket complexity upper bound of k(1− Ω(1)) with high
probability. By an argument analogous to the discussion in Section 3.1 (also see Corollary 16),
this yields a PDT with depth Õ(k(1−`)/2). This is a quadratic improvement over the Õ(k1−`)
bound discussed in the last paragraph. Besides, it can be seen to recover (up to a logarithmic
factor) our first result by setting ` = 0, since any Boolean function is (1, 0)-folding by
Proposition 5.

I Theorem 15. Let 0 ≤ ` ≤ 1 − Ω(1) and δ ∈ (0, 1]. Let f : Fn2 → {−1, 1} be (δ, `)-
folding with k sufficiently large. Set p := 4000 log k

δk(1+`)/2 and let R be the random subset of S that
SampleParity(f, p) returns. Then with probability at least 1− 1

k , B(f, span R) ≤ k − δk
6 .

N. S. Mande and S. Sanyal 29:9

The proof of Theorem 15 proceeds along the lines of that of Theorem 14, but is more
technical. A proof of it can be found in Section 5 of the full version of our paper [8].

This yields the following corollary.

I Corollary 16. Let 0 ≤ ` ≤ 1 − Ω(1) and δ = Ω(1). Suppose all Boolean functions
f : Fn2 → {−1, 1} with sufficiently large k are (δ, `)-folding. Then,

PDT(f) = Õ(k(1−`)/2).

Proof. Fix any Boolean function f : Fn2 → {−1, 1} with sufficiently large k. Let p and
R be as in the statement of Theorem 15. Since δ is a constant, p = Θ

(
log k

k(1+`)/2

)
. By

Theorem 15, we have B(f, span R) ≤ ck, for some c = (1− Ω(1)), with probability strictly
greater than 1/2. By a Chernoff bound |R| = Õ(k(1−`)/2) with probability strictly greater
than 1/2. Finally, by a union bound, we have that with non-zero probability the set R
returned by SampleParity(f, p) satisfies both |R| = Õ(k(1−`)/2) and B(f, span R) ≤ ck,
for some c = (1− Ω(1)). Choose such an R and consider the following PDT for f , whose
construction closely follows the discussion in Section 3.1.

First, query all parities in R. Now, let V be the affine subspace corresponding to an
arbitrary leaf of this partial tree. By the properties of R and Observation 8, we have that
the Fourier sparsity of f |V is at most ck. Repeat the same process inductively for each leaf.
The depth of the resultant tree is at most Õ(k(1−`)/2 + (ck)(1−`)/2 + · · ·) = Õ(k(1−`)/2). J

Corollary 16 naturally raises the question of whether all Boolean functions are (Ω(1),Ω(1))-
folding.

I Question 17. Do there exist constants `, δ ∈ (0, 1] such that every Boolean function
f : Fn2 → {−1, 1} is (δ, `)-folding?

An affirmative answer to Question 17 in conjunction with Corollary 16 and the discussion
in Section 1 implies an upper bound on the communication complexity of XOR functions
F = f ◦ ⊕ that is polynomially smaller than the best known bound of O(

√
rank(F)).

What is the largest ` for which all Boolean functions are (Ω(1), `)-folding? The addressing
function ADDk (see Definition 3) is (1, 1/2− o(1))-folding, and not (Ω(1), `)-folding for any
` ≥ 1

2 (see [8, Appendix B]). In light of this, we make the following conjecture.

I Conjecture 18. There exists a constant δ > 0 such that any Boolean function f : Fn2 →
{−1, 1} is (δ, 1/2− o(1))-folding.

Assuming Conjecture 18, Corollary 16 would imply an upper bound of Õ(rank1/4+o(1)(F))
on the communication complexity of XOR functions F = f ◦ ⊕.

3.4 Boolean functions have non-trivial folding properties
Recall that Conjecture 18 states that any Boolean function is (δ, `)-folding with δ = Ω(1) and
` = 1/2− o(1). Also recall from Proposition 5 that a necessary condition for a function to be
Boolean valued is that it is (δ, `)-folding with δ = 1 and ` = 0. We show in the Section 6
(see Theorem 27) that the conditions in Proposition 5 are not sufficient for a function to be
Boolean valued.

To the best of our knowledge, it was not known prior to our work whether any better
bound than this was known for Boolean functions (in terms of `, for any non-zero δ). In
particular, it was consistent with prior knowledge that there exist functions for which each
equivalence class of

(S
2
)
contains exactly 2 elements. We rule out this possibility, and our

contribution is a step towards Conjecture 18.

FSTTCS 2020

29:10 On Parity Decision Trees for Fourier-Sparse Boolean Functions

I Theorem 19. For any Boolean function f : Fn2 → {−1, 1} with k > 4, and every α ∈ S,
there exists β ∈ S \ {α} such that |Dα+β | ≥ 3.

In order to rule out the possibility mentioned above, it suffices to exhibit a single pair
(α, β) ∈

(S
2
)
with |Dα+β | ≥ 3. Theorem 19 further shows that every element α ∈ S

participates in such a pair.

Proof idea

We prove this via a series of arguments. Define S+ :=
{
α ∈ S

∣∣∣ f̂(α) > 0
}

and S− :={
α ∈ S

∣∣∣ f̂(α) < 0
}
. We first show that if there exists α ∈ S with |Dα+β | = 2 for all

β ∈ S \ {α}, then both of the following hold.
1. Either |S+| or |S−| is odd.
2. The function f must be plateaued.
The proofs use Equation (3). Next, we show that for plateaued Boolean functions, both
|S+| and |S−| are even, yielding a contradiction in view of the first bullet above. This proof
involves a careful analysis of the Fourier coefficients and crucially uses Observation 1 and
Equation (2).

A natural question raised by Theorem 19 is whether there exists a Boolean function f and
α ∈ S such that there exists only one element β ∈ S \ {α} with |Dα+β | ≥ 3. The following
theorem answers this question in the positive, and sheds more light on the structure of such
functions.

I Theorem 20.
1. There exists a Boolean function f : Fn2 → {−1, 1} and (α, β) ∈

(S
2
)
such that |Dα+γ | = 2

for all γ ∈ S \ {α, β}.
2. Let f : Fn2 → {−1, 1} be any Boolean function. If there exists (α, β) ∈

(
S
2
)
such that

|Dα+γ | = 2 for all γ ∈ S \ {α, β}, then |Dα+β | = k/2.
The proof of Part 2 of Theorem 20 follows along the lines of the proof of Theorem 19. The
proof of Part 1 of Theorem 20 constructs such a function by considering any Boolean function
and applying a simple modification to it.

We prove Theorem 19 in Section 5 and Theorem 20 in [8, Section 6].

4 Proof of Theorem 14

In this Section, we prove our first result, Theorem 14.

4.1 Warm up: sampling Õ(k3/4) parities.
In this section we prove a quantitatively weaker statement. This admits a simpler proof and
introduces many key ideas that go into our proof of Theorem 14.

B Claim 21. Let p := 2
√

log k
k1/4 , and let R be the set returned by SampleParity(f, p). Then

Pr[B(f, span R) ≤ k/2] ≥ 1− 1
k1/3 .

By a Chernoff bound, with high probability, |R| = Õ(k3/4).

N. S. Mande and S. Sanyal 29:11

Proof. Fix any α ∈ S. By Proposition 5 we have that for each β ∈ S\{α}, there exist β1, β2 ∈
S \ {α, β} such that α+ β + β1 + β2 = 0. Fix any such β1, β2, and define Qβ := {β, β1, β2}.
Note that the sets Qβ are not necessarily distinct. Define the multiset of unordered triples
F := {Qβ | β ∈ S \ {α}}. For each γ ∈ S \ {α}, define Dγ := {β ∈ S \ {α} | γ ∈ Qβ}. We
now show that with high probability there exists F ∈ F such that |F ∩R| ≥ 2. We consider
two cases below.

Case 1: There exists γ ∈ S \ {α} such that |Dγ | ≥ k1/2.
Consider the multiset of unordered pairs A := {Qβ \ {γ} | β ∈ Dγ}. Each pair in A can
repeat at most thrice. Hence there are at least k1/2/3 distinct pairs in A. Moreover the
distinct pairs in A are disjoint. This can be inferred from the observation that the sum
of the two elements in each pair in A equals α+ γ. Thus

Pr [∀A ∈ A, A * R] ≤ (1− p2)k
1/2/3 =

(
1− 4 log k

k1/2

)k1/2/3
≤ 1
k4/3 .

Case 2: For each γ ∈ S \ {α}, |Dγ | < k1/2.
In this case each triple in F has non-empty intersection with at most 3k1/2 sets in F .
Thus one can greedily obtain a collection T of at least k−1

3k1/2 disjoint triples in F .

Pr [∀T ∈ T , |T ∩R| < 2] ≤ (1− p2)
k−1

3k1/2 =
(

1− 4 log k
k1/2

) k−1
3k1/2

,

which is at most 1
k4/3 for sufficiently large k.

From the above two cases it follows that with probability at least 1− 1
k4/3 , there exists a triple

F ∈ F such that |F ∩R| ≥ 2. Assume existence of such a triple F , and let δ1, δ2 ∈ F ∩R.
Let δ := F \ {δ1, δ2}. Since α+ δ1 + δ2 + δ = 0n, we have that α+ δ = δ1 + δ2 ∈ span R, i.e.,
α is identified with δ with respect to span R. By a union bound over all α ∈ S it follows
that with probability at least 1− 1

k1/3 , for every α ∈ S there exists a δ ∈ S \ {α} such that
α is identified with δ w.r.t. R. The claim follows by Observation 10. C

4.2 Sampling O(k1/2) parities
We now proceed to prove Theorem 14 by refining the ideas developed in Section 4.1. Recall
that by a Chernoff bound, |R| = O(

√
k) with high probability (where R is as in Theorem 14).

We require the following inequality whose proof can be found in [8, Section 4.2].

I Proposition 22. For any non-negative integer d, and p ∈ [0, 1] be such that pd ≤ 1. Then,

(1− p)d ≤ 1− 1
2pd.

Proof of Theorem 14. For technical reasons we instead consider a two-step probabilistic
procedure. Define p′ := 1

4k1/2 . Let R1 and R2 be the sets returned by two independent runs
of SampleParity(f, p′), and let R′ := R1 ∪R2. Each α ∈ S is independently included in
R′ with probability equal to 1− (1− p′)2 < 2p′ = p. Hence it suffices to prove that there
exists a constant c ∈ (0, 1] such that E[B(f, span R′)] ≤ ck.

Fix any α ∈ S and let Qβ and F be as in the proof of Claim 21. For γ ∈ S \ {α},
define d̃eg(γ) := | {β ∈ S \ {α} | γ ∈ Qβ \ {β}} |. Clearly, Eγ∼S\{α}[d̃eg(γ)] = 2. Define
A :=

{
γ ∈ S \ {α}

∣∣∣ d̃eg(γ) ≥ 4k1/2
}
. By Markov’s inequality, |A| ≤ k1/2/2. Fix an ordering

σ on S \ {α} such that all elements of A := (S \ {α}) \A appear before all elements of A.

FSTTCS 2020

29:12 On Parity Decision Trees for Fourier-Sparse Boolean Functions

Define T := {β ∈ S \ {α} | Qβ \ {β} ⊆ A}. Observe that the pairs Qβ \ {β} for distinct
β ∈ S \ {α} are distinct. This can be inferred from the observation that the sum (with
respect to coordinate-wise addition in F2) of the two elements of Qβ \ {β} equals α+β. This
gives us the following bound on the size of T :

|T | ≤
(
|A|
2

)
≤ k

8 . (7)

Define T := (S \ {α}) \ T . For each β ∈ T , the first character (according to σ) in the pair
Qβ \ {β} is from A. For each γ ∈ A, define d(γ) to be the number of β ∈ T such that γ is
the first element in Qβ \ {β}. By Equation (7) we have∑

γ∈A

d(γ) = |T | ≥ k − 1− k

8 ≥
2k
3 (8)

where the last inequality holds for sufficiently large k.
For γ ∈ A, let E(γ) be the event that there exists β ∈ T ∩ R1 such that γ is the first

element in Qβ \ {β}. We have

Pr
R1

[E(γ)] = 1− (1− p′)d(γ) ≥ p′ · d(γ)
2 , (9)

where the last inequality follows by Proposition 22. Here Proposition 22 is applicable
since d(γ) ≤ d̃eg(γ) ≤ 4k1/2 (since γ ∈ A), and p′ = 1

4k1/2 . Define the random set
B :=

{
γ ∈ A

∣∣ E(γ) occurs
}
. We have

ER1 [|B|] =
∑
γ∈A

Pr
R1

[E(γ)] ≥
∑
γ∈A

p′ · d(γ)
2 by linearity of expectation and Equation (9)

≥ 1
2 ·

1
4k1/2 ·

2k
3 ≥

k1/2

12 . by Equation (8), and substituting the value of p′

Furthermore, the events E(γ) are independent. By a Chernoff bound, PrR1

[
|B| ≥ k1/2

24

]
≥ 0.9.

Now,

Pr
R1,R2

[
B ∩R2 6= ∅

∣∣∣∣ |B| ≥ k1/2

24

]
≥ 1− (1− p′)k

1/2/24 ≥ 1− e−p
′· k1/2

24 = 1− e− 1
96

= c1, say.

Thus, the probability of the event E :=
{
|B| ≥ k1/2

24

}
∧ {B ∩R2 6= ∅} is at least 0.9c1.

Suppose the event E occurs, and let γ ∈ B ∩ R2. By the definitions of B and E(γ), there
exists β ∈ T ∩R1 such that γ is the first element of Qβ \ {β}. Let δ := Qβ \ {β, γ}. Then,
α+ δ = β + γ. Since β ∈ R1 and γ ∈ R2, α is identified with δ with respect to span R′. In
summary, we have shown that for any α ∈ S,

Pr
R1,R2

[α is identified with some δ ∈ S \ {α} w.r.t. span R′] ≥ 0.9c1.

By linearity of expectation,

ER1,R2 [|{α ∈ S | α is identified with some δ ∈ S \ {α} w.r.t. span R′}|] ≥ k · 0.9c1.

Observation 10 then implies

ER1,R2 [B(f, span R′)] ≤ k − k · 0.9c1
2 = ck,

where c =
(
1− 0.9c1

2
)
. J

N. S. Mande and S. Sanyal 29:13

5 Proof of Theorem 19

In this section we prove Theorem 19, which states that for any Boolean function f : Fn2 →
{−1, 1} and α ∈ S, there exists at least one β ∈ S with |Dα+β | ≥ 3.

We first recall and introduce some notation. Recall from Proposition 5 that for any
Boolean function f : Fn2 → {−1, 1} and every γ ∈ (S + S) \ {0n}, we have |Dγ | ≥ 2. For
any γ with |Dγ | > 2, we say that γ is a non-trivial folding direction. Hence, Theorem 19
can be rephrased to say that for any Boolean function f : Fn2 → {−1, 1}, every element
α ∈ S must participate in at least one non-trivial folding direction. For any Boolean function
f : Fn2 → {−1, 1}, define S+ :=

{
α ∈ S

∣∣∣ f̂(α) > 0
}
, and S− :=

{
α ∈ S

∣∣∣ f̂(α) < 0
}
. For

any set S, we use the notation
(
S
3
)
to denote the set of all subsets of S of size exactly 3. We

abuse notation and denote a generic element of
(
S
3
)
as (a, b, c) rather than {a, b, c}.

We require the following proposition. For a proof, refer to [8, Section 6].

I Proposition 23. Let f : Fn2 → {−1, 1} be a Boolean function with Fourier support S with
k = |S| ≥ 2. Let α, β be two distinct parities in S. Then, there exists a Boolean function
g : Fn2 → {−1, 1} with Fourier support S and ĝ(α) > 0, ĝ(β) > 0.

We next state a preliminary claim.

B Claim 24. Let f : Fn2 → {−1, 1} be any Boolean function. Suppose there exists α ∈ S
such that |Dα+β | = 2 for all β ∈ S \ {α}. Then, either |S+| is odd or |S−| is odd.

Proof. Fix any set α ∈ S such that |Dα+β | = 2 for all β ∈ S \ {α}. Assume α ∈ S+ (else
run this argument with S+ and S− interchanged). Consider the set of unordered triples

T =
{

(β, γ, δ) ∈
(
S \ {α}

3

) ∣∣∣∣ α+ β + γ + δ = 0n
}
.

Let T+ denote the set of triples in T that contain at least one element β ∈ S+, i.e.,

T+ :=
{

(β, γ, δ) ∈ T
∣∣∣ at least one of f̂(β), f̂(γ), f̂(δ) is positive

}
.

Since |Dα+β | = 2 for all β ∈ S\{α}, this implies that any β ∈ S (in particular any β ∈ S+)
appears in exactly one triple. For any β ∈ S+, say this triple is (β, β1, β2). Equation (3)
implies that

f̂(α)f̂(β) + f̂(β1)f̂(β2) = 0.

Since α and β are both in S+, exactly one of β1, β2 is in S+ and the other is in S−.
Thus each triple in T+ contains exactly two elements of S+, and none of these elements

appears in any other triple. Moreover each element of S+ appears in some triple in T+.
Accounting for α being in S+, we conclude that if |T+| = t, then |S+| = 2t+ 1, which is odd.

C

We state another claim that we require.

B Claim 25. Let f : Fn2 → {−1, 1} be any Boolean function. If there exists α ∈ S such that
|Dα+β | = 2 for all β ∈ S \ {α}, then f is plateaued.

Proof. Fix any α ∈ S such that |Dα+β | = 2 for all β ∈ S \ {α}. Towards a contradiction,
suppose f is not plateaued. This implies existence of γ ∈ S such that |f̂(α)| 6= |f̂(γ)|.
Proposition 5 implies existence of µ, ν ∈ S be such that α+ γ = µ+ ν. We also have that

α+ ν = µ+ γ, α+ µ = γ + ν.

FSTTCS 2020

29:14 On Parity Decision Trees for Fourier-Sparse Boolean Functions

Arrange α, γ, µ and ν in non-increasing order of the absolute values of their Fourier coefficients.
Let the resultant sequence be δ1, δ2, δ3, δ4. Thus,

|f̂(δ1)| ≥ |f̂(δ2)| ≥ |f̂(δ3)| ≥ |f̂(δ4)|.

Since |f̂(α)| 6= |f̂(γ)|, at least one of these inequalities must be strict, which in particular
implies that |f̂(δ1)||f̂(δ2)| > |f̂(δ3)||f̂(δ4)|. Now by the hypothesis, for all 1 ≤ i < j ≤ 4, and
{k,m} := {1, 2, 3, 4} \ {i, j} we have that |Dδi+δj

| = |Dδk+δm
| = 2. Thus, by Equation (3)

we have that f̂(δ1)f̂(δ2) = −f̂(δ3)f̂(δ4), implying that |f̂(δ1)||f̂(δ2)| = |f̂(δ3)||f̂(δ4)|, which
is a contradiction. C

The next claim shows that Theorem 19 holds true if f is a plateaued function.

B Claim 26. Let f : Fn2 → {−1, 1} be any plateaued Boolean function with k > 4. Then, for
any α ∈ S, there exists β ∈ S \ {α} such that |Dα+β | ≥ 3.

Proof. Towards a contradiction, let α ∈ S be such that |Dα+β | = 2 for all β ∈ S \ {α}. Let
s = |S+| and t = |S−|. We now prove that s and t must both be even.

Since f is plateaued, Equation (2) implies that |f̂(γ)| = 1/
√
k for all γ ∈ S. By

Observation 1 we know that 1/
√
k = c/2n for some c ∈ Z. This implies that k = 22n/c2.

Since k is an integer, c must be a power of 2, and hence k = 22h for some h > 1 (since we
assumed k > 4).

Assume f(0n) = 1 (else run the same argument with f replaced by −f). This implies∑
γ∈S+

|f̂(γ)| −
∑
δ∈S−

|f̂(δ)| = 1.

That is, (s − t)/
√
k = 1. Since s + t = k, this implies s = k

2 +
√
k

2 and t = k
2 −

√
k

2 . Since
k = 22h for some h > 1 (since we assumed k > 4), s and t are both even. This is a
contradiction in view of Claim 24. C

We next use Claim 25 to remove the assumption of f being plateaued in the previous
claim, which proves Theorem 19.

Proof of Theorem 19. Towards a contradiction, suppose there exists α ∈ S such that
|Dα+β | = 2 for all β ∈ S \ {α}. Claim 25 implies that f must be plateaued. Next, Claim 26
implies that there must exist γ ∈ S such that |Dα+γ | ≥ 3, which is a contradiction. J

6 Ruling out sufficiency of Proposition 5

In this section, we prove that the conditions in Proposition 5 are not sufficient for a function
to be Boolean. To the best of our knowledge, ours is the first work to show this.

I Theorem 27. There exists a set S ⊆ Fn2 such that |Dα+β | ≥ 2 for all (α, β) ∈
(S

2
)
, but S

is not the Fourier support of any Boolean function f : Fn2 → {−1, 1}.

For sets A,B ⊆ [n], let A4B denote the symmetric difference of the sets A and B. For
x ∈ R \ {0}, define sgn(x) := −1 if x < 0, and sgn(x) := 1 if x > 0.

N. S. Mande and S. Sanyal 29:15

Proof. For the purpose of this proof, we require the natural equivalence between elements of
Fn2 and subsets of [n]. Under this equivalence, the sum of two elements in Fn2 corresponds
to the symmetric difference of the corresponding sets in [n]. The following is a property of
symmetric difference. For any sets A,B,C,D ⊆ [n],

A4B = C4D ⇐⇒ A4C = B4D. (10)

Hence it suffices to exhibit a collection S of subsets of [n] such that for all (S, T) ∈
(
S
2
)
, there

exist (U, V) 6= (S, T) ∈
(S

2
)
with S4T = U4V , and S is not the Fourier support of any

Boolean function f : Fn2 → {−1, 1}. To this end, consider the set

S = {{1} , . . . , {n} , {1, 2, n} , . . . , {1, n− 1, n}} .

Below we list out all equivalence classes of
(S

2
)
. For any distinct i, j ∈ {2, 3, . . . , n− 1} we

have {i}4{j} = {1, i, n}4{1, j, n}. Thus

D{i}4{j} = {({i} , {j}), ({1, i, n} , {1, j, n})} ∀i, j ∈ {2, 3, . . . , n− 1} . (11)

For any i ∈ {2, 3, . . . , n− 1} we have

{1}4{i} = {n}4{1, i, n} ,
{n}4{i} = {1}4{1, i, n} .

We also have

{1}4{n} = {i}4{1, i, n} for all i ∈ {2, 3, . . . , n− 1} .

Along with Equation (10), these establish the fact that |Dα+β | ≥ 2 for all (α, β) ∈
(S

2
)
. We

now provide a proof of the fact that S cannot be the Fourier support of any Boolean function.
Consider the following six sets.

S1 = {2} , S2 = {3} , S3 = {4} , S4 = {1, 2, n} , S5 = {1, 3, n} , S6 = {1, 4, n} .

If S is the support of a Boolean function, then Equation (3) holds true. Equation (11)
then implies

f̂(S1)f̂(S2) + f̂(S4)f̂(S5) = 0,

f̂(S1)f̂(S3) + f̂(S4)f̂(S6) = 0,

f̂(S2)f̂(S3) + f̂(S5)f̂(S6) = 0.

Let si = sgn(f̂(Si)) for i ∈ [6]. Thus,

s1s2 = −s4s5

s1s3 = −s4s6

s2s3 = −s5s6.

Multiplying out the left hand sides and right hand sides of the above, we obtain 1 = −1,
which is a contradiction. Hence S cannot be the support of any Boolean function. J

FSTTCS 2020

29:16 On Parity Decision Trees for Fourier-Sparse Boolean Functions

References
1 Anurag Anshu, Naresh Goud Boddu, and Dave Touchette. Quantum log-approximate-rank

conjecture is also false. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 982–994, 2019.
doi:10.1109/FOCS.2019.00063.

2 Anna Bernasconi and Bruno Codenotti. Spectral analysis of boolean functions as a graph
eigenvalue problem. IEEE Trans. Computers, 48(3):345–351, 1999. doi:10.1109/12.755000.

3 Arkadev Chattopadhyay, Nikhil S. Mande, and Suhail Sherif. The log-approximate-rank
conjecture is false. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 42–53, 2019. doi:
10.1145/3313276.3316353.

4 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions.
SIAM J. Comput., 47(1):208–217, 2018. doi:10.1137/17M1136869.

5 Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and
Trends in Theoretical Computer Science, 3(4):263–398, 2009. doi:10.1561/0400000040.

6 László Lovász and Michael E. Saks. Lattices, möbius functions and communication complexity.
In 29th Annual Symposium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988, pages 81–90, 1988. doi:10.1109/SFCS.1988.21924.

7 Shachar Lovett. Communication is bounded by root of rank. J. ACM, 63(1):1:1–1:9, 2016.
doi:10.1145/2724704.

8 Nikhil S. Mande and Swagato Sanyal. On parity decision trees for Fourier-sparse Boolean
functions. CoRR, abs/2008.00266, 2020. arXiv:2008.00266.

9 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR functions.
CoRR, abs/0909.3392, 2009. URL: http://arxiv.org/abs/0909.3392.

10 Swagato Sanyal. Fourier sparsity and dimension. Theory of Computing, 15(1):1–13, 2019.
11 Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions with small

spectral norm. Comput. Complex., 26(1):229–273, 2017. doi:10.1007/s00037-015-0110-y.
12 Makrand Sinha and Ronald de Wolf. Exponential separation between quantum communication

and logarithm of approximate rank. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
966–981, 2019. doi:10.1109/FOCS.2019.00062.

13 Robert C Titsworth. Correlation properties of cyclic sequences. PhD thesis, California Institute
of Technology, 1962.

14 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 658–667,
2013. doi:10.1109/FOCS.2013.76.

https://doi.org/10.1109/FOCS.2019.00063
https://doi.org/10.1109/12.755000
https://doi.org/10.1145/3313276.3316353
https://doi.org/10.1145/3313276.3316353
https://doi.org/10.1137/17M1136869
https://doi.org/10.1561/0400000040
https://doi.org/10.1109/SFCS.1988.21924
https://doi.org/10.1145/2724704
http://arxiv.org/abs/2008.00266
http://arxiv.org/abs/0909.3392
https://doi.org/10.1007/s00037-015-0110-y
https://doi.org/10.1109/FOCS.2019.00062
https://doi.org/10.1109/FOCS.2013.76

Colored Cut Games
Nils Morawietz
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
morawietz@informatik.uni-marburg.de

Niels Grüttemeier
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
niegru@informatik.uni-marburg.de

Christian Komusiewicz
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
komusiewicz@informatik.uni-marburg.de

Frank Sommer
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
fsommer@informatik.uni-marburg.de

Abstract

In a graph G = (V,E) with an edge coloring ` : E → C and two distinguished vertices s and t,
a colored (s, t)-cut is a set C̃ ⊆ C such that deleting all edges with some color c ∈ C̃ from G

disconnects s and t. Motivated by applications in the design of robust networks, we introduce a
family of problems called colored cut games. In these games, an attacker and a defender choose
colors to delete and to protect, respectively, in an alternating fashion. It is the goal of the attacker
to achieve a colored (s, t)-cut and the goal of the defender to prevent this. First, we show that for an
unbounded number of alternations, colored cut games are PSPACE-complete. We then show that,
even on subcubic graphs, colored cut games with a constant number i of alternations are complete
for classes in the polynomial hierarchy whose level depends on i. To complete the dichotomy, we
show that all colored cut games are polynomial-time solvable on graphs with degree at most two.
Finally, we show that all colored cut games admit a polynomial kernel for the parameter k + κr

where k denotes the total attacker budget and, for any constant r, κr is the number of vertex
deletions that are necessary to transform G into a graph where the longest path has length at
most r. In the case of r = 1, κ1 is the vertex cover number vc of the input graph and we obtain a
kernel with O(vc2k2) edges. Moreover, we introduce an algorithm solving the most basic colored cut
game, Colored (s, t)-Cut, in 2vc+knO(1) time.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis; Theory of computation →
Problems, reductions and completeness

Keywords and phrases Labeled Cut, Labeled Path, Network Robustness, Kernelization, PSPACE,
Polynomial Hierarchy

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.30

Funding Nils Morawietz: Partially supported by the Deutsche Forschungsgemeinschaft (DFG),
project OPERAH, KO 3669/5-1.
Frank Sommer : Supported by the Deutsche Forschungsgemeinschaft (DFG), project MAGZ,
KO 3669/4-1.

Acknowledgements Some of the results of this work are also contained in the first author’s Master
thesis [21].

© Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Sommer;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:morawietz@informatik.uni-marburg.de
https://orcid.org/0000-0002-6789-2918
mailto:niegru@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-4034-525X
mailto:fsommer@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Colored Cut Games

s t
1

4

2

3

3

5

2
7

6

5

4

1

Figure 1 A colored cut game of two rounds on an edge-colored graph with seven colors: In round
one, the defender may protect one color and the attacker may attack two colors. In round two, the
defender can protect two colors, and the attacker can attack one color. For example, the defender
may protect color 1, then the attacker may attack colors 2 and 3, then in round two, the defender
may protect colors 4 and 5. The resulting graph has two (s, t)-paths containing the colors 1, 4, 5, 6
and 1, 4, 5, 7, respectively. Since the attacker may now only attack either 6 or 7, the defender wins.

1 Introduction

Many classic computational graph problems are motivated by applications in network
robustness. A famous example is the problem of computing a minimum cut between two
given vertices s and t in a simple undirected graph G = (V,E) [12, 17]. In some applications,
a more realistic model for the robustness of a given network can be obtained by considering
edge-colored graphs. Here, the input graph G comes with a coloring ` : E → C of the edges,
where C is the set of colors. For example, in multilayer networks a failure of some link in a
basic network layer may result in a failure of many seemingly unrelated links in a virtual
network layer, because all of the virtual links rely on paths in the basic network that use
the failed link [7]. This can be modeled by assigning edge colors. A failure of the resource
represented by a color c then destroys all edges with color c. Thus, whether a failure scenario
disconnects two given vertices depends directly on the colors of C that fail. More precisely,
given s ∈ V and t ∈ V , a set C̃ ⊆ C is a colored (s, t)-cut in G if every (s, t)-path contains at
least one edge that has a color of C̃. For example, the color set {2, 3, 4} is a colored (s, t)-cut
in Figure 1.

The size of the smallest colored (s, t)-cut then becomes an important network robustness
parameter in scenarios modeled by colored graphs. Motivated by this fact, the problem of
computing such a colored cut, called Colored (s, t)-Cut in the following, has been studied
intensively [4, 7, 8, 15, 22, 28, 31]. In contrast to the classic problem on uncolored graphs,
Colored (s, t)-Cut is NP-complete [7]. We may view Colored (s, t)-Cut as formulated
from the perspective of an attacker whose aim is to disconnect s and t using a minimum
number of edge colors. A related (s, t)-connectivity problem is Labeled Path, where we ask
for a smallest color set C̃ ⊆ C such that there is an (s, t)-path whose edges are only colored
with colors from C̃ [7, 15, 29]. Labeled Path is NP-complete in general [29]; when every
edge color occurs at most once it is simply Shortest Path and thus solvable in polynomial
time. In our scenario, Labeled Path can be seen as motivated from the perspective of a
defender who wants to secure a minimum number of edge colors in order to guarantee that s
and t are connected.

We study colored cut games in which defender and attacker interact. This is motivated
by typical studies in network security where an attacker (sometimes called red team) plays
against a defender (sometimes called blue team) [20]. Such scenarios can be modelled
using game-theoretic formalizations [14, 19, 25] as we do in this work. In the standard
nomenclature [25], we study dynamic games with perfect information where the aim is to
complete or to prevent a colored cut.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:3

More precisely, we assume that there are two players that alternatingly choose colors.
The colors chosen by the attacker are deleted from the graph while the colors chosen by
the defender become safe which means that the attacker may not choose these colors in
subsequent turns. In our model, for each turn the attacker and the defender have a fixed
budget limiting the number of colors that they may choose. We study different versions of
this game, Figure 1 shows an example. We distinguish, for example, whether the number of
alternations between defender and attacker is constant or unbounded, whether the defender
or the attacker starts, and whether we are interested in a winning strategy for the defender
or the attacker. We refer to the family of these games as colored cut games.

Colored (s, t)-Cut is the colored cut game where the attacker has one turn, the defender
has none, and we ask if the attacker has a winning strategy. Labeled Path can be seen
as the colored cut game where the defender starts with a limited budget, followed by the
attacker with unlimited budget, and we ask if the defender has a winning strategy. When
the number of alternations between defender and attacker is unbounded, then we refer to
the game as (DA)∗ Colored (s, t)-Cut Robustness ((DA)∗-CCR). The well-known
Shannon Switching Game [5, 6] which is polynomial-time solvable is the special case of
(DA)∗-CCR where every edge color appears at most once and each player may choose one
color in every turn.

Our Results. We study the complexity of colored cut games. In Section 3, we show that,
in contrast to Shannon Switching Game, (DA)∗-CCR is PSPACE-complete, and that
for an increasing but constant number of alternations between the agents, the colored cut
games are complete for complexity classes of increasing levels of the polynomial hierarchy.

In Section 4.1, we study how the structure of the input graph influences the complexity
of the games. We show, for example, that all colored cut games are polynomial-time solvable
on graphs with degree at most two and hard for different levels of the polynomial hierarchy
on bipartite planar subcubic graphs. Finally, in Section 4.2 and Section 4.3 we study the
parameterized complexity of colored cut games. Our main result is a polynomial-size problem
kernel for all colored cut games parameterized by k+κr. Here k is is the sum of all budgets of
the attacker and κr is the number of vertex deletions that are needed to transform the input
graph G into a graph where the longest path has length at most r (thus, κ1 is the vertex
cover number vc of G). More precisely, we show that for every constant r we can reduce any
instance of a colored cut game in polynomial time to one with O((κr)2kr+1) edges. This
general kernelization result is somewhat surprising because for most parameters (including
the vertex cover number, k, or |C|) even the basic colored cut games Colored (s, t)-Cut
and Labeled Path are unlikely to admit a polynomial kernelization [15, 18, 22, 31]; the first
nontrivial kernelization for Colored (s, t)-Cut (with respect to a rather large parameter)
was provided, to the best of our knowledge, in our companion work on Colored (s, t)-
Cut [22]. We are not aware of other studies of kernelization for PSPACE-hard problems.
In addition to the kernelization, we develop an algorithm solving Colored (s, t)-Cut
in 2vc+knO(1) time. One of the main tools in our hardness proofs and algorithms is the
notion of colored-cut-equivalence. This notion may be of general interest for the study of
colored cuts in graphs. We define colored-cut-equivalence in Section 2, where we give the
formal definition of the colored cut games. Due to lack of space, several proofs are deferred
to a long version of this article.

FSTTCS 2020

30:4 Colored Cut Games

2 Basic Definitions and Colored-Cut-Equivalence

Notation. For integers j and k, j ≤ k, we denote with [j, k] the set {r | j ≤ r ≤ k}. For
a set S and an integer k, we let

(
S
k

)
denote the family of all size-k subsets of S. A (simple

undirected) graph G = (V,E) consists of a finite set of vertices V (G) := V and a set of
edges E(G) := E ⊆

(
V
2
)
and we denote n := |V | and m := |E|. For V ′ ⊆ V , we denote

with G[V ′] := (V ′, E ∩
(
V ′

2
)
) the subgraph of G induced by V ′ and with G− V ′ := G[V \ V ′]

the graph obtained from G by deleting V ′. Analogously, we let G−E′ := (V,E \E′) denote
the graph obtained by deleting the edge set E′ ⊆ E. We denote with NG(v) := {w ∈ V |
{v, w} ∈ E} the neighborhood of a vertex v in G and we denote with degG(v) := |NG(v)| the
degree of v in G. If G is clear from the context, we may omit the subscript.

A sequence of vertices P = (v1, . . . , vk) is a path or (v1, vk)-path of length k in G

if {vi, vi+1} ∈ E(G) for all 1 ≤ i < k. If vi 6= vj for all i 6= j, then we call P vertex-simple.
If not mentioned otherwise, we only consider vertex-simple paths. We denote with V (P)
the vertices of P and with E(P) the edges of P . A subset V ′ ⊆ V is called a connected
component of G if V ′ is a maximal set of vertices such that there is at least one (u, v)-path
in G for pairwise distinct u, v ∈ V ′.

Parameterized Complexity. For the definition of classical complexity classes such as
PSPACE or ΣP

2 , we refer to the literature [2]. Parameterized complexity theory aims
at a fine-grained analysis of the computational complexity of hard problems [9, 11, 16, 24].
A parameterized problem L is a subset of Σ∗ ×N, where the first component is the input
and the second is the parameter. A parameterized problem is fixed-parameter tractable
(FPT) if every instance (I, k) can be solved in f(k) · |I|O(1) time where f is a computable
function depending only on k; an algorithm with this running time is called FPT algorithm.
A parameterized problem is in XP if every instance can be solved in |I|g(k) time for some
computable function g. The complexity classes W[1] and W[2] are basic classes of presumed
parameterized intractability, that is, it is assumed that problems that are hard for W[1] or
W[2] have no fixed-parameter algorithm. Hardness for W[1] or W[2] is shown via parameter-
ized reductions. A parameterized reduction of a parameterized problem L to a parameterized
problem L′ is an algorithm that for each instance (I, k) of L computes in f(k) · |I|O(1) time
an equivalent instance (I ′, k′) of L′ such that k′ ≤ g(k) for some computable function g. A
parameterized reduction is a polynomial parameter transformation if g(k) is a polynomial
function.

A main tool to achieve fixed-parameter algorithms is reduction to a problem kernel or
problem kernelization. A problem kernelization for a parameterized problem L is a polynomial-
time algorithm that computes for every instance (I, k) an equivalent instance (I ′, k′) such
that |I ′| ≤ g(k) and k′ ≤ f(k) for computable functions f and g. If g and f are polynomials
then, we call it a polynomial problem kernelization.

Colored Cut Games. An edge-colored graph with terminals (or colored graph) is a 5-
tuple H = (G = (V,E), s, t, C, `) where G is an undirected graph, s ∈ V and t ∈ V

are the terminals, C is a set of colors and ` : E → C is an edge coloring. We denote
with |H| := |G|+ |C|+ |`| = |V |+ 2|E|+ |C| the size of a colored graph.

For a graph G = (V,E) and two vertices s ∈ V and t ∈ V , we call an edge set E′ ⊆ E an
(s, t)-(edge-)cut in G if s and t are in different connected components in G− E′. Let H =
(G, s, t, C, `) be a colored graph. For a path P in G, we let `(P) := `(E(P)) denote the set of
colors of the edges on this path. We say that C̃ ⊆ C is a colored (s, t)-cut in G if `(P)∩ C̃ 6= ∅
for every (s, t)-path P in G. We say that C̃ ⊆ C is a colored (s, t)-connector in G if there is
an (s, t)-path P in G with `(P) ⊆ C̃.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:5

We now formally define all colored cut games. Since the outcome of the game is decided
after the last turn of the attacker, all colored cut games end with a turn of the attacker. In the
most general problem variant, stated below, we allow an unbounded number of alternations
between the defender D and the attacker A.

(DA)∗ Colored (s, t)-Cut Robustness ((DA)∗-CCR)
Input: A colored graph (G = (V,E), s, t, C, `), and two vectors ~d := (d1, . . . , di) ∈ Ni
and ~a := (a1, . . . , ai) ∈ Ni such that

∑i
j=1(dj + aj) ≤ |C|.

Question: Is it true that ∃D1 ∈
(
C
d1

)
.∀A1 ∈

(
C\D1
a1

)
.∃D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∀Ai ∈(C\(⋃i−1

j=1
(Dj∪Aj)∪Di

)
ai

)
: the set

⋃i
j=1Aj is not a colored (s, t)-cut in G?

In (DA)∗-CCR we ask if the defender has a winning strategy. When the number
of turns i ≥ 1 is a constant and not part of the input, we define the problems (DA)i
Colored (s, t)-Cut Robustness ((DA)i-CCR).

If the attacker starts the game, that is, if d1 = 0, we define the problems A(DA)i
Colored (s, t)-Cut Robustness (A(DA)i-CCR) for all constant i ≥ 0. For all these
problems we also define the complement problems in which we ask if there is a winning
strategy for the attacker.

(DA)∗ Colored (s, t)-Cut Vulnerability ((DA)∗-CCV)
Input: A colored graph (G = (V,E), s, t, C, `), and two vectors ~d := (d1, . . . , di) ∈ Ni
and ~a := (a1, . . . , ai) ∈ Ni such that

∑i
j=1(dj + aj) ≤ |C|.

Question: Is it true that ∀D1 ∈
(
C
d1

)
.∃A1 ∈

(
C\D1
a1

)
.∀D2 ∈

(
C\(D1∪A1)

d2

)
. · · · .∃Ai ∈(C\(⋃i−1

j=1
(Dj∪Aj)∪Di

)
ai

)
: the set

⋃i
j=1Aj is a colored (s, t)-cut in G?

Analogously, if the number of alternations is a constant, then we define the variants (DA)i-
CCV and A(DA)i-CCV. We refer to all problems defined above as colored cut games.

Colored (s, t)-Cut is equivalent to A(DA)0-CCV and Labeled Path is the special
case of (DA)1-CCR where a1 = |C| − d1. Moreover, for all i ≥ 1, A(DA)i−1-CCR is
the special case of (DA)i-CCR where the budget of the first defender turn is zero and
(DA)i-CCR is the special case of A(DA)i-CCR where the budget of the first attacker turn
is zero. Hence, Colored (s, t)-Cut is a special case of all the problems (DA)i-CCV and
A(DA)i-CCV.

Colored-Cut-Equivalence. We let C(H) := {`(P) | P is an (s, t)-path in G} denote the
family of color sets of (s, t)-paths in G.

I Observation 2.1. The set of colors C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃ is
a hitting set for C(H), that is, if C̃ ∩ C ′ 6= ∅ for all C ′ ∈ C(H).

Moreover, C̃ is a colored (s, t)-connector in G if and only if there is C ′ ∈ C(H) such
that C ′ ⊆ C̃.

To argue concisely that two instances of some colored cut game are equivalent, we
introduce the following definition.

I Definition 2.1. Two colored graphs H = (G, s, t, C, `) and H′ = (G′, s′, t′, C, `′) are colored-
cut-equivalent if for every L1 ∈ C(H) ∪ C(H′) there exists some L2 ∈ C(H) ∩ C(H′) such
that L2 ⊆ L1.

FSTTCS 2020

30:6 Colored Cut Games

Observe that H and H′ are colored-cut-equivalent if for every (s, t)-path P in G there is
an (s′, t′)-path P ′ in G′ such that `′(P ′) ⊆ `(P) and vice versa. Thus, intuitively, only the
color sets in C(H) ∩ C(H′) are relevant for colored (s, t)-cuts. The following lemma shows
that Definition 2.1 gives us the intended property.

I Lemma 2.2. Let H = (G, s, t, C, `) and H′ = (G′, s′, t′, C, `′) be two colored-cut-equivalent
graphs, then C̃ ⊆ C is a colored (s, t)-cut in G if and only if C̃ is a colored (s′, t′)-cut in G′.

Proof. Due to symmetry, we only show one direction. Let C̃ be a colored (s, t)-cut in G,
then C̃ ∩ L2 6= ∅ for all L2 ∈ C(H) ∩ C(H′). We show C̃ ∩ L1 6= ∅ for all L1 ∈ C(H′).
Let L1 ∈ C(H′), then there is some L2 ∈ C(H) ∩ C(H′) with L2 ⊆ L1 since H and H′ are
colored-cut-equivalent. Hence, L1 ∩ C̃ ⊇ L2 ∩ C̃ 6= ∅ and therefore C̃ is a colored (s′, t′)-cut
in G′. J

I Corollary 2.3. Two instances I = (H,~d,~a) and I ′ = (H′,~d,~a) of any colored cut game are
equivalent if H and H′ are colored-cut-equivalent.

The following lemmas will be useful for proving hardness on restricted input graphs.

I Lemma 2.4. For every colored graph H = (G, s, t, C, `), one can compute in polynomial
time a colored-cut-equivalent graph H′ = (G′, s′, t′, C, `′) such that G′ is bipartite.

I Lemma 2.5. Let H = (G, s, t, C, `) be a colored graph and let α ∈ C be a color that occurs
on every (s, t)-path in H. Then, one can compute in polynomial time a colored-cut-equivalent
graph H′ = (G′, s′, t′, C, `′) such that G′ has a maximum degree of three.

3 Classic Complexity of Colored Cut Games

3.1 Unbounded Number of Alternations
We first show that colored cut games are PSPACE-complete if the number of alternations
between attacker and defender is unbounded by reducing from the PSPACE-complete
Competitive Hitting Set [26].

I Theorem 3.1. (DA)∗-CCR and (DA)∗-CCV are PSPACE-complete on planar graphs
even if each budget is one.

Proof. (DA)∗-CCR and (DA)∗-CCV can obviously be solved within polynomial space by
a standard search tree algorithm that alternately chooses the colors for the defender and the
attacker. Thus, it remains to show PSPACE-hardness. To this end we give a polynomial-time
reduction from a competitive version of Hitting Set which is PSPACE-complete [26].

Competitive Hitting Set (CHS)
Input: A universe U with |U| = 2i and a collection F of non-empty subsets of U .
Question: Is it true that ∀d1 ∈ U .∃a1 ∈ U \ {d1}.∀d2 ∈ U \ {d1, a1}. · · · .∃ai ∈
U \

(⋃i−1
j=1{dj , aj} ∪ {di}

)
: F ∩ {aj | 1 ≤ j ≤ i} 6= ∅ for all F ∈ F?

This problem can be seen as a game between two agents where every agent selects
an unselected element of the universe in each turn. The game ends when there is no
unselected element of the universe remaining and the second player wins if he intersects every
subset F ∈ F with the elements he chose. Otherwise, the first player wins. We ask if the
second player has a winning strategy.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:7

Given an instance I = (U ,F) of Competitive Hitting Set, we describe how to
construct an equivalent instance I ′ = (G = (V,E), s, t, C, `) of (DA)∗-CCV in polynomial
time. We set C := U and start with an empty graph only containing distinct vertices s and t.
For every F ∈ F we add an (s, t)-path PF such that `(PF) = F and where all vertices of PF
except s and t are new. Thus, for every (s, t)-path P in G there is F ∈ F such that `(P) = F .
Consequently, A ⊆ U intersects every F ∈ F if and only if A is a colored (s, t)-cut in G.

Hence, a winning strategy for the attacker in the (DA)∗-CCV instance I ′ is also a winning
strategy for the second player in the Competitive Hitting Set instance I and vice versa.
Therefore, I is a yes-instance of Competitive Hitting Set if and only if I ′ is a yes-instance
of (DA)∗-CCV. Since the class of PSPACE-complete problems is closed under complement,
(DA)∗-CCR where the budget in every turn is one is also PSPACE-complete. J

3.2 Bounded Number of Alternations
Next, we analyze the complexity of (DA)i-CCR and A(DA)i-CCR. To this end, recall that
(DA)i-CCR asks if the defender has a winning strategy when the defender starts and both
agents have exactly i turns for some constant i.

I Lemma 3.2. For all i ≥ 1, (DA)i-CCV is ΠP
2i-hard and (DA)i-CCR is ΣP

2i-hard even
on planar graphs.

To prove Lemma 3.2, we reduce QSAT2i which we will state using the following notation.
For a set of boolean variables Z, we define the set of literals L(Z) := Z ∪ {¬z | z ∈ Z}. A
subset of literals Z̃ ⊆ L(Z) is an assignment of Z if |{z,¬z} ∩ Z̃| = 1 for all z ∈ Z. For a
subset X ⊆ Z of variables, we denote with τZ(X) := X ∪ {¬z | z ∈ Z \X} the assignment
of Z where all variables of X occur positively and all variables of Z \X occur negatively.
Given an assignment Z̃ and a clause φ ∈

(L(Z)
3
)
we say that Z̃ satisfies φ (denoted by Z̃ |= φ)

if φ ∩ Z̃ 6= ∅. Analogously, Z̃ satisfies a set Φ ⊆
(L(Z)

3
)
of clauses (denoted by Z̃ |= Φ)

if Z̃ |= φ for all φ ∈ Φ.

Proof sketch. We reduce QSAT2i, which is ΠP
2i-hard [2], to (DA)i-CCV.

QSAT2i
Input: A set Φ of clauses in 3-CNF over the set of variables Z and a parti-
tion (X1, Y1, . . . , Xi, Yi) of Z.
Question: Is it true that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi : τZ(X̃1 ∪ Ỹ1 ∪
· · · ∪ X̃i ∪ Ỹi) |= Φ?

QSAT2i can be seen as a two-player game where Player 1 and Player 2 choose an
assignment for Xj and Yj , respectively, in their jth turn. We ask if Player 2 has a winning
strategy, that is, if the combined assignment satisfies Φ.

Given an instance I ′ = (Z,Φ, X1, Y1, . . . , Xi, Yi) of QSAT2i, we construct an instance I =
(H,~d,~a) of (DA)i-CCV as follows. Let Xj = {xjk | 1 ≤ k ≤ |Xj |}, Yj = {yjk | 1 ≤ k ≤ |Yj |}
for all 1 ≤ j ≤ i and let L := L(Z). We can assume without loss of generality that |Xj | ≥ 2
for all j ∈ [2, i] and |Yj | ≥ 2 for all j ∈ [1, i].

We set C := L and force the defender and the attacker to choose an assignment of the
variables of Xj and Xj ∪ Yj , respectively, in their jth turn, otherwise they will lose.

The graph consists of three parts: the variable gadgets for the defender, the variable
gadgets for the attacker and a gadget for the evaluation of the clauses. To this end, we
define G := (V,E) with V := Vd ∪ Va ∪ VΦ and E := Ed ∪Ea ∪EΦ where Vd, Ed and Va, Ea
are the variable gadgets for the defender and attacker, respectively, and VΦ, EΦ is the gadget

FSTTCS 2020

30:8 Colored Cut Games

sj−1 = rj0

rj1

>j1

⊥j1

rj2

>j2

⊥j2

rj3

>j3

⊥j3

rj4 = sj

>j4

⊥j4(a)

xj1 xj1

¬xj1 ¬xj1

xj2 xj2

¬xj2 ¬xj2

xj3 xj3

¬xj3 ¬xj3

xj4 xj4

¬xj4 ¬xj4

s = r1
0

s1

s2

s3

(b)

Figure 2 (a) The gadget for the defender for the variables of Xj with |Xj | = 4. (b) The
graph GD = (VD, ED) where |X1| = 2, |X2| = 3, and |X3| = 1.

for the evaluation of the clauses. First, we introduce the variable gadget for the defender,
shown in Figure 2:

Vd := {rj0 | 1 ≤ j ≤ i} ∪ {r
j
k,>

j
k,⊥

j
k | 1 ≤ j ≤ i, 1 ≤ k ≤ |Xj |}

Ed :=
{
{rjk−1,>

j
k}, {r

j
k−1,⊥

j
k}, {>

j
k, r

j
k}, {⊥

j
k, r

j
k} | 1 ≤ j ≤ i, 1 ≤ k ≤ |Xj |

}
,

`({rjk−1,>
j
k}) := `({>jk, r

j
k}) := xjk,

`({rjk−1,⊥
j
k}) := `({⊥jk, r

j
k}) := ¬xjk,

where rj|Xj | = rj+1
0 for all 1 ≤ j < i. In the following, let s := s0 := r1

0 and sj := rj|Xj | for
all j ∈ [1, i]. The vertex sj is a common vertex of the gadgets for the attacker and defender.
The idea is that in his jth turn the defender has to choose an assignment of the variables
of Xj , or otherwise the attacker wins by taking at most two colors in his next turn. Next,
we define the gadgets for the attacker:

Va := {t} ∪ {vx | x ∈ Z},
Ea :=

{
{sj , vx}, {vx, t} | 1 ≤ j ≤ i, x ∈ Xj ∪ Yj

}
,

`({sj , vx}) := x, and `({vx, t}) := ¬x for all j ∈ [1, i], x ∈ Xj ∪ Yj .

The idea is that either the color set chosen by the attacker in his jth turn is an assignment
of the variables of Xj ∪ Yj , or the defender wins by choosing two colors in his next turn.
Since a player can only choose colors that were not chosen before, the assignment for the
variables of Xj of the attacker is the complement of the assignment on the variables of Xj of
the defender.

Finally, we define the clause gadget. To model each clause φ ∈ Φ, we add an (si, t)-path P
with `(P) = φ. Formally, the gadget is defined as follows. We fix an ordering on every
clause φj ∈ Φ and denote with φj(y) the yth literal of φj and add

VΦ := {bj1, b
j
2 | 1 ≤ j ≤ |Φ|},

EΦ := {{si, bj1}, {b
j
1, b

j
2}, {b

j
2, t} | 1 ≤ j ≤ |Φ|},

`({si, bj1}) := φj(1),
`({bj1, b

j
2}) := φj(2), and

`({bj2, t}) := φj(3).

The final graph can be seen in Figure 3. We set dj := |Xj | and aj := |Xj | + |Yj | for
all j ∈ [1, i]. This completes the construction.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:9

s = r1
0

s1

s2

s3
t

b11 b12

b41 b42

vx1
1

vx1
2

vy1
1

Figure 3 The construction for an instance with |Φ| = 4, |X1| = |Y3| = 2, |Y1| = |Y2| = |X3| = 1,
and |X2| = 3. Solid edges belong to Ed, dotted edges belong to Ea, dashed edges belong to EΦ. The
clause gadget is connected with s3 and t.

Before we show the equivalence between I and I ′, we make some observations about
winning strategies. The following establishes the link between sensible choices of color sets
and partial assignments for variables in Z: Let j ∈ [1, i] and let Dj ⊆ C be the set of
colors the defender chooses in his jth turn. We call Dj nice if Dj is an assignment for Xj .’
Analogously, let Aj ⊆ C be the set of colors the attacker chooses in his jth turn. We call Aj
nice if Aj is an assignment for Xj ∪ Yj .

B Claim 3.3. For both players, it is never part of a winning strategy to be the first to choose
a set of colors which is not nice.

Hence, we can assume that both players will only choose nice sets of colors.

B Claim 3.4. Let Dj , Aj be nice for all j ∈ [1, i] and Ã :=
⋃i
j=1Aj , then Ã is a colored (s, t)-

cut in G if and only if Ã |= Φ.

Using these claims, we show that the QSAT2i instance is a yes-instance if and only if the
constructed (DA)i-CCV instance is a yes-instance.

(⇒) Assume that ∀X̃1 ⊆ X1.∃Ỹ1 ⊆ Y1. · · · .∀X̃i ⊆ Xi.∃Ỹi ⊆ Yi.τZ(X̃1∪Ỹ1∪· · ·∪X̃i∪Ỹi) |=
Φ is true. Then, there are functions fk : P(

⋃k
j=1 X̃j) → P(Yk) for all k ∈ [1, i] such

that ∀X̃1 ⊆ X1. · · · .∀X̃i ⊆ Xi.τZ(X̃1 ∪ f1(X̃1) ∪ · · · ∪ X̃i ∪ fi(
⋃i
k=1 X̃k)) |= Φ is true [3].

Herein, P denotes the powerset. The functions f1, . . . , fi are called Skolem functions and
can be seen as the winning strategy of Player 2 in the QSAT2i instance. We will use
these functions to describe a winning strategy for the attacker in the (DA)i-CCV instance
iteratively. Let D1 be the color set chosen by the defender in his first turn. If D1 is not nice
then, due to Claim 3.3, the attacker has a winning strategy. So, we assume that D1 is nice.
Then, D1 is an assignment for X1. Let D1 := X1 \D1, that is, the complement assignment
of D1 ∩X1. We set A1 := τX1∪Y1(D1 ∪ f1(D1)) which is nice and disjoint from D1.

After this initial choice, the winning strategy for the attacker works as follows. Let j ∈ [2, i]
such thatDr and Ar are nice for all r ∈ [1, j−1]. LetDj be the color set chosen by the defender
in his jth turn. If Dj is not nice then, due to Claim 3.3, the attacker has a winning strategy.
So, we assume that Dj is nice. Then, Dj is an assignment for Xj . Let Dr := Xr \Dr, that is,

FSTTCS 2020

30:10 Colored Cut Games

the complement assignment of Dr for all r ∈ [1, j]. We set Aj := τXj∪Yj (Dj ∪ fj(
⋃j
r=1Dr)).

Observe that Aj is also nice. Hence, we can assume that Dj is nice and Aj is nice and
defined as described for all j ∈ [1, i].

It remains to show that Ãi :=
⋃i
j=1Aj is a colored (s, t)-cut in G. Since we assumed

that ∀X̃1 ⊆ X1. · · · .∀X̃i ⊆ Xi.τZ(X̃1∪f1(X̃1)∪· · ·∪X̃i∪fi(
⋃i
k=1 X̃k)) |= Φ is true, it follows

that Ãi = τZ(D1∪f1(D1)∪· · ·∪Di∪fi(
⋃i
k=1Dk)) |= Φ. Therefore, Ãi is a colored (s, t)-cut

in G due to Claim 3.4. Hence, the attacker has a winning strategy.
(⇐) The proof of this direction is deferred to the the long version of this article.
Hence, I is a yes-instance of (DA)i-CCV if and only if I ′ is a yes-instance of QSAT2i.

Therefore, (DA)i-CCV is ΠP
2i-hard. Since (DA)i-CCR is the complement problem of

(DA)i-CCV, it follows that (DA)i-CCR is ΣP
2i-hard. J

Lemma 3.2 is the main step to prove the following.

I Theorem 3.5. For all i ≥ 0, A(DA)i-CCR is ΠP
2i+1-complete and for all i ≥ 1, (DA)i-

CCR is ΣP
2i-complete even on planar graphs.

4 Restricted Instances and Parameterizations

We now take a closer look at the classic complexity of (DA)i, A(DA)i, and (DA)∗-CCR on
restricted instances. First, we obtain a complexity dichotomy with regard to the maximum
degree and strengthen our hardness results from Section 3.1 to restricted graph classes.
Second, we analyze a restricted class of colored graphs for which Colored (s, t)-Cut is
polynomial-time-solvable and show that DA-CCR is NP-complete on these restricted colored
graphs. Finally, we investigate the parameterized complexity and describe how to obtain
polynomial kernel for all colored cut games by combining the budget with structural graph
parameters.

4.1 Restricted Instances
First, we show that the classic complexity of all colored cut games is the same even on
bipartite planar graphs. Second, we show that (DA)i-CCR, A(DA)i-CCR, i ≥ 1, and
(DA)∗-CCR can be solved in polynomial time on graphs with maximum degree at most two
but cannot be solved in polynomial time on graphs with maximum degree at least three,
unless P = NP.

By Theorem 3.5, (DA)i-CCV and A(DA)i-CCV are hard even on planar graphs. Given
a planar graph, we can replace it with a bipartite planar colored-cut-equivalent graph in
polynomial time due to Lemma 2.4. By Corollary 2.3, this gives an equivalent instance.

I Corollary 4.1. For all i ≥ 1, (DA)i-CCV is ΠP
2i-complete and for all i ≥ 0, A(DA)i-CCV

is ΣP
2i+1-complete even on bipartite planar graphs.

I Theorem 4.2. Let i ≥ 1. The problems (DA)i-CCR, A(DA)i-CCR, and (DA)∗-CCR
can be solved in polynomial time on graphs with a maximum degree of at most two. On bipartite
planar graphs with a maximum degree of at least three, (DA)i-CCR and A(DA)i-CCR
are ΣP

2i-hard and (DA)∗-CCR is PSPACE-hard.

Second, we analyze the complexity of (DA)1-CCR on instances where every color appears
in at most two (s, t)-paths. In this case, Colored (s, t)-Cut can be solved in polynomial
time [7, 17, 27]. In contrast, we will show that (DA)1-CCR is NP-complete. Hence, for
any i ≥ 1, (DA)i-CCR and A(DA)i-CCR cannot be solved in polynomial time on these
restricted colored graphs, unless P = NP. We show NP-completeness via reduction from
Matching Interdiction which is NP-hard [30].

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:11

I Theorem 4.3. (DA)1-CCR is NP-complete and W[1]-hard when parameterized by d1 even
if every color appears in at most two (s, t)-paths.

4.2 Parameterization by the Full Budget and the Number of Colors
In this section we analyze the parameterized complexity of the colored cut games. Next, we
investigate budget-related parameters. For an instance I = (H,~d,~a) of a colored cut game we
denote with b(I) :=

∑i
x=1(dx + ax) the sum of all budgets and with k :=

∑i
x=1 ax the total

budget of the attacker. First, we investigate the parameter b(I). Colored (s, t)-Cut is
W[2]-hard when parameterized by k = b(I) [7]. We extend this hardness result to all colored
cut games. Moreover, we show that all colored cut games are fixed-parameter tractable and
do not admit polynomial kernels when parameterized |C|.

I Proposition 4.4. (DA)i-CCR, i ≥ 1, A(DA)i-CCR, i ≥ 0, and (DA)∗-CCR parameter-
ized by b(I) are coW[2]-hard and can be solved in O(|C|b(I)(n+m)) time.

By definition, b(I) ≤ |C|. Hence, the described algorithm of Proposition 4.4 with a
running time of O(|C|b(I)(n+m)) also implies an FPT-algorithm when parameterized by |C|.

I Corollary 4.5. (DA)i-CCR, A(DA)i−1-CCR, i ≥ 1, and (DA)∗-CCR can be solved in
time O(min(|C||C|, 22i|C|)(n+m)) and do not admit a polynomial kernel when parameterized
by |C|, unless NP ⊆ coNP/poly.

4.3 Polynomial Kernels by Combining Budget with Structural Graph
Parameters

Finally, we investigate colored cut games from the viewpoint of kernelization. By the above,
natural parameterizations by b(I) or even |C| will not give a kernel. Moreover, Colored (s, t)-
Cut is NP-hard even if the vertex cover number of the input graph is at most two [28]. Hence,
for most structural graph parameters there is little hope to obtain polynomial kernels. We
will show that, however, all colored cut games admit polynomial kernels when parameterized
by the total attacker budget k and the vertex cover number. In fact, we show polynomial
kernels for smaller parameters. To this end, we consider generalizations of vertex covers.

I Definition 4.6. For a graph G, we let lp(G) denote the length of a longest path in G.
We call a vertex set S ⊆ V an r-lp-modulator in G if lp(G − S) ≤ r. The size of a
smallest r-lp-modulator of a graph G is the r-lp-deletion number κr of G.

Thus, an r-lp-modulator is a vertex set whose deletion results in a graph that has no simple
paths of length at least r + 1. Clearly, the r-lp-deletion number of G is monotonically
decreasing with r. Note that the vertex cover number is exactly the 1-lp-deletion number.
More generally, if every connected component of a graph has order at most r, then lp(G) ≤ r.
Thus, the r-lp-deletion number of a graph is never larger than the so-called r-COC number,
the smallest size of a vertex set whose deletion results in a graph where every connected
component has order at most r.

To show the correctness of the kernelization, we need to argue that an attacker can
achieve a colored cut in the kernel if and only if he can achieve it in the input instance. Thus,
we only need to consider colored cuts of bounded size in the correctness proof. Motivated by
this, we generalize the notion of colored-cut-equivalence as follows.

I Definition 4.7. Let x be an integer. Two colored graphs H = (G, s, t, C, `) and H′ =
(G′, s′, t′, C, `′) are x-colored-cut-equivalent if for all C̃ ⊆ C of size at most x it holds that C̃
is a colored (s, t)-cut in G if and only if C̃ is a colored (s′, t′)-cut in G′.

FSTTCS 2020

30:12 Colored Cut Games

Since the total attacker budget is an upper bound for the size of the colored (s, t)-cut the
attacker can choose, we obtain the following.

I Corollary 4.8. Two instances I = (H,~d,~a) and I ′ = (H′,~d,~a) of any colored cut game are
equivalent if H and H′ are k-colored-cut-equivalent where k =

∑i
x=1 ax.

Now, we show that we can compute in polynomial time a k-colored-cut-equivalent graph
which (k + κr)O(r) edges.

I Lemma 4.9. Let H = (G = (V,E), s, t, C, `) be a colored graph with r-lp-deletion number κr
and let k ≤ |C| be an integer. Then, one can compute in |H|O(r) time a k-colored-cut-
equivalent graph H′ = (G′ = (V ′, E′), s′, t′, C, `′) with at most

((r+1)κr+2
2

)
· (r+ 1)(r+ 1)!kr+1

edges.

The idea of the algorithm is the following: First, we approximate an r-lp-modulator Γ
containing both s and t and compute for each pair {x, y} of vertices of Γ the collection A{x,y} of
all color sets of (x, y)-paths not containing other vertices of Γ. For each such pair, we compute
the Hitting Set-instance (A{x,y}, k) and kernelize it to a Hitting Set-instance (A′{x,y}, k)
with |A′{x,y}| < (r + 1)!kr+1 by using the Sunflower Lemma [13]. Finally, we construct a
colored graph H′ such that Γ is an r-lp-modulator of G′ and such that for each pair {x, y}
of vertices of Γ, the collection of all color sets of (x, y)-paths not containing other vertices
of Γ is precisely A′{x,y}. This can be done with |A′{x,y}| paths for each A′{x,y}. Hence, the
resulting graph has bounded size.

We now describe in detail how to construct H′. First, we compute an r-lp-modulator Γ of
size at most κr(r+1)+2 containing s and t via the following (r+1)-approximation algorithm:
Start with an empty set Γ′. While the graph G− Γ′ contains a path of length at least r + 1,
add the r+ 1 vertices of this path to Γ′. Afterwards, we set Γ := Γ′ ∪ {s, t}. By construction,
Γ is an r-lp-modulator and it has size at most κr(r + 1) + 2 since every r-lp-modulator
contains at least one vertex of each path of length at least r + 1.

Since G − Γ has no paths of length at least r + 1, we know that every path between
two vertices of Γ, which does not contain a third vertex of Γ, has at most r + 1 edges. We
compute for every {a, b} ∈

(Γ
2
)
the family of all color sets A{a,b} of (a, b)-paths in G{a,b} :=

G− (Γ \ {a, b}). That is, A{a,b} = C(H{a,b}), where H{a,b} := (G{a,b}, a, b, C, `). Hence, for
every color set C̃ ⊆ C it holds that C̃ is a colored (a, b)-cut in G{a,b} if and only if C̃ is a
hitting set for A{a,b}. Note that A{a,b} contains only color sets of size at most r+1. Next, we
reduce each of the sets A{a,b} to a size of at most (r+ 1)! · kr+1 using a well known reduction
rule for (r + 1)-Hitting Set. This reduction rule uses the famous Sunflower Lemma [13].

I Lemma 4.10. If A{a,b} has size more than (r + 1)! · kr+1, then there are k + 1 distinct
sets S1, . . . , Sk+1 ∈ A{a,b} that can be computed in polynomial time such that Sj ∩ Sj′ =⋂

1≤i≤k+1 Si =: S for all distinct j, j′ ∈ [1, k + 1].

I Rule 4.1. If |A{a,b}| > (r+ 1)! · kr+1, then compute sets S1, . . . , Sk+1 ∈ A{a,b} and S with
the property of Lemma 4.10.

If S = ∅, then remove all sets of A{a,b} except {S1, . . . , Sk+1}.
Otherwise, remove S1, . . . , Sk+1 from A{a,b} and add the set S.

Next, we show that the rule is correct in the following sense.

I Proposition 4.11. Let C̃ ⊆ C be a set of size at most k.
If S 6= ∅, then C̃ is a hitting set for A{a,b} if and only if C̃ is a hitting set for {S} ∪
(A{a,b} \ {Si | 1 ≤ i ≤ k + 1}).
If S = ∅, then C̃ is a hitting set for A{a,b} if and only if C̃ is a hitting set for {Si | 1 ≤
i ≤ k + 1}.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:13

Let A′{a,b} be the set obtained after exhaustively applying Rule 4.1 to A{a,b}. By the
definition of Rule 4.1, A′{a,b} has size at most (r + 1)! · kr+1. Moreover, by the definition
of A{a,b} and Proposition 4.11, we obtain that every color set C̃ ⊆ C of size at most k is a
colored (a, b)-cut in G{a,b} if and only if C̃ is a hitting set for A′{a,b}.

Finally, we define the colored graph H′. We start with a graph G′ containing only the
vertices of Γ and set s′ = s and t′ = t. Next, for every set {a, b} ∈

(Γ
2
)
and every color

set L ∈ A′{a,b}, we add an (a, b)-path PL with max(1, |L| − 1) new internal vertices to G′ and
color the edges of P in such a way that `′(P ′L) := L, where P ′L := a · PL · b. This finishes
the definition of H′. We may now show the correctness and the running time of the data
reduction and the size bound of the resulting graph H′.

Proof of Lemma 4.9. Note that C(H′{a,b}) = A′{a,b}, where G′{a,b} := G′ − (Γ \ {a, b})
and H′{a,b} := (G′{a,b}, a, b, C, `′). Hence, we obtain that every color set C̃ ⊆ C of size at
most k is a colored (a, b)-cut in G′{a,b} if and only if C̃ is a hitting set for A′{a,b}. By the
above, this is the case if and only if C̃ is a colored (a, b)-cut in G{a,b}. Consequently, H{a,b}
and H′{a,b} are k-colored-cut-equivalent.

Now, we use this fact to prove that H and H′ are k-colored-cut-equivalent. Let C̃ be
a colored (s, t)-cut of size at most k in G. We show that C̃ is a colored (s, t)-cut in G′.
Assume towards a contradiction, that this is not the case. Then, there is an (s, t)-path P ′ =
(u1, . . . , uq) in G′ with u1 = s and uq = t such that `′(P ′) ∩ C̃ = ∅. Let ui1 , . . . , uiz be the
vertices of Γ in P ′ in the ordering of the traversal of the path. Recall that s ∈ Γ and t ∈ Γ,
which implies that ui1 = u1 and uiz = uq. Now, let P ′j := (uij , uij+1, . . . , ui(j+1)−1, ui(j+1))
denote the subpath of P ′ connecting uij and uij+1 for all j ∈ [1, z − 1]. Due to the
fact that `′(P ′) ∩ C̃ = ∅, it follows that `′(P ′j) ∩ C̃ = ∅ for all j ∈ [1, z − 1]. Thus, for
each j ∈ [1, z − 1] it holds that C̃ is not a colored (uij , uij+1)-cut in G′{uij

,uij+1}
. Moreover,

since for each j ∈ [1, z−1],H{uij
,uij+1} andH

′
{uij

,uij+1}
are k-colored-cut-equivalent, it follows

that there is an (uij , uij+1)-path Pj in G{uij
,uij+1} such that `(Pj)∩ C̃ = ∅. By connecting all

paths P1 (· · ·(Pz−1, we get an (s, t)-path P in G with `(P)∩ C̃ =
⋃z−1
j=1(`(Pj)∩ C̃) = ∅.

This contradicts the assumption that C̃ is a colored (s, t)-cut in G. The opposite direction
can be shown analogously.

Next, we show the running time of the construction. Since paths of length at least r + 1
can be computed in 2O(r) · |V |O(1) time [1], we can compute the set Γ in the same running
time. Moreover, since no (a, b)-path in G{a,b} has length more than r + 2, we can compute
all the sets A{a,b} in O(

(|Γ|
2
)
· |V |r+O(1)) time. Since each application of Rule 4.1 takes

only polynomial time and reduces the size of A{a,b} by at least one, all the sets A′{a,b}
can be computed in O(

(|Γ|
2
)
· |V |r+O(1)) time as well. Thus, the complete construction

takes O(
(|Γ|

2
)
· 2O(r) · |V |r+O(1)) time.

Finally, we show the size of the kernel. By construction, G′ contains for every {a, b} ∈
(Γ

2
)

at most |A′{a,b}| ≤ (r + 1)!kr+1 paths with at most r + 1 edges each. Consequently, G′

contains at most
(|Γ|

2
)
· (r+ 1)(r+ 1)!kr+1 edges. Since |Γ| has size at most (r+ 1)κr + 2, we

obtain the stated kernel size. J

Corollary 4.8 and Lemma 4.9 lead to the following kernelization.

I Theorem 4.12. For each constant r ≥ 1, every colored cut game admits a polynomial kernel
with at most

((r+1)κr+2
2

)
· (r + 1)(r + 1)!kr+1 edges when parameterized by the r-lp-deletion

number κr of G and the total attacker budget k.

FSTTCS 2020

30:14 Colored Cut Games

I Corollary 4.13. Every colored cut game admits a polynomial kernel with at most
(2vc+2

2
)
·4k2

edges when parameterized by the vertex cover number vc of G and the total attacker budget k.

A further parameter to consider in this context is the treedepth of G [23]: The treedepth td(G)
of a graph is at least log(lp(G)) [23]. Thus, Theorem 4.12 also implies the following result
for modulators to graphs with treedepth at most r. Herein λr denotes the size of a smallest
treedepth r-modulator.

I Corollary 4.14. For any constant r ≥ 1, every colored cut game admits a polynomial
kernel when parameterized by the size λr of a smallest treedepth r-modulator and the total
attacker budget k.

The size of the kernel is (λr)2kO(2r) and thus the guarantee is not of practical interest even
for rather moderate values of k and the treedepth bound r. However, these kernelization
results are optimal in the following two ways: First, Colored (s, t)-Cut does not admit
a kernel with respect to k even on graphs with treewidth two [15]. Hence, we may not
replace r-lp-modulators or treedepth-r modulators by treewidth-r modulators. Moreover,
the standard reduction from (r + 1)-Hitting Set to Colored (s, t)-Cut gives graphs
in which s and t are connected only via vertex disjoint paths of length at most r + 2.
Hence, lp(G − {s, t}) ≤ r and, thus, κr ≤ 2. Moreover, k is exactly the budget of the
Hitting Set instance. Thus, since (r + 1)-Hitting Set does not admit a compression of
bitsize kr+1−ε unless NP ⊆ coNP/poly [10], Colored (s, t)-Cut does not admit a kernel of
size kr+1−ε even if it has a r-lp-deletion number of size two. Since in these simple graphs
produced by the reduction, we have td(G) ∈ Θ(log lp(G)), we can also not improve on the
doubly exponential dependence on r in the exponent of the kernelization for treedepth.

Based on these kernel results, it also follows that all colored cut games admit FPT-
algorithms when parameterized by κr + k. In the following, we describe FPT-algorithms for
Colored (s, t)-Cut and DA-CCV when parameterized by κr + k with a better running
time than a simple brute-force on the kernel.

I Theorem 4.15. For any constant r ≥ 1, Colored (s, t)-Cut can be solved in (2κr (r +
1)k + (r + 1)κr) · nO(r) time, where κr denotes the r-lp-deletion number of G and k denotes
the budget of the attacker.

Proof. First, we compute an r-lp-modulator Γ′ of size κr in (r + 1)κrnO(r) time using a
search tree algorithm that checks whether a graph contains a simple path of length r + 1
and branches on the possibilities to destroy this path via vertex deletion. Afterwards, we
check for each of the 2κr many partitions (S, T) of Γ := Γ′ ∪ {s, t} with s ∈ S and t ∈ T ,
if there is a color set C̃ ⊆ C of size at most k such that there is no connected component
containing both a vertex of S and a vertex of T after removing all the edges colored in C̃.
To this end, we first compute for every pair of vertices x ∈ S and y ∈ T the collection A{x,y}
of all color sets of (x, y)-paths in G{x,y} := G− (Γ \ {x, y}). This can be done in nO(r) time
since G{x,y} does not contain any (x, y)-path of length more than r + 2. To check if there
is a color set C̃ ⊆ C of size at most k with the intended property, we only have to check
if C̃ ∩ L 6= ∅ for all pairs of vertices x ∈ S and y ∈ T and all L ∈ A{x,y}. This is equivalent
to the question, if there is a hitting set of size at most k for

⋃
(x,y)∈S×T A{x,y}, which can be

determined in (r + 1)knO(1) time due to the fact that every set A{x,y} contains only color
sets of size at most r + 1 and (r + 1)-Hitting Set can be solved in (r + 1)knO(1) time. J

I Corollary 4.16. Colored (s, t)-Cut can be solved in 2vc+knO(1) time, where vc denotes
the vertex cover number of G and k denotes the budget of the attacker.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:15

Table 1 Classic Complexity of Colored (s, t)-Cut, (DA)i-CCR, A(DA)i-CCR, and (DA)∗-
CCR in general and in some restricted cases.

graph classes Colored (s, t)-Cut (DA)i-CCR A(DA)i-CCR (DA)∗-CCR
general NP-c [7, 15] ΣP

2i-c ΠP
2i+1-c PSPACE-c

subcubic ∈ P ΣP
2i-c ΣP

2i-h PSPACE-c
bipartite planar NP-c [28] ΣP

2i-c ΠP
2i+1-c PSPACE-c

bipartite planar ∈ P ΣP
2i-c ΣP

2i-h PSPACE-c
subcubic
every color in ≤ 2 ∈ P [27] NP-h NP-h NP-h
(s, t)-paths NP-c if i = 1

We extend our fixed-parameter tractability result from Colored (s, t)-Cut to (DA)1-CCV.

I Theorem 4.17. For any constant r ≥ 1, (DA)1-CCV can be solved in ((2k)κr (r + 1)k +
(r + 1)κr) · nO(r) time, where κr denotes the r-lp-deletion number of G and k denotes the
budget of the attacker.

Let us remark that it would also be natural to attempt to generalize the vertex cover
number to the vertex deletion distance to a maximum degree of r for any r ∈ N. Note,
however, that the standard reduction from Hitting Set to Colored (s, t)-Cut [7] already
implies that Colored (s, t)-Cut has no kernel of size |C|O(1) even when G has only two
vertices of degree at least three, unless NP ⊆ coNP/poly. Hence, for any r ≥ 2 it is unlikely
that we can obtain polynomial kernels for |C| plus the vertex deletion distance to a maximum
degree of r.

5 Conclusion

We have studied the complexity of a variety of games that deal with preventing or establishing
a colored cut in edge-colored graphs (see Table 1 for an overview of the classic complexity
results). In the negative and the positive results of this work we exploited the close connection
between colored cut games and the Hitting Set problem. For example, the PSPACE-
hardness proof for the most general game presented in this work, is based on a simple
reduction from Competitive Hitting Set. Ideally, we would have liked to also use such
a simple reduction for the games with a constant number of rounds. However, we do not
know whether the corresponding Hitting Set games are hard. In particular, it seems open
whether the following problem is ΠP

2 -hard.

∀∃ Hitting Set
Input: A collection F of subsets of a universe U and two integers k1 and k2.
Question: ∀D ∈

(U
k1

)
.∃A ∈

(U\D
k2

)
such that A ∩ F 6= ∅ for all F ∈ F?

This problem asks for a winning strategy for the attacker who wants to complete a hitting
set in the case that the defender starts. If this problem is ΠP

2 -hard, then we can infer the
ΠP

2 -hardness of (DA)1-CCV directly from it. Otherwise, the hardness of (DA)1-CCV
would be rooted in the fact that we can create an exponential number of paths in our
hardness construction. It would also be interesting to explore further how efficiently we can
reduce from colored cut games to Hitting Set. In other words, how long does it take to
construct C(H), the collection of color sets of (s, t)-paths, for a given colored graph H? In
particular, can we compute the set C(H) in |C(H)| · |H|O(1) time?

FSTTCS 2020

30:16 Colored Cut Games

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–856,

1995.
2 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
3 Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition. Springer, 2012.
4 Augusto Bordini, Fábio Protti, Thiago Gouveia da Silva, and Gilberto Farias de Sousa Filho.

New algorithms for the minimum coloring cut problem. International Transactions in Opera-
tional Research, 26(5):1868–1883, 2019.

5 John Bruno and Louis Weinberg. A constructive graph-theoretic solution of the Shannon
switching game. IEEE Transactions on Circuit Theory, 17(1):74–81, 1970.

6 Stephen M. Chase. An implemented graph algorithm for winning Shannon switching games.
Communications of the ACM, 15(4):253–256, 1972.

7 David Coudert, Pallab Datta, Stephane Perennes, Hervé Rivano, and Marie-Emilie Voge.
Shared risk resource group complexity and approximability issues. Parallel Processing Letters,
17(2):169–184, 2007.

8 David Coudert, Stéphane Pérennes, Hervé Rivano, and Marie-Emilie Voge. Combinatorial
optimization in networks with shared risk link groups. Discrete Mathematics & Theoretical
Computer Science, 18(3), 2016.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. Journal of the ACM, 61(4):23:1–23:27, 2014.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

12 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19(2):248–264, 1972.

13 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

14 Seyed Rasoul Etesami and Tamer Basar. Dynamic games in cyber-physical security: An
overview. Dynamic Games and Applications, 9(4):884–913, 2019.

15 Michael R. Fellows, Jiong Guo, and Iyad A. Kanj. The parameterized complexity of some
minimum label problems. Journal of Computer and System Sciences, 76(8):727–740, 2010.

16 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

17 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

18 Sulamita Klein, Luerbio Faria, Ignasi Sau, Rubens Sucupira, and Uéverton Souza. On colored
edge cuts in graphs. In Proceedings of the 1st Encontro de Teoria da Computaçao (ETC ’16),
Sociedade Brasileira de Computaçao, pages 780–783. CSBC, 2016.

19 Xiannuan Liang and Yang Xiao. Game theory for network security. IEEE Communications
Surveys & Tutorials, 15(1):472–486, 2013.

20 Jelena Mirkovic, Peter Reiher, Christos Papadopoulos, Alefiya Hussain, Marla Shepard,
Michael Berg, and Robert Jung. Testing a collaborative ddos defense in a red team/blue team
exercise. IEEE Transactions on Computers, 57(8):1098–1112, 2008.

21 Nils Morawietz. Computational complexity of network robustness in edge-colored graphs.
Master’s thesis, Philipps-Universität Marburg, 2019.

22 Nils Morawietz, Niels Grüttemeier, Christian Komusiewicz, and Frank Sommer. Refined
parameterizations for computing colored cuts in edge-colored graphs. In Proceedings of the
46th International Conference on Current Trends in Theory and Practice of Informatics,
(SOFSEM ’20), volume 12011 of LNCS, pages 248–259. Springer, 2020.

N. Morawietz, N. Grüttemeier, C. Komusiewicz, and F. Sommer 30:17

23 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. European Journal of Combinatorics, 27(6):1022–1041, 2006.

24 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
25 Sankardas Roy, Charles Ellis, Sajjan G. Shiva, Dipankar Dasgupta, Vivek Shandilya, and

Qishi Wu. A survey of game theory as applied to network security. In Proceedings of the 43rd
Hawaii International International Conference on Systems Science (HICSS ’10), pages 1–10.
IEEE Computer Society, 2010.

26 Thomas J. Schaefer. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences, 16(2):185–225, 1978.

27 Rubens André Sucupira. Problemas de cortes de arestas maximos e mínimos em grafos. PhD
thesis, Universidade Federal do Rio de Janeiro, 2017.

28 Yongge Wang and Yvo Desmedt. Edge-colored graphs with applications to homogeneous faults.
Information Processing Letters, 111(13):634–641, 2011.

29 Shengli Yuan, Saket Varma, and Jason P. Jue. Minimum-color path problems for reliability in
mesh networks. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’05), pages 2658–2669, 2005.

30 Rico Zenklusen. Matching interdiction. Discrete Applied Mathematics, 158(15):1676–1690,
2010.

31 Peng Zhang and Bin Fu. The label cut problem with respect to path length and label frequency.
Theoretical Computer Science, 648:72–83, 2016.

FSTTCS 2020

Randomness Efficient Noise Stability and
Generalized Small Bias Sets
Dana Moshkovitz
University of Texas at Austin, Department of Computer Science, TX, USA
danama@cs.utexas.edu

Justin Oh
University of Texas at Austin, Department of Computer Science, TX, USA
sjo@cs.utexas.edu

David Zuckerman
University of Texas at Austin, Department of Computer Science, TX, USA
diz@cs.utexas.edu

Abstract
We present a randomness efficient version of the linear noise operator Tρ from boolean function
analysis by constructing a sparse linear operator on the space of boolean functions {0, 1}n → {0, 1}
with similar eigenvalue profile to Tρ. The linear operator we construct is a direct consequence of
a generalization of ε-biased sets to the product distribution Dp on {0, 1}n where the marginal of
each coordinate is p = 1

2 −
1
2ρ. Such a generalization is a small support distribution that fools

linear tests when the input of the test comes from Dp instead of the uniform distribution. We
give an explicit construction of such a distribution that requires logn+Op(log logn+ log 1

ε
) bits of

uniform randomness to sample from, where the p subscript hides O(log2 1
p
) factors. When p and ε

are constant, this yields a support size nearly linear in n, whereas previous best known constructions
only guarantee a size of poly(n). Furthermore, our construction implies an explicitly constructible
“sparse” noisy hypercube graph that is a small set expander.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases pseudorandomness, derandomization, epsilon biased sets, noise stability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.31

Funding Dana Moshkovitz: Supported in part by NSF Grant CCF-1705028 and CCF-1648712.
Justin Oh: Supported by NSF Grant CCF-1705028.
David Zuckerman: Supported in part by NSF Grant CCF-1705028 and a Simons Investigator Award
(#409864).

1 Introduction

Most constructions in pseudorandomness aim to simulate the behavior of a class of tests
when the input to the tests are drawn from the uniform distribution on {0, 1}n. Simulating
the uniform distribution has been the main subject of attention because many algorithmic
problems ultimately boil down to finding a solution to a problem in an input space where
a large fraction of inputs are correct. Thus a uniform sample from the space will find a
correct solution with high probability. However, other distributions have also proved to be
incredibly useful in solving important problems in computer science. One example of such a
distribution is the product distribution with marginals p:

I Definition 1 (product distribution with marginals p). Let p ∈ [0, 1]. The product distribution
with marginals p is the distribution Dp,n on {0, 1}n where each bit xi is picked independently
with Pr[xi = 1] = p. When the length of the string n is clear from context we simply denote
the distribution as Dp.

© Dana Moshkovitz, Justin Oh, and David Zuckerman;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:danama@cs.utexas.edu
mailto:sjo@cs.utexas.edu
mailto:diz@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Randomness Efficient Noise Stability

Apart from being one of the simplest deviations from the uniform distribution, Dp in particular
serves an integral role in the concept of the noise stability of boolean functions. Noise stability
is a fundamental concept in boolean function analysis that is pervasive in many branches of
mathematics such as social choice theory [13], and has a crucial application in celebrated
results in hardness of approximation [7, 8]. Roughly speaking, the stability of a boolean
function f : {0, 1}n → {0, 1} is a measure of how likely the output is to change when each
input bit is independently flipped with some small probability p. The bit flipping is generally
thought of as noise, where input x ∈ {0, 1}n is perturbed to x +µ for µ ∼ Dp. If we instead
draw z ∼ Z and perturb x to x + z for Z that is a randomness efficient approximation of
Dp (under the right notion of approximation), we can then define a randomness efficient
notion of noise. In addition to suggesting a randomness efficient noise test, we believe that
the existence of such a notion of noise is of independent interest.

An alternative view of the concept of noise stability relates to the noise operator Tp,1
which is a linear operator that acts on truth tables of functions f : {−1, 1}n → {−1, 1}. The
matrix corresponding to Tp is simply the 2n × 2n transition matrix of the graph on {0, 1}n
where a random step from x moves to x + n for n ∼ Dp,n. Many important properties of
the noise operator and noise stability stem from the eigenvalues of Tp. Thus we focus on
defining a linear noise operator with similar eigenvalue profile to Tp. We show that in order
to do so it suffices to study a generalization of ε-biased sets.

Small bias sets are a fundamental object in pseudorandomness, with applications to
error-correcting codes, derandomization, and PCPs [12, 15, 4]. An ε-biased set is a small
subset S ⊂ {0, 1}n such that a uniform random sample from S behaves similarly to a uniform
random sample from all of {0, 1}n with respect to linear tests. More formally, S is an ε-biased
set if for any nonempty subset of indices I ⊂ [n], the bias of I is small: if U(S) is the uniform
distribution on S then:

∣∣∣∣∣Prx∼U(S)

(⊕
i∈I

xi = 0
)
− Prx∼U(S)

(⊕
i∈I

xi = 1
)∣∣∣∣∣ ≤ ε

In other words, the parity of any subset of indices has almost equal probability of being
0 or 1. Notice that in the case of a uniform random sample over {0, 1}n, the parity of any
nonempty subset is equally likely to be 0 or 1. Hence ε-biased sample spaces approximate
the uniform distribution in the sense that parities of subsets of indices behave almost the
way they should. Classic results show that there are ε-biased sets that require O(log n

ε) bits
of uniform randomness to sample from. In other words there are explicit constructions where
the size of S is polynomial in n, and optimal constructions even have size linear in n [12, 15].
In addition to having applications in randomness efficient noise, it is a natural question to
ask whether there are small sample spaces that approximate distributions on {0, 1}n other
than the uniform distribution.

1.1 Our Contribution
We generalize ε-biased sets for the distribution Dp on {0, 1}n. The sample space Z we
construct approximates Dp in the sense that if z ∼ Z then for every I ⊂ [n] the parity of zI
has approximately the same distribution as when z is drawn from Dp.

1 In mainstream literature, the noise operator that we denote Tp is instead denoted as Tρ for ρ = 1− 2p.
We stray from the standard notation in this paper for convenience with our own notation

D. Moshkovitz, J. Oh, and D. Zuckerman 31:3

I Theorem 2 (Main Result). Let p be a power of 2. There exists a distribution Z on {0, 1}n
such that for every I ⊂ [n] we have:∣∣∣∣∣Prz∼Z

(⊕
i∈I

zi = 1
)
− Prr∼Dp,n

(⊕
i∈I

ri = 1
)∣∣∣∣∣ ≤ ε

Z requires logn + O(log 1
p log logn + log2 1

p + log 1
p log 1

ε) bits of uniform randomness to
sample from. Moreover, the support of Z (along with the corresponding probability of each
point) can be explicitly constructed in time n · poly(logn, 1

ε) for constant p.

The main takeaway from our result is that there is a simple explicit construction of a
distribution that approximates Dp,n with support size nearly linear in n when p and ε are
constant. This roughly matches the size of an optimal ε-biased set, although the size blows
up for nonconstant p.

1.2 Application to Randomness Efficient Noise
The main application of our generalization of ε-biased sets is in the definition of a “randomness
efficient” version of noise stability. The stability of the function f is defined as:

Stab1−2p(f) = 〈f , Tpf〉

Our construction of ε-biased sets for Dp,n naturally suggests a new noise operator T sparsep,ε

that is the transition matrix of the graph where a random step from x moves to x + z for z
a sample from our constructed distribution Z. We can then define a new notion of stability:

Stabsparse1−2p (f) = 〈f , T sparsep,ε f〉

Through analysis of the eigenvalues of Tp and T sparsep,ε , we can show that our new notion
of stability is the same as the original up to an additive error of 2ε:

I Theorem 3 (Randomness Efficient Approximate Noise Stability). Let f : {−1, 1}n → [0, 1].
Let Stab1−2p(f) = 〈f , Tpf〉 be the stability of f under the noise operator Tp. Let Stabsparse1−2p (f) =
〈f , T sparsep,ε f〉 be the stability of f under the noise operator T sparsep,ε defined by our ε-biased set
for Dp. Then:

|Stab1−2p(f)− Stabsparse1−2p (f)| ≤ 2ε

An immediate consequence of the above theorem is that the majority is stablest theorem,
which is a crucial ingredient in hardness of approximation results, is also true for our
randomness efficient noise operator up to an additive error of 2ε. We state the original
majority is stablest theorem below:

I Theorem 4 (Majority Is Stablest [11]). Let f : {−1, 1}n → [0, 1] be a function with E[f] = µ.
Suppose Inf≤10 log(1/τ)

i (f) ≤ τ for all i ∈ [n]. Then:

〈f , Tpf〉 ≤ Γ1−2p(µ) + 10 log log(1/τ)
(2p) log(1/τ)

where Γ1−2p is the Gaussian noise stability curve.

Our result shows that the stability of a function under our randomness efficient noise operator,
〈f , T sparsep,ε f〉 also obeys the same upper bound, with an extra additive error of 2ε.

FSTTCS 2020

31:4 Randomness Efficient Noise Stability

As a secondary application, our construction also implies an explicitly constructible small
set expander with large eigenvalues. We say that a graph G = (V,E) is a small set expander
if for sufficiently small constant δ and all subsets of vertices of size δ|V |, the probability of
leaving the set in one step of a random walk is at least some constant (say .9). Finding an
efficient algorithm for deciding whether a graph is a small set expander remains an open
problem. Arora, Barak, and Steurer [2] observed that there is an algorithm that can solve
the small set expansion problem in time exponential in the number of eigenvectors of G that
have eigenvalue greater than 1− ξ. Thus a natural question is how many such eigenvectors
could a small set expander have? The noisy hypercube is one of the few “counterexamples”
to the efficiency of the above mentioned algorithm, as it is an N -vertex graph that can have
polylog(N) such eigenvectors. Our construction implies the existence of a “sparse” noisy
hypercube with similar spectrum and small set expansion properties.

I Theorem 5. For every ξ > 0, there is an explicit N-vertex small set expander with
polylog(N) eigenvectors with eigenvalue 1− ξ. Moreover the graph contains

O

(
N logN · poly

((
1
ξ

log logN
)log 1

ξ

))

edges.

The main interest in small set expansion is the relationship between the number of vertices
and the number of large eigenvalues. Our construction does not improve on any lower bounds
on the number of such eigenvalues a small set expander could have. However, we do note
that our graph is sparse in the number of edges, containing about N logN edges as opposed
to the O(N2) needed for the original noisy hypercube.

1.3 Background and Related Work
The idea of approximating nonuniform distributions such as Dp is not entirely new in
pseudorandomness. In fact, the linear tests on Dp that we aim to fool are a special case of
combinatorial shapes. An (m,n) combinatorial shape is a function f : [m]n → {0, 1} that can
be expressed as f(x1, . . . , xn) = h(1A1 , . . . , 1An) for some symmetric function h : {0, 1}n →
{0, 1} and subsets A1, . . . , An ⊂ [m]. By setting m = 1/p and h as the parity of all its inputs,
we can express the parity of any I ⊂ [n] if we set Ai = {1} if i ∈ I and Ai = ∅ otherwise.
Gopalan, Meka, Reingold, and Zuckerman [6] give a PRG that fools all (m,n)-combinatorial
shapes using seed length O(logm+ logn+ log2(1/ε)) = O(log 1/p+ logn+ log2(1/ε)). The
main drawback of [6] that we improve on is that the seed length is only guaranteed to be
O(logn), which implies only a polynomial sized construction. On the other hand, when p is
a power of 2, our construction guarantees a nearly linear sized construction, with a slightly
worse dependence on p, and a slightly better dependence on ε.

In a previous work, Even, Goldreich, Luby, Nisan, and Veličković [5] study the approxim-
ation of distributions on [m]n where each coordinate is an independent (and not necessarily
identical) distribution. For any distribution D = D1×· · ·×Dn where each Di is independent,
their constructions give sample spaces that have size (n/ε)log(1/ε) and (n/ε)logn such that
for any I ⊂ [n], the marginal distribution of the sample space restricted to I is ε-close to the
marginal distribution of D in max-norm.

Chin Ho Lee [9] gave a pseudorandom generator that fooled (under the uniform distri-
bution) the XOR of any k boolean functions on disjoint inputs of length m with error ε using
seed length Õ(m+ log(km/ε)) where the Õ hides polynomial factors in logm, log log k, and

D. Moshkovitz, J. Oh, and D. Zuckerman 31:5

log log(1/ε). By setting m = log(1/p), k = n, and each of the k boolean functions as simply
the product of its m bits, we get a pseudorandom generator that fools linear tests under the
product distribution on n bits with marginals p. Indeed, for any linear test on n bits

∑
i∈I xi,

I ⊂ [n], we can consider the XOR of k = n boolean functions where each function fi is the
product of m bits if i ∈ I and is 0 otherwise. Then, Lee’s generator produces a random
variable X ∼ {0, 1}km that fools such a function under the uniform distribution. Thus the
random variable Z ∼ {0, 1}n obtained by simply taking the product of the bits in each of the
m disjoint blocks of X fools the original linear test with respect to the production distribution
with marginals p. Lee’s pseudorandom generator thus immediately gives a pseudorandom
generator fooling linear tests with respect to the production distribution with marginals p
with seed length Õ(log(1/p) + log(n/ε)).

We mention that Meka, Reingold, and Tal [10] define a notion of “δ-biased distributions
with marginals p.” However, their definition of approximation is ad hoc for their main goal
of constructing PRGs for width-3 branching programs.

Our application of sparsifying the noisy hypercube is related to the classic result of
Spielman and Teng in the edge sparsification of graphs [14]. Indeed, their sparsification
algorithm, when run on the noisy hypercube, should produce a sparsified graph with the
properties we aim to preserve. However, the main drawback to this approach is that the
sparsification algorithm runs in time mpolylog(m) where m is the number of edges. In the
case of the noisy hypercube, which is a dense graph defined on {0, 1}n, this algorithm is
much less efficient than the explicit construction we provide.

Barak et al. previously explored the idea of reducing the size of the noisy hypercube, which
has close ties to hardness of approximation [3]. Their work presents a “derandomized noisy
hypercube” along with the appropriate analogues of small set expansion and the majority is
stablest theorem. As their interest was in the relationship between the number of vertices
and the number of large eigenvalues of a small set expander, their constructed graph contains
a reduced number of vertices. On the other hand, our construction keeps the same 2n vertices
of the original noisy hypercube and reduces the number of edges.

1.4 Overview of Techniques
The construction of the randomness efficient noise operator and small set expanders are
essentially direct applications of our construction of generalized small bias sets. Thus here
we focus on the intuition behind our construction. It’s easy to see that the bitwise product of
log2(1/p) independent uniform samples from {0, 1}n is exactly equivalent to Dp for p a power
of 2. Thus intuitively, if ε-biased sets approximate the uniform distribution on {0, 1}n, then
the bitwise product of log2(1/p) random draws from an ε-biased set should approximate Dp.
Our main construction formalizes this intuition by showing via a hybrid argument that such
a bitwise product indeed fools linear tests when the input is drawn from Dp. This simple
idea is not sufficient however, as the final seed length will be roughly log2(1/p) logn which
implies at least a polynomial sized support for small p.

To improve the dependence on n, we observe that the parities of sufficiently large I ⊂ [n]
will be close to uniform on {0, 1}. More specifically, the probability that the parity of a
subset of indices I under the distribution Dp is 1 is 1

2 −
1
2 (1− 2p)|I|. Thus for |I| ≥ 1

2p ln(1
ε)

the probability of the parity being 1 is ε/2 close to 1/2. This means that we only need
to accurately simulate the behavior of Dp for |I| smaller than k = 1

2p ln(1
ε). For large |I|

we simply need to simulate the uniform distribution. To do so, we can take the bitwise
AND of log2(1/p) − 1 independent samples from a k-wise ε-biased set (using seed length
only log logn). This simulates Dp/2. Finally we take the bitwise product of this with a final

FSTTCS 2020

31:6 Randomness Efficient Noise Stability

ε-biased set with seed length logn. For small |I|, the behavior of the parities under Dp are
preserved, and for large |I|, the product of the k-wise ε-biased sets will contain at least one
1, so the final probability the parity is 1 will be the probability that the final ε-biased set
outputs 1 on a specific coordinate, which is roughly 1/2.

1.5 Paper Organization
In Section 2 we define the necessary preliminaries and notation. Section 3 presents and
proves the correctness of our construction and Section 4 presents the applications of our
result to randomness efficient noise and small set expansion. Finally in Section 5 we discuss
lower bounds for our generalization of ε-biased sets and further directions for research.

2 Preliminaries and Notation

In general we denote random variables as capital letters such as X and Y . We denote fixed
values using lowercase such as x, y. Distributions are denoted with calligraphic capital letters
such as D, and the uniform distribution on a set S is denoted via U(S). We distinguish vector-
valued random variables from scalars via boldface: X,x, and refer to a value at a specific
index of a vector via the corresponding nonbolded symbol with subscript: Xi, xi. Vectors in
this paper generally take on values in the field F2 and thus arithmetic is generally done modulo
2. We use 〈·, ·〉 to denote the inner product of two vectors modulo 2. Finally, we define the
binary operation “�” between two vectors as the entrywise product modulo 2. For example,
for X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), we have: X �Y = (X1Y1, . . . , XnYn). It is
straightforward to verify that for any vectors x,y, z ∈ {0, 1}n, we have: 〈x,y�z〉 = 〈x�y, z〉

We first define the bias of a subset according to a distribution.

I Definition 6 (Bias). Let I ⊂ [n] and D be any distribution on {0, 1}n. Then the bias of I
according to D is defined as

bI,D = Prx∼D

[⊕
i∈I

xi = 0
]
− Prx∼D

[⊕
i∈I

xi = 1
]

Equivalently, if α ∈ {0, 1}n then we say that the bias is:

bα,D = Prx∼D [〈α,x〉 = 0]− Prx∼D [〈α,x〉 = 1]

When the probability distribution is clear from context, we denote the bias of I as bI .
Next, we define the concept of ε-biased sets and k-wise independent ε-biased sets, both of

which have already well known constructions, and are crucial for our construction of ε-biased
product distributions with marginals p.

I Definition 7 (ε-biased set). An ε-biased set is a small set S ⊂ {0, 1}n such that for every
α ∈ {0, 1}n we have:

|bα,U(S)| =
∣∣Prx∼U(S)[〈α,x〉 = 0]− Prx∼U(S)[〈α,x〉 = 1]

∣∣ ≤ ε
or equivalently:∣∣Prx∼U(S)[〈α,x〉 = 1]− Prx∼U({0,1}n)[〈α,x〉 = 1]

∣∣ ≤ ε/2
Numerous works [12, 15] show that there are explicit constructions of ε-biased sets that
require logn+O(log 1

ε) random bits to specify a random point in S, or in other words, the
size of S is linear in n. A weaker notion of ε-biased sets only considers the parity of subsets
of indices of size at most k:

D. Moshkovitz, J. Oh, and D. Zuckerman 31:7

I Definition 8 (k-wise ε-biased set). A k-wise ε-biased set is a small set S ⊂ {0, 1}n such
that for any α ∈ {0, 1}n with hamming weight |α| ≤ k. We have:

|bα,U(S)| =
∣∣Prx∼U(S)[〈α,x〉 = 0]− Prx∼U(S)[〈α,x〉 = 1]

∣∣ ≤ ε
or equivalently:∣∣Prx∼U(S)[〈α,x〉 = 1]− Prx∼U({0,1}n)[〈α,x〉 = 1]

∣∣ ≤ ε/2
Naor and Naor show that there are explicit constructions of k-wise ε-biased sets that require
O(log k + log logn+ log 1

ε) random bits to specify a random point in S.
Our notion of approximating a product distribution with marginals p is the natural

extension of the notion of approximation given by ε-biased sets: the parity of any subset of
coordinates from our approximate distribution should look like the parity of the subset of
coordinates from Dp.

I Definition 9 ((p, ε)-biased sample space). Let p ∈ [0, 1]. A (p, ε)-biased sample space is a
distribution Z on {0, 1}n with small support S ⊂ {0, 1}n such that for every α ∈ {0, 1}n we
have:∣∣Prz∼Z [〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]

∣∣ ≤ ε
Historically, the definition of ε-biased sets and k-wise independent ε-biased sets use small

bias as their notion of approximation. As stated in their definitions above, this notion
is equivalent (up to constant factors) with the alternate notion that the distribution of
the outputs of any linear function on input x ∼ U(S) is close to the distribution when
x ∼ U({0, 1}n). This equivalence no longer holds in the generalized notion of ε-biased sets
for Dp. For example, if p is small, then the bias bI,Dp is almost 1 for any singleton subset
I. The nonequivalence of these notions makes some simple facts about standard ε-biased
sets more tedious to prove for ε-biased sets for Dp. For completeness, we now state the facts
important for our analysis, and defer their proofs to the appendix.

First, there is a well known relationship between the biases of a random x ∈ {0, 1}n (over
any distribution) and the probability mass function for the distribution.

I Proposition 10. Let D be any distribution. For any a ∈ {0, 1}n, let pa,D be the probability
of sampling a under D. Let p be the 2n length vector of probabilities pa,D for each a. Let b
be the 2n length vector of biases bα,D indexed by α ∈ {0, 1}n. Let the Hadamard matrix H
be the 2n × 2n matrix where each entry is defined as (−1)〈α,a〉 then:

p = 2−nHTb

Given this proposition, we can prove a necessary fact for the analysis of our construction
that if Z is an (p, ε)-biased space for Dp, then Z is close in max-norm to Dp.

I Corollary 11 (ε-biased implies close in max norm). Let Z be an (p, ε)-biased sample space.
Then Z is 2ε-close to Dp in max-norm. That is, for any a ∈ {0, 1}n we have:

|pa,Z − pa,Dp | ≤ 2ε

Finally, we note a useful fact that the distribution of the parity of k independent random
variables in {0, 1} with marginals p is close to uniform on {0, 1} for sufficiently large k. The
proof is again deferred to the appendix.

I Proposition 12. Consider k independent tosses of a biased coin with Pr[Heads] = p. Then
the probability of an odd number of heads is 1

2 −
1
2 (1− 2p)k.

FSTTCS 2020

31:8 Randomness Efficient Noise Stability

3 Construction

Our construction of a (p, ε)-biased space for Dp is as follows:

I Construction 1. Let k = 1
p ln 100

ε and t = log2
1

2p . Let ε′ = 1
100

2ε
t+1 = 1

100
2ε

log2
1
p

< ε
4 ≤ ε.

For 1 ≤ i ≤ t, let Xi be t independent draws from a k-wise ε′-biased set of {0, 1}n. We
let X =

⊙t
i=1 Xi. Let Y be drawn from an ε′-biased set of {0, 1}n. Our final distribution is

then Z = X�Y.

We first state a main lemma that the product of ε-biased spaces approximates Dp with the
right notion of approximation. We defer the proof to the appendix.

I Lemma 13 (Coordinate-wise product of ε-biased sets is ε-biased for Dp). Let k ≤ n and let
X1, . . . ,Xt be independent draws from k-wise ε-biased sets on {0, 1}n. Then X =

⊙
i Xi is

a k-wise (1
2t , tε/2)-biased sample space.

Given the lemma, we can then prove the correctness of our construction.

I Theorem 14 (Main Result). Let 0 < p < 1/2. For any ε > 0, Z is a (p, ε)-biased sample
space requiring logn+O(log2 1

p + log 1
p log 1

ε + log 1
p log logn) uniform random bits to sample

from.

Proof. We first note that using the constructions mentioned above, generating Z requires
logn+O(t(log k+ log logn+ log 1

ε′) + log 1
ε′) = logn+O(log2 1

p + log 1
p log 1

ε + log 1
p log logn)

bits. Moreover, since the original constructions are explicit, we can construct the support of
Z via enumeration of all elements in each used ε-biased set.

We claim that Z is an ε-biased distribution for Dp. We show that for any α ∈ {0, 1}n:∣∣Prz∼Z[〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]
∣∣ ≤ ε

The proof splits into two cases. For the first case, assume |α| ≤ k. Since Y and the Xi’s
are k-wise ε′-biased, by Lemma 13 we have immediately that:

∣∣Prz∼Z[〈α, z〉 = 1]− Prr∼Dp [〈α, r〉 = 1]
∣∣ ≤ (t+ 1)ε

′

2 ≤ ε

In the second case, assume |α| > k. Let I ⊂ [n] be any subset of the indices of size
exactly k for which α is 1. Consider the first component in the construction of Z:

X =
t⊙
i=1

Xi

where each Xi ∈ {0, 1}n is drawn from a k-wise ε′-biased set. By Lemma 13, we know that
the substring of X restricted only to indices in I, denoted XI ∈ {0, 1}k, is (p2 , γ)-biased for
D p

2 ,k
for γ ≤ tε′/2 ≤ ε/100. Thus by Corollary 11, the distribution of XI is ε

50 -close to D p
2 ,k

in max-norm. In particular, this means that:

P (XI = 0k) ≤ (1− p)k + ε

50 ≤ (1− p)
1
p ln 100

ε + ε

50 = ε

100 + ε

50 ≤
ε

4

D. Moshkovitz, J. Oh, and D. Zuckerman 31:9

Thus with probability at least 1 − ε/4, the string X will contain at least one 1 on an
index where α is 1. This means that we have:

Prz∼Z(〈α, z〉 = 1) = P (〈α, z〉 = 1 ∧Xα = 0|α|) + P (〈α, z〉 = 1 ∧Xα 6= 0|α|)

≤ ε

4 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 ∧X = x)

= ε

4 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 | X = x)P (X = x)

= ε

4 +
∑

x:xα 6=0|α|

P (〈α� x,y〉 = 1)P (X = x)

≤ ε

4 +
∑

x:xα 6=0|α|

(
1
2 + ε′

)
P (X = x)

≤ 1
2 + ε

4 + ε′ ≤ 1
2 + ε

2
Similarly for a lower bound we have:

Prz∼Z(〈α, z〉 = 1) = P (〈α, z〉 = 1 ∧Xα = 0|α|) + P (〈α, z〉 = 1 ∧Xα 6= 0|α|)

≥ 0 +
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 ∧X = x)

=
∑

x:xα 6=0|α|

P (〈α, z〉 = 1 | X = x)P (X = x)

=
∑

x:xα 6=0|α|

P (〈α� x,y〉 = 1)P (X = x)

≥
(

1
2 − ε

′
) ∑

x:xα 6=0|α|

P (X = x)

≥
(

1
2 − ε

′
)(

1− ε

4

)
= 1

2 + ε′
ε

4 − ε
′ − ε

8
≥ 1

2 − ε
′ − ε

4
≥ 1

2 −
ε

2
Combining the upper and lower bound shows that Prz∼Z(〈α, z〉 = 1) is ε/2 close to 1/2.
Since by Proposition 12 we know that Prr∼Dp(〈α, z〉 = 1) is also ε/2 close to 1/2 we must
have that:

|Prz∼Z(〈α, z〉 = 1)− Prr∼Dp(〈α, r〉 = 1)| ≤ ε J

4 Applications

We first define the noisy hypercube, which is a crucial graph in our applications and also an
important graph in many areas of theoretical computer science.

I Definition 15 (Noisy Hypercube Graph). The p-noisy hypercube graph, which we denote Tp,
is the graph on vertex set {0, 1}n such that a random step from node a ∈ {0, 1}n is equivalent
to picking r ∼ Dp and moving to a + r.

FSTTCS 2020

31:10 Randomness Efficient Noise Stability

Note that the transition matrix of Tp has no nonzero entries since there is a nonzero probability
of reaching any node from any other node and is thus very dense. Our ε-biased distribution
for Dp allows us to construct a spare noisy hypercube that has similar properties to the
original noisy hypercube but with fewer edges.

I Definition 16 (Sparse Noisy Hypercube Graph). Let Z be an (p, ε)-biased sample space.
The sparse (p, ε)-noisy hypercube graph, which we denote T sparsep,ε , is the graph on vertex set
{0, 1}n such that a random step from node a ∈ {0, 1}n is equivalent to picking z ∼ Z and
moving to a + z.

Because of the size of our construction’s seed length, each row and column of the 2n × 2n
transition matrix of T sparsep,ε has Õ(n) nonzero entries when p and ε are constant.

We first show that the noise operator defined by T sparsep,ε has similar eigenvalues to that
of the original noise operator. This leads to the fact that our randomness efficient notion
of stability approximates the original notion of stability, and also implies that the graph
T sparsep,ε is our desired sparse small set expander.

4.1 Eigenvalues
The main feature about T sparsep,ε from which our applications arise is that it has a similar
spectrum to Tp. We first give a well known (and easily verifiable) fact about the eigenvalues
and eigenvectors of graphs on the boolean hypercube that are defined like above.

I Theorem 17. Let Z be any distribution on {0, 1}n. Define G = (V,E) on vertices
V = {0, 1}n as the graph on which a random step starting at a ∈ {0, 1}n is equivalent to
drawing z ∈ Z and moving to a + z. Let M be the 2n × 2n transition matrix of G. For every
subset of indices I ⊂ [n], define the vector vI ∈ {−1, 1}2n to be 1 if the parity of the ith
bitstring in {0, 1}n restricted to I is 0 and −1 if the parity is 1. Each vI is an eigenvector
of M with eigenvalue bI,Z .

Given this well known fact it is straightforward to see that the eigenvalue profiles of Tp and
T sparsep,ε are close:

I Corollary 18. The graphs Tp and T sparsep,ε have the same eigenvectors. For every eigenvector
v of both graphs, the corresponding eigenvalues differ by at most 2ε.

Proof. By Theorem 17, both Tp and T sparsep,ε have the same eigenvectors vI ∈ {−1, 1}2n . For
any I, vI has eigenvalue bI,Dp in Tp and bI,Z in T sparsep,ε where Z is an ε-biased distribution
for Dp. However we know by definition of (p, ε)-biased distribution that:

|bI,Z − bI,Dp | ≤ 2ε J

4.2 Randomness Efficient Noise
The stability of a boolean function f on {−1, 1}n is a fundamental concept in the analysis of
boolean functions that measures the tendency of the output of a function to change when
each bit of the input is flipped independently with probability p. In our context, the stability
is equivalent to

Stab1−2p = 〈f , Tpf〉

where we think of f as a 2n length truth table, and Tp is the transition matrix of the noisy
hypercube above (here we no longer think of 〈·, ·〉 as the inner product modulo 2).

D. Moshkovitz, J. Oh, and D. Zuckerman 31:11

We can show that the stability of a function under our notion of “derandomized noise”,
where noise is added to the input via a sample from a (p, ε)-biased space for Dp is close to
the original notion of stability.

I Theorem 19 (Randomness Efficient Noise Stability is Close to Noise Stability). Let f :
{−1, 1}n → [0, 1] be a function with E[f] = µ. Then:

Stab1−2p(f)− 2ε ≤ Stabsparse1−2p (f) ≤ Stab1−2p(f) + 2ε

Proof. We can write f in the Fourier basis as:

f =
∑
I

fIvI

It is a well know fact in fourier analysis that:

〈f , Tpf〉 =
∑
I

bI,Dpf
2
I

Similarly we can derive the corresponding expression for T sparsep,ε :

〈f , T sparsep,ε f〉

=
〈∑

I

fIvI , T sparsep,ε

∑
I

fIvI

〉

=
〈∑

I

fIvI ,
∑
I

bI,ZfIvI

〉

=
∑
I

bI,Zf
2
I 〈vI ,vI〉

≤
∑
I

(bI,Dp + 2ε)f2
I

= 〈f , Tpf〉+ 2ε

For the lower bound, we replace the inequality with bI,Z ≥ bI,Dp − 2ε J

4.3 Small Set Expansion
We now show that our sparse noisy hypercube is our desired sparse small set expander with
large eigenvalues. We first define the expansion of a graph.

I Definition 20 (Expansion). Given graph G = (V,E), let S be any subset of vertices of G.
The expansion of S, denote Φ(S) is the probability that a randomly chosen edge (u, v) has
v 6∈ S conditioned on u ∈ S. Equivalently, if G is a regular undirected graph, we have:

ΦG(S) = E(S, V \ S)∑
v∈S deg(v)

In the context of small set expansion, we are typically interested in the expansion of
sets that contain a small constant fraction δ of vertices. We say that a graph is a small set
expander if for sufficiently small δ, all subsets containing δ-fraction of vertices have expansion

FSTTCS 2020

31:12 Randomness Efficient Noise Stability

at least some constant (such as 0.9). We know that the noisy hypercube has n eigenvalues
that are at least 1− 2p. As a consequence of Corollary 18, we know that T sparsep,ε has at least
n eigenvalues that are at least 1− 2p− 2ε.

It remains to verify that the sparse noisy hypercube is also a small set expander. The
following theorem relates the top eigenvectors of a graph to the expansion of sets [3].

I Theorem 21. For any vector space V, define the p→ q norm of a subspace U of V as:

||U||p→q = max
v∈V

||PUv||q
||v||p

Where PU is the projection operator onto subspace U .
For graph G = (V,E), let U be the subspace spanned by all eigenvectors of G with

eigenvalue larger than λ. Then for any S ⊂ V containing δ fraction of vertices we have:

Φ(S) ≥ 1− λ− ||U||22→4
√
δ

In the case of the noisy hypercube, one can show via the Bonami Lemma that ||U||2→4 is
bounded. This implies via Theorem 21 that for sufficiently small δ, the expansion of S is
large. Finally, the next corollary relates the expansion of sets in T sparsep,ε to those in Tp.

I Corollary 22. Let Utrue be the subspace spanned by all eigenvectors of Tp with eigenvalue
larger than λ. Let Upseudo be the subspace spanned by all eigenvectors of T sparsep,ε with
eigenvalue larger than λ+ 2ε. Then for any S ⊂ V that contains δ fraction of vertices we
have:

ΦT sparsep,ε
(S) ≥ 1− λ− ||Utrue||22→4

√
δ − 2ε

Proof. Observe that since the eigenvalues of Tp are at most 2ε away from the eigenvalues of
T sparsep,ε , we have Upseudo ⊂ Utrue. This implies that ||Upseudo||2→4 ≤ ||Utrue||2→4. Thus by
Theorem 21 we have:

ΦT sparsep,ε
(S) ≥ 1− (λ+ 2ε)− ||Upseudo||22→4

√
δ ≥ 1− λ− ||Utrue||22→4

√
δ − 2ε J

Thus sets in T sparsep,ε have similar expansion to those in Tp. As mentioned earlier, by the
Bonami Lemma [13], we have that when λ = (1− 2p)k then ||Utrue||22→4 ≤ 3k. Thus we have:

ΦT sparsep,ε
(S) ≥ 1− (1− 2p)k − 3k

√
δ − 2ε

Thus if we want expansion at least 1− γ for some small γ, we can set ε < γ
6 , k > O

(
ln 1/γ
p

)
,

and δ < γO(1
p).

5 Lower Bounds and Discussion

A natural question is how the size of our construction compares to an optimal, possibly
nonexplicit construction. We first note that a simple probabilistic argument shows that any
collection of 2n tests from {0, 1}n to {0, 1} under the uniform distribution can be ε-fooled
by some function G : {0, 1}s → {0, 1}n for s = logn+ 2 log(1/ε) +O(1). The probabilistic
construction is to simply pick each output of G independently and uniformly at random from
{0, 1}n. Using an analogous argument, picking each output of G independently from Dp
shows that there is a distribution Z using the same seed length s that fools all 2n linear tests
under Dp. Thus, non-explicitly there exists a construction of an (p, ε)-biased distribution
whose size does not depend on p. Moreover, the distribution is uniform on its support, which
is not the case for our explicit construction.

D. Moshkovitz, J. Oh, and D. Zuckerman 31:13

Alon et al [1] prove a lower bound of Ω
(

n
ε2 log 1/ε

)
on the size of ε-biased sets. We note

that as a whole, since our construction works for p = 1/2 this lower bound is also a lower
bound in general for ε-biased sets for Dp. However, the story changes dramatically for small
p. The previously mentioned lower bound is a result on the equivalence of ε-biased sets
with ε-balanced linear error correcting codes. In an ε-balanced linear error correcting codes
with message length n and block length m, every codeword has weight between (1/2− ε)m
and (1/2 + ε)m. The equivalence between such codes and ε-biased sets breaks down when
generalizing to (p, ε)-biased sample spaces. Under the assumption that we wish to construct
an (p, ε)-biased distribution for Dp,n of size m that is uniform on its support, we would
require a linear error correcting code with basis a1, . . . ,an ∈ {0, 1}m such that the weight of
the codeword

∑
I aI for every I ⊂ [n] is between 1

2 −
1
2 (1− 2p)|I|− ε and 1

2 −
1
2 (1− 2p)|I|+ ε.

We note that our construction worsens in comparison to the optimal as p gets small.
Indeed, as p approaches 1/n, the amount of entropy in Dp approaches 1, however, our seed
length approaches log2 n. Thus, our construction illuminates a peculiar question about
simulating an unfair coin: in order to simulate a coin with bias p, we require log 1

p flips of
a fair coin, or in other words log 1

p bits of Shannon entropy. This is an extremely wasteful
amount of randomness needed to simulate a distribution that has only H(p) � 1 bits of
entropy. However, it is unclear how to simulate an unfair coin using fair coins in a more
efficient way. We note that the reverse direction of simulating a fair coin with a biased coin
is a well known riddle attributed to von Neumann [16].

One reason that the efficiency of our construction depends on p is because of an asymmetry
between the nature of the seed and the output. We aimed to use O(logn) independent fair
coin flips to approximate the distribution of n independent unfair coin flips. A more apt
comparison would be to stretch O(logn) unfair coins to approximate n unfair coins. It would
be interesting to see whether there are simple constructions that can do so.

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games

and related problems. J. ACM, 62(5):42:1–42:25, 2015.
3 Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David

Steurer. Making the long code shorter, with applications to the unique games conjecture.
CoRR, abs/1111.0405, 2011. URL: http://arxiv.org/abs/1111.0405.

4 Ben-Sasson, Sudan, Vadhan, and Wigderson. Randomness-efficient low degree tests and short
PCPs via epsilon-biased sets. In STOC: ACM Symposium on Theory of Computing (STOC),
2003.

5 Even, Goldreich, Luby, Nisan, and Velickovic. Approximations of general independent distri-
butions. In STOC: ACM Symposium on Theory of Computing (STOC), 1992.

6 Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudorandom
generators for combinatorial shapes. SIAM J. Comput, 42(3):1051–1076, 2013.

7 Johan Håstad. Testing of the long code and hardness for clique. In Proceedings of The
Twenty-Eighth Annual ACM Symposium On The Theory Of Computing (STOC ’96), pages
11–19, New York, USA, May 1996. ACM Press.

8 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable CSPs? SIAM J. Comput, 37(1):319–357, 2007.

9 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. arXiv preprint
arXiv:1902.02428, 2019.

FSTTCS 2020

http://arxiv.org/abs/1111.0405

31:14 Randomness Efficient Noise Stability

10 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. Electronic Colloquium on Computational Complexity (ECCC), 25:112, 2018.

11 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. CoRR, abs/math/0503503, 2005. URL:
http://arxiv.org/abs/math/0503503.

12 Naor and Naor. Small-bias probability spaces: Efficient constructions and applications.
SICOMP: SIAM Journal on Computing, 22, 1993.

13 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge Univer-
sity Press, 2014. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions.

14 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput,
40(4):981–1025, 2011.

15 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. Electronic Colloquium on
Computational Complexity (ECCC), 24:41, 2017.

16 J. von Neumann. Various techniques for use in connection with random digits. In von
Neumann’s Collected Works, volume 5, pages 768–770. Pergamon, 1963.

A Omitted Proofs

Proof of Proposition 10. We note that H−1 = 2−nHT and show that Hp = b. For any
fixed entry of b, we have:

bα,D = Pra∼D [〈α,a〉 = 0]− Pra∼D [〈α,a〉 = 1]

=
∑

a:〈α,a〉=0

pa,D −
∑

a:〈α,a〉=1

pa,D

=
∑
a

(−1)〈α,a〉pa,D

= (Hp)α J

Proof of Corollary 11. For any α ∈ {0, 1}n, we have that:

|bα,Z − bα,Dp |
= |Pz∼Z [〈α, z〉 = 0]− Prz∼Z [〈α, z〉 = 1]− (Pz∼Dp [〈α, z〉 = 0]− (Pz∼Dp [〈α, z〉 = 1])|
≤ |Pz∼Z [〈α, z〉 = 0]− Pz∼Dp [〈α, z〉 = 0]|+ |Prz∼Z [〈α, z〉 = 1]− (Pz∼Dp [〈α, z〉 = 1])|
≤ 2ε.

Fix any a ∈ {0, 1}n. By the formula from Proposition 10, we know that:

pa,Z = 2−n
∑

α∈{0,1}n
(−1)〈a,α〉bα,Z

Similarly:

pa,D = 2−n
∑

α∈{0,1}n
(−1)〈a,α〉bα,D

http://arxiv.org/abs/math/0503503
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

D. Moshkovitz, J. Oh, and D. Zuckerman 31:15

Thus:

|pa,Z − pa,D|

= 2−n
∣∣∣∣∣∣
∑

α∈{0,1}n
(−1)〈a,α〉(bα,Z − bα,D)

∣∣∣∣∣∣
≤ 2−n

∑
α∈{0,1}n

|(bα,Z − bα,D)|

≤ 2ε J

Proof of Proposition 12. Let Xi be a random variable with value −1 if the ith coin toss
is heads and 1 otherwise. Then the probability of an odd number of heads is equal to
Pr[
∏k
i=1 Xi = −1]. Note that the random variable 1

2 + 1
2
∏k
i=1 Xi is an indicator random

variable that is 1 when there is an even number of heads. Thus

Pr(even number of heads) = E

[
1
2 + 1

2

k∏
i=1

Xi

]
= 1

2 + 1
2

k∏
i=1

E[Xi] = 1
2 + 1

2(1− 2p)k

Thus the probability of an odd number of heads is

1
2 −

1
2(1− 2p)k J

Proof of Lemma 13. We wish to show that for any α ∈ {0, 1}n with |α| ≤ k:

∣∣∣∣Prx∼X[〈α,x〉 = 1]− Prx∼D 1
2t

[〈α,x〉 = 1]
∣∣∣∣ ≤ tε

We prove this via a hybrid argument.

Consider random variables X1, . . . ,Xt,R1, . . . ,Rt taking on values in {0, 1}n where the
Xi’s are independent draws from a k-wise ε-biased set, Ri’s are chosen independently and
uniformly at random from {0, 1}n. We then define for 0 ≤ ` ≤ t the t+1 hybrid distributions:

H` =
〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+1
Xi

)〉

Notice that H0 = 〈α,x〉 when x ∼ X, while Ht+1 = 〈α,x〉, when x ∼ Dp. We show that
|H` −H`+1| ≤ ε for every 0 ≤ ` ≤ t. Since each H` is a distribution on {0, 1} we can write
the probability that distribution H` outputs 1 as:

FSTTCS 2020

31:16 Randomness Efficient Noise Stability

Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+1
Xi

)〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�X`+1 �

(
t⊙

i=`+2
Xi

)〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α,

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
�X`+1

〉
= 1
]

= Pr
R1,...,R`,

X`+1,...,Xt

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,X`+1

〉
= 1
]

= E
R1,...,R`,

X`+2,...,Xt

[
PrX`+1

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,X`+1

〉
= 1
]]

Where the last equality makes use of the fact that all the Xi’s and Ri’s are independent
from each other. Similarly, we can write the probability that H`+1 outputs 1 as:

Pr
R1,...,R`+1,
X`+2,...,Xt

[〈
α,

(
`+1⊙
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)〉
= 1
]

= E
R1,...,R`,

X`+2,...,Xt

[
PrR`+1

[〈
α�

(⊙̀
i=1

Ri

)
�

(
t⊙

i=`+2
Xi

)
,R`+1

〉
= 1
]]

For fixed R1, . . . ,R` and X`+2, . . . ,Xt, we know that β = α�
(⊙`

i=1 Ri

)
�
(⊙t

i=`+2 Xi

)
is a vector with at most k 1’s. Thus since X`+1 is k-wise ε-biased, we know that:

|PrX`+1 [〈β,R`+1〉 = 1]− PrX`+1 [〈β,X`+1〉 = 1] | ≤ ε/2

Since expectation is just a weighted average, and each H` is a distribution over {0, 1}, we
can conclude that |H` −H`+1| ≤ ε/2. Combining all the hybrid steps via triangle inequality
gives us that |H0 −H`| ≤ tε/2 J

Connectivity Lower Bounds in Broadcast
Congested Clique
Shreyas Pai
The University of Iowa, Iowa City, IA, USA
shreyas-pai@uiowa.edu

Sriram V. Pemmaraju
The University of Iowa, Iowa City, IA, USA
sriram-pemmaraju@uiowa.edu

Abstract
We prove three new lower bounds for graph connectivity in the 1-bit broadcast congested clique
model, BCC(1). First, in the KT-0 version of BCC(1), in which nodes are aware of neighbors
only through port numbers, we show an Ω(log n) round lower bound for Connectivity even for
constant-error randomized Monte Carlo algorithms. The deterministic version of this result can be
obtained via the well-known “edge-crossing” argument, but, the randomized version of this result
requires establishing new combinatorial results regarding the indistinguishability graph induced by
inputs. In our second result, we show that the Ω(log n) lower bound result extends to the KT-1
version of the BCC(1) model, in which nodes are aware of IDs of all neighbors, though our proof works
only for deterministic algorithms. This result substantially improves upon the existing Ω(log∗ n)
deterministic lower bound (Jurdziński et el., SIROCCO 2018) for this problem. Since nodes know IDs
of their neighbors in the KT-1 model, it is no longer possible to play “edge-crossing” tricks; instead
we present a reduction from the 2-party communication complexity problem Partition in which
Alice and Bob are given two set partitions on [n] and are required to determine if the join of these
two set partitions equals the trivial one-part set partition. While our KT-1 Connectivity lower
bound holds only for deterministic algorithms, in our third result we extend this Ω(log n) KT-1 lower
bound to constant-error Monte Carlo algorithms for the closely related ConnectedComponents
problem. We use information-theoretic techniques to obtain this result. All our results hold for
the seemingly easy special case of Connectivity in which an algorithm has to distinguish an
instance with one cycle from an instance with multiple cycles. Our results showcase three rather
different lower bound techniques and lay the groundwork for further improvements in lower bounds
for Connectivity in the BCC(1) model.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Communication complexity; Mathematics of computing → Information theory

Keywords and phrases Distributed Algorithms, Broadcast Congested Clique, Connectivity, Lower
Bounds, Indistinguishability, Communication Complexity, Information Theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.32

Related Version A full version of this paper is available at: https://arxiv.org/abs/1905.09016.
A short version of this paper has appeared as a brief announcement in PODC 2019.

1 Introduction

We are given an n-node, completely connected communication network in which each node
can broadcast at most b bits in each round. These n nodes and a subset of the edges of the
communication network form the input graph. The question we ask is this: how many rounds
of communication does it take to determine if the input graph is connected? This is the well
known Connectivity problem in the b-bit Broadcast Congested Clique, i.e., the BCC(b)
model.

© Shreyas Pai and Sriram V. Pemmaraju;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2409-7807
mailto:shreyas-pai@uiowa.edu
mailto:sriram-pemmaraju@uiowa.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.32
https://arxiv.org/abs/1905.09016
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Connectivity Lower Bounds in Broadcast Congested Clique

A series of recent rapid improvements [15, 13, 20] have shown that Connectivity and
in fact MST, can be solved in O(1) rounds w.h.p.1 in the b-bit Congested Clique model,
CC(b), when b = logn. The CC(b) model allows each node to send a possibly different b-bit
message to each of the other n − 1 nodes in the network, in each round. In contrast, the
fastest known algorithm for Connectivity in the BCC(logn) model, due to Jurdziński
and Nowicki [19], is deterministic and it runs in O

(
logn

log logn

)
rounds. This contrast between

BCC(b) and CC(b) is not surprising, given how much larger the overall bandwidth in CC(b)
is compared to BCC(b). Becker et al. [4] show that the pair-wise set disjointness problem
can be solved in O(1) rounds in CC(1), but needs Ω(n) rounds in BCC(1). But, despite
the fact that Connectivity is such a fundamental problem, prior to this paper, only an
Ω(log∗ n)-round lower bound for deterministic algorithms for Connectivity in the KT-1
BCC(1) model was known [18].

Lower bound arguments in “congested” distributed computing models typically use a
“bottleneck” technique [5, 8, 9, 11, 12, 16]. At a high level, this technique consists of showing
that there is a low bandwidth cut in the communication network across which a high volume of
information has to flow in order to solve the given problem. The lower bound on information
flow is usually obtained via 2-party communication complexity lower bounds [23]. Not
surprisingly, the “bottleneck” technique does not work in the CC(b) model because any cut
with Θ(n) vertices in each part, has a high bandwidth of Θ(n2 · b) bits. In fact, a result of
Drucker et al. [11], showing that circuits can be simulated efficiently in the Congested Clique
model, indicates that no technique we currently know of can prove non-trivial lower bounds
in the CC(b) model. However, as further shown by [11], “bottlenecks” are possible for some
problems in the weaker BCC(b) model. In this model, every cut has bandwidth O(n · b) and
for example Drucker et al. [11] provide a reduction showing that for the problem of detecting
the presence of a K4 in the input graph there is a cut across which Ω(n2) information has to
flow. This leads to an Ω(n/b) lower bound for K4-detection in the BCC(b).

All known lower bounds [11, 16] in the BCC(logn) model have this general structure and
these techniques work for problems such as fixed subgraph detection, all pairs shortest paths,
diameter computation, etc., that are relatively difficult, requiring polynomially many rounds
to solve. For “simpler” problems such as Connectivity and MST, we need more fine-grained
lower bound techniques that allow us to prove polylogarithmic lower bounds. Specifically,
since Connectivity can be solved in BCC(b) for any b ≥ 1 in just O(poly(logn)) rounds,
the best we can expect is to show the existence of a cut across which Ω(n · poly(logn))
volume of information needs to flow. In fact, the connected components of a subgraph can
be represented in O(n logn) bits and this is all that needs to communicated across a cut
to solve Connectivity. Thus the best lower bound we can expect for Connectivity via
this technique is an Ω(logn/b). However, even this was unknown prior to this paper and
one contribution of this paper is an Ω(logn/b) lower bound for Connectivity using the
“bottleneck” technique.

1.1 Our Contribution
We consider the Connectivity problem and the closely related ConnectedComponents
problem in the BCC(1) model. In the latter problem, each node needs to output the label of
the connected component it belongs to. We work in the BCC(1) model because it allows

1 We use “w.h.p.” as short for “with high probability” which refers to the probability that is at least
1− 1/nc for c ≥ 1.

S. Pai and S. V. Pemmaraju 32:3

us to isolate barriers due to different levels of initial local knowledge (e.g., knowing IDs of
neighbors vs not knowing IDs). This is also without loss of generality because a t-round
lower bound in BCC(1) immediately translates to a t/b-round lower bound in BCC(b). We
consider two natural versions of the BCC(1) model, that we call KT-0 and KT-1 (using
notation from [2]). In the KT-0 (“Knowledge Till 0 hops”) version, nodes are unaware of IDs
of other nodes in the network and the n− 1 communication ports at each node are arbitrarily
numbered 1 through n − 1. In the KT-1 (“Knowledge Till 1 hop”) version, nodes know
all n IDs in the network and the n− 1 communication ports at each node are respectively
labeled with the IDs of the nodes at the other end of the port. Note that if the bandwidth
b = Ω(logn), then there is essentially no distinction between the KT-0 and KT-1 versions
since each node in the KT-0 version can send its ID to neighbors in constant rounds and
then nodes would have as much knowledge as they initially do in the KT-1 version. But the
difference in initial knowledge plays a critical role when b = o(logn) and in fact our best
results in these two models use completely different techniques. We present three main lower
bound results in this paper, derived using very different techniques.

In the KT-0 version of BCC(1) we show an Ω(logn) round lower bound for Connectivity
even for constant-error randomized Monte Carlo algorithms. In fact, the lower bound is
shown for the seemingly simpler “one cycle vs two cycles” problem in which the input
graph is either a single cycle or consists of two disjoint cycles and the algorithm has
to distinguish between these two possibilities. We use a well-known indistinguishability
argument involving “edge crossing” [22, 3, 27] for this result, but the main novelty here
is how this argument deals with the possibility that the algorithm can err on a constant
fraction of the input instances. In a standard edge crossing argument one shows that for
a particular YES instance (i.e., a connected or “one-cycle” instance) G, many of the NO
instances G(e, e′) obtained by crossing pairs of edges e and e′ in G cannot be distinguished
even after some t rounds of a BCC(1) algorithm (see Definition 7 for the precise definition
of a crossing). But for a randomized lower bound in BCC(1), it is not enough to consider
a single YES instance. Instead, we use the bipartite indistinguishability graph induced by
all YES and NO instances and show that this satisfies a polygamous version of Hall’s
Theorem (see Theorem 1). This allows us to show the existence of a large generalized
matching in the indistinguishability graph, which in turn shows that every o(logn) round
constant-error Monte Carlo algorithm can be fooled into making more errors than it is
allowed.
We then show that the above lower bound result extends to the KT-1 version of the
BCC(1) model, though our proof only works for deterministic algorithms. This result
substantially improves the Ω(log∗ n)-round lower bound for deterministic algorithms
for Connectivity in the KT-1 BCC(1) model [18]. In KT-1, because of knowledge
of IDs of neighbors, it is no longer possible to perform “edge crossing” tricks. But we
are able to successfully use the “bottleneck” technique and show that there is a cut for
the Connectivity problem across which Ω(n logn) bits need to flow. We prove this
result by presenting a reduction from the 2-party communication complexity problem
Partition [14]. In the Partition problem, we have a ground set [n] and Alice and Bob
respectively are given two set partitions PA and PB of [n]. The goal is to output 1 iff
PA ∨ PB = 1 where PA ∨ PB (read as “PA join PB”) is the finest partition P such that
both PA and PB are refinements of P 2 and 1 is the trivial partition consisting of the single

2 Given two set partitions P and P ′ of [n], P is said to be a refinement of P ′ if for every part S ∈ P ,
there is a part S′ ∈ P ′ such that S ⊆ S′. For example the partition (1, 2)(3, 4)(5) is a refinement of

FSTTCS 2020

32:4 Connectivity Lower Bounds in Broadcast Congested Clique

set [n]. For example, if PA = (1, 2)(3, 4)(5), PB = (1, 2, 4)(3)(5), and PC = (1, 2, 4)(3, 5)
then PA ∨ PB = (1, 2, 3, 4)(5) and PA ∨ PC = (1, 2, 3, 4, 5). We then use the fact that the
deterministic communication complexity of Partition is Ω(n logn) to obtain our result.
Again, this time using a linear-algebraic argument, we show our result for a seemingly
simple special case of Connectivity: “one cycle vs multiple cycles.” As far as we
know, randomized communication complexity of Partition is a long-standing unresolved
problem. Showing a lower bound on the randomized communication complexity of
Partition will immediately lead to a KT-1 lower bound for randomized Connectivity
algorithms, via our reduction.
Our final result arises from our attempt to obtain a KT-1 lower bound even for constant-
error Monte Carlo algorithms. We consider a version of the Partition problem, called
PartitionComp, in which Alice and Bob are required to output the join of their respective
input partitions PA and PB instead of just determining if PA ∨ PB = 1. We use an
information-theoretic argument to show that the mutual information of any algorithm,
even a constant-error Monte Carlo algorithm, that solves this version of Partition is
Ω(n logn). This leads to an Ω(logn)-round lower bound for ConnectedComponents in
the KT-1 version of BCC(1), even for constant-error randomized Monte Carlo algorithms.

We prove in this paper non-trivial lower bounds for Connectivity in the BCC(1) model.
The fact that our lower bounds hold even in the KT-1 model implies that the difficulty of
the problem does not arise just from lack of knowledge of IDs of other nodes. The fact
that our lower bounds hold for extremely sparse (i.e., 2-regular) graphs, suggests that there
might be room to get stronger lower bounds by considering dense input graphs. In fact,
using a deterministic sketching technique [25, 24], it is possible to obtain a deterministic
O(logn)-round BCC(1) algorithm for Connectivity for graphs with arboricity bounded
by a constant. This implies that our lower bounds are tight for uniformly sparse graphs.

1.2 The BCC(b) Model
A size-n KT-0 instance of the BCC(1) model consists of n vertices, each with a unique
O(logn)-bit ID. Each vertex has n − 1 communication ports labeled distinctly, 1 through
n− 1, in an arbitrary manner. A key feature of the KT-0 instance is that port labels have
nothing to do with IDs. Pairs of communication ports are connected by network edges such
that the underlying communication network is a clique. The n vertices along with a subset
of the edges form the input graph. Thus some edges are both network edges and input graph
edges, whereas the remaining edges are just network edges. The initial knowledge of a vertex
v consists of its ID, its port numbering, an identification of ports that correspond to input
edges, and an arbitrarily long string rv of random bits. In each round t, each vertex u

receives messages via broadcast from the remaining n − 1 vertices in the previous round,
performs local computation, and broadcasts a message of length at most b-bits. This message
is received at the beginning of round t + 1 by the remaining n − 1 vertices along each of
their communication ports that connect to u. After t rounds, the at most t · b bits that v
sends and the at most (n− 1) · t · b bits that v receives, along with the ports that they are
received from make up the transcript of v at round t. A size-n KT-1 instance of the BCC(b)
model differs from a KT-0 instance in one important way: each network edge e = {u, v} is
connected to u at port number ID(v) and connected to v at port number ID(u). Thus, in
a KT-1 instance, IDs serve as port numbers and the initial knowledge of a vertex consists
include all n vertex IDs.

(1, 2)(3, 4, 5).

S. Pai and S. V. Pemmaraju 32:5

Since the main focus of the paper is to derive lower bounds, we assume the public coin
model in which all the random strings rv are identical. Lower bounds proved in the public
coin model hold in the private coin model as well, in which all the rv’s are distinct. For
a decision problem, such as Connectivity, when we run a BCC(b) algorithm A on an
input graph G, each vertex outputs either YES or NO and the output of the system is
YES if all vertices output YES and is NO otherwise. For a deterministic algorithm A for
Connectivity the system must output YES if G is connected and NO if G is disconnected.
If A is an ε-error randomized Monte Carlo algorithm, then in order to be correct, it must
satisfy the following requirements: (i) if G is connected then the system outputs YES with
probability > 1− ε and (ii) if G is disconnected then the system outputs NO with probability
> 1− ε.

1.3 Related Work
Congest model [28] lower bounds via the “bottleneck technique” that rely on communication
complexity lower bounds have been shown for MST and related connectivity problems in [9]
and for minimum vertex cover, maximum independent set, optimal graph coloring, all pairs
shortest paths, and subgraph detection in [5, 8, 12]. This approach has also been used to
derive BCC(logn) lower bounds in [11, 16]. Becker et al. [4] define a spectrum of congested
clique models parameterized by a range parameter r, denoting the number of distinct messages
a node can send in a round. Setting r = 1 gives us the BCC(b) model and setting r = n

gives us the CC(b) model. They show the pair-wise set disjointness problem is sensitive to
the value of r in the sense that for every pair of ranges r′ < r, the problem can be solved
provably faster in the model with range r than it can in the model with range r′.

Distributed lower bounds via the “edge crossing” argument have a long history in
distributed computing, see [21] for an example in the context of proving message complexity
lower bounds. More recent examples [22, 3, 27] appear in the context of proof-labeling schemes.
Informally speaking, a proof-labeling scheme consists of a prover who labels the vertices
of the input configuration with labels and a distributed verifier who is required to verify a
predicate (e.g., do the marked edges form an MST?) in one round, using the help of the
prover’s labels. The verification complexity of a proof-labeling scheme is the size of the largest
message sent by the verifier. Patt-Shamir and Perry [27] show an Ω(logn) lower bound on the
verification complexity of MST in the broadcast congested clique model. An Ω(logn) lower
bound in the KT-0 version of BCC(1) for deterministic Connectivity algorithms follows
from this result. The high level idea is that if there were a faster BCC(1) Connectivity
algorithm, the prover could use the transcript of the algorithm at each vertex v as the label at
v. The verifier could then broadcast these transcripts and locally, at each vertex v, simulate
the algorithm at v. Baruch et al. [3] show that if there is a deterministic proof-labeling
scheme with verification complexity κ, then there is a randomized proof-labeling scheme
with one-sided error having verification complexity O(log κ). Combining this with the fact
that MST verification has a deterministic proof-labeling scheme with O(log2 n) verification
complexity [22], leads to a randomized proof-labeling scheme with O(log logn) verification
complexity for MST [3, 27]. This needs to be contrasted with the fact that we show an
Ω(logn) lower bound for Connectivity in KT-0 BCC(1) even for constant-error Monte
Carlo algorithms.

There have been recent attempts to combine the edge crossing and bottleneck techniques
to obtain lower bounds for triangle detection in the Congest model [1, 12]. In particular, [12]
provide an Ω(logn) lower bound for deterministic algorithms solving triangle detection in
the KT-1 Congest model with 1-bit bandwidth.

FSTTCS 2020

32:6 Connectivity Lower Bounds in Broadcast Congested Clique

Finally, lower bounds for the Connectivity problem are also known in related models
like streaming and MPC [26, 6, 29]. Ideas in these papers, based on the polynomial method
and boolean function complexity do not seem to imply any non-trivial lower bounds in the
BCC(1) model.

2 Technical Preliminaries

Polygamous Hall’s Theorem. Let G = (L,R,E) be a bipartite graph. A k-matching is a
subgraph consisting of a set of nodes A ⊆ L where each v ∈ A has edges to nodes in the set
nbr(v) such that |nbr(v)| = k and nbr(u) ∩ nbr(v) = ∅ for u, v ∈ A, u 6= v. The size of a
k-matching is the number of connected components in the subgraph.

I Theorem 1 (Polygamous Hall’s Theorem). Let G = (L,R,E) be a bipartite graph. If for
every S ⊆ L we have |N(S)| ≥ k|S| then G has a k-matching of size |L|.

Proof. Make k copies of each node in L while keeping R the same. Now for every S ⊆ L

we have |N(S)| ≥ |S| and by Hall’s marriage theorem, we have a matching in the modified
bipartite graph which is a k-matching of size |L| in the original graph. J

Yao’s Minimax Theorem. The standard way to prove lower bounds on ε-error randomized
algorithms is by invoking Yao’s Minimax Theorem [31]. Let RRε(P) denote the minimum
round complexity of any ε-error randomized algorithm that solves P . Let DRµε (P) denote the
distributional round complexity of P , which is the minimum deterministic round complexity
of an algorithm whose input is drawn from the distribution µ (known to the algorithm) and
the algorithm is allowed to make error on at most ε fraction of the input (weighted by µ).

I Theorem 2 (Yao’s Minimax Theorem). For any problem P , RRε(P) ≥ maxµ{DRµε (P)}

Yao’s Minimax Theorem reduces the problem of proving a randomized lower bound to the
task of designing a “hard” distribution that produces high distributional complexity.

Lower bound for Partition. The total number of distinct partitions on a ground set of n
elements is given by the nth Bell number Bn. It is well known that Bn = 2Θ(n logn). This
means that the number of different possible input pairs that Alice and Bob can receive in
the Partition problem is B2

n = 2Θ(n logn). Define the matrix Mn such that Mn(i, j) = 1 if
Pi ∨ Pj = 1 and Mn(i, j) = 0 otherwise. Note that Mn is a Bn × Bn matrix. Theorem 3
shows that this matrix is non-singular.

I Theorem 3 ([10, 30]). rank(Mn) = Bn where Bn is the nth Bell number

Therefore by Lemma 1.28 of [23] we get the following corollary.

I Corollary 4. The deterministic 2-party communication complexity of Partition is
Ω(n logn)

Information Theory. Let µ be a distribution over a finite set Ω and let X be a random
variable with distribution µ. The entropy of X is defined as H(X) = −

∑
x∈Ω µ(x) logµ(x)

and the conditional entropy of X given Y is H(X|Y) =
∑
y Pr[Y = y]H(X|Y = y) where

H(X|Y = y) is the entropy of X conditioned on the event {Y = y}. The joint entropy of two
random variables X and Y , denoted by H(X,Y), is the entropy of their joint distribution.

The mutual information between random variables X and Y is I(X;Y) = H(X) −
H(X|Y) = H(Y)−H(Y |X) and the conditional mutual information between X and Y given
Z is I(X;Y |Z) = H(X|Z) −H(X|Y,Z). See the first two chapters of [7] for an excellent
introduction to the basics of information theory.

S. Pai and S. V. Pemmaraju 32:7

3 Lower Bounds in the KT-0 model

This section is devoted to proving the following theorem. As mentioned earlier, our lower
bound applies to the simpler “one cycle vs two cycles” problem which we will call TwoCycle.
In this problem, the input is promised to be either a single cycle or two disconnected cycles,
each of length at least 3 and the goal is to distinguish between these two types of inputs.

I Theorem 5. For a sufficiently small constant 0 < ε ≤ 1/2, the ε-error randomized round
complexity of the TwoCycle problem in the BCC(1) KT-0 model is bounded below by
Ω(logn).

Proof. Consider an arbitrary one-cycle instance I1 ∈ V1 after t = 0.1 log3 n rounds of
algorithm A. Let x, y ∈ {0, 1,⊥}t be the strings that correspond to the largest set of active
edges after t-rounds of algorithm A. We would like to count the size of this set of active
edges. Recall that we orient each input graph edge of I1 in a clockwise direction. Therefore,
each input graph edge in I1 can be labeled with a string of length 2t which denotes messages
sent across it from the head and the tail (in order) across the t rounds. This means that
there are at least n/32t = n0.8 input graph edges in I1 that have the same messages sent
across them. Therefore, the size of the set of active edges with respect to x, y is at least
Ω(n0.8).

By Lemma 12 and Theorem 1, we can say that there exists a Θ(logn)-matching in Gtx,y
of size |V1|. No matter what the algorithm A outputs on any one-cycle instance, it will
produce the same output on the matched O(logn) two-cycle instances. By Lemma 13, we
know that for any I1 ∈ V1 and I2 ∈ V2, µ(I1) = µ(I2) · Θ(logn) Therefore, each instance
I1 ∈ V1 contributes to Θ(µ(I1)) the error of the algorithm which means that any t-round
BCC(1) algorithm will have total error at least a constant. This implies the theorem. J

Two KT-0 instances I1 and I2 are said to be indistinguishable after t rounds of an algorithm
A if the state of each vertex (i.e., the initial knowledge and the transcript at that vertex)
after t rounds is the same in both the instances. We first introduce a technical tool called
indistinguishability via port-preserving crossings. This tool has been used to show distributed
computing lower bounds in several settings [21, 22, 3, 27] and we heavily borrow notation
from [27]. For an edge e = (v, u) we use the notation e(p, q) to denote that e is connected to
port p at v and to port q at u. For this notation to be unambiguous, we must think of the
edge e = (v, u) as a directed edge v → u even though the graph itself is undirected.

I Definition 6 (Independent Edges [27]). Let I be an instance with input graph G = (V,E)
and let e1 = (v1, u1) and e2 = (v2, u2) be two edges of G. The edges e1 and e2 are said to be
independent if and only if v1, u1, v2, u2 are four distinct vertices and (v1, u2), (v2, u1) /∈ E. A
set of input graph edges is called independent if every pair of edges in the set is a pair of
independent edges.

I Definition 7 (Port-Preserving Crossing [27]). Consider an instance I with input graph G =
(V,E). Let e1 = (v1, u1) and e2 = (v2, u2) be two independent edges of G, and let e′1 = (v1, u2)
and e′2 = (v2, u1) be two corresponding network edges in I. Let p1, p2, q1, q2, p

′
1, q
′
1, p
′
2, q
′
2 be

eight ports such that e1(p1, q1), e2(p2, q2), e′1(p′1, q′2), e′2(p′2, q′1). The crossing of e1 and e2 in
I, denoted by I(e1, e2), is the instance obtained from I by replacing e1 and e2 in G with the
edges e′1 and e′2 and rewiring the edges so that e1(p′1, q′1), e2(p′2, q′2), e′1(p1, q2), and e′2(p2, q1).
(See Figure 1.)

FSTTCS 2020

32:8 Connectivity Lower Bounds in Broadcast Congested Clique

u1

u2v2

v1
p1

p′1

p′2

p2

q1

q′1

q′2

q2

u1

u2v2

v1
p1

p′1

p′2

p2

q1

q′1

q′2

q2

Figure 1 This figure illustrates definition of a port-preserving crossing as per Definition 7.

The following lemma establishes a standard connection between indistinguishability and
port-preserving crossings (henceforth “crossings”) and is in fact the main motivation for
defining crossings. For simplicity, we say that a node sends the character ⊥ to denote the
fact that the node remains silent. Therefore, the events of a node broadcasting a 0, a 1, or
remaining silent can be described as sending the characters 0, 1, or ⊥ respectively.

I Lemma 8. Let I be an instance with input graph G = (V,E) and let e1 = (v1, u1) and
e2 = (v2, u2) be two independent edges of G. If v1, v2 send the same sequence x ∈ {0, 1,⊥}t

and u1, u2 send the same sequence y ∈ {0, 1,⊥}t in the first t rounds of the algorithm, then
I is indistinguishable from I(e1, e2) after t rounds.

Proof. We will prove the lemma by induction on t. The initial knowledge of each vertex in
I and I(e1, e2) is the same so the statement is true for t = 0.

Assume that the lemma is true for some round 0 ≤ i ≤ t. Therefore, the characters
broadcast by the vertices in round i+ 1 will be the same in both the instances. From the
definition of port preserving crossing it is clear that I and I(e1, e2) differ only in four edges,
e1, e2, e′1 = (v1, u2), and e′2 = (v2, u1). Therefore, all vertices except v1, v2, u1, and u2 will
receive the same characters across all their ports in round i+ 1 in both the instances and
hence will have the same state in both instances after round i+ 1.

Let the port names of the four edges in I and I(e1, e2) be as in Definition 7 and Figure
1. In I, the vertex u1 will receive the characters broadcast by v1, v2 through ports q1, q

′
1

respectively and in I(e1, e2) it will receive the characters broadcast by v2, v1 through ports
q1, q

′
1 respectively. Note that v1 and v2 broadcast the same message in round i+ 1 since they

send the same sequence x in the first t rounds and therefore, the state of u1 after round i+ 1
will be the same in both instances. We can make similar arguments for u2, v1, and v2 as well.
Therefore, the state of each vertex after round i+ 1 is the same in both I and I(e1, e2) which
proves the induction step as well as the lemma. J

As a “warm-up”, we first sketch an easy Ω(logn) lower bound for randomized Monte Carlo
algorithms that make polynomially small error, i.e., error ε = 1/nc for constant c > 0. By
Yao’s minimax theorem (Theorem 2), it suffices to show a lower bound on the distributional
complexity of a deterministic algorithm under a hard distribution. Consider the following
hard distribution µ: Let I be an arbitrary instance such that the input graph G of I is a
one-cycle on n vertices. Let S be an arbitrarily chosen set of exactly bn/3c independent
edges 3 and let I(S) be the set of all instances I(e, e′) where e, e′ ∈ S, and therefore,
|I(S)| =

(bn/3c
2
)

= Θ(n2). The hard distribution µ places probability mass 1/2 on the

3 Adding an edge to S invalidates at most two other edges, and therefore we can always find an independent
set S of size bn/3c.

S. Pai and S. V. Pemmaraju 32:9

instance I and uniformly distributes the remaining probability mass among the instances
in I(S). Now, given a t-round deterministic algorithm A we can assign a 2t-character label
to each edge (v, u) obtained by concatenating the t characters broadcast by v and u. Here
each character in the label belongs to the alphabet {0, 1,⊥}. The pigeon-hole principle
implies that there is a set S′ ⊆ S, |S′| ≥ n/(3 · 32t), of edges in S with identical labels.
Then by Lemma 8, for any e, e′ ∈ S′, I and I(e, e′) are indistinguishable after t-rounds of A.
Since A cannot make an error on I, it makes errors on all instances I(e, e′) where e, e′ ∈ S′.
Since µ assigned the probability mass 1/2 uniformly to all instances in I(S), the probability
that A makes an error is at least |I(S′)|/(2|I(S)|) =

(|S′|
2
)
/
(bn/3c

2
)
≥ Ω(3−4t). Therefore,

if t ≤ 0.001 · c · log3 n, this error becomes Ω(1/n0.001c) which is much larger than 1/nc; a
contradiction, implying that t > 0.001 · c · logn and leading to the following theorem.

I Theorem 9. For any constant c > 0, if ε ≤ 1/nc then the ε-error randomized round
complexity of the Connectivity problem in the BCC(1) KT-0 model is Ω(c · logn).

Proof. Note that since the probability mass on I is so large, any algorithm with permissible
error probability must output YES on I and therefore, it will also output YES on all instances
that are indistinguishable from I.

Given a t-round deterministic algorithm A we can assign a 2t-character label to each
edge (v, u) where each character belongs to the alphabet {0, 1,⊥}. The label is assigned
such that the head v sends the ith character of the label and the tail u sends the (t+ i)th
character of the label in round i for all edges. By using the pigeon hole principle, we see
that there is a set S′ ⊆ S, |S′| ≥ n/(3 · 32t), of edges in S with identical labels. By Lemma
8, for any e, e′ ∈ S′, I and I(e, e′) are indistinguishable after t-rounds of A. Therefore, any t
round algorithm will make an error on instances I(e, e′) where e, e′ ∈ S′ and this makes the
error at least

(|S′|
2
)
/
(bn/3c

2
)
≥ Ω(3−4t). Therefore, if t ≤ 0.001 · c · log3 n, this error becomes

Ω(1/n0.001c) which is much larger than 1/nc. J

The hard distribution µ that led to the above theorem fails to give even a super-constant
round lower bound for constant error probability. This is because for any constant ε, there is
a constant t such that the error probability |I(S′)|/(2|I(S)|) of algorithm A is smaller than
ε, leading to no contradiction.

3.1 A Lower Bound for Constant Error Probability

To get around this problem, we start with the observation that a two-cycle instance I(e, e′)
obtained from I, can also be obtained by crossing edges in other one-cycle instances, i.e.,
I(e, e′) = I ′(f, f ′) for edges f, f ′ in an instance I ′ 6= I. Thus, as the algorithm executes, even
though I(e, e′) ceases to be indistinguishable from I, it may continue to be indistinguishable
from I ′. This suggests that we should be considering all one-cycle and two-cycle instances
and all the edge crossings that lead from one-cycle instances to two-cycle instances. This
motivates the definition below of a bipartite indistinguishability graph with all one-cycle
and two-cycle instances as vertices. In the proof of Theorem 9, when we placed the entire
probability mass on a single “star” indistinguishability graph with I being the central node
and instances in I(S) being the leaves, we ran into trouble because the degree of I in this “star”
shrank too quickly with the number of rounds, t. If we consider the full indistinguishability
graph, we have more leeway. Specifically, showing the existence of a large matching in the
indistinguishability graph would be helpful since the algorithm is forced to make an error at
one of the two endpoints of each matching edge. We formalize this intuition below.

FSTTCS 2020

32:10 Connectivity Lower Bounds in Broadcast Congested Clique

Let the set of distinct one-cycle and two-cycle instances be V1 and V2 respectively let µ
be a probability distribution on these. Let A be a t-round deterministic KT-0 algorithm
which solves the TwoCycle problem correctly on (1− ε) fraction of input in the support of
µ (recall, ε is a constant). For any instance I ∈ V1 ∪ V2, call an edge e = (v, u) in the input
graph of I active with respect to strings x, y ∈ {0, 1,⊥}t iff v broadcasts the sequence given
by x and u broadcasts the sequence given by y in the first t rounds of the algorithm A. We
call an edge active if the strings x, y are clear from the context.

I Definition 10 (Indistinguishability Graph). Let t be a non-negative integer and let x, y ∈
{0, 1,⊥}t be two strings of length t. The indistinguishability graph with respect to messages
x and y after t rounds of algorithm A is a bipartite graph Gtx,y = (V1,V2, Et) where V1 is the
set of all one-cycle instances and V2 is the set of all two-cycle instances and there is an edge
{I1, I2} ∈ Et iff I1 ∈ V1 and I2 ∈ V2 and there exist two active independent directed edges
e1 = (v1, u1) and e2 = (v2, u2) in the input graph of I1 such that I2 = I1(e1, e2).

We now propose to use a rather natural hard distribution µ that assigns probability mass
1/2 distributed uniformly among the instances in V1 and the remaining probability mass 1/2
distributed uniformly among the instances in V2. We first prove Lemma 11 that plays a crucial
role in our overall proof by essentially showing that every one-cycle instance has sufficiently
many two-cycle neighbors in Gtx,y with high degree. This in turn is used in Lemma 12 to
prove that a Polygamous Hall’s Theorem (Theorem 1) condition holds for Gtx,y. This allows
us to show that Gtx,y can be packed with |V1| “stars,” each with Θ(logn) leaves. We need
this generalized notion of a matching because as shown in Lemma 13, |V2| = |V1| ·Θ(logn).
Therefore, the probability mass assigned to an instance in V2 is 1/Θ(logn) fraction of the
probability mass assigned to an instance in V1. Thus, a “star” with its central node from V1
and Θ(logn) leaves from V2 has roughly equal probability mass assigned to the YES instance
and NO instances.

I Lemma 11. Consider an arbitrary instance I1 ∈ V1 that is a vertex of Gtx,y. If d ≥ 1 is
the number of active edges of I1 with respect to x, y then for every i, 3 ≤ i ≤ d/2, I1 has at
least d/2 neighbors of degree i · (d− i).

Proof. A two-cycle instance I2 ∈ V2 will be a neighbor of I1 iff I1 and I2 form a pair of
crossed instances with respect to x, y. Say I2 = I1(e, e′) where e = (v, u) and e′ = (v′, u′).
Note that I2 will have two new input graph edges (v, u′) and (u, v′) both of which are active
and all input graph edges of I1 except for e, e′ appear in the input graph of I2. Therefore, I2
also has d active edges with respect to x, y. The degree of I2 is determined by the number of
active edges either cycle, i.e., if I2 has i active edges in one cycle and d− i active edges in
the other cycle then its degree in Gtx,y is i · (d− i) since we can take one active edge from
either cycle and cross them to produce a unique neighbor of I2.

For every active edge e in the input graph of I1, we can associate a unique active edge
ei such that I1(e, ei) has i active edges in one cycle and d − i active edges in the other
cycle. Therefore, I1 has exactly d (or d/2 if i = d/2) neighbors having degree i(d− i). This
argument may not hold exactly for i = 1, 2 because e and ei as described need not form a
pair of independent edges in this case. Thus, the lemma follows. J

I Lemma 12. For the graph Gtx,y, consider an arbitrary set S ⊆ V1 of one-cycle instances
with degree at least 1. Let N(S) be the neighborhood of S in Gt. Then |N(S)| ≥ |S| ·Θ(log d)
where d is the smallest number of active edges in any instance in S.

S. Pai and S. V. Pemmaraju 32:11

Proof. Every I ∈ S has at least d active edges, therefore by Lemma 11, there are at least
d/2 neighbors of I having degree i · (d − i) for 3 ≤ i ≤ d/2. Thus there are at least
(d/2) · |S|/(i · (d − i)) = Θ(|S|/i) two-cycle instances in N(S) having degree i · (d − i).
Therefore, we have |N(S)| ≥

∑d/2
i=3 Θ(|S|/i) = |S| ·Θ(Hd/2 − 3/2) ≥ |S| ·Θ(log d), where Hn

is the nth harmonic number. J

I Lemma 13. |V2| = |V1| ·Θ(logn).

Proof. Let G = G0
λ,λ (λ is the empty string) be the indistinguishability graph at round 0.

Note that in G, every instance in V1 ∪ V2 has strictly positive degree since each instance has
n active edges. Therefore, we have |V1| = |N(V2)| and |V2| = |N(V1)|. Therefore, by Lemma
12, we have |V2| = |V1| · Ω(logn). Now we show that |V2| = |V1| ·O(logn).

Since each instance has n active edges, each one-cycle instance I1 has degree n(n− 3)/2
because for each input graph edge e of I1 there are (n− 3) active edges independent of e,
which we can cross with to get a unique neighbor of I1. We need to divide by a factor of two
because I1(e, e′) = I1(e′, e). And each two-cycle instance I2 with the smaller cycle having
length i has degree i · (n− i) since we can cross any two edges in different cycles to get a
neighbor of I2.

Let Ti denote the set of two-cycle instances with the smaller cycle having length i for
3 ≤ i ≤ n/2.

For every input graph edge e in a one-cycle instance I, there is exactly one input graph
edge ei such that I(e, ei) ∈ Ti. Therefore, for 3 ≤ i < n/2, each one cycle instance has n
neighbors such that the smaller cycle is of length i. And if n is even, each one-cycle instance
will have n/2 neighbors where both cycles have length n/2 instead.

We will now show that |Ti| ≤ |V1| · n/(i · (n − i)). To see this note that if we restrict
our attention to the subgraph of G spanned by instances in V1 ∪ Ti then we have a bipartite
graph where each instance in V1 has the same degree n (or n/2 if i = n/2) and each instance
in Ti has the same degree i · (n− i). Therefore, the total number of edges incident on V1 is
≤ |V1| · n and those incident on Ti is |Ti| · i · (n− i). Since the number of edges should be
the same counted from either side, we get |Ti| ≤ |V1| · n/(i · (n− i)). Now we finish the proof
of the lemma with the following calculation:

|V2| =
n/2∑
i=3
|Ti| ≤

∑
i

n

i · (n− i) · |V1| = |V1| ·O(logn) J

4 Lower Bounds in the KT-1 Model

Our lower bounds in the KT-1 model are inspired by the work of Hajnal et al. [14], which
is concerned with 2-party communication complexity of several graph problems, including
Connectivity. In their setup [14], the input graph G = (V,E) is edge-partitioned among
Alice and Bob in such a way that both parties know V and Alice and Bob respectively
know edge sets EA and EB , were (EA, EB) forms a partition of E. One simple deterministic
protocol that solves Connectivity in this setup is this: Alice sends all the connected
components induced by EA to Bob, who can determine if G is connected. The worst case
communication complexity of this protocol is O(n logn). Via reduction from Partition,
Hajnal et al. [14] show that there exists a family of input graphs such that for any equal
sized edge partition, the communication complexity of Connectivity is Ω(n logn).

It does not seem possible to reduce from this edge-partitioned version of 2-party Con-
nectivity to Connectivity in the KT-1 model because KT-1 algorithms are vertex-centric
and Alice and Bob may not hold all the edges they need to simulate vertices executing a

FSTTCS 2020

32:12 Connectivity Lower Bounds in Broadcast Congested Clique

KT-1 algorithm. We resolve this issue by designing a new reduction, from Partition to
a vertex-partition version of 2-party Connectivity. In the Hajnal et al. [14] reduction,
Partition is reduced to Connectivity on a family of dense graphs. Motivated by our
KT-0 lower bound for Connectivity for the TwoCycle problem, we are interested in
deriving a KT-1 Connectivity lower bound for a sparse class of graphs as well. In what
follows, we extend the reduction of Hajnal et al. from Partition to Connectivity in two
important ways: (i) we reduce to a vertex-partitioned version of Connectivity and (ii) we
reduce to a sparse special case of Connectivity that we call the MultiCycle problem, in
which the input is either a single cycle or two or more cycles, each having length at least 4.

4.1 A Special Case of the Partition Problem
In order to establish a lower bound for MultiCycle, we now consider a special case of the
2-party Partition problem, which we call TwoPartition. The input to TwoPartition
consists of partitions PA and PB of [n], for even n, such that each part in PA and PB has
exactly two elements in it. We will now use a linear algebraic argument to show that there
is an Ω(n logn) deterministic lower bound on this special case of Partition also. The 0-1
matrix En associated with this problem is a sub-matrix of the matrix Mn where Mn(i, j) = 1
if Pi ∨ Pj = 1 and Mn(i, j) = 0 otherwise (see Section 2). The matrix En has dimension
r× r where r = n!/(2n/2 · (n/2)!). This fact follows from a simple counting argument. In the
following theorem, we show that this sub-matrix En has full rank.

I Lemma 14. rank(En) = r where r = n!/(2n/2 · (n/2)!).

Proof. We will prove a more general observation: every sub-matrix AS of a full rank d× d
matrix A formed by choosing a subset S of the rows and the corresponding columns has rank
s where s = |S|. In other words, for all S, AS is a full rank s× s matrix.

Let B be a d× d diagonal matrix where B(i, i) = 1 if i ∈ S and B(i, i) = 0 if i /∈ S. It is
easy to see that rank(B) = |S| = s. Using basic properties of rank, rank(AB) ≤ rank(B) ≤ s
and by Sylvester’s rank inequality 4, rank(AB) ≥ rank(A) + rank(B)− d = d+ s− d = s.

Therefore, rank(AB) = s which means that some minor of AB having dimension s

needs to be of full rank. The only such candidate is the minor corresponding to the matrix
AS because all other minors of dimension s either have an all zero row or all zero column.
Therefore, AS has full rank.

Now En is a submatrix of Mn where the rows and columns correspond to partitions of
[n] such that each part has exactly two elements in it. Therefore, the lemma follows since
Mn has full rank. J

By using Stirling’s approximation, it can be verified that r = 2Θ(n logn). Then, by the rank
bound and Lemma 1.28 of [23] we get the following corollary.

I Corollary 15. The deterministic 2-party communication complexity of TwoPartition is
Ω(n logn)

We describe our reductions in the next two subsections. In section 4.2, we reduce the
Partition (TwoPartition) problem to the vertex partitioned 2-party Connectivity
(2-party MultiCycle) problem and in section 4.3, we reduce the 2-party Connectivity
(2-party MultiCycle) problem to Connectivity (MultiCycle) in the KT-1 model.

4 For any two n× n matrices A, B, rank(AB) ≥ rank(A) + rank(B)− n. We can prove this inequality
by applying the rank-nullity theorem to the inequality null(AB) ≤ null(A) + null(B).

S. Pai and S. V. Pemmaraju 32:13

PA = (1, 2, 3)(4, 5, 6)(7, 8)

PB = (1, 2, 6)(3, 4, 7)(5, 8)

Alice Bob

`1

`2

`3

`4

`5

`6

`7

`8

r7

r8

r5

r6

r3

r4

r1

r2

a3

a1

a2

b3

b1

b2

PB = (1, 3)(2, 4)(5, 7)(6, 8)

PA = (1, 2)(3, 4)(5, 6)(7, 8)

Alice Bob

`1

`2

`3

`4

`5

`6

`7

`8

r7

r8

r5

r6

r3

r4

r1

r2

Figure 2 The figure on the left illustrates the reduction from Partition to 2-party Connectivity
and the figure on the right illustrates the reduction from TwoPartition to 2-party MultiCycle.
The vertices a4, . . . , a8 that are connected to `∗ = `8 and b4, . . . , b8 connected to r∗ = r8 are not
shown in the left figure.

4.2 Reductions from Partition and TwoPartition

Here we present two reductions, first from Partition to 2-party Connectivity and
next from TwoPartition to 2-party MultiCycle. Alice is given a partition PA =
(S1, S2, . . . , Sn) over the ground set [n] where Si is the ith part of PA, which could possibly be
empty if PA has fewer than i parts. Similarly, Bob is given a partition PB = (S′1, S′2, . . . , S′n).
They construct a graph G(PA, PB) as follows: Alice creates vertex sets A = {a1, . . . , an} and
L = {`1, . . . , `n} whereas Bob creates the vertex sets R = {r1, . . . , rn} and B = {b1, . . . , bn}.
Alice and Bob add edges (`i, ri) for i ∈ [n], independent of PA and PB. Alice adds edges
between A and L that induce the partition PA on L. That is, for every Si ∈ PA, Alice adds
edges (ai, `j) for all j ∈ Si. There will be some vertices in A that are not connected to any
vertex, so Alice just adds an edge between these vertices and an arbitrary vertex `∗ ∈ L.
Bob similarly adds edges between the sets B and R. See Figure 2.

If PA and PB are instances of TwoPartition, that is, each part of PA and PB is of size
exactly two, then we can modify the construction of G(PA, PB) by getting rid of the sets
A and B. Note that in this case PA = (S1, S2, . . . , Sn/2) and PB = (S′1, S′2, . . . , S′n/2) where
each Si and S′i has size exactly two. If {i, j} ∈ PA then Alice creates an edge between `i and
`j and Bob does the same with R for every pair in PB. With this modified construction,
each vertex in G(PA, PB) has degree exactly 2 and therefore, every connected component of
G(PA, PB) will be a cycle. See Figure 2.

The following theorem encapsulates a crucial property of the graph G(PA, PB) which
implies the correctness of our reductions.

I Theorem 16. If PA and PB are instances of Partition (or TwoPartition), then the
partition induced by the connected components of G(PA, PB) on the vertices in L and R
corresponds to the partition PA ∨ PB.

FSTTCS 2020

32:14 Connectivity Lower Bounds in Broadcast Congested Clique

Proof. Call two elements a and b reachable from each other if there exists a sequence of
distinct elements e0, e1, . . . et, 1 ≤ t ≤ n such that e0 = a, et = b and each pair (ei, ei+1)
either belongs to the same part of PA or the same part of PB. Any partition in which all
reachable elements are in the same part have both PA and PB as refinements.

We claim that two elements belong to the same part of PA ∨ PB if and only if they are
reachable from each other. The backward direction is true because PA and PB are both
refinements of PA ∨ PB . The forward direction is true because if a and b are not reachable
from each other but still belong to the same part S of PA ∨PB then we can refine the part S
to be Sa, Sb where Sa is the set of all elements in S that are reachable from a and Sb is the
set of all elements in S that are reachable from b. It is easy to see that Sa and Sb are disjoint.
Let P ′ be the partition PA ∨ PB where S is further refined to be Sa, Sb, S \ (Sa ∪ Sb). Note
that with this further refinement of S, we still have the property that all pairs of reachable
elements belong to the same part of P ′. This means both PA and PB still remain refinements
of the P ′ which contradicts the minimality of the join.

The theorem follows by observing that i and j are reachable from each other if and only
if there is a path from `i to `j (and consequently from ri to rj) in G(PA, PB). J

4.3 Reductions from 2-party Connectivity and MultiCycle
We now show reductions from 2-party Connectivity to Connectivity in the KT-1 model
and from 2-party MultiCycle to MultiCycle in the KT-1 model. Given an r-round
KT-1 algorithm A, Alice and Bob will simulate the algorithm with G(PA, PB) as the input
graph. Alice hosts vertices in A ∪ L and Bob hosts vertices in B ∪R. For 1 ≤ i ≤ n, the IDs
of vertices ai, `i, ri, and bi are i, n+ i, 2n+ i, and 3n+ i respectively. So both parties know
the ID’s of all vertices as well as the ID’s of neighbors of all hosted vertices in G(PA, PB)
and hence, the initial knowledge of hosted vertices.

In order to simulate round t of A, Alice and Bob need to compute the states of all hosted
vertices after round t of A. The state of a vertex v after round t depends on the initial
knowledge and the transcript τ(v, t) of v. Assume that Alice and Bob know the states of all
the vertices they host after round t− 1. Alice and Bob send a message from {0, 1,⊥}2n to
each other. These messages denote the characters their hosted vertices broadcast in round t,
in increasing order of ID. Therefore, they know the sender ID of a character from the position
of the character in the message. This enables Alice and Bob to compute the transcript τ(v, t)
and hence the state after round t of all hosted vertices v.

Therefore, in simulating each round, Alice and Bob exchange exactly O(n) bits with each
other and the total communication complexity of the protocol is O(rn). If A solves the
Connectivity or MultiCycle problems, then using Corollaries 4 and 15 respectively and
Theorem 16, we obtain the following result.

I Theorem 17. The round complexity of a deterministic algorithm for solving the Con-
nectivity and MultiCycle problems in the KT-1 model is Ω(logn).

4.4 Information-theoretic Lower Bound for ConnectedComponents
Já Já [17] proves a lower bound for 2-party ConnectedComponents and points out that
his techniques may not work for decision problems, indicating that it might be easier to prove
lower bounds for ConnectedComponents. This motivates us to consider the Connec-
tedComponents problem as a lower bound candidate, closely related to Connectivity,
but for which we may be able to prove an Ω(logn) lower bound in the KT-1 model, even for
constant-error Monte Carlo algorithms. It turns out that we are able to prove this result

S. Pai and S. V. Pemmaraju 32:15

by combining the reductions described in the previous section with information-theoretic
techniques. We first define the 2-party problem PartitionComp which is closely related to
Partition, but requires an output with a large representation. As in Partition, Alice and
Bob are respectively given set partitions PA and PB of [n] and at the end of the communica-
tion protocol for PartitionComp, Alice and Bob are required to output the join PA ∨ PB .
From Theorem 16, we get that if there is a t-round, ε-error Monte Carlo algorithm A for
ConnectedComponents in the KT-1 model, then there is an ε-error Monte Carlo protocol
that solves PartitionComp with communication complexity t · n.

Consider the following distribution over inputs of PartitionComp: Alice’s input PA is
chosen uniformly at random from the set of all partitions and Bob’s partition is fixed to be the
finest partition, i.e., PB = (1)(2)(3) . . . (n). With PB fixed in this manner, PA∨PB = PA and
at the end of the protocol Bob learns PA. Since PA is chosen from the uniform distribution,
it’s initial entropy is Θ(n logn) since the support of the distribution has size 2Θ(n logn).
Therefore Bob will learn a lot of information by the end of the protocol. This idea is
formalized in the proof of the following theorem. This proof also has to deal with the
complication that the protocol has constant error probability.

I Theorem 18. For any constant 0 < ε < 1, the round complexity of an ε-error randomized
Monte Carlo algorithm that solves the ConnectedComponents problem in the KT-1
version of the BCC(1) model is Ω(logn).

Proof. Using Yao’s minimax theorem (Theorem 2) we can assume that all protocols are
deterministic but are allowed to make an error on ε-fraction of the input, weighted by µ.
Although appealing to Yao’s theorem is not necessary, it allows us to simplify the exposition.
Let Π denote the transcript of a 2-party protocol that solves PartitionComp and let |Π|
denote the length of the longest transcript produced by Π on any input. We know that

|Π| ≥ H(Π(PA, PB)) ≥ I(Π(PA, PB);PA, PB) = I(PA, PB ; Π(PA, PB)) = I(PA; Π(PA, PB))

where the last equality follows from the fact that PB is fixed according to µ. From the
definition of mutual information, I(PA; Π(PA, PB)) = H(PA)−H(PA|Π(PA, PB)). Alice’s
input PA is uniformly distributed among all Bn = 2Θ(n logn) set partitions according to the
hard distribution µ. Therefore H(PA) = Θ(n logn). Let B be the set of protocol transcripts
that produce an error on the input PA, PB. If Π(PA, PB) /∈ B then H(PA|Π(PA, PB)) = 0
since the output of the protocol is PA ∨ PB = PA. We are guaranteed that Pr[Π(PA, PB) ∈
B] ≤ ε. Therefore, the second term can be bounded as follows.

H(PA|Π(PA, PB)) =
∑
π

Pr[Π(PA, PB) = π]H(PA|Π(PA, PB) = π)

=
∑
π∈B

Pr[Π(PA, PB) = π]H(PA|Π(PA, PB) = π) ≤ εH(PA)

Where the last inequality follows from the fact that H(X|Y) ≤ H(X) for any X,Y . This
implies I(PA; Π(PA, PB)) = Ω(n logn) which proves that any ε-error randomized protocol
that solves the PartitionComp problem has communication complexity of Ω(n logn). This
in turn implies that t = Ω(logn) which proves the theorem. J

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. Fooling views: A

new lower bound technique for distributed computations under congestion. CoRR, 2017.
arXiv:1711.01623.

FSTTCS 2020

http://arxiv.org/abs/1711.01623

32:16 Connectivity Lower Bounds in Broadcast Congested Clique

2 Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A trade-off between
information and communication in broadcast protocols. J. ACM, 37(2):238–256, 1990. doi:
10.1145/77600.77618.

3 Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 315–324, 2015. doi:10.1145/
2767386.2767421.

4 Florent Becker, Antonio Fernández Anta, Ivan Rapaport, and Eric Rémila. The effect of range
and bandwidth on the round complexity in the congested clique model. In Computing and
Combinatorics - 22nd International Conference, COCOON 2016, Ho Chi Minh City, Vietnam,
August 2-4, 2016, Proceedings, pages 182–193, 2016. doi:10.1007/978-3-319-42634-1_15.

5 Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds
for the CONGEST model. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 10:1–10:16, 2017. doi:10.4230/LIPIcs.
DISC.2017.10.

6 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive
massively parallel computation. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’20, page 141–151, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3350755.3400230.

7 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

8 Artur Czumaj and Christian Konrad. Detecting cliques in congest networks. In 32nd
International Symposium on Distributed Computing (DISC 2018). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, July 2018. URL: http://wrap.warwick.ac.uk/106950/.

9 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proceedings of the Forty-third Annual ACM Symposium
on Theory of Computing, STOC ’11, pages 363–372, New York, NY, USA, 2011. ACM.
doi:10.1145/1993636.1993686.

10 Thomas A. Dowling and Richard M. Wilson. Whitney number inequalities for geometric
lattices. Proceedings of the American Mathematical Society, 47(2):504–504, 1975. doi:10.
1090/s0002-9939-1975-0354422-3.

11 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 367–376, New York, NY, USA, 2014. ACM. doi:10.1145/2611462.2611493.

12 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 153–162, New York, NY, USA, 2018. ACM.
doi:10.1145/3210377.3210401.

13 Mohsen Ghaffari and Merav Parter. MST in Log-Star Rounds of Congested Clique. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 19–28, 2016. doi:10.1145/2933057.2933103.

14 András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity of
graph properties. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988. doi:10.1145/62212.62228.

15 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and
Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity and
mst. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC ’15, pages 91–100, New York, NY, USA, 2015. ACM. doi:10.1145/2767386.2767434.

16 Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in
the broadcast congest clique. In 19th International Conference on Principles of Distributed

https://doi.org/10.1145/77600.77618
https://doi.org/10.1145/77600.77618
https://doi.org/10.1145/2767386.2767421
https://doi.org/10.1145/2767386.2767421
https://doi.org/10.1007/978-3-319-42634-1_15
https://doi.org/10.4230/LIPIcs.DISC.2017.10
https://doi.org/10.4230/LIPIcs.DISC.2017.10
https://doi.org/10.1145/3350755.3400230
http://wrap.warwick.ac.uk/106950/
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1090/s0002-9939-1975-0354422-3
https://doi.org/10.1090/s0002-9939-1975-0354422-3
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/2933057.2933103
https://doi.org/10.1145/62212.62228
https://doi.org/10.1145/2767386.2767434

S. Pai and S. V. Pemmaraju 32:17

Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, pages 6:1–6:16, 2015. doi:
10.4230/LIPIcs.OPODIS.2015.6.

17 Joseph Já Já. The vlsi complexity of selected graph problems. J. ACM, 31(2):377–391, March
1984. doi:10.1145/62.70.

18 Tomasz Jurdzinski, Krzysztof Lorys, and Krzysztof Nowicki. Communication complexity in
vertex partition whiteboard model. In Structural Information and Communication Complexity
- 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21,
2018, Revised Selected Papers, pages 264–279, 2018. doi:10.1007/978-3-030-01325-7_24.

19 Tomasz Jurdzinski and Krzysztof Nowicki. Brief announcement: On connectivity in the
broadcast congested clique. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 54:1–54:4, 2017. doi:10.4230/LIPIcs.
DISC.2017.54.

20 Tomasz Jurdziński and Krzysztof Nowicki. Mst in o(1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 2620–2632, Philadelphia, PA, USA, 2018. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=3174304.3175472.

21 E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions of minimum
weight and degree restricted spanning trees in a complete network of processors. SIAM J.
Comput., 16(2):231–236, April 1987. doi:10.1137/0216019.

22 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing,
22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

23 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

24 Pedro Montealegre and Ioan Todinca. Brief announcement: Deterministic graph connectivity
in the broadcast congested clique. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC ’16, pages 245–247, New York, NY, USA, 2016. ACM.
doi:10.1145/2933057.2933066.

25 Pedro Montealegre and Ioan Todinca. Deterministic graph connectivity in the broadcast
congested clique. CoRR, abs/1602.04095, 2016. URL: http://arxiv.org/abs/1602.04095.

26 Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’19, page 1844–1860, USA, 2019. Society for Industrial and
Applied Mathematics.

27 Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in between.
In Stabilization, Safety, and Security of Distributed Systems - 19th International Symposium,
SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings, pages 1–17, 2017. doi:
10.1007/978-3-319-69084-1_1.

28 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

29 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits: (on lower
bounds for modern parallel computation). In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 1–12, 2016. doi:10.1145/2935764.2935799.

30 D.J.A. Welsh. Matroid theory. Dover Publications, 2010. URL: http://www.worldcat.org/
oclc/319491697?referer=xid.

31 A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227, October
1977. doi:10.1109/SFCS.1977.24.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.OPODIS.2015.6
https://doi.org/10.4230/LIPIcs.OPODIS.2015.6
https://doi.org/10.1145/62.70
https://doi.org/10.1007/978-3-030-01325-7_24
https://doi.org/10.4230/LIPIcs.DISC.2017.54
https://doi.org/10.4230/LIPIcs.DISC.2017.54
http://dl.acm.org/citation.cfm?id=3174304.3175472
https://doi.org/10.1137/0216019
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1145/2933057.2933066
http://arxiv.org/abs/1602.04095
https://doi.org/10.1007/978-3-319-69084-1_1
https://doi.org/10.1007/978-3-319-69084-1_1
https://doi.org/10.1145/2935764.2935799
http://www.worldcat.org/oclc/319491697?referer=xid
http://www.worldcat.org/oclc/319491697?referer=xid
https://doi.org/10.1109/SFCS.1977.24

Fully Dynamic Sequential and Distributed
Algorithms for MAX-CUT
Omer Wasim
Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
wasim.o@northeastern.edu

Valerie King
Department of Computer Science, University of Victoria, Canada
val@uvic.ca

Abstract
This paper initiates the study of the MAX-CUT problem in fully dynamic graphs. Given a graph
G = (V, E), we present deterministic fully dynamic distributed and sequential algorithms to maintain
a cut on G which always contains at least |E|2 edges in sublinear update time under edge insertions
and deletions to G. Our results include the following deterministic algorithms: i) an O(∆) worst-case
update time sequential algorithm, where ∆ denotes the maximum degree of G, ii) the first fully
dynamic distributed algorithm taking O(1) rounds and O(∆) total bits of communication per update
in the Massively Parallel Computation (MPC) model with n machines and O(n) words of memory
per machine. The aforementioned algorithms require at most one adjustment, that is, a move of one
vertex from one side of the cut to the other.

We also give the following fully dynamic sequential algorithms: i) a deterministic O(m1/2)
amortized update time algorithm where m denotes the maximum number of edges in G during any
sequence of updates and, ii) a randomized algorithm which takes Õ(n2/3) worst-case update time
when edge updates come from an oblivious adversary.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms

Keywords and phrases data structures, dynamic graph algorithms, approximate maximum cut,
distributed computing, parallel computing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.33

Funding This research was completed while the first author was a MSc candidate at the University
of Victoria. Both authors were funded by a NSERC Discovery Grant.

Acknowledgements The authors thank Hung Le for useful discussions and an anonymous reviewer
for helpful comments.

1 Introduction

A fully dynamic graph algorithm is a data structure to maintain a property of a graph under
an arbitrary sequence of edge insertions and deletions. The goal is to update the graph in
less time than the best static algorithm which computes the property from scratch. A fully
dynamic graph algorithm may incur preprocessing time, after which it is able to answer
queries regarding the maintained property. Research in this area has focused mostly on
dynamic variants of well-known problems such as connectivity [42, 26, 30, 15], minimum
spanning trees [24, 26, 47], minimum cut [45], etc., all of which admit polynomial time exact
algorithms in the static setting.

Following the seminal work of Onak and Rubinfeld [40] in which fully dynamic algorithms
for maintaining constant factor approximations of maximum matching (and vertex cover) were
presented, research in dynamic algorithms has broadened to include approximate versions
of NP-hard problems. Some natural directions arising in this setting include the design

© Omer Wasim and Valerie King;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4746-5211
mailto:wasim.o@northeastern.edu
mailto:val@uvic.ca
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

of dynamic algorithms to maintain an approximate solution in sublinear update time and
the study of approximability-time trade-off. A list of approximate versions of NP-hard
problems investigated in the dynamic setting includes vertex cover [5, 43, 9, 38], set-cover
[22], dominating set [25], graph coloring [8], facility location [21] and maximum independent
set [23, 3, 4].

In this paper, we initiate the study of the MAX-CUT problem in fully dynamic graphs
and pose the question of whether there exist sublinear update time algorithms. Another
parameter we look at is the adjustment cost, which is defined in a dynamic graph problem as
the amount of changes to the maintained solution per update. In the case of MAX-CUT, it
is the number of vertices which move from one subset of the cut to the other.

MAX-CUT is one of the fundamental NP-hard problems [32] which continues to be
widely studied. Some of its concrete applications arise in the design of integrated circuits
[12], communication networks [14] and statistical physics [41]. It also models a standard
2-clustering objective for partitioning a graph such that the number of inter-cluster edges is
maximized.

Let G = (V,E) be an undirected, unweighted graph G = (V,E) with n = |V |,m = |E|.
A cut C is a partition of the vertex set V , and denoted by C = (S, S̄), where S, S̄ ⊆ V and
S̄ = V \S. The cut-set E(S, S̄) of C = (S, S̄) is the set of all edges which have exactly one
endpoint in S. A cut edge of C is an edge contained in the cut-set E(C) = E(S, S̄). A
maximum cut of G is a cut whose cut-set is largest among cut-sets for all possible cuts, i.e.
MAX-CUT(G) = argmaxC=(S,S̄), S⊆V |E(S, S̄)|, where |E(S, S̄)| denotes the number of cut
edges. We say a cut is t-respecting if |E(C)| ≥ t|E|. Note that the cut-set of a t-respecting
cut contains a t fraction of all edges, regardless of the size of the largest cut-set. Let OPT
denote the size of the largest cut-set. A cut is t-approximate if |E(C)| ≥ t · OPT and a
t-approximation algorithm for MAX-CUT yields a t-approximate cut. It follows that a
t-respecting cut is always a t-approximate cut but not vice-versa. This distinction can be
appreciated in the case of K2n, the complete graph on 2n vertices where a maximum cut is
any cut C = (S, S̄) where |S| = n. For large n, the size of the cut-set of a 1

2 -respecting cut
can be nearly twice the size of a 1

2 -approximate cut. Throughout this paper, we let [k] to
denote {1, 2, .., k}, ∆ to be the maximum degree of G and Õ to hide a O(polylog(n)) factor.

The Massively Parallel Computation (MPC) model was introduced by Karloff et al. [31]
and later refined in [20, 6, 1] as a theoretical framework for large scale parallel processing
settings such as those in [48, 17]. There are µ machines with S words of memory each, which
solve a problem by synchronously communicating over an all-to-all communication network
(i.e. a complete network). Initially, input data of size N (which is O(m+ n) in the case of a
graph problem) are distributed across these machines. It is desirable to have µ and S to be
O(N1−ε) for some ε > 0 and the message size is limited to O(S) bits. In each round, every
machine can: i) receive messages of the previous round from other machines ii) do local
polynomially bounded computation (i.e. taking poly(S) space and time) without additional
communication and iii) send messages to other machines which are received in the next round.
The complexity of a MPC algorithm to solve a problem is determined by 3 parameters: i)
the number of rounds of communication, ii) the size of the memory per machine and iii) the
total amount of communication per round. Typically, MPC algorithms for graph problems
use O(n) machines, Õ(n) memory per machine and take Õ(1) rounds of communication.

O. Wasim and V. King 33:3

1.1 Previous Work
Static sequential algorithms for 1

2 -respecting cuts. A simple randomized algorithm, here-
after referred to as Randomized Max-Cut obtains a 1

2 -respecting cut C = (S, S̄) in expectation
by placing each vertex independently in S or S̄ with probability 1

2 . Any edge e = {u, v}
is a cut edge of C with probability 1

2 , implying the result. Randomized Max-Cut can be
derandomized using the method of conditional expectation or pairwise independence.

Johnson’s folklore algorithm [28] hereafter referred to as Greedy Max-Cut, which finds a
1
2 -respecting cut can be viewed as derandomized version of Randomized Max-Cut using the
method of conditional expectation. Given G = (V,E), where V = {v1, v2, ..., vn} it starts
with S = {v1}, S̄ = ∅. Each successive vertex vj , where j ≥ 2 is added to S or S̄ depending
on which contains fewer of its neighbors vi, where i < j. Thus, at least half of all edges of
the form {vj , vi} where i < j are contained in the resulting cut. Since each vertex and edge
is encountered once, the running time of Greedy Max-Cut is O(m+ n).

Randomized Max-Cut can also be derandomized using the idea of pairwise independence
[37]. For a set S, let P(S) denote the power set of S. We first note that one can get a
1
2 -respecting cut (in expectation) which uses only k = dlogne independent random bits. The
idea is to construct a one-to-one function f : V → P([k]) and choosing R to be a uniformly
random subset of [k]. It can be shown that the cut C = (S, S̄) where S = {v| |f(v)∩R| is even}
and S̄ = {v| |f(v)∩R| is odd} is 1

2 -respecting in expectation. Enumerating all the 2k = O(n)
possibilities for R, and taking the cut which maximizes |E(S, S̄)| yields a 1

2 -respecting cut.
For a fixed R, the time to compute C is O(nk) while determining the size of C ′s cut-set
takes O(m) time giving a total time of O(n2 logn+mn). While this algorithm isn’t better
in terms of running time as compared to Greedy Max-Cut, it has the advantage of being
parallelizable.

Static distributed algorithms for 1
2 -respecting cuts. We observe that the algorithm ob-

tained by derandomizing Randomized Max-Cut via pairwise independence can be used
to compute a 1

2 -respecting cut in O(1) rounds in the MPC model of computation with
n machines and Θ(n) memory per machine. We assume there exists a fixed coordinator
machine. Given f , each machine corresponds to a vertex v, and stores f(v) along with
the list of v′s neighbors and R ⊆ [k] which is fixed. In the first round, each machine first
computes the count of the number of edges its corresponding vertex is incident to in the cut
obtained by considering the ith choice of R where i ∈ [n]. Then each machine sends the ith
count to machine i. In the next round all machines send these counts to the coordinator,
which chooses a 1

2 -respecting cut and informs all other machines. Thus, at the end of the
third round, each machine is able to output the position of its corresponding vertex in the
1
2 -respecting cut. The total amount of communication is bounded by O(n2 logn) bits.

A similar adaptation of Greedy Max-Cut in the MPC model with n machines and Θ(n)
memory per machine takes n rounds of communication and O(n∆) total communication.

The only deterministic distributed algorithm to compute a 1
2 -respecting cut that we

are aware of was presented by Censor-Hillel et al. [11] which takes Õ(∆ + log∗ n) rounds
and Ω(∆2) messages in the CONGEST model. Their algorithm can be adapted to the
Congested-Clique setting with the same round and message complexity.

Approximation Algorithms for MAX-CUT. We briefly survey the relevant literature on
approximation algorithms for MAX-CUT in the static setting. Goemans and Williamson
(1994) used a semidefinite programming (SDP) relaxation [19] and randomized rounding
to yield a 0.878-approximation to MAX-CUT. This polynomial-time algorithm runs in

FSTTCS 2020

33:4 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

super-linear time using state-of-the art numerical methods for solving a semidefinite program.
Khot et al. showed that MAX-CUT is hard to approximate better than 0.878 [35] under the
Unique Games Conjecture [34].

Arora and Kale [2] presented a primal dual (SDP-based) (0.878 − ε)-approximation
algorithm which runs in Õ(m) time for d regular graphs with high probability where the
running time depends inversely on ε. Trevisan later presented a 0.53-approximation algorithm
for MAX-CUT utilizing spectral techniques [46] whose analysis was improved to 0.62 by Soto
[44]. In the same paper, Trevisan showed that the primal dual SDP-based algorithm of [2]
can be made to run in Õ(m) time for any degree, via a linear time reduction to reduce the
maximum degree to O(polylog(n)). By using the algorithm of Arora and Kale [2] together
with the rounding scheme of Charikar and Wirth [13], we note that in graphs in which the
size of the optimal cut is (1

2 + ε)|E|, one can get a (1
2 + Ω(ε

log(1/ε)))-respecting cut in Õ(m)
time. However, when ε = O(1

n) (as in the case of K2n) and a 1
2 -respecting cut is desired

(instead of a 1
2 -approximate cut) this can take Ω(mn) time.

Kale and Seshadhri [29] presented a combinatorial algorithm based on the spectral
method [46] which uses random walks to give a (0.5+ε)-approximation with running time
depending on ε. For ε = 0.0155, the running time is Õ(n2). As the running time increases,
the approximation ratio converges to the spectral algorithm of Trevisan [46].

1.2 The Fully Dynamic Model
In this paper, we seek to maintain a 1

2 -respecting cut in sublinear update time and handle
meaningful queries such as determining whether an edge is in the cut-set, the size of vertex
partitions and the cut-set in constant time. We define the Fully Dynamic Max-Cut problem
as follows:

I Problem 1 (Fully Dynamic MAX-CUT). Starting with a graph G = (V,E) on n vertices
and an empty edge set E, maintain a 1

2 -respecting cut C = (S, S̄) for G under edge insertions
and deletions to E such that queries of the following form can be handled in constant time:
i) Is the edge {vi, vj} contained in the cut-set E(S, S̄)? ii) What is the size of the cut-set,
E(C)? iii) What are the sizes of S and S̄?

Our goal is to update C in o(m+ n) time to fare better than running Greedy Max-Cut
after every update and we require that answers to all queries between any two updates must
be consistent with respect to the maintained cut C.

In the fully dynamic MPC model that we consider in this paper, we start with a graph
G = (V,E) on n vertices and m edges. Let N = O(m+ n). We use a coordinator machine
which can be selected in a single round: machines send their ID’s to all other machines and
the coordinator is selected to be the machine with ID larger than all ID’s it receives. There
are a total of n machines each with Θ(n) memory and the goal is to maintain a 1

2 -respecting
cut in O(1) rounds per edge update and O(n) total communication per round. Each machine
corresponds to a vertex of G and stores the edges incident to it. After any update {u, v} to
the graph, the machines corresponding to u and v are informed of the update. In our model,
we insist on algorithms which make few adjustments to the maintained cut. We note that
there are other fully dynamic MPC models that have been studied very recently such as in
[27, 18, 39]. Our dynamic algorithm in the MPC model requires at most one adjustment.
Ensuring this is easier in the case of problems such as maximal matching where only the
neighborhood of endpoints of the updated edge needs to be examined per update. In our
case, this may not always be the case (see Theorem 9).

O. Wasim and V. King 33:5

Attaining a deterministic worst-case update time (i.e. without randomization or amortiza-
tion) is an important objective in the design of dynamic algorithms. For the seminal problem
of dynamic connectivity, deterministic algorithms beating O(

√
n) update time [15, 33] were

only recently discovered after decades. Another example is the maximal independent set
problem for which known deterministic algorithms [3, 23] only achieve a sublinear (in m)
amortized update time and polylogarithmic update time algorithms are yet to be discovered.

An event happens with high probability (w.h.p) if its probability is 1− 1
nc for any c > 0.

For our randomized algorithm, we assume that updates come from an oblivious adversary.
This is a standard assumption used in the design of many randomized dynamic algorithms.
An oblivious adversary is one which cannot choose updates adaptively in response to the
answers returned by queries. Thus, updates to the graph can be assumed to be fixed in
advance. We assume the existence of an oracle which randomly labels each vertex uniquely
using a number in {1, ..., n}, and to which the adversary is oblivious. This is only used in
the algorithm of Theorem 6. We seek to maintain a 1

2 -respecting cut exactly or w.h.p.

1.2.1 Dynamic algorithms from static via lazy recomputation
The following observation allows one to obtain dynamic algorithms by using known static
algorithms as subroutines.

I Observation 2. Given a t-respecting (resp., t-approximation) static algorithm AS for
MAX-CUT which runs in time T (m,n), there exists a fully dynamic algorithm AD which
maintains a (t − ε)-respecting (resp., (t − ε)-approximate) cut for any constant ε > 0 in
O(T (m,n)

εm) worst-case update time.

The proof of Observation 2 is deferred to the Appendix. Using observation 2 gives the
following fully dynamic algorithms. For any constant ε > 0, a (1

2 − ε)-respecting cut can
be maintained in O(1/ε) worst-case update time by using Greedy Max-Cut. Similarly, the
algorithm of [2] yields a dynamic algorithm to maintain a (0.878− ε)-approximate cut (w.h.p)
for a fixed constant ε > 0 in O(polylog(n)) worst case update time. For instances where the
size of the cut-set of the optimal cut contains (1

2 + ε)|E| edges, the rounding algorithm of
[13] can be used together with the algorithm of [2] to get a (1

2 + Ω(ε
log 1/ε))-respecting cut in

O(polylog(n)) worst case update time where ε > 0 is a constant. However, to maintain a
1
2 -respecting cut for graphs in which the optimal cut is (1

2 +O(1
n)) the update time using

this technique can be Ω̃(n) time which is prohibitive. Thus there remains a need to design
dynamic algorithms to maintain a 1

2 -respecting cut exactly in sublinear update time.

1.3 Our Contribution
We present the first fully dynamic algorithms in the sequential and distributed settings which
exactly maintain a 1

2 -respecting cut. Our results are summarized in the following theorems.

I Theorem 3. There exists a deterministic fully dynamic sequential algorithm which main-
tains a 1

2 -respecting cut, requires no more than one adjustment per update and takes O(∆)
worst case update time, where ∆ denotes the maximum degree of the graph after the update.

The algorithm in Theorem 3 is used as a subroutine in all other algorithms in this paper.
The next result gives the first fully dynamic deterministic algorithm in the MPC setting with
n machines and Θ(n) memory per machine to maintain a 1

2 -respecting cut. Our algorithm
takes O(1) rounds, requires no more than one adjustment and uses O(∆) total communication
per round. This significantly improves on the parallel implementation of the static algorithm
to maintain a 1

2 -respecting cut based on the idea of pairwise independence which can take as
much as O(n2 logn) total communication and Ω(n) adjustments.

FSTTCS 2020

33:6 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

I Theorem 4. Given a graph on n vertices and m edges, there exists a deterministic fully
dynamic MPC algorithm on n machines having Θ(n) memory each, which maintains a
1
2 -respecting cut on G and takes O(1) rounds, makes at most one adjustment, and uses O(∆)
bits of communication per update. If we start with an arbitrary graph, the preprocessing for
the algorithm takes O(1) rounds and O(n2 logn) bits of communication.

We note that the worst-case update time of O(∆) can be quite large in the case when
∆ = Ω(n) and thus costly in the dynamic setting. This motivates the design of sublinear
update time algorithms for all regimes of ∆. Our next result is a sublinear (in m) amortized
update time algorithm which is useful for sufficiently sparse graphs having high maximum
degree.

I Theorem 5. There exists a deterministic fully dynamic sequential algorithm which main-
tains a 1

2 -respecting cut, and takes O(m1/2) amortized update time where m is the maximum
number of edges in the graph during any arbitrary sequence of updates.

Our final result is a randomized algorithm which always maintains a 1
2 -respecting cut and

takes sublinear in n worst-case update time when updates come from an oblivious adversary.

I Theorem 6. There exists a randomized fully dynamic sequential algorithm which maintains
a 1

2 -respecting cut and takes Õ(n2/3) worst-case update time with high probability.

We note that for our algorithms in Theorems 5 and 6, the adjustment cost can be Ω(n).

1.4 Our techniques
Our techniques utilize combinatorial and structural properties of cuts in graphs. The key
insight underlying our algorithms is the following: in any cut C which is not 1

2 -respecting,
there exists a vertex which can be moved across the cut to increase the size of C ′s cut-set.
We show that this vertex can be efficiently found, yielding a simple deterministic O(∆) worst
case update time algorithm. This algorithm is not “local” in the sense that endpoints of the
updated edge need not qualify as vertices which can be moved to increase the number of
cut edges (Theorem 9). Such locality is often exploited to obtain dynamic and distributed
algorithms for problems such as vertex cover, independent set and coloring. Despite this,
we show that the algorithm can be used to get a deterministic fully dynamic distributed
algorithm taking O(1) rounds and no more than one adjustment.

Central to our sublinear time algorithms of Theorem 5 and 6 is a cut-combining technique.
This allows us to work on induced subgraphs of G and combine their “locally maintained”
cuts to yield a 1

2 -respecting cut on G. However, the update time depends the complexity of
maintaining 1

2 -respecting cuts on individual subgraphs and the combining step. We work
around this non-trivial dependence. For our algorithm of Theorem 5, we partition vertices
based on their degree and only selectively update data structures. We show that selective
updating is sufficient for our purpose and refine the vertex partition after sufficiently many
updates. This leads to a simple O(m1/2) amortized update time algorithm. To obtain
the algorithm of Theorem 6, we extend the cut-combining idea and apply it to a random
multi-way k-partition of V and obtain a sublinear in n worst case update time algorithm.

1.5 Organization of the paper
In the next section, we present an O(∆) update time algorithm. In Section 3, we present the
dynamic distributed algorithm of Theorem 4. In Section 4, we give the O(m1/2) amortized
update time sequential algorithm of Theorem 5. In section 5, we give the randomized
algorithm of Theorem 6.

O. Wasim and V. King 33:7

2 Preliminaries

Starting with an empty graph G = (V,E) where V = {v1,, vn} is fixed, an update to
G is either an insertion or a deletion of an edge {vi, vj} from E. For a cut C = (S, S̄) let
αC(G) = |E(S,S̄)|

|E| denote the ratio of the sizes of C ′s cut-set and E. The sizes of sets S, S̄ and
the cut-set E(S, S̄) corresponding to the cut C = (S, S̄) are maintained by all algorithms to
facilitate queries in constant time. Let Gk = (V,Ek) be the resulting graph after k updates
have been made to G := G0 and m denote the number of edges in the graph at any given
time. The degree of any vertex v in Gk is denoted by degk(v).

The cut on G0, the empty graph is initialized to (V, ∅). Given a 1
2 -respecting cut

C = (S, S̄), i.e. αC(Gk−1) ≥ 1
2 for some k ≥ 1, there are a few cases to consider when an

edge update {vi, vj} is made to Gk−1. Deletion of a non-cut edge or insertion of a cut edge
never decreases the size of C ′s cut-set. However, C needs to be updated if a cut edge is
deleted, or a non-cut edge is inserted since C may cease to be 1

2 -respecting.

2.1 A crucial observation
We say that a vertex u is switched (with respect to a cut C = (S, S̄)) if u is in S (resp. S̄)
and moved to S̄ (resp. S). We leverage the existence of vertices which can be switched
to increase the size of the cut-set |E(S, S̄)| of C for any cut C which is not 1

2 -respecting.
Thus, if C ceases to be 1

2 -respecting following any update there exists a vertex which can be
switched to restore the 1

2 -respecting property.

I Definition 7 (Switching vertex). For a cut C = (S, S̄), let NS(u) = {v ∈ S|(u, v) ∈ E}
be the neighbors of u in S and NS̄(u) = {v ∈ S̄|(u, v) ∈ E} be the neighbors of u in S̄.
Then u is a switching vertex if one of the following two conditions holds: i) u ∈ S and
|NS(u)| − |NS̄(u)| ≥ 1 and ii) u ∈ S̄ and |NS̄(u)| − |NS(u)| ≥ 1.

I Theorem 8. Let C be a 1
2 -respecting cut w.r.t. Gk−1 i.e., αC(Gk−1) ≥ 1

2 and {vi, vj} be
an update. If αC(Gk) < 1

2 , then there exists a switching vertex u w.r.t. C such that if u is
switched, then αC(Gk) ≥ 1

2 .

Proof. Suppose there does not exist a switching vertex. Then,

αC(Gk) = 1
2|Ek|

∑
u∈V

max{|NS(v)|, |NS̄(v)|} ≥ 1
2|Ek|

∑
v∈V

1
2degk(v) = 1

4|Ek|
2|Ek| =

1
2 .

clearly contradicting our assumption that αC(Gk) < 1
2 . If a switching vertex u is switched,

then the size of C ′s cut set increases by at least 1 so that αC(Gk) ≥ 1
2 . J

Given the count of a vertex’s neighbors in S and S̄, it can be decided whether it is switching
or not. Maintaining these neighbor counts is necessary to determine a vertex to switch.
However, testing all vertices whether they are switching is costly. In the next section we
show how to efficiently maintain a set of switching vertices. The following theorem rules out
the possibility of using end points of the updated edge as switching vertices. A proof can be
found in the Appendix.

I Theorem 9. Given an edge update {vi, vj} to Gk−1 for k ≥ 1, and a 1
2 -respecting cut

Ck−1 maintained on Gk−1, a switching vertex with respect to Ck−1 need not always be one
of vi, vj.

FSTTCS 2020

33:8 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

2.2 An O(∆) worst-case update time algorithm

In this section, we give a simple fully dynamic algorithm with worst case update time O(∆).

Data Structures. For each vertex u ∈ V and a cut C = (S, S̄), we maintain the following:
i) NS(u): a list of neighbors of u in S, and its size |NS(u)|, ii) NS̄(u): a list of neighbors of
u in S̄ and its size |NS̄(u)| and, iii) flag(u): a bit which is 1 if u ∈ S and -1 if u ∈ S̄.

I Definition 10 (Gain of a vertex). The gain of a vertex u with respect to a cut C = (S, S̄)
and denoted by G(u) is given by G(u) = flag(u)(|NS(u)| − |NS̄(u)|).

The gain of a vertex u measures the change in the number of cut edges of C, if u is switched.
Note that a vertex is switching if the gain is positive, and non-switching otherwise. The
following (global) data structures are also maintained:
a. A doubly linked list L, which stores nodes corresponding to switching vertices.
b. An array P where P [i] stores the gain of vi and a pointer. The pointer points to the node

in L corresponding to vi if G(vi) > 0 and is NULL otherwise.

The head of L, denoted by L.head is NULL if no switching vertex exists. Each node of L
corresponding to a switching vertex vi stores i as its value.

Algorithm. The algorithm begins with G0, the empty graph and C = (S, S̄) = (V, ∅) on
G0. It maintains a 1

2 -respecting cut on Gk−1 for any k ≥ 1 as follows: when an edge
update {vi, vj} to Gk−1 arrives, NS(vi), NS̄(vi), NS(vj), NS̄(vj) are updated (including their
sizes) along with P [i] and P [j]. If either of vi, vj become switching or non-switching, L is
appropriately modified. C is checked if it is 1

2 -respecting. If C ceases to be 1
2 -respecting then

a switching vertex vs is found by accessing the node pointed to by L.head which stores the
value s. This node is removed from L, vs is switched and P [s] is updated. Data structures of
vt and P [t] of all neighbors vt of vs are modified to reflect v′ss switch. Thereafter, depending
on whether or not G(vt) > 0 in the updated cut, the node corresponding to vt in L is inserted
or removed. The pseudo code of the algorithm is as follows.

Algorithm 1 Delta-Dynamic Max-Cut(Gk−1, {vi, vj}, C = (S, S̄)).

1: Update NS(vi), NS(vj), NS̄(vj), NS̄(vj), αC(Gk), P [i], P [j].
2: for vt ∈ {vi, vj} do
3: Add(remove) the node corresponding to vt in L if vt becomes switching(non-switching).
4: end for
5: if αC(Gk) < 1

2 then
6: vs ← L.head. Remove vs from L.
7: Switch vs and update C, flag(vs), NS(vs), NS̄(vs), P [s].
8: for vt ∈ NS(vs) ∪NS̄(vs) do
9: Update NS(vt) and NS̄(vt) as appropriate.

10: Add(remove) the node corresponding to vt in L if vt becomes switching(non-
switching) and update P [t].

11: end for
12: end if
13: return vs.

O. Wasim and V. King 33:9

Running Time. Updates to data structures of vi, vj and P [i], P [j] take constant time.
Inserting or removing a node from L also takes constant time. Switching vs in the case
when C is no longer 1

2 -respecting takes time proportional to updating all its neighbors’ data
structures, their corresponding entries in P and their corresponding nodes in L. This takes
O(∆) time. Theorem 3 follows.

3 A fully dynamic distributed algorithm

In this section, we present the algorithm of Theorem 4. Dynamic distributed algorithms
have been well studied in the past [36, 16], and techniques to design sequential fully dynamic
algorithms are often applicable in designing their distributed counterparts. As an example,
for the maximal independent set problem the distributed implementation of the dynamic
sequential algorithm of Assadi et al.[3] improves on the dynamic distributed algorithm of
Censor-Hillel et al. [10]. This is often easier for problems in which only the neighborhood
of vertices incident to an update needs to be examined to restore the maintained property.
For MAX-CUT, it may not always be the case that endpoints of the update edge can be
switched to maintain a 1

2 -approximate cut by Theorem 9. Nevertheless, we show how to use
the O(∆) update time algorithm to get an efficient fully dynamic distributed algorithm in
the MPC model.

In the model we consider, there are n machines M1, ...,Mn each corresponding to vertices
v1, ..., vn respectively. Given a graph G = (V,E) where n = |V | and m = |E|, each machine
Mi initially stores a list of neighbors of vi in addition to storing f(v) and R ⊆ [k] to run the
static distributed algorithm obtained by pairwise independence (see Section 1.1) and obtain
an initial 1

2 -respecting cut C = (S, S̄) on G. For any i, j ∈ [n] we say that machine Mi is
a neighbor of Mj if (vi, vj) ∈ E. We let Mn be the coordinator machine which stores the
position of any vertex v ∈ V in C, i.e. whether v ∈ S or S̄. Given the initial cut C, each
machine Mi maintains whether vi is a switching vertex w.r.t. C or not. This can be done in
a single round and O(m) total communication–every machine simply sends the position of
its corresponding vertex in C to all its neighbors. We also ensure that the coordinator Mn

maintains the list of all switching vertices w.r.t C, the total number of edges in the graph
and the size of C ′s cut-set. After this initial preprocessing which takes O(1) rounds and
O(n2 logn) bits of communication, the information f(v) and R stored by all machines can
be discarded.

We now describe the update algorithm. Whenever an update {vi, vj} is made to G,
machines Mi and Mj are informed and thereafter, they update their list of neighbors. Both
Mi and Mj inform the coordinator Mn of the update in addition to informing whether vi
and vj become switching w.r.t the maintained cut C. This allows Mn to update m, size of
the cut-set C and the set of switching vertices. If C ceases to be 1

2 -respecting, Mn selects
an arbitrary switching vertex, vs and informs Ms. Thereafter, Ms updates its local data
structures to reflect the switch and informs all its neighbors to reflect the switch. If any
neighbor vk of vs becomes a switching vertex w.r.t the updated cut C, Mk informs the
coordinator Mn, after which Mn updates the list of switching vertices.

This takes O(1) rounds, O(∆) total communication per round and at most one adjustment
to C after any edge update. Theorem 4 follows.

FSTTCS 2020

33:10 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

4 Achieving sublinear (in m) update time

In this section, we present an O(m1/2) amortized update algorithm which improves on the
O(∆) update time algorithm for sufficiently sparse graphs having high maximum degree.
The high level ideas involve: i) partitioning the graph G into induced subgraphs G1 and G2
on Vlow and Vhigh respectively where Vlow and Vhigh are sets of low and high degree vertices
respectively, ii) combining 1

2 -respecting cuts C1 and C2 on G1 and G2 respectively which are
maintained using the algorithm of Theorem 3 and, iii) selectively updating data structures.
The latter idea is crucial to reduce the update time. When a high degree vertex v ∈ Vhigh
switches w.r.t. the cut C2, data structures of only its neighbors in Vhigh are updated leading
to stale information in data structures of its neighbors in Vlow. A similar idea was used in
the fully dynamic algorithm for the maximal independent set problem [3]. We show that
lazy updating of low degree vertex data structures is sufficient for our purpose and re-build
G1 and G2 after sufficiently many updates which leads to O(m1/2) amortized update time.
Given 1

2 -respecting cuts on any vertex disjoint induced subgraphs of G, we first show that
they can be combined to give a 1

2 -respecting on G.

I Theorem 11 (Cut combining). Let G = (V,E) be any graph and C1 = (S, S̄) and
C2 = (T, T̄) be 1

2 -respecting cuts with respect to the vertex disjoint induced subgraphs
G1 = (V1, E1), G2 = (V2, E2) of G such that S ∪ S̄ = V1, T ∪ T̄ = V2 and V1 ∪ V2 = V . Then
one of the following is a 1

2 -respecting cut C of G:
i) (S ∪ T, S̄ ∪ T̄)
ii) (S ∪ T̄ , S̄ ∪ T).
A formal proof of Theorem 11 is omitted for the sake of brevity but it follows by noting

that cut-edges of C1 and C2 remain cut edges in both cuts considered in i) and ii), and the
cut-set of one of the cuts in i) and ii) must contain half of the remaining edges.

Data Structures. For any U,W ⊆ V , let E(U,W) be the set of edges having one endpoint
in U and the other in W . To determine C, the following edge counts are maintained:
|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|. If |E(S, T̄)| + |E(S̄, T)| ≥ |E(S, T)| + |E(S̄, T̄)|,
then C = (S ∪ T, S̄ ∪ T̄), else we take C = (S ∪ T̄ , S̄ ∪ T). Let NU (v) denote the list of
neighbors of v in U ⊆ V . In addition to data structures required by the algorithm of Theorem
3, every vertex v ∈ Vlow maintains neighbor counts NT (v), NT̄ (v) and every vertex v ∈ Vhigh
maintains neighbor counts NS(v), NS̄(v). For any subset U,W ⊆ V s.t. U ∈ {S, S̄} and
W ∈ {T, T̄}, note that the edge count |E(U,W)| =

∑
u∈U |NW (u)|.

The main challenge is to correctly maintain these edge counts without updating all the
neighbors of a high degree vertex which switches w.r.t C2. These edge counts change if i) an
edge update (vi, vj) is encountered and/or ii) a vertex switches w.r.t. either C1 or C2. Our
update algorithm switches at most a single vertex w.r.t C1 or C2 and maintains neighbor
counts of high degree vertices accurately at any given time. Combined with recomputing
neighbor counts of low degree vertices only when they switch, this is sufficient to maintain
edge counts correctly at any given time.

Algorithm. The algorithm consists of phases. The kth phase for k ≥ 1 begins with the graph
G containing mk edges and 1

2 -respecting cuts C1 and C2 on the induced subgraphs G1 and
G2 respectively. Here, G1 and G2 are induced subgraphs on Vlow = {v ∈ V |deg(v) ≤ m1/2

k }
and Vhigh = V \Vlow respectively. We assume that the first phase starts with a single edge, i.e.
m1 = 1. The kth phase consists of m1/2

k updates after which a new phase corresponding to

O. Wasim and V. King 33:11

the new value of mk begins. Thereafter, all data structures are reinitialized and 1
2 -respecting

cuts are computed for G1 and G2 (under the new value of mk). The total time taken to
reinitialize a phase is O(mk), leading to O(m1/2

k) amortized update time.
Note that the number of high degree vertices for any phase beginning with mk edges is

bounded by |Vhigh| = O(mk)/Ω(m1/2
k) = O(m1/2

k). Let {vi, vj} be an edge update during
the kth phase for k ≥ 1. Then,
1. if vi ∈ Vlow, vj ∈ Vhigh: One of the lists NT (vi), NT̄ (vi) and one of NS(vj), NS̄(vj) is

updated. Additionally, one of the edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|
depending on the position of vi and vj in C1 and C2 respectively, is updated.

2. if vi, vj ∈ Vlow: the algorithm of Theorem 3 is used to restore C1. Let u be a vertex which
is switched w.r.t C1. All data structures of high degree neighbors of u ∈ NT (u) ∪NT̄ (u)
are updated. Moreover, u recomputes the lists of its high degree neighbors NT (u), NT̄ (u).
The edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)| are updated.

3. if vi, vj ∈ Vhigh: the algorithm of Theorem 3 is used to restore C2. The edge counts
|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)| are updated.

The pseudo code of the update algorithm is as follows.

Algorithm 2 Sublinear Max-Cut ({vi, vj}, C1 = (S, S̄), C2 = (T, T̄)).

1: if vi ∈ Vlow and vj ∈ Vhigh then
2: Update |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|, NT (vi), NT̄ (vi), NS(vj), NS̄(vj).
3: else
4: if vi, vj ∈ Vlow then
5: u← Delta-Dynamic Max-Cut(G1, {vi, vj}, C1).
6: for w ∈ NT (u) ∪NT̄ (u) do
7: Update NS(w), NS̄(w) to reflect the new position of u in the cut (S, S̄).
8: end for
9: Update NT (u), NT̄ (u), |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|.

10: end if
11: if vi, vj ∈ Vhigh then
12: u← Delta-Dynamic Max-Cut(G2, {vi, vj}, C2).
13: Update |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|.
14: end if
15: end if

Running Time. If an update {vi, vj} is such that vi ∈ Vlow, vj ∈ Vhigh, the update time is
O(1).

If vi, vj ∈ Vlow the call to the O(∆) update time algorithm takes time O(m1/2
k) since any

vertex in Vlow has degree at most 2m1/2
k = O(m1/2

k) throughout the phase, by definition.
Updating the list of neighbors of the switched vertex u, and updating the data structures of
u′s neighbors takes O(m1/2

k) time. Updating edge counts takes constant time since they are
incremented or decremented by constants which can be determined from the size of neighbor
lists of u.

If vi, vj ∈ Vhigh: the call to the O(∆) update time algorithm takes time O(m1/2
k) since

|Vhigh| = O(m1/2
k). As in the second case, updating edge counts takes constant time.

Thus, the time taken to handle an edge update during a phase beginning with mk edges
is O(m1/2

k). Since the amortized cost of re-initialization is O(m1/2
k), this gives an O(m1/2)

amortized update time algorithm where m denotes the maximum number of edges in G

during an arbitrary sequence sequence of updates. Theorem 5 follows. A proof of correctness
can be found in the Appendix.

FSTTCS 2020

33:12 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

5 Achieving sublinear (in n) worst case update time

In this section we give a randomized algorithm which exactly maintains a 1
2 -respecting cut

and takes Õ(n2/3) worst case update time w.h.p. We obtain the result by first designing an
algorithm with O(n2/3) expected worst-case update time. Then, we apply the probability
amplification result in [7] which gives a Õ(n2/3) worst-case update time algorithm w.h.p.

The high level idea of our algorithm is to use cut-combining idea on k vertex disjoint
subgraphs G1, G2, ..., Gk induced by a random k-partition of V denoted by (V1, V2, ..., Vk).
The random partition is constructed using the oracle described in Section 1.2 such that⋃k
i=1 Vi = V and |V1| = |V2| = ... = |Vk−1| = dn/ke, |Vk| = n − (k − 1)dn/ke. On each

subgraph Gi induced by Vi, a 1
2 respecting cut Ci = (Si, S̄i) (where S̄i = Vi\Si) is dynamically

maintained using the algorithm of Theorem 3. We now describe the data structures and the
update algorithm.

Data structures. In addition to data structures required by theO(∆)-update time algorithm,
we maintain: i) For each vertex v ∈ V , lists of its neighbors in each Si, (denoted by NSi(v))
and S̄i (denoted by NS̄i

(v)) for all 1 ≤ i ≤ k and, ii) For all 1 ≤ i, j ≤ k, the edge counts
|E(Si, Sj)|, |E(Si, S̄j)| |E(S̄i, Sj)|, |E(S̄i, S̄j)| for a total of

(2k
2
)

= O(k2) counts. The edge
counts can be maintained using the size of neighbor lists maintained for each vertex.

Algorithm.
Cut combining: We first describe how to combine 1

2 -approximate cuts Ci on Gi for 1 ≤ i ≤ k
to get a 1

2 -approximate cut C, on G. Initially, C = (S1, S̄1). Whenever considering cut
Ci = (Si, S̄i) for 2 ≤ i ≤ k to combine with C, the edge counts |E(Si, Sj)|, |E(Si, S̄j)|,
|E(S̄i, Sj)|, |E(S̄i, S̄j)|, for 1 ≤ j ≤ i − 1 are used to compute the edge counts |E(S, Si)|,
|E(S, S̄i)|, |E(S̄, Si)|, |E(S̄, S̄i)|. Depending on the combination which maximizes |E(S, S̄)|,
either Si (resp. S̄i) is added to S (resp. S̄) or Si (resp. S̄i) is added to S̄ (resp. S).
Computing the edge counts takes O(k) time, yielding O(k2) time to compute C.
Update algorithm: Let {vi, vj} be an edge update. Then,
1. if vi ∈ Vp and vj ∈ Vq s.t. p 6= q: Only the lists NSq (vi), NS̄q

(vi), NSp(vj), NS̄p
(vj) and

edge counts |E(Sp, Sq)|, |E(Sp, S̄q)|, |E(S̄p, Sq)|, |E(S̄p, S̄q)| are updated which takes O(1)
time.

2. if vi, vj ∈ Vp for some p: the cut Cp is updated using the O(∆) update time algorithm.
Let u be the switched vertex w.r.t Cp. The lists NSp

(w), NS̄p
(w) of all neighbors w of

u are updated to reflect u′s switch. For all 1 ≤ q ≤ k such that NSq (u) ∪NS̄q
(u) 6= ∅,

edge counts of the form |E(Sp, Sq)|, |E(Sp, S̄q)|, |E(S̄p, Sq)|, |E(S̄p, S̄q)| are also updated.
This can be done by using the values of |NSq

(u)| and |NS̄q
(u)|.

Following this, the cuts C1, ..., Ck are combined to yield C. The pseudo code of the update
algorithm is as follows.
Note that the only information required to determine how to combine the cut (St, S̄t) with
(S, S̄) in each iteration of the for loop is the position of all Si, S̄i for all i ≤ t− 1 in (S, S̄).
Thus, computing the edge counts |E(S ∪ St, S̄ ∪ S̄t)|, |E(S ∪ S̄t, S̄ ∪ St)| can be done in O(k)
time, and lines 14 and 16 of Algorithm 3 do not need to be explicitly implemented.

Running Time. For the case when vi ∈ Vp and vj ∈ Vq s.t. p 6= q updating the edge counts
takes constant time. However, the combining cost is incurred. This is because a single update
can possibly cause the cuts to combine differently in order to maintain a 1

2 -respecting cut
on G.

O. Wasim and V. King 33:13

Algorithm 3 Randomized Sublinear MAX-CUT ({vi, vj}, G1, ..., Gk, C1,, Ck).

1: if vi ∈ Vp, vj ∈ Vq s.t. p 6= q then
2: Update NSq (vi), NS̄q

(vi), NSp(vj), NS̄p
(vj).

3: Update |E(Sp, Sq)|, |E(S̄p, Sq)|, |E(Sp, S̄q)|, |E(S̄p, S̄q)| appropriately.
4: else
5: u← Delta-Dynamic Max-Cut(Gp, {vi, vj}, Cp).
6: for all neighbors v of u where v ∈ Vr for any 1 ≤ r ≤ k do
7: Update NSr (u), NS̄r

(u), NSp(v), NS̄p
(v).

8: Update |E(Sp, Sr)|, |E(S̄p, Sr)|, |E(Sp, S̄r)|, |E(S̄p, S̄r)| appropriately.
9: end for

10: end if
11: S = S1, S̄ = S̄1.
12: for t = 2,, k do
13: if |E(S ∪ St, S̄ ∪ S̄t)| ≥ |E(S ∪ S̄t, S̄ ∪ St)| then
14: S = S ∪ St, S̄ = S̄ ∪ S̄t.
15: else
16: S = S ∪ S̄t, S̄ = S̄ ∪ St.
17: end if
18: end for

For the case when vi, vj ∈ Vp for some p, the algorithm of Theorem 3 takes O(n/k) time.
Let u be the switched vertex w.r.t. Cp. Updating the neighbor lists of all neighbors of u
takes O(∆) time. Thus, the update time in this case is O(∆ + n

k + k2) = O(∆ + k2).

I Lemma 12. The running time of the update algorithm is O(∆
k + k2). With k = Θ(n1/3),

this yields O(n2/3) expected worst-case update time.

Proof. Let {vi, vj} be an edge update. The probability that this update is of the second
type, i.e. vi, vj ∈ Vp for some p ∈ [k] is at most 1/k. The expected update time, denoted by
E[T (n, k)] can be written as,

E[T (n, k)] = Pr[vi, vj ∈ Vp]O(∆ + k2) + Pr[vi ∈ Vp, vj ∈ Vq, p 6= q]O(k2)
= Pr[vi, vj ∈ Vp]O(∆ + k2) + (1− Pr[vi, vj ∈ Vp,])O(k2)

= 1
k
O(∆) +O(k2)

= O(∆
k

+ k2)

= O(n
k

+ k2).

The value of k which minimizes E[T (n, k)] is Θ(n1/3) yielding O(n2/3) expected worst case
update time. J

Bernstein et al. [7] give a general technique to convert a fully dynamic data structure
with expected worst-case update time to one with a worst-case update time with high
probability. See [7] for technical details. By using their technique as a black-box, we convert
our randomized algorithm described in this section taking O(n2/3) expected worst-case
update time to one taking O(n2/3 log2(n)) = Õ(n2/3) update time with high probability.
Theorem 6 follows.

FSTTCS 2020

33:14 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

6 Conclusion

The following open problems arise from our work. First, it would be interesting to improve
on the algorithm in Theorem 5 to get a better update time in the worst-case. Second, the
Algorithm in Theorem 6 works only for an oblivious adversary, and it would be interesting
to design a randomized worst-case algorithm with better update time which works against
an adaptive adversary.

We believe that ideas from our fully dynamic distributed MPC algorithm may be useful
in other models such as the ones considered in [27, 39]. We observe that our dynamic
algorithm for MPC can be implemented in the Congested-Clique model. Moreover, we
believe that a dynamic MPC algorithm to maintain a 1

2 -respecting cut using only sublinear
(in n) memory per machine (in contrast to Ω(n) memory as in the algorithm of Theorem
4) may be possible without a blow up in the round, adjustment or message complexity.
A natural open question is whether there exists a deterministic fully dynamic algorithm
with o(∆) round complexity and O(1) adjustment and message complexity to preserve a
1
2 -respecting cut in the CONGEST model. This may necessitate new techniques and lead to
interesting connections to other fundamental problems studied in the distributed computing
and dynamic algorithms literature.

References

1 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the Forty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, page 574–583, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2591796.2591805.

2 Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. J. ACM, 63(2):12:1–12:35, May 2016. doi:10.1145/2837020.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 815–826, New York, NY, USA, 2018.
ACM. doi:10.1145/3188745.3188922.

4 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 1919–1936, Philadelphia,
PA, USA, 2019. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3310435.3310551.

5 S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in o (log n) update time.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 383–392,
October 2011. doi:10.1109/FOCS.2011.89.

6 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query pro-
cessing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’13, page 273–284, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2463664.2465224.

7 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for
dynamic spanner and dynamic maximal matching. In Timothy M. Chan, editor, Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1899–1918. SIAM, 2019. doi:10.1137/1.
9781611975482.115.

8 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-

https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2837020
https://doi.org/10.1145/3188745.3188922
http://dl.acm.org/citation.cfm?id=3310435.3310551
http://dl.acm.org/citation.cfm?id=3310435.3310551
https://doi.org/10.1109/FOCS.2011.89
https://doi.org/10.1145/2463664.2465224
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611975482.115

O. Wasim and V. King 33:15

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.1.

9 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via the
primal-dual method. Inf. Comput., 261(Part):219–239, 2018. doi:10.1016/j.ic.2018.02.005.

10 Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin. Optimal dynamic distributed mis.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
’16, page 217–226, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2933057.2933083.

11 Keren Censor-Hillel, Rina Levy, and Hadas Shachnai. Fast distributed approximation for
max-cut. In Antonio Fernández Anta, Tomasz Jurdzinski, Miguel A. Mosteiro, and Yanyong
Zhang, editors, Algorithms for Sensor Systems - 13th International Symposium on Algorithms
and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria,
September 7-8, 2017, Revised Selected Papers, volume 10718 of Lecture Notes in Computer
Science, pages 41–56. Springer, 2017. doi:10.1007/978-3-319-72751-6_4.

12 K. C. Chang and D. H. . Du. Efficient algorithms for layer assignment problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(1):67–78, 1987.

13 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending grothen-
dieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’04, page 54–60, USA, 2004. IEEE Computer Society. doi:
10.1109/FOCS.2004.39.

14 Kwan-Wu Chin, Sieteng Soh, and Chen Meng. Novel scheduling algorithms for concurrent
transmit/receive wireless mesh networks. Computer Networks, 56:1200–1214, March 2012.
doi:10.1016/j.comnet.2011.12.001.

15 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond, 2019. arXiv:1910.08025.

16 Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Distributed computation
in dynamic networks via random walks. Theor. Comput. Sci., 581(C):45–66, May 2015.
doi:10.1016/j.tcs.2015.02.044.

17 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

18 Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and
Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower bounds. In Proceedings
of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page
1300–1319, USA, 2020. Society for Industrial and Applied Mathematics.

19 Michel X. Goemans and David P. Williamson. .879-approximation algorithms for MAX
CUT and MAX 2sat. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 422–431, 1994.
doi:10.1145/195058.195216.

20 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Proceedings of the 22nd International Conference on Algorithms
and Computation, ISAAC’11, page 374–383, Berlin, Heidelberg, 2011. Springer-Verlag. doi:
10.1007/978-3-642-25591-5_39.

21 Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski. A tree structure for dynamic
facility location. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual
European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume
112 of LIPIcs, pages 39:1–39:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.39.

22 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

FSTTCS 2020

https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2933057.2933083
https://doi.org/10.1145/2933057.2933083
https://doi.org/10.1007/978-3-319-72751-6_4
https://doi.org/10.1109/FOCS.2004.39
https://doi.org/10.1109/FOCS.2004.39
https://doi.org/10.1016/j.comnet.2011.12.001
http://arxiv.org/abs/1910.08025
https://doi.org/10.1016/j.tcs.2015.02.044
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/195058.195216
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.4230/LIPIcs.ESA.2018.39

33:16 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 537–550. ACM,
2017. doi:10.1145/3055399.3055493.

23 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems. CoRR, abs/1804.01823, 2018. arXiv:1804.01823.

24 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

25 Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. Dominating sets
and connected dominating sets in dynamic graphs. In STACS, 2019.

26 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48:723–760, July 2001. doi:10.1145/276698.276715.

27 Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In Proceedings of the 31st ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, page 49–58, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3323165.3323202.

28 David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci., 9(3):256–278, December 1974. doi:10.1016/S0022-0000(74)80044-9.

29 Satyen Kale and C. Seshadhri. Combinatorial approximation algorithms for maxcut using
random walks. In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011,
Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 367–388. Tsinghua
University Press, 2011. URL: http://conference.iiis.tsinghua.edu.cn/ICS2011/content/
papers/20.html.

30 Bruce Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic
worst case time. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1131–1142, January 2013. doi:10.1137/1.9781611973105.81.

31 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’10, page 938–948, USA, 2010. Society for Industrial and Applied Mathematics.

32 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming, 1972.

33 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Deterministic
worst case dynamic connectivity: Simpler and faster. CoRR, abs/1507.05944, 2015. arXiv:
1507.05944.

34 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 146–154, 2004.
doi:10.1109/FOCS.2004.49.

35 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM J. Comput., 37(1):319–357, April 2007.
doi:10.1137/S0097539705447372.

36 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, page 513–522, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1806689.1806760.

37 M. Luby. Removing randomness in parallel computation without a processor penalty. In
[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages
162–173, 1988.

38 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016. doi:10.1145/2700206.

39 Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
massively parallel computation model, 2020. arXiv:2002.07800.

https://doi.org/10.1145/3055399.3055493
http://arxiv.org/abs/1804.01823
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1016/S0022-0000(74)80044-9
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/20.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/20.html
https://doi.org/10.1137/1.9781611973105.81
http://arxiv.org/abs/1507.05944
http://arxiv.org/abs/1507.05944
https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1145/2700206
http://arxiv.org/abs/2002.07800

O. Wasim and V. King 33:17

40 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464.
ACM, 2010. doi:10.1145/1806689.1806753.

41 M. Preissmann and Andras Sebo. Optimal cuts in graphs and statistical mechanics. Mathem-
atical and Computer Modelling - MATH COMPUT MODELLING, 26:1–11, October 1997.
doi:10.1016/S0895-7177(97)00195-7.

42 Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM, 28(1):1–4,
January 1981. doi:10.1145/322234.322235.

43 Shay Solomon. Fully dynamic maximal matching in constant update time. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 325–334, 2016.

44 José A. Soto. Improved analysis of a max-cut algorithm based on spectral partitioning. SIAM
J. Discret. Math., 29(1):259–268, 2015. doi:10.1137/14099098X.

45 Mikkel Thorup. Fully-dynamic min-cut. In Proceedings on 33rd Annual ACM Symposium
on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 224–230, 2001.
doi:10.1145/380752.380804.

46 L. Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on Computing, 41(6):1769–
1786, 2012. doi:10.1137/090773714.

47 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time, 2016. arXiv:1611.02864.

48 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10, page 10, USA, 2010. USENIX Association.

7 Appendix

7.1 Proof of Observation 2
Proof. The high level idea is to partition the update sequence into phases consisting of
O(εm) updates and spreading the time to recompute a t-respecting (resp., t-approximate)
cut using AS over any phase. Let Pi denote phase i, GPi

the graph at the beginning of
phase i and mi the number of edges in GPi . We let mi = m so that phases Pi+1 and Pi+2
begin after εm

2 and εm updates have been made to GPi
, respectively. Algorithm AS is

used to compute a t-respecting (resp., t-approximate) cut CPi on GPi by spending T (m,n)
time spread over updates between phase Pi and Pi+1, and CPi

is used to answer all queries
between phase Pi+1 and Pi+2. This takes 2T (m,n)

εm = O(T (m,n)
εm) worst-case update time where

CPi
is a (t − ε)-respecting (resp., t-approximate) cut until phase Pi+2 begins. Moreover,

after Pi+1 begins, AS is used to compute a t-respecting (resp., t-approximate) cut CPi+1

on GPi+1 by spending T (mi+1, n) time spread over updates between phase Pi+1 and Pi+2,
yielding a worst-case update time of 2T (mi+1,n)

εm ≤ 2T (m(1+ε/2),n)
εm = O(T (m,n)

εm). Thus, the
total worst-case update time is bounded by O(T (m,n)

εm). J

7.2 Endpoints of an updated edge may not be switching
I Theorem 9. Given an edge update {vi, vj} to Gk−1 for k ≥ 1, and a 1

2 -respecting cut
Ck−1 maintained on Gk−1, a switching vertex with respect to Ck−1 need not always be one
of vi, vj.

Proof. We refer to Figures 7.1 and 7.2 for the sake of illustration. Let V = {v1, ..., v9}
be the set of vertices such that S = V, S̄ = ∅. Consider the following sequence of edge in-
sertions {v1, v6}, {v1, v7}, {v2, v7}, {v3, v7}, {v3, v8}, {v3, v9}, {v4, v9}, {v5, v8} which leads to

FSTTCS 2020

https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1016/S0895-7177(97)00195-7
https://doi.org/10.1145/322234.322235
https://doi.org/10.1137/14099098X
https://doi.org/10.1145/380752.380804
https://doi.org/10.1137/090773714
http://arxiv.org/abs/1611.02864

33:18 Fully Dynamic Sequential and Distributed Algorithms for MAX-CUT

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 7.1 S = {v1, .., v5}, S̄ = {v6, .., v9}.
After {v3, v5} is added, v3 switches.

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 7.2 After v3 switches and edges
{v1, v2}, {v1, v4}, {v1, v5} are added, none of
v1, v2, v4, v5 are switching, yet the cut ceases
to be 1

2 respecting.

v6, v7, v8, v9 moving to S̄ in that order, as a result. Next, consider the following non-cut edge in-
sertions in no particular order: {v1, v3}, {v2, v3}, {v3, v4}, {v6, v7}, {v7, v8}, {v8, v9}, {v7, v9}.
The latter set of edge insertions does not make any vertex switching, After the edge {v3, v5} is
added v3 switches to S̄. Now consider the insertion of non-cut edges {v1, v2}, {v1, v4}, {v1, v5}
so that none of their endpoints namely v1, v2, v4, v5 become switching. But, (S, S̄) is no
longer 1

2 -respecting. J

7.3 On the sublinear (in m) update time algorithm

7.3.1 Proof of correctness
I Lemma 13. Algorithm 2 correctly maintains the edge counts |E(S, T)|, |E(S, T̄)|, |E(S̄, T)|,
|E(S̄, T̄)| where C1 = (S, S̄), C2 = (T, T̄).

Proof. Assume that the edge counts (|E(S, T)|, |E(S, T̄)|, |E(S̄, T)|, |E(S̄, T̄)|) are accurate
before Algorithm 2 is executed to handle the edge update {vi, vj}. For vi ∈ Vlow and
vj ∈ Vhigh let X ∈ {S, S̄}, Y ∈ {T, T̄} be such that vi ∈ X, vj ∈ Y . If {vi, vj} is an edge
insertion, then vi is added to NX(vj), vj to NY (vi) and |E(X,Y)| is increased by 1. On the
other hand, if {vi, vj} is an edge deletion, vi is removed from NX(vj), vj from NY (vi) and
|E(X,Y)| is decremented by 1. Thus, the edge counts are correctly updated in this case.

In the case when vi, vj ∈ Vlow, Algorithm 1 is called in order to handle the edge update
with respect to the induced subgraph G1. Let u ∈ Vlow be a switched vertex and let
X, X̄ ∈ {S, S̄} be such that u ∈ X moves to X̄ after the switch. Now, u may no longer
have an accurate count of its neighbors in T and T̄ since when high degree neighbors of u
possibly switch in previous updates, the data structures of u namely NT (u), NT̄ (u) are not
modified. Thus, lists NT (u), NT̄ (u) are updated and for all high degree neighbors w of u,
NX(w), NX̄(w) are also updated to reflect u’s switch. Since u switched from X to X̄, the
sizes of lists NX(w), NX̄(w) are modified appropriately. For all neighbors w ∈ Vlow of u,
their data structures due to u′s switch to X̄ are already updated in the call to Algorithm 1.
Since u′s neighbor lists are up-to-date, the counts |E(X,T)|, |E(X, T̄)|, |E(X̄, T)|, |E(X̄, T̄)|
are correctly updated.

O. Wasim and V. King 33:19

For the case when vi, vj ∈ Vhigh, Algorithm 1 is called in order to handle the edge update
with respect to the induced subgraph G2. Let u ∈ Vhigh be a vertex which switches and let
Y, Ȳ ∈ {T, T̄} be such that u ∈ Y before the update and switches to Ȳ . Vertices in Vhigh are
updated to reflect the switch of u with respect to the cut (T, T̄) during the call to Algorithm
1. Since u is a high degree vertex, the neighbor lists NS(u), NS̄(u) are always up-to-date.
Thus, the edge counts |E(X,T)|, |E(X, T̄)|, |E(X̄, T)|, |E(X̄, T̄)| are correctly updated. J

FSTTCS 2020

Weighted Tiling Systems for Graphs: Evaluation
Complexity
C. Aiswarya
Chennai Mathematical Institute, India
IRL ReLaX, CNRS, France
aiswarya@cmi.ac.in

Paul Gastin
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
paul.gastin@ens-paris-saclay.fr

Abstract
We consider weighted tiling systems to represent functions from graphs to a commutative semiring
such as the Natural semiring or the Tropical semiring. The system labels the nodes of a graph by
its states, and checks if the neighbourhood of every node belongs to a set of permissible tiles, and
assigns a weight accordingly. The weight of a labeling is the semiring-product of the weights assigned
to the nodes, and the weight of the graph is the semiring-sum of the weights of labelings. We show
that we can model interesting algorithmic questions using this formalism - like computing the clique
number of a graph or computing the permanent of a matrix. The evaluation problem is, given a
weighted tiling system and a graph, to compute the weight of the graph. We study the complexity
of the evaluation problem and give tight upper and lower bounds for several commutative semirings.
Further we provide an efficient evaluation algorithm if the input graph is of bounded tree-width.

2012 ACM Subject Classification Theory of computation → Quantitative automata

Keywords and phrases Weighted graph tiling, tiling automata, Evaluation, Complexity, Tree-width

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.34

Related Version An extended version of the paper is available at https://arxiv.org/abs/2009.
14542

Funding Supported by IRL ReLaX.
C. Aiswarya: Supported by DST Inspire.

1 Introduction

Weighted automata have been classically studied over words, as they naturally extend
automata from representing languages to representing functions from words to a semiring.

We are interested in finite state formalisms for representing functions from graphs to a
semiring. Many natural algorithmic questions on graphs are about computing a function,
such as the clique number, weight of the shortest path etc. It is interesting to see if one
can design weighted automata to model such problems. Further can one design efficient
algorithms for problems modeled by such weighted automata?

We study weighted tiling systems (WTS), a variant of the weighted graph automata of
Droste and Dück [10], motivated by the graph acceptors of Thomas [24]. This subsumes
many quantitative models that have been studied on words, trees [13, 14], nested words [22],
pictures [17], Mazurkiewicz traces [11, 23, 5], etc. The reader is referred to the handbook [12]
for more details and references. Many of these works are mainly interested in expressivity
questions, and show that the model has good expressive power. The model is also easy to
understand as it is formulated in terms of tiling/colouring respecting local constraints. We
reiterate the expressivity by modeling computational problems on graphs using this model.

© C. Aiswarya and Paul Gastin;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4878-7581
mailto:aiswarya@cmi.ac.in
https://orcid.org/0000-0002-1313-7722
mailto:paul.gastin@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.34
https://arxiv.org/abs/2009.14542
https://arxiv.org/abs/2009.14542
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Weighted Tiling Systems for Graphs: Evaluation Complexity

Our focus is on the computational complexity of the evaluation problem. It is closer in spirit
to [18] which provides an efficient evaluation algorithm for weighted pebble automata on
words.

We show that many algorithmic questions, like computing the clique number, computing
the permanent of a matrix, or counting-variants of SAT, can be naturally modeled using
this formalism. We investigate the computational complexity of the evaluation problem and
obtain tight upper- and lower-bounds for various semirings.

To give more details, a WTS has a finite number of states and a run labels the vertices
of a graph with states. The tiles (analogous to transitions) observe the neighbourhood of
a vertex under the labeling, and assign a weight accordingly. The weight of the run is the
semiring-product of the weights thus assigned, and the weight assigned to a graph is the
semiring-sum of the weights of the runs. We only consider commutative semirings and hence
the order in which the product is taken does not matter.

The evaluation problem is to compute the weight of an input graph in an input WTS.
We study the computational complexity of this problem for various semirings. Over
Natural semiring and non-negative rationals, the problem is shown to be #P-complete.
Over integers and rationals the problem is GapP-complete. Over tropical semirings –
(N,max,+), (Z,max,+), (N,min,+), (Z,min,+) – the problem is FPNP[log] complete.

We further consider the evaluation problem for graphs of bounded tree-width and show
that they are computable in time polynomial in the WTS and linear in the graph. Bounded
tree-width captures a variety of formal models of concurrent and infinite state systems such as
Mazurkiewicz traces, nested words, and decidable under-approximations of message passing
automata or multi-pushdown automata [21, 1, 2, 9, 4].

Even though our focus is evaluation, and not expressiveness of the model, we get a deep
insight into the modeling power of this formalism through the upper and lower complexity
bounds. For instance, we cannot polynomially encode the traveling salesman problem (lower
bound FPNP) in our formalism over tropical semiring (upper bound FPNP[log]) unless the
polynomial hierarchy collapses [19].

2 Model

First we will fix the notations for semirings, graphs and then introduce the WTS formally.

Preliminaries. Let N denote the set of natural numbers including 0, Z the integers, and Q
the rationals.

Let A = {a1, . . . an} and B be two sets. We sometimes write a function f ∶A→ B explicitly
by listing the image of each element: f = [a1 ↦ f(a1), . . . , an ↦ f(an)]. The set of all
functions from A to B is denoted BA. If A is ∅ then the only relation (and hence function)
from A to B is ∅. We denote this trivial empty function by f∅.

Let M be a non-deterministic Turing machine. The number of accepting runs of M on an
input x is denoted #M(x), and the number of rejecting runs of M on x is denoted #M(x).

A semiring is an algebraic structure S = (S,⊕,⊗,0S,1S) where S is a set, ⊕ and ⊗ are
two binary operations on S, (S,⊕,0S) is a commutative monoid, (S,⊗,1S) is a monoid, ⊗
distributes over ⊕, 0S is an annihilator for ⊗. A semiring is commutative if ⊗ is commutative.

Examples are Boolean = ({0,1},∨,∧,0,1), Natural = (N,+,×,0,1), Integer = (Z,+,×,0,1),
Rational = (Q,+,×,0,1) and Rational+ = (Q≥0,+,×,0,1). Further examples are tropical
semirings: max-plus-N = (N ∪ {−∞},max,+,−∞,0), max-plus-Z = (Z ∪ {−∞},max,+,−∞,0),
min-plus-N = (N ∪ {+∞},min,+,+∞,0) and min-plus-Z = (Z ∪ {+∞},min,+,+∞,0). We will
consider only these semirings in this paper. Note that all these semirings are commutative.

C. Aiswarya and P. Gastin 34:3

Graphs. We consider graphs with different sorts of edges. For example, a grid will have
horizontal successor edges, and vertical successor edges. A binary tree will have left-child
relations and right-child relations. Message sequence charts will have process-successor
relations and message send-receive relations. These graphs have bounded degree, and for
each sort of edge, a vertex will have at most one outgoing/incoming edge of that sort1. Our
definition of graphs below allows to capture such graph classes.

Let Γ be a finite set of edge names, and let Σ be a finite set of node labels. A (Γ,Σ)-graph
G = (V, (Eγ)γ∈Γ, λ) has a finite set of vertices V , an edge relation Eγ ⊆ V ×V for every γ ∈ Γ,
and a mapping λ∶V → Σ assigning a label from Σ to each vertex v ∈ V . The graphs we
consider will have at most one outgoing edge and at most one incoming edge for every edge
name. That is, for each γ ∈ Γ, for all v ∈ V , ∣{u ∣ (v, u) ∈ Eγ}∣ ≤ 1 and ∣{u ∣ (u, v) ∈ Eγ}∣ ≤ 1.

The type of a vertex is determined by the set of names of incoming edges and the set of
names of outgoing edges. For example, the root of a tree has no incoming left-child or right-
child edges and leaves of a tree have no outgoing left- or right-child. A type τ = (Γin,Γout)
indicates that the set of incoming (resp. outgoing) edge names is Γin (resp. Γout). Let
Types = 2Γ × 2Γ be the set of all types. We define type∶V → Types and use type(v) to denote
the type of vertex v.
I Remark 1. Even though we consider only bounded degree graphs, we are able to model
graph functions on arbitrary graphs (even edge weighted) as illustrated in the examples
below. Basically an arbitrary graph is input via its adjacency matrix, which is naturally
a grid, a special case of the graphs that we can handle. We can even model problems on
arbitrary graphs with edge weights.

A weighted Tiling System. is a finite state mechanism for defining functions from a class
of graphs to a weight domain. It has a finite set of states and a set of permissible tiles for
each type of vertices. Formally, a weighted tiling system (WTS) over (Γ,Σ)-graphs and a
semiring S = (S,⊕,⊗,0S,1S) is a tuple T = (Q,∆,wgt) where

Q is the finite set of states,
∆ = ⋃τ∈Types ∆τ – for a type τ = (Γin,Γout) ∈ Types, the set ∆τ ⊆ QΓin ×Q × Σ ×QΓout

gives the set of permissible tiles of type τ ,
wgt∶∆→ S, assigns a weight for each tile.

A run ρ of T on a graph G = (V, (Eγ)γ∈Γ, λ) is a labeling of the vertices by states that
conforms to ∆. Given a labeling ρ∶V → Q, for a vertex v ∈ V with type(v) = (Γin,Γout) we
define the tile of v wrt. ρ to be tileρ(v) = (fin, ρ(v), λ(v), fout) where fin∶Γin → Q is given
by γ ↦ ρ(u) if (u, v) ∈ Eγ and fout∶Γout → Q is given by γ ↦ ρ(u) if (v, u) ∈ Eγ . A labeling
ρ∶V → Q is a run if for each v ∈ V , tileρ(v) ∈ ∆type(v).

The weight of a run ρ, denoted wgt(ρ), is the product of the weights of the tiles in ρ.
With commutative semirings, we do not need to specify an order for this product. The value
[[T]](G) computed by T for a graph G is the sum of the weights of the runs. That is,

[[T]](G) = ⊕
ρ∣ρ is a run of T on G

wgt(ρ) wgt(ρ) = ⊗
v∈V

wgt(tileρ(v)).

I Remark 2. The WTS is a variant of the weighted graph automata (WGA) of [10]. There
are two main differences. First, WGA admits tiles of bigger radius and the tile size is a

1 This choice is mainly for notational convenience, and is not really a restriction, provided we consider
only bounded degree graphs. Another option would be to enumerate the neighbours in some order and
address a neighbour as the ith incoming/outgoing neighbour.

FSTTCS 2020

34:4 Weighted Tiling Systems for Graphs: Evaluation Complexity

parameter. This is not more powerful, as it can be realized with immediate neighborhood
tiles like in WTS. Second, WGA allows occurrence constraints. We discuss this in more
detail in Section 5.

We give some examples of WTS below, which will also serve as reductions proving
complexity lower-bounds in Section 3.

I Example 3 (A WTS to compute the clique number of a graph). The clique number of a
graph is the size of the largest clique in the graph.

The graphs on which we want to compute the clique number have unbounded degrees
indeed. In our setting we consider only bounded degree graphs. Hence we need to encode any
arbitrary graph as a bounded degree graph. One way to do that is to consider the adjacency
matrix and represent this matrix using a grid graph.

For the particular case of clique number, our input is an undirected graph, so we will
consider a lower-right triangular matrix in a lower-right triangular grid graph. For this we
let Γ = {→, ↓} and Σ = {0, 1}. The labels of all diagonal vertices are 1. A graph is depicted in
Figure 1 and its lower-right triangular adjacency matrix is depicted in Figure 2.

A B

C

D

E

Figure 1 A graph

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

A

B

C

D

E

Figure 2 The lower-right tri-
angular adjacency matrix of the
graph of Figure 1 as a grid graph

⊟

⊞

⊞

⊟

⊞

�

⊟

⊟

�

⊟

⊞

⊞

⊟

⊞

� 1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

Figure 3 A run. Three tiles B,
C and E gets weights 1, and hence
the weight of this run is 3.

We will now construct a WTS over the tropical semiring max-plus-N that computes the
clique number on a lower triangular grid graph. The run of the WTS will guess a subset
of vertices of the original graph (corresponds to labeling some diagonal elements with state
�) and checks that there is an edge between every pair of these (corresponds to checking
the label is 1, if the row and column start in a �-labeled vertex). The weight of such a run
will be the size of the subset, and the max over all the runs gives us the clique number as
required.

Let Q = {�, �,�,�}. A run will label a subset of diagonal vertices with �. A vertex is
labeled with � (resp. �, �) if its column (resp. row, both) starts in a vertex labeled �. In
addition a vertex may get state � only if its label is 1. All other vertices get state �. A run
on the graph in Figure 2 is depicted in Figure 3.

Tiles for diagonal vertices are given by ∆(∅,Γout) = {(f∅,�,1, fout), (f∅,�,1, fout)} . For
an inside vertex we have (fout being arbitrary in all tuples):

∆({→,↓},Γout) = {(fin,�, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ { �,�}, fin(↓) ∈ {�,�}}
∪ {(fin,�,1, fout) ∣ fin(→) ∈ {�,�}, fin(↓) ∈ {�, �}}
∪ {(fin,�, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ {�,�}, fin(↓) ∈ {�,�}}
∪ {(fin, �, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ { �,�}, fin(↓) ∈ {�, �}} .

C. Aiswarya and P. Gastin 34:5

The weight of a tile of the form (f∅,�, 1, fout) is 1. Notice that only the diagonal vertices
labeled � will get such a tile. The weight of all other tiles is 0. Thus the weight of a run
is the number of diagonal vertices labeled � - which corresponds to a subset of vertices
inducing a clique. The maximum weight across different runs will compute the clique number
as required. J

I Example 4 (A WTS to compute the permanent of a (0,1)-matrix). We will model (0,1)-
matrices as (0,1)-labelled grids. As in Example 3, we let Γ = {→, ↓} and Σ = {0,1}. A 5 × 5
(0,1)-matrix as a grid graph is illustrated in Figure 4.

We will define a WTS T on such graphs over Natural such that [[T]](G) is the permanent
of the 0,1 matrix A represented by G. In each run exactly one vertex in each row and each
column will be circled – representing one permutation σ of {1, . . . , n} if G is an n×n grid. The
weight of the tile on the circled vertex will be the vertex label (0 or 1) interpreted as an integer.
Every other tile will have weight 1. Thus the weight of a run will be ∏iA(i, σ(i)) where σ
is the permutation represented by the run. Finally the value of a graph G representing an
n × n (0,1)-matrix A will be ∑σ∏iA(i, σ(i)) which is its permanent.

The WTS T has five states: Q = {◯,Í,Ì,Ï,Î}. We will define tiles so as to accept
only the labeling reflecting the following:

a vertex labeled ◯ means it is the circled vertex in its row and column,
a vertex v labeled Í means that the circled vertex in its column is upward of v, and the
circled vertex in its row is to the right of v,
similarly for other states Ì,Ï,Î.

The tiles are given formally below. The weight function wgt assigns weight 0 to any tile
labeling a 0-labeled node with ◯. The weight of all other tiles is 1. A run of this WTS is
illustrated in Figure 5.

0

0

1

0

1

1

0

1

0

1

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

Figure 4 A 5×5 (0,1)-matrix as a grid graph

Î

Î

◯

Ï

Ï

Î

Î

Í

◯

Ï

Î

◯

Ì

Ì

Ï

Î

Í

Í

Í

◯

◯

Ì

Ì

Ì

Ì

0

0

1

0

1

1

0

1

0

1

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

Figure 5 A run of the WTS T on the graph in
Fig. 4. It has weight 0 as two tiles have wgt 0.

We now describe the tiles formally. For the top-left vertex we have

∆(∅,{→,↓}) = {(f∅,◯, b, fout) ∣ b ∈ {0,1}, fout(→) = Ï, fout(↓) = Í}
∪ {(f∅,Ì, b, fout) ∣ b ∈ {0,1}, fout(→) ∈ {Ì,◯}, fout(↓) ∈ {Ì,◯}}

The tiles for other corner vertices are analogous. For the left border vertices we have
∆({↓},{→,↓}) =

{(fin,◯, b, fout) ∣ b ∈ {0,1}, fin(↓) = Ì, fout(→) ∈ {Ï,Î}, fout(↓) = Í}
∪ {(fin,Ì, b, fout) ∣ b ∈ {0,1}, fin(↓) = Ì, fout(→) ∈ {Í,Ì,◯}, fout(↓) ∈ {Ì,◯}}
∪ {(fin,Í, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Í,◯}, fout(→) ∈ {Í,Ì,◯}, fout(↓) = Í}

FSTTCS 2020

34:6 Weighted Tiling Systems for Graphs: Evaluation Complexity

The tiles for other border vertices are analogous. For an interior vertex, we have

∆({→,↓},{→,↓}) = {(fin,◯, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Ì, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Í,◯,Ì}, fout(↓) ∈ {Ï,◯,Ì}}

∪ {(fin,Í, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Î,◯,Í}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Í,◯,Ì}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Î, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Î,◯,Í}, fin(→) ∈ {Î,◯,Ï},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Ï, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Î,◯,Ï},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Ï,◯,Ì}}

Finally, we describe the weight function wgt. The weight of a tile of the form (fin,◯, 0, fout)
is 0. The weight of all other tiles is 1. J

I Example 5 (Permanent of matrix with entries from N). The purpose of this example is to
illustrate that it is possible to encode natural numbers, which may appear as matrix entries
or edge weights, also as bounded degree graphs with a fixed alphabet Σ.

A length k bit string bk−1⋯b1b0 where bi ∈ {0, 1} for all 0 ≤ i < k, is represented by a path
graph of length k. The vertices of this path graph are labelled with 1 or 0 to indicate the
value of the bit, and the edges are labeled ≺. We describe a WTS on such path graphs whose
computed weight is the binary number ∑i bi2i. The WTS guesses a prefix ending with label
1. All the nodes in the prefix take state q0 and all nodes after the prefix may take the two
states q1 or q2. The weight of all tiles is 1. The number of runs is ∑i∶bi=1 1k−i × 2i = ∑i bi2i.

As before, we will have an n × n grid graph to represent the matrix, but the vertices of
the grid graph take a neutral label, say X. A path graph originates from every vertex of the
grid graph indicating the entry of the matrix at that cell. Now, to compute the permanent,
the path graphs starting from a circled vertex can start the WTS described in the previous
paragraph. All other path graphs vertices can be labeled only by a special state q4. The
weights of all permissible tiles are 1. The weight computed by one permutation will indeed
be the product of the entries. This crucially depends on the distributivity of the semiring.
Thus, this WTS computes the permanent of an arbitrary matrix with entries in N. J

Evaluation problem (Eval). is to compute [[T]](G), given the following input:

T : a WTS over (Γ,Σ)-graphs and a semiring S, and
G : a (Γ,Σ)-graph.

We study the complexity of this problem in Section 3, for various semirings. We provide an
efficient algorithm for this problem in the case of bounded tree-width graphs in Section 4.

3 Evaluation complexity: Arbitrary graphs

Recall that we only consider the boolean semiring, the counting semirings over N, Z, Q or
Q≥0 and the tropical semirings over N or Z.

Given a WTS T and a graph G, we can compute [[T]](G) in polynomial space as follows.
Initialise the current aggregate to 0S. Enumerate in lexicographic order through the different

C. Aiswarya and P. Gastin 34:7

labelings of the vertices of G with states of T . For each labeling, if it conforms to ∆, compute
its weight and add to the current aggregate. Thus Eval belongs to FPSpace – the set of
functions computable in polynomial space.

I Theorem 6. Problem Eval is in FPSpace.

However, for particular semirings the complexity is different as stated in the following
subsections.

3.1 (+,×)-semirings
I Theorem 7. The evaluation problem is #P-complete over Natural, and non-negative
Rational. It is GapP-complete over Integer and Rational.

The upper bounds hold for arbitrary graphs, and the lower bounds hold for the special
case of grids. The weights can be assumed to be given in binary.

A function f is in #P if there is an NP machine M such that f(x) = #M(x). That is, it
denotes the set of function problems that correspond to counting the number of accepting
paths in a non-deterministic polynomial time turing machine. Computing the permanent
of a (0,1)- matrix is a #P-complete problem [25], and hence the #P-hardness claimed
above follows from Example 4. We give an alternate hardness proof by a reduction from
#-CNF-SAT.

A function f(x) is in GapP if there is a non-deterministic polynomial time turing machine
M such that f(x) = #M(x) −#M(x). GapP is also the closure of #P under subtraction.

Most of this subsection is devoted to the proof of Theorem 7. First we give the non-
deterministic Turing machines realising the upper bounds for Natural and Integer. After that
we give reductions from respective counting versions of SAT to prove the lower bounds. The
case of Rational is finally considered.

The Turing MachineM such that #M(T , G) = [[T]](G). We describe a non-determins-
tic polynomial time turing machine M that takes as input a WTS T over Natural with
weights given in binary, and a graph G. The number of accepting runs #M(T ,G) = [[T]](G).
We assume the states, weights etc. are given by some standard encoding.

The turing machineM non-deterministically guesses a labeling of the vertices of G by the
states of T . Then it computes the product w of the weights of the tiles in the guessed tiling
and writes it in binary (MSB on the left) in a different tape. Computing the product can be
done in time polynomial in ∣G∣ and log(k) where k = max{x ∣ x is a weight of some tile of T }.

Afterwards it enters a phase which will have exactly w different accepting branches.
Simply decrementing the value while it is positive, and non-deterministically accepting at
any step will have w accepting branches, but the running time is exponential. We want the
machine to run in polynomial time. Hence we implement this phase similar to Example 5. It
runs in O(∣w∣) steps as we detail below.
M scans w from left to right starting in some state q. While in state q and the current

cell is labeled 0 it moves right. If in state q and the current cell is labelled 1 it moves right
and non determistically stays in state q or enters one of the two special states q0 or q1. When
it is in state q0 or q1 and the current cell is labelled with 0 or 1, it will move right and non
deterministically chose either q0 or q1. Finally, When in state q0 or q1 and the current cell is
blank (i.e., the scan of w is over), thenM accepts. Thus if the ith bit from the right of w
is labeled 1, thenM can have 2i accepting runs if it moved from state q to q0 or q1 when

FSTTCS 2020

34:8 Weighted Tiling Systems for Graphs: Evaluation Complexity

reading this bit. Switching from state q can occur at any 1-labelled cell, and henceM will
have w many accepting runs.

The machine M non deterministically picks a labeling at first, and hence the total
number of accepting runs #M(T ,G) = [[T]](G). With this we prove the #P upper bound
for Natural.

The Turing Machine M′ such that #M′
(T , G) − #M′

(T , G) = [[T]](G) This is
similar to the machineM above. There are two differences. The machineM′ still guesses
a labeling of vertices of G with states of T over Integer and computes the weight w. If w
is positive, it proceeds exactly asM does to produce w accepting runs. If the weight w is
negative, the machine M′ proceeds analogously but with states q′, q′0 and q′1 instead. If
the machine is in state q′0 or q′1 with current cell blank then it rejects instead of accepting.
The second difference is for blocked runs (e.g., if the guessed labeling of vertices of G by
states of T is not a valid tiling, or if at the end the machine is still in state q or q′ with
current cell blank). In such a case,M′ will non-deterministically proceed to either accept or
reject. Thus the net difference between accepting runs and rejecting runs is kept intact and
#M′(T ,G) −#M′(T ,G) = [[T]](G). This proves the GapP upper bound for Integer.

Encoding a CNF formula ϕ in a grid Gϕ. Given a CNF formula ϕ with n variables and
m clauses, we encode it in an n ×m grid with node labels {p,n,⋆}. If the node (i, j) is
labeled by p (resp. n) it means that the ith variable appears in jth clause positively (resp.
negatively). The node (i, j) is labeled ⋆ if the ith variable does not occur in the jth clause.

A WTS T # over Natural for counting #ϕ. Recall that #ϕ is the number of satisfying
assignments for the formula ϕ. We assume input to the WTS T # is given as Gϕ – a
{p,n,⋆}-labeled grid encoding a CNF formula.

A state of T # is a pair from {qtrue, qfalse}× {q′true, q
′
false}. The first part of a state indicates

a truth assignment with qtrue and qfalse. The allowed tiles make sure that in this part the
truth assignment remains the same along a row. The second part of a state indicates with
q′true and q′false the partial evaluation of the formula. A p-labeled node which is assigned qtrue
from the first part, and an n-labeled node which is assigned qfalse from the first part gets the
value q′true in the second part of the state (call this condition A for future reference). Further
all the successor nodes in the column of the q′true labeled node also gets the value q′true, except
for the nodes in the last row. For the nodes in the last row, it gets the value q′true if the left
neighbour is labeled q′true (assume this is satisfied if the left neighbour does not exist), and a)
if it satisfies condition A or b) if the node above is labeled q′true. Otherwise the nodes get the
value q′false. The second part of a state labeling a node (n, j) in the last row indicates the
evaluation of the prefix of the formula until the jth clause.

The tiles capture the description above. The weight of all tiles is 1, except for the tile
labeling the last node (n,m). If it is labeled (−, q′true) then the weight is 1, otherwise it is 0.
The value [[T #]](Gϕ) = #ϕ, the number of satisfying assignments.

This proves the #P lower bound for Natural. As alluded to earlier, the permanent
computation (Example 4) gives an alternate lower bound proof.

A WTS T gap over Integer for counting #ϕ1 −#ϕ2. We will reduce the GapP-complete
problem of computing #ϕ1 −#ϕ2, where ϕ1 and ϕ2 are input CNF formulas on the same set
of n variables withm1 andm2 clauses respectively. We represent the input in an n×(m1+m2)
grid by putting Gϕ1 and Gϕ2 side by side. The node labels contain a special tag i ∈ {1, 2} to

C. Aiswarya and P. Gastin 34:9

indicate that it comes from Gϕi . The WTS T gap will ensure that rows are of the form 1∗2∗
and columns are of the form 1∗ or 2∗. In a run it evaluates either ϕ1 or ϕ2 similar to T #. If
it is evaluating ϕi all nodes with the tag 3− i gets a special state qskip. The weight of all tiles
is 1, except for the tile labeling the nodes (n,m1) and (n,m1 +m2). If the node (n,m1) is
labeled (−, q′true) or qskip then the weight is 1, otherwise it is 0. If the node (n,m1 +m2) is
labeled (−, q′true) (resp. qskip) then the weight is −1 (resp. 1), otherwise it is 0.

Rational. We will use counting reduction from Rational (resp. non-negative Rational) to the
evaluation problem over Integer (resp. Natural) in order to prove the upper bounds. First we
will transform an input (T ,G) of the evaluation problem over Rational (resp. non-negative
Rational) to an input (T ′,G,) over Integer (resp. Natural). In T ′ we will multiply the weight
of a tile by ` - the lcm of the denominators appearing in the weights of any tile of T . The
multiplication can be performed in time polynomial. Now T ′ is a WTS over Integer (resp.
Natural), and following the GapP procedure (resp. #P procedure) we compute [[T ′]](G).
Now, we transform the output back to the required output over Rational (resp. non-negative
Rational) by dividing with `∣VG∣. That is, Eval(G,A) = Eval(G,A′)

`∣VG ∣ .
Notice that we allow the weights to be given in binary. The lcm ` and `∣VG∣ can be

computed in polynomial time. The counting reduction is hence polynomial. This proves the
upper bounds.

The GapP-hardness (resp. #P-hardness) follows because Integer (resp. Natural) is a special
case of Rational (resp. non-negative Rational).

3.2 Boolean semiring
Note that the evaluation problem Eval over Boolean is in fact the classical Membership
problem (denoted Membership) and is indeed a decision problem. We can check in NP
whether the value is 1 (witnessed by the NP machine M, if the input is assumed to be
over Boolean then × serve as ∧). It is also NP-hard by a simple reduction from CNF SAT
(witnessed by T # interpreted over Boolean).

I Theorem 8. Membership is NP-complete.

3.3 Tropical semirings
I Theorem 9. We assume the weights are given in unary. The evaluation problem over any
tropical semiring is FPNP[log]-complete.

FPNP[log] is the class of functions computable by a polynomial time turing machine with
logarithmically many queries to NP.

Proof. We will prove the upper bound for max-plus-Z. The case of max-plus-N is subsumed.
The cases of min-plus-N and min-plus-Z are analogous.

Let k be the maximal constant and ` be the minimal constant (other than +/ − ∞)
appearing in the WTS A. The maximum possible weight of a run is n × k and the minimum
is n × ` where n is the number of vertices in the input graph. We will do a binary search
in the set W = {n × `, . . . ,−1,0,1, . . . , n × k} checking if [[A]](G) ≥ s to find the value of
[[A]](G). In each iteration of the binary search, we make an oracle call to the NP machine
for [[A]](G) ≥ s. The number of NP oracle queries is O(log(n×k)) which is only logarithmic
in the input size. Recall that the weights are encoded in unary.

Finding the clique number is an FPNP[log]-complete problem [19]. From Example 3, the
lower bound follows. J

FSTTCS 2020

34:10 Weighted Tiling Systems for Graphs: Evaluation Complexity

4 Efficient evaluation for bounded tree-width graphs

In this section, we show that the problem Eval can be solved efficiently when restricted to
graphs of bounded tree-width (the bound is not part of the input). By efficient, we mean
time polynomial wrt. the WTS T and linear wrt. the graph G (see Theorems 11 and 13
below). Bounded tree-width covers many graphs used to model behaviours of concurrent or
infinite-state systems. For example, it is well-known that words and trees have tree-width 1,
nested words used for pushdown systems have tree-width 2, Mazurkiewicz traces describing
behaviours of concurrent asynchronous systems with rendez-vous, and most decidable under-
approximations of Turing complete models such as multi-pushdown automata, message
passing automata with unbounded FIFO channels, etc. [21, 9, 4]. We start by explaining our
results for bounded path-width since this is technically simpler. Then we explain how this is
extended to bounded tree-width.

4.1 Bounded path-width evaluation
A path decomposition. of a (Γ,Σ)-graph G = (V, (Eγ)γ∈Γ, λ), is a sequence V1, . . . , Vn of
nonempty subsets of vertices satisfying:
1. for all v ∈ V , we have v ∈ Vi for some 1 ≤ i ≤ n,
2. for all (u, v) ∈ ⋃γ∈ΓEγ , we have u, v ∈ Vi for some 1 ≤ i ≤ n,
3. for all 1 ≤ i ≤ j ≤ k ≤ n, we have Vi ∩ Vk ⊆ Vj .
The width of the path decomposition is max{∣Vi∣ − 1 ∣ 1 ≤ i ≤ n}. The path-width of a graph
G is the least k such that G admits a path decomposition of width k.

Words have path-width 1, but trees, nested words, grids have unbounded path-width.
We present below an equivalent definition of path-width which will be convenient to solve

the evaluation problem on graphs with bounded path-width. Let [k] = {0,1, . . . , k}. Graphs
over (Γ,Σ) of path-width at most k can be described with words over the alphabet

Ωk = {(i, a) ∣ i ∈ [k], a ∈ Σ} ∪ {Forgeti ∣ i ∈ [k]} ∪ {Addγi,j ∣ i, j ∈ [k], γ ∈ Γ}

The semantics of a word τ ∈ Ω∗
k is a colored graph {∣τ ∣} = (Gτ , χτ) where Gτ is a (Γ,Σ)-labeled

graph and χτ ∶ [k] → V is a partial injective function coloring some vertices of Gτ . We say
that a color i ∈ [k] is active in τ if it is in the domain of χτ . The semantics is defined by
induction on the length of τ . The semantics of the empty word τ = ε is the empty graph.
Assuming that {∣τ ∣} = (V, (Eγ)γ∈Γ, λ, χ), we define the effect of appending a new letter to τ :
(i, a) adds a new a-labeled vertex with color i, provided i is not active in τ , Forgeti removes
color i from the domain of the color map, and Addαi,j adds an α-labeled edge between the
vertices colored i and j (if such vertices exist, i.e., if i, j are active in τ).

We say that a word τ over Ωk is well-formed if the following conditions are satisfied:
1. if τ ′ ⋅ (i, a) is a prefix of τ then i is not active in τ ′,
2. if τ ′ ⋅ Forgeti is a prefix of τ then i is active in τ ′,
3. if τ ′ ⋅Addγi,j is a prefix of τ then i, j are active in τ ′ and the edge labeled γ was not already

added in τ ′ between χτ ′(i) and χτ ′(j).
In the following, a well-formed word over Ωk is called a k-word. The set Wk ⊆ Ω∗

k of k-words
is clearly regular.

I Lemma 10. 1. Given a path decomposition V1, . . . , VN of width at most k of a (Γ,Σ)-graph
G, we can construct in linear time wrt. ∣G∣ a k-word τ such that {∣τ ∣} = (G,∅).

2. Given a k−word τ , we can construct a path decomposition of width at most k of the graph
Gτ defined by τ : {∣τ ∣} = (Gτ , χτ).

C. Aiswarya and P. Gastin 34:11

Proof. 1. We construct by induction a sequence of k-words τ` for 0 ≤ ` ≤ N such that
{∣τ`∣} = (G`, χ`) where G` is the subgraph of G = (V, (Eγ)γ∈Γ, λ) induced by the vertices
V1 ∪⋯ ∪ V`, and χ`([k]) = V` ∩ V`+1 (with V0 = VN+1 = ∅). We let τ0 = ε.

Let now 0 ≤ ` < N and assume that τ` has been constructed. Let C` = dom(χ`) ⊆ [k] be the
active colors in τ`. By induction, we know that ∣C`∣ = ∣V`+1 ∩V`∣. Let V`+1 ∖V` = {u1, . . . , um}.
Since the decomposition is of width at most k, we have ∣V`+1∣ ≤ 1 + k and we find i1 < ⋯ < im
available colors in [k]∖C`. We define τ ′`+1 = τ` ⋅(i1, λ(u1))⋯(im, λ(um)). Let D = {i1, . . . , im}
and let {∣τ ′`+1∣} = (G′, χ′). We have dom(χ′) = C`∪D, χ′(C`) = V`+1∩V` and χ′(D) = V`+1∖V`.
For each γ ∈ Γ, i ∈ C` ∪D and j ∈D such that (χ′(i), χ′(j)) ∈ Eγ (resp. (χ′(j), χ′(i)) ∈ Eγ),
we append Addγi,j (resp. Addγj,i) to the word τ ′`+1. We obtain a k-word τ ′′`+1 which defines the
subgraph G`+1 of G induced by V1 ∪ ⋯ ∪ V`+1. Notice that, from the third condition of a
path decomposition, we have V`+1 ∖ V` = V`+1 ∖ (V1 ∪ ⋯ ∪ V`) and the edges in G`+1 which
were not already in G` are between some vertex in V`+1 ∖V` and some vertex in V`+1. Finally,
for each i ∈ C` ∪D such that χ′(i) ∉ V`+2, we append Forgeti to the word τ ′′`+1. We obtain
the k-word τ`+1 satisfying our invariant.

Finally, from the invariant we deduce that {∣τN ∣} = (G,∅), which concludes the first part
of the proof.

2. Let τ be a k-word and n = ∣τ ∣ be its length. For 0 ≤ ` ≤ n, let τ` be the prefix of τ of
length `. Let {∣τ`∣} = (G`, χ`) and V` = χ`([k]) be the subset of vertices which are colored in
{∣τ`∣}. We show that V1, . . . , Vn is a path decomposition of G = Gn = (V, (Eγ)γ∈Γ, λ).

Let u ∈ V be a vertex of G. For some 1 ≤ ` ≤ n, we have τ` = τ`−1 ⋅ (i, a) with χ`(i) = u ∈ V`.
This proves that the first condition of a path decomposition is satisfied.

Let (u, v) ∈ Eγ for some γ ∈ Γ. For some 1 < ` < n, we have τ`+1 = τ` ⋅Addγi,j with χ`(i) = u
and χ`(j) = v. We deduce that u, v ∈ V`, which proves that the second condition of a path
decomposition is satisfied.

For the third condition, let 1 ≤ i ≤ j ≤m ≤ n and u ∈ Vi ∩ Vm. We deduce that for some
` ∈ [k], we have u = χi(`) = χm(`) and that color ` was not forgotten between τi and τm.
Therefore, u = χj(`) ∈ Vj as desired. J

The problem k-PW-FVal is to compute [[T]](G), given a WTS T and a (Γ,Σ)-graph G
of path-width at most k.

I Theorem 11. The problem k-PW-FVal can be solved in linear time wrt. the input graph G
and polynomial time wrt. the input WTS T .

Proof. The evaluation algorithm for bounded path-width graphs proceeds in three steps:
1. From the input graph G, which is assumed to be of path-width at most k, we compute

in linear time a path decomposition V1, . . . , Vn using Bodlaender’s algorithm [3]. Then,
using Lemma 10, we compute in linear time a k-word τ such that {∣τ ∣} = (G,∅).

2. By Lemma 12 below, we construct in time polynomial in T a weighted word automaton
Bk which is equivalent to T on graphs of path-width at most k.

3. We compute [[Bk]](τ). It is well-known that the value of a weighted word automaton B
on a given word w can be computed in time O(∣B∣ ⋅ ∣w∣) assuming that sum and product
in the semiring take constant time. J

A weighted word automaton over alphabet Σ is usually given as a tuple B = (Q,T, I,F,wgt)
where I,F ⊆ Q are the subsets of initial and final states, T ⊆ Q×Σ×Q defines the transitions
and wgt∶T → S gives weights to transitions. This is an equivalent representation of a WTS
over ({→},Σ).

FSTTCS 2020

34:12 Weighted Tiling Systems for Graphs: Evaluation Complexity

Table 1 Transitions of the weighted word automaton Bk.

δ
(i,a)
ÐÐ→ δ′ if i ∉ dom(δ). Then, dom(δ′) = dom(δ) ∪ {i}, δ′(j) = δ(j) for all j ∈ dom(δ), and

δ′(i) = (f∅, q, a, f∅) for some q ∈ Q.
The weight of this transition is 1S.

δ
Forgeti
ÐÐÐ→ δ′ if i ∈ dom(δ). Then δ′ is the restriction of δ to dom(δ′) = dom(δ) ∖ {i}.

The weight of this transition is wgt(δ(i)).

δ
Addγ

i,j
ÐÐÐ→ δ′ if i, j ∈ dom(δ), i ≠ j, γ ∉ dom(fout(i)) and γ ∉ dom(fin(j)).

Then, dom(δ′) = dom(δ), δ′(`) = δ(`) for all ` ∈ dom(δ) ∖ {i, j},
δ′(i) = (fin(i), q(i), a(i), fout(i) ∪ [γ ↦ q(j)]),
δ′(j) = (fin(j) ∪ [γ ↦ q(i)], q(j), a(j), fout(j)).
The weight of this transition is 1S.

I Lemma 12. Given a WTS T over (Γ,Σ)-graphs and k > 0, we can compute in polynomial
time wrt. T , a weighted word automaton Bk which is equivalent to T over graphs of path
width at most k. That is, for all k-words τ with {∣τ ∣} = (G,∅), we have [[T]](G) = [[Bk]](τ).

Proof. Let T = (Q,∆,wgt) be a WTS over (Γ,Σ)-graphs. By adding tiles with weight 0S,
we may assume wlog that ∆ contains all possible tiles. Fix k ≥ 1.

A state of Bk is a partial map δ∶ [k] →∆. When reading a k-word τ with {∣τ ∣} = (G,χ),
the automaton will guess a labelling ρ∶V → Q of vertices of G with states of T and will reach
a state δ satisfying the following two conditions:
1. dom(δ) = dom(χ) ⊆ [k] is the set of active colors,
2. for each active color i ∈ dom(χ), δ(i) = (fin(i), q(i), a(i), fout(i)) = tileρ(χ(i)) is the

current ρ-tile at vertex χ(i) in G.
The only initial state is the empty map δ∅ with dom(δ∅) = ∅. This is also the only final
state, which is reached on a k-word τ if all colors have been forgotten: {∣τ ∣} = (G,χ∅).

Transitions of the word automaton Bk are given in Table 1. As above, we write δ(i) =
(fin(i), q(i), a(i), fout(i)) and δ′(i) = (f ′in(i), q′(i), a′(i), f ′out(i)).

The number of partial maps from A to B is (1 + ∣B∣)∣A∣. Hence, the number of states of
Bk is (1+ ∣∆∣)1+k. In a tile (fin, q, a, fout) ∈ ∆, both fin and fout can be seen as partial maps
from Γ to Q. Hence, ∣∆∣ = (1 + ∣Q∣)2∣Γ∣ ⋅ ∣Q∣ ⋅ ∣Σ∣. Also, ∣Ωk ∣ = (1 + k)(∣Σ∣ + 1) + (1 + k)2∣Γ∣. We
deduce that, if Σ,Γ, k are fixed, the automaton Bk can be constructed in polynomial time
wrt. the given WTS T . J

4.2 Bounded tree-width evaluation
We extend the efficient evaluation of WTS for graphs of bounded path-width to graphs of
bounded tree-width, which is a larger class of graphs. For instance, nested words may have
unbounded path-width but their tree-width is at most 2. As for path-width, tree-width can
be defined via tree decompositions: instead of a sequence of subsets of vertices, we use a
tree of subsets of vertices. Since we will use weighted tree automata to achieve the efficient
evaluation over graphs of bounded tree-width, we define directly tree terms. These are similar
to k-words, with an additional binary union ⊕.

Tree terms (TTs). form an algebra to define labeled graphs. With a ∈ Σ, γ ∈ Γ and
i, j ∈ [k] = {0,1, . . . , k}, the syntax of k-TTs over (Γ,Σ) is given by

τ ∶∶= (i, a) ∣ Addγi,j τ ∣ Forgeti τ ∣ τ ⊕ τ

C. Aiswarya and P. Gastin 34:13

Each k-TT represents a colored graph {∣τ ∣} = (Gτ , χτ) where Gτ is a (Γ,Σ)-labeled graph
and χτ ∶ [k] → V is a partial injective function coloring some vertices of Gτ . Colors in domχτ
are said to be active in τ . The semantics is defined as for k−words: a leaf (i, a) creates a
graph with a single a-labeled vertex with color i, Forgeti removes color i from the domain of
the color map, and Addαi,j adds an α-labeled edge between the vertices colored i and j (if
such vertices exist). Formally, if {∣τ ∣} = (V, (Eγ)γ∈Γ, λ, χ) then

{∣Addαi,j τ ∣} = (V, (E′
γ)γ∈Γ, λ, χ) with E′

γ = Eγ if γ ≠ α and

E′
α =

⎧⎪⎪⎨⎪⎪⎩

Eα if {i, j} /⊆ dom(χ)
Eα ∪ {(χ(i), χ(j))} otherwise.

{∣Forgeti τ ∣} = (V, (Eγ)γ∈Γ, λ, χ′) with dom(χ′) = dom(χ) ∖ {i} and χ′(j) = χ(j) for all
j ∈ dom(χ′).

The main difference with k-words is ⊕ which takes the union of the two graphs, merging
vertices with the same colors, if any.

Formally, consider τ ′ ⊕ τ ′′ with {∣τ ′∣} = (G′, χ′) = (V ′, (E′
γ)γ∈Γ, λ′, χ′) and {∣τ ′′∣} =

(G′′, χ′′) = (V ′′, (E′′
γ)γ∈Γ, λ′′, χ′′). Let I = dom(χ′) ∩ dom(χ′′) be the set of colors that

are defined in both graphs. Wlog, we may assume that V ′ ∩ V ′′ = χ′(I) = χ′′(I) and
χ′(i) = χ′′(i) for all i ∈ I, i.e., we may rename the vertices so that the shared colors define
the shared vertices. The union τ ′ ⊕ τ ′′ is well-defined only if the shared vertices have the
same labels: λ′(χ′(i)) = λ′′(χ′′(i)) for all i ∈ I. Then, {∣τ ′ ⊕ τ ′′∣} = (G′ ∪G′′, χ′ ∪ χ′′) =
(V, (Eγ)γ∈Γ, λ, χ) where V = V ′ ∪ V ′′, λ = λ′ ∪ λ′′, and Eγ = E′

γ ∪E′′
γ for all γ ∈ Γ.

The tree-width of a nonempty graph G is the least k ≥ 1 such that G = Gτ for some k-TT τ .
Trees have tree-width 1, and as a special case, words also have tree-width 1. Nested words

have tree-width (at most) 2 [21]. They are words with an additional binary relation from
pushes to matching pops, which are used to represent behaviours of pushdown automata. On
the other end, grids as used for instance in Example 4, have unbounded tree-width. More
precisely, an n × n grid has tree-width n.

We will focus on a regular subset of terms which ensures that the semantics is well-
defined and that the k-TTs do not contain redundant operations such as Addγi,j Addγi,j τ or
Addγi,j τ1 ⊕Addγi,j τ2. A k-TT is well-formed if the following are satisfied:
1. if Forgeti τ ′ is a subterm of τ then i is active in τ ′,
2. if Addγi,j τ ′ is a subterm of τ then i, j are active in τ ′ and the edge γ was not already

added in τ ′ between χτ ′(i) and χτ ′(j).
3. if τ ′ ⊕ τ ′′ is a subterm of τ then for all i, j that are active in both τ ′ and τ ′′, the vertices

χτ ′(i) and χτ ′′(i) have the same label from Σ, and we do not already have a γ-edge both
between (χτ ′(i), χτ ′(j)) and (χτ ′′(i), χτ ′′(j)).

The problem k-TW-FVal is to compute [[T]](G), given a WTS T and a (Γ,Σ)-graph G
of tree-width at most k.

I Theorem 13. The problem k-TW-FVal can be solved in linear time wrt. the input graph G
and polynomial time wrt. the input WTS T .

Proof. The proof follows the same three steps as for Theorem 11 using tree terms instead of
k-words and weighted tree automata instead of weighted word automata.
1. From the input graph G, which is assumed to be of tree-width at most k, we compute

in linear time a tree decomposition using Bodlaender’s algorithm [3]. Then, similarly to
Lemma 10, we compute in linear time a well-formed k-TT τ such that {∣τ ∣} = (G,∅). In
particular, ∣τ ∣ = O(∣G∣).

FSTTCS 2020

34:14 Weighted Tiling Systems for Graphs: Evaluation Complexity

Algorithm 1 Evaluation algorithm for a weighted tree automaton B = (Q,T,F,wgt).

1: function main(τ ∶ term): value from S ▷ Computes [[B]](τ)
2: val← TreeEval(τ); x← 0S
3: for all q ∈ F do x← x + val[q] end for
4: return x

5: end function
6: function TreeEval(τ ∶ term): array indexed by Q of values from S

7: ▷ TreeEval(τ)[q] is the sum of the weights of the runs of B on τ reaching state q.
8: match τ with
9: Leaf a:

10: for all q ∈ Q do val[q] ← wgt(�, a, q) end for
11: Unary a(τ1):
12: val1 ← TreeEval(τ1)
13: for all q ∈ Q do val[q] ← 0S end for
14: for all (q1, a, q) ∈ T do val[q] ← val[q] + val1[q1] ×wgt(q1, a, q) end for
15: Binary a(τ1, τ2):
16: val1 ← TreeEval(τ1); val2 ← TreeEval(τ2)
17: for all q ∈ Q do val[q] ← 0S end for
18: for all (q1, q2, a, q) ∈ T do
19: val[q] ← val[q] + val1[q1] ×wgt(q1, q2, a, q) × val2[q2]
20: end for
21: end match
22: return val
23: end function

2. Using Lemma 14 below, from the WTS T we construct in polynomial time an equivalent
weighted tree automaton Bk on graphs of tree-width at most k: [[T]](G) = [[Bk]](τ).

3. We compute [[Bk]](τ) with Algorithm 1. The main complexity comes from the call
TreeEval. Executing the body of this function (without the recursive calls) takes time
O(∣Bk ∣). Hence, the overall time complexity of this evaluation is O(∣τ ∣ ⋅ ∣Bk ∣). J

A weighted (binary) tree automaton over alphabet Σ is usually given as a tuple B =
(Q,T,F,wgt) where F ⊆ Q is the subset of accepting states, T ⊆ ({�} ∪Q ∪Q2) × Σ ×Q
defines the bottom-up transitions and wgt∶T → S gives weights to transitions. This is an
equivalent representation of a WTS over ({↗,↖},Σ).

I Lemma 14. Given a WTS T over (Γ,Σ)-graphs and k > 0, we can compute in polynomial
time wrt. T , a weighted tree automaton Bk which is equivalent to T over graphs of tree-width
at most k. Here, equivalent means that for all well-formed k-TTs τ with {∣τ ∣} = (G,∅), we
have [[T]](G) = [[Bk]](τ).

5 Discussions and conclusions

Connections with CSP. The quantitative versions of the constraint satisfaction problem
(CSP) are closely related to the evaluation problem for weighted tiling systems and graphs.
Classic (boolean) CSPs ask for the existence of a solution of a set of constraints, as non-
deterministic automata ask for the existence of an accepting run. In the valued-CSP (see

C. Aiswarya and P. Gastin 34:15

e.g. [20]), weights (costs) are assigned to each constraint depending on how the constraint is
fulfilled, these weights are summed over all constraints and the aim is to minimize this total
cost. This corresponds to our evaluation problem in the min-plus tropical semiring.

The weighted counting CSP (weighted #CSP) is defined similarly but uses a (+,×)-
semiring such as N, Z, Q, . . . , (see e.g. [7, 8]). The cost of a solution is the product of the
weights over all constraints and the value of the weighted #CSP is the sum over all solutions.
Counting CSP (#CSP) is obtained with semiring Natural when functions in the language
only take values 0 or 1, thus counting the number of solutions of the classic CSP.

One of the main problems in CSP is to determine conditions under which the problems
are tractable (polynomial time). Feder and Vardi conjectured [16] that, depending on the
constraint language Γ, problems in CSP(Γ) are either in P or NP-complete. The dichotomy
conjecture extends to #CSP(Γ), saying that such counting problems are either in FP or
#P-complete, see e.g. [6, 15]. In this paper, we show that for WTS, the evalution problem is
#P-complete (Theorem 7).

Most often the non-uniform complexity is considered, meaning that the language (for
us the WTS) is not part of the input and the complexity only depends on the instance (for
us the input graph). One such structural restriction is when the constraint graph of the
instance has bounded tree-width. This is indeed related to our efficient evaluation described
in Section 4. Our approach is different though since we reduce WTS to weighted word/tree
automata and obtain a complexity linear in the input graph.

As future work, we plan to investigate more closely the relationship between weighted
#CSP and the evaluation problem for WTS. In particular, it would be interesting to see
whether results on approximate computation which are widely studied for quantitative CSP
can be transfered to weighted tiling systems.

On the generality of the model. The model of WGA [10] additionally has occurrence
constraints (boolean combinations of constraints of the form #tile ≥ n, where tile ∈ ∆
and n ∈ N). A run is valid only if the occurrence constraints are satisfied. We could
allow these constraints as well, without compromising the complexity upper bounds. In
fact, we can allow more expressive quantifier-free Presburger constraints on the tiles (e.g.,
#tile1 +#tile2 = #tile3). The NP machine witnessing the upper bounds can compute the
Parikh vector of the tiles used in a guessed run, and check in polynomial time whether the
constraints are satisfied.

Variants. The evaluation problem Eval is a function problem. The decision variants cor-
respond to threshold languages such as, is the computed weight {>,≥,<,≤,=,≠} s, s being a
threshold. There are further variants depending on whether the threshold s is part of the
input or is fixed. The complexity depend on the semiring as well as on the value of the
threshold when it is fixed.

Conclusion. We have given tight complexity bounds for the evaluation problem for various
semirings. Our complexity upper bounds allows weights to be given in binary for problems
over (+,×)-semirings. However for tropical semirings the weights are assumed to be given in
unary. While our upper bounds hold for arbitrary graphs, lower bounds are given uniformly
for pictures (grid graphs). Further if we assume that the input graph does not have unbounded
grid as a minor (bounded tree-width), then we provide efficient evaluation algorithm.

FSTTCS 2020

34:16 Weighted Tiling Systems for Graphs: Evaluation Complexity

References
1 C. Aiswarya, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown

systems via split-width. In CONCUR, volume 7454 of Lecture Notes in Computer Science,
pages 547–561. Springer, 2012.

2 C. Aiswarya, Paul Gastin, and K. Narayan Kumar. Verifying communicating multi-pushdown
systems via split-width. In (ATVA, volume 8837 of Lecture Notes in Computer Science, pages
1–17, Sidney, Australia, November 2014. Springer. doi:10.1007/978-3-319-11936-6_1.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, December 1996.

4 Benedikt Bollig and Paul Gastin. Non-sequential theory of distributed systems. CoRR,
abs/1904.06942, 2019. URL: http://arxiv.org/abs/1904.06942.

5 Benedikt Bollig and Ingmar Meinecke. Weighted distributed systems and their logics. In
International Symposium on Logical Foundations of Computer Science, LFCS 2007, volume
4514 of Lecture Notes in Computer Science, pages 54–68. Springer, 2007.

6 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Inf. Comput., 205(5):651–678, 2007.

7 Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, Markus Jalsenius, Mark Jerrum,
and David Richerby. The complexity of weighted and unweighted #csp. J. Comput. Syst. Sci.,
78(2):681–688, 2012.

8 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems: a
survey. Constraints An Int. J., 21(2):115–144, 2016.

9 Aiswarya Cyriac. Verification of communicating recursive programs via split-width. (Vérification
de programmes récursifs et communicants via split-width). PhD thesis, École normale supérieure
de Cachan, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01015561.

10 Manfred Droste and Stefan Dück. Weighted automata and logics on graphs. In Mathematical
Foundations of Computer Science (MFCS’15), volume 9234 of Lecture Notes in Computer
Science, pages 192–204. Springer, 2015.

11 Manfred Droste and Paul Gastin. The kleene-schützenberger theorem for formal power series
in partially commuting variables. Inf. Comput., 153(1):47–80, 1999.

12 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer Berlin Heidelberg, 2009.

13 Manfred Droste, Christian Pech, and Heiko Vogler. A Kleene theorem for weighted tree
automata. Theory Comput. Syst., 38(1):1–38, 2005.

14 Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theor.
Comput. Sci., 366(3):228–247, 2006.

15 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted boolean
#csp. SIAM J. Comput., 38(5):1970–1986, 2009.

16 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

17 Ina Fichtner. Weighted picture automata and weighted logics. Theory Comput. Syst., 48(1):48–
78, 2011.

18 Paul Gastin and Benjamin Monmege. Adding pebbles to weighted automata: Easy specification
& efficient evaluation. Theoretical Computer Science, 534:24–44, May 2014.

19 Mark W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988. doi:10.1016/0022-0000(88)90039-6.

20 Andrei A. Krokhin and Stanislav Zivny. The complexity of valued csps. In Andrei A.
Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 233–266. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

https://doi.org/10.1007/978-3-319-11936-6_1
http://arxiv.org/abs/1904.06942
https://tel.archives-ouvertes.fr/tel-01015561
https://doi.org/10.1016/0022-0000(88)90039-6

C. Aiswarya and P. Gastin 34:17

21 P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 283–294. ACM, 2011.

22 Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science, 6(1), February 2010.

23 Ingmar Meinecke. Weighted logics for traces. In Dima Grigoriev, John Harrison, and Edward A.
Hirsch, editors, First International Computer Science Symposium in Russia, CSR 2006, volume
3967 of Lecture Notes in Computer Science, pages 235–246. Springer, 2006.

24 Wolfgang Thomas. On logics, tilings, and automata. In Javier Leach Albert, Burkhard Monien,
and Mario Rodríguez Artalejo, editors, Automata, Languages and Programming, pages 441–454,
Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

25 L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

FSTTCS 2020

https://doi.org/10.1016/0304-3975(79)90044-6

Process Symmetry in Probabilistic Transducers
Shaull Almagor
Computer Science Department, Technion, Haifa, Israel
shaull@cs.technion.ac.il

Abstract
Model checking is the process of deciding whether a system satisfies a given specification. Often,
when the setting comprises multiple processes, the specifications are over sets of input and output
signals that correspond to individual processes. Then, many of the properties one wishes to specify
are symmetric with respect to the processes identities. In this work, we consider the problem of
deciding whether the given system exhibits symmetry with respect to the processes’ identities.
When the system is symmetric, this gives insight into the behaviour of the system, as well as allows
the designer to use only representative specifications, instead of iterating over all possible process
identities.

Specifically, we consider probabilistic systems, and we propose several variants of symmetry.
We start with precise symmetry, in which, given a permutation π, the system maintains the exact
distribution of permuted outputs, given a permuted inputs. We proceed to study approximate
versions of symmetry, including symmetry induced by small L∞ norm, variants of Parikh-image
based symmetry, and qualitative symmetry. For each type of symmetry, we consider the problem of
deciding whether a given system exhibits this type of symmetry.

2012 ACM Subject Classification Theory of computation→ Verification by model checking; Theory
of computation → Concurrency; Theory of computation → Abstraction

Keywords and phrases Symmetry, Probabilistic Transducers, Model Checking, Permutations

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.35

Funding Shaull Almagor : Supported by a European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 837327.

Acknowledgements The author thanks Gal Vardi for discussions on the motivation for this work.

1 Introduction

A fundamental approach to automatic verification is model checking [4], where we are given
a system and a specification, and we check whether all possible behaviours of the system
satisfy the specification. In model checking of reactive systems, the specification is over sets
of inputs I and outputs O, and the system is an I/O transducer, which takes sequences of
inputs in 2I , and responds with an output in 2O. Then, model checking amounts to deciding
whether for every input sequence, the matching output sequence generated by the transducer,
satisfies the specification.

In practice, and especially in verification of concurrent systems, the input and output
sets have some correspondence. For example, in an arbiter for k processes, the inputs are
typically I = {i1, . . . , ik}, where ij is interpreted as “a request was generated by Process
j”, and the outputs are O = {o1, . . . , ok}, where oj is interpreted as “Process j was granted
access”. In such cases, specification often end up having symmetric repetitions of a similar
pattern. For example, we may wish to specify that in our arbiter, if Process j1 generated a
request before Process j2, then a grant for j1 should be given before a grant for j2. However,
in order to specify this in e.g., LTL (Linear Temporal Logic), we would have to explicitly
write this statement for every pair of processes j1, j2. In the worst case, this could entail a
blowup of k! in the size of the formula, which incurs a further exponential blowup during
model-checking algorithms.

© Shaull Almagor;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9021-1175
mailto:shaull@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Process Symmetry in Probabilistic Transducers

This drawback, however, vanishes when we consider a symmetric system: intuitively, a
system is symmetric if permuting the input signals generates an output sequence of similarly
permuted outputs. If a system satisfies this property, then it is enough to check whether it
satisfies a representative specification. Indeed, any permutation of the processes is guaranteed
to be equivalently satisfied.

Unfortunately, deterministic systems are unlikely to be completely symmetric, unless
they are very naive (e.g., no grants are ever given). Indeed, tie-breaking in deterministic
systems has an inherent asymmetry to it. In probabilistic systems, however, no asymmetry is
needed to break ties – one can randomly choose a result.

In this paper, we consider several notions of symmetry for probabilistic transducers,
and their corresponding decision procedures. We start with the most restrictive version of
symmetry, in which a transducer T is symmetric under a permutation if the distribution
of outputs that are generated for an input sequence x is identical to the distribution of
permuted outputs for the permuted input sequence (Section 3). We show that deciding
whether a transducer is symmetric under a given permutation is decidable in polynomial
time, and use basic results in group theory to give a similar result for deciding whether a
transducer is symmetric under all permutations in a permutation group.

We then proceed to study approximate notions of symmetry, in order to capture cases
where a system is not fully symmetric, but still may exhibit some symmetrical properties. On
the negative side, using results on probabilistic automata, we show that an L∞ approximation
variant of symmetry results in undecidability. On the positive side, we study two variants of
symmetry that only take into account the Parikh image of the output signals, and we are
able to use results on probabilistic automata with rewards to obtain efficient decidability of
symmetry for these variants (Section 4).

Finally, we study a qualitative version of symmetry, which offers a coarse “nondeterminis-
tic” approximation of symmetry (Section 5). We show that deciding whether a system is
qualitatively symmetric is PSPACE complete.

The notion of symmetry is not only appealing for symmetry reductions in specification,
but also as a standalone feature for the explainability of model checking: standard model-
checking algorithms can output a counterexample whenever a system does not satisfy its
specification. This gives the designer insight as to what is wrong with either the system or
the specification. On the other hand, when the result of model checking is that a system
does satisfy its specification, no additional information is typically given. While this is
“good news”, a designer often wants some information as to “why” the system is correct. In
particular, the designer may be concerned that the specifications were too easy to satisfy (e.g.,
in vacuous specifications [1]). In this case, symmetry provides some information. Indeed,
symmetry can be easily witnessed (as we show in Remark 4), so the designer can be convinced
that any weakness of the specification, or any flaw of the system, is not biased toward a
specific process, and will arise regardless of a specific order of processes. In addition, it shows
that if the system satisfies e.g., liveness properties, then it satisfies them with the same “good
event intervals” regardless of process identities.

Related work

Process symmetry [3, 8, 6, 12] and more general symmetry reductions [16, 17, 19] have
been studied since the 90’s, typically in the context of alleviating the state-explosion prob-
lem. Symmetry can either be specified by the designer or user [13,24,25], or detected
automatically [15,16,32].

S. Almagor 35:3

A close approach to our work here is [12], where the problem of detecting process
symmetries is studied. There, however, parametrized deterministic systems are studied,
which shift the focus to the pattern of given symmetries (rather than our fixed-length
permutations), and does not concern probabilities.

Symmetry in the probabilistic setting was studied in [11, 5], where model checking of
probabilistic systems exploits known symmetries to avoid a state blowup by considering a
quotient of the system under the symmetry.

We remark that the works above typically focus on exact symmetries, and use them to
reduce the state space, whereas the focus of this paper is to decide whether a symmetry
exists, for various types of (not necessarily exact) symmetries, and to use the symmetry to
avoid blowup in the specification, as well as to give the user insight regarding the correctness
of the system.

Due to lack of space, some proofs appear in the appendix.

2 Preliminaries

Probabilities and Distributions

Consider a finite set S. A distribution over S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. We denote the space of all distributions over S by ∆(S). Given a distribution

µ, an event is a subset1 E ⊆ S, and its probability under µ is Pr(E) =
∑
e∈E µ(e). For an

element s ∈ S, the Dirac distribution 11[s] is given by 11[s](r) =
{

1 r = s,

0 r 6= s.
The support of

a distribution µ is Supp(µ) = {s ∈ S : µ(s) > 0}.
Given sets S1, . . . , Sn and distributions µ1, . . . , µn such that µi ∈ ∆i for every 1 ≤ i ≤ n,

a natural product distribution µ is induced on the product space S1 × · · · × Sn where
µ(s1, . . . , sn) =

∏n
i=1 µi(si).

Probabilistic Transducers and Automata

Consider two finite sets I and O of input and output signals, respectively. An I/O probabilistic
transducer (henceforth just transducer) is T = 〈I,O, S, s0, δ, `〉 where S is a finite set of
states, s0 is an initial state, δ : S × 2I → ∆(S) is a transition function, assigning to each
(state,letter) pair a distribution of successor states, and ` : S → 2O is a labelling function.

For a word x = i1 · i2 · · · in ∈ (2I)+, a run of T on x is a sequence ρ = q0, q1, . . . , qn where
q0 = s0, and the probability of the run ρ is

∏n−1
j=0 δ(qj , ij+1)(qj+1). Note that indeed this

induces a probability measure µ on {s0} × Sn via the product distribution.
A run ρ is proper if ρ ∈ Supp(µ). That is, if it has positive probability. We denote the

space of proper runs by runs(T , x). In the following, we usually refer only to proper runs, and
we omit the term “proper” when it is clear from context. We extend the labelling function `

to runs by `(ρ) = `(q1) · `(q2) · · · `(qn). Observe that we ignore the labelling of the initial
state, and only consider nonempty words, to avoid edge cases.

For x ∈ (2I)+ and y ∈ (2O)+ such that |x| = |y|, we denote by T (x) = y the event
{ρ ∈ runs(T , x) : `(ρ) = y}. Thus, Pr(T (x) = y) is the probability that the output
generated by T on input x is exactly y. We denote by x⊗ y ∈ (2I∪O)ω the combined word
(i1 ∪ o1) · (i2 ∪ o2) · · · (in ∪ on).

1 In general E needs to be a measurable subset, but since we only consider finite sets, any subset is
measurable.

FSTTCS 2020

35:4 Process Symmetry in Probabilistic Transducers

The sets I and O are called corresponding signals if I = {i1, . . . , ik} and O = {o1, . . . , ok}.
Intuitively, for 1 ≤ j ≤ k we think of ij as a request generated by a process j, and of oj as a
corresponding grant generated by the system.

A probabilistic automaton (PA) is A = 〈Q,Σ, δ, q0, F 〉 where Q is a finite set of states, Σ
is a finite alphabet, δ : Q × Σ → ∆(Q) is a probabilistic transition function, q0 ∈ Q is an
initial state, and F ⊆ Q is a set of accepting states. Similarly to transducers, an input word
x ∈ Σ∗ induces a probability measure on the set runs(A, x) of runs of A on x. Then, we
denote by A(x) the probability that a run of A on x is accepted, i.e. ends in a state in F .

Permutations

We assume familiarity with basic notions in group theory (see e.g. [2]). A permutation of the
set [k] = {1, . . . , k} is a bijection π : [k]→ [k]. A standard representation of permutations is
by a cycle decomposition, where, for example, the cycle (1 2 7) represents the permutation
π where π(1) = 2, π(2) = 7, π(7) = 1, and for all other elements we have π(j) = j. The set
of all permutations on [k], equipped with the functional composition operator ◦ forms the
symmetric group Sk. Any subgroup of Sk is referred to as a permutation group. A generating
set of a permutation group G is a finite set X = {π1, . . . , πm} such that every permutation
τ ∈ G can be expressed as a composition of the elements in X. For such a set X, we denote
the group generated by it by 〈X〉. It is well known that {(1 2), (1 2 . . . k)} is a generating
set of Sk (see e.g., [2]).

Consider corresponding signals I = {i1, . . . , ik} and O = {o1, . . . , ok}, and let π ∈ Sk.
For a letter i = {ij1 , . . . , ijm} ∈ 2I , we define π(i) = {iπj1,...,iπ(jm)}. That is, π permutes
the signals given in i.2 Then, for a word x = i1 · i2 · · · in ∈ (2I)+, we define π(x) =
π(i1) · π(i2) · · ·π(in). Similar definitions hold for O. Unless explicitly stated otherwise, we
henceforth assume I and O are corresponding signals.

3 Symmetric Probabilistic Transducers

Let T = 〈I,O, S, s0, δ, `〉 be an I/O transducer over I = {i1, . . . , ik} and O = {o1, . . . , ok},
and let π ∈ Sk. We say that T is π-symmetric if for every x ∈ (2I)+ and y ∈ (2O)+ it
holds that Pr(T (x) = y) = Pr(T (π(x)) = π(y)). That is, T is π-symmetric if whenever we
permute the input by π, the resulting distribution on outputs is permuted by π as well.

I Example 1. Consider a Round-Robin arbiter over three processes, as depicted in Figure 1.
At each state, the arbiter looks for a request from a single processor j, and grants it if it is
on, then moves to a state corresponding to process j + 1 (mod 3). Observe that this is a
deterministic transducer, except that the initial state is unspecified.

Consider the case where we let the state marked 001 be initial, which corresponds to
letting the first process start. In this case, the transducer is not π-symmetric for π = (1 2 3).
Indeed, the input word 100 will generate output 100, but its permutation π(100) = 010
generates output 000 6= π(100).

However, if we introduce a probabilistic initial state, that chooses each state of 100, 010, 001
as the next state, each with probability 1

3 , the transducer becomes π-symmetric for any
π ∈ S3. J

2 Formally, we would actually need I to be an ordered set. However, the order will be implied by the
naming convention, so we let I be a set.

S. Almagor 35:5

000

010

000

001

000

100
·1·

·0·

·1·

·0·

· · 1

· · 0

· · 0

· · 1

1 · ·
0 · ·

1 · ·
0 · ·

Figure 1 A transducer for a Round Robin arbiter. The labels on the transitions and states are
the characteristic vectors of the labels, with · as placeholders. Thus, e.g., 100 is {i1}, and · · 1 is any
i such that i3 ∈ i. The initial state is unspecified, see Example 1.

Consider a permutation group G = 〈X〉 generated by X = {π1, . . . , πm}. We say that T
is G-symmetric if it is π-symmetric for every π ∈ G. Toward understanding symmetry, we
start by showing that it is enough to consider symmetry under the generators.

I Lemma 2. Consider an I/O transducer T over I = {i1, . . . , ik} and O = {o1, . . . , ok}. If
T is π-symmetric and τ -symmetric for π, τ ∈ Sk, then T is π ◦ τ -symmetric.

Proof. Consider x ∈ (2I)+ and y ∈ (2I)+, we wish to show that Pr(T (x) = y) =
Pr(T (π(τ(x))) = π(τ(y))). Since T is τ -symmetric, then Pr(T (x) = y) = Pr(T (τ(x)) = τ(y)).
Next, since T is π-symmetric, then applying the definition for the input τ(x) ∈ (2I)+ and
τ(y) ∈ (2O)+, we have that Pr(T (τ(x)) = τ(y)) = Pr(T (π(τ(x))) = π(τ(y))), and so overall
Pr(T (x) = y) = Pr(T (π(τ(x))) = π(τ(y))) and we are done. J

An immediate corollary of Lemma 2 is that in order to check whether T is G-symmetric, it
suffices to check whether it is symmetric with respect to the generators of G.

I Corollary 3. Consider an I/O transducer T and a permutation group G with generators
X, then T is G-symmetric iff it is π-symmetric for every π ∈ X.

I Remark 4 (Symmetry for Explainability). Corollary 3 is key to using symmetry for explain-
ability of model checking. Indeed, it shows that we can convince a designer that a system is
e.g., Sk-symmetric by showing that it is symmetric under the two generators. That is, the
witness for symmetry consists of demonstrating symmetry on two permutations. As discussed
in Section 1, once the designer is convinced the system possesses symmetric properties, she
gains some insight to the possible reasons that make the system correct, or to possible
behaviour of bugs, when the system is incorrect. J

The fundamental problem about symmetry of probabilistic transducers is whether a
transducer is π-symmetric for a given permutation π. We now show that this problem can
be solved in polynomial time.

I Theorem 5. The problem of deciding, given an I/O transducer T and a permutation
π ∈ Sk, whether T is π-symmetric, is solvable in polynomial time.

Proof. Given two probabilistic automata A and B over the alphabet Σ, the problem of
determining whether A(x) = B(x) for every x ∈ Σ∗, dubbed the equivalence problem, is
solvable in polynomial time [7, 15, 18]. Our proof is by reduction of the problem at hand to
the equivalence problem for probabilistic automata.

FSTTCS 2020

35:6 Process Symmetry in Probabilistic Transducers

Consider an I/O transducer T = 〈I,O, S, s0, δ, `〉 over I = {i1, . . . , ik} and O =
{o1, . . . , ok}, and let π ∈ Sk. We construct from T two PAs A and B. Intuitively, A
mimics the behaviour of T , by reading words over 2I∪O, and accepting a word w ∈ (2I∪O)+

with probability µ iff T , when reading the inputs that appear in w, generates the outputs
that appear in w with probability µ. The PA B works exactly like A, but permutes both the
inputs and outputs by π.

Formally, A = 〈S ∪ {q⊥}, 2I∪O, η, s0, S〉 and B = 〈S ∪ {q⊥}, 2I∪O, ζ, s0, S〉 where q⊥ is
a new state, and the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o
with i ∈ 2I and o ∈ 2O, and let Vp =

∑
p∈S, `(p)=o δ(q, i)(p) be the probability assigned by

T to seeing a state labelled o after reading i in state q, then η(q, σ) ∈ ∆(S ∪ {q⊥}) is the
following distribution:

η(q, σ)(p) =


δ(q, i)(p) if p ∈ S and `(p) = o
0 if p ∈ S and `(p) 6= o
1− Vp if p = q⊥

In addition, η(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of
A in Figures 2a and 2b.

s0
∅

s1
{o1}

s2
{o1}

s3
{o1, o3}

{i1, i2}
0.
2

0.5
0.3

(a) Transition in T

s0

s1

s2
s⊥

s3

{i1, i2, o1}

{i1 , i2 , o1 , o3}

0.2

0.5

0.3

0.3

0.7

(b) Transition in A

s0

s1

s2
s⊥

s3

{i3, i1, o3}

{i3 , i1 , o3 , o2}

0.2

0.5

0.3

0.3

0.7

(c) Transition in B

Figure 2 A transition in a transducer T over I = {i1, i2, i3} and O = {o1, o2, o3}, and the
corresponding transitions in A and B, under the permutation π = (1 2 3). Observe that the transition
in B corresponds to the inverse permutation, π−1 = (3 2 1), so that e.g., π({i3, i1}) = {i1, i2}.

The construction of B is similar, but accounts for the permutation π. Let q ∈ S and
σ = i ∪ o with i ∈ 2I and o ∈ 2O, and let Up =

∑
p∈S, `(p)=π(o) δ(q, π(i))(p) be the

probability assigned by T to seeing a state labelled π(o) after reading π(i) in state q, then
ζ(q, σ) ∈ ∆(S ∪ {q⊥}) is the following distribution:

ζ(q, σ)(p) =


δ(q, π(i))(p) if p ∈ S and `(p) = π(o)
0 if p ∈ S and `(p) 6= π(o)
1− Up if p = q⊥

In addition, ζ(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of
B in Figures 2a and 2c.

Consider words x ∈ (2I)+ and y ∈ (2O)+. Since q⊥ is the only rejecting state in
both A and B, then by construction it is easy to see that A(x ⊗ y) = Pr(T (x) = y) and
B(x ⊗ y) = Pr(T (π(x)) = π(y)). Thus, we have that A and B are equivalent iff T is
π-symmetric, and since equivalence can be decided in polynomial time, we are done. J

Combining Theorem 5 with Corollary 3, we have the following.

S. Almagor 35:7

I Corollary 6. The problem of deciding, given an I/O transducer T and a finite set of
generators X = {π1, . . . , πm}, whether T is 〈X〉-symmetric, is solvable in polynomial time.

In particular, since the symmetric group Sk is generated by two permutations
{(1 2), (1 2 . . . k)}, we have the following.

I Corollary 7. The problem of deciding, given an I/O transducer T , whether T is Sk-
symmetric, is solvable in polynomial time.

4 Approximate Symmetry

While aspiring to obtain symmetric systems is noble, in practice exact symmetry may be
too strong a requirement, for example if the source of randomness supplies binary bits, and
one needs e.g., 1

3 probability, then only an approximate probability can be used. Thus, it is
reasonable to seek approximate notions of symmetry.

4.1 L∞ Symmetry
The most straightforward approach toward approximate symmetry in probabilistic transducers
is induced by the the L∞ norm, as follows. Let T be an I/O-transducer, let π ∈ Sk, and let
ε > 0. We say that T is (ε, π)-symmetric if |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| ≤ ε for
every x ∈ (2I)+ and for every y ∈ (2O)+. That is, permuting the inputs by π perturbs the
output distribution by at most ε.

Unfortunately, as we now show, approximate symmetry is undecidable.

I Theorem 8. The problem of deciding, given an I/O transducer T a permutation π ∈ Sk
and ε > 0, whether T is (ε, π)-symmetric, is undecidable.

Proof. The emptiness problem for PA is to decide, given a PA A over Σ and a threshold
λ ∈ [0, 1], whether there exists a word w ∈ Σ∗ such that A(w) > λ. This problem is known
to be undecidable [14, 13, 7].

We show that approximate symmetry is undecidable via a reduction from a restriction of
the emptiness problem (or rather the complement thereof), where the given PA is over the
alphabet {0, 1}. The problem remains undecidable under this restriction, as we can encode
any larger alphabet Γ using fixed-length sequences in {0, 1}d, such that while reading the d
symbols that compose a single letter in Γ, the states are not accepting (and hence we do not
introduce a word whose acceptance probability is above λ).

We start with an intuitive description of the reduction, depicted in Figure 3.

sinitsmids⊥

s>
∅

s⊥
{o1, o2}

2I

{i1}

∅, {i1}

{i1}, {i1, i2}
{i2} {i1}, {i1, i2}

{i1}, {i1, i2}A

Figure 3 The transducer constructed from a PA. The black squares denote probabilistic branching.

Consider a PA A over the alphabet Σ = {0, 1}. We construct a transducer T over
I = {i1, i2} and O = {o1, o2} which has two components. Initially, if T sees the input {i2},
it moves to a component which mimics A using the alphabet {∅, {i2}} instead of {0, 1}. At

FSTTCS 2020

35:8 Process Symmetry in Probabilistic Transducers

this stage, all the states are marked with the output {o1, o2}. If at any point the input signal
i1 is given, i.e. the letter {i1} or {i1, i2}, then T proceeds to a state labelled {o1, o2} from
non-accepting states of A, and to a state labelled ∅ from accepting states. Thus, a word
of the form {i2} · x · {{i1}, {i1, i2}}∗ with x ∈ {∅, {i2}}n would yield an output of the form
∅n+1 · ∅∗ with probability A(x) and of the form ∅n+1 · {o1, o2}∗ with probability 1−A(x).
Observe that both output possibilities are invariant under the permutation (1 2).

If, initially, T sees the input {i1}, it moves to a state labelled ∅, which loops as long
as {i1} or ∅ are seen. Then, if {i2} or {i1, i2} is seen, it moves to a sink labelled {o1, o2}.
Essentially, this component mimics the output sequence of a rejecting run of A in the first
component, under the permutation (1 2). Hence, taking ε = λ, we have that T is (ε, (1 2))-
symmetric iff there does not exist a word x such that A(x) > λ.

We proceed to give the precise reduction. Consider a PA A = 〈Q,Σ, δ, q0, F 〉 with
Σ = {0, 1}, we construct an I/O transducer T = 〈I,O, S, sinit, η, `〉 as follows. The states
of T are S = Q ∪ {smid, sinit, s>, s⊥}, where s⊥ /∈ Q, and the input and output sets are
I = {i1, i2} and O = {o1, o2}. The labelling function is given by `(q) = ∅ for all q ∈ Q,
`(s⊥) = O = {o1, o2}, and `(sinit) = `(smid) = {∅}. The transition function, as depicted in
Figure 3, is defined as follows.

First, for every q ∈ Q and i ∈ {∅, {i2}}, we have η(q, i) = δ(q, i), where we identify
{∅, {i2}} with {0, 1} in an arbitrary bijective manner. Next, if q ∈ F , then η(q, {i1}) =
η(q, {i1, i2}) = 11[s>], and if q /∈ F then η(q, {i1}) = η(q, {i1, i2}) = 11[s⊥]. The remaining
transitions are
η(sinit, {i1}) = 11[smid], η(smid, ∅) = η(smid, {i1}) = 11[smid],
η(sinit, {i2}) = 11[q0], η(smid, {i2}) = η(smid, {i1, i2}) = 11[s⊥],
η(sinit, ∅) = η(sinit, {i1, i2}) = 11[s⊥],

and for every i ∈ 2I we have η(s⊥, i) = 11[s⊥] and η(s>, i) = 11[s>].
Let π = (1 2) and ε = λ. Keeping our identification of {∅, {i2}} with {0, 1}, we claim

that there exists a word x′ ∈ {∅, {i2}}∗ such that A(x′) > λ iff there exists words x ∈ (2I)+

and y ∈ (2O)+ such that |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| > ε (i.e. T is not (ε, π)-
symmetric). Observe that ` assigns only the labels ∅ and {o1, o2}, both of which are invariant
under π. Thus, the latter condition becomes

|Pr(T (x) = y)− Pr(T (π(x)) = y)| > ε. (1)

We now turn to prove correctness. For the first direction, let x′ ∈ {∅, {i2}}∗ such that
A(x′) > λ, and consider the word x = {i2} · x′ · {i1, i2}. By the construction of T , after
seeing {i2}, there is only a single run of T which proceeds to q0. From there, T mimics the
behaviour of A on x′. Thus, after reading x′, the distribution of states has probability A(x)
for states in F , and probability 1−A(x) in states in Q \ F . Note that up until then, only
the label ∅ is seen, so the distribution of outputs is 11[∅|x′|+1]. Then, after reading {i1, i2},
the distribution of outputs give probability A(x) to ∅|x′|+2, and 1−A(x) to ∅|x′|+1 · {o1, o2}.

Now consider π(x) = {i1} · π(x′) · {i1, i2}. Upon reading {i1}, the single run of T
arrives at smid. Then, since x′ ∈ {∅, {i2}}∗, we have that π(x′) ∈ {∅, {i1}}∗, so the run
of T stays in smid. Finally, reading {i1, i2}, the run moves to s⊥. Therefore T (x) gives
probability 1 to the output ∅|x′|+1{o1, o2}. Thus, for the output y = ∅|x′|+2, we have that
|Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x)− 0| > λ = ε, so T is not (ε, π)-symmetric.

For the converse direction, assume x, y are such that |Pr(T (x) = y)−Pr(T (π(x)) = y)| > ε.
We start by eliminating candidates for such x and y. First, observe that if x starts with ∅ or
{ß1,ø1} (both of which are invariant under π), we have T (x) gives probability 1 to the output
`(q⊥)|x| = {o1, o2}|x|, and so T (x) = T (π(x)), hence |Pr(T (x) = y)− Pr(T (π(x)) = y)| = 0
for all y, so this case cannot occur.

S. Almagor 35:9

Next, we claim that without loss of generality, we can assume x starts with {i2}. Indeed,
if x starts with {i1}, then π(x) starts with {i2}. Since π(π(x)) = x, we could start the
argument with π(x), while maintaining Equation (1).

Now, if x is of the form {i2} · {∅, {i2}}n, then T (x) gives probability 1 to the output
∅n+1, but π(x) is now of the form {i1} · {∅, {i1}}n, which also induces the same distribution,
this case cannot occur as well.

It follows that x is of the form {i2} · x′ · {{i1}, {i1, i2}} · (2I)∗ where x′ ∈ {∅, {i2}}n.
We claim that A(x′) > λ. Indeed, as we observed above, T (x) gives probability A(x′) to
the output ∅|x| and probability 1−A(x′) to the output ∅|x′|+1 · {o1, o2}|x|−|x

′|−1. However,
T (π(x)) gives probability 1 to the output ∅|x′|+1 · {o1, o2}|x|−|x

′|−1. Thus, there are only two
possibilities for y in order for Equation (1) to hold: if y = ∅|x|, we have

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x′)− 0| = A(x′)

and if y = ∅|x′|+1 · {o1, o2}|x|−|x
′|−1, then

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |1−A(x′)− 1| = A(x′)

So in either case A(x′) > λ, and we are done. J

A-priori, the fact that (ε, π)-symmetry is undecidable does not mean that approximate
symmetry for an entire permutation group is undecidable, nor that for fixed ε the problem is
undecidable. Unfortunately, however, the proof of Theorem 8 uses the permutation group S2,
whose only nontrivial permutation is (1 2). Moreover, the reduction uses the given threshold
λ as is, by setting λ = ε, and the emptiness problem is known to be undecidable even when
λ is a fixed number in (0, 1). Thus, we have the following.

I Corollary 9. For every ε ∈ (0, 1), the problem of deciding, given an I/O transducer T
whether T is (ε, π)-symmetric for every π ∈ Sk, is undecidable.

I Remark 10 (Composability). While undecidability of (ε, π)-symmetry is unfortunate, the
reader may take solace in the fact that (ε, π)-symmetry is anyway not preserved under
composition. Indeed, if T is (ε, π)-symmetric and (δ, τ)-symmetric, it only guarantees that
it is (δ + ε, τ · π)-symmetric. Thus, in order to ensure symmetry over a group, a sound
method would have to take into account the diameter of the group. This, however, may lose
completeness. Thus, (ε, π)-symmetry is not a robust notion.

4.2 Parikh Symmetry
The notions of symmetry studied so far have a “letter-by-letter” flavour, where we compare
the distribution of specific outputs for a given inputs. We now turn to study a different
notion of symmetry, that abstracts away the order of the output symbols, and draws instead
on the Parikh image of the computation.

Let I = {i1, . . . , ik} and O = {o1, . . . , ok}. For a word y = o1 · · ·on ∈ 2O, and 1 ≤ j ≤ k,
define #(y, j) = |{m : oj ∈ om}| to be the number of occurrences of oj in y. Then, we
define the Parikh image3 of y to be P(y) = (#(y, 1), . . . ,#(y, k)) ∈ Nk.

Given a permutation π and a vector a = (a1, . . . , ak) ∈ Nk, we define
π(a) = (aπ−1(1), . . . , aπ−1(k)). Note that we use π−1 so that the following relation holds: if
e.g., π(1) = 3, then index 3 in π(a) contains a1.

3 Observe that this is not the standard Parikh image, in that it is the image with respect to signals in O,
rather than to letters in 2O.

FSTTCS 2020

35:10 Process Symmetry in Probabilistic Transducers

Consider an I/O transducer T and a word x ∈ (2I)+. The outputs of T on x induce
a probability measure on (a finite subset of) Nk, where for a vector a ∈ Nk we have
Pr(P(T (x)) = a) =

∑
y:P(y)=a Pr(T (x) = y). We can thus also consider the expected value

of the Parikh image, given by E[P(T (x))] =
∑
y Pr(T (x) = y)P(y) (where the product is

element-wise, so this is a vector in Nk).
Parikh images give rise to two measures of symmetry: given a permutation π, we say

that T is π-Parikh distribution symmetric if for every x ∈ (2I)+ and every a ∈ Nk we
have Pr(P(T (x)) = a) = Pr(P(T (π(x))) = π(a)). That is, every word x induces the same
distribution of Parikh images as π(x) does for the permuted images. A weaker notion of
symmetry uses expectation: we say that T is π-Parikh expected symmetric if for every
x ∈ (2I)+ we have E[P(T (x))] = π(E[P(T (π(x)))])

Note that Parikh-symmetry assumes the number of occurrences of a certain output signal
is meaningful. This is relevant when the output signals measure e.g., number of grants for
requests, but makes less sense when the outputs represent e.g., a choice between channels
through which a message is routed.

Our algorithmic results about Parikh symmetry use a translation to probabilistic reward
automata (PRA) [10, Section 5]. A PRA is a PA A = 〈Q,Σ, δ, q0, F 〉 equipped with a reward
function R : Q→ {0, 1}k for some k ∈ N.4 The rewards are summed along a run, and the
value of a word w ∈ Σ∗, denoted R(w), is the expected reward, that is, the weighted sum of
the rewards along all runs, weighted by their respective probabilities. We denote by A(w)
the distribution of reward vectors in Nk, induced by the runs of A on w.

In order to reason about Parikh images, we propose the following translation.

I Lemma 11. Given an I/O trandsucer T , we can construct two PRAs A,B over the
alphabet 2I and with reward function of dimension k = |I|, such that for every x ∈ (2I)+

and for every a ∈ Nk, we have that Pr(A(w) = a) = Pr(P(T (x)) = a), and Pr(B(w) = a) =
Pr(P(T (π(x))) = π(a)).

Proof. The translation is similar to the one given in the proof of Theorem 5, where instead
of adding 2O to the alphabet, we collate the Parikh image using the rewards.

Let T = 〈I,O, S, s0, δ, `〉, we construct A = 〈S, 2I , δ, s0, S〉 with the following reward
function: for every s ∈ S and 1 ≤ j ≤ k, we have R(s)j = 1 if oj ∈ `(s) and R(s)j = 0
otherwise (that is, R(s) is the characteristic vector of `(s)). Thus, A is identical to T , where
we treat all states as accepting, and replace output labels with their characteristic vectors.

The construction of B is similar, but accounts for the permutation π: we define B =
〈S, 2I , µ, s0, S〉 with reward function R′, where µ(s, i) = δ(s, π(i)) for every state s ∈ S and
i ∈ 2I , and R′(s) = π(R(s)) (where R is the reward function of A). It is easy to see that the
construction of A and B satisfies the conditions of the lemma. J

In [10], the problems of distribution-equivalence and expected-equivalence are solved,
with complexities NC and RNC, respectively, where NC is the class of problems solvable using
circuits of polynomial size and polylogarithmic depth, and RNC is its randomized analogue.
It is known that NC ⊆ P and RNC ⊆ RP.

The distribution-equivalence and expected-equivalence problems, applied to the automata
A and B obtained as per Lemma 11, exactly correspond to π-distribution symmetry and
π-expected symmetry of T , respectively. We thus have the following.

4 The rewards in [10] also allow −1 rewards, and is set on the transitions of the PRA. Since it is trivial to
push rewards from the states to the transitions, our model is simpler.

S. Almagor 35:11

I Theorem 12. The problem of deciding, given an I/O transducer T and a permutation π,
whether it is π-Parikh distribution symmetric (resp. π-Parikh expected symmetric), is in NC
(resp. RNC).

Both notions of Parikh symmetry can be easily shown respect composition, analogously to
Lemma 2, in that if T is both π- and τ - Parikh distribution/expected symmetric, then it is
also π ◦ τ -Parikh distribution/expected symmetric. Thus, we conclude this section with the
following.

I Theorem 13. The problem of deciding, given an I/O transducer T and a finite set of
generators X = {π1, . . . , πm}, whether it is π-Parikh distribution symmetric (resp. π-Parikh
expected symmetric) for every π ∈ 〈X〉, is in NC (resp. RNC).

5 Qualitative Symmetry

Section 4.1 rules out a decidable quantitative approximation for symmetry that takes into
account the order of the input (at least in the sense of Theorem 8). In lieu of such an
approximation, we turn to study a qualitative approximation, whereby we only require that
permuting the input does not alter the support of the output distribution.

Let T be an I/O transducer, and let π ∈ Sk. We say that T is π-qualitative-symmetric if
for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0.

Observe that for every x and y as above, Pr(T (x) = y) > 0 iff there exists a run of T
on x that is labelled y. Thus, in order to study qualitative symmetry, we can ignore the
concrete probabilities in T , and only keep information on whether they are positive or not.
Therefore, we essentially consider a nondeterministic transducer.

Using a similar translation to that in Theorem 5, but to NFAs instead of PAs, we have
the following.

I Lemma 14. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is in PSPACE.

Proof. Similarly to our approach in Theorem 5, we translate T to two automata A and
B, where A mimics the operation of T , and B works similarly, but under the permutation
π. Then, we check the equivalence of A and B. Instead of using PAs, however, we now
use nondeterministic automata (NFAs). An NFA is N = 〈Q,Σ, δ, q0, F 〉 where Q is a set of
states, Σ is an alphabet, δ : Q×Σ→ 2Q is a transition function, q0 is an initial state, and F
are the accepting states. The semantics of NFAs are textbook standard.

Let T = 〈I,O, S, s0, δ, `〉. We define A = 〈S, 2I∪O, η, s0, S〉 and B = 〈S, 2I∪O, ζ, s0, S〉,
where the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o with i ∈ 2I
and o ∈ 2O, then η(q, σ) = {p ∈ S : δ(q, i)(p) > 0 and `(p) = o} and ζ(q, σ) = {p ∈ S :
δ(q, π(i))(p) > 0 and `(p) = π(o)}.

By construction, for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0
iff A accepts x ⊗ y, and Pr(T (π(x)) = π(y)) iff B accepts x ⊗ y. Thus, we have that T
is π-qualitative-symmetric iff L(A) = L(B). Since equivalence of NFAs can be checked in
PSPACE, we are done. J

We proceed to show a matching lower bound.

I Lemma 15. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is PSPACE-hard.

FSTTCS 2020

35:12 Process Symmetry in Probabilistic Transducers

Proof. We show the problem is PSPACE-hard via a reduction from the universality problem
for NFAs over alphabet Σ = {0, 1} whose states are all accepting. That is, the problem of
deciding, given an NFA A = 〈Q, {0, 1}, δ, q0, Q〉 (where all states are accepting), whether
L(A) = Σ∗. This problem was shown to be PSPACE-hard in [9].

The reduction has a similar flavour as that of Theorem 8, in that we use the permutation
to switch between components of the transducer. The components themselves, however, are
somewhat different.

Let A = 〈Q, {0, 1}, δ, q0, Q〉 be an NFA over {0, 1} with all states accepting. We construct
a transducer T = 〈I,O, S, s0, η, `〉 over I = {i1, i2} and O = {o1, o2} as follows. The states
are S = Q∪{sinit, smid, s⊥}, with the labelling `(q) = ∅ for every q ∈ Q, `(sinit) = `(smid) = ∅,
and `(s⊥) = {o1, o2}. For simplicity, we treat the transition function as nondeterministic
η : S × 2I∪O → 2S . Technically, this can be thought of as specifying the support of the
transition function, with arbitrarily chosen probabilities (e.g., uniform). Note, however, that
we do not allow ∅ in the image of δ, since we must be able to specify probabilities for the
transitions. Now, for every q ∈ Q and i ∈ 2I , and we define

η(q, i) =


δ(q, 0) ∪ {s⊥} if i = ∅
δ(q, 1) ∪ {s⊥} if i = {i1, i2}
{q⊥} otherwise

That is, within the Q component, we identify Σ = {0, 1} with {∅, {i1, i2}}, and whenever
there are no corresponding transitions in A, or an “invalid” letter is seen, a transition is
taken to s⊥. Note that we add transitions to s⊥ even when there are transition in A, which
will play a role later on. The remaining transitions are as follows (see Figure 4).
η(sinit, {i1}) = {q0}, η(sinit, {i2}) = {smid},
η(sinit, ∅) = η(sinit, {i1, i2}) = {s⊥}, η(smid, ∅) = η(smid, {i1, i2}) = {smid, s⊥},
η(smid, {i1}) = η(smid, {i2}) = {s⊥}, and η(s⊥, σ) = {s⊥}.

sinitsmids⊥
s⊥

{o1, o2}

{i1}

{i1}, {i2}

{i2}

∅, {i1, i2}

∅, {i1, i2}
{i1}, {i2}

∅, {i1, i2}

Figure 4 The transducer constructed from an NFA.

Let π = (1 2). We claim that L(A) = Σ∗ iff T is (1 2)-qualitative-symmetric.
For the first direction, we prove the contrapositive. Assume L(A) 6= Σ∗, and let w ∈

Σ∗ \ L(A). Keeping our identification of Σ = {0, 1} with {∅, {i1, i2}}, consider the word
x = {i1} ·w. Since there are no runs of A on w, it follows that within the Q component, after
reading w, the only reachable state is s⊥. Thus, if z ∈ (2O)+ is such that Pr(T (x) = z) > 0,
then z is of the form ∅+ · {o1, o2}+. In particular, let y = ∅|w|+1, then Pr(T (x) = y) = 0.
However, a possible run of T on π(x) is sinit, s

|w|
mid, which induces the labels y = π(y). Thus,

Pr(T (π(x)) = π(y)) > 0, so T is not π-qualitative-symmetric.
Conversely, assume that L(A) = Σ∗, and consider x ∈ (2I)+ and y ∈ (2O)+. We claim

that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0. Observe that similarly to Theorem 8, all
the labels on T are invariant under π, so the above can be stated as

Pr(T (x) = y) > 0 iff Pr(T (π(x)) = y) > 0. (2)

S. Almagor 35:13

Now, if x starts with either ∅ or {i1, i2}, then there is a single run on x and on π(x),
namely sinit, s⊥, so both x and π(x) induce the same distribution on output sequences. Thus,
Equation (2) holds.

Next, similarly to Theorem 8, we can again assume without loss of generality that x
starts with {i1}, otherwise we use π(x). Thus, x is either of the form {i1} · w or of the form
{i1} · w · {{i1}, {i2}} · (2I)∗ with w ∈ {∅, {i1, i2}}∗.

In the former case, recall that η follows the transition function of A, as well as allowing
at each point to reach s⊥. Thus, T (x) assigns positive probability to every word of the form
∅+{o1, o2}∗ (of length |w| + 1). Observe that π(w) = w, and hence π(x) = {i2}w, which
induces a distribution with the same support, and again Equation (2) holds.

In the latter case, x is of the form {i1} ·w · {{i1}, {i2}} · (2I)∗, where upon reading either
{i1} or {i2}, the runs in the Q component all collapse to s⊥. Thus, the support of T (x)
comprises words of the form ∅+{o1, o2}∗ where the ∅+ prefix is at most of length |w| + 1.
Since π({i1}) = {i2} and π({i2}) = {i1}, then by the definition of η, the distribution T (π(x))
has the same support (as runs that remain in smid collapse to s⊥ at the same stage). We
thus conclude the claim. Finally, it is easy to see that the reduction is polynomial. J

Combining Lemmas 14 and 15, we have the following.

I Theorem 16. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is PSPACE-complete.

As in Section 4, since we use the permutation group S2 for our hardness result, we have
the following.

I Corollary 17. The problem of deciding whether a given I/O transducer T is π-qualitative-
symmetric for every π ∈ Sk is PSPACE-complete.

6 Extensions and Research Directions

Extensions

The setting considered thus far restricts to corresponding input and output sets of the form
I = {i1, . . . , ik} and O = {o1, . . . , ok}. Typically, however, systems also include signals that
are not process-specific, such as whether the system is ready, whether there is an error,
etc. We can easily incorporate these into the setting. Indeed, adding input signals that are
ignored by permutations can be inserted mutatis-mutandis to all the automata constructions
we use. In addition, the lower bounds trivially carry over.

In addition, some systems have multiple sets of inputs and/or output signals that belong
to processes, such as read grants and write grants, both of which are process-specific outputs.
Again, our framework can easily be fit with this extension, by permuting each collection of
process-specific inputs or outputs separately.

Research Directions

Process symmetry often arises in model checking, and exploiting it correctly can significantly
reduce the size of specifications (and hence the time spent in model checking), as well as
give insight into the behaviour of the system. In this work, we introduce several variants
of process symmetry, and study their algorithmic aspects. Specifically, we show that exact
symmetry can be decided in polynomial time, whereas the approximate version via the
L∞ metric becomes undecidable. A coarser, qualitative approximation, can be decided in
PSPACE. In addition, a different type of symmetry, which looks only at the Parikh image of
the output, can be decided efficiently.

FSTTCS 2020

35:14 Process Symmetry in Probabilistic Transducers

The notions of symmetry studied in this work restrict to either letter-by-letter symmetry,
or Parikh symmetry. However, many other directions can exploit the structure of words
as temporal objects to define other symmetry measures. These include eventual symmetry,
where we require symmetry to take place only after a finite prefix, sliding-window symmetry,
where we look at Parikh images within a sliding window, while requiring window-by-window
symmetry, as well as notions of symmetry that are only relevant for infinite words, such as
the limit-average Parikh image.

References
1 Thomas Ball and Orna Kupferman. Vacuity in testing. In International Conference on Tests

and Proofs, pages 4–17. Springer, 2008.
2 Peter J Cameron et al. Permutation groups, volume 45. Cambridge University Press, 1999.
3 Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Exploiting symmetry

in temporal logic model checking. Formal methods in system design, 9(1-2):77–104, 1996.
4 Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith.

Model checking. MIT press, 2018.
5 A Donaldson and Alice Miller. Symmetry reduction for probabilistic systems. In Proc. 12th

workshop on Automated Reasoning, pages 17–18, 2005.
6 E Allen Emerson and A Prasad Sistla. Symmetry and model checking. Formal methods in

system design, 9(1-2):105–131, 1996.
7 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and

undecidable problems. In International Colloquium on Automata, Languages, and Programming,
pages 527–538. Springer, 2010.

8 C Norris Ip and David L Dill. Better verification through symmetry. Formal methods in
system design, 9(1-2):41–75, 1996.

9 Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On nfas where all states are final, initial,
or both. Theoretical Computer Science, 410(47-49):5010–5021, 2009.

10 Stefan Kiefer and Björn Wachter. Stability and complexity of minimising probabilistic
automata. In International Colloquium on Automata, Languages, and Programming, pages
268–279. Springer, 2014.

11 Marta Kwiatkowska, Gethin Norman, and David Parker. Symmetry reduction for probabilistic
model checking. In International Conference on Computer Aided Verification, pages 234–248.
Springer, 2006.

12 Anthony W Lin, Truong Khanh Nguyen, Philipp Rümmer, and Jun Sun. Regular sym-
metry patterns. In International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 455–475. Springer, 2016.

13 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning
and related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–34, 2003.

14 Azaria Paz. Introduction to probabilistic automata. Academic Press, 2014.
15 Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control.,

4(2-3):245–270, 1961.
16 A Prasad Sistla, Viktor Gyuris, and E Allen Emerson. Smc: a symmetry-based model checker

for verification of safety and liveness properties. ACM Transactions on Software Engineering
and Methodology (TOSEM), 9(2):133–166, 2000.

17 Corinna Spermann and Michael Leuschel. Prob gets nauty: Effective symmetry reduction for
b and z models. In 2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of
Software Engineering, pages 15–22. IEEE, 2008.

18 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM Journal on Computing, 21(2):216–227, 1992.

19 Thomas Wahl and Alastair Donaldson. Replication and abstraction: Symmetry in automated
formal verification. Symmetry, 2(2):799–847, 2010.

Reachability in Dynamical Systems with Rounding
Christel Baier
Technische Universität Dresden, Germany

Florian Funke
Technische Universität Dresden, Germany

Simon Jantsch
Technische Universität Dresden, Germany

Toghrul Karimov
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Engel Lefaucheux
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Joël Ouaknine
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany
Department of Computer Science, Oxford University, UK

Amaury Pouly
Université de Paris, CNRS, IRIF, F-75006, Paris, France

David Purser
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Markus A. Whiteland
Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We consider reachability in dynamical systems with discrete linear updates, but with fixed digital
precision, i.e., such that values of the system are rounded at each step. Given a matrix M ∈ Qd×d,
an initial vector x ∈ Qd, a granularity g ∈ Q+ and a rounding operation [·] projecting a vector of Qd

onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the
orbit O = 〈[x], [M [x]], [M [M [x]]], . . . 〉, i.e., the trajectory of a linear dynamical system in which the
state is rounded after each step. For arbitrary rounding functions with bounded effect, we show
that the complexity of deciding point-to-point reachability – whether a given target y ∈ Qd belongs
to O – is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one).
We also establish decidability without any restrictions on eigenvalues for several natural classes of
rounding functions.

2012 ACM Subject Classification Theory of computation

Keywords and phrases dynamical systems, rounding, reachability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.36

Related Version A full version of the paper is available at http://arxiv.org/abs/2009.13353.

Funding This work was funded by DFG grant 389792660 as part of TRR 248 (see https://
perspicuous-computing.science), the Cluster of Excellence EXC 2050/1 (CeTI, project ID
390696704, as part of Germany’s Excellence Strategy), DFG-projects BA-1679/11-1 and BA-1679/12-
1, and the Research Training Group QuantLA (GRK 1763).
Joël Ouaknine: Supported by ERC grant AVS-ISS (648701).
Amaury Pouly: Supported by CODYS project ANR-18-CE40-0007.

© Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine,
Amaury Pouly, David Purser, and Markus A.Whiteland;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5321-9343
https://orcid.org/0000-0001-7301-1550
https://orcid.org/0000-0003-1692-2408
https://orcid.org/0000-0002-9405-2332
https://orcid.org/0000-0003-0875-300X
https://orcid.org/0000-0003-0031-9356
https://orcid.org/0000-0002-2549-951X
https://orcid.org/0000-0003-0394-1634
https://orcid.org/0000-0002-6006-9902
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.36
http://arxiv.org/abs/2009.13353
https://perspicuous-computing.science
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Reachability in Dynamical Systems with Rounding

1 Introduction

A discrete-time linear dynamical system in ambient space Qd is specified via a linear trans-
formation together with a starting point. The state of the system is then updated at each
step by applying the linear transformation, giving rise to an orbit (or infinite trajectory) in
Qd.

One of the most well-known questions for such systems is the Skolem Problem, which
asks whether the orbit ever hits a given (d− 1)-dimensional hyperplane.1 This problem has
long eluded decidability, although instances of dimension d ≤ 4 are known to be solvable (see,
e.g., the survey [30]). Another natural problem is point-to-point reachability2, known to be
decidable in polynomial time [22]. In both cases, however, one assumes arbitrary precision,
which arguably is unrealistic for simulations carried out on digital computers. In this paper,
we therefore turn our attention to instances of these problems in which the numerical state
of the system is rounded to finite precision at each time step. This leads us to the following
definition:

I Problem (Rounded Point-to-Point Reachability (Rounded P2P)). Given a matrix M ∈ Qd×d,
an initial vector x ∈ Qd, a target vector y ∈ Qd, a granularity g ∈ Q+, and a rounding
operation [·] projecting a vector of Qd onto another vector whose every entry is a multiple
of g, let the orbit O of this system be the infinite sequence 〈[x], [M [x]], [M [M [x]]], . . . 〉, i.e.,
x(0) = [x] and x(i+1) = [Mx(i)]. The Rounded Point-to-Point Reachability (Rounded
P2P) Problem asks whether [y] ∈ O.

Main contributions. We make the following contributions, summarised in Figure 1:
1. We introduce a family of natural problems, Rounded P2P (parameterised by the rounding

function), which to the best of our knowledge has not previously been studied.
2. We show that for hyperbolic systems (i.e., those whose associated linear transformation

has no eigenvalue of modulus 1) the Rounded P2P Problem is solvable – and is in fact
PSPACE-complete – for any “reasonable” (i.e., bounded-effect) rounding function. It
is interesting to note, in contrast, that exact P2P reachability is known to be solvable
in polynomial time. Our approach to solving the Rounded P2P Problem relies on the
observation that, outside a ball of exponential size, the change in magnitude of the system
state at each step dwarfs any effect due to rounding. It thus suffices to exhaustively
examine the effect of the dynamics inside an exponentially bounded state space.

3. In the general case (without any restriction on the magnitude of eigenvalues), the effect
of rounding may forever remain non-negligible, requiring a careful analysis. We have not
been able to solve the problem in full generality, but we do provide a complete solution
for certain natural classes of rounding functions. More precisely, assume that the linear
transformation has been converted to Jordan normal form (now requiring us to work with
complex algebraic numbers). We can then solve the Rounded P2P Problem under two
natural classes of rounding functions:
(a) Polar rounding functions: given a complex number of the form Aeiθ, such functions

round A and θ independently. In such instances we can handle in EXPSPACE all
reasonable rounding functions on A, and what we view as the only natural rounding
function on θ.

1 The Skolem Problem is usually formulated in terms of linear recurrence sequences, but is equivalent to
the description given here.

2 Historically this problem has been known as the orbit problem, however there are now multiple “orbit
problems” (polytope reachability, hyperplane reachability, (semi-)algebraic set reachability,... etc.) and
so we specify point-to-point reachability.

C.Baier et al. 36:3

Rounding type Hyperbolic
Systems

No restrictions on eigenvalues
Jordan normal form
(Note: no hardness)

General

Polar Aeiθ

PSPACE-
complete,
Section 3

EXPSPACE, Section 4.1
Open but
PSPACE-

hard

Argand truncation or expansion EXPSPACE, Section 4.2
Argand minimal error Open (difficulties

highlighted in Section 5)

Arbitrary bounded-effect Open (Open Problem 21)

Figure 1 Decidability and complexity table for the Rounded P2P Problem.

(b) Argand rounding: given a complex number of the form a+ bi, the Argand truncation
will round a and b independently downwards (in magnitude), ensuring that the
modulus never increases. Similarly, the Argand expansion (which rounds a and b

independently upwards) guarantees that the modulus can only increase. Under such
rounding functions, we show decidability in EXPSPACE.

4. We highlight some limitations of our methods, identifying a simple but technically
challenging open problem, which points to some of the key difficulties in solving the
Rounded P2P Problem in full generality. More precisely, we consider minimal error
rounding for a simple rotation in two-dimensional space, for which Rounded P2P is
presently open.

I Remark. It is worth noting that the rounded versions of the Skolem Problem (does the
rounded orbit ever hit a (d− 1)-dimensional hyperplane?) and the Positivity Problem (does
the rounded orbit ever hit a d-dimensional half-space?) remain at least as hard as their
exact integer counterparts, since over the integers rounding has no effect; the decidability
of these problems therefore remains open. However, the rounded versions of reaching a
bounded polytope or a bounded semialgebraic set (problems not known to be decidable in
the exact setting [14, 4]) reduce to a finite number of Rounded P2P reachability queries
(since a bounded set can contain only finitely many rounded points). These observations
together motivate our focus, in the present paper, on the Rounded P2P Problem.

It is interesting to consider rounded reachability problems in the stochastic setting, i.e.,
Markov chains. One observes that the state space [S] = {[x] ∈ [0, 1]d | x sub-stochastic}
is finite, which entails decidability of virtually any reachability problem, including Skolem
and Positivity. This is somewhat arresting, since without rounding reachability problems
are known to be exactly as hard for stochastic systems as for general systems [3]. In any
event, one should note that ensuring that for all x ∈ [S], [Mx] ∈ [S] requires some care, as
arbitrary rounding does not necessarily preserve (sub-)stochasticity.

Related work
With the emerging use of numerical computations during the 80s, doubts were raised
concerning the transferability of results about dynamical systems obtained by simulation in
finite-state machines. In this direction, the sensitivity that a rounding function may have on
the long-term behaviour of a dynamical system is studied in [5]. How rounded orbits can be
simulated by actual orbits of the dynamical system is investigated in [20, 29].

The series of papers [6, 7, 8, 9] examines which statistical properties of a discrete dynamical
system are preserved under the introduction of a rounding function, a good summary of which
can be found in Blank’s book [10, Chapter 5]. As the rounding is refined, some properties

FSTTCS 2020

36:4 Reachability in Dynamical Systems with Rounding

of the discretized orbits follow probabilistic laws asymptotically, as shown in [16, 17]. The
paper [18] studies how volatile statistical notions are in the presence of finite precision (such
as the mean distance of two orbits of discrete dynamical systems).

Another line of research focuses on discretized rotations in Z2 and higher-dimensional
lattices [24, 1]. A connection from roundoff problems in the 2-dimensional case to expanding
maps on the p-adic integers is described in [11, 36]. Building on this, [35] conjectures
periodicity of all orbits of these discretized rotations in Z2. It is shown in [2] that there are
infinitely many periodic orbits, and [31] attempts to concisely describe points leading to
periodic orbits.

In the context of model checking, continuous dynamical systems have been translated into
discrete models, mainly timed automata that approximate the behaviour of the original system
[26, 13, 32]. On a more general level, one can observe a growing interest in the systematic
study of roundoff errors inherent in finite precision computations [19, 33, 21, 25, 27, 15].

2 Rounding functions

Let N,Z,Q,R,A be the naturals, integers, rationals, reals, and algebraic numbers respectively.

Rounding real numbers

Let g ∈ R+ be a granularity. We define our rounding functions taking values to integers, i.e.,
g = 1. For g 6= 1 we consider [x] = g · [x/g]. Given a set S, we let [S] = {[x] | x ∈ S}.

The floor function bxc and ceiling functions dxe are well-known rounding functions in
mathematics and computer science. We recall two further rounding functions:

Minimal error rounding rounds to the nearest value: [x] = arg miny∈Z |x− y|. If |x− y| =
0.5 an arbitrary but deterministic choice must be made (e.g. to round up).
Truncation (“towards zero rounding”, to cut off the remaining bits): if x > 0 then bxc
else dxe, or expansion: if x > 0 then dxe else bxc.

Whenever possible, we prefer to analyse the problems without choosing a specific rounding
function, relying only upon the property of bounded effect:

I Definition 1. A real rounding function [·] : R → R has bounded effect if there exists ∆
such that |x− [x]| ≤ ∆ for all x.

Rounding complex numbers

Complex numbers have both a real and imaginary part. Thus one can consider rounding
each of the components separately, which we call Argand rounding. Consider x = a+ bi with
a, b ∈ R, then let [x] = [a] + [b]i, where [·] can be any real rounding function (leading to
Argand truncation, Argand expansion and Argand minimal error rounding functions).

However, complex numbers can also be readily represented using polar coordinates as
follows: a number is represented as x = Aeiθ, where A is the modulus and θ is the angle
between the 2-d coordinates (1, 0) and (a, b) (when represented as a + bi). Then, a polar
rounding function rounds A and θ independently, i.e. [x] = [A]ei[θ]. The rounding of [A] can
be any real rounding function. For the rounding of the angle we always assume minimal
error rounding. That is, given granularity θg = π

R for some R ∈ N, then [θ] is a multiple of
θg with minimal error and arbitrary but deterministic tie breaking.

We generalise non-specific bounded-effect rounding to the complex numbers.

I Definition 2. A complex rounding function [·] : C→ C has bounded effect on the modulus
if there exists ∆ such that ||x| − |[x]|| ≤ ∆ for all x.

C.Baier et al. 36:5

Argand and polar roundings are both defined by applying bounded-effect real rounding
functions to each component, and have bounded effect under Definition 2. However, note
the distinction with Definition 1; polar rounding can exhibit arbitrary large effects (in the
following sense: given any ∆ > 0, one can always find x ∈ C such that |x− [x]| > ∆), but
nevertheless has only bounded effect on the modulus.

I Definition 3 ([K]-Ball). Given a complex rounding function [·] and an integer K let a
[K]-ball be the set of admissible points of modulus at most K, i.e., {[x] | x ∈ C, |[x]| ≤ K}.

Rounding vectors

In general, a rounding function on K induces a rounding function on vectors Kd, where
[(x1, . . . , xd)] = ([x1], . . . , [xd]), although not all rounding functions on vectors need take this
form. We generalise non-specific bounded-effect rounding to vectors.

I Definition 4. A rounding function [·] : Kd → Kd has bounded effect on the modulus if there
exists ∆ such that ||x|k − |[x]|k| ≤ ∆ for all x and every k ∈ {1, 2, . . . , d}.

Finally, we assume that all of our rounding functions can be computed in polynomial time
and are fixed (rather than inputs) in our problems, and thus ∆ is also a fixed parameter.

3 Hyperbolic systems

In this section we establish our first main result for hyperbolic systems, which we first define:

I Definition 5 (Hyperbolic System [23, Section 1.2]). A linear map represented by the matrix
M ∈ Rd×d is hyperbolic if all of its eigenvalues have modulus different from one.

I Theorem 6. The Rounded P2P Problem is PSPACE-complete for hyperbolic linear maps
represented by rational matrices and real rounding functions with bounded effect.

We first demonstrate that the problem is in PSPACE for matrices in Jordan normal
form, to which we will reduce the general case in a second step. As the passage to Jordan
normal form inevitably introduces complex numbers, PSPACE membership will be shown
for Jordan normal form matrices over the algebraic numbers and, accordingly, complex
rounding functions with bounded effect on the modulus. To complete the picture we show
hardness for hyperbolic systems (in fact, the hardness result applies even for non-hyperbolic
systems, that is for matrices whose eigenvalues may include 1).

3.1 Membership in PSPACE

We now prove the membership part of Theorem 6 under the additional assumption that the
matrices are in Jordan normal form.

I Lemma 7. The Rounded P2P Problem decidable in PSPACE for any complex rounding
function with bounded effect on the modulus ∆ and hyperbolic matrices M ∈ Ad×d in Jordan
normal form.

FSTTCS 2020

36:6 Reachability in Dynamical Systems with Rounding

Proof. We consider a single Jordan block of dimension d with eigenvalue λ. If the matrix M
has multiple Jordan blocks, the algorithm can be run in lock step3 for each block. Hence,
without loss of generality we let

M =

 λ 1
λ 1
. . . 1

λ

 .
The idea will be to show that for |λ| > 1, for values large enough growth will outstrip

the rounding, and the orbit will grow beyond the target, never to return. If |λ| < 1 and the
orbit gets large enough, it will begin to contract again, so we choose a ball large enough to
contain the whole orbit. We do not consider the case |λ| = 1 here.

Formally, in each dimension k ∈ {1, . . . , d} we compute a radius Ck, defining a [Ck]-ball
of radius Ck about 0, containing xk and yk such that for all z in the orbit O if zk 6∈ [Ck]-ball
then [Mz]k 6∈ [Ck]-ball. That is, if the orbit has left the ball, it will never come back. The
algorithm proceeds by simulating the orbit from x until one of the following occurs.

y is found, in which case return yes, or
a point repeats, in which case return no, or
a point x(i) is found such that

∣∣(x(i))k
∣∣ ≥ Ck for some k, in which case return no.

Since B = [{x ∈ Rd | for all k |xk| ≤ Ck}] is finite, one of the three must occur. Remembering
all previous points would require too much space. Therefore we record a counter of the
number of steps taken and once this exceeds the maximum number of points then we know
some point must have been repeated (possibly many times by this point). Let C = maxi Ck,
then the bounding hyper-cube of B has (2C/g)d points, hence B has fewer points. We show
this number has at most exponential size in the description length of the input, and hence
can be represented in PSPACE.
I Case 1 (suppose |λ| > 1). For the dth component we have (x(i+1))d = [λ(x(i))d]. There
is a bounded effect of the rounding ∆, ensuring

∣∣(x(i+1))d
∣∣ ≥ |λ| ∣∣(x(i))d

∣∣ − ∆. So when
|λ|
∣∣(x(i))d

∣∣ −∆ >
∣∣(x(i))d

∣∣, this component must grow. Let ` = max {1,∆, |y1| , . . . , |yd|}.
We define the radius Cd := ∆

|λ|−1 + `, which satisfies the desired property described above.
Now suppose that the radius Ck is defined so that Ck ≤ `

∑d−k+1
j=0 (2

|λ|−1)j (holds for k = d)
and assume that

∣∣(x(i))j
∣∣ ≤ Cj for each j ∈ {k, . . . , d}. For the k−1th dimension the update is

of the form (x(i+1))k−1 = [λ(x(i))k−1+1(x(i))k]. Since
∣∣(x(i))k

∣∣ ≤ Ck, we have ∣∣(x(i+1))k−1
∣∣ ≥

|λ|
∣∣(x(i))k−1

∣∣−∆−Ck, and there is growth when |λ|
∣∣(x(i))k−1

∣∣−∆−Ck >
∣∣(x(i))k−1

∣∣, i.e.,
when

∣∣(x(i))k−1
∣∣ > ∆+Ck

|λ|−1 . So, we may define Ck−1 := ∆+Ck

|λ|−1 + `, which satisfies the property
described above, and moreover, Ck−1 ≤ 2Ck

|λ|−1 + ` ≤ `
∑d−(k−1)+1
j=0 (2

|λ|−1)j due to our choice
of `. Repeat for all remaining components k − 2, . . . , 1.

Now Ck ≤ `
∑d
j=0(2

|λ|−1)j ≤ `(d+ 1)(1 + (2
|λ|−1)d) for each k, and the claim follows.

I Case 2 (suppose |λ| < 1). We require the ball to have the property that if the orbit leaves,
it will never come back. However for |λ| < 1, while initially there may be some growth (due
to other components), once large enough |λ| will dominate and the modulus will decrease.
Therefore, we want to ensure we choose the ball large enough that the orbit will never leave
the ball in the first place. The following definitions of the radii Cj can easily be altered to
furnish this requirement.

3 By running processes in lock step, here and elsewhere, we mean running all of the processes simultaneously
(interleaving instructions for each process) until either x(i) = y or one of the processes concludes non-
reachability.

C.Baier et al. 36:7

Consider the last component d: we have
∣∣(x(i+1))d

∣∣ ≤ |λ| ∣∣(x(i))d
∣∣ + ∆. Set again ` =

max{1,∆, |y1| , . . . , |yd|} and define Cd := ∆
1−|λ| + `; if

∣∣(x(i))d
∣∣ ≤ Cd, then ∣∣(x(i+1))d

∣∣ ≤ Cd.
Having fixed Ck′ for k′ ∈ {k, . . . , d}, consider component k − 1: We have (x(i+1))k−1 =

[λ(x(i))k−1 + (x(i))k], and so
∣∣(x(i+1))k−1

∣∣ ≤ |λ| ∣∣(x(i))k−1
∣∣ +

∣∣(x(i))k
∣∣ + ∆. Let us define

Ck−1 := Ck+∆
1−|λ| + `. Now if

∣∣(x(i))k−1
∣∣ ≤ Ck−1 then

∣∣(x(i+1))k−1
∣∣ ≤ Ck−1. Repeat for

each remaining component. It can be shown, similar to the previous case, that Ck ≤
`(d+ 1)(1 + (2

1−|λ|)
d) for each k, and this concludes the proof. J

Reducing the general form to Jordan normal form

In the previous section we assumed that the matrix is always in Jordan normal form, which
is a significant restriction. In this section we will not assume Jordan normal form, which
means we cannot make any assumption about the rounding, other than being of bounded
effect, to prove Theorem 6. After a change of basis properties such as “rounding towards
zero” may not be preserved.

Proof (upper bound of Theorem 6). Let ∆ be the fixed, bounded effect on the modulus of
[·]. Let us consider hyperbolic M = PJP−1 ∈ Qd×d. We ask whether x(i+1) = y for some i.
Observe that x(i+1) = [Mx(i)] = Mx(i) + e(Mx(i)) where e(x) := [x]− x ∈ [−∆,∆]d for any
x since [·] has bounded effect. Now if we define z(i) := P−1x(i) we have that

z(i+1) = P−1x(i+1) = P−1(Mx(i) + e(Mx(i))) = Jz(i) + P−1e(PJz(i)) = LJz(i)M

where LzM := z + P−1e(Pz) for any z. The question x(i) ?= y for some i now becomes
equivalent to z(i) ?= P−1y. But note that the system for z(i) is in Jordan normal form
and the rounding function L·M has bounded effect on the modulus, with bound ∆′ ≤
max1≤k≤d maxe∈[−∆,∆]d(P−1e)k. Since ∆ is fixed and P−1 is computable in polynomial
time [12], then ∆′ is of polynomial size. Hence, we have produced in polynomial time an
instance of the Rounded P2P problem with a matrix in Jordan normal form. As the proof of
Lemma 7 shows that this problem is solvable in PSPACE even if ∆ is given as input, we
can conclude that the PSPACE upper bound holds also for the general case. J

3.2 PSPACE-hardness
We will prove PSPACE-hardness (i.e., the lower bound of Theorem 6) by reduction from
quantified boolean formula (QBF), which is PSPACE-complete [34]. We do this by first
encoding a simple programming language into the rounded P2P Problem. Then, we show
that reachability in this language can solve QBF. Whilst a direct reduction is possible, we
provide exposition via the language for two reasons; first, we will show that the language is
robust to choice of rounding function (Remark 9), and secondly the reduction results in an
instance where all eigenvalues have modulus 1, but by a small perturbation, we observe that
the problem remains hard when all of the eigenvalues do not have modulus 1 (Remark 10).

The language will consist of m instructions, operating over d variables. Each instruction is
a boolean map fi : [0, 1]d → [0, 1]d, where each dimension i is updated using a logical formula
of the d inputs. Each of the m instructions is conducted in turn and updating the d variables
is simultaneous in each step. Thus, references to variable in a function are the evaluation
in the previous step. Once the m instructions are complete, the system returns to the first
instruction and repeats (x(i) = (fm ◦ fm−1 ◦ · · · ◦ f2 ◦ f1)(x(i−1)), see also Algorithm 1).

An instruction is encoded into the rounded dynamical system using a map fi : Nd → Nd
for 0 ≤ i ≤ m − 1, where instructions are of the form (fi(x))j = b(pj · x)c where pj in
Qd. We demonstrate how to encode the required logical operations in a rounded dynamical

FSTTCS 2020

36:8 Reachability in Dynamical Systems with Rounding

Algorithm 1 System behaviour of the language.

Input: x ∈ [0, 1]d initial vector, y ∈ [0, 1]d target vector
while x 6= y do

x← f1(x)

x← f2(x) e.g.=



x1 ← x2 ∨ (x5 ∧ x3)
x2 ← if (x1 ∨ x3) then x6 else x2

x3 ← true
...
xd ← x4

...
x← fm(x)

end

system: and (xi ← xj ∧ xk =
⌊

1+xj+xk

3

⌋
), or (xi ← xj ∨ xk =

⌊
1+xj+xk

2

⌋
), negation

(xi ← ¬xj = b1− xjc), resetting a variable to false (xi ← b0c), copying a variable without
change (xi ← bxic) or moving/duplicating a variable (xi ← bxjc). To enable this, we will
assume there is always access to the constant 1 (or true) by an implicit dimension, fixed
to 1.

In multiple steps any logical formula can be evaluated. This can be done with auxiliary
variables to store partial computations, where the instructions will in fact be multi-step
instructions making use of a finite collection of auxiliary variables which will not be referenced
explicitly. Meanwhile any unused variables can be copied without change. In particular
the syntax x1 ← if (x2) then x3 else x4 can be encoded, by equivalence with the logical
formula x1 ← ((x2 =⇒ x3) ∧ (¬x2 =⇒ x4)).

We ask, given some initial configuration x(0), and a target y: does there exist i such that
x(i) = y. If there was just one step function, the system dynamics would be a direct instance
of the rounded orbit semantics. When there are m functions, we remark the sequence of
functions can be encoded by taking m copies of each variable, and each function fi, can
transfer the function from one copy to the next, zeroing the previous set of variables. That
is, let

M =


0 fm

f1 0
f2 0

. . .
fm−1 0

 .
Then the initial configuration becomes (x(0), 0, . . . , 0), and the target becomes (y, 0, . . . , 0).

An abstraction of the language is depicted in Algorithm 1. It remains to show that QBF
can be encoded in the language.

I Lemma 8. Reachability in this language can solve QBF.

Proof. Formally we write a program in our language to decide the truth of a formula of
the form ∀x1∃x2∀x3 . . . ∃xnψ(x1, . . . , xn), where ψ is a quantifier free boolean formula. For
convenience we assume it starts with ∀, ends with ∃ and alternates. Formulae not in this
form can be padded if necessary with variables which do not occur in the formula ψ.

The program will have the following variables: x1, . . . , xn, ψ̂, s
0
1, . . . , s

0
n, s

1
1, . . . , s

1
n and

c1, . . . , cn. The bits x1, . . . , xn represent the current allocation to the corresponding bit

C.Baier et al. 36:9

variables of ψ, and ψ̂ will store the current evaluation of ψ(x1, . . . , xn). To cycle through all
allocations to x1, . . . , xn, the variables will be treated as a binary number and incremented by
one many times, for this purpose the bits c1, . . . , cn represent the carry bits when incrementing
x1, . . . , xn.

The intuition of szi is the following: for fixed x1, . . . , xi−1 it stores the evaluation of
Qxi+1 Q

′xi+2 . . . ∃xnψ(x1, . . . , xi−1, z, xi+1, . . . , xn) where Q,Q′ ∈ {∃,∀} as required by the
formula. Therefore the overall formula is true if and only if s0

1 ∧ s1
1 is eventually true.

We define 3 + n instructions, and each run through f1 → f3+n will cover exactly one
allocation to x1, . . . , xn, with the next run through covering the next allocation that one gets
by incrementing the rightmost bit. Once xi+1 has been in both the 1 state and the 0 state
for all values below, we have enough information to set sxi

i+1. This is set when the carry-bit
ci+1 is one, which indicates that xi+1 has visited both 0 and 1 and is being returned back to
0 (thus setting xi+1 = · · · = xn back to 0).

We let the initial configuration be (0, 0 . . . , 0). Note that this is hiding the implicit
dimension that is always 1. Each of the following step functions should be interpreted as
copying any variable that is not explicitly set.

Step 1. Step 2. Step 3.
Evaluate ψ Update either s0

n or s1
n Start incrementing xn

f1(·) =
{
ψ̂ ← ψ(x1, . . . , xn) f2(·) =


s0
n ← if (xn = 0) then ψ̂

else s0
n

s1
n ← if (xn = 1) then ψ̂

else s1
n

f3(·) =

{
xn ← ¬xn
cn ← xn

Step 3 + n − i, for i = n − 1 to 1.
If there is a carry, update szi and continue incrementing

i even (xi universally quantified): i odd (xi existentially quantified):
f3+n−i(·) = f3+n−i(·) =

xi ← if (ci+1) then ¬xi else xi

ci ← ci+1 ∧ xi
ci+1 ← 0
s0
i ← if (ci+1 ∧ ¬xi) then s0

i+1 ∧ s1
i+1

else s0
i

s1
i ← if (ci+1 ∧ xi) then s0

i+1 ∧ s1
i+1

else s1
i



xi ← if (ci+1) then ¬xi else xi

ci ← ci+1 ∧ xi
ci+1 ← 0
s0
i ← if (ci+1 ∧ ¬xi) then s0

i+1 ∨ s1
i+1

else s0
i

s1
i ← if (ci+1 ∧ xi) then s0

i+1 ∨ s1
i+1

else s1
i

Step 3 + n.
Set every variable to 1 if QBF satisfied. After this step, the program returns to f1.
f3+n(·) =

{
v ← if (s0

1 ∧ s1
1) then 1 else v (for all variables v)

The (3+n)th step ensures that configuration (1, . . . , 1) will be reached if and only if the given
QBF formula is satisfied. J

I Remark 9 (Choice of rounding function). The presentation here relies on specific choices of
rounding function, but we observe that the language can easily exchange several different
natural rounding functions, so the reduction is robust. The rounding is only useful in the and
and or instructions. The floor function can be replaced by essentially any other rounding.
For example xj ∨ xk =

⌈
xj+xk

2

⌉
and xj ∧ xk =

⌈
−1+xj+xk

2

⌉
. Similarly, when [·] is minimal

error rounding then xj ∨ xk = [1+xj+xk

3] and xj ∧ xk = [xj+xk

3] (the break point is not used).
Thus, the problem will also be hard for any of these roundings.

FSTTCS 2020

36:10 Reachability in Dynamical Systems with Rounding

I Remark 10 (Perturbation: ensuring the eigenvalues are not modulus 1). Observe that under
the perturbation that multiplies each operation by 1.1 (before taking floor) we obtain
the same resulting operation. For example xi ← xj ∨ xk =

⌊
1+xj+xk

2

⌋
is equivalent to

xi ← xj ∨xk =
⌊
(1+xj+xk

2) ∗ 1.1
⌋
. Hence, if the resulting matrix M has eigenvalues 1, taking

1.1M (or similar value to 1.1) will result in a matrix that does not with the same orbit;
which shows that hardness is retained for matrices in which no eigenvalue has modulus 1.
I Remark 11 (Dimension). The hardness result needs reachability instances of unbounded
dimension. For a QBF formula with n variables and ` logical operations, the resulting
instance of rounded P2P has dimension (3n+ 1 + `)(4n+ 15 + `).

4 Special cases on non-hyperbolic systems

In this section we consider certain cases when the eigenvalues can be of modulus one. In
particular we work in the Jordan normal form and show that the problem can be solved for
certain types of rounding. We fall short of arbitrary deterministic rounding, which would be
required to show the problem in full generality through the Jordan normal form approach.

First, we show decidability for polar-rounding, along with an example with numbers
requiring exponential space by the time the system becomes periodic – seeming to imply
any “wait and see” approach would require EXPSPACE. We also show decidability for
certain types of Argand rounding, in particular truncation and expansion, but minimal-error
rounding remains open (which we discuss further in Section 5).

4.1 Polar rounding with updates in Jordan normal form
We restrict ourselves to a Jordan block M of dimension d, with eigenvalue λ of modulus 1.
Since the polar rounding function has bounded effect on the modulus, the remaining blocks,
which need not be of modulus 1 can be solved (Lemma 7) by running this algorithm in lock
step with the algorithm for those blocks. All together, this gives us:

I Theorem 12. The Rounded P2P Problem is decidable in EXPSPACE for the polar
rounding function with θg = π

R , R ≥ 2 and matrices M ∈ Ad×d in Jordan normal form.

To prove Theorem 12 we show that each dimension d, d−1, . . . , 1 will eventually be periodic
on a fixed modulus, or permanently diverge beyond yk (the target value in dimension k).

Let 〈a, b〉 be the smallest angle between vectors a and b – this is a value in [0, π] and, in
particular, it is always positive. It is used as a measure of alignment: the more a and b are
aligned the smaller 〈a, b〉 is. We will assume that the system will round up if [x]− x = 0.5.
The remaining case can be adapted by suitably adjusting the relevant inequalities. We
say that a dimension k ∈ {1, . . . , d} is just rotating after position N , if for all i ≥ N :
(x(i+1))k = [λ (x(i))k]. Note that dimension d is just rotating after 0, by definition. Our
goal is to show that every dimension k will eventually be just rotating (for which we would
require it to have modulus |yk|) or reach a point that lets us conclude it has permanently
diverged past yk. So we assume, henceforth, that dimension k is just rotating.

We let φ(i) =
〈
λ(x(i))k−1, (x(i))k

〉
. As (x(i+1))k−1 = [λ(x(i))k−1 + (x(i))k], small values

of φ(i) (between 0 and π/2) lead to an increase in modulus of (x(i+1))k−1, whereas large
values (between π/2 and π) lead to a decrease when

∣∣(x(i))k−1
∣∣ is sufficiently large relative

to
∣∣(x(i))k

∣∣. Our analysis relies on the fact that φ(i) can never increase:

I Lemma 13. Suppose that dimension k is just rotating after step N . Then, for all i ≥ N+1:
φ(i) ≥ φ(i+ 1).

C.Baier et al. 36:11

φ Iφ D stop

just
rotatingφ

φ > π/2:

φ ≤ π/2:

φ
bi
gg

er
φ
sm

al
le
r

φ ↓
φ ↓

M ↓ φS M ↑ φS

M ↓ φS

M ↑ φS
|xk−1| > max{ |xk|/

√
2, |yk−1|},

γ ≤ π/2
(by Lemma 17)

M ↑ φS

φ ↓

M ↑ φS
γ > π/2

impossible by Lemma 15

M ↑ φS impossible
by Lemma 16

M ↓ φS impossible
(as φ ≤ π/2)

M ↑ φS and |xk−1| > |yk−1|
(as M ↓ unreachable)

MSφS

(by Lemma 14)

at most
∣∣∣x(N)
k−1

∣∣∣
(cannot decrease below 0)

at most max{ |xk|/
√

2, |yk−1|}
(stop transition available)

at most |yk−1|
(stop transition available)

Figure 2 State diagram for φ whilst considering dimension k−1, assuming k is just rotating.

If dimension k−1 repeats its relative angle to k and its modulus in some step, we can
conclude that k−1 is just rotating:

I Lemma 14. Suppose that dimension k is just rotating after step N , that φ(N) = φ(N+1)
and

∣∣(x(N))k−1
∣∣ =

∣∣(x(N+1))k−1
∣∣. Then, dimension k−1 is just rotating after N .

If the precondition of Lemma 14 holds, we move to the next dimension k−2. Otherwise, we
want to give a bound such that whenever

∣∣(x(i))k−1
∣∣ exceeds it, we can conclude that it never

decreases back to |yk−1|. We first introduce the angle γ(i) =
〈
λ(x(i))k−1 + (x(i))k, λ(x(i))k−1

〉
.

The angle γ(i) decreases with increasing
∣∣(x(i))k−1

∣∣, as dimension k is just rotating and hence
does not change in modulus. We observe that γ(i) ≤ φ(i) for all i. The following shows that
an increase in modulus caused by crossing an “axis” (i.e. if γ(i) > π/2) can only happen
once, as in the next step, the angle will have decreased.

I Lemma 15. Let a = λ(x(i))k−1 and b = (x(i))k. Suppose that θg ≤ π/2, γ(i) > π/2 and
|a+ b| > |a|. Then 〈λ[a+ b], [λb]〉 ≤ π/2, entailing γ(i+ 1) ≤ φ(i+ 1) ≤ π/2.

Furthermore, a decrease cannot be followed by an increase, unless the angle changes:

I Lemma 16. Suppose dimension k is just rotating after N . It is not possible for i− 1 ≥ N ,
to have φ(i− 1) = φ(i) = φ(i+ 1) > π/2 and

∣∣(x(i+1))k−1
∣∣ > ∣∣(x(i))k−1

∣∣ < ∣∣(x(i−1))k−1
∣∣.

Finally, we place a limit on the number of consecutive increases until we can decide that
dimension k−1 will not decrease below the current modulus in the future:

I Lemma 17. Let a = λ(x(N))k−1 and b = (x(N))k for some N > 0. Suppose that k is just
rotating after N , |a+ b| > |a|+ 0.5 and |a| ≥ 1√

2 |b|. Then, for all i > N :
∣∣(x(i))k−1

∣∣ > |a|.
With Lemmata 14-17 we are in a position to prove Theorem 12 (the proofs of the preceding

lemmata, and the EXPSPACE analysis can be found in the full version).

Proof of Theorem 12. As described above, we consider each dimension separately, starting
with k = d, and assume by induction that the previous dimension is just rotating. We
describe an algorithm that tracks the value of φ and operates according to Figure 2. Each

FSTTCS 2020

36:12 Reachability in Dynamical Systems with Rounding

y y2x

λx λx0 + y

[λx0 + y]

y y2x

λx λx0 + y

[λx0 + y]

Rotation by arg(λ)

Offset by y
Rounding

Rounding Tie-break
Rounding Point

Figure 3 Example where the system may become large before being periodic (see Example 18).

realisable value of φ relates to a copy of Figure 2 (we only draw one example of φ satisfying
φ > π/2 and φ ≤ π/2 respectively). For φ > π/2 two states are used, one which encodes
that the previous transition was decrementing the modulus (φ D), the other which indicates
the previous was not decrementing (including first arrival) (φ I).

The algorithm moves on each update step according to the arrow, which denotes whether
the update is modulus increasing M ↑, decreasing M ↓ or stationary MS. Similarly φ

may decrease φ ↓ or stay stationary φS, but never increase (Lemma 13). Whenever φ
decreases we make progress through the DAG to a lower value of φ. All combinations
{M ↑,M ↓,MS} × {φ ↓, φS} are accounted for at each state.

Progress is made whenever we move through the DAG towards a stopping criterion. For
self-loops a bound is provided (in blue) on the maximum time spent in this state. Since
for each dimension we will ultimately end up in just rotating, or be able to stop early, the
problem is decidable. J

I Example 18 (System requiring EXPSPACE to be periodic). If φ ≤ π/2, the considered
dimension will either diverge at some point, or become periodic. This depends, essentially, on
whether

∣∣(x(i))k
∣∣ cos(φ) < 0.5, in which case the rounding will not lead to an increase when∣∣(x(i))k−1

∣∣ is sufficiently large relative to
∣∣(x(i))k

∣∣. We give an example where
∣∣(x(i))k−1

∣∣
grows to

∣∣(x(i))k
∣∣2, and requires numbers of doubly exponential size (and exponential space) in

d before becoming periodic. We assume that θg = π/2 (so there are four possible angles) and
integer modulus granularity. Let M be a single Jordan block of dimension d with eigenvalue
λ = eiπ/2. The angle φ(i) remains constant, but the modulus grows while

∣∣(x(i))k
∣∣ <∣∣(x(i))k−1

∣∣ ≤ ∣∣(x(i))k
∣∣2. We start at the point x(0) = ((3 + d, 0), . . . , (6, 0), (5, 0), (4, 0)),

using the representation that Aeiθ is written (A, θ). This system is periodic, with maximal
component x(N) = ((4(2d−1), 0), . . . , (42·2·2, 0), (42·2, 0), (42, 0), (4, 0)). Note that 424 is larger
than a 32-bit number. This idea is illustrated in Figure 3, where y represents (x(i))k and is
just rotating, and x represents (x(i))k−1, which grows to |y|2.

Despite Example 18, which shows that waiting until becoming periodic may need expo-
nential space, we conjecture the Rounded P2P can be solved in PSPACE. This is because
if (x(i))1 exceeds a value representable in polynomial space we expect it will never return to
the target y1 (a value representable in polynomial space). However, we are unable to show
at the moment that it never gets very large and subsequently returns to a small value.

C.Baier et al. 36:13

4.2 Argand truncation or expansion in Jordan normal form

We now consider Argand truncation based rounding showing decidability in EXPSPACE.
The rounding function is of the form [a+ bi] = [a] + [b]i where, for x ∈ R , [x] = bxc if x ≥ 0
and [x] = dxe if x < 0, which has a non-increasing effect on the modulus.

I Theorem 19. The Rounded P2P Problem is decidable in EXPSPACE for deterministic
Argand rounding function with a non-increasing effect on the modulus and matricesM ∈ Ad×d
in Jordan normal form.

As a key ingredient of Theorem 19 we will make use of the following theorem:

I Theorem 20 ([28, Corollary 3.12, p.41]). Both x is a rational multiple of π and sin(x) is
rational only at sin(x) = 0, 1

2 , or 1. Both x is a rational multiple of π and cos(x) are rational
only at cos(x) = 0, 1

2 , or 1. Both x is a rational multiple of π and tan(x) are rational only at
tan(x) = 0, or ±1.

Proof sketch of Theorem 19. Without loss of generality we consider only a single Jordan
block with |λ| = 1, as the remaining blocks can be handled in lock step (using the algorithm
of Lemma 7 if the eigenvalue is not of modulus one). Consider the dth component. At each
step, whenever rounding takes place, then there is some decrease in the modulus. Thus,
either the coordinate hits zero (and stays forever), or it stabilises and becomes periodic (with
no rounding ever occurring again). The dth coordinate can be simulated until this happens.
At this point, if its modulus is not |yd|, y will not be reached in the future and we return no.

If dimension xd reaches zero, then this dimension from some point on becomes irrelevant
and the instance can be reduced to an instance of dimension d− 1. Note that this case must
occur if arg(λ) is not a root of unity as an irrational point is found infinitely often.

In the case where xd does not reach zero, then it is periodic at some modulus. This
implies it never rounds again, and so surely hits integer points at every step. We show that
this can only occur if arg(λ) is a multiple of π/2. Assume that arg(λ) is not a multiple
of π/2: the rotation of a point with integer coordinate to integer coordinate leads to the
conclusion of either rational tangent or rational sine and cosine. By Theorem 20 a rational
tangent alongside a rational angle (arg(λ) is a root of unity) implies that the angle must be
a multiple of π/4. It is not π/4, as there is no Pythagorean triangle with angle π/4. By
Theorem 20 rational sine and cosine and rational angle concludes the angle must be a multiple
of π/2. Finally, we show that when arg(λ) is a multiple of π/2 the system surely diverges at
dimension d−1, and hence we can put a bound on how far we need to simulate. J

I Remark (Argand expansion in Jordan Normal Form). Instead of considering the rounding
function to always decrease the modulus, we consider the rounding function to always increase
the modulus. Then, by the same rationality argument either arg(λ) is a multiple of π/2 (so
no rounding occurs and standard methods can be applied), or arg(λ) is not a multiple of π/2
and rounding is applied infinitely often. We observe that rounding infinitely often results
in divergence. Suppose instead the modulus converges, in supremum, to C. However the
[C]-ball is finite, thus rounding infinitely often must eventually exhaust the set, contradicting
supremacy. Since divergence occurs in the dth component the system can be iterated until
either x(i) = y or (x(i))d exceeds yd. (Unless (x(0))d = yd = 0, in which case the dth
component can be deleted.)

FSTTCS 2020

36:14 Reachability in Dynamical Systems with Rounding

(a) r = 10, θ = π/42 (b) r = 15, θ = π/91 (c) r = 10, θ = 2(0.4)

10 π (d) r = 20, θ = π/14

Figure 4 Rotational examples. We start with all points in the circle of radius r, and consider the
effect of rotating every point by θ, followed by minimal error rounding. This can be seen as viewing
the combined orbits, starting at several points. Redder points are added in later generations.

5 Discussion of open problems

In this section we consider the following open problem, which already exhibits a technical
difficulty for a relatively simple instance.

I Open Problem 21. Under which deterministic bounded-effect rounding functions does the
Rounded P2P Problem become decidable (even when restricted to Jordan normal form)?

In particular we emphasize that even decidability of the Rounded P2P Problem in
the case of a 2D rotation matrix remains open. This should be compared to the papers
[24, 11, 36, 35, 2, 31], which consider linear maps on R2 that are close to rotations, and the
floor rounding b·c is used to induce discretized maps on Z2. The conjecture made in [35]
that all orbits of these maps are eventually periodic (and thus finite) is, to the best of our
knowledge, still open in general. This lack of understanding of the dynamics of rotations even
on a 2-dimensional lattice is striking and hints at an intrinsic level of difficulty in dealing
with eigenvalues of modulus 1.

We ran experiments on the behaviour of rounded orbits induced by rotations in the plane.
Four prototypical results are depicted in Figure 4. We note that in every one of our examples
the orbits eventually become periodic. Moreover, all experiments fall into the four categories
of Figure 4, i.e., where the resulting set consists of (a) a square with cut-off corners, (b) this
same square, but with a central square cut out, and (c) all points within the circle with some
seemingly randomly added points outside (in the case of an irrational multiple of π), (d)
the initial circle with added “tentacles” occuring in intervals corresponding to the rotational
angle (in the case of a rational multiple of π). We have been unable construct a rotation
with an infinite rounded orbit.

One could hope that other kinds of rounding functions simplify the analysis of the orbits.
We have shown truncation based rounding, for example, either helps converge towards zero, or
diverge towards infinity, and this can be exploited (particularly at the bottom dimension of a
Jordan block). However, roundings which may either round up or down greatly complicate the
analysis. Nevertheless, we conjecture that all rounded orbits obtained by rotation eventually
become periodic.

Random rounding functions. Orbit problems for rounding functions which behave probab-
ilistically are another line of open problems and are a natural candidate for future work.

C.Baier et al. 36:15

References
1 Shigeki Akiyama, Tibor Borbély, Horst Brunotte, Attila Pethő, and Jörg Thuswaldner.

Generalized radix representations and dynamical systems. I. Acta Mathematica Hungarica,
108:207–238, August 2005. doi:10.1007/s10474-005-0221-z.

2 Shigeki Akiyama and Attila Pethő. Discretized rotation has infinitely many periodic orbits.
Nonlinearity, 26(3):871–880, 2013. doi:10.1088/0951-7715/26/3/871.

3 S Akshay, Timos Antonopoulos, Joël Ouaknine, and James Worrell. Reachability problems for
Markov chains. Information Processing Letters, 115(2):155–158, 2015.

4 Shaull Almagor, Joël Ouaknine, and James Worrell. The semialgebraic orbit problem. In
Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126
of LIPIcs, pages 6:1–6:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

5 C. Beck and G. Roepstorff. Effects of phase space discretization on the long-time behavior of
dynamical systems. Physica D: Nonlinear Phenomena, 25(1):173–180, 1987. doi:10.1016/
0167-2789(87)90100-X.

6 Michael Blank. Ergodic properties of discretizations of dynamic systems. Dokl. Akad. Nauk
SSSR, 278(4):779–782, 1984.

7 Michael Blank. Ergodic properties of a method of numerical simulation of chaotic dynamical
systems. Mathematical Notes of the Academy of Sciences of the USSR, 45:267–273, 1989.
doi:10.1007/BF01158885.

8 Michael Blank. Small perturbations of chaotic dynamical systems. Russian Mathematical
Surveys, 44(6):1–33, December 1989. doi:10.1070/rm1989v044n06abeh002302.

9 Michael Blank. Pathologies generated by round-off in dynamical systems. Physica D: Nonlinear
Phenomena, 78(1):93–114, 1994. doi:10.1016/0167-2789(94)00103-0.

10 Michael Blank. Discreteness and Continuity in Problems of Chaotic Dynamics. Translations
of mathematical monographs. American Mathematical Society, 1997.

11 D. Bosio and F. Vivaldi. Round-off errors and p-adic numbers. Nonlinearity, 13(1):309–322,
1999. doi:10.1088/0951-7715/13/1/315.

12 Jin-yi Cai. Computing Jordan normal forms exactly for commuting matrices in polynomial
time. Int. J. Found. Comput. Sci., 5(3/4):293–302, 1994. doi:10.1142/S0129054194000165.

13 Rebekah Carter and Eva M. Navarro-López. Dynamically-driven timed automaton abstractions
for proving liveness of continuous systems. In Marcin Jurdziński and Dejan Ničković, editors,
Formal Modeling and Analysis of Timed Systems, pages 59–74, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-33365-1_6.

14 Ventsislav Chonev, Joël Ouaknine, and James Worrell. The polyhedron-hitting problem.
In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 940–956.
SIAM, 2015.

15 Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko Becker, and Robert
Bastian. Daisy - framework for analysis and optimization of numerical programs (tool paper).
In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 270–287, Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-319-89960-2_15.

16 Phil Diamond and Igor Vladimirov. Asymptotic independence and uniform distribution of
quantization errors for spatially discretized dynamical systems. International Journal of
Bifurcation and Chaos, 8:1479–1490, 1998. doi:10.1142/S0218127498001133.

17 Phil Diamond and Igor Vladimirov. Set-valued Markov chains and negative semitrajectories
of discretized dynamical systems. Journal of Nonlinear Science, 12:113–141, 2002. doi:
10.1007/s00332-001-0450-4.

18 S.P. Dias, L. Longa, and E. Curado. Influence of the finite precision on the simulations of
discrete dynamical systems. Communications in Nonlinear Science and Numerical Simulation,
16(3):1574–1579, 2011. doi:10.1016/j.cnsns.2010.07.003.

FSTTCS 2020

https://doi.org/10.1007/s10474-005-0221-z
https://doi.org/10.1088/0951-7715/26/3/871
https://doi.org/10.1016/0167-2789(87)90100-X
https://doi.org/10.1016/0167-2789(87)90100-X
https://doi.org/10.1007/BF01158885
https://doi.org/10.1070/rm1989v044n06abeh002302
https://doi.org/10.1016/0167-2789(94)00103-0
https://doi.org/10.1088/0951-7715/13/1/315
https://doi.org/10.1142/S0129054194000165
https://doi.org/10.1007/978-3-642-33365-1_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1142/S0218127498001133
https://doi.org/10.1007/s00332-001-0450-4
https://doi.org/10.1007/s00332-001-0450-4
https://doi.org/10.1016/j.cnsns.2010.07.003

36:16 Reachability in Dynamical Systems with Rounding

19 Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In
Ranjit Jhala and David Schmidt, editors, Verification, Model Checking, and Abstract In-
terpretation, pages 232–247, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-18275-4_17.

20 Stephen Hammel, James Yorke, and Celso Grebogi. Numerical orbits of chaotic pro-
cesses represent true orbits. Bull. Amer. Math. Soc., 19:465–, April 1988. doi:10.1090/
S0273-0979-1988-15701-1.

21 Anastasiia Izycheva and Eva Darulova. On sound relative error bounds for floating-point
arithmetic. In Proceedings of the 17th Conference on Formal Methods in Computer-Aided
Design, FMCAD ’17, page 15–22, Austin, Texas, 2017. FMCAD Inc. doi:10.23919/FMCAD.
2017.8102236.

22 Ravindran Kannan and Richard J. Lipton. Polynomial-time algorithm for the orbit problem.
J. ACM, 33(4):808–821, 1986. doi:10.1145/6490.6496.

23 Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory of Dynamical
Systems. Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1995. doi:10.1017/CBO9780511809187.

24 John Lowenstein, Spyros Hatjispyros, and Franco Vivaldi. Quasi-periodicity, global stability
and scaling in a model of Hamiltonian round-off. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 7(1):49–66, 1997. doi:10.1063/1.166240.

25 Victor Magron, George Constantinides, and Alastair Donaldson. Certified roundoff error
bounds using semidefinite programming. ACM Trans. Math. Softw., 43(4), 2017. doi:
10.1145/3015465.

26 Oded Maler and Grégory Batt. Approximating continuous systems by timed automata. In
Jasmin Fisher, editor, Formal Methods in Systems Biology, pages 77–89, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-68413-8_6.

27 Mariano Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz. Automatic estimation of
verified floating-point round-off errors via static analysis. In Stefano Tonetta, Erwin Schoitsch,
and Friedemann Bitsch, editors, Computer Safety, Reliability, and Security, pages 213–229,
Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-66266-4_14.

28 Ivan Niven. Irrational Numbers. Number 11 in The Carus Mathematical Monographs. The
Mathematical Association of America, 1956. doi:10.5948/9781614440116.

29 Helena E. Nusse and James A. Yorke. Is every approximate trajectory of some process
near an exact trajectory of a nearby process? Comm. Math. Phys., 114(3):363–379, 1988.
doi:10.1007/BF01242136.

30 Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination. ACM
SIGLOG News, 2(2):4–13, 2015.

31 Attila Pethö, Jörg M. Thuswaldner, and Mario Weitzer. The finiteness property for shift radix
systems with general parameters. Integers, 19:A50, 2019. URL: http://math.colgate.edu/
%7Eintegers/t50/t50.Abstract.html.

32 Stefano Schivo and Rom Langerak. Discretization of continuous dynamical systems using
UPPAAL. In Joost-Pieter Katoen, Rom Langerak, and Arend Rensink, editors, ModelEd,
TestEd, TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday,
volume 10500 of Lecture Notes in Computer Science, pages 297–315. Springer, 2017. doi:
10.1007/978-3-319-68270-9_15.

33 Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh Gopalakrishnan. Rigor-
ous estimation of floating-point round-off errors with symbolic Taylor expansions. In Nikolaj
Bjørner and Frank de Boer, editors, FM 2015: Formal Methods, pages 532–550, Cham, 2015.
Springer International Publishing. doi:10.1007/978-3-319-19249-9_33.

34 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the

https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1090/S0273-0979-1988-15701-1
https://doi.org/10.1090/S0273-0979-1988-15701-1
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.1145/6490.6496
https://doi.org/10.1017/CBO9780511809187
https://doi.org/10.1063/1.166240
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.1007/978-3-540-68413-8_6
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.5948/9781614440116
https://doi.org/10.1007/BF01242136
http://math.colgate.edu/%7Eintegers/t50/t50.Abstract.html
http://math.colgate.edu/%7Eintegers/t50/t50.Abstract.html
https://doi.org/10.1007/978-3-319-68270-9_15
https://doi.org/10.1007/978-3-319-68270-9_15
https://doi.org/10.1007/978-3-319-19249-9_33

C.Baier et al. 36:17

5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,
USA, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

35 Franco Vivaldi. The arithmetic of discretized rotations. AIP Conference Proceedings, 826,
March 2006. doi:10.1063/1.2193120.

36 Franco Vivaldi and Igor Vladimirov. Pseudo-randomness of round-off errors in discretized
linear maps on the plane. International Journal of Bifurcation and Chaos, 13(11):3373–3393,
2003. doi:10.1142/S0218127403008557.

FSTTCS 2020

https://doi.org/10.1145/800125.804029
https://doi.org/10.1063/1.2193120
https://doi.org/10.1142/S0218127403008557

Parameterized Complexity of Safety of Threshold
Automata
A. R. Balasubramanian
Technische Universität München, Germany
bala.ayikudi@tum.de

Abstract
Threshold automata are a formalism for modeling fault-tolerant distributed algorithms. In this
paper, we study the parameterized complexity of reachability of threshold automata. As a first
result, we show that the problem becomes W[1]-hard even when parameterized by parameters which
are quite small in practice. We then consider two restricted cases which arise in practice and provide
fixed-parameter tractable algorithms for both these cases. Finally, we report on experimental results
conducted on some protocols taken from the literature.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Logic and verification

Keywords and phrases Threshold automata, distributed algorithms, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.37

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement No
787367 (PaVeS).

Acknowledgements I would like to thank Prof. Javier Esparza for useful discussions regarding the
paper and Christoph Welzel and Margarete Richter for their encouragement and support. I would
also like to thank the anonymous reviewers whose comments greatly improved the presentation of
the paper.

1 Introduction

Threshold automata [21] are a formalism for modeling and analyzing fault-tolerant distributed
algorithms. In this setup, an arbitrary but fixed number of processes execute a given protocol
as specified by a threshold automaton. Verification of these systems aims to prove these
protocols correct for any number of processes [4].

One of the main differences between threshold automata and other formalisms for modeling
distributed protocols (like replicated systems and population protocols [1, 16, 18]) is the
notion of a threshold guard. Roughly speaking, a threshold guard specifies certain constraints
that should hold between the number of messages received and the number of participating
processes, in order for a transition to be enabled. For example, a guard of the form x ≥ n/2−t,
(where x counts the number of messages of some specified type, n is the number of processes
and t is the maximum number of faulty processes), specifies that the number of messages
received should be bigger than n/2 − t, in order for the process to proceed. This feature
is important in modeling fault-tolerant distributed algorithms where, often a process can
make a move only if it has received a message from a majority or two-thirds of the number of
processes. In a collection of papers [26, 3, 25, 24, 23], many algorithms have been developed
for verifying various properties for threshold automata. These algorithms have then been
used to verify a number of protocols from the distributed computing literature [24]. It is
known that the reachability problem for threshold automata is NP-complete [2].

© A.R. Balasubramanian;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.37
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Parameterized Complexity of Safety of Threshold Automata

Parameterized complexity [13] attempts to study decision problems that come along with
a parameter. In parameterized complexity, apart from the size of the input n, one considers
further parameters k that capture the structure of the input and one looks for algorithms
that run in time f(k) · nO(1), where f is some function dependent on k alone. The hope is to
find parameters which are quite small in practice and to base the dominant running time
of the algorithm on this parameter alone. Problems solvable in such a manner are called
fixed-parameter tractable (FPT).

In recent years, increasing effort has been devoted to studying the parameterized complex-
ity of problems in verification for different models [10, 11, 15, 17, 9]. Motivated by this and
by the hard theoretical complexity (NP-completeness) of reachability of threshold automata,
we study the parameterized complexity of the same problem, parameterized by (among
other parameters) the number of threshold guards and the given safety specification. Our
first result is a parameterized equivalent of NP-hardness, which shows that reachability of
threshold automata is W[1]-hard. However, motivated by practical concerns, we then study
two restricted cases for which we provide fixed-parameter tractable algorithms. In the first
case, we restrict ourselves to threshold automata whose underlying control structure is acyclic
and provide a simple algorithm which reduces the size of the automaton to a function of the
considered parameters. In the second case we consider multiplicative threshold automata
where the number of fall guards is a constant. (For a definition of fall guards, see Section 2.1.)
Roughly speaking, multiplicativity means that any run over a smaller population of processes
can be “lifted” to a run over a bigger population as well. For this case, we use results from
Petri net theory to provide an FPT algorithm. Finally, the usefulness of these cases is shown
by a preliminary implementation of our algorithms on various protocols from the benchmark
in [24]. Our implementation compares favorably with ByMC, the tool developed in [24] and
also with the algorithm given in [2].

2 Preliminaries

We denote the set of non-negative integers by N0, the set of positive integers by N>0 and the
set of all non-negative rational numbers by Q≥0.

2.1 Threshold Automata
We introduce threshold automata, mostly following the definition and notations used

in [2]. Along the way, we also illustrate the definitions on the example of Figure 2 from [25],
which is a model of the Byzantine agreement protocol of Figure 1.

Environments
Threshold automata are defined relative to an environment Env = (Π,RC ,Num), where Π
is a set of environment variables ranging over N0, RC ⊆ NΠ

0 is a resilience condition over
the environment variables, expressible as a linear formula, and Num : RC → N0 is a linear
function called the number function. Intuitively, a valuation of Π determines the number
of processes of different kinds (e.g. faulty) executing the protocol, and RC describes the
admissible combinations of values of environment variables. Finally, Num associates to a
each admissible combination, the number of copies of the automaton that are going to run in
parallel, or, equivalently, the number of processes explicitly modeled. In a Byzantine setting,
faulty processes behave arbitrarily, and so we do not model them explicitly; in this case, the
system consists of one copy of the automaton for every correct process. In the crash fault
model, processes behave correctly until they crash and they must be modeled explicitly.

A. Balasubramanian 37:3

1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s e n t ECHO b e f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s e n t ECHO b e f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Figure 1 Pseudocode of a reliable broadcast
protocol from [28] for a correct process i, where
n and t denote the number of processes, and
an upper bound on the number of faulty pro-
cesses. The protocol satisfies its specification (if
myvali = 0 for every correct process i, then no
correct process sets its accept variable to true)
if t < n/3.

`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : > 7→
x++ r3 : γ2

sl1 : >

sl2:> sl3:>

Figure 2 Threshold automaton from [25]
modeling the body of the loop in the pro-
tocol from Fig. 1. Symbols γ1, γ2 stand for
the threshold guards x ≥ (t + 1) − f and
x ≥ (n−t)−f , where n and t are as in Fig. 1, and
f is the actual number of faulty processes. The
shared variable x models the number of ECHO
messages sent by correct processes. Processes
with myvali = b (line 1) start in location `b (in
green). Rules r1 and r2 model sending ECHO
at lines 7 and 12. The self-loop rules sl1, . . . , sl3
are stuttering steps.

I Example 1. In the threshold automaton of Figure 2, the environment variables are n, f ,
and t, describing the number of processes, the number of (Byzantine) faulty processes, and
the maximum possible number of faulty processes, respectively. The resilience condition is
the constraint n/3 > t ≥ f . The function Num is given by Num(n, t, f) = n− f , which is
the number of correct processes.

Threshold automata
A threshold automaton over an environment Env is a tuple TA = (L, I,Γ,R), where L is a
finite set of local states (or locations), I ⊆ L is a nonempty subset of initial locations, Γ is
a set of shared variables ranging over N0, and R is a set of transition rules (or just rules),
formally described below.

A transition rule (or just a rule) is a tuple r = (from, to, ϕ, ~u), where from and to are the
source and target locations, ϕ ⊆ NΠ∪Γ

0 is a conjunction of threshold guards (described below),
and ~u : Γ→ {0, 1} is an update. We often let r.from, r.to, r.ϕ, r.~u denote the components of r.
Intuitively, r states that a process can move from from to to if the current values of Π and Γ
satisfy ϕ, and when it moves, it updates the current valuation ~g of Γ by performing the update
~g := ~g + ~u. Since all components of ~u are nonnegative, the values of shared variables never
decrease. A threshold guard ϕ has one of the following forms: b·x ./ a0+a1 ·p1+. . .+a|Π| ·p|Π|
where ./ ∈ {≥, <}, x ∈ Γ is a shared variable, p1, . . . , p|Π| ∈ Π are the environment variables,
b ∈ N>0 and a0, a1, . . . , a|Π| ∈ Z are integer coefficients. If b = 1, then the guard is called a
simple guard. Additionally, if ./ = ≥, then the guard is called a rise guard and otherwise
the guard is called a fall guard. We sometimes use b · x = a0 + a1 · p1 + . . .+ a|Π| · p|Π| as a
shorthand for b ·x ≥ a0 +a1 ·p1 + . . .+a|Π| ·p|Π|∧b ·x < (a0 +1)+a1 ·p1 + . . .+a|Π| ·p|Π|. Since

FSTTCS 2020

37:4 Parameterized Complexity of Safety of Threshold Automata

shared variables are initialized to 0 and they never decrease, once a rise (resp. fall) guard
becomes true (resp. false) it stays true (resp. false). We call this property monotonicity of
guards. We let Φrise, Φfall, and Φ denote the sets of rise guards, fall guards, and all guards of
TA. Finally, the graph of TA is the graph where the vertices are the locations and there is an
edge between ` and `′ if there is a rule r in TA with r.from = ` and r.to = `′. We say that
TA is acyclic if its graph is acyclic.

I Example 2. The rule r2 of Figure 2 has `0 and `2 as source and target locations, x ≥
(t+ 1)− f as guard, and increments the value of the shared variable x by 1.

Configurations and transition relation
A configuration of TA is a triple σ = (~κ, ~g, ~p) where ~κ : L → N0 describes the number
of processes at each location, and ~g ∈ N|Γ|0 and ~p ∈ RC are valuations of the shared
variables and the environment variables. In particular,

∑
`∈L ~κ(`) = Num(~p) always holds.

A configuration is initial if ~κ(`) = 0 for every ` /∈ I, and ~g = ~0. We often let σ.~κ, σ.~g, σ.~p
denote the components of σ.

A configuration σ = (~κ, ~g, ~p) enables a rule r = (from, to, ϕ, ~u) if ~κ(from) > 0, and
(~g, ~p) satisfies the guard ϕ, i.e., substituting ~g(x) for x and ~p(pi) for pi in ϕ yields a true
expression, denoted by σ |= ϕ. If σ enables r, then TA can move from σ to the configuration
r(σ) = (~κ′, ~g′, ~p′) defined as follows: (i) ~p′ = ~p, (ii) ~g′ = ~g + ~u, and (iii) ~κ′ = ~κ+ ~vr, where
~vr = ~0 if from = to and otherwise, ~vr(from) = −1, ~vr(to) = +1, and ~vr(`) = 0 for all other
locations `. We let σ → r(σ) denote that TA can move from σ to r(σ).

Schedules and paths
A schedule is a (finite or infinite) sequence of rules. A schedule τ = r1, . . . , rm is applicable
to configuration σ0 if there is a sequence of configurations σ1, . . . , σm such that σi = ri(σi−1)
for 1 ≤ i ≤ m, and we define τ(σ0) := σm. We let σ ∗−→ σ′ denote that τ(σ) = σ′ for some
schedule τ , and say that σ′ is reachable from σ. Further we let τ · τ ′ denote the concatenation
of two schedules τ and τ ′, and, given µ ≥ 0, let µ · τ the concatenation of τ with itself µ
times.

A path or run is a finite or infinite sequence σ0, r1, σ1, . . . , σk−1, rk, σk, . . . of alternating
configurations and rules such that σi = ri(σi−1) for every ri in the sequence. If τ = r1, . . . , r|τ |
is applicable to σ0, then we let path(σ0, τ) denote the path σ0, r1, σ1, . . . , r|τ |, σ|τ | with
σi = ri(σi−1), for 1 ≤ i ≤ |τ |. Similarly, if τ is an infinite schedule. Given a path path(σ, τ),
the set of all configurations in the path is denoted by Cfgs(σ, τ).

The main focus of this paper will be the reachability problem and is defined as: Given
TA and a set of locations Lspec = L=0 ∪ L>0 (called the specification), decide if there is a
run of TA satisfying Lspec, i.e., decide if there is an initial configuration σ0 such that some σ
reachable from σ0 satisfies σ.~κ(`) = 0 for every ` ∈ L=0 and σ.~κ(`) > 0 for every ` ∈ L>0.
The coverability problem is the special case of the reachability problem where L=0 = ∅.

2.2 Fixed-parameter tractability
We refer the reader to [13] for more information on parameterized complexity and only
give the necessary definitions here. A parameterized problem L is a subset of Σ∗ × N0 for
some alphabet Σ. A parameterized problem L is said to be fixed-parameter tractable (FPT)
if there exists an algorithm A such that (x, k) ∈ L iff A(x, k) is true and A runs in time
f(k) · |x|O(1) for some computable function f , depending only on the parameter k. Given

A. Balasubramanian 37:5

parameterized problems L,L′ ⊆ Σ∗ × N0 we say that L is reducible to L′ if there is an
algorithm that, given an input (x, k), produces another input (x′, k′) in time f(k) · |x|O(1)

such that (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′ and k′ ≤ g(k) for some functions f and g depending
only on k.

The parameterized clique problem is the set of all pairs (G, k) such that the graph G
has a clique of size k. A parameterized problem L is said to be W[1]-hard if there is a
parameterized reduction from L to the parameterized clique problem. If L is W[1]-hard and
there is a parameterized reduction from L to L′ then L′ is W[1]-hard as well. W[1]-hardness
is usually taken to be evidence that the problem does not have an FPT algorithm.

3 W[1]-hardness

We consider the reachability problem parameterized by the following parameters: |Φ| (the
number of distinct guards), |Lspec| (the size of the specification), |RC | (the number of
constraints in the resilience condition) and C (the maximum constant appearing in any of the
guards of TA). (We note that if x ∈ Γ ∪Π such that x does not appear in any of the guards
in Φ or in any of the constraints in RC , then x can be removed from the input. Hence, we
will always assume that |Γ|+ |Π| ≤ |Φ|+ |RC | and for this reason, we do not consider |Γ|
and |Π| explicitly as parameters.) In practice, all these values are quite small, roughly in the
range of 10 to 25. Unfortunately, we prove the following negative result:

I Theorem 3. Coverability (and hence reachability) for threshold automata parameterized by
|Φ|+ |Lspec|+ |RC |+ C is W [1]-hard, even for acyclic automata where |Φfall| is a constant.

Proof. We give a parameterized reduction from the Unary Bin Packing problem which is
known to be W [1]-hard (See Theorem 2 of [20]) and is defined as follows:

Given: A finite set of items I = {0, 1, 2, . . . , w}, a size size(i) ∈ N0 for each i ∈ I,
two positive integers B and k. (The integers size(i) and B are encoded in unary)
Parameter: k

Decide: If there exists a partition of I into bins I1, . . . , Ik such that the sum of the
sizes of the items in each bin Ij is less than or equal to B

Let size =
∑
i∈I size(i). Our parameterized reduction works as follows: We will have

k + 1 environment variables c1, c2, . . . , ck, n. Intuitively ci will denote the sum of the sizes of
the items in the ith bin. The environment variable n will denote the number of processes
modeled.

Further, we will have k + 5 shared variables x1, . . . , xk, access1, access2, access3 and
count1, count2. The variable xi will denote the sum of the sizes of items which do not
belong to the ith bin. The role of count1 and count2 will be to set up two counters whose
value will be exactly size and B respectively. Our construction will have three gadgets and
the role of access1, access2 and access3 is to ensure that exactly one process can enter the
first, second and third gadgets respectively.

We will have exactly one initial location start and three rules of the form r1 : (start,
access1 < 1, access1++, p0), r2 : (start, access2 < 1, access2++, q0) and r3 : (start, access3 <

1, access3++, `0). This means that once a process fires r1, it increments access1 and hence
no other process can fire r1 in the future. Similarly for the rules r2 and r3. Hence these
three rules ensure that at most one process can enter p0, q0 and `0 respectively. For the
specification, we set L=0 = ∅ and L>0 = {pcorr, qcorr, `w+1}, whose locations we will now
explain.

FSTTCS 2020

37:6 Parameterized Complexity of Safety of Threshold Automata

p0 p1 p2 · · · · · · · · · psize−1 psize pcorr
count1++ count1++ count1++

∑
1≤i≤k ci = count1

Figure 3 First gadget, which sets up the value of count1 to be exactly size.

q0 q1 q2 · · · · · · · · · qB−1 qB qcorr
count2++ count2++ count2++

∧
1≤i≤k count2 ≥ ci

Figure 4 Second gadget, which sets up the value of count2 to be exactly B.

`i `ji,0 `ji,1 `ji,2 · · · · · · · · · `ji,size(i)−1 `ji,size(i) `i+1
condj updj updj updj condj

Figure 5 Third gadget, which guesses the partition. Here condj is the condition xj ≥
∑

l 6=j
cl

and updj is the update ∧l 6=j xl++.

The first gadget is given by Figure 3 and starts from the location p0. It increments the
shared variable count1 to the value size. This gadget then ensures that we can reach pcorr
only if the sum of the values of the environment variables c1, c2, . . . , ck is exactly size. Notice
that this gadget can be constructed in polynomial time, since each size(i) is given in unary.

The second gadget is given by Figure 4 and starts from the location q0. It increments
the shared variable count2 to the value B. This gadget then ensures that we can reach qcorr
only if the values of the environment variables c1, c2, . . . , ck are all at most B. Notice that
this gadget can be constructed in polynomial time, since B is given in unary.

The third gadget is comprised of locations {`i}0≤i≤w+1 and {`ji,q}
1≤j≤k
0≤i≤w,0≤q≤size(i) and

is comprised of various mini-gadgets. For every 0 ≤ i ≤ w and 1 ≤ j ≤ k, the third gadget
has a mini-gadget as given by Figure 5.

Recall that the shared variable xj denotes the the sum of the sizes of items which do
not belong to the jth bin. Intuitively, if a process moves from `i to `i+1 by going through
`ji,0, . . . , `

j
i,size(i), this corresponds to putting the ith item in the jth bin and hence the

mini-gadget increments the variables {xl}l 6=j by the value size(i). To ensure that we do not
overshoot the bin size of the jth bin, we have the guards xj ≥

∑
l 6=j cl at the beginning and

the end of the mini-gadget. Recall that the first gadget ensures that
∑

1≤l≤k cl = size and
since xj denotes the sum of sizes of items not in the jth bin, the condition xj ≥

∑
l 6=j cl

ensures that the sum of the sizes of the items in the jth bin is at most cj . Since the second
gadget forces cj ≤ B, it follows that the test xj ≥

∑
l 6=j cl ensures that the sum of the

sizes in the jth bin is at most B. Notice that, once again this gadget can be constructed in
polynomial time, since each size(i) is given in unary.

Let RC be n > 1 and let Num(c1, . . . , ck, n) = n. From the given construction it is clear
that a configuration satisfying Lspec is reachable iff we can partition I into k bins such that
the sum of sizes of items in each bin does not exceed B.

It is clear that the reduction can be accomplished in polynomial time. Notice that the
automaton is acyclic, L=0 = ∅, |Φ| = O(k), |Φfall| = 4, |RC | = 1, C = 1 and |Lspec| = 3.
Hence it is clear that |Φ|+ |RC |+C + |Lspec| = O(k) and so the above reduction is indeed a
parameterized reduction from the unary bin packing problem to the coverability problem. J

A. Balasubramanian 37:7

We now identify two special cases for which we give an FPT algorithm and discuss how
these special cases arise in practice for a variety of distributed algorithms.

4 Acyclic threshold automata

The first case we consider is that of acyclic threshold automata, i.e., threshold automata
whose underlying graph is acyclic. Except for one protocol, all the others in the benchmark
of [24] are acyclic.1 As the reduction of Theorem 3 produces acyclic threshold automata,
we cannot hope for an FPT algorithm parameterized by {|Φ|, |Lspec|, |RC |, C}. However, we
show that

I Theorem 4. Reachability of acyclic threshold automata parameterized by |Φ|+ |Lspec|+
|RC | + C + D is in FPT, where D is the length of the longest path in the graph of the
threshold automaton.

Proof. Let TA be the given acyclic threshold automaton. First, we show that it is possible
to incrementally “contract” the locations of TA in a bottom-up manner, while preserving
the reachability property, such that, in the resulting automaton after contraction, the
number of locations and rules is a function of |Φ| + |Lspec| + |RC | + C + D. This then
immediately implies our theorem, since the size of the whole automaton is now just a function
of |Φ|+ |Lspec|+ |RC |+ C +D.

More formally, let the contraction of a subset S = {`1, . . . , `q} of locations of TA be the
following operation: We remove the locations `1, . . . , `q from TA, introduce a new location `S
and we replace all occurrences of `1, . . . , `q in every rule of TA with `S . We say that a set S
in TA is good if for every two locations `, `′ ∈ S, if (`, `′′, φ, ~u) is a rule in TA then (`′, `′′, φ, ~u)
is also a rule in TA. Intuitively, this means that, for every rule that we can fire from `, there
is another rule we can fire from `′ which will have the exact same effect. Since TA is assumed
to be acyclic, contracting a good set cannot introduce cycles. Let Tar = {` : ` ∈ Lspec}. The
following is a very simple fact to verify:

Claim: Suppose S is a good set such that S ∩ Tar = ∅ and let TA′ be the threshold
automaton obtained by contracting S in TA. Then TA satisfies Lspec iff TA′ does.

Given a threshold automaton TA such that D is the length of the longest path in its
graph, the “layers” of TA is a partition of the locations into subsets LTA

0 , LTA
1 , . . . , LTA

D

such that ` ∈ LTA
i iff the longest path ending at ` in the graph of TA is of length i.

The subset LTA
i will be called the ith layer of TA. We will now construct a sequence of

threshold automata TAD,TAD−1, . . . ,TA0 such that for each i, |LTAi
i |+ |L

TAi
i+1|+ · · ·+ |L

TAi

D | ≤
gi(|Φ|, |RC |, |Lspec|, D) for some function gi and such that TAi satisfies Lspec iff TAi+1 does.

For the base case of TAD, we take the threshold automaton TA and consider the set
SD := LTA

D \ Tar. We now contract SD in TA to get a threshold automaton TAD. Notice
that SD is a good set and by the above claim, TAD satisfies Lspec iff TA does.

For the induction step, suppose we have already constructed TAi+1. For a location
` ∈ LTAi+1

i , define its color to be the set {(`′, φ, ~u) : (`, `′, φ, ~u) is a rule in TAi+1}. Observe
that if ` ∈ LTAi+1

i and (`, `′, φ, ~u) is a rule in TAi+1 then `′ ∈ LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D .

By induction hypothesis, |LTAi+1
i+1 ∪ LTAi+1

i+2 ∪ · · · ∪ LTAi+1
D | ≤ gi+1(|Φ|, |RC |, |Lspec|, D) for

1 Some of the examples have self-loops on some locations, but since these self-loops do not update any of
the shared variables, we can remove them without affecting the reachability relation.

FSTTCS 2020

37:8 Parameterized Complexity of Safety of Threshold Automata

some function gi+1. It then follows that the number of possible colors is at most 2|Φ| ·
2|Γ| · gi+1(|Φ|, |Lspec|, D). Hence as long as the number of locations in LTAi+1

i is bigger than
2|Φ| · 2|Γ| · gi+1(|Φ|, |Lspec|, D) + |Tar| there will be two locations in LTAi+1

i \ Tar which have
the same color and can hence be contracted while maintaining the answer for Lspec. It then
follows that by repeated contraction, we can finally end up at a threshold automaton TAi
such that |LTAi

i |+ · · ·+ |L
TAi

D | ≤ O(2|Φ| ·2|Φ|+|RC| ·gi+1(|Φ|, |RC |, |Lspec|, D) + |Tar|). Taking
this bound to be the function gi, we get our required TAi.2

Notice that the number of locations (and also rules) in TA0 is only dependent on
|Φ|, |RC |, |Lspec| and D. Since the reachability problem is decidable, it immediately follows
that we have a parameterized algorithm for acyclic threshold automata running in time
f(|Φ|+ |RC |+ |Lspec|+ C +D) · nO(1) J

5 Threshold automata with constantly many fall guards

As a second case, we consider threshold automata in which the number of fall guards is a
constant. In almost all of the benchmarks of [24], the number of fall guards is at most one.
We provide some intuitive reason behind this phenomenon. In threshold automata, shared
variables are usually used for two things: To record that some process has sent a message or
to keep track of the number of processes which have crashed so far. If a shared variable v is
used for the first purpose, then all guards containing v are typically rise guards, since we
only want to check that enough messages have been received to proceed. On the other hand,
if v is used to keep track of the number of crashed processes, then we will have a fall guard
which allows a process to crash only if the value of v is less than the maximum number of
processes allowed to crash. However, since we will only need one fall guard for this purpose,
it follows that in practice we can hope to have very few fall guards in a threshold automaton.

Since the reduction of Theorem 3 produces threshold automata with constantly many
fall guards, we need another restriction on this class as well, which we now describe.

I Definition 5. A threshold automaton TA over an environment Env = (Π,RC ,Num) is
called multiplicative if every fall guard is simple and for every µ ∈ N>0, (i) for every rational
vector p ∈ Q|Π|≥0, if RC (p) is true then RC (µ · p) is true and Num(µ · p) = µ · Num(p)
and (ii) for every guard g := b · x ./ a0 + a1p1 + · · · + alpl in TA where ./ ∈ {≥, <}, if
(y, q1, . . . , ql) is a rational solution to g then (µ · y, µ · q1, . . . , µ · ql) is also a solution to g.

To the best of our knowledge, many algorithms discussed in the literature (For example,
see [8, 28, 6, 27, 19, 14, 7]), and more than two-thirds of all of the benchmarks of [24] satisfy
multiplicativity. The main result of this section is

I Theorem 6. Given a multiplicative threshold automaton TA with a constant number of
fall guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is
a run of TA satisfying Lspec.

The rest of this section is devoted to proving this result, which we do so in four parts.
Let us fix a threshold automaton TA = (L, I,Γ,R), an environment Env = (Π,RC ,Num)
and a specification Lspec for the rest of this section. Let Φ denote the set of all guards which
appear in TA.

2 Though the function gi as given here gives very huge bounds, we show in the experimental section that
repeated contractions can sometimes reduce the number of locations by 50%. Intuitively, this is because
the number of colors of a location in the benchmarks is much smaller than the worst-case analysis
performed here.

A. Balasubramanian 37:9

First part: Decomposing paths into steady paths
First, similar to the paper [22], we show that the job of finding a path satisfying Lspec can be
reduced to that of finding a bounded number of concatenated “steady” paths. However, the
result needs to be stated in a different manner than [22], so that later on, we could leverage
the fact that the threshold automaton TA contains only constantly many fall guards.

A context ω is any subset of the guards of TA, i.e., ω ⊆ Φ. A rule r is said to be activated
by a context ω if all the rise guards of r are present in ω and all the fall guards of r are not
present in ω. The set of all rules activated by a context ω is denoted by Rω.

The context of a configuration σ, denoted by ω(σ), is the set of all rise guards that
evaluate to true and the set of all fall guards that evaluate to false in σ. Since the values of
the shared variables can only increase along a path, it easily follows that for any configuration
σ and any schedule τ applicable to σ, ω(σ) ⊆ ω(τ(σ)).

We say that path(σ, τ) is ω-steady if all the rules in the schedule τ are from Rω and
for every configuration σ′ ∈ Cfgs(σ, τ), we have Rω ⊆ Rω(σ′). Intuitively, if path(σ, τ) is
ω-steady then the path only uses rules from Rω. We have the following lemma.

I Lemma 7. The specification Lspec can be satisfied by a path of TA iff there exists K ≤ |Φ|,
configurations σ0, σ

′
0, . . . , σK , σ

′
K and contexts ω0 (ω1 (· · · (ωK such that

σ0 is an initial configuration and σ′K satisfies Lspec

For every i ≤ K, there is a ωi-steady path σi
∗−→ σ′i

For every i < K, if Rωi ⊆ Rωi+1 then there is a ωi-steady path σ′i
∗−→ σi+1, otherwise

σ′i → σi+1

Proof. (Sketch.) Clearly if there exists such configurations and contexts then then there exists
a path of TA which satisfies Lspec. To prove the other direction, suppose path(σ0, τ) is a path
of TA which satisfies Lspec. Using the fact that ω(σ′) ⊆ ω(τ ′(σ′)) for any configuration σ′ and
any schedule τ ′, we can decompose path(σ0, τ) into σ0, τ0, σ

′
0, t0, σ1, τ1, σ

′
1, t1, . . . , σK , τK , σ

′
K

such that for every i, ω(σi) = ω(σ′i), ω(σ′i) (ω(σi+1) and ti is a rule of TA. We can then
prove that the configurations σ0, σ

′
0, . . . , σK , σ

′
K and the contexts ω(σ0), . . . , ω(σK) satisfy

the required conditions. J

Second part: Establishing a connection between continuous Petri nets
and steady paths
Let us fix a context ω of the threshold automaton TA for the rest of this subsection. We say
that a configuration σ is Rω-applicable if (σ.~g, σ.~p) satisfies every guard of every rule in Rω.

Continuous Petri nets

To define continuous Petri nets, we will mostly reuse the same notations from [5]. A continuous
Petri net N is a tuple (P, T, F) where P is a finite set of places, T is a finite set of transitions
and F ⊆ P × T ∪ T × P is the flow relation. For a transition t, let •t = {p : (p, t) ∈ F}
and t

• = {p : (t, p) ∈ F}. A marking M of N is a function M : P → Q≥0. Intuitively a
marking M assigns M(p) many tokens to each place p ∈ P . A marking is called integral if
M(p) ∈ N0 for every place p. Given a marking M and a k ∈ N>0 let kM denote the marking
kM(p) = k ·M(p). The transition relation between two markings M and M ′ is defined as
follows: For α ∈ (0, 1] and t ∈ T , we say that M αt−→M ′ if for every p ∈ •t, M(p) ≥ α and
M ′(p) = M(p)−α if p ∈ •t\ t•, M ′(p) = M(p) +α if p ∈ t• \ •t and M ′(p) = M(p) otherwise.
We say that M →M ′ if M αt−→M ′ for some α and t. Finally we say that M ∗−→M ′ if there
exists M1, . . . ,Mk−1 such that M →M1 → . . .Mk−1 →M ′.

FSTTCS 2020

37:10 Parameterized Complexity of Safety of Threshold Automata

Constructing continuous Petri nets from contexts

We now construct a continuous Petri net Nω for the context ω as follows: For every location
` of TA, we will have a place p`. Similarly for every variable x ∈ Γ ∪ Π, we will have a place
px. If r = (`, `′, φ, ~u) is a rule in Rω, we will have a transition tr where •tr = {p`} and
t
•
r = {p`′} ∪ {px : ~u[x] = 1}.

We note that Nω tries to simulate exactly the rules of Rω, but it does not check whether
the corresponding guard of a rule is true before firing it. To ensure that a proper simulation
is carried out by Nω, we will restrict ourselves to only runs of Nω over compatible markings
which are defined as follows.

A marking M of Nω is called a compatible marking if
∑
`∈LM(p`) = Num({M(px) : x ∈

Π}) and if for every x ∈ Γ ∪Π, the assignment x 7→M(px) satisfies the resilience condition
RC and all the guards of all the rules in Rω. Notice that to every Rω-applicable configuration
σ of TA we can bijectively assign a canonical compatible integral marking B(σ) of Nω where
(B(σ))(px) = σ[x].

I Proposition 8. The following are true:
Suppose σ ∗−→ σ′ is an ω-steady run of TA. Then B(σ) ∗−→ B(σ′) in Nω.
Suppose M and M ′ are compatible markings of Nω such that M ∗−→M ′. Then there exists
µ ∈ N>0 such that for all k ∈ N>0, µkM and µkM ′ are compatible integral markings and
B−1(µkM) ∗−→ B−1(µkM ′) is an ω-steady run of TA.

Proof. (Sketch.) The first point is obvious from the definition. For the second point, if
M := M0

α1tr1−−−→ M1
α2tr2−−−→ M2 . . .Ml−1

αltrl−−−→ Ml := M ′ is a run, then by multiplying the
markings by the least common multiple of the denominators of {αi}i≤l∪{Mi(px) : i ≤ l, x ∈
L ∪ Γ ∪ Π} (which we take to be µ), we can get an integral run between µkM and µkM ′.
Using multiplicativity of TA, we can translate this back to a run of TA. J

Third part: Characterizing steady paths

It was shown in ([5], Theorems 3.6 and 3.3) that there is a logic (which the authors of [5]
call convex semi-linear Horn formulas) characterizing reachability in continuous Petri nets,
whose satisfiability can be tested in polynomial time. Using this result, proposition 8 and
multiplicativity, we show that

I Lemma 9. Given a context ω, in polynomial time we can construct a convex semi-linear
Horn formula φω(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ ∗−→ σ′ is an ω-steady path of TA then φω(σ, σ′) is true
Suppose φω(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ∗−→ µkM ′ is an ω-steady path in TA.

I Lemma 10. Given a rule r of TA, in polynomial time we can construct a convex semi-linear
Horn formula φr(x,y) with 2(|L|+ |Γ|+ |Π|) free variables such that

If σ and σ′ are configurations of TA such that σ′ = r(σ), then φr(σ, σ′) is true.
Suppose φr(M,M ′) is true. Then there exists µ ∈ N such that for all k ∈ N, µkM,µkM ′

are configurations of TA such that µkM ′ = (µk · r)(µkM), i.e., µkM ′ can be obtained by
applying the rule r to µkM , repeatedly for µk many steps.

A. Balasubramanian 37:11

Fourth part: Bringing it all together
I Theorem 11. Given a multiplicative threshold automaton TA with constant number of fall
guards and a specification Lspec, it can be decided in time f(|Φ|) · nO(1) whether there is a
run of TA satisfying Lspec.

Proof. (Sketch.) One can easily show that if we have a monotonically increasing context
sequence ω0 (ω1 (· · · (ωK , the size of the set {j : Rωj

* Rωj+1} is at most |Φfall|. Using
this observation, we proceed as follows. We iterate over all K ≤ |Φ| and over all possible
monotonically increasing context sequences ω0 (ω1 (· · · (ωK of length K + 1 and all
possible rule sequences r1, . . . , rc of length c = #{j : Rωj * Rωj+1}. Note that the number
of such iterations is at most O(|Φ| · |Φfall| · |Φ|! · 2|Φ| · |R||Φfall|). Since |Φfall| is assumed to be
a constant, the exponential dependence only lies upon |Φ|.

A position 0 ≤ l ≤ K is called bad if Rωl
* Rωl+1 . Let j1, . . . , jc be the set of all bad

positions. Using lemmas 9 and 10 we can write down the following convex semi-linear Horn
formula in polynomial time:

ξ0(x0,y0,x1) ∧ ξ1(x1,y1,x2) ∧ · · · ∧ ξK−1(xK−1,yK−1,xK) ∧ ξK(xK ,yK) (1)

where ξK(xK ,yK) = φωK
(xK ,yK) and ξi for i < K is defined as follows: If i is a bad

position, i.e., if i = jl for some 1 ≤ l ≤ c, then ξi(xi,yi,xi+1) = φωi
(xi,yi) ∧ φrl

(yi,xi+1).
It i not a bad position, then ξi(xi,yi,xi+1) = φωi

(xi,yi) ∧ φωi
(yi,xi+1)

To equation (1), we also add a constraint stating that x0 is an initial configuration and
yK satisfies Lspec. By proposition 8 we can then easily show that, there is a run of TA
satisfying Lspec iff in at least one iteration, the constructed formula (1) is satisfiable. J

6 NP-hardness of multiplicative threshold automata

A natural question arises from the results of the previous section. Can we do better than
fixed-parameter tractability and instead solve the reachability problem for multiplicative
threshold automata in polynomial time? We remark that the proof of NP-hardness of
reachability for threshold automata given in [2] does not produce multiplicative threshold
automata and hence does not answer this question. Nevertheless, we show that it is unlikely
for reachability of multiplicative threshold automata to be in polynomial time.

I Theorem 12. Coverability (and hence reachability) for multiplicative threshold automata
is NP-hard even when there are no fall guards.

Proof. We give an easy reduction from 3-SAT. Let ϕ be a propositional formula with variables
x1, . . . , xk and clauses C1, . . . , Cm. We will have 2k shared variables y1, . . . , yk, ȳ1, . . . , ȳk
and one environment variable n, denoting the number of processes. Incrementing yi
(ȳi resp.) corresponds to setting xi to true (false resp). We will have 2k + 1 locations
`0, `

′
0, `1, `

′
1, . . . , `

′
k−1, `k. Between `i and `′i we will have two rules which increment yi and

ȳi respectively. To ensure that all the processes increment the same variable, we have two
rules from `′i to `i+1 which test that yi ≥ n and ȳi ≥ n respectively. Hence if one process
increments yi and another increments ȳi, then all the processes get stuck at `′i.

Let var(xi) = yi and let var(x̄i) = ȳi. We will then have m locations `k+1, `k+2, . . . , `k+m
and the following rules between `k+i−1 and `k+i for every 1 ≤ i ≤ m: If the clause Ci is
of the form a ∨ b ∨ c then there are three rules between `k+i−1 and `k+i, each checking if
var(a) ≥ 1, var(b) ≥ 1 and var(c) ≥ 1 respectively. Hence if either one of var(a) or var(b)
or var(c) was incremented, the processes could move from `k+i−1 to `k+i, otherwise all the

FSTTCS 2020

37:12 Parameterized Complexity of Safety of Threshold Automata

processes get stuck at `k+i−1. Finally we set the initial location to be `0 and the specification
to be L=0 = ∅ and L>0 = {`k+m}. It is then easy to see that ϕ is satisfied iff there is a run
which satisfies Lspec. J

7 Experiments

We implemented the contraction procedure for the acyclic threshold automata as presented
in section 4 and then used the algorithm for multiplicative threshold automata presented in
section 5. To leverage the solid engineering work that has been put into modern SMT solvers,
we used the Z3 solver to solve the convex semi-linear Horn formulas as well as to choose
a context (and rule) sequence. We applied our implementations to all the multiplicative
protocols in the latest version of the benchmark of [24], which contains various algorithms
taken from the distributed computing literature. For more information on the protocols, we
refer the reader to the benchmark of [24].

Table 1 The experiments were run on a machine with Intel® CoreTM i5-7200U CPU with 7.7
GiB memory. The time limit was set to be 2 hours and the memory limit was set to be 7 GiB. TLE
(MLE) means that the time limit (memory limit) exceeded for the particular benchmark.

Input Case Time, seconds
(if more than one) This paper Algo from [2] ByMC

frb 0.38 0.32 0.07
frb hand-coded TA 0.29 0.31 0.16

strb 0.44 0.43 0.14
strb hand-coded TA 0.32 0.30 0.10

nbacg 2.92 8.43 9.71
aba Case 1 4.49 10.26 25.6
aba Case 2 18.29 41.92 704.9
cbc Case 1 3579.24 MLE MLE
cbc Case 2 183.61 2035.5 26.37
cbc Case 3 MLE MLE MLE
cbc Case 4 MLE MLE MLE
cbc hand-coded TA 3.27 0.91 0.26
cf1s Case 1 13.81 13.53 37.09
cf1s Case 2 12.47 16.14 186.5
cf1s Case 3 84.95 86.98 7875
cf1s hand-coded TA 1.75 1.31 2737.53
c1cs Case 1 179.39 598.2 TLE
c1cs Case 2 70.77 747.86 7119.71
c1cs Case 3 604.91 1575.21 MLE
c1cs hand-coded TA 4.87 6.63 TLE

Evaluation: Table 1 summarizes our results and compares them with the results obtained
using ByMC, the tool presented in [24] and the algorithm from [2].

For some safety specifications, our contraction procedure was able to reduce the number
of locations by more than 50% for the cbc protocol(s). This helped us save some memory,
as we also noticed that running just the algorithm for multiplicative threshold automata

A. Balasubramanian 37:13

took much more memory and the algorithm was not able to complete its execution. Our
implementation compares favorably with both ByMC and the algorithm from [2] in some
cases, but also performs worse in some of the hand-coded examples, the second case of cbc
and the frb and strb protocols.

8 Conclusion

In this paper, we have investigated the parameterized complexity of safety in threshold
automata. Though we have proved hardness results even in very restricted settings, we have
also identified tractable special cases which arise in practice. A preliminary implementation
of our algorithms suggest that these methods might be useful in practice as well.

For the sake of simplicity, we have only restricted to verifying safety properties in this
paper. A special type of logic called ELTLFT [12] has been proposed for threshold automata
which can express various safety and liveness properties. Since model checking this logic
decomposes to a finite number of safety specifications (modulo some technical constraints),
we believe that our algorithm for multiplicative threshold automata can be adapted to give
an algorithm for model checking this logic as well.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

2 A. R. Balasubramanian, Javier Esparza, and Marijana Lazić. Complexity of verification and
synthesis of threshold automata. In Accepted at ATVA 2020, 2020. URL: https://arxiv.
org/abs/2007.06248.

3 Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder. Verification of randomized
consensus algorithms under round-rigid adversaries. In CONCUR, volume 140 of LIPIcs, pages
33:1–33:15, 2019.

4 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

7 Francisco Vilar Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel Raynal. Consensus
in one communication step. In PaCT, volume 2127 of LNCS, pages 42–50, 2001.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

9 Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer, and Prakash Saivasan. On the
complexity of bounded context switching. In Kirk Pruhs and Christian Sohler, editors, 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.27.

10 Peter Chini, Roland Meyer, and Prakash Saivasan. Fine-grained complexity of safety verifica-
tion. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,

FSTTCS 2020

https://doi.org/10.1007/s00446-005-0138-3
https://arxiv.org/abs/2007.06248
https://arxiv.org/abs/2007.06248
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.4230/LIPIcs.ESA.2017.27

37:14 Parameterized Complexity of Safety of Threshold Automata

Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer
Science, pages 20–37. Springer, 2018. doi:10.1007/978-3-319-89963-3_2.

11 Peter Chini, Roland Meyer, and Prakash Saivasan. Complexity of liveness in parameterized
systems. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 37:1–37:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.37.

12 Peter Chini, Roland Meyer, and Prakash Saivasan. Liveness in broadcast networks. In NETYS
2019, Revised Selected Papers, pages 52–66, 2019.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Dan Dobre and Neeraj Suri. One-step consensus with zero-degradation. In DSN, pages
137–146, 2006.

15 Constantin Enea and Azadeh Farzan. On atomicity in presence of non-atomic writes. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer
Science, pages 497–514. Springer, 2016. doi:10.1007/978-3-662-49674-9_29.

16 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In LICS, pages 352–359. IEEE Computer Society, 1999.

17 Azadeh Farzan and P. Madhusudan. The complexity of predicting atomicity violations. In
Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages
155–169. Springer, 2009. doi:10.1007/978-3-642-00768-2_14.

18 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

19 Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing, 15(1):17–25, 2002.

20 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
doi:10.1016/j.jcss.2012.04.004.

21 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model
checking for threshold-based distributed algorithms: Reachability. In CONCUR, volume 8704
of LNCS, pages 125–140, 2014.

22 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstrac-
tion: Parameterized model checking of threshold-based distributed algorithms. In Daniel
Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science, pages 85–102. Springer, 2015.
doi:10.1007/978-3-319-21690-4_6.

23 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Information and Computation, 252:95–
109, 2017.

24 Igor Konnov and Josef Widder. Bymc: Byzantine model checker. In ISoLA (3), volume 11246
of LNCS, pages 327–342. Springer, 2018.

25 Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In POPL
2017, pages 719–734, 2017.

https://doi.org/10.1007/978-3-319-89963-3_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-49674-9_29
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1007/978-3-319-21690-4_6

A. Balasubramanian 37:15

26 Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameterized systems: All
flavors of threshold automata. In CONCUR, pages 19:1–19:17, 2018.

27 Achour Mostéfaoui, Eric Mourgaya, Philippe Raipin Parvédy, and Michel Raynal. Evaluating
the condition-based approach to solve consensus. In DSN, pages 541–550, 2003.

28 T.K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp., 2:80–94, 1987.

FSTTCS 2020

Uncertainty Reasoning for Probabilistic Petri Nets
via Bayesian Networks
Rebecca Bernemann
University of Duisburg-Essen, Germany
rebecca.bernemann@uni-due.de

Benjamin Cabrera
University of Duisburg-Essen, Germany
benjamin.cabrera@uni-due.de

Reiko Heckel
University of Leicester, UK
rh122@leicester.ac.uk

Barbara König
University of Duisburg-Essen, Germany
barbara_koenig@uni-due.de

Abstract
This paper exploits extended Bayesian networks for uncertainty reasoning on Petri nets, where firing
of transitions is probabilistic. In particular, Bayesian networks are used as symbolic representations
of probability distributions, modelling the observer’s knowledge about the tokens in the net. The
observer can study the net by monitoring successful and failed steps.

An update mechanism for Bayesian nets is enabled by relaxing some of their restrictions,
leading to modular Bayesian nets that can conveniently be represented and modified. As for every
symbolic representation, the question is how to derive information – in this case marginal probability
distributions – from a modular Bayesian net. We show how to do this by generalizing the known
method of variable elimination. The approach is illustrated by examples about the spreading
of diseases (SIR model) and information diffusion in social networks. We have implemented our
approach and provide runtime results.

2012 ACM Subject Classification Mathematics of computing → Bayesian networks; Software and
its engineering → Petri nets

Keywords and phrases uncertainty reasoning, probabilistic knowledge, Petri nets, Bayesian networks

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.38

Related Version A full version of the paper is available as [1], https://arxiv.org/abs/2009.14817.

Funding This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
GRK 2167, Research Training Group “User-Centred Social Media”.

1 Introduction

Today’s software systems and the real-world processes they support are often distributed,
with agents acting independently based on their own local state but without complete
knowledge of the global state. E.g., a social network may expose a partial history of its users’
interactions while hiding their internal states. An application tracing the spread of a virus
can record test results but not the true infection state of its subjects. Still, in both cases, we
would like to derive knowledge under uncertainty to allow us, for example, to predict the
spread of news in the social network or trace the outbreak of a virus.

© Rebecca Bernemann, Benjamin Cabrera, Reiko Heckel, and Barbara König;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rebecca.bernemann@uni-due.de
mailto:benjamin.cabrera@uni-due.de
mailto:rh122@leicester.ac.uk
mailto:barbara_koenig@uni-due.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.38
https://arxiv.org/abs/2009.14817
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

Using Petri nets as a basis for modelling concurrent systems, our aim is to perform
uncertainty reasoning on Petri nets, employing Bayesian networks as compact representations
of probability distributions. Assume that we are observing a discrete-time concurrent system
modelled by a Petri net. The net’s structure is known, but its initial state is uncertain, given
only as an a-priori probability distribution on markings. The net is probabilistic: Transitions
are chosen at random, either from the set of enabled transitions or independently, based
on probabilities that are known but may change between steps. We cannot observe which
transition actually fires, but only if firing was successful or failed. Failures occur if the
chosen transition is not enabled under the current marking (in the case where we choose
transitions independently), if no transition can fire, or if a special fail transition is chosen.
After observing the system for a number of steps, recording a sequence of “success” and
“failure” events, we then determine a marginal distribution on the markings (e.g., compute
the probability that a given place is marked), taking into account all observations.

First, we set up a framework for uncertainty reasoning based on time-inhomogeneous
Markov chains that formally describes this scenario, parameterized over the specific semantics
of the probabilistic net. This encompasses the well-known stochastic Petri nets [29], as well as
a semantics where the choice of the marking and the transition is independent (Sct. 2 and 3).
Using basic Bayesian reasoning (reminiscent of methods used for hidden Markov models [32]),
it is conceptually relatively straightforward to update the probability distribution based on
the acquired knowledge. However, the probability space is exponential in the number of
places of the net and hence direct computations become infeasible relatively quickly.

Following [5], our solution is to use (modular) Bayesian networks [36, 13, 31] as compact
symbolic representations of probability distributions. Updates to the probability distribution
can be performed very efficiently on this data structure, simply by adding additional nodes.
By analyzing the structure of the Petri net we ensure that this node has a minimal number
of connections to already existing nodes (Sct. 4 and 5).

As for every symbolic representation, the question is how to derive information, in this
case marginal probability distributions. We solve this question by generalizing the known
method of variable elimination [14, 13] to modular Bayesian networks. This method is known
to work efficiently for networks of small treewidth, a fact that we experimentally verify in
our implementation (Sct. 6 and 7).

We consider some small application examples modelling gossip and infection spreading.
Summarized, our contributions are:
We propose a framework for uncertainty reasoning based on time-inhomogeneous Markov
chains, parameterized over different types of probabilistic Petri nets (Sct. 2 and 3).
We use modular Bayesian networks to symbolically represent and update probability
distributions (Sct. 4 and 5).
We extend the variable elimination method to modular Bayesian networks and show how
it can be efficiently employed in order to compute marginal distributions (Sct. 6). This is
corroborated by our implementation and runtime results (Sct. 7).

All proofs and further material can be found in the full version [1].

2 Markov Chains and Probabilistic Condition/Event Nets

2.1 Markov Chains
Markov chains [18, 35] are a stochastic state-based model, in which the probability of a
transition depends only on the state of origin. Here we restrict to a finite state space.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:3

I Definition 1 (Markov chain). Let Q be a finite state space. A (discrete-time) Markov chain
is a sequence (Xn)n∈N0 of random variables such that for q, q0, . . . , qn ∈ Q:

P (Xn+1 = q | Xn = qn) = P (Xn+1 = q | Xn = qn, . . . , X0 = q0).

Assume that |Q| = k. Then, the probability distribution over Q at time n can be
represented as a k-dimensional vector pn, indexed over Q. We abbreviate pn(q) = P (Xn = q).
We define k× k-transition matrices Pn, indexed over Q, with entries1 for the entry of matrix
M at row q′ and column q: Pn(q′ | q) = P (Xn+1 = q′ | Xn = q). Note that pn+1 = Pn · pn.
We do not restrict to time-homogeneous Markov chains where it is required that Pn = Pn+1

for all n ∈ N0. Instead, the probability distribution on the transitions might vary over time.

2.2 Probabilistic Condition/Event Nets
As a basis for probabilistic Petri nets we use the following variant of condition/event nets
[33]. Deviating from [33], we omit the initial marking and furthermore the fact that the post-
condition is marked is not inhibiting the firing of a transition. That is, we omit the so-called
contact condition, which makes it easier to model examples from application scenarios where
the contact condition would be unnatural. Note however that we could easily accommodate
the theory to include this condition, as we did in the predecessor paper [5].

I Definition 2 (condition/event net). A condition/event net (C/E net or simply Petri net)
N = (S, T, •(), ()•) is a four-tuple consisting of a finite set of places S, a finite set of
transitions T with pre-conditions •() : T → P(S) and post-conditions ()• : T → P(S). A
marking is any subset of places m ⊆ S and will also be represented by a bit string m ∈ {0, 1}|S|
(assuming an ordering on the places).

A transition t can fire for a marking m ⊆ S if •t ⊆ m. Then marking m is transformed
into m′ = (m \ •t) ∪ t•, written m t⇒ m′. We write m t⇒ to indicate that there exists some
m′ with m t⇒ m′ and m 6 t⇒ if this is not the case. We denote the set of all markings by
M = P(S).

In order to obtain a Markov chain from a C/E net, we need the following data: given a
marking m and a transition t, we denote by rn(m, t) the probability of firing t in marking m
(at step n), and by rn(m, fail) the probability of going directly to a fail state ∗.

I Definition 3. Let N = (S, T, •(), ()•) be a condition/event net and let Tf = T ∪ {fail}
(the set of transitions enriched with a fail transition). Furthermore let rn : M× Tf → [0, 1],
n ∈ N0 be a family of functions (the transition distributions at step n), such that for each
n ∈ N0, m ∈M:

∑
t∈Tf

rn(m, t) = 1.
The Markov chain generated from N, rn has states Q =M∪ {∗} and for m,m′ ∈M:

P (Xn+1 = m′ | Xn = m) =
∑
t∈T,m t⇒m′

rn(m, t) P (Xn+1 = m′ | Xn = ∗) = 0
P (Xn+1 = ∗ | Xn = m) =

∑
t∈Tf ,m 6

t⇒
rn(m, t) P (Xn+1 = ∗ | Xn = ∗) = 1

where we assume that m 6fail⇒ for every m ∈M.

Note that we can make a transition from m to the fail state ∗ either when there is a non-
zero probability for performing such a transition directly or when we pick a transition that

1 We are using the notation M(q′ | q), resembling conditional probability,

FSTTCS 2020

38:4 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

d1

d2

d3 d5d4

K1 K2

K4K3

(a) A Petri net modelling gossip
diffusion in a social network (Ki:
i knows information).

I1 R1

R2I2

i1

i2

r1

r2

S1

S2

(b) A Petri net modelling spread of
a disease (S: susceptible, I: infected,
R: removed).

I

fail
infflp

(c) A Petri net modelling a
test with false positives and
negatives (I: infected).

Figure 1 Example Petri nets.

cannot be fired in m. Requiring that m 6fail⇒ for every m is for notational convenience, since we
have to sum up all probabilities leading to the fail state ∗ to compute P (Xn+1 = ∗ | Xn = m).
In this way the symbol 6⇒ always signifies a transition to ∗.

By parametrising over rn we obtain different semantics for condition/even nets. In
particular, we consider the following two probabilistic semantics, both based on probability
distributions pnT : T → [0, 1], n ∈ N0 on transitions. We work under the assumption that
this information is given or can be gained from extra knowledge that we have about our
environment.
Independent case: Here we assume that the marking and the transition are drawn indepen-
dently, where markings are distributed according to pn and transitions according to pnT . It
may happen that the transition and the marking do not “match” and the transition cannot
fire. Formally, rn(m, t) = pnT (t), rn(m, fail) = 0 (where m ∈M, t ∈ T). This extends to the
case where fail has non-zero probability, with probability distribution pnT : Tf → [0, 1].
Stochastic net case: We consider stochastic Petri nets [29] which are often provided with a
semantics based on continuous-time Markov chains [35]. Here, however we do not consider
continuous time, but instead model the embedded discrete-time Markov chain of jumps that
abstracts from the timing. The firing rate of a transition t is proportional to pnT (t).

Intuitively, we first sample a marking m (according to pn) and then sample a transition,
restricting to those that are enabled in m. Formally, for every t ∈ Tf , rn(m, t) = 0,
rn(m, fail) = 1 if no transition can fire in m and rn(m, t) = pnT (t)/

∑
m

t′⇒
pnT (t′), rn(m, fail) =

0 otherwise.

Other semantics might make sense, for instance the probability of firing a transition could
depend on a place not contained in its pre-condition. Furthermore, it is possible to mix the
two semantics and do one step in the independent and the next in the stochastic semantics.

I Example 1. The following nets illustrate the two semantics. The first net (Fig. 1a) explains
the diffusion of gossip in a social network: There are four users and each place Ki represents
the knowledge of user i. To convey the fact that user i knows some secret, place Ki contains
a token. The diffusion of information is represented by transitions dj . E.g., if 1 knows the
secret he will tell it to either 2 or 3 and if 3 knows a secret she will broadcast it to both 1
and 4. Note that a person will share the secret even if the recipient already knows, and she
will retain this knowledge (see the double arrows in the net).2

2 Hence, in the Petri net semantics, we allow a transition to fire although the post-conditions is marked.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:5

Here we use the stochastic semantics: only transitions that are enabled will be chosen
(unless the marking is empty and no transition can fire). We assume that pT (d2) = 1/3 and
pT (d1) = pT (d3) = pT (d4) = pT (d5) = 1/6, i.e., user 2 is more talkative than the others.

One of the states of the Markov chain is the marking m = 1100 (K1,K2 are marked –
users 1 and 2 know the secret – and K3,K4 are unmarked – users 3 and 4 do not). In this
situation transitions d1, d2, d3 are enabled. We normalize the probabilities and obtain that
d2 fires with probability 1/2 and the other two with probability 1/4. By firing d1 or d2 we stay
in state 1100, i.e., the corresponding Markov chain has a loop with probability 3/4. Firing d3
gives us a transition to state 1110 (user 3 now knows the secret too) with probability 1/4.

The second net (Fig. 1b) models the classical SIR infection model [24] for two persons.
A person is susceptible (represented by a token in place Si) if he or she has not yet been
infected. If the other person is infected (i.e. place I1 or I2 is marked), then he or she might
also get infected with the disease. Finally, people recover (or die), which means that they
are removed (places Ri). Again we use the stochastic semantics.

The third net (Fig. 1c) models a test (for instance for an infection) that may have false
positives and false negatives. A token in place I means that the corresponding person is
infected. Apart from I there is another random variable R (for result) that tells whether
the test is positive or negative. In order to faithfully model the test, we assign the following
probabilities to the transitions: pT (flp) = P (R | Ī) (false or lucky positive: this transition
can fire regardless of whether I is marked, in which case the test went wrong and is only
accidentally positive), pT (inf) = P (R | I)− P (R | Ī) (the remaining probability,3 such that
the probabilities of flp and inf add up to the true positive) and pT (fail) = P (R̄ | I) (false
negative). Here we use the independent semantics, assuming that we have a random test
where the ground truth (infected or not infected) is independent of the firing probabilities of
the transitions.

3 Uncertainty Reasoning for Condition/Event Nets

We now introduce the following scenario for uncertainty reasoning: assume that we are given
an initial probability distribution p0

∗ on the markings of the Petri net. We stipulate that
the fail state ∗ cannot occur, assuming that the state of the net is always some (potentially
unknown) well-defined marking. If this fail state would be reached in the Markov model, we
assume that the marking of the Petri net does not change, i.e., we perform a “reset” to the
previous marking.

Furthermore, we are aware of all firing probabilities of the various transitions, given
by the functions (rn)n∈N0 and hence all transition matrices Pn that specify the transition
probabilities at step n.

Then we observe the system and obtain a sequence of success and failure occurrences.
We are not told which exact transition fires, but only if the firing is successful or fails (since
the pre-condition of the transition is not covered by the marking). Note that according to
our model, transitions can be chosen to fire, although they are not activated. This could
happen if either a user or the environment tries to fire such a transition, unaware of the
status of its pre-condition. Failure corresponds to entering state ∗ and in this case we assume
the marking does not change. That is, we keep the previous marking, but acquire additional
knowledge – namely that firing fails – which is used to update the probability distribution
according to Prop. 4 (by performing the corresponding matrix multiplications, including
normalization).

3 Here we require that P (R | Ī) ≤ P (R | I).

FSTTCS 2020

38:6 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

We use the following notation: let M be a matrix indexed overM∪{∗}. Then we denote
by M∗ the matrix obtained by deleting the ∗-indexed row and column from M . Analogously
for a vector p. Note that (M · p)∗ = M∗ · p∗. Furthermore if p∗ is a sub-probability vector,
indexed overM, norm(p∗) stands for the corresponding normalized vector, where the m-entry
is p∗(m)/

(∑
m′∈M p∗(m′)

)
.

I Proposition 4. Let rn : M× Tf → [0, 1] and pn : M∪ {∗} → [0, 1] be given as above. Let
N be a C/E net and let (Xn)n∈N0 be the Markov chain generated from N, rn. Then

P (Xn+1 = m′ | Xn+1 6= ∗, Xn 6= ∗) = P (Xn+1 = m′ | Xn+1 6= ∗) = norm(Pn∗ · pn∗)(m′)
P (Xn = m | Xn+1 = ∗, Xn 6= ∗) = norm(Fn∗ · pn∗)(m)

where pn(m) = P (Xn = m), pn(∗) = P (Xn = ∗) and Fn is a diagonal matrix with
Fn(m̄ | m̄) := Pn(∗ | m̄), m̄ ∈M, and Fn(∗ | ∗) := Pn(∗ | ∗) = 1, all other entries are 0.

Hence, in case we observe a success we update the probability distribution to p̄n+1 by
computing Pn∗ · p̄n (and normalizing). Instead, in the case of a failure we assume that
the marking stays unchanged, but by observing the failure we have gathered additional
knowledge, which means that we can replace p̄n+1 by Fn∗ · p̄n (after normalization).

Pn∗ and Fn∗ are typically not stochastic, but only sub-stochastic. For a (sub-)probability
matrix M∗ and a (sub-)probability vector p∗ it is easy to see that norm(M∗ ·p∗) = norm(M∗ ·
norm(p∗)). Hence another option is to omit the normalization steps and to normalize at the
very end of the sequence of observations. Normalization may be undefined (in the case of
the 0-vector), which signifies that we assumed an a priori probability distribution that is
inconsistent with reality.

I Example 2. We get back to Ex. 1 and discuss uncertainty reasoning. Assume that in the
net in Fig. 1b person 1 is susceptible (S1 is marked), person 2 is infected (I2 is marked) and
the ij-transitions have a higher rate (higher probability of firing) than the rj-transitions.
Then, in the next step the probability that both are infected is higher than the probability
that 1 is still susceptible and 2 has recovered.

Regarding the net in Fig. 1c we can show that in the next step, in the case of success,
the probability distribution is updated in such a way that place I is marked with probability
P (I | R) and unmarked with probability P (Ī | R) (P (I | R̄), P (Ī | R̄) in the case of failure),
exactly as required. For more details see [1].

4 Modular Bayesian Networks

A

B

D

E

C

Figure 2 An example Bayesian network.

In order to implement the updates to the probability distributions described above in an
efficient way, we will now represent probability distributions over markings symbolically as
Bayesian networks [31, 8]. Bayesian networks (BNs) model certain probabilistic dependencies
of random variables through conditional probability tables and a graphical representation.

Consider for instance the Bayesian network in Fig. 2. Each node (A, B, C, D, E)
represents a binary random variable, where a node without predecessors (e.g., A) is associated
with the probabilities P (A) and P (Ā). Edges denote dependencies: for instance D is

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:7

dependent on A,B, which means that D is associated with a conditional probability table
(matrix) with entries P (D | A,B), similar for E (entries of the form P (E | D,C)). In both
cases, the matrix contains 2 · 4 = 8 entries.

We will later describe how to derive probability distributions and marginal probabilities
(for instance P (E)) from a Bayesian network.

We deviate from the literature on Bayesian networks in three respects: first, since we
will update and transform those networks, we need a structure where we can easily express
compositionality via sequential and parallel composition. To this end we use the representation
of Bayesian networks via PROPs as in [16, 22]. Second, we permit sub-stochastic matrices.
Third, we allow a node to have several outgoing wires, whereas in classical Bayesian networks
a node is always associated to the distribution of a single random variable. This is needed
since we need to add nodes to a network that represent stochastic matrices of arbitrary
dimensions (basically the matrices Pn and Fn of Proposition 4). We rely on the notation
introduced in [5], but extend it by taking the last item above into account.

4.1 Causality Graphs
The syntax of Bayesian networks is provided by causality graphs [5]. For this we fix a set of
node labels G, also called generators, where every g ∈ G is associated with a type ng → mg,
where ng,mg ∈ N0.

I Definition 5 (Causality Graph (CG)). A causality graph (CG) of type n→ m, n,m ∈ N0,
is a tuple B = (V, `, s, out) where

V is a set of nodes
` : V → G is a labelling function that assigns a generator `(v) ∈ G to each node v ∈ V .
s : V →W ∗B is the source function that maps a node to a sequence of input wires, where
|s(v)| = n`(v) and WB = {(v, p) | v ∈ V, p ∈ {1, . . . ,m`(v)}} ∪ {i1, . . . , in} is the wire set.
out : {o1, . . . , om} →WB is the output function that assigns each output port to a wire.

Moreover, the corresponding directed graph (defined by s) has to be acyclic.
We also define the target function t : V →W ∗B with t(v) = (v, 1) . . . (v,m`(v)) and the set

of internal wires IWB = WB\{i1, . . . , in, out(o1), . . . , out(om)}.

We visualize such causality graphs by drawing the n input wires on the left and the m
outputs on the right. Each node v is drawn as a box, with nv ingoing wires and mv outgoing
wires, ordered from top to bottom. Connections induced by the source and by the output
function are drawn as undirected edges (see Fig. 2).

We define two operations on causality graphs: sequential composition and tensor. Given B
of type n→ k and B′ of type k → m, the sequential composition is obtained via concatenation,
by identifying the output wires of B with the input wires of B′, resulting in B;B′ of type
n→ m. The tensor takes two causality graphs Bi of type ni → mi, i ∈ {1, 2} and takes their
disjoint union, concatenating the sequences of input and output wires, resulting in B1 ⊗B2
of type n1 + n2 → m1 +m2. For formal definitions see [5, 4].

4.2 (Sub-)Stochastic Matrices
The semantics of modular Bayesian networks is given by (sub-)stochastic matrices, i.e.,
matrices with entries from [0, 1], where column sums will be at most 1. If the sum equals
exactly 1 we obtain stochastic matrices.

We consider only matrices whose dimensions are a power of two. Analogously to causality
graphs, we type matrices, and say that a matrix has type n→ m whenever it is of dimension
2m × 2n. We again use a sequential composition operator ; that corresponds to matrix

FSTTCS 2020

38:8 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

multiplication (P ;Q = Q · P) and the Kronecker product ⊗ as the tensor. More concretely,
given P : n1 → m1, Q : n2 → m2 we define P ⊗Q : n1 + n2 → m1 +m2 as (P ⊗Q)(x1x2 |
y1y2) = P (x1 | y1) ·Q(x2 | y2) where xi ∈ {0, 1}mi , yi ∈ {0, 1}ni .

4.3 Modular Bayesian Networks
Finally, modular Bayesian networks, adapted from [5], are causality graphs, where each
generator g ∈ G is associated with a (sub-)stochastic matrix of suitable type.

I Definition 6 (Modular Bayesian network (MBN)). An MBN is a tuple (B, ev) where B is
a causality graph and ev an evaluation function that assigns to every generator g ∈ G of
type n→ m a 2m × 2n sub-stochastic matrix ev(g). An MBN (B, ev) is called an ordinary
Bayesian network (OBN) whenever B has no inputs (i.e. it has type 0→ m), each generator
is of type n→ 1, out is a bijection and every node is associated with a stochastic matrix.

We now describe how to evaluate an MBN to obtain a (sub-)stochastic matrix. For
OBNs – which are exactly the Bayesian networks considered in [17] – this coincides with the
standard interpretation and yields a probability vector of dimension m.

I Definition 7 (MBN evaluation). Let (B, ev) be an MBN where B is of type n→ m. Then
Mev(B) is a 2m × 2n-matrix, which is defined as follows:

Mev(B)(x1 . . . xm | y1 . . . yn) =
∑
b∈B

∏
v∈V

ev(l(v)) (b(t(v)) | b(s(v)))

with x1, . . . , xm, y1, . . . , yn ∈ {0, 1}. B is the set of all functions b : WB → {0, 1} such that
b(ij) = yj, b(out(ok)) = xk, where k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. The functions b are
applied pointwise to sequences of wires.

Calculating the underlying probability distribution of an MBN can also be done on a
graphical level by treating every occurring wire as a boolean variable that can be assigned
either 0 or 1. Function b ∈ B assigns the wires, ensuring consistency with the input/output
values. After the wire assignment, the corresponding entries of each matrix ev(l(v)) are
multiplied. After iterating over every possible wire assignment, the products are summed up.

Note that Mev is compositional, it preserves sequential composition and tensor. More
formally, it is a functor between symmetric monoidal categories, or – more specifically –
between CC-structured PROPs (More details on PROPs are given in the full version [1].).

I Example 3. We illustrate Def. 7 by evaluating the Bayesian network (B′, ev) in Fig. 2.
This results in a 2× 1-matrix Mev(B′), assigning (sub-)probabilities to the only output wire
in the diagram being 1 or 0, respectively. More concretely, we assign values to the four inner
wires to obtain:

Mev(B′)(e) =
∑

a∈{0,1}

∑
b∈{0,1}

∑
c∈{0,1}

∑
d∈{0,1}

(
A(a) ·B(b) · C(c) ·D(d | ab) · E(e | cd)

)
,

where a, b, c, d, e correspond to the output wire of the corresponding matrix (A,B,C,D,E).

5 Updating Bayesian Networks

An MBN B of type 0→ k, as defined above, symbolically represents a probability distribution
on {0, 1}k, that is, a probability distribution on markings of a net with |S| = k places.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:9

Under uncertainty reasoning (cf. Section 3), the probability distribution in the next step
pn+1 is obtained by multiplying pn with a matrix M (either Pn∗ in the successful case or Fn∗
in the case of failure). Hence, a simple way to update B would be to create an MBN BM
with a single node v (labelled by a generator g with ev(g) = M), connected to k inputs and
k outputs. Then the updated B′ is simply B;BM (remember that sequential composition
corresponds to matrix multiplication). However, at dimension 2k × 2k the matrix M is huge
and we would sacrifice the desirable compact symbolic representation. Hence the aim is to
decompose M = M ′ ⊗ Id where Id is an identity matrix of suitable dimension. Due to the
functoriality of MBN evaluation this means composing with a smaller matrix and a number
of identity wires (see e.g. Fig. 3b).

This decomposition arises naturally from the structure of the Petri net N , in particular if
there are only relatively few transitions that may fire in a step. In this case we intuitively
have to attach a stochastic matrix only to the wires representing the places connected to
those transitions, while the other wires can be left unchanged. If there are several updates,
we of course have to attach several matrices, but each of them might be of a relatively modest
size.

In order to have a uniform treatment of the various semantics, we assume that for
each step n there is a set S̄ ⊆ S of places4 and a set T̄ ⊆ Tf of transitions such that: (i)
rn(m, t) = 0 whenever t 6∈ T̄ ; (ii) rn(m1m2, t) = r̄(m1, t) for some function r̄ (where m1 is a
marking of length ` = |S̄|, corresponding to the places of S̄); (iii) S̄ contains at least •t, t•
for all t ∈ T̄ . Intuitively, S̄, T̄ specify the relevant places and transitions.

For the two Petri net semantics studied earlier, these conditions are satisfied if we take
as T̄ the support of pnT and as S̄ the union of all pre- and post-sets of T̄ . The function rn
can in both cases be defined in terms of r̄: in the independent case this is obvious, whereas
in the stochastic net case we observe that rn(m, t) is only dependent on pnT and on the set of
transitions that is enabled in m and this can be derived from m1.

Now, under these assumptions, we can prove that we obtain the decomposition mentioned
above.

I Proposition 8. Assume that N is a condition/even-net together with a function rn. Assume
that we have S̄ ⊆ S, T̄ ⊆ Tf satisfying the conditions above. Then

Pn∗ = P ′ ⊗ Id2k−` where P ′(m′1 | m1) =
∑
t∈T̄ ,m1

t⇒m′1
r̄(m1, t).

Fn∗ = F ′ ⊗ Id2k−` where F ′(m′1 | m1) =
∑
t∈T̄ ,m1 6

t⇒
r̄(m1, t) if m1 = m′1 and 0 otherwise.

Here P ′, F ′ are 2` × 2`-matrices and m1,m
′
1 ⊆ S̄. Note also that we implicitly restricted the

firing relation to the markings on S̄.

I Example 4. In order to illustrate this, we go back to gossip diffusion (Fig. 1a, Ex. 1). Our
input is the following: an initial probability distribution, describing the a priori knowledge,
given by an MBN. Here we have no information about who knows or does not know the secret
and hence we assume a uniform probability distribution over all markings. This is represented
by the Bayesian network in Fig. 3a where each node is associated with a 2× 1-matrix (vector)
Ki where both entries are 1/2.

Also part of the input is the family of transition distributions (rn)n∈N0 . Here we assume
that the firing probabilities of transitions are as in Example 1, but not all users are active
at the same time. We have information that in the first step only users 1 and 2 are active,
hence by normalization we obtain probabilities 1/4, 1/2, 1/4 for transitions d1, d2, d3 (the
other transitions are deactivated).

4 Without loss of generality we assume that the outputs have been permuted such that places in S̄ occur
first in the sequence of places.

FSTTCS 2020

38:10 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

K1

K2

K3

K4

(a) An MBN modelling
a uniform probability
distribution.

K1

K2

K3

K4

P ′

(b) An MBN after performing
an update (observation of a
successful step).

K1

K2

K3

K4

P ′

(c) Computing a marginal
probability distribution from
an MBN.

Figure 3 Example: transformation of modular Bayesian networks.

Now we observe a success step. According to Sct. 3 we can make an update with P∗ where
P is the transition matrix of the Markov chain. Since none of the transitions is attached to
place K4 the optimizations of this section allow us to represent P∗ as P ′ ⊗ Id2 where P ′ is
an 8× 8-matrix. E.g., as discussed in Ex. 1, we have P ′(110 | 110) = 3/4, P ′(111 | 110) = 1/4.
This matrix is simply attached to the modular Bayesian network (see Fig. 3b).

Now assume that it is our task to compute the probability that place K3 is marked.
For this, we compute the corresponding marginal probabilities by terminating each output
wire (apart from the third one) (see Fig. 3c). “Terminating a wire” means to remove it
from the output wires. This results in summing up over all possible values assigned to each
wire, where we can completely omit the last component, which is the unit of the Kronecker
product. Note that the resulting vector is sub-stochastic and still has to be normalized. The
normalization factor can be obtained by terminating also the remaining third wire, which
gives us the probability mass of the sub-probability distribution. Our implementation will
now tell us that place K3 is marked with probability 5/8.

6 Variable Elimination and Tree Decompositions

6.1 Motivation
Given a modular Bayesian network, it is inefficient to obtain the full distribution, not just
from the point of view of the computation, but also since its direct representation is of
exponential size. However what we often need is to compute a marginal distribution (e.g.,
the probability that a certain place is marked) or a normalization factor for a sub-stochastic
probability distribution (cf. Ex. 4). Another application would be to transform an MBN
into an OBN, by isolating that part of the network that does not conform to the properties
of an OBN, evaluating it and replacing it by an equivalent OBN.

Def. 7 gives a recipe for the evaluation, which is however quite inefficient. Hence we
will now explain and adapt the well-known concept of variable elimination [14, 13]. Let us
study the problem with a concrete example. Consider the Bayesian network B′ in Fig. 2
and its evaluation described in Ex. 3. If we perform this computation one has to enumerate
24 = 16 bit vectors of length 4. Furthermore, after eliminating d we have to represent a
matrix (also called factor in the literature on Bayesian networks) that is dependent on four
random variables (a,b, c, e), hence we say that it has width 4 (24 = 16 entries).

However, it is not difficult to see that we can – via the distributive law – reorder the
products and sums to obtain a more efficient way of computing the values:

Mev(B′)(e) =
∑

d∈{0,1}

(∑
c∈{0,1}

(∑
b∈{0,1}

(∑
a∈{0,1}

(
A(a) ·D(d | ab)

)
·B(b)

)
·C(c)

)
·E(e | cd)

)
.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:11

In this way we obtain smaller matrices, the largest matrix (or factor) that occurs is D
(width 3). Choosing a different elimination order might have been worse. For instance, if we
had eliminated d first, we would have to deal with a matrix dependent on a, b, c, e (width 4).

6.2 Variable elimination
The literature of Bayesian networks [14, 13] extensively studies the best variable elimination
order and discusses the relation to treewidth. For our setting we have to extend the results
in the literature, since we also allow generators with more than one output.

I Definition 9 (Elimination order). Let B = (V, `, s, out) be the causality graph of a modular
Bayesian network of type n→ m. As in Def. 5 let WB be the set of wires.

We define an undirected graph U0 that has as vertices5 the wires WB and two wires w1, w2
are connected by an edge whenever they are connected to the same node. More precisely, they
are connected whenever they are input or output wires for the same node (i.e. w1, w2 are
both in s(v)t(v) for a node v ∈ V).

Now let w1, . . . , wk (where k = |IWB |) be an ordering of the internal wires, a so-called
elimination ordering. We update the graph Ui−1 to Ui by removing the next wire wi and
connecting all of its neighbours by edges (so-called fill in). External wires are never eliminated.
The width of the elimination ordering is the size of the largest clique that occurs in some
graph Ui. The elimination width of B is the least width taken over all orderings.

In the case of Bayesian networks, the set of wires of an OBN corresponds to the set of
random variables. In the literature, the graph U0 is called the moralisation of the Bayesian
network, it is obtained by taking the Bayesian network (an acyclic graph), forgetting about
the direction of the edges, and connecting all the parents (i.e., the predecessors) of a random
variable, i.e. making them form a clique. This results in the same graph as the construction
described above.

To introduce the algorithm, we need the notion of a factor, already hinted at earlier.

I Definition 10 (Factor). Let (B, ev) be a modular Bayesian network with a set of wires
WB. A factor (f, w̃) of size s consists of a map f : {0, 1}s → [0, 1] together with a sequence
of wires w̃ ∈W ∗B. We require that w̃ is of length s (|w̃| = s) and does not contain duplicates.

Given a wire w ∈WB and a multiset F of factors, we denote by Cw(F) all those factors
(f, w̃) ∈ F where w̃ contains w. By Xw(F) we denote the set of all wires that occur in the
factors in Cw(F), apart from w.

We now consider an algorithm that computes the probability distribution represented
by a modular Bayesian network of type n → m. We assume that an evaluation map ev,
mapping generators to their corresponding matrices, and an elimination order w1, . . . , wk of
internal wires is given. Furthermore, given a sequence of wires w̃ = w′1 . . . w

′
s and a bitstring

x = x1 . . . xs, we define the substitution function bw̃,x from wires to bits as bw̃,x(w′j) = xj .

I Algorithm 11 (Variable elimination).
Input: An MBN (B, ev) of type n→ m

Let F0 be the initial multiset of factors. For each node v of type n`(v) → m`(v), it contains
the matrix ev(v), represented as a factor f , together with the sequence s(v)t(v). That is
f(xy) = ev(v)(y | x) where x ∈ {0, 1}n`(v) , y ∈ {0, 1}m`(v) .

5 We talk about the nodes of an MBN B and the vertices of an undirected graph Ui.

FSTTCS 2020

38:12 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

Now assume that we have a set Fi−1 of factors and take the next wire wi in the elimination
order. We choose all those factors that contain wi and compute a new factor (f, w̃). Let
w̃ be a sequence that contains all wires of Xw(Fi−1) (in arbitrary order, but without
duplicates). Let s = |w̃|. Then f is a function of type f : {0, 1}s → [0, 1], defined as:

f(y) =
∑

z∈{0,1}

∏
(g,w̃g)∈Cwi

(Fi−1)

g(bw̃wi,yz(w̃g)).

We set Fi = Fi−1\Cwi
(Fi−1) ∪ {(f, w̃)}.

After the elimination of all wires we obtain a multiset of factors Fk, whose sequences
contain only input and output wires. The resulting probability distribution is p : {0, 1}n+m

→ [0, 1], where x ∈ {0, 1}n, y ∈ {0, 1}m, ι̃ = i1 . . . in, õ = out(o1) . . . out(om):

p(xy) =
∏

(f,w̃f)∈Fk

f(bι̃õ,xy(w̃f))

That is, given the next wire wi we choose all factors that contain this wire, remove them
from Fi−1 and multiply them, while eliminating the wire. The next set is obtained by adding
the new factor. Finally, we have factors that contain only input and output wires and we
obtain the final probability distribution by multiplying them.

I Proposition 12. Given a modular Bayesian network (B, ev) where B is of type n → m,
Algorithm 11 computes its corresponding (sub-)stochastic matrix Mev(B), that is

Mev(B)(y | x) = p(xy) for x ∈ {0, 1}n, y ∈ {0, 1}m.

Furthermore, the size of the largest factor in any multiset Fi is bounded by the width of the
elimination ordering.

6.3 Comparison to Treewidth
We conclude this section by investigating the relation between elimination width and the
well-known notion of treewidth [2].

I Definition 13 (Treewidth of a causality graph). Let B = (V, `, s, out) be a causality graph
of type n→ m. A tree decomposition for B is an undirected tree T = (VT , ET) such that

every node t ∈ VT is associated with a bag Xt ⊆WB,
every wire w ∈WB in contained in at least one bag Xt,
for every node v ∈ V there exists a bag Xt such that all input and output wires of v are
contained in Xt (i.e., all wires in s(v) and t(v) are in Xt) and
for every wire w ∈WB, the tree nodes {t ∈ VT | w ∈ Xt} form a subtree of T .

The width of a tree decomposition is given by maxt∈VT
|Xt| − 1.

The treewidth of B is the minimal width, taken over all tree decompositions.

Note that the treewidth of a causality graph corresponds to the treewidth of the graph
U0 from Def. 9. Now we are ready to compare elimination width and treewidth.

I Proposition 14. Elimination width is always an upper bound for treewidth and they coincide
when B is a causality graph of type 0→ 0. For a network of type 0→ m the treewidth may
be strictly smaller than the elimination width.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:13

The treewidth might be strictly smaller since we are now allowed to eliminate output
wires. However, it is easy to see that the treewidth plus the number of output wires always
provides an upper bound for the elimination width.

The paper [2] also discusses heuristics for computing good elimination orderings, an
opimization problem that is NP-hard. Hence the treewidth of a causality graph gives us an
upper bound for the most costly step in computing its corresponding probability distribution.
[26] shows that a small treewidth is actually a necessary condition for obtaining efficient
inference algorithms.

We can also compare elimination width to the related notion of term width, more details
can be found in [1].

7 Implementation and Runtime Results

We extended the implementation presented in the predecessor paper [5] by incorporating
probabilistic Petri nets and elimination orderings, in order to evaluate the performance of the
proposed concepts. The implementation is open source and freely available from GitHub.6

Runtime results were obtained by randomly generating Petri nets with different parameters,
e.g. number of places, transitions and tokens, initial marking. The maximal number of places
in pre- and post-conditions is restricted to three and at most five transitions are enabled
in each step. With these parameters, the worst case scenario is the creation of a matrix of
type 30→ 30. After the initialization of a Petri net, which can be interpreted with either
semantics (independent/stochastic), transitions and their probabilities are picked at random.
Then we observe either success or failure and update the probability distribution accordingly.

We select the elimination order via a heuristics by preferring wires with minimal degree in
the graph Ui (cf. Def 9). Furthermore we apply a few optimizations: Nodes with no output
wires will be evaluated first, nodes without inputs second. The observation of a failure will
generate a diagonal matrix, which enables an optimized evaluation, as its input and output
wires have to carry the same value (otherwise we obtain a factor 0). In addition, we use
optimizations whenever we have definitive knowledge about the marking of a particular place
(of a pre-condition), by drawing conclusions about the ability to fire certain transitions.

The plot on the left of Fig. 4 compares runtimes when incorporating ten success/failure
observations directly on the joint distribution (i.e. the naive representation of a probability
distribution) versus our MBN implementation. We initially assume a uniform distribution
of tokens and calculate the probability that the first place is marked after the observations.
Both approaches evaluate the same Petri net and therefore calculate the same results. The
data is for the independent semantics, but it is very similar for the stochastic semantics.

While the runtime increases exponentially when using joint distributions, our MBN
implementation stays relatively constant (see Fig. 4, left). Due to memory issues, handling
Petri nets with more than 30 places is not anymore feasible for the direct computation of
joint distributions. We use the median for comparison (see Fig. 4, left), but if an MBN
consists of very large matrices, the evaluation time will be rather high. The right plot of
Fig. 4 shows this correlation, where colours denote the runtime and the y-axis represents the
number of wires attached to the largest matrix. (Here we actually count equivalence classes
by grouping those wires that have to carry the same value, due to their attachment to a
diagonal matrix, see also the optimization explained above.)

6 https://github.com/RebeccaBe/Bayesian-II

FSTTCS 2020

https://github.com/RebeccaBe/Bayesian-II

38:14 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

0

250

500

750

1000

15 20 25
#Places in Petri Net

S
ec

on
ds

Uncertainty modelling via Joint Distribution MBN

10

20

30

15 20 25 30
#Places in Petri NetN

um
be

r
of

 W
ire

s
(L

ar
ge

st
 M

at
rix

) Seconds > 750 > 20 & <=750 <= 20

Figure 4 Left: Median of runtimes performing after 10 transitions on a Petri net. Right: Effect
of large matrices on the runtimes of the MBN implementation.

The advantage of our approach decreases when we have substantially more places in the
pre- and post-set, more transitions that may fire and a larger number of steps, since then
the Bayesian network is more densely connected and contains larger matrices. Furthermore,
one might generally expect the state (containing tokens or not) of places of the Petri net
to become more and more coupled over time, as more transitions have fired, decreasing the
performance improvement we gain from using MBNs. However, recall that the transitions
that can fire at any time are explicitly controlled by the input pnT . This allows our model to
capture situations where different parts of the network stay uncoupled over time and where
using MBNs is an advantage. Furthermore the observation of a failure allows an optimizated
variable elimination, as explained above.

8 Conclusion

We propose a framework for uncertainty reasoning for probabilistic Petri nets that represents
probability distributions compactly via Bayesian networks. In particular we describe how to
efficiently update and evaluate Bayesian networks.
Related work: Naturally, uncertainty reasoning has been considered in many different scenarios
(for an overview see [19]). Here we review only those approaches that are closest to our work.

In [5] we studied a simpler scenario for nets whose transitions do not fire probabilistically,
but are picked by the observer, resulting in a restricted set of update operations. Rather than
computing marginal distributions directly via variable elimination as in this paper, our aim
there was to transform the resulting modular Bayesian network into an ordinary one. Since
the updates to the net were of a simpler nature, we were able to perform this conversion. Here
we are dealing with more complex updates where this can not be done efficiently. Instead we
are concentrating on extracting information, such as marginal distributions, from a Bayesian
network.

Furthermore, uncertainty reasoning as described in Sct. 3 is related to the methods
used for hidden Markov models [32], where the observations refer to the states, whereas we
(partially) observe the transitions.

There are several proposals which enrich Petri nets with a notion of uncertainty:
possibilistic Petri nets [27], plausible Petri nets [9] that combine discrete and continuous
processes or fuzzy Petri nets [6, 34] where firing of transitions is governed by the truth values
of statements. Uncertainty in connection with Petri nets is also treated in [25, 23], but
without introducing a formal model. As far as we know neither approach considers symbolic
representation of probability distributions via Bayesian networks.

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:15

In [3] the authors exploit the fact that Petri nets also have a monoidal structure and
describe how to convert an occurrence (Petri) net with a truly concurrent semantics into a
Bayesian network, allowing to derive probabilistic information, for instance on whether a
place will eventually be marked. This is different from our task, but it will be interesting to
compare further by unfolding our nets and equipping them with a truly concurrent semantics,
based on the probabilistic information from the time-inhomogeneous Markov chain.

We instead propose to use Bayesian networks as symbolic representations of probability
distributions. An alternative would be to employ multi-valued (or multi-terminal) binary
decision diagrams (BDDs) as in [20]. An exact comparison of both methods is left for future
work. We believe that multi-valued BDDs will fare better if there are only few different
numerical values in the distribution, otherwise Bayesian networks should have an advantage.

As mentioned earlier, representing Bayesian networks by PROPs or string diagrams is a
well-known concept, see for instance [16, 22]. The paper [21] describes another transformation
of Bayesian networks by string diagram surgery that models the effect of an intervention.

In addition there is a notion of dynamic Bayesian networks [30], where a random variable
has a separate instance for each time slice. We instead keep only one instance of every
random variable, but update the Bayesian network itself.

In addition to variable elimination, a popular method to compute marginals of a probability
distribution is based on belief propagation and junction trees [28]. In order to assess the
potential efficiency gain, this approach has to be adapted for modular Bayesian networks.
However due to the dense interconnection and large matrices of MBNs, an improvement in
runtime is unclear and deserves future investigation.
Future work: One interesting avenue of future work is to enrich our model with timing
information by considering continuous-time Markov chains [35], where firing delays are
sampled from an exponential distribution. Instead of asking about the probability distribution
after n steps we could instead ask about the probability distribution at time t.

We would also like to add mechanisms for controlling the system, such as transitions that
are under the control of the observer and can be fired whenever enabled. Then the task of
the observer would be to control the system and guide it into a desirable state. In this vein
we are also interested in studying stochastic games [11] with uncertainty.

The interaction between the structure of the Petri net and the efficiency of the analysis
method also deserves further study. For instance, are free-choice nets [15] – with restricted
conflicts of transitions – more amenable to this type of analysis than arbitrary nets?

Recently there has been a lot of interest in modelling compositional systems via string
diagrams, in the categorical setting of symmetric monoidal categories or PROPs [10]. In this
context it would be interesting to see how the established notion of treewidth [2] and its
algebraic characterizations [12] translates into a notion of width for string diagrams. We
started to study this for the notion of term width, but we are not aware of other approaches,
apart from [7] which considers monoidal width.

References

1 Rebecca Bernemann, Benjamin Cabrera, Reiko Heckel, and Barbara König. Uncertainty
reasoning for probabilistic petri nets via Bayesian networks, 2020. arXiv:2009.14817. URL:
https://arxiv.org/abs/2009.14817.

2 H.L. Bodlaender and A.M.C.A. Koster. Treewidth computations I. Upper bounds. Technical
Report UU-CS-2008-032, Department of Information and Computing Sciences, Utrecht
University, September 2008.

FSTTCS 2020

https://arxiv.org/abs/2009.14817

38:16 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

3 R. Bruni, H. C. Melgratti, and U. Montanari. Bayesian network semantics for Petri nets.
Theoretical Computer Science, 807:95–113, 2020.

4 B. Cabrera. Analyzing and Modeling Complex Networks – Patterns, Paths and Probabilities.
PhD thesis, Universität Duisburg-Essen, 2019.

5 B. Cabrera, T. Heindel, R. Heckel, and B. König. Updating probabilistic knowledge on
Condition/Event nets using Bayesian networks. In Proc. of CONCUR ’18, volume 118 of
LIPIcs, pages 27:1–27:17. Schloss Dagstuhl – Leibniz Center for Informatics, 2018. URL:
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=9565.

6 J. Cardoso, R. Valette, and D. Dubois. Fuzzy Petri nets: An overview. In Proc. of 13th
Triennal World Congress, 1996.

7 A. Chantawibul and P. Sobociński. Towards compositional graph theory. In Proc. of MFPS
XXXI. Elsevier, 2015. ENTCS 319.

8 E. Charniak. Bayesian networks without tears. AI magazine, 12(4):50–50, 1991.
9 M. Chiachio, J. Chiachio, D. Prescott, and J.D. Andrews. A new paradigm for uncertain

knowledge representation by plausible Petri nets. Information Sciences, 453:323–345, 2018.
10 B. Coecke and A. Kissinger. Picturing Quantum Processes: A First Course in Quantum

Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.
11 A. Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224,

1992.
12 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic, A Language-

Theoretic Approach. Cambridge University Press, June 2012.
13 A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,

2011.
14 R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113:41–85, 1999.
15 J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1995.
16 B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis,

University of Oxford, 2012. arXiv:1301.6201.
17 N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning,

29:131–163, 1997.
18 C.M. Grinstead and J.L. Snell. Introduction to probability. American Mathematical Soc., 2012.
19 J.Y. Halpern. Reasoning about Uncertainty. MIT Press, second edition edition, 2017.
20 H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-terminal binary decision diagrams to

represent and analyse continuous-time markov chains. In Proc. of NSMC ’99 (International
Workshop on the Numerical Solution of Markov Chains), pages 188–207, 1999.

21 B. Jacobs, A. Kissinger, and F. Zanasi. Causal inference by string diagram surgery. In Proc.
of FOSSACS ’19, pages 313–329. Springer, 2019. LNCS 11425.

22 B. Jacobs and F. Zanasi. A formal semantics of influence in Bayesian reasoning. In Proc. of
MFCS, volume 83 of LIPIcs, pages 21:1–21:14, 2017.

23 I. Jarkass and M. Rombaut. Dealing with uncertainty on the initial state of a Petri net. In
Proc. of UAI ’98 (Uncertainty in Artificial Intelligence), pages 289–295, 1998.

24 M.J. Keeling and K.T.D. Eames. Networks and epidemic models. Journal of the Royal Society
Interface, 2(4):295–307, 2005.

25 M. Kuchárik and Z. Balogh. Modeling of uncertainty with Petri nets. In Proc. of ACIIDS ’19
(Asian Conference on Intelligent Information and Database Systems), pages 499–509. Springer,
2019. LNAI 11431.

26 J.H.P. Kwisthout, H.L. Bodlaender, and L.C. Van Der Gaag. The necessity of bounded
treewidth for efficient inference in Bayesian networks. In Proc. of ECAI ’10 (European
Conference on Artificial Intelligence), volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 237–242. IOS Press, 2010.

http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=9565

R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:17

27 J. Lee, K.F.R. Liu, and W. Chiang. Modeling uncertainty reasoning with possibilistic Petri
nets. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 33(2):214–224, 2003.

28 V. Lepar and P.P. Shenoy. A comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-
Shafer architectures for computing marginals of probability distributions. In G.F. Cooper and
S. Moral, editors, Proc. of UAI ’98 (Uncertainty in Artificial Intelligence), pages 328–337,
1998. URL: http://arxiv.org/abs/1301.7394.

29 M. Ajmone Marsan. Stochastic Petri nets: an elementary introduction. In Proc. of the
European Workshop on Applications and Theory in Petri Nets, volume 424 of Lecture Notes in
Computer Science, pages 1–29. Springer, 1990.

30 K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,
UC Berkeley, Computer Science Division, 2002.

31 J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In
Proc. of the 7th Conference of the Cognitive Science Society, pages 329–334, 1985. UCLA
Technical Report CSD-850017.

32 L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

33 W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1985.

34 Z. Suraj. Generalised fuzzy Petri nets for approximate reasoning in decision support systems. In
Proc. of CS&P ’12 (International Workshop on Concurrency, Specification and Programming),
volume 928 of CEUR Workshop Proceedings, pages 370–381. CEUR-WS.org, 2012.

35 A. Tolver. An introduction to Markov chains. Department of Mathematical Sciences, University
of Copenhagen, November 2016.

36 W. Wiegerinck, W. Burgers, and B. Kappen. Bayesian networks, introduction and practical
applications. In Handbook on Neural Information Processing, pages 401–431. Springer, 2013.

FSTTCS 2020

http://arxiv.org/abs/1301.7394

Synthesizing Safe Coalition Strategies
Nathalie Bertrand
Université Rennes, Inria, CNRS, IRISA, Rennes, France

Patricia Bouyer
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Gif-sur-Yvette, France

Anirban Majumdar
Université Rennes, Inria, CNRS, IRISA, Rennes, France
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Gif-sur-Yvette, France

Abstract
Concurrent games with a fixed number of agents have been thoroughly studied, with various solution
concepts and objectives for the agents. In this paper, we consider concurrent games with an arbitrary
number of agents, and study the problem of synthesizing a coalition strategy to achieve a global
safety objective. The problem is non-trivial since the agents do not know a priori how many they
are when they start the game. We prove that the existence of a safe arbitrary-large coalition strategy
for safety objectives is a PSPACE-hard problem that can be decided in exponential space.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases concurrent games, parameterized verification, strategy synthesis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.39

Related Version https://arxiv.org/abs/2008.03770.

1 Introduction

Context. The generalisation and everyday usage of modern distributed systems call both
for the verification and synthesis of algorithms or strategies running on distributed systems.
Concrete examples are cloud computing, blockchain technologies, servers with multiple clients,
wireless sensor networks, bio-chemical systems, or fleets of drones cooperating to achieve a
common goal [11]. In their general form, these systems are not only distributed, but they may
also involve an arbitrary number of agents. This explains the interest of the model-checking
community both for the verification of parameterized systems [15, 9], and for the synthesis
of distributed strategies [21]. Our contribution is at the crossroad of those topics.

Parameterized verification. Parameterized verification refers here to the verification of
systems formed of an arbitrary number of agents. Often, the precise number of agents is
unknown, yet, algorithms and protocols running on such distributed systems are designed
to operate correctly independently of the number of agents. The automated verification
and control of crowds, i.e., in case the agents are anonymous, is challenging. Remarkably,
subtle changes, such as the presence or absence of a controller in the system, can drastically
alter the complexity of the verification problems [15]. In the decidable cases, the intuition
that bugs appear for a small number of agents is sometimes confirmed theoretically by
the existence of a cutoff property, which reduces the parameterized model checking to the
verification of finitely many instances [14]. In the last 15 years, parameterised verification
algorithms were successfully applied to e.g., cache coherence protocols in uniform memory
access multiprocessors [13], or the core of simple reliable broadcast protocols in asynchronous
systems [17]. When agents have unique identifiers, most verification problems become
undecidable, especially if one can use identifiers in the code agents execute [3].

© Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9957-5394
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.39
https://arxiv.org/abs/2008.03770
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Synthesizing Safe Coalition Strategies

To our knowledge, there are few works on controlling parameterized systems. Excep-
tions are, control strategies for (probabilistic) broadcast networks [7] and for crowds of
(probabilistic) automata [6, 18, 12].

Distributed synthesis. The problem of distributed synthesis asks whether strategies for
individual agents can be designed to achieve a global objective, in a context where individuals
have only a partial knowledge of the environment. There are several possible formalizations
for distributed synthesis, for instance via an architecture of processes with communication
links between agents [21], or using coordination games [20, 19, 8]. The two settings are linked,
and many (un)decidability results have been proven, depending on various parameters.

Concurrent games on graphs. By allowing complex interactions between agents, concurrent
games on graphs [1, 2] are a model of choice in several contexts, for instance for multi-agents
systems, or for coordination or planning problems. An arena for n agents is a directed
graph where the transitions are labeled by n-tuples of actions (or simply words of length
n). At each vertex of the graph, all n agents select simultaneously and independently an
action, and the next vertex is determined by the combined move consisting of all the actions
(or word formed of all the actions). Most often, one considers infinite duration plays, i.e.,
plays generated by iterating this process forever. Concepts studied on multiagent concurrent
games include many borrowed from game theory, such as winning strategies (see e.g., [1]),
rationality of the agents (see e.g., [16]), Nash equilibria (see e.g., [23, 10]).

Parameterized concurrent games on graphs. In a previous work, we introduced concurrent
games in which the number of agents is arbitrary [4]. These games generalize concurrent
games with a fixed number of agents, and can be seen as a succinct representation of infinitely
many games, one for each fixed number of agents. This is done by replacing, on edges of the
arena, words representing the choice of each of the agents by languages of finite yet a priori
unbounded words. Such a parameterized arena can represent infinitely many interaction
situations, one for each possible number of agents. In parameterized concurrent games, the
agents do not know a priori the number of agents participating to the interaction. Each
agent observes the action it plays and the vertices the play goes through. These pieces of
information may refine the knowledge each agent has on the number of involved agents.

Such a game model raises new interesting questions, since the agents do not know
beforehand how many they are. In [4], we first considered the question of whether Agent 1
can ensure a reachability objective independently of the number of her opponents, and no
matter how they play. The problem is non trivial since Agent 1 must win with a uniform
strategy. We proved that when edges are labeled with regular languages, the problem is
PSPACE-complete; and for positive instances one can effectively compute a winning strategy
in polynomial space.

Contribution. In this paper, we are interested in the coordination problem in concurrent
parameterized games, with application to distributed synthesis. Given a game arena and
an objective, the problem consists in synthesizing for every potential agent involved in the
game a strategy that she should apply, so that, collectively, a global objective is satisfied. In
our setting, it is implicit that agents have identifiers. However agents do not communicate;
their identifier will only be used to select the vertices the game proceeds to. Furthermore,
agents do not know how many they are, they only see vertices which are visited, and can
infer information about the number of agents involved in the game.

N. Bertrand, P. Bouyer, and A. Majumdar 39:3

v0

v1

v2

v3

v4

v5

(Σ
Σ)+

Σ(ΣΣ) ∗

Σ +

Σ
+

(bb
)+

a(aa)∗

(aa) +
b(bb) ∗

Σ+

Σ+

Figure 1 Example of a parameterized arena. All unspecified transitions lead to vertex v4.

To better understand the model and the problem, consider the game arena depicted
on Fig. 1. Edges are labeled by (regular) languages. Assuming the game starts at v0, the
game proceeds as follows: a positive integer k is selected by the environment, but is not
revealed to the agents; then an infinite word w ∈ Σω is selected collectively by the agents
(this is the coalition strategy); the n-th letter of w represents the action played by Agent n;1
depending on whether the prefix of length k of w belongs to (ΣΣ)+ (in case k is even) or
Σ(ΣΣ)∗ (in case k is odd), the game proceeds to vertex v1 or v2; the process is repeated ad
infinitum, generating an infinite play in the graph. Depending on the winning condition, the
play will be winning or losing for k. The coalition strategy will be said winning whenever
the generated play is winning whatever the selected number k of agents is.

In this example, assuming the winning condition is to stay in the green vertices, there is
a simple winning strategy: play aω in v0, v1 and v2 (that is, all agents should play an a),
and if the game has gone through v1 (case of an even number of agents), then play aω in
v3 (all agents should play an a), otherwise play bω in v3 (all agents should play a b). This
ensures that the play never ends up in vertex v4.

In this paper, we focus on safety winning conditions: the agents must collectively ensure
that only safe vertices are visited along any play compatible with the coalition strategy in the
game. We prove that the existence of a winning coalition strategy is decidable in exponential
space, and that it is a PSPACE-hard problem. For positive instances, winning coalition
strategies with an exponential-size memory structure can be synthesized in exponential space.

2 Game setting

We use N>0 for the set of positive natural numbers. For an alphabet Σ and k ∈ N>0, Σk

denotes the set of all finite words of length k, Σ+ denotes the set of all finite but non-empty
words, and Σω denotes the set of all infinite words. For two words u ∈ Σ+ and w ∈ Σ+ ∪Σω,
we write u v w to denote u is a prefix of w, and for any k ∈ N>0, [w]≤k denotes the prefix
of length k of w (belongs to Σk).

We introduced parameterized arenas in [4], a model of arenas with a parameterized number
of agents. Parameterized arenas extend arenas for concurrent games with a fixed number of
agents [1], by labeling the edges with languages over finite words, which may be of different
lengths. Each word represents a joint move of the agents, for instance u = a1 · · · ak ∈ Σk

assumes there are k agents, and for every 1 ≤ n ≤ k, Agent n chooses action an.

I Definition 1. A parameterized arena is a tuple A = 〈V,Σ,∆〉 where
V is a finite set of vertices;

1 This is where identifiers are implicitely used.

FSTTCS 2020

39:4 Synthesizing Safe Coalition Strategies

Σ is a finite set of actions;
∆ : V × V → 2Σ+ is a partial transition function.

It is required that for every (v, v′) ∈ V × V , ∆(v, v′) describes a regular language.

Fix a parameterized arena A = 〈V,Σ,∆〉. The arena A is deterministic if for every v ∈ V ,
and every word u ∈ Σ+, there is at most one vertex v′ ∈ V such that u ∈ ∆(v, v′). The
arena is assumed to be complete: for every v ∈ V and u ∈ Σ+, there exists v′ ∈ V such that
u ∈ ∆(v, v′). This assumption is natural: such an arena will be used to play games with an
arbitrary number of agents, hence for the game to be non-blocking, successor vertices should
exist whatever that number is and irrespective of the choices of actions.

v0 v1

v2

a∗ba∗

a
Σ+

b∨aa+

a∗ba∗

Figure 2 Example of a non-deterministic parameterized arena. Only safe vertices (colored in
green) have been depicted here. All unspecified transitions lead to a non-safe vertex ⊥.

I Example 2. We already gave an example in the introduction. Let us give another example,
which will be useful for illustrating the constructions made in the paper. Fig. 2 presents a
non-deterministic parameterized arena. As such the arena is not complete, we assume that
all unspecified moves lead to an extra losing vertex ⊥, not depicted here. If for some number
of agents k (selected by environment and not known to the agents), the k-length prefix of
the word collectively chosen by the agents at v0 belongs to a∗ba∗, then the play either stays
at v0 or moves to v1 (again selected by environment).

History, play and strategy. We fix a parameterized arena A = 〈V,Σ,∆〉. A history in A is
a finite sequence of vertices, that is compatible with the edges: formally, h = v0v1 . . . vp ∈ V +

such that for every 1 ≤ j < p, ∆(vj , vj+1) is defined. We write HistA for the set of all
histories. An infinite sequence of vertices compatible with the edges is called a play.

A strategy for Agent n is a mapping σn : HistA → Σ that associates an action to every
history. A strategy profile is a tuple of strategies, one for each agent. Since the number of
agents is not fixed a priori, a strategy profile is an infinite tuple of strategies: σ̃ = 〈σ1, σ2, . . .〉
= (HistA → Σ)ω.

Table 1 From strategy profile to coalition strategy.

h0 h1 h2 h3 . . .

σ1 a b b b . . .

σ2 b b b b . . .

σ3 b a a a . . .

...
...

...
...

...

Observe that a strategy profile can equivalently be described as a coalition strategy
σ : HistA → Σω, as illustrated in Table 1. Indeed, if an enumeration of histories (hj)j∈N is
fixed, a strategy profile can be seen as a table with infinitely many rows –one for each agent–

N. Bertrand, P. Bouyer, and A. Majumdar 39:5

and infinitely many columns indexed by histories. Reading the table vertically provides the
coalition strategy view: each history is mapped to an ω-word, obtained by concatenating the
actions chosen by each of the agents. Since, in this paper, we are interested in the existence
of a winning strategy profile, it is equivalent to asking the existence of a winning coalition
strategy (they may not be equivalent for some other decision problems). In the sequel, we
mostly take the coalition strategy view, but may interchangeably also consider strategy
profiles.

Finite memory coalition strategies. Let σ : HistA → Σω be a coalition strategy and M
be a set. We say that the strategy σ uses memory M whenever there exist minit ∈ M and
applications upd : M × V → M and act : M × V → Σω such that by defining inductively
m[h] ∈ M by m[v0] = minit and m[h · v] = upd(m[h], v), we have that for every h ∈ HistA,
σ(h) = act(m[h], last(h)), where last(h) is the last vertex of history h. The structure (M, upd)
records information on the history seen so far (m[h] is the memory state “reached” after
history h), and act dictates how all the agents should play.

If M is finite, then σ is said finite-memory, and if M is a singleton, then σ is said memoryless
(each choice only depends on the last vertex of the history).

Realizability and outcomes. For k ∈ N>0, we say a history h = v0 · · · vp is k-realizable
if it corresponds to a history for k agents, i.e., if for all j < p, there exists u ∈ Σk with
u ∈ ∆(vj , vj+1). A history is realizable if it is k-realizable for some k ∈ N>0. Similarly to
histories for finite sequences of consecutive vertices, one can define the notions of (k-)realizable
plays for infinite sequences.

Given a coalition strategy σ, an initial vertex v0 and a number of agents k ∈ N>0, we
define the k-outcome Outk

A(v0,σ) as the set of all k-realizable plays induced by σ from v0.
Formally, Outk

A(v0,σ) = {v0v1 · · · | ∀j ∈ N>0, [σ(v0 · · · vj)]≤k ∈ ∆(vj , vj+1)}. Note that
the completeness assumption ensures that the set Outk

A(v,σ) is not empty. Then the outcome
of coalition strategy σ is simply OutA(v0,σ) =

⋃
k∈N>0

Outk
A(v0,σ).

The safety coalition problem. We are now in a position to define our problem of interest.
Given an arena A = 〈V,Σ,∆〉, a set of safe vertices S ⊆ V defines a parameterized safety
game G = (A, S). Without loss of generality we assume from now that V \ S are sinks. A
coalition strategy σ from v0 in the safety game G = (A, S) is said winning if all induced
plays only visit vertices from S: OutA(v,σ) ⊆ Sω. Our goal is to study the decidability and
complexity of the existence of winning coalition strategies, and to synthesize such winning
coalition strategies when they exist. We therefore introduce the following decision problem:

Safety coalition problem
Input: A parameterized safety game G = (A, S) and an initial vertex v0.
Question: Does there exist a coalition strategy σ such that OutA(v0,σ) ⊆ Sω?

The safety coalition problem is a coordination problem: agents should agree on a joint
strategy which, when played in the graph and no matter how many agents are involved, the
resulting play is safe. Note that, due to the link between coalition strategies and tuples of
individual strategies mentioned on Page 4, the coalition strategies are distributed: the only
information required for an agent to play her strategy is the history so far, not the number
of agents selected by the environment; however she can infer some information about the
number of agents from the history; this is for instance the case at vertex v3 in the example
of Fig. 2. Note that there is no direct communication between agents.

FSTTCS 2020

39:6 Synthesizing Safe Coalition Strategies

I Example 3. We have already given in the introduction a winning coalition strategy for
the game in Fig. 1. On the arena in Fig. 2, assuming ⊥ is the only unsafe vertex, one can
also show that the agents have a winning coalition strategy σ from v0 to stay within green
(i.e., safe) vertices. Consider the coalition strategy σ such that σ(v0) = abaω, σ(v0v2) = aω,
σ(v0v1) = aω, and σ(v0v2v1) = bω. Intuitively, on playing abaω from v0, in one step, the
game either stays in v0 (which is “safe”) or moves to v2 (in case the number of agents k = 1)
or to v1 (in case k ≥ 2); from v1, depending on history, coalition plays either bω (when the
history is v0v2v1 and hence k = 1) or aω (otherwise) which leads the game back to v0 (note
that at vertex v2, choice of actions of the agents is not important, they can collectively play
any ω-word). However, one can show that there is no memoryless coalition winning strategy.
Indeed, the coalition strategy aω from v1 is losing for k = 1, similarly bω from v1 is losing for
k ≥ 2, and any other strategy is also losing. For instance, baω from v0 is losing because if
the game moves to v1, coalition has no information on the number of agents and hence any
word from v1 will be losing (aω is losing for k = 1, bω is losing for k ≥ 2, and similarly for
other words).

The rest of the paper is devoted to the proof of the following theorem:

I Theorem 4. The safety coalition problem can be solved in exponential space, and is
PSPACE-hard. For positive instances, one can synthesize a winning coalition strategy in
exponential space which uses exponential memory; the exponential blowup in the size of the
memory is tight.

3 Solving the safety coalition problem

This section is devoted to the proof of Theorem 4. To prove the decidability and establish
the complexity upper bound, we construct a tree unfolding of the arena, which is equivalent
for deciding the existence of a winning coalition strategy. The unfolding is finite because,
if a vertex is repeated along a play, the coalition can play the same ω-word as in the first
visit, which will be formalized in Section 3.1. We can then show how to solve the safety
coalition problem at the tree level in Section 3.2. Synthesis and memory usage are analyzed
in Section 3.3, and the running example game is discussed in Section 3.4

The hardness result is shown in Section 3.5 by a reduction from the QBF-SAT problem
which is known to be PSPACE-complete [22].

3.1 Finite tree unfolding
From a parameterized safety game G = (A, S), we construct a finite tree as follows: we
unfold the arena A until either some vertex is repeated along a branch or an unsafe vertex is
reached. The nodes of the tree are labeled with the corresponding vertices and the edges
are labeled with the same regular languages as in the arena A. The intuition behind this
construction is that if a vertex is repeated in a winning play in A, since the winning condition
is a safety one, the coalition can play the same strategy as it played in the first occurrence
of the vertex. Note however that multiple nodes in the tree may have the same label but
different (winning) strategies depending on the history (recall Example 3). This is the reason
why we need to consider a tree unfolding abstraction and not a DAG abstraction.

We assume the concept of tree is known. Traditionally, we call a node n′ a child of n (and
n the parent of n′) if n′ is an immediate successor of n according to the edge relation; and n
an ancestor of n′ if there exists a path from n to n′ in the tree.

N. Bertrand, P. Bouyer, and A. Majumdar 39:7

I Definition 5. Let G = (A = 〈V,Σ,∆〉, S) be a parameterized safety game and v0 ∈ V an
initial vertex. The tree unfolding of G is the tree T = 〈N,E, `N , `E〉 rooted at n0 ∈ N , where
N is the finite set of nodes, E ⊆ N ×N is the set of edges, `N : N → V is the node labeling
function, `E : N ×N → 2Σ+ is the edge labeling function, and:

the root n0 satisfies `N (n0) = v0;
∀n ∈ N , if `N (n) ∈ S and for every ancestor n′′ of n, `N (n′′) 6= `N (n), then ∀v′ ∈ V such
that ∆(v, v′) is defined, there is n′ a child of n with `N (n′) = v′ and `E(n, n′) = ∆(v, v′);
otherwise, the node n has no successor.

Each node in T corresponds to a unique history in G, and the unfolding is stopped when
a vertex repeats or an unsafe vertex is encountered. The set of nodes can be partitioned into
N = Nint tNleaf where Nint is the set of internal nodes and Nleaf are the leaves of T (some
leaves are unsafe, some leaves have an equilabeled ancestor). By construction, the height of
T is bounded by |V |+ 1 and its branching degree is at most |V |. The tree unfolding of G is
hence at most in O(|V ||V |) (and the exponential blowup is unavoidable in general).

B1

v1

v̄1

B2 ··· Bn

vn

v̄n

C1 C2 ··· Cn >

a
M

1

a +
\a M

1

Σ +

Σ
+

a
M

n

a +
\a M

n

Σ +

Σ
+

aM1

b+\bM1

aMn

b+\bMn

Figure 3 Example arena such that the tree unfolding is exponential. All unspecified transitions
lead to the sink losing vertex ⊥. Set Mi denotes multiples of the i-th prime number. For any play
reaching C1, for every i, the number of agents is in Mi iff the play went through vi.

The exponential bound is reached by a a family (An)n∈N>0 of deterministic arenas, shown
in Fig. 3, which is an extension of the example in Fig. 1, with 2n many blocks (and, O(n)
many vertices). Observe that to win the game, coalition needs to keep track of the full
histories in the first n blocks, and there are exponentially many such histories; moreover,
each such history corresponds to a different node in its unfolding tree.

v0

v1 v2

v3 v3

v4 v5

v5

v4 v5

v5

(Σ
Σ)+

Σ(ΣΣ) ∗

Σ+ Σ+

(aa) +b(bb) ∗

(aa) +b(bb) ∗

Σ+ Σ+

(a) Tree unfolding of the arena in Fig. 1.

v0 n0

v0 v1 n1 v2 n2 ⊥

v0 ⊥ v1 n′1

v0 ⊥

a
∗ ba
∗ a

∗
b
a
∗

a

Σ
+

b∨
aa

+

b∨
aa

+

(b) Tree unfolding of the arena in Fig. 2.

Figure 4 Tree unfolding examples (green nodes correspond to safe vertices). Notice here that the
unsafe leaves (and the edges leading to them) are presented with dashed rectangles (resp. arrows).

FSTTCS 2020

39:8 Synthesizing Safe Coalition Strategies

I Example 6. Fig. 4a and 4b represent the tree unfoldings of the parametrized arenas
depicted in Fig. 1 and 2, respectively. On the left picture, the node names are avoided,
and in all cases their labels are written within the nodes. The leaf nodes that correspond
to unsafe vertices (and the edges leading to them) are presented with dashed rectangles
(respectively, arrows). Notice that any leaf node is either labeled with an unsafe vertex (for
instance, v4 in Fig. 4a) or it has a unique ancestor with the same label. These two criteria
ensure the tree is always finite (along all branches, some vertex has to repeat within |V |
many steps). However, multiple internal nodes in different branches can have same label but,
coalition might have different (winning) strategies depending on their respective histories.

Let G = (A = 〈V,Σ,∆〉, S) be a parameterized safety game with an initial vertex v0 and
T = 〈N,E, `N , `E〉 be the tree unfolding corresponding to A with root n0. We define the
coalition game on T as follows.

History, play and strategy. Histories in T are defined similarly as in G (except vertices
are replaced by nodes); the set of such histories is denoted HistT . A history in T is a finite
sequence of nodes H = n0n1 . . . np ∈ N+ such that for every 0 ≤ j < p, (nj , nj+1) ∈ E. We
denote by HistT the set of all histories in T . A play in T is a maximal history, i.e., a finite
sequence of nodes ending with a leaf, thus in N+

int ·Nleaf . Note that, contrary to the definition
of a play in A, a play in T is a finite sequence of nodes ending in a leaf.

A coalition strategy in the unfolding tree is a mapping λ : Nint → Σω that assigns to every
internal node n ∈ Nint an ω-word λ(n). Notice that a coalition strategy in T is by definition
memoryless (on N) which, as we will see later, is sufficient to capture winning strategies of
the coalition in G. We furthermore extend the definition of node labeling function `N to a
history (resp. play) in the usual way.

Similarly to the parameterized arena setting, we define in a natural way the notions
of k-realizability and of realizability for histories and plays. We also define for a coalition
strategy λ in T (rooted at n0), and k ∈ N>0 the sets Outk

T (n0,λ) and OutT (n0,λ).
A coalition strategy λ in T from n0 is winning for the safety condition defined by the

safe set S if every play in OutT (n0,λ) ends in a leaf with label in S, i.e., if for every
R = n0 . . . np ∈ OutT (n0,λ), `N (np) ∈ S, written `N (OutA(n0,λ)) ⊆ S+ for short.

Correctness of the tree unfolding. Next we show the equivalence of the winning strategies
in the safety coalition game, and in the corresponding tree unfolding:

I Lemma 7. Let G = (A = 〈V,Σ,∆〉, S) be a parameterized safety game and v0 ∈ V and
T = 〈N,E, `N , `E〉 be the associated tree unfolding with root n0. There exists a winning
coalition strategy from v0 in G iff there exists a winning coalition strategy from n0 in T .

Proof. Assume first that the coalition of agents has a winning strategy σ in G. Any history
H ∈ HistT can be projected to the history `N (H) ∈ HistA. We can hence define for every
n ∈ Nint, λ(n) = σ(`N (ι(n))), where ι is the bijection mapping nodes to histories in T .
To prove that λ is winning in T , consider any play R = n0 · · · np in OutT (n0,λ) and let
ρ = `N (R) = v0 · · · vp be its projection in G. By construction `E(ni, ni+1) = ∆(vi, vi+1) for
each i < p, and hence from the definition of λ, ρ is a history in G induced by σ. Since σ is
winning, ρ only visits safe vertices. In particular, `N (np) ∈ S. Since this is true for every
play induced by λ, strategy λ is winning from n0 in T .

For the other direction, assume that λ is a winning coalition strategy from n0 in T . The
tree will be the basis of a memory structure sufficient to win the game; we thus explain how
histories in G can be mapped to nodes of T . We first define a mapping zip : HistA → HistA

N. Bertrand, P. Bouyer, and A. Majumdar 39:9

that summarizes any history in A to its virtual history where each vertex appears at most
once. Intuitively, zip greedily shortens a history by appropriately removing the loops until
an unsafe vertex is encountered (if any). The mapping zip is defined inductively, starting
with zip(v0) = v0, and letting for every h ∈ HistA and every v′ ∈ V such that h · v′ ∈ HistA,

zip(h · v′) =
{

zip(h) · v′ if v′ does not appear in zip(h)
v0 . . . v

′ v zip(h) otherwise

The mapping zip is well-defined (by construction, for every history h, any vertex appears
at most once in zip(h), so that when v′ appears in zip(h), there is a unique prefix of zip(h)
ending with v′). Note that, since unsafe vertices are sinks, as soon as h reaches an unsafe
vertex, the value of zip(h) stays unchanged.

I Lemma 8. The application β : n 7→ `N (ι(n)) defines a bijection between Nint ∪ {n ∈ Nleaf |
`N (n) /∈ S} and the set Z = {zip(h) | h ∈ HistA}.

Proof. It is first obvious that this application is injective, since two nodes of the tree
corresponds to different histories in A which all belong to Z.

This application is surjective: pick h ∈ Z; then, h has no repetition; furthermore it forms
a real history in G, which implies that it can be read as the label of some history in the tree
unfolding. J

We write α = β−1. Using the zip function and α, from a coalition strategy λ in T , we
define a coalition strategy σ in G by applying σ to the virtual histories: for every history
h = v0 . . . vp in G we let σ(h) = λ(α(zip(h)) whenever α(zip(h)) ∈ Nint and σ(h) is set
arbitrarily otherwise (recall that if α(zip(h)) is a leaf node, then h is actually already a losing
history).

Towards a contradiction, assume that σ is not winning in G. Consider, some number
of agents k ∈ N>0, and a losing play with k agents: ρ = v0v1 . . . ∈ Outk

A(v0,σ). Let
h′ = v0v1 . . . vq v ρ be the shortest prefix of ρ ending in an unsafe vertex vq /∈ S, and write
zip(h′) = v0vi1 . . . vq for the corresponding virtual history. By definition of σ, zip(h′) is a
k-outcome of σ from v0. Moreover, the corresponding play R = ι(α(zip(h′))) = n0ni1 . . . nq

in T , belongs to the k-outcome of λ from n0. Since vq /∈ S, λ is not winning in T ; which is
a contradiction. We conclude that σ is a winning coalition strategy in G. J

I Example 9. We illustrate the zip function on the arena in Fig. 2. Take h = v0v1v0v1.
First, zip(v0) = v0; then zip(v0v1) = zip(v0) · v1 = v0v1; zip(v0v1v0) = v0 (which is the unique
prefix of zip(v0v1) = v0v1, ending at v0); finally zip(v0v1v0v1) = zip(v0v1v0) ·v1 = v0v1. Then
the function α uniquely maps each virtual history (i.e., zip(h)) ending at a safe vertex to an
internal node in the tree, which is the heart of the proof of Lemma 7.

3.2 Existence of winning coalition strategy on the tree unfolding
In the previous subsection, we showed that the safety coalition problem reduces to solving
the existence of a winning coalition strategy in the associated finite tree unfolding.

To solve the latter, from the tree unfolding T , we construct a deterministic (safety)
automaton over the alphabet Σm, where m = |Nint|, which accepts the ω-words corresponding
to winning coalition strategies in T . More precisely, since (Σm)ω and (Σω)m, understood as
the set of m-tuples of ω-words over Σ, are in one-to-one correspondence, an infinite word
w ∈ (Σm)ω corresponds to m infinite words wn, one for each internal node n ∈ Nint, thus
representing a coalition strategy in T .

FSTTCS 2020

39:10 Synthesizing Safe Coalition Strategies

Fix G = (A, S) a parameterized safety game with A = 〈V,Σ,∆〉 and v0 ∈ V an initial
vertex. We assume for every (v, v′) ∈ V × V such that ∆(v, v′) 6= ∅, ∆(v, v′) is given as a
complete DFA over Σ. Those will be given as inputs to the algorithm.

Let T = 〈N,E, `N , `E〉 be the associated unfolding tree with root n0. For the rest of
this section, we fix an arbitrary ordering on the internal nodes of T and on the edges:
Nint = {n1, . . . , nm} and E = {e1, . . . , er}, with |Nint| = m and |E| = r.

Assuming there are t leaves –thus t plays– in T , for every 1 ≤ i ≤ t, the i-th play is
denoted ni

0 . . . ni
zi

with ni
0 = n0, ∀j < zi, ni

j ∈ Nint and ni
zi
∈ Nleaf . Also, for 0 ≤ j < zi, we

note ei
j = (ni

j , ni
j+1).

The automaton for the winning coalition strategies in T builds on the finite automata
that recognize the regular languages that label edges of T . For each edge e ∈ E, let us write
Be = (Qe,Σ, δe, q

0
e , Fe) for the complete DFA over Σ such that L(Be) = `E(e). (Here Qe

is the set of states, δe the transition function, q0
e ∈ Qe the initial state and Fe the set of

accepting states.) Note that some of the Be’s are identical since they correspond to the same
original edge of G.

We then define a deterministic safety automaton B = (Q,Σm, δ, q0, F) that simulates all
Be’s in parallel and accepts ω-words over alphabet Σm if every prefix satisfies the following:
on every branch of the tree, if all corresponding Be’s accept, then the leaf is labeled by a safe
vertex. Formally, Q ⊆ Q1 × . . .×Qr is the set of states; q0 = (q0

1 , . . . , q
0
r) is the initial state;

the transition relation δ executes the r automata Be’s componentwise: if letter u ∈ Σm is
read, then make the s-th component mimick Bes

by reading the l-th letter of u, where l is
the index (in the enumeration fixed above) of the source node of es; and the accepting set F
is composed of all states q = (q1, . . . , qr) that satisfy the following Boolean formula:

ϕ =
∧

1≤i≤t

ϕi where ϕi =

[∧
0≤j<zi

qei
j
∈ Fei

j

]
⇒ `N (ni

zi
) ∈ S

 .

Note that B is equipped with a safety acceptance condition:2 an infinite run ζ = q0q1q2 . . .

of B is accepting if for every k ≥ 1, qk ∈ F , and L(B) consists of all words w whose unique
corresponding run is accepting.

Intuitively, ϕi expresses that if for some number of agents k, the languages along the
i-th maximal path contain the k-length prefixes of corresponding ω-words (which means the
induced play is k-realizable), then it should lead to a safe leaf ; and then ϕ ensures that this
should be true for all plays. This is formalized in the next lemma.

I Lemma 10. Let λ : Nint → Σω be a coalition strategy in T . Then, λ is winning if and
only if (λ(n1),λ(n2), . . . ,λ(nm)) ∈ L(B).

Notice that in the above statement, we slightly abuse notation: (λ(n1),λ(n2), . . . ,λ(nm))
belongs to (Σω)m, however it uniquely maps to a word in (Σm)ω, that can thus be read in B.

Proof. Assume λ : Nint → Σω is a winning coalition strategy in T , and consider the
corresponding word w = (λ(n1),λ(n2), . . . ,λ(nm)). Let us show that w ∈ L(B). Consider
the infinite run ζ = q0q1 . . . of B on w. Fix a number of agents k ∈ N>0. Since λ is winning,
any k-length prefix of λ-induced play in Outk

T (n0,λ) is winning. Therefore for any 1 ≤ i ≤ t

2 This is a slight abuse of language since q0 need not be in the safe set F .

N. Bertrand, P. Bouyer, and A. Majumdar 39:11

such that ni
0 . . . ni

zi
is in Outk

T (n0,λ), the play satisfies for all 0 ≤ j < zi, [λ(ni
j)]≤k ∈ `E(ei

j)
and furthermore, `N (ni

zi
) ∈ S; and hence qk |= ϕi. Otherwise, if a length k-play is not

induced by λ, then ϕi is vacuously true for that i ≤ t. We conclude qk |= ϕ. Since this is
true for every k ∈ N>0, w ∈ L(B).

Let now λ be an arbitrary coalition strategy, and assume w = (λ(n1),λ(n2), . . . ,λ(nm)) ∈
L(B) with ζ = q0q1 . . . the accepting run on w. Then for any number of agents k ∈ N>0,
qk ∈ F , and hence qk |= ϕ. Therefore for all 1 ≤ i ≤ t, qk |= ϕi. Fix any such i; let ni

0 . . . ni
zi
be

the i-th maximal path, and write qk = (qk
1 , . . . , q

k
r). Then for some 0 ≤ j < zi, the condition

qk
ej

i

∈ Fej
i
implies [λ(ni

j)]≤k ∈ `E(ei
j). In case the above is true for all 0 ≤ j < zi, we conclude

ni
0 . . . ni

zi
∈ Outk

T (n0,λ) and ϕi ensures that `N (ni
zi

) ∈ S. Otherwise, ni
0 . . . ni

zi
/∈ Outk

T (n0,λ).
Finally ϕ ensures all k-length prefixes of λ-induced plays in T are winning. Since this is true
for any number of agents k, λ is a winning coalition strategy in T . J

We now have all ingredients to solve the safety coalition problem, and to state a complexity
upper-bound. As mentioned earlier, we assume that the arena is initially given with all
associated complete DFAs (used by all Be) in the input.

I Theorem 11. The safety coalition problem is in EXPSPACE.

Proof. Solving the safety coalition problem reduces to checking non-emptiness of the language
recognized by the deterministic safety automaton B. We adapt to our setting the standard
algorithm which runs in non-deterministic logarithmic space, when B is given as an input.

We write N for the number of states of B and notice that N is doubly exponential in
|V |, the number of vertices of the initial arena A (each state of B is an exponential-size
vector of states of automata given in the input). We do not build B a priori. Instead, we
non-deterministically guess a safe prefix of length at most N (we only keep written two
consecutive configurations and keep a counter to count up to N), and then a safe lasso on
the last state of length at most N .

Provided one can check “easily” whether a state of B is safe, q the described procedure runs
in non-deterministic exponential space, hence can be turned into a deterministic exponential
space algorithm, by Savitch’s theorem.

It remains to explain how one checks that a given state in B is safe. Formula ϕ is a SAT
formula exponential in the size of A, which can therefore be solved in exponential space as
well.

Overall, we conclude that the safety coalition problem is in EXPSPACE. J

3.3 Synthesizing a winning coalition strategy
We assume all the notations of the two previous subsections, and we explain how we build a
winning coalition strategy. From an accepting word of the form u ·vω in B (where u ∈

(
Σm
)∗

and v ∈
(
Σm
)+), one can synthesize a winning strategy λ in T by:

λ(ni) = ui · vω
i for every ni ∈ Nint.

Then it is easy to transfer to a winning coalition strategy σ in G by defining

σ(h) = λ(α(zip(h))) for every history h ∈ HistA,

that is, the ω-word corresponding to the internal node representing its virtual history. Recall
that, following the proof of Lemma 7, zip assigns to every history its virtual history (by
greedily removing all the loops) and α associates to a virtual history its corresponding node
in the tree T .

FSTTCS 2020

39:12 Synthesizing Safe Coalition Strategies

I Proposition 12. If there is a winning coalition strategy for a game G = (A, S), then
there is one which uses exponential memory, which can be computed in exponential space.
Furthermore, winning might indeed require exponential memory.

Proof. The tree unfolding can be seen as a memory structure for a winning strategy. Indeed,
consider the memory set defined byNint, starting from memory state n0. Define the application
upd : Nint × V → Nint by upd(n, v′) = n′ such that v′ ∈ S whenever

either n′ ∈ Nint is a child of n such that `N (n′) = v′

or n′ ∈ Nint is an ancestor of n′′ ∈ Nleaf such that `N (n′′) = `N (n′) = v′, and n′′ is a child
of n.

We also define the application act : Nint × V → Σω by act(n, v) = λ(n).
Then, it is easy to see that winning strategy σ can be defined using memory Nint and

applications upd and act.
Furthermore, though the ω-words extracted fom B can be of doubly-exponential size,

their computation and the overall procedure only requires exponential space.

For the lower bound, we show the following lemma.

I Lemma 13. There is a family of games (Gn)n such that the size of Gn is polynomial in n
but winning coalition strategies require exponential memory.

Proof. We again consider the game of Fig. 3, whose description can be made in polynomial
time (since the i-th prime number uses only log(i) bits in its binary representation). We
have already seen that its tree unfolding has exponential size. We will argue why exponential
memory is required, that is, one cannot do better than the tree memory structure.

First notice that there is a winning coalition strategy: play aω at every vertex Bi, and
aω (resp. bω) at vertex Ci if the history went through vi (resp. v̄i). This strategy can be
implemented using the memory given by the tree unfolding.

Assume one can do better and have a memory structure of size strictly smaller than 2n.
Then, arriving in vertex C1, there are at least two different histories leading to the same
memory state, hence the coalition strategy will select exactly the same ω-words in all vertices
C1, C2, ..., Cn. We realize that it cannot be winning since the two histories disagree at least
on a predicate “be a multiple of the i-th prime number”. Contradiction. J

J

3.4 Illustration of the construction
We illustrate the construction on one example.

I Example 14. Fig. 6 represents part of the automaton B corresponding to the tree T in
Fig. 4b (that is, the tree unfolding of the arena in Fig. 2). The automata Be for the languages
labeling the edges of T are depicted in Fig. 5. Here notice that each state of B has as many
components as the number of edges leading to a safe node in T , we did not consider the
edges leading to ⊥. This is without loss of any generality: the language on any “unsafe” edge
leading to ⊥, in this example, are disjoint from the languages on the edges leading to its
siblings (other children of its parent node). The first three positions in a state of B, presented
as a single cell in the picture, correspond to the outgoing edges of the root n0 of T (hence
they follow the same component in Σm), and the other positions correspond to the other
edges (in some chosen order). “×” in a component of a state denotes the non-accepting sink
state of the corresponding automaton (as mentioned in Fig. 5). Finally, here we have only
shown the accepting states (marked in blue) and some of the non-accepting states. Indeed

N. Bertrand, P. Bouyer, and A. Majumdar 39:13

p0 p1
b

aa

(a) Automaton for a∗ba∗.
q0 q1

a

(b) Automaton for a.

r0 r1
Σ

Σ

(c) Automaton for Σ+.

s0

s1

s2

s3

a

b

a

a

(d) Automaton for b ∨ aa+.

Figure 5 Automata correspond-
ing to the input languages of Fig. 2.
The automata are not complete
for sake of readability; all unspe-
cified letters lead to a (sink) non-
accepting state “×”.

p0

p0

q0

s0

r0

s0

p0

p0

q1

s1

r1

s3

p1

p1

×
s2

r1

×

p1

p1

×
s1

r1

s3

p1

p1

×
s3

r1

s3

p1

p1

×
×
r1

×

· · ·

· · ·


a

a

Σ

Σ




a

a

Σ

b




b

a

Σ

Σ




b

a

Σ

b




b

b

Σ

b




a

Σ

Σ

Σ



Figure 6 Automaton B corresponding to the tree given
in Fig. 4b. Here we have only shown the accepting states
(marked in blue) and some of the non-accepting states. Fur-
ther explanations are given in Example 14.

one can verify that the states which are colored in blue satisfy the formula ϕ; for instance, the
state (p1, p1,×, s2, r1,×) on the right corresponds to the two maximal paths v0v0 and v0v1v0
in T (notice we used the node labels here), and all of them lead to safe nodes. The infinite
execution in blue (i.e., all the words in (a, a,Σ, b) · (b, a,Σ,Σ) · (a, a,Σ,Σ)ω) corresponds to
the winning coalition strategies in the tree: for instance, λ(n0) = abaω; λ(n1) = aω; for any
a ∈ Σ, λ(n2) = aω; and λ(n′1) = bω is a winning coalition strategy (note here, for instance,
that at node n2, any word from Σω could be played).

3.5 PSPACE lower bound
We show the safety coalition problem is PSPACE-hard by reduction from QBF-SAT, which is
known to be PSPACE-complete [22]. The construction is inspired by the one in [4], where the
first agent was playing against the coalition of all other agents, with a reachability objective.

I Proposition 15. The safety coalition problem is PSPACE-hard.

Proof sketch. Let ϕ = ∃x1∀x2∃x3 . . . ∀x2r ·
(
C1 ∧ C2 ∧ . . . ∧ Cm

)
be a quantified Boolean

formula in prenex normal form, where for every 1 ≤ h ≤ m, Ch = `h,1 ∨ `h,2 ∨ `h,3, and for
every 1 ≤ j ≤ 3, `h,j ∈ {xi,¬xi | 1 ≤ i ≤ 2r} are the literals.

In the reduction, we use sets of natural numbers (that represent the number of agents)
corresponding to multiples of primes. Let thus pi be the i-th prime number and Mi the set
of all non-zero natural numbers that are multiples of pi. For simplicity, we write aMi to
denote the set of words in (api)+, that is words from a+ whose length is a multiple of pi. It
is well-known that the i-th prime number requires O(log(i)) bits in its binary representation,
hence the description of each of the above languages is polynomial in the size of ϕ.

FSTTCS 2020

39:14 Synthesizing Safe Coalition Strategies

From ϕ, we construct an arena Aϕ = 〈V,Σ,∆〉 as follows:
V = {v0, v1, . . . , v2r−1, v2r} ∪ {x1, x̄1, . . . , x2r, x̄2r} ∪ {C1,C2, . . . ,Cm,Cm+1} ∪ {⊥,>},
where we identify some vertices: v2r = C1, and Cm+1 = >.
Σ = {a, b, c} ∪

⋃
1≤i≤2r{ai}.

For every 0 ≤ s ≤ r−1, every 1 ≤ i ≤ 2r and every 1 ≤ h ≤ m:
1. ∆(v2s, x2s+1) = aM2s+1 and ∆(v2s, x̄2s+1) = b+ \ bM2s+1

2. ∆(v2s,>) = (a+ \ aM2s+1) ∪ bM2s+1

3. ∆(v2s+1, x2s+2) = cM2s+2 and ∆(v2s+1, x̄2s+2) = c+ \ cM2s+2

4. ∆(xi, vi) = Σ+ and ∆(x̄i, vi) = Σ+

5. ∆(Ch,Ch+1) =
⋃

1≤j≤3 Lh,j where Lh,j = aMi
i if `h,j = xi; Lh,j = a+

i \ a
Mi
i if

`h,j = ¬xi.
To obtain a complete arena, all unspecified transitions lead to vertex ⊥.

On the arena Aϕ, we consider the safety coalition game Gϕ = (Aϕ, S) with S = V \ {⊥}.
The construction is illustrated on a simple example with 3 variables and 2 clauses in Fig. 7.

v0 v1 v2 C1 C2 >

x1

x̄1

>

>

x2

x̄2

x3

x̄3

>

>

Σ+

Σ+

Σ+

Σ+

Σ+

a
M 1

b +
\b M

1

c
M 2

c +
\c M

2

a
M 3

b +
\b M

3

Σ+

Σ+

Σ+

Σ+

Σ+

Σ+

a+\aM1

bM1

a+\aM3

bM3

a
M1
1

a+
2 \a

M2
2

a+
3 \a

M3
3

a
M1
1

a+
2 \a

M2
2

a
M3
3

Figure 7 Parameterized arena for the formula ϕ = ∃x1∀x2∃x3 · (x1∨¬x2∨¬x3)∧ (x1∨¬x2∨x3).
All unspecified transitions lead to the sink losing vertex ⊥. Set Mi denotes multiples of the i-th
prime number. Vertex xi (resp. x̄i) represents setting variable xi to true (resp. false). For any
play reaching C1, for every i, the number of agents is in Mi iff the play went through xi.

From v0, a first phase up to v2r = C1 consists in choosing a valuation for the variables.
The coalition chooses the truth values of existentially quantified variables x2s+1 in vertices
v2s: it plays aω for true, and bω for false. In the first (resp. second) case, if the number of
agents involved in the coalition is (resp. is not) a multiple of p2s+1, then the game proceeds
to the next variable choice, otherwise the safe > state is reached (forever).

For universally quantified variables the coalition must play cω in vertices v2s+1, as any
other choice would immediately lead to the sink losing vertex ⊥; the choice of the assignment
then only depends on whether the number of agents involved in the coalition is a multiple of
p2s+2 (in which case variable x2s+2 is assigned true) or not (in which case variable x2s+2 is
assigned false).

Hence, depending on the number of agents involved in the coalition, either the play will
proceed to state v2r = C1, in which case the number of agents characterizes the valuation of
the variables (it is a multiple of pi if and only if variable xi is set to true); or it will have
escaped to the safe state >.

N. Bertrand, P. Bouyer, and A. Majumdar 39:15

Note that in terms of information, the coalition learns progressively assignments (thanks
to the visit to either vertex xi or vertex x̄i). Note also that the coalition can never learn
assignments of next variables in advance (it can only know whether it is a multiple of
previously seen prime numbers, hence of previously quantified variables, not of variables
quantified afterwards).

From C1, a second phase starts where one checks whether the generated valuation makes
all clauses in ϕ true. If it is the case, sequentially, the coalition chooses for every clause
a literal that makes the clause true. The arena forces these choices to be consistent with
the valuation generated in the first phase. For instance, on the example of Fig. 7, to set
x1 to true in the first phase, the coalition must play aω, and only plays with a number of
agents in M1 do not move to > and continue the first phase from x1. Then, in the second
phase, for instance for the first clause, one can choose literal `1,1 = x1 by playing aω

1 . The
same language –a1

M1– labels the edge from C1 to C2, so that the play proceeds to C2. More
generally, if aω

i leads from Ch to Ch+1 with number of agents in Mi, this means that xi was
visited, hence indeed xi was set to true. On the contrary, if aω

i leads from Ch to Ch+1 with
number of agents not in Mi, this means that x̄i was visited, hence indeed xi was set to false.

The above reduction ensures the following equivalence: there is a winning coalition
strategy in the game Gϕ = (Aϕ, S) if and only if ϕ is true. J

The proof in full details can be found in the arxiv version of this paper [5].

4 Future work

v0 v1v2
a∗bΣ+\(a∗b+a∗ba+)

a∗ba+ Σ+Σ+

Figure 8 Example of a reachability coalition game: a winning coalition strategy is that Agent n
plays a for the first n−1 rounds, then b for one round, and finally a forever.

In this paper, we focused on and obtained results for the coalition problem for safety
objectives. The problem can obviously be defined for other objectives. The finite tree
unfolding technique will not be correct in a general setting. We illustrate this on the game
arena in Fig. 8. In this example, the goal is to collectively reach the target v1. One can do
so if, at v0, the last agent involved plays a b whereas all the others play a. On the other
hand, at v0, it is safe if exactly one agent plays a b and the other plays an a. Coalition has a
winning strategy: Agent n plays action a for the first n−1 rounds, then plays b, and finally
plays a for the remaining steps. Doing so, each agent will in turn play action b, and when
the last agent does so, the play will reach v1. Notice that, for each agent (and hence for the
coalition), the strategy when going through v0 differs at some step (at every step from the
coalition point-of-view), so no finite tree unfolding will be correct.

As future work, we obviously would like to match lower and upper bounds for the safety
coalition problem, but more importantly we would like to investigate more general objectives.

References
1 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.

In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS’98),
pages 564–575. IEEE Computer Society Press, 1998. doi:10.1109/SFCS.1998.743507.

FSTTCS 2020

https://doi.org/10.1109/SFCS.1998.743507

39:16 Synthesizing Safe Coalition Strategies

2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002. doi:10.1145/585265.585270.

3 Krzysztof Apt and Dexter C. Kozen. Limits for automatic verification of finite-state con-
current systems. Information Processing Letters, 22(6):307–309, May 1986. doi:10.1016/
0020-0190(86)90071-2.

4 Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Concurrent parameterized games.
In Proceedings o the 39th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’19), volume 150 of LIPIcs, pages 31:1–31:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.31.

5 Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Synthesizing safe coalition
strategies, 2020. URL: https://arxiv.org/abs/2008.03770.

6 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert, and Adwait Amit Godbole.
Controlling a population. Logical Methods in Computer Science, 15(3), 2019. doi:10.23638/
LMCS-15(3:6)2019.

7 Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with probabilities in reconfig-
urable broadcast networks. In Proceedings of the 17th International Conference on Foundations
of Software Science and Computation Structure (FoSSaCS’14), volume 8412 of Lecture Notes
in Computer Science, pages 134–148. Springer, 2014. doi:10.1007/978-3-642-54830-7_9.

8 Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala. A perfect-information construction for
coordination in games. In Proceedings of the 31th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’11), volume 13 of LIPIcs,
pages 387–398. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.
FSTTCS.2011.387.

9 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015. doi:10.2200/
S00658ED1V01Y201508DCT013.

10 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
equilibria in concurrent games. Logical Methods in Computer Science, 11(2:9), 2015. doi:
10.2168/LMCS-11(2:9)2015.

11 Tristan Charrier, Arthur Queffelec, Ocan Sankur, and François Schwarzentruber. Reachability
and coverage planning for connected agents. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI’19), pages 144–150. ijcai.org, 2019. doi:10.24963/
ijcai.2019/21.

12 Thomas Colcombet, Nathanaël Fijalkow, and Pierre Ohlmann. Controlling a random popula-
tion. In Proceedings of the 23rd International Conference on Foundations of Software Science
and Computation Structures (FOSSACS’20), volume 12077 of Lecture Notes in Computer
Science, pages 119–135. Springer, 2020. doi:10.1007/978-3-030-45231-5_7.

13 Giorgio Delzanno. Constraint-based verification of parameterized cache coherence protocols.
Formal Methods in System Design, 23(3):257–301, 2003. doi:10.1023/A:1026276129010.

14 E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the few.
In Proceedings of the 17th International Conference on Automated Deduction (CADE’00),
volume 1831 of Lecture Notes in Computer Science, pages 236–254. Springer, 2000. doi:
10.1007/10721959_19.

15 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In Proceedings of the 31st International Symposium on Theoretical Aspects of Computer
Science (STACS’14), volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.1.

16 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’10), volume 6015 of Lecture Notes in Computer Science, pages 190–201.
Springer, 2010. doi:10.1007/978-3-642-12002-2_16.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.31
https://arxiv.org/abs/2008.03770
https://doi.org/10.23638/LMCS-15(3:6)2019
https://doi.org/10.23638/LMCS-15(3:6)2019
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.387
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.387
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.2168/LMCS-11(2:9)2015
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.1007/978-3-030-45231-5_7
https://doi.org/10.1023/A:1026276129010
https://doi.org/10.1007/10721959_19
https://doi.org/10.1007/10721959_19
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1007/978-3-642-12002-2_16

N. Bertrand, P. Bouyer, and A. Majumdar 39:17

17 Igor Konnov, Helmut Veith, and Josef Widder. What you always wanted to know about model
checking of fault-tolerant distributed algorithms. In Proceedings of the 10th International
Andrei Ershov Informatics Conference (PSI’15), volume 9609 of Lecture Notes in Computer
Science, pages 6–21. Springer, 2015. doi:10.1007/978-3-319-41579-6_2.

18 Corto Mascle, Mahsa Shirmohammadi, and Patrick Totzke. Controlling a random population
is EXPTIME-hard, 2019. URL: https://arxiv.org/abs/1909.06420.

19 Swarup Mohalik and Igor Walukiewicz. Distributed games. In Proceedings of the 23rd
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’03), volume 2914 of Lecture Notes in Computer Science, pages 338–351. Springer,
2003. doi:10.1007/978-3-540-24597-1_29.

20 Gary L. Peterson and John H. Reif. Multiple-person alternation. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science (FOCS’79), pages 348–363. IEEE
Computer Society Press, 1979. doi:10.1109/SFCS.1979.25.

21 Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS’90),
volume 2, pages 746–757. IEEE Computer Society Press, 1990. doi:10.1109/FSCS.1990.
89597.

22 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time
(preliminary report). In Proceedings of the 5th Annual ACM Symposium on Theory of
Computing (STOC’73), pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

23 Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in limit-average
games. In Proceedings of the 22nd International Conference on Concurrency Theory (CON-
CUR’11), volume 6901 of Lecture Notes in Computer Science, pages 482–496. Springer, 2011.
doi:10.1007/978-3-642-23217-6_32.

FSTTCS 2020

https://doi.org/10.1007/978-3-319-41579-6_2
https://arxiv.org/abs/1909.06420
https://doi.org/10.1007/978-3-540-24597-1_29
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/978-3-642-23217-6_32

Dynamic Network Congestion Games
Nathalie Bertrand
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
nathalie.bertrand@inria.fr

Nicolas Markey
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
nicolas.markey@irisa.fr

Suman Sadhukhan
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
suman.sadhukhan@inria.fr

Ocan Sankur
Univ Rennes, Inria, CNRS, IRISA, Rennes, France
ocan.sankur@irisa.fr

Abstract
Congestion games are a classical type of games studied in game theory, in which n players choose a
resource, and their individual cost increases with the number of other players choosing the same
resource. In network congestion games (NCGs), the resources correspond to simple paths in a graph,
e.g. representing routing options from a source to a target. In this paper, we introduce a variant of
NCGs, referred to as dynamic NCGs: in this setting, players take transitions synchronously, they
select their next transitions dynamically, and they are charged a cost that depends on the number
of players simultaneously using the same transition.

We study, from a complexity perspective, standard concepts of game theory in dynamic NCGs:
social optima, Nash equilibria, and subgame perfect equilibria. Our contributions are the following:
the existence of a strategy profile with social cost bounded by a constant is in PSPACE and NP-hard.
(Pure) Nash equilibria always exist in dynamic NCGs; the existence of a Nash equilibrium with
bounded cost can be decided in EXPSPACE, and computing a witnessing strategy profile can be done
in doubly-exponential time. The existence of a subgame perfect equilibrium with bounded cost can
be decided in 2EXPSPACE, and a witnessing strategy profile can be computed in triply-exponential
time.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation→ Formal languages and automata theory; Theory of computation→ Solution concepts
in game theory; Theory of computation → Verification by model checking

Keywords and phrases Congestion games, Nash equilibria, Subgame perfect equilibria, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.40

Related Version https://arxiv.org/abs/2009.13632.

1 Introduction

Congestion games model selfish resource sharing among several players [19]. A special case
is the one of network congestion games, in which players aim at routing traffic through a
congested network. Their popularity is certainly due to the fact that they have important
practical applications, whether in transportation networks, or in large communication
networks [18]. In network congestion games, each player chooses a set of transitions, forming
a simple path from a source state to a target state, and the cost of a transition increases
with its load, that is, with the number of players using it.

Network congestion games can be classified into atomic and non-atomic variants. Non-
atomic semantics is appropriate for large populations of players, thus seen as a continuum.
One then considers portions of the population that apply predefined strategies, and there

© Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9957-5394
mailto:nathalie.bertrand@inria.fr
https://orcid.org/0000-0003-1977-7525
mailto:nicolas.markey@irisa.fr
mailto:suman.sadhukhan@inria.fr
https://orcid.org/0000-0001-8146-4429
mailto:ocan.sankur@irisa.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.40
https://arxiv.org/abs/2009.13632
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Dynamic Network Congestion Games

is no such thing as the effect of an individual player on the cost of others. In contrast, in
atomic games, the number of players is fixed, and each player may significantly impact the
cost other players incur. We only focus on atomic games in this paper.

Network congestion games. Network congestion games, also called atomic selfish routing
games in the literature, were first considered by Rosenthal [19]. These games are defined by a
directed graph, a number of pairs of source-target vertices, and non-decreasing cost functions
for each edge in the graph. For each source-target pair, a player must choose a route from
the source to the target vertex. Given their choice of simple paths, the cost incurred by a
player depends on the number of other players that choose paths sharing edges with their
path, and on the cost functions of these edges. In this setting, a Nash equilibrium maps
each player to a path in such a way that no player has an incentive to deviate: they cannot
decrease their cost by choosing a different path.

Rosenthal proved that they are potential games, so that Nash equilibria always exist.
Monderer and Shapley [16] studied in a more general way potential games, and explained
how to iteratively use best-response strategies to converge to an equilibrium. Interestingly,
under reasonable assumptions on the cost functions, Bertsekas and Tsitsiklis established
that there is a direct correspondence between equilibria in selfish routing and distributed
shortest-path routing, which is used in practice for packet routing in computer networks [7].
We refer the interested reader to [20] for an introduction and many basic results on general
routing games.

A natural question is whether selfish routing is very different from a routing strategy
decided by a centralized authority. In other words, how far can a selfish optimum be from
the social optimum, in which players would cooperate. The notion of price of anarchy, first
proposed by Koutsoupias and Papadimitriou [13], is the ratio of the worst cost of a Nash
equilibrium and the cost of the social optimum. This measures how bad Nash equilibria
can be. In the context of network congestion games, the price of anarchy was first studied by
Suri et al. [21], establishing an upper bound of 5

2 when all cost functions are affine. A refined
upper bound was provided by Awerbuch et al. [5]. Bounds on the dual notion of price of
stability, which is the ratio of the cost of a best Nash equilibrium and the cost of the social
optimum was also studied for routing games [1].

Timing aspects. Several works investigated refinements of this setting. In [10], the authors
study network congestion games in which each edge is traversed with a fixed duration
independent of its load, while the cost of each edge depends on the load. The model is
thus said to have time-dependent costs since the load depends on the times at which players
traverse a given edge. The authors prove the existence of Nash equilibria by reduction to the
setting of [19]. An extension of this setting with timed constraints was studied in [2, 3].

The setting of fixed durations with time-dependent costs is interesting in applications
where the players sharing a resource (an edge) see their quality of service decrease, while
the time to use the resource is unaffected [3]. This might be the case, for instance, in some
telecommunication and multimedia streaming applications. Timing also appears, for instance,
in [17, 14] where the load affects travel times and players’ objective is to minimize the total
travel time. Other works focus on flow models with a timing aspect [12, 8].

Dynamic network congestion games. In classical network congestion games, including
those mentioned above, players choose their strategies (i.e., their simple paths) in one shot.
However, it may be interesting to let agents choose their paths dynamically, that is, step by

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:3

step, by observing other players’ previous choices. In this paper, we study network congestion
games with time-dependent costs as in [10], but with unit delays, and in a dynamic setting.
More precisely, at each step, each of the players simultaneously selects the edge they want to
take; each player is then charged a cost that depends on the load of the edge they selected,
and traverses that edge in one step. We name these games dynamic network congestion
games (dynamic NCGs in short); the behaviour of the players in such games is formalized by
means of strategies, telling the players what to play depending of the current configuration.
Notice that, because congestion effect applies to edges used simultaneously by several players,
taking cycles can be interesting in dynamic NCGs, which makes our setting more complex
than most NCG models [4, 10, 19, 20].

Such a dynamic setting was studied in [4] for resource allocation games, which extends [19]
with dynamic choices. A more detailed related work appears at the end of this section.

Standard solution concepts. We study classical solution concepts on dynamic network
congestion games. A strategy profile (i.e., a function assigning a strategy to each player) is a
Nash Equilibrium (NE) when each single strategy is an optimal response to the strategies
of the other players; in other terms, under such a strategy profile, no player may lower
their costs by unilaterally changing their strategies. Notice that NEs need not exist in
general, and when they exist, they may not be unique. In the setting of dynamic games,
Nash Equilibria are usually enforced using punishing strategies, by which any deviating player
will be punished by all other players once the deviation has been detected. However, such
punishing strategies may also increase the cost incurred to the punishing players, and hence
do not form a credible threat; Subgame-Perfect Equilibria (SPEs) refine NEs and address
this issue by requiring that the strategy profile is an NE along any play.

NEs and SPEs aim at minimizing the individual cost of each player (without caring of
the others’ costs); in a collaborative setting, the players may instead try to lower the social
cost, i.e., the sum of the costs incurred to all the players. Strategy profiles achieving this are
called social optima (SO). Obviously, the social cost of NEs and SPEs cannot be less than
that of the social optimum; the price of anarchy measures how bad selfish behaviours may
be compared to collaborative ones.

Our contributions. We take a computational-complexity viewpoint to study dynamic
network congestion games. We first establish the complexity of computing the social
optimum, which we show is in PSPACE and NP-hard. We then prove that best-response
strategies can be computed in polynomial time, and that dynamic NCGs are potential games,
thereby showing the existence of Nash equilibria in any dynamic NCG; this also shows
that some Nash equilibrium can be computed in pseudo-polynomial time. We then give an
EXPSPACE (resp. 2EXPSPACE) algorithm to decide the existence of Nash Equilibria (resp.
Subgame-Perfect Equilibria) whose costs satisfy given bounds. This allows us to compute
best and worst such equilibria, and then the price of anarchy and the price of stability.

Note that some of the high complexities follow from the binary encoding of the number of
players, which is the main input parameter. For instance, the exponential-space complexity
drops to pseudo-polynomial time for a fixed number of players. This parameter becomes
important since we advocate the study of computational problems, such as computing Nash
equilibria with a given cost bound. We also believe that computing precise values for price
of anarchy and the price of stability is interesting, rather than providing bounds on the set
of all instances as in e.g. [21].

Omitted proofs can be found in the corresponding arXiv article [6].

FSTTCS 2020

40:4 Dynamic Network Congestion Games

Comparison with related work. The works closest to our setting are [10, 4, 2, 3]. As in [10,
3], we establish the existence of Nash equilibria using potential games. Unlike [10], we cannot
obtain this result immediately by reducing our games to congestion games [19] since the
lengths of the strategies cannot be bounded a priori. Moreover, the best-response problem
has a polynomial-time solution in our setting while the problem is NP-hard both in [10, 3].
In [10], this is due to the possibility of having arbitrary durations, while the source of
complexity in [2, 3] is due to the use of timed automata. Thus, our setting offers a simpler
way of expressing timings, and avoids their high complexity for this problem.

Dynamic choices were studied in [4] but with a different cost model. Moreover, network
congestion games can only be reduced to such a setting given an a priori bound on the length
of the paths. So we cannot directly transfer any of their results to our setting. Dynamic
choices were also studied in [10] in the setting of coordination mechanisms which are local
policies that allow one to sequentialize traffic on the edges.

2 Preliminaries

2.1 Dynamic network congestion games
Let F be the family of non-decreasing functions from N to N that are piecewise-affine, with
finitely many pieces. We assume that each f ∈ F is represented by the endpoints of intervals,
and the coefficients, all encoded in binary. An arena for dynamic network congestion games
is a weighted graph A = 〈V,E, src, tgt〉, where V is a finite set of states, E : V × V → F is a
partial function defining the cost of edges, and src and tgt are a source- and a target state
in V . It is assumed throughout this paper that tgt has only a single outgoing transition,
which is a self-loop with constant cost function x 7→ 0. We also assume that tgt is reachable
from all other states.

A dynamic network congestion game (dynamic NCG for short) is a pair G = 〈A, n〉 where
A is an arena as above and n ∈ N is the (binary-encoded) number of players. In a dynamic
network congestion game, all players start from src and simultaneously select the edges
they want to traverse, with the aim of reaching the target state with minimal individual
accumulated cost. Taking an edge e = (v, f, v′) has a cost f(l), where l is the number of
players simultaneously using edge e. The cost function of edge e is denoted by fe. We let
κ = maxe∈E fe(n), which is the maximal cost that a player may endure along one edge.

Our setting differs from classical network congestion games [20] mainly in two respects:
first, the game is played in rounds, during which all players take exactly one transition;
the number of players using an edge e is measured dynamically, at each round;
second, during the play, players may adapt their choices to what the other players have
been doing in the previous rounds.

I Remark 1. In this work, we mainly focus on the symmetric case, where all players have the
same source and target. This is because we take a parametric-verification point of view, with

src

v1

v2

v3 tgt
x
7→
x

x 7→
5

x 7→ 6

x 7→
3x

x
7→
x

x 7→ 4x

Figure 1 Representation of an arena for a dynamic NCG (loop omitted on tgt).

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:5

the (long-term) aim of checking properties of dynamic NCGs for arbitrarily many players.
An important consequence of this choice is that the number of players now is encoded in
binary, which results in an exponential blow-up in the number of configurations of the game
(compared to the asymmetric setting).

Semantics as a concurrent game. For any k ∈ N, we write JkK = {i ∈ N | 1 ≤ i ≤ k}.
A configuration of a dynamic network congestion game 〈A, n〉 is a mapping c : JnK→ V ,
indicating the position of each player in the arena. We define csrc : i ∈ JnK 7→ src and
ctgt : i ∈ JnK 7→ tgt as the initial and target configurations, respectively.

With 〈A, n〉, we first associate a multi-weighted graphM = 〈C, T 〉, where C = V JnK is
the set of all configurations and T ⊆ C ×NJnK ×C is a set of edges, defined as follows: there
is an edge (c, w, c′) in T if, and only if, there exists a collection e = (ei)i∈JnK of edges of E
such that for all i ∈ JnK, writing ei = (vi, fi, v′i) and ui = #{j ∈ JnK | ej = ei}, we have
c(i) = vi, c′(i) = v′i, and w(i) = fi(ui). We denote this edge with c e=⇒ c′. We may omit to
mention e since it can be obtained from c and c′; similarly, we write costi(c, c′) for w(i).

Two edges (c, w, c′) and (d, x, d′), in that order, are said to be consecutive whenever
d = c′. Given a configuration c, a path from c in a dynamic network congestion game is
either the single configuration c (we call this a trivial path) or a non-empty, finite or infinite
sequence of consecutive edges ρ = (tj)1≤j<|ρ| inM, where t1 is a transition from c; the size
of a path ρ is one for trivial paths, and |ρ| ∈ N ∪ {+∞} otherwise. We write Paths(〈A, n〉, c)
and Pathsω(〈A, n〉, c) for the set of finite and infinite paths from c in 〈A, n〉, respectively.

With each path ρ = (cj , wj , c′j)j , and each player i ∈ JnK, we associate a cost, written
costi(ρ), which is zero for trivial paths, +∞ for infinite paths along which cj(i) 6= tgt for
all j, and

∑|ρ|−1
j=1 wj(i) otherwise. We define the social cost of ρ, denoted by soccost(ρ), as∑

i∈JnK costi(ρ).
Given a path ρ, an index 1 ≤ j < |ρ|+ 1 and a player i ∈ JnK, we write ρ(j) for the j-th

configuration of ρ, and ρ(j)(i) for the state of Player i in that configuration. For j ≥ 2, we
define ρ≤j as the prefix of ρ that ends in the j-th configuration; we let ρ≤1 = ρ(1). Similarly,
for 1 ≤ j ≤ |ρ| − 1, we let ρ≥j denote the suffix that starts at the j-th configuration. Finally,
if |ρ| is finite, we let ρ≥|ρ| = ρ(|ρ|).

I Example 2. Consider the arena A displayed at Fig. 1 and the dynamic NCG 〈A, 2〉 with
two players. Assume that Player 1 follows the path π1 : src→ v1 → v3 → tgt and Player 2
goes via π2 : src→ v1 → v2 → v3 → tgt. This gives rise to the following path:(

1 7→ src
2 7→ src

) 1 7→2
2 7→2−−−→

(
1 7→ v1
2 7→ v1

) 1 7→3
2 7→6−−−→

(
1 7→ v3
2 7→ v2

) 1 7→4
2 7→1−−−→

(
1 7→ tgt
2 7→ v3

) 1 7→0
2 7→4−−−→

(
1 7→ tgt
2 7→ tgt

)
Notice how edge v3 → tgt of A is used by both players, but not simultaneously, so that the
cost of using that edge is 4 for each of them, while it would be 8 in classical NCGs. J

We now extend this graph to a concurrent game structure. A move for Player i ∈ JnK
from configuration c is an edge e = (v, f, v′) ∈ E such that v = c(i). A move vector from c is
a sequence e = (ei)i∈JnK such that for all i ∈ JnK, ei is a move for Player i from c.

A network congestion game 〈A, n〉 then gives rise to a concurrent game structure S =
〈C, T,M,U〉 where 〈C, T 〉 is the graph defined above, M : C × JnK → 2E lists the set of
possible moves for each player in each configuration, and U : C × EJnK → T is the transition
function, such that for every configuration c and every move vector e = (ei)i∈JnK with
ei ∈M(c, i) for all i ∈ JnK, U(c, e) = (c e=⇒ c′).

FSTTCS 2020

40:6 Dynamic Network Congestion Games

A strategy for Player i in S from configuration c is a function σi : Paths(〈A, n〉, c)→ E

that associates, with any finite path ρ from c in S, a move for this player from the last
configuration of ρ. A strategy profile is a family σ = (σi)i∈JnK of strategies, one for each
player. We write S for the set of strategies, and Sn for the set of strategy profiles.

Let c be a configuration, h be a finite path from c and a strategy profile σ = (σi)i∈JnK

from c. The residual strategy profile of σ after h is the strategy profile σh = (σhi)i∈JnK from
the last configuration of h defined by σhi (h′) = σi(h · h′), where h · h′ is the concatenation of
paths h and h′.

The outcome of a strategy profile σ from c is the infinite path ρ = (ci, wi, ci+1)i≥1,
hereafter denoted with outcome(σ), obtained by running the strategy profile; it is formally
defined as the only infinite path such that (c1, w1, c2) = U(c, σ(c)), and such that for
any j ≥ 2, (cj , wj , cj+1) = U(cj , σ(h′)), where h′ = (c1, w1, c2) · · · (cj−1, wj−1, cj).

Pick a strategy profile σ = (σi)i∈JnK, and let ρ = (tj)j≥1 be its outcome, writing
tj = (cj , (wij)i∈JnK, c

′
j) for all j ≥ 1. Let k ∈ JnK. If c′l(k) = tgt for some l ∈ N, then σk

is said to be winning for Player k. In that case, we define costk(σ) as costk(outcome(σ)).
If c′l(i) = tgt for all i ∈ JnK, we define the social cost of σ as soccost(σ) = soccost(ρ).

A strategy σi for Player i is said blind whenever for any two finite paths ρ and ρ′ having
same length k, if for any position 0 ≤ j < k we have ρ(j)(i) = ρ′(j)(i), then σi(ρ) = σi(ρ′).
Intuitively, this means that strategy σi follows a path in A, independently of what the other
players do. A blind strategy can thus be represented as a path and we write |σi| for the length
of that path (until its first visit to tgt, if any). We write B for the set of blind strategies.

I Example 3. Consider again the arena A of Fig. 1. The paths π1 and π2 from Example 2 are
two blind strategies in that dynamic NCG. In a 2-player setting, an example of a non-blind
strategy σ consists in first taking the transition src→ v1, and then either taking v1 → v3 if
the other player took the same initial transition, or taking v1 → v2 otherwise. J

Representation as a weighted graph. Another way of representing configurations is to
consider their Parikh images. With a configuration c ∈ V JnK, we associate an abstract
configuration c̄ ∈ JnKV defined as c̄(v) = #{i ∈ JnK | c(i) = v}.

The abstract weighted graph associated with a dynamic network congestion game 〈A, n〉
is the weighted graph P = 〈A,B〉, where A contains all abstract configurations, and there is
an edge (a,w, a′) in B ⊆ A×N×A if, and only if, there is a mapping b : E → JnK such that∑
e∈E b(e) = n and for all v ∈ V ,

a(v) =
∑

e=(v,f,v′)

b(e) w =
∑

e=(v,f,v′)

b(e)× f(b(e)) a′(v) =
∑

e=(v′,f,v)

b(e).

Similarly to the representation as multi-weighted graphs, an abstract path of a network
congestion game is either a single configuration or a non-empty, finite or infinite sequence of
consecutive edges in the abstract weighted graph. The cost of an abstract path is the sum of
the weights of its edges (if any). Then:

I Lemma 4. For any w ∈ N ∪ {+∞}, there is an abstract path inM with social cost w if,
and only if, there is an abstract path in P with cost w.

2.2 Social optima and equilibria
Consider a dynamic network congestion game G = 〈A, n〉. We recall standard ways of
optimizing the strategies of the players, depending on the situation.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:7

In a collaborative situation, all players want to collectively minimize the total cost for
having all of them reach the target state of the arena. Formally, a strategy profile σ = (σi)i∈JnK

realizes the social optimum if soccost(σ) = infτ∈Sn soccost(τ).
In a selfish situation, each player aims at optimizing their response to the others’ strategies.

Given a strategy profile σ = (σi)i∈JnK, a player k ∈ JnK, and a strategy σ′k ∈ S, we denote
by 〈σ−k, σ′k〉 the strategy profile (τi)i∈JnK such that τk = σ′k and τi = σi for all i ∈ JnK \ {k}.
The strategy σk is a best response to (σi)i∈JnK\{k} if costk(σ) = infσ′

k
∈S costk(〈σ−k, σ′k〉).

A strategy profile σ = (σi)i∈JnK is a Nash equilibrium if for each k ∈ JnK, the strategy σk is a
best response to (σi)i∈JnK\{k}. In such a case, no player has profitable unilateral deviations,
i.e., no player alone can decrease their cost by switching to a different strategy.

Nash equilibria can be defined for subclasses of strategy profiles. In particular, a blind
Nash equilibrium is a blind strategy profile σ that is a Nash equilibrium for blind-strategy
deviations: for all k ∈ JnK, costk(σ) = infσ′

k
∈B costk(〈σ−k, σ′k〉). A priori, a blind Nash

equilibrium need not be a Nash equilibrium for general strategies.
In an NE, once a player deviated from their original strategy in the strategy profile,

the other players can punish the deviating player, even if this results in increasing their own
costs. Indeed, the condition for being an NE only requires that the deviation should not be
profitable to the deviating player. Subgame-Perfect Equilibria (SPE) refine NEs and rule
out such non-credible threats by requiring that, for any path h in the configuration graph,
the residual strategy profile after h is an NE.

I Example 5. Consider again the dynamic NCG 〈A, 2〉, with the arena A of Fig. 1. Assume
that Player 1 plays the blind strategy corresponding to π3 : src → v2 → v3 → tgt, while
Player 2 plays the non-blind strategy σ of Example 3. The cost for Player 1 then is 10, while
that of Player 2 is 12.

This strategy profile is an NE: Player 2 could be tempted to play π1, but they would
then synchronize with Player 1 on edge v3 → tgt, and get cost 12 again. Similarly, Player 1
could be tempted to play π1 instead of π3, but in that case strategy σ would tell Player 2 to
follow the same path, and the cost for Player 1 (and 2) would be 16. Notice in particular
that this is not an SPE, but that the blind strategy profile 〈π1, π2〉 (extended to the whole
configuration tree in the only possible way) is an SPE in 〈A, 2〉. J

In Sections 4 and 5, we focus on NEs and SPEs, developing EXPSPACE and 2EXPSPACE-
algorithms for deciding the existence of NEs and SPEs respectively of social cost less than or
equal to a given bound. Actually, our approach extends to the ~γ-weighted social cost, where
~γ ∈ ZJnK are coefficients applied to the costs of the respective players when computing the
social cost. As a consequence, we can compute best and worst NEs and SPEs, hence also
the price of anarchy and price of stability [13]. Before that, in Section 3, we extend classical
techniques using blind strategies to compute the social optimum and prove that NEs always
exist.

3 Socially-optimal strategy profiles

To compute a socially-optimal strategy profile, it suffices to find a path in the concurrent
game structure of the given network congestion game with minimal total cost since one can
define a strategy profile that induces any given path. Rather than finding such a path in the
concurrent game structure, and in view of Lemma 4, one can look for one in the abstract
weighted graph, thereby reducing in complexity. The socially-optimal cost in a dynamic
NCG 〈A, n〉 is thus the cost of a shortest path in the associated weighted abstract graph P
from c̄src to c̄tgt.

FSTTCS 2020

40:8 Dynamic Network Congestion Games

Since P has exponential size, we derive complexity upper bounds for computing a socially-
optimal strategy and deciding the associated decision problem. Moreover, adapting [15,
Theorem 4.1] which proves NP-hardness in classical NCGs, we provide a reduction from the
Partition problem to establish an NP lower-bound.

I Theorem 6. A socially-optimal strategy profile can be computed in exponential time.
The constrained social-optimum problem is in PSPACE and NP-hard.

Note, that while P has size (n + 1)|V |, it is sufficient to consider paths with a smaller
number of transitions when looking for a shortest path:

I Lemma 7. There is a shortest path (w.r.t. cost) in P with size (in terms of its number of
transitions) at most n · |V |.

I Remark 8. A consequence of Lemma 7 is that deciding the constrained social-optimum
problem is in NP for asymmetric games, since in that setting the lists of sources and targets
of each player is part of the input, so that n is polynomial in the size of the input. However,
our NP-hardness proof only works in the symmetric case.

4 Nash equilibria

In this section, we study the existence of Nash equilibria and give algorithms to compute
them under given constraints.

4.1 Existence and computation of (blind) Nash equilibria
To prove that blind Nash equilibria always exist, we establish that dynamic NCGs with blind
strategies are potential games [19, 16] which are known to have Nash equilibria.

Consider a dynamic NCG 〈A, n〉, a blind strategy profile π, and let Nπ denote the
maximum length of the paths prescribed by π. We define the following potential function,
which is an adaptation of that used in [19]:

ψ(π) =
Nπ∑
j=1

∑
e∈E

loade(π,j)∑
i=1

fe(i),

where loade(π, j) denotes the number of players that take edge e in the j-step under π, and
fe is the cost function on edge e.

Using the above-defined potential function, one can derive an algorithm to find a Nash
equilibrium, by a classical best-response iteration. Starting with an arbitrary blind strategy
profile, at each step we replace some player’s strategy with their best-response, and we
continue as long as some player’s cost can be decreased. When this procedure terminates,
the profile at hand is a blind Nash equilibrium. In dynamic NCGs, best responses exist and
can be computed in polynomial time. Indeed, one can construct a game in which all players
but Player i follow their fixed strategies given by profile π, using Nπ copies of the game in
order to distinguish the steps. After the Nπ-step, all players in JnK \ {i} have reached their
targets. Since it is the only remaining player, the remaining path for Player i should not be
longer than |V |. Altogether, we obtain the following complexity upper-bound:

I Theorem 9. In dynamic NCGs, blind Nash equilibria always exist, and we can compute
one in pseudo-polynomial time.

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:9

I Remark 10. As an alternative proof to existence of blind NEs, we could have bounded
the length of outcomes of blind NEs as follows: all players have a strategy realizing cost at
most |V | · κ, where κ = maxe∈E fe(n), since the shortest path from src to tgt has length at
most |V |, and the cost for a player at each step along edge e is at most κ. It follows that
no path along which the cost for some player is larger than |V | · κ can be the outcome of a
blind NE. As a consequence, if a dynamic NCG has a blind NE, then it has one of length at
most |V | · κ · |V |n (by removing zero-cycles). Using this bound, we can transform dynamic
NCGs into classical congestion games, in which blind NEs always exist [10, 19].

We now show that blind Nash equilibria are in fact Nash equilibria. This is proved using
the observation that given a blind strategy profile, the most profitable deviation for any
player can be assumed to be a blind strategy.

I Lemma 11. In dynamic NCGs, blind Nash equilibria are Nash equilibria.

Computing some (blind) Nash equilibrium may not be satisfactory for two reasons: one
might want to compute the best (or the worst) Nash equilibrium in terms of the social cost;
and as Lemma 12 claims, blind Nash equilibria are suboptimal, i.e., a lower social cost can be
achieved by Nash equilibria with general strategies. This justifies the study of more complex
strategy profiles in the next subsection.

I Lemma 12. There exists a dynamic NCG with a Nash equilibrium π such that for all
blind Nash equilibria π′, we have cost(π) < cost(π′).

The proof is based on the dynamic NCG depicted on Fig. 2, for which we prove there is a
Nash equilibrium with total cost 36, while any blind Nash equilibrium has higher social cost.

q0

q1 q2 q3

q4 q5 q6

q7

x 7→
2x
e1

x 7→ 3xe5

x 7→ 3
e2

x 7→ 3
e3 x 7→ 2xe4

x 7→ x
e6

x 7→ 2x
e7

x 7→
2x
e8

x 7→
xpun

1

x 7→
3pun

2

Figure 2 An arena on which blind Nash equilibria are sub-optimal.

4.2 Computation of general Nash equilibria
Characterization of outcomes of Nash Equilibria. Let us consider a dynamic NCG 〈A, n〉,
and the corresponding game structure S = 〈C, T,M,U〉. Given two configurations c, c′
with c⇒ c′, we let costi(c, c′) denote the cost of Player i on this transition from c(i) to c′(i).
We define devi(c, c′) as the set of all configurations reachable when all players but Player i
choose moves prescribed by the given transition c⇒ c′:

devi(c, c′) = {c′′ ∈ C | c⇒ c′′ and ∀j ∈ JnK \ {i}. c′′(j) = c′(j)}.

The value of configuration c for Player i is vali,c = supσ−i∈Sn−1 infσi∈S costi((σ−i, σi), c).
Note that the value corresponds to the value of the zero-sum game where Player i plays
against the opposing coalition, starting at c. By [11], those values can be computed in
polynomial time in the size of the game. Here the game is a 2-player game with state space
|V | × Jn− 1K|V |, keeping track of the position of Player i and the abstract position of the

FSTTCS 2020

40:10 Dynamic Network Congestion Games

coalition. It follows that each vali,c can be computed in exponential time in the size of the
input 〈A, n〉. Moreover, memoryless optimal strategies exist (in S), that is, the opposing
coalition has a memoryless strategy σ−i to ensure a cost of at least vali,c from c.

The characterization of Nash equilibria outcomes is given in the following lemma.

I Lemma 13. A path ρ in 〈A, n〉 is the outcome of a Nash equilibrium if, and only if,

∀i ∈ JnK. ∀1 ≤ l < |ρ|. ∀c ∈ devi(ρ(l), ρ(l + 1)). costi(ρ≥l) ≤ vali,c + costi(ρ(l), c).

The intuition is that if the suffix costi(ρ≥l) of ρ has cost more than vali,c + costi(ρ(l), c),
then Player i has a profitable deviation regardless of the strategy of the opposing coalition,
since vali,c is the maximum cost that the coalition can inflict to Player i at configuration c
where the deviation is observed. The lemma shows that the absence of such a suffix means
that a Nash equilibrium with given outcome exists, which the proof constructs.

Proof. Consider a Nash equilibrium σ = (σi)i∈JnK with outcome ρ. Consider any player i,
and any strategy σ′i for this player. Let ρ′ denote the outcome of σ[i→ σ′i]. Let l denote the
index of the last configuration where ρ and ρ′ are identical. Since σ is a Nash equilibrium,
we have costi(ρ) ≤ costi(ρ′), that is,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + costi(σ[i→ σ′i], ρ′≤l+1)

where costi(σ[i→ σ′i], ρ′≤l+1) is the cost for Player i of the outcome of the residual strategy
(σ[i→ σ′i])

ρ′≤l+1 . Since the choice of σ′i is arbitrary here, we have,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + inf
σ′
i
∈S

costi(σ[i→ σ′i], ρ′≤l+1).

Moreover, we have infσ′
i
∈S costi(π[i→ σ′i], ρ′≤l+1) = infσ′

i
∈S costi(π[i→ σ′i], ρ′(l + 1)) since

memoryless strategies suffice to minimize the cost [11]. We then have

inf
σ′
i
∈S

costi(π[i→ σ′i], ρ′(l + 1)) ≤ sup
σ−i∈Sn−1

inf
σi∈S

costi((σ−i, σi), ρ′(l + 1)).

We obtain the required inequality

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + sup
σ−i∈Sn−1

inf
σi∈S

costi((σ−i, σi), ρ′(l + 1))

≤ costi(ρ(l), c) + vali,c.

Conversely, consider a path ρ that satisfies the condition. We are going to construct
a Nash equilibrium having outcome ρ. The idea is that players will follow ρ, and if some
player i deviates, then the coalition −i will apply a joint strategy to maximize the cost of
Player i, thus achieving at least vali,c, where c is the first configuration where deviation is
detected.

Let us define the punishment function Pρ : Paths(〈A, n〉)→ JnK∪{⊥} which keeps track of
the deviating players and the step where such a player has deviated. For path h′ = h(c, w, c′),
we write

Pρ(h′) =


⊥ if h′ ≤pref ρ,

i if h ≤pref ρ, h(c, w, c′) 6≤pref ρ, and i ∈ JnK min. s.t. c′(i) 6= ρ(|h|+ 1)(i),
Pρ(h) otherwise.

Intuitively, ⊥ means that no players have deviated from ρ in the current path. If Pπ(h) = j,
then Player j was among the first players to deviate from ρ in the path h; so for some l,

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:11

h(l)(j) = ρ(l)(j) but h(l + 1)(j) 6= ρ(l + 1)(j). Notice that if several players deviate at the
same step, there are no conditions to be checked, and the strategy can be chosen arbitrarily.
For each configuration c and coalition −i, let σ−i,c be the strategy of coalition −i maximizing
the cost of Player i from configuration c; thus achieving at least vali,c. Player j’s strategy in
this coalition, for j 6= i, is denoted σ−i,c,j . For path h′ = h(c, w, c′), define

τi(h′) =


(c′(i),m(i), c′′(i)) if Pρ(h′) = ⊥, ρ(|h′|+ 1) = (c′, w′, c′′),

and m ∈ En is such that T (c′,m) = (w′, c′′),
arbitrary if Pρ(h′) = i,

σ−j,c,i(h′) if Pρ(h′) = j for some j 6= i.

The first case ensures that the outcome of the profile (τi)i∈JnK is ρ. The third case means that
Player i follows the coalition strategy σ−j,c after Player j has deviated to configuration c.
The second case corresponds to the case where Player i has deviated: the precise definition
of this part of the strategy is irrelevant.

Let us show that this profile is indeed a Nash equilibrium. Consider any player j ∈ JnK
and any strategy τ ′j . Let ρ′ denote the outcome of (τ−j , τ ′j), and l the index of the last
configuration where ρ and ρ′ are identical. We have

costj((τ−j , τ ′j)) = costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + costj((τ−j , τj), ρ′≤l+1)
≥ costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + valj,ρ′(l+1)(j)

≥ costj((τi)i∈JnK),

where the second line follows from the fact that the coalition switches to a strategies ensuring
a cost of at least valj,ρ′(l)(j) at step l; and the third line is obtained by assumption. This
shows that (τi)i∈JnK is indeed a Nash equilibrium and concludes the proof. J

Algorithm. We define a graph that describes the set of outcomes of Nash equilibria by
augmenting the n-weighted configuration graphM = 〈C, T 〉. For any real vector ~γ = (γi)i∈JnK,
we define the weighted graph G〈A,n〉,~γ = 〈C ′, T ′〉 with C ′ = C × (JY K ∪ {0,∞})n where
Y = |V | · κ, and T ′ ⊆ C ′ ×N× C ′; remember that all players have a strategy realizing cost
at most Y in 〈A, n〉. The initial state is (csrc,∞n). The set of transitions T ′ is defined as
follows: ((c, b), z, (c′, b′)) ∈ T ′ if, and only if, there exists (c, w, c′) ∈ T , z = ~γ · w (where · is
dot product), and for all i ∈ JnK,

b′i = min(bi − wi, min
c′′∈devi(c(i),c′(i))

costi(c, c′′) + vali,c′′ − wi). (1)

Notice that by definition of C ′, b′i must be nonnegative for all i ∈ JnK, so there are no
transitions ((c, b), z, (c′, b′)) if the above expression is negative for some i. Notice also that
the size of G〈A,n〉,~γ is doubly-exponential in that of the input 〈A, n〉, since this is already the
case for C, while Y is singly-exponential.

Intuitively, for any path ρ that visits some state (c, b) in this graph, in order for ρ to be
compatible with a Nash equilibrium, each player i must have cost no more than bi in the rest
of the path. In fact, the second term of the minimum in (1) is the least cost Player i could
guarantee by not following (c, w, c′) but going to some other configuration c′′ ∈ devi(c, c′), so
the bound bi is used to guarantee that these deviations are not profitable. The definition
of b′i in (1) is the minimum of bi − wi and the aforementioned quantity since we check both
the previous bound bi, updated with the current cost wi (which gives the left term), and
the non-profitability of a deviation at the previous state (which is the right term). If this

FSTTCS 2020

40:12 Dynamic Network Congestion Games

minimum becomes negative, this precisely means that at an earlier point in the current path,
there was a strategy for Player i which was more profitable than the current path regardless
of the strategies of other players; so the current path cannot be the outcome of a Nash
equilibrium. This is why the definition of G〈A,n〉,~γ restricts the state space to nonnegative
values for the bi.

We prove that computing the cost of a Nash equilibrium minimizing the ~γ-weighted social
cost reduces to computing a shortest path in G〈A,n〉,~γ . In particular, letting γi = 1 for all
i ∈ JnK, a ~γ-minimal Nash equilibrium is a best Nash equilibrium (minimizing the social
cost), while taking γi = −1 for all i ∈ JnK, we get a worst Nash equilibrium (maximizing the
social cost).

I Theorem 14. For any dynamic NCG 〈A, n〉 and vector ~γ, the cost of the shortest path
from (csrc,∞n) to some (ctgt, b) in G〈A,n〉,~γ is the cost of a ~γ-minimal Nash equilibrium.

Proof. We show that for each path of 〈A, n〉 from csrc to ctgt, there is a path in G〈A,n〉,~γ from
(csrc,∞n) to some (ctgt, b) with the same cost, and vice versa.

Consider a Nash equilibrium π = (σj)j∈JnK with outcome ρ = (cj , wj , cj+1)1≤j<l. We build
a sequence b1, b2, . . . such that ρ′ = ((cj , bj), ~γ · wj , (cj+1, bj+1))1≤j<l is a path of G〈A,n〉,~γ .
We set b1(j) =∞ for all j ∈ JnK. For j ≥ 1, define

bj+1(i) = min
(
bj(i)− wj(i), min

c′′∈devj(cj(i),cj+1(i))
costi(cj , c′′) + vali,c′′ − wj(i)

)
.

We are going to show that for all 1 ≤ j ≤ l, costi(ρ≥j) ≤ bj , which shows that bj ≥ 0, and
thus ρ′ is a path of G〈A,n〉,~γ .

We show this by induction on j. This is clear for j = 1. Assume this holds up to j ≥ 1.
We have, by induction that costi(ρ≥j) ≤ bj(i) for all i ∈ JnK. Moreover, since π is a Nash
equilibrium, by Lemma 13,

∀i ∈ JnK, costi(ρ≥j) ≤ min
c′′∈devi(ρ(j),ρ(j+1))

vali,c′′ + costi(ρ(j), c′′).

Therefore,

costi(ρ≥j+1) = costi(ρ≥j)− wj(i)
≤ min(bj(i)− wj(i), min

c′′∈devi(ρ(j),ρ(j+1))
vali,c′′ + costi(ρ(j), c′′)− wj(i))

as required, and both paths have the same ~γ-weighted cost.
Consider now a path ((ci, bi), zi, (ci+1, bi+1))1≤i<l in G〈A,n〉,~γ . By the definition of G〈A,n〉,~γ ,

there exists w1, w2, . . . such that ρ = (cj , wj , cj+1)1≤j<l is a path of 〈A, n〉, and zj = ~γ · wj .
So it only remains to show that that ρ is the outcome of a Nash equilibrium. We will show
that ρ satisfies the criterion of Lemma 13. We show by backwards induction on 1 ≤ j ≤ l

that for all i ∈ JnK,
1. costi(ρ≥j) ≤ bj(i),
2. costi(ρ≥j) ≤ minc′′∈devi(ρ(j),c′′) costi(ρ(j), c′′) + vali,c′′ .
For j = l, we have costi(ρ≥l) = 0 so this is trivial. Assume the property holds down to j + 1
for some 1 ≤ j < l. By induction hypothesis, we have

costi(ρ≥j+1) ≤ bj+1(i) = min
(
bj(i)− wj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′ − wj(i)

)
.

Therefore,

costi(ρ≥j) = costi(ρ≥j+1) + wj(i) ≤ min
(
bj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′

)
,

as required. By Lemma 13, ρ is the outcome of a Nash equilibrium. J

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:13

Thanks to Theorem 14, we can compute the costs of the best and worst NEs of 〈A, n〉 in
exponential space. We can also decide the existence of an NE with constraints on the costs
(both social and individual), by non-deterministically guessing an outcome and checking
in G〈A,n〉,~γ that it is indeed an NE. We obtain the following conclusion:

I Corollary 15. In dynamic NCGs, the constrained Nash-equilibrium problem is in EX-
PSPACE.

Proof. As noted earlier, the number of vertices in G〈A,n〉,~γ is doubly exponential since
|C| = |V |n is doubly exponential. Storing a configuration and computing its successors can
be performed in exponential space. One can thus guess a path of size at most the size of
the graph and check whether its cost is less than the given bound. This can be done using
exponential-space counters, and provides us with an EXPSPACE algorithm. J

Note that one can effectively compute a Nash-equilibrium strategy profile satisfying the
constraints in doubly-exponential time by finding the shortest path of G〈A,n〉,~γ , and applying
the construction of (the proof of) Lemma 13.
I Remark 16. The exponential complexity is due to the encoding of the number of players in
binary. If we consider asymmetric NCGs, in which the source-target pairs would be given
explicitly for all players, the size of G〈A,n〉,~γ would be singly-exponential, and the constrained
Nash-equilibrium problem would be in PSPACE.

5 Subgame-perfect equilibria

In this section, we characterize the outcomes of SPEs and decide the existence of SPEs with
constraints on the social cost. We follow the approach of [9], extending it to the setting of
concurrent weighted games, which we need to handle dynamic NCGs.

Characterization of outcomes of SPE. Consider a dynamic NCG 〈A, n〉, and the associated
configuration graphM = 〈C, T 〉. We partition the set C of configurations into (Xj)0≤j≤n
such that a configuration c is in Xj if, and only if, j = #{i ∈ JnK | c(i) = tgt}. Since tgt is a
sink state in A, if there is a transition from some configuration in Xj to some configuration
in Xk, then k ≥ j. We define X≥j =

⋃
i≥j Xi, Zj = {(c, w, c′) ∈ T | c ∈ Xj} and

Z≥j = {(c, w, c′) ∈ T | c ∈ X≥j}.
Following [9], we inductively define a sequence (λj∗)0≤j≤n, where each λj∗ = 〈λj

∗

i 〉i∈JnK

is a n-tuple of labeling functions λj
∗

i : Z≥j → N ∪ {−∞,+∞}. This sequence will be used to
characterize outcomes of SPEs through the notion of λ-consistency:

I Definition 17. Let j ≤ n, and λ = (λi)i∈JnK be a family of functions such that λ : Z≥j →
N ∪ {−∞,+∞} Let c ∈ X≥j. A finite path ρ = (tk)1≤k<|ρ| from c ending in ctgt is said to
be λ-consistent whenever for any i ∈ JnK and any 1 ≤ k < |ρ|, it holds costi(ρ≥k) ≤ λi(tk).
We write Γλ(c) for the set of all λ-consistent paths from c.

We now define λj∗ for all 0 ≤ j ≤ n in such a way that, for all c ∈ X≥j , Γλj∗ (c) is
the set of all outcomes of SPEs in the subgame rooted at c. The case where j = n is
simple: we have X≥n = {ctgt} and Z≥n = {(ctgt, 0n, ctgt)}; there is a single path, which
obviously is the outcome of an SPE since no deviations are possible. For all i ∈ JnK, we let
λn
∗

i (ctgt, 0n, ctgt) = 0.
Now, fix j < n, assuming that λ(j+1)∗ has been defined. In order to define λj∗ , we in-

troduce an intermediary sequence (µki)k≥0,i∈JnK, with µki : Z≥j → N ∪ {−∞,+∞}, of which
(λj
∗

i)i∈JnK will be the limit.

FSTTCS 2020

40:14 Dynamic Network Congestion Games

Functions µki mainly operate on Zj = Z≥j \ Z≥j+1: for any e ∈ Z≥j+1, we let µki (e) =
λ

(j+1)∗
i (e). Now, for e = (c, w, c′) ∈ Zj , µki (e) is defined inductively as follows:
µ0
i (e) = 0 if c(i) = tgt, and µ0

i (e) = +∞ otherwise;
for k > 0, µk is defined from µk−1 following three cases: if c(i) = tgt, then µki (e) = 0; if
Γµk−1(c′) = ∅ for some (c, w′, c′) ∈ T , then µki (e) = −∞; otherwise,

µki (e) = min
c′′∈devi(c,c′)

sup
ρ∈Γ

µl−1 (c′′)
(costi(c, c′′) + costi(ρ))

We can then prove that for any e ∈ Z≥j and any k > 0, µki (e) ≥ µk−1
i (e). It follows that

the sequence (µk)k≥0 stabilizes, and we can define λj∗ as its limit. Let Γ∗ = Γλ0∗ . Then:

I Theorem 18. A path ρ in G = 〈A, n〉 is the outcome of an SPE if, and only if, ρ ∈ Γ∗(csrc).

Algorithm. It remains to compute the sequence (µk)k≥0 (which will include checking non-
emptiness of the corresponding Γ-sets), and to bound the stabilization time. To this aim,
with any family µ = (µi)i∈JnK of functions as above and any configuration c, we associate an
infinite-state counter graph C[µ, c] = 〈C ′, T ′〉 to capture all µ-consistent paths from c:

the set of vertices is C ′ = C × (N ∪ {+∞})JnK;
T ′ contains all edges ((d, b), w, (d′, b′)) for which (d,w, d′) is an edge of M and for
all i ∈ JnK, b′(i) = 0 if d(i) = tgt, and b′i = min{bi − wi, µi(d,w, d′) − wi} otherwise
(provided that b′i ≥ 0 for all i, in order for (d′, b′) to be an edge of C[µ, c]).

With the initial configuration c, we associate bc such that bci = 0 if c(i) = tgt and bci = +∞
otherwise: this configuration imposes no constraint, since no edges has been taken yet.
Intuitively, in configuration (d, b), b is used to enforce µ-consistency: each edge taken along
a path imposes a constraint on the cost of the players for the rest of the path; this constraint
is added to the constraints of the earlier edges, and propagated along the path. We can
prove that the number of reachable states from (c, bc) in C[µ, c], which we denote with |C ′|r,
is bounded by |C| · (n · |V |n · κ)|V |.

Computing λj∗ from λ(j+1)∗ amounts to inductively computing (µk+1
i)i∈JnK from µk for

edges e = (c, w, c′) ∈ Zj , until stabilization. Since C[µk, d] can be proved to capture µk-
consistent paths from d, the computation mainly amounts to checking the existence of paths
in such counter graphs, which can be performed in doubly-exponential space. Stabilization
can be shown to occur within |V |(1 + n · κ · |E|n) steps. In the end:

I Theorem 19. The existence of SPEs in a dynamic NCG can be decided in 2EXPSPACE.

I Remark 20. Again, our algorithm is not specific to the symmetric setting of our dynamic
NCGs; in an asymmetric context, where the number of players would be given in unary, our
algorithm would run in EXPSPACE.

Existence of constrained SPEs. The algorithm above can be extended to compute the
cost of the best and worst SPEs, and to include constraints on the costs (both social and
individual) of the SPEs we are looking for.

First, for any vector ~γ = (γi)i∈JnK, we define the ~γ-counter graph C[λ∗, csrc, ~γ], which is
obtained from C[λ∗, csrc] by replacing the cost vector w on the edges with ~γ · w.

We can then compute the cost of a ~γ-minimal SPE by checking existence of a path
from (csrc, b

csrc) to (ctgt, b) in C[λ∗, csrc, ~γ], which minimizes the ~γ-weighted social cost. Again,
letting γi = 1 for all i ∈ JnK, a ~γ-minimal SPE is a best SPE, while taking γi = −1 for all
i ∈ JnK, we get a worst SPE (maximizing social cost).

N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur 40:15

We can also solve the constrained-SPE-existence problem by non-deterministically guessing
an outcome and checking that it is a path in C[λ0∗ , csrc] and that it satisfies the constraints.
In each case, we can inductively build a strategy profile witnessing the fact that the selected
path is the outcome of an SPE.

6 Conclusion and future works

In this paper, we introduced dynamic network congestion games, and studied the complexity
of various decision and computation problems concerning social optima, Nash equilibria and
subgame perfect equilibria. Our algorithms allow us to compute the price of anarchy and
price of stability for those games.

There are couple of areas that are left open in our discussion: possibly the foremost one
being the complexity gaps of the decision problems we talked about. As of yet, we do not
have interesting lower bounds for constraint NE or constraint SPE problem, so definitely one
direction is there for completing the picture. Another aspect of what we do not address in
this paper is to obtain bounds on PoA/PoSs of our model. Even though we are specifically
interested in the measure(s) for a given instance, nonetheless obtaining such bounds could
be interesting.

What we are mostly interested in as future work, is to compute how the price of anarchy
and the price of stability (and costs of equilibria and social optimum) evolve when the number
of players, seen as a parameter, grows.

References

1 Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Éva Tardos, Tom Wexler, and Tim
Roughgarden. The price of stability for network design with fair cost allocation. SIAM Journal
on Computing, 38(4):1602–1623, 2008. doi:10.1137/070680096.

2 Guy Avni, Shibashis Guha, and Orna Kupferman. Timed network games. In Kim Guldstrand
Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, Proceedings of the 42nd
International Symposium on Mathematical Foundations of Computer Science (MFCS’17),
volume 84 of Leibniz International Proceedings in Informatics, pages 37:1–37:16. Leibniz-
Zentrum für Informatik, August 2017. doi:10.4230/LIPIcs.MFCS.2017.37.

3 Guy Avni, Shibashis Guha, and Orna Kupferman. Timed network games with clocks. In Igor
Potapov, Paul G. Spirakis, and James Worrell, editors, Proceedings of the 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS’18), volume 117
of Leibniz International Proceedings in Informatics, pages 23:1–23:18. Leibniz-Zentrum für
Informatik, August 2018. doi:10.4230/LIPIcs.MFCS.2018.23.

4 Guy Avni, Thomas A. Henzinger, and Orna Kupferman. Dynamic resource allocation games.
Theoretical Computer Science, 807:42–55, February 2020. doi:10.1016/j.tcs.2019.06.031.

5 Baruch Awerbuch, Yossi Azar, and Amir Epstein. Large the price of routing unsplittable
flow. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM
Symposium on the Theory of Computing (STOC’05), pages 57–66. ACM Press, May 2005.
doi:10.1145/1060590.1060599.

6 Nathalie Bertrand, Nicolas Markey, Suman Sadhukhan, and Ocan Sankur. Dynamic network
congestion games. CoRR, abs/2009.13632, 2020. arXiv:2009.13632.

7 Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computation: numerical
methods. Prentice Hall, 1989.

8 Umang Bhaskar, Lisa Fleischer, and Elliot Anshelevich. A Stackelberg strategy for routing
flow over time. Games and Economic Behavior, 92:232–247, July 2015. doi:10.1016/j.geb.
2013.09.004.

FSTTCS 2020

https://doi.org/10.1137/070680096
https://doi.org/10.4230/LIPIcs.MFCS.2017.37
https://doi.org/10.4230/LIPIcs.MFCS.2018.23
https://doi.org/10.1016/j.tcs.2019.06.031
https://doi.org/10.1145/1060590.1060599
http://arxiv.org/abs/2009.13632
https://doi.org/10.1016/j.geb.2013.09.004
https://doi.org/10.1016/j.geb.2013.09.004

40:16 Dynamic Network Congestion Games

9 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie
Van den Bogaard. The complexity of subgame perfect equilibria in quantitative reachability
games. In Wan J. Fokkink and Rob van Glabbeek, editors, Proceedings of the 30th International
Conference on Concurrency Theory (CONCUR’19), volume 140 of Leibniz International
Proceedings in Informatics, pages 13:1–13:16. Leibniz-Zentrum für Informatik, August 2019.
doi:10.4230/LIPIcs.CONCUR.2019.13.

10 Martin Hoefer, Vahab S. Mirrokni, Heiko Röglin, and Shang-Hua Teng. Competitive routing
over time. Theoretical Computer Science, 412(39):5420–5432, September 2011. doi:10.1016/
j.tcs.2011.05.055.

11 Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Gabor
Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise limited
interdiction. Theory of Computing Systems, 43(2):204–233, August 2008. doi:10.1007/
s00224-007-9025-6.

12 Ronald Koch and Martin Skutella. Nash equilibria and the price of anarchy for flows over time.
Theory of Computing Systems, 49(1):71–97, July 2011. doi:10.1007/s00224-010-9299-y.

13 Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, May 2009. doi:10.1016/j.cosrev.2009.04.003.

14 Elias Koutsoupias and Katia Papakonstantinopoulou. Contention issues in congestion games.
In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Proceedings
of the 39th International Colloquium on Automata, Languages and Programming (ICALP’12) –
Part II, volume 7392 of Lecture Notes in Computer Science, pages 623–635. Springer-Verlag,
July 2012. doi:10.1007/978-3-642-31585-5_55.

15 Carol A. Meyers and Andreas S. Schulz. The complexity of welfare maximization in congestion
games. Networks, 59(2):252–260, March 2012. doi:10.1002/net.20439.

16 Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior,
14(1):124–143, May 1996. doi:10.1006/game.1996.0044.

17 Michal Penn, Maria Polukarov, and Moshe Tennenholtz. Random order congestion games.
Mathematics of Operations Research, 34(3):706–725, August 2009. doi:10.1287/moor.1090.
0394.

18 Lili Qiu, Richard Yang, Yin Zhang, and Scott Shenker. On selfish routing in internet-
like environments. IEEE Transactions on Computers, 14(4):725–738, August 2006. doi:
10.1109/TNET.2006.880179.

19 Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2(1):65–67, December 1973. doi:10.1007/BF01737559.

20 Tim Roughgarden. Routing games. In Noam Nisan, Tim Roughgarden, Éva Tardos, and
Vijay V. Vazirani, editors, Algorithmic Game Theory, chapter 18, page 461–486. Cambridge
University Press, 2007.

21 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Selfish load balancing and atomic congestion
games. Algorithmica, 47(1):79–96, 2007. doi:10.1007/s00453-006-1211-4.

https://doi.org/10.4230/LIPIcs.CONCUR.2019.13
https://doi.org/10.1016/j.tcs.2011.05.055
https://doi.org/10.1016/j.tcs.2011.05.055
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/s00224-010-9299-y
https://doi.org/10.1016/j.cosrev.2009.04.003
https://doi.org/10.1007/978-3-642-31585-5_55
https://doi.org/10.1002/net.20439
https://doi.org/10.1006/game.1996.0044
https://doi.org/10.1287/moor.1090.0394
https://doi.org/10.1287/moor.1090.0394
https://doi.org/10.1109/TNET.2006.880179
https://doi.org/10.1109/TNET.2006.880179
https://doi.org/10.1007/BF01737559
https://doi.org/10.1007/s00453-006-1211-4

On the Succinctness of Alternating Parity
Good-For-Games Automata
Udi Boker
Interdisciplinary Center (IDC) Herzliya, Israel
udiboker@gmail.com

Denis Kuperberg
CNRS, LIP, École Normale Supérieure, Lyon, France
denis.kuperberg@ens-lyon.fr

Karoliina Lehtinen
University of Liverpool, UK
k.lehtinen@liverpool.ac.uk

Michał Skrzypczak
Institute of Informatics, University of Warsaw, Poland
mskrzypczak@mimuw.edu.pl

Abstract
We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where
both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of
the suffix of the input word still to be read.

We show that they can be exponentially more succinct than both their nondeterministic and
universal counterparts. Furthermore, we present a single exponential determinisation procedure and
an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG.

We also study the complexity of deciding “half-GFGness”, a property specific to alternating
automata that only requires nondeterministic choices to be resolved in an online manner. We show
that this problem is PSpace-hard already for alternating automata on finite words.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Good for games, history-determinism, alternation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.41

Related Version A full version is available at https://arxiv.org/abs/2009.14437.

Funding Udi Boker : Israel Science Foundation grant 1373/16.
Karoliina Lehtinen: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 892704.
Michał Skrzypczak: Supported by Polish National Science Centre grant no. 2016/21/D/ST6/00491.

1 Introduction

Good-for-games (GFG) automata were first introduced in [12] as a tool for solving the synthesis
problem. The equivalent notion of history-determinism was introduced independently in [8]
in the context of regular cost functions. Intuitively, a nondeterministic automaton is GFG
if nondeterminism can be resolved on the fly, only with knowledge of the input word read
so far. GFG automata can be seen as an intermediate formalism between deterministic
and nondeterministic ones, with advantages from both worlds. Indeed, like deterministic
automata, GFG automata enjoy good compositional properties – useful for solving games
and composing automata and trees – and easy inclusion checks [3]. Like nondeterministic
automata, they can be exponentially more succinct than deterministic automata [16].

© Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and MichałSkrzypczak;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 41; pp. 41:1–41:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:udiboker@gmail.com
https://orcid.org/0000-0001-5406-717X
mailto:denis.kuperberg@ens-lyon.fr
https://orcid.org/0000-0003-1171-8790
mailto:k.lehtinen@liverpool.ac.uk
https://orcid.org/0000-0002-9647-4993
mailto:mskrzypczak@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.41
https://arxiv.org/abs/2009.14437
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 On the Succinctness of Alternating Parity Good-For-Games Automata

In recent years, much effort has gone into understanding various properties of nondetermin-
istic GFG automata, for instance their relationship with deterministic automata [3, 16, 5, 15],
applications in probabilistic model checking [14] and synthesis of LTL, µ-calculus and context-
free properties [13, 18], decision procedures for GFGness [19, 16, 2], minimisation [1], and
links with recent advances in parity games [10].

Alternating GFG automata are a natural generalisation of nondeterministic GFG auto-
mata that enjoy the same compositional properties as nondeterministic GFG automata, while
providing more flexibility. As we show in the present work, for some languages alternating
GFG parity automata can also be exponentially more succinct, allowing for better synthesis
procedures. Indeed, two-player games with winning conditions given by alternating GFG
automata are solvable in quasipolynomial time, via a linear reduction to parity games, while
for winning conditions given by arbitrary alternating automata, solving games requires
determinisation and has therefore double-exponential complexity.

Alternating GFG automata were introduced independently by Colcombet [9] and Quirl [21]
while a form of alternating GFG automata with requirements specific to counters were also
considered in [17], as a tool to study cost functions on infinite trees. Boker and Lehtinen
studied the expressiveness and succinctness of alternating GFG automata in [6], showing
that they

are not more succinct than DFAs on finite words,
are as expressive as deterministic ones of the same acceptance condition on infinite words,
and can be determinised with a 2θ(n) size blowup for the Büchi and coBüchi conditions.

Many questions about GFG alternating automata were left open, in particular whether
there exists a doubly exponential succinctness gap between alternating GFG and deterministic
automata, and the complexity of deciding whether an alternating parity automaton is GFG.

Succinctness of alternating GFG automata. We show that there is a single exponential
gap between alternating parity GFG automata and deterministic ones, thereby answering
a question left open in [6]. This is in contrast to general alternating automata, for which
determinisation incurs a double-exponential size increase. However, we also show that altern-
ating GFG automata can present exponential succinctness compared to both nondeterministic
and universal GFG automata. This means that alternating GFG automata can be used to
reduce the complexity of solving some games with complex acceptance conditions.

Recognising GFG automata. We give an Exptime upper bound to the problem of deciding
whether an alternating parity automaton is GFG, matching the known upper bound for
recognising nondeterministic parity GFG automata.

We also study the complexity of deciding “half-GFGness”, i.e., whether the nondetermin-
ism (or universality) of an automaton is GFG. This property guarantees that composition
with games preserves the winner for one of the players. We show that already on finite
words, this problem is PSpace-hard, and it is in Exptime for alternating Büchi automata.
This shows that a PTime algorithm for deciding GFGness must exploit the subtle interplay
between nondeterminism and universality, and cannot be reduced to checking independently
whether each of them is GFG.

Roadmap

We begin with some definitions, after which, in Section 3, we define alternating GFG
automata, study their succinctness and the complexity of deciding half-GFGness, that is,
whether the nondeterminism within an alternating automaton is GFG. Section 4 provides a

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:3

single-exponential determinisation procedure for alternating GFG parity automata. Section 5
shows that GFGness of alternating parity automata is in Exptime, using the determinisation
of the previous section. Throughout the paper, we provide high-level proof sketches, with
detailed technical developments in the full version [4].

2 Preliminaries

Words and automata. An alphabet Σ is a finite nonempty set of letters. A finite (resp.
infinite) word u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence
of letters from Σ. A language is a set of words, and the empty word is written ε. We denote
a set {i, i+ 1, . . . , j} of integers by [i, j].

An alternating word automaton is a tuple A = (Σ, Q, ι, δ, α), where: Σ is an alphabet; Q
is a finite nonempty set of states; ι ∈ Q is an initial state; δ : Q× Σ→ B+(Q) is a transition
function where B+(Q) is the set of positive Boolean formulas (transition conditions) over
Q; and α, on which we elaborate below, is either an acceptance condition or a transition
labelling on top of which an acceptance condition is defined. For a state q ∈ Q, we denote by
Aq the automaton that is derived from A by setting its initial state ι to q.

An automaton A is nondeterministic (resp. universal) if all its transition conditions are
disjunctions (resp. conjunctions), and it is deterministic if all its transition conditions are
just states. We represent the transition function of nondeterministic and universal automata
as δ : Q× Σ→ 2Q, and of a deterministic automaton as δ : Q× Σ→ Q. A transition of an
automaton is a triple (q, a, q′) ∈ Q×Σ×Q, sometimes also written q a−→ q′.

We denote by δ̂ ⊆ B+(Q) the set of all subformulas of formulas in the image of δ, i.e., all
the Boolean formulas that “appear” somewhere in the transition function of A.

Acceptance conditions. There are various acceptance (winning) conditions, defined with
respect to the set of transitions1 that a path of A visits infinitely often. (Notice that a
transition condition allows for many possible transitions.) We later formally define acceptance
of a word w by A in terms of games, and consider a path of A on a word w as a play in that
game. For nondeterministic automata, a “run” coincides with a “path”.

Some of the acceptance conditions are defined on top of a labelling of the transitions
rather than directly on the transitions. In particular, in the parity condition, we have
α : Q× Σ×Q→ Γ, where Γ ⊆ N is a finite set of priorities and a path is accepting if and
only if the highest priority seen infinitely often on it is even.

The Büchi and coBüchi conditions are special cases of the parity condition with Γ = {1, 2}
and Γ = {0, 1}, respectively. When speaking of Büchi and coBüchi automata, we often refer
to α as the set of “accepting transitions”, namely the transitions that are mapped to 2 in the
Büchi case and to 0 in the coBüchi case. The weak condition is a special case of both the
Büchi and coBüchi conditions, in which every path eventually remains in the same priority.

The Rabin and Streett conditions are more involved, yet defined directly on the set T of
transitions. A Rabin condition is a set {(B1, G1), (B2, G2), . . . , (Bk, Gk)}, with Bi, Gi ⊆ T ,
and a path ρ is accepting iff for some i ∈ [1, k], we have that the set inf(ρ) of transitions
that are visited infinitely often in ρ satisfies (inf(ρ) ∩Bi = ∅ and inf(ρ) ∩Gi 6= ∅). A Streett
condition is dual: a set {(B1, G1), (B2, G2), . . . , (Bk, Gk)}, with Bi, Gi ⊆ Q, whereby a path
ρ is accepting iff for all i ∈ [1, k], we have (inf(ρ) ∩Bi = ∅ or inf(ρ) ∩Gi 6= ∅).

1 Acceptance is defined in the literature with respect to either states or transitions; for technical reasons
we prefer to work with acceptance on transitions.

FSTTCS 2020

41:4 On the Succinctness of Alternating Parity Good-For-Games Automata

Sizes and types of automata. The size of A is the maximum of the alphabet size, the
number of states, the transition function length, which is the sum of the transition condition
lengths over all states and letters, and the acceptance condition’s index, which is 1 for weak,
Büchi and coBüchi, |Γ| for parity, and k for Rabin and Street.

We sometimes abbreviate automata types by three-letter acronyms in {D, N, U, A} × {F,
W, B, C, P, R, S}×{A,W}. The first letter stands for the transition mode, the second for the
acceptance condition, and the third indicates that the automaton runs on finite or infinite
words. For example, DPW stands for a deterministic parity automaton on infinite words.

Games and strategies. Some of our technical proofs use standard concepts of an arena, a
game, a winning strategy, etc. For the sake of completeness, we provide precise mathematical
definitions of these objects in the full version [4]. Here we will just overview the involved
concepts.

First, we work with two-player games of perfect information, where the players are Eve
and Adam. These games are played on graphs (called arenas). Most of the considered games
are of infinite duration and their winning condition is expressed in terms of the infinite
sequences of edges taken during the play. We invoke results of determinacy (one of the
players has a winning strategy), as well as of positional determinacy (one of the players has
a strategy that depends only on the last position of the play).

Ra A Ra ×A

v

v′

a

Q = {q0, q1, q2}

δ(q0, a) = (q0∧q1) ∨ (q1∧q2)
δ(q1, a) = q1 ∧ q2

δ(q2, a) = q1 ∨ q2

α(q0, a, q0) = 3
α(q0, a, q1) = 2
α(q0, a, q2) = 6

α(q1, a, q1) = 4
α(q1, a, q2) = 5

α(q2, a, q1) = 3
α(q2, a, q2) = 5

v, q0

v′, q0

v, q1

v′, q1

v, q2

v′, q2

v′, q0, a,
(q0 ∧ q1)∨
(q1 ∧ q2)

v′, q0, a,
q0 ∧ q1

v′, q0, a,
q1 ∧ q2

v′, q1, a,
q1 ∧ q2

v′, q2, a,
q1 ∨ q2

v′, q0,
a, q0

v′, q0,
a, q1

v′, q0,
a, q2

v′, q1,
a, q1

v′, q1,
a, q2

v′, q2,
a, q1

v′, q2,
a, q2

(a, 3) (a, 2)

(a, 6) (a
, 4)

(a, 5)(a,
3)

(a
, 5

)

Figure 1 A one-step arena over a letter a ∈ Σ, obtained as a product of a simple arena Ra

with the alternating parity automaton A. In this example v is controlled by Eve and v′ by Adam.
The transitions with no label are labelled by ε. Diamond-shaped positions belong to Eve and
square-shaped positions belong to Adam.

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:5

q0

q0

q1

q1

q2

q2

q0

q0

q1

q1

q2

q2

q0

q0

q1

q1

q2

q2

q0

q0

q1

q1

q2

q2

Figure 2 The four possible boxes corresponding to Eve’s choices in the one-step arena of Figure 1.
(All edges should be labelled with a, which we omit for better readability.)

Model-checking games. To represent the semantics of an alternating automaton A, we
treat the Boolean formulas that appear in the transition conditions of A as games. More
precisely, given a letter a ∈ Σ we represent the transition conditions q 7→ δ(q, a) ∈ B+(Q) as
the one-step arena over a (see Figure 1). A play over this arena begins in a state q ∈ Q; then
the players go down the formula δ(q, a) with Eve resolving disjunctions and Adam resolving
conjunctions; and finally they reach an atom q′ ∈ Q and the play stops. This means that a
play over the one-step arena over a results in a transition of the form q

a−→ q′.
The language L(A) of an alternating automaton A over an alphabet Σ is defined via

the model-checking game, defined for an automaton A and a word w = a0a1a2 · · · ∈ Σω. A
configuration of this game is a state q of A and a position i ∈ ω of w, starting at (ι, 0). In
the ith round, starting at configuration (qi, i), the players play on the one-step arena from
qi over ai, resulting in a transition qi

ai−→ qi+1. The next configuration is (qi+1, i+1). The
acceptance condition of A becomes the winning condition of this game. A accepts w if Eve
has a winning strategy in this game.

For technical convenience, we define (in the full version) the model-checking game in terms
of a synchronised product of the word w (treated as an infinite graph) and the automaton A.
Synchronised products turn out to be useful in the analysis of various games presented in
this paper and are used throughout the technical version of the paper [4].

I Definition 1. Given an alternating automaton A, we denote by A the dual automaton: it
has the same alphabet, set of states, and initial state. Its transition conditions δA(q, a) are
obtained from those of A by replacing each disjunction ∨ with conjunction ∧ and vice versa.
Its acceptance condition is the dual of A′s condition. (In parity automata, all priorities are
increased by 1.) A recognises the complement L(A)c of L(A).

Boxes. Another technical concept that we use is that of boxes (see Figure 2), which describe
Eve’s local strategies for resolving disjunctions within a transition condition. Consider an
alternating automaton A and a letter a ∈ Σ. Moreover, fix a strategy σ of Eve that resolves
disjunctions in all the transition conditions δ(q, a) for q ∈ Q. Now, the box of A, a, and σ is
a subset of Q× Σ×Q and contains a triple (q, a, q′) iff σ resolves disjunctions of δ(q, a) in
such a way that Adam (resolving conjunctions) can reach the atom q′. In other words, this
box contains (q, a, q′) if there is a play consistent with σ on δ(q, a) that reaches the atom q′.
We use β to denote single boxes and by BA,a we denote the set of all boxes of A and a, while
BA denotes the union

⋃
a∈Σ BA,a. We give a more formal definition based on synchronised

products in the full version [4].

I Definition 2. Given a sequence of boxes π = b0, b1, . . . of an automaton A and a path ρ =
(q0, a0, q1), (q1, a1, q2), . . ., we say that ρ is a path of π if for every i we have (qi, ai, qi+1) ∈ bi.
The sequence π is said to be universally accepting if every path in π is accepting in A.

FSTTCS 2020

41:6 On the Succinctness of Alternating Parity Good-For-Games Automata

∨start ∧
b, c b c

a, b, c b, c b b, c

Figure 3 Alternating weak automaton accepting words over {a, b, c} in which a occurs finitely
often and c occurs infinitely often. Omitted transitions lead to a rejecting sink.

Intuitively, a sequence of boxes π as above represents a particular positional strategy σ
of Eve in the model-checking game over the word w = a0a1a2 . . . In that case, a path of π
corresponds to a possible play of this game consistent with σ, and the sequence is universally
accepting if and only if the strategy is winning.

3 Good-For-Games Alternating Automata

Good-for-games (GFG) nondeterministic automata are automata in which the nondetermin-
istic choices can be resolved without looking at the future of the word. For example, consider
an automaton that consists of a nondeterministic choice between a component that accepts
words in which a occurs infinitely often and a component that accepts words in which a occurs
finitely often. This automaton accepts all words but is not GFG since the nondeterministic
choice of component cannot be resolved without knowing the whole word.

To extend this definition to alternating automata, we must look both at its nondeterminism
and universality and require that both can be resolved without knowledge of the future. The
following letter games capture this intuition.

I Definition 3 (Letter games [6]). Given an alternating automaton A, Eve’s letter game
proceeds at each turn from a state q of A, starting from the initial state of A, as follows:

Adam chooses a letter a,
Adam and Eve play on the one-step arena over a from q to a new state q′, where Eve
resolves disjunctions and Adam conjunctions.

A play of the letter game thus generates a word w and a path ρ of A on w. Eve wins this
play if either w /∈ L(A) or ρ is accepting in A.

Adam’s letter game is similar, except that Eve chooses letters and Adam wins if either
w ∈ L(A) or the path ρ is rejecting.

I Definition 4 (GFG automata [6]). An automaton A is ∃-GFG if Eve wins her letter game;
it is ∀-GFG if Adam wins his letter game. Finally, A is GFG if it is both ∃-GFG and
∀-GFG.

As shown in [6, Theorem 8], an automaton A is GFG if and only if it is indeed “good for
playing games”, in the sense that its product with every game whose winning condition is
L(A) preserves the winner of the game.

I Example 5. The automaton in Figure 3 accepts the language L of words in which a occurs
finitely often and c occurs infinitely often. Here Eve loses her letter game: Adam can play c
until Eve takes the transition to the second state, and then play a followed by cω. Conversely,
Eve wins Adam’s letter game: her strategy is to play b, take the transition to the second
state an keep playing b until Adam takes the transition into the third state, after which
she plays c once and then bω. This automaton is neither ∃-GFG nor ∀-GFG, and taking its
product with games with L as winning condition does not preserve the winner of the game.

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:7

∨start ∧
b, c b

c

a, b, c b, c b

Figure 4 Alternating coBüchi ∀-GFG automaton accepting words over {a, b, c} in which a occurs
finitely often and c occurs infinitely often.

In contrast, the automaton in Figure 4 is ∀-GFG but not ∃-GFG. Indeed, Adam’s winning
strategy in his letter game is to resolve the conjunction from the middle state by always
moving to the right-hand state when Eve plays b. This forces Eve to choose between playing
c infinitely many times (in which case, the word is in the language) or letting Adam build a
rejecting run. Taking its product with one-player games with winning condition L preserves
the winner whenever Eve is the player controlling all positions. However, this is not the case
for one-player games where Adam is the sole player.

3.1 Alternating GFG vs. Nondeterministic and Universal Ones
We show in this section that alternating GFG automata can be more succinct than both
nondeterministic and universal GFG automata.

I Lemma 6. There is a family (Cn)n∈N of alternating GFG {0, 1, 2}-parity automata of size
linear in n over a fixed alphabet, such that every nondeterministic GFG parity automaton
and universal GFG parity automaton for L(Cn) is of size 2Ω(n).

Proof. From [16], there is a family (An)n∈N of GFG-NCWs with n states over a fixed
alphabet Σ, such that every DPW for Ln = L(An) is of size 2Ω(n). For every n ∈ N, let Bn
be the dual of An, so Bn is a UBW accepting Ln. We build an APW Cn over Σ of size linear
in n, by setting its initial state to move to the initial state of An when reading the letter
a ∈ Σ and to the initial state of Bn when reading the letter b ∈ Σ. The acceptance condition
of Cn is a parity condition with priorities {0, 1, 2}: accepting transitions of An are assigned
priority 0, and accepting transitions of Bn priority 2. Other transitions have priority 1.

The automaton Cn is represented below:

Observe that L(Cn) = aLn∪bLn, and that Cn is GFG: its initial state has only deterministic
transitions, and over the An and Bn components, the strategy to resolve the nondeterminism
and universality, respectively, follows the strategy to resolve the nondeterminism of An,
which is guaranteed due to An’s GFGness.

Consider a GFG UPW En for L(Cn), and let q be a state to which En moves when reading
a, according to some strategy that witnesses En’s GFGness. Then Eqn is a GFG UPW for Ln.
Its dual is therefore a GFG NPW E ′n for Ln.

Since An is a GFG NPW for Ln, by [3, Theorem 4] we obtain a DPW for Ln of size
|An||E ′n|. By choice of Ln, this DPW must be of size 2Ω(n), and since An is of size n, it
follows that E ′n, and hence En, must be of size 2Ω(n). By a symmetric argument, every GFG
NPW for L(Cn) must also be of size 2Ω(n). J

FSTTCS 2020

41:8 On the Succinctness of Alternating Parity Good-For-Games Automata

Informally, the language Ln above describes a set of threads, of which at least one
eventually satisfies a safety property. Then, the above construction can be understood
as describing a property of reactive systems where, depending on the input, the system
guarantees either that there is a thread that eventually satisfies a safety property, or that
all threads satisfy a liveness (Büchi) property. The GFG alternating automaton can then
be used to solve in polynomial time games with such languages as winning condition, for
example in the context of synthesis: the product of the game arena and the alternating
automaton for Ln is a parity game with 3 priorities with the same winner as the original
game. In contrast, a DPW, GFG NPW and GFG UPW for the same language would all be
exponentially larger.

3.2 Deciding Half-GFGness
In order to decide GFGness, it is enough to be able to decide the ∃-GFG property on the
automaton and its dual. A natural first approach is therefore to study the complexity of
deciding whether an APW is ∃-GFG. Yet, we will show that already on finite words, this
problem is PSpace-hard, while we conjecture that deciding GFGness is in PTime.

I Lemma 7. Deciding whether an AFA is ∃-GFG is PSpace-hard.

Proof. We reduce from NFA universality: starting from an NFA A, we build an AFA B
based on the dual of A, with an additional non-GFG choice to be resolved by Eve. This AFA
B is ∃-GFG if and only if L(B) = ∅, which happens if and only if L(A) = Σ∗. We crucially
use the fact that B is not necessarily ∀-GFG.

Let A be an NFA over an alphabet Σ = {a, b} and Ā its dual. We want to check whether
L(A) = Σ∗. We build an AFA B, as depicted below, by first making Eve guess the second
letter. If her guess is wrong, the automaton proceeds to a rejecting sink state ⊥. Otherwise,
it proceeds to the initial state of Ā. The size of B is linear in the size of A.

If L(Ā) = ∅, then L(B) = ∅, so B is trivially ∃-GFG. However, if there is some u ∈ L(Ā),
then Adam has a winning strategy in Eve’s letter game on B. This strategy consists
of playing a, then playing the letter that brings Eve to ⊥, and finally playing u. The
resulting word is in L(B) = Σ2L(A), so this witnesses that B is not ∃-GFG. We obtain that
L(A) = Σ∗ ⇔ L(Ā) = ∅ ⇔ B is ∃-GFG, which is the wanted reduction. J

For Büchi automata, and so in particular for finite words, we can give an Exptime
algorithm for this problem.

I Lemma 8. Deciding whether an ABW is ∃-GFG is in Exptime.

Proof. It is shown in [6, Lemma 23] that removing alternation from an ABW A using the
breakpoint construction [20] yields an NBW B such that if A is ∃-GFG then B is GFG.
Moreover, the converse also holds: if B is GFG then A is ∃-GFG, since playing Eve’s letter
game in B is more difficult for Eve than playing it in A. This means that starting from an
ABW A, we can build an exponential size NBW B via breakpoint construction, and test
whether B is GFG via the algorithm from [2], in time polynomial with respect to B. Overall,
this yields an Exptime algorithm deciding whether A is ∃-GFG. J

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:9

4 Determinisation of Alternating GFG Parity Automata

In this section we provide a procedure that, given an alternating GFG parity automaton,
produces an equivalent deterministic parity automaton with single-exponentially many states.
To do so, we first provide an alternation-removal procedure that preserves GFG status. Then,
we apply this procedure to both the input automaton and its complement and use the GFG
strategies in these two automata to determinise the input automaton. Our proofs, in [4] rely
on some analysis of when GFG strategies can use the history of the word, rather than the
full history of the play (which also includes the choices of how to resolve the nondeterminism
and universality), and on the memoryless determinacy of parity games.

Our method for going from alternating to nondeterministic automata is similar to that
of Dax and Klaedtke [11]: they take a nondeterministic automaton that recognises the
universally-accepting words in (BA)ω and add nondeterminism that upon reading a letter
a ∈ Σ chooses a box in BA over a. Yet in our approach, in order to guarantee that the
outcome preserves GFGness, the intermediate automaton is deterministic.

4.1 Alternation Removal in GFG Parity Automata
I Theorem 9. Consider an alternating parity automaton A with n states and index k. There
exists a nondeterministic parity automaton box(A) with 2O(nk lognk) states that is equivalent
to A such that if A is GFG then box(A) is also GFG.

In Section 5, where we discuss decision procedures, we will show that box(A) is GFG
exactly whenA is ∃-GFG. For now, the rest of this section is devoted to the proof of Theorem 9,
of which a detailed version can be found in the full version [4].

I Lemma 10. Consider an alternating parity automaton A with n states and index k. Then
there exists a deterministic parity automaton B with 2O(nk lognk) states over the alphabet BA
that recognises the set of universally-accepting words for A. If A is a Büchi automaton, then
B can also be taken as Büchi, and in general the parity index of the automaton B is linear in
the number of transitions of A.

Proof sketch. We first construct a nondeterministic parity (resp. coBüchi) automaton over
the alphabet BA that recognises the complement of the set of universally-accepting words
for A. This automaton is easy to build: it guesses a path that is not accepting, and has
the dual acceptance condition to A. We then obtain the automaton B by determinising and
complementing this automaton. J

We now build the automaton box(A) of Theorem 9. It is the same as the automaton B
of Lemma 10, except that the alphabet is Σ and the transition function is defined as follows:
For every state p of B and a ∈ Σ, we have δbox(A)(p, a) :=

⋃
β∈B(A,a)

δB(p, β).
In other words, the automaton box(A) reads a letter a, nondeterministically guesses a box

β ∈ BA,a, and follows the transition of B over β. Thus, the runs of box(A) over a word
w = w0w1w2 · · · ∈ Σω are in bijection with sequences of boxes (βi)i∈N such that βi ∈ BA,wi

for all i ∈ N.
Fix an infinite word w ∈ Σω. Our aim is to prove that w ∈ L(A)⇔ w ∈ L(box(A)).

I Lemma 11. There exists a bijection between positional strategies of Eve in the acceptance
game of A over w and runs of box(A) over w. Moreover, a strategy is winning if and only if
the corresponding run is accepting. Thus L(A) = L(box(A)).

FSTTCS 2020

41:10 On the Succinctness of Alternating Parity Good-For-Games Automata

I Remark 12. The above alternation-removal procedure also extends to alternating Rabin
automata but fails for alternating Streett automata A: since Streett games are not positionally
determined for Eve, the acceptance game of A over a word w is not positionally determined
for Eve.

I Lemma 13. For an alternating ∃-GFG parity automaton A, the automaton box(A) is GFG.

Intuitively, this is because the construction of box(A) preserves the nondeterminism of A.

4.2 Single-Exponential Determinisation
The aim of this section is to prove the following determinisation theorem.

I Theorem 14. If A is an alternating parity GFG automaton then there exists a deterministic
parity automaton D that recognises the same language and has size at most exponential in
the size of A. Moreover, the parity index of D is the same as that of A.

I Remark 15. Theorem 9 and [3, Theorem 4], which uses an NRW-GFG and its complement
NRW-GFG to obtain a DRW, together give an exponential deterministic parity automaton
for L(A). However, the index of A might not be preserved. On the other hand, from [6,
Theorem 19] we know that there exists a deterministic parity automaton equivalent to A
with the same index, but it might have more than exponentially many states. Here we are
able to guarantee both the preservation of the index and an exponential upper bound on the
size of the deterministic automaton.

Observe that Theorem 9 can be applied both to A and its dual. Therefore, we can fix
a pair of nondeterministic GFG parity automata box(A) and box(Ā) that recognise L(A)
and L(A)c respectively and are both of size exponential in A. We use the automata A,
box(A), and box(Ā) to construct two auxiliary games G(A) and G′(A) .

The game G(A) proceeds from a configuration consisting of a pair (p, q) of states from
box(Ā) and A respectively, starting from their initial states, as follows:

Adam chooses a letter a ∈ Σ;
Eve chooses a transition p a−→ p′ in box(Ā);
Eve and Adam play on the one-step arena over a from q to a new state q′.

A play in G(A) consists of a run ρ in box(Ā) and a path ρ′ in A. It is winning for Eve if
either ρ is accepting in box(Ā) (in which case w /∈ L(A)), or ρ′ is accepting in A.

If A is ∃-GFG and box(Ā) is GFG, Eve has a winning strategy in G(A) consisting of
building a run in box(Ā) using her GFG strategy in box(Ā) and a path in A using her
∃-GFG strategy in A. This guarantees that if w ∈ L(A) then the path in A is accepting,
and otherwise the run in box(Ā) is accepting.

We then argue that as the winning condition of G(A) is a Rabin condition, Eve also has
a winning strategy that is positional in A, that is, which only depends on the history of the
word and the current position. (Interestingly, the question of whether Eve can resolve the
nondeterminism in a class of alternating GFG automata with only the knowledge of the word
read so far does not tightly correspond to whether the acceptance condition of this class is
memoryless. For example, it does hold for the generalised-Büchi condition, though it is not
memoryless.)
I Remark 16. There is some magic here: both the GFG strategies of Eve in A and in box(Ā)
may require exponential memory, yet, when she needs to satisfy the disjunction of the two
conditions, no more memory is needed. In a sense, the states of A provide the memory for
box(Ā) and the states of box(Ā) provide the memory for A.

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:11

The game G′(A) is similar, except that Adam is given control of box(A) and Eve is in
charge of letters. This time Adam wins a play, consisting of a run of box(A) and a path in
A, if either the path of A is rejecting or the run of box(A) is accepting.

Accordingly, if A is GFG, then he can win by using the ∃-GFG strategy in box(A) and
the ∀-GFG strategy in A. Then if w ∈ L(A), the run in box(A) is accepting, and otherwise
the path of A is rejecting. As before, he also has a positional winning strategy in G′(A).

We are now ready to build the deterministic automaton from a GFG APW A, using
positional winning strategies σ and τ for Eve and Adam in G(A) and G′(A), respectively.

Let D be the automaton with states of the form (q, p1, p2), with q a state of A, p1 a state
of box(A) and p2 a state of box(Ā). A transition of D over a moves to (q′, p′1, p′2) such that
moving from (q, p1) to (q′, p1) is consistent with τ ; and moving from (q, p2) to (q′, p′2) is
consistent with σ. The acceptance condition of D is inherited from A.

I Lemma 17. For a GFG APW A and D built as above, L(A) = L(D).

I Remark 18. To extend this construction to an alternating GFG Rabin automaton A, we
would need to remove alternations from both A and its dual while preserving GFGness.
However, the dual is a Streett automaton, for which we cannot invoke positional determinacy.

5 Deciding GFGness of Alternating Automata

We use the development of the last section to show that deciding whether an APW is GFG
is in Exptime. This matches the best known upper bound for the same problem on NPW.

The main result of this section is the following theorem.

I Theorem 19. There exists an Exptime algorithm that takes as input an alternating parity
automaton A and decides whether A is GFG.

The idea is to construct the (exponential size) NPWs box(A) and box(Ā) for L(A) and
L(A)c respectively, which are GFG if and only if A is ∃-GFG and ∀-GFG respectively.
Then, it remains to check whether both are indeed GFG. Since we don’t have a polynomial
procedure to check this, instead, we will build a game which Eve wins if and only if both are
indeed GFG, and which we can solve in exponential time with respect to the size of A.

First, we observe the following reciprocal of Lemma 13.

I Lemma 20. If box(A) is GFG then A is ∃-GFG.

Proof. Assume that box(A) is GFG and consider a strategy witnessing this. Such a strategy
can be easily turned into a function σ′ : Σ+ → BA that, given a word w ∈ L(A) produces
a universally accepting word of boxes of A. Now, due to the definition of a box, each such
box defines a positional strategy of Eve in the respective one-step game. This allows us to
construct a winning strategy of Eve in the letter game over A. J

Thus, A is GFG if and only if both box(A) and box(Ā) are GFG. To decide this, we
consider a game G′′ where Adam plays letters and Eve produces runs of the automata
box(A) and box(Ā) in parallel. The winning condition of G′′ requires that at least one of
the constructed runs must be accepting.

Now, each sequence of letters given by Adam belongs either to the language of box(A) or
to box(Ā) and therefore, a winning strategy of Eve in G′′ must comprise of two strategies
witnessing GFGness of both box(A) and box(Ā). Dually, if both box(A) and box(Ā) are
GFG then Eve wins G′′ by playing the two strategies in parallel.

FSTTCS 2020

41:12 On the Succinctness of Alternating Parity Good-For-Games Automata

It remains to show thatG′′ is solvable in Exptime. Its winning condition is a disjunction of
parity conditions, with index linear in the number of transitions of A. This winning condition
is recognised by a deterministic parity automaton of exponential size with polynomial index.
To solve G′′, we take its product with this deterministic automaton that recognises its
winning condition, and solve the resulting parity game with an algorithm that is polynomial
in the size of the game whenever, like here, the number of priorities is logarithmic in the size
of the game, for instance [7]. Details of this construction and its complexity are in the full
version [4].

6 Conclusions

The results obtained in this work shed new light on where alternating GFG automata
resemble nondeterministic ones, and where they differ. Overall, our results show that
allowing GFG alternations add succinctness without significantly increasing the complexity
of determinisation nor decision procedures.

In particular, we show that alternating parity GFG automata can be exponentially more
succinct than any equivalent nondeterministic GFG automata, yet this succinctness does not
become double exponential when compared to deterministic automata, answering a question
from [6]. Some further succinctness problems are left open here, such as the possibility of a
doubly exponential gap between alternating GFG automata of stronger acceptance conditions
and deterministic ones, as well as between ∃-GFG parity automata and deterministic ones.

We also show that the interplay between the two players can be used to decide whether
an automaton is GFG without deciding ∃-GFG and ∀-GFG separately, yielding an Exptime
algorithm. This matches the current algorithms for deciding GFGness on non-deterministic
automata. Bagnol and Kuperberg conjectured that GFGness is PTime decidable for non-
deterministic parity automata of fixed index [2]; we extend this conjecture to alternating
automata.

It then becomes interesting to ask how to build an alternating automaton GFG. Indeed,
Henzinger and Piterman [12] proposed a transformation of nondeterministic automata into
GFG automata, which, despite in some cases leading to a deterministic automaton, is,
conceptually, a much simpler procedure than determinisation. Indeed, in many examples of
non-GFG automata, adding transitions suffices to obtain a GFG one. We leave finding such
a procedure for alternating automata as future work.

References
1 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In

Proceedings of ICALP, pages 100:1–100:16, 2019.
2 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.

In Proceedings of FSTTCS, pages 16:1–16:14, 2018.
3 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeterminism in

the presence of a diverse or unknown future. In Proceedings of ICALP, pages 89–100, 2013.
4 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On the succinctness

of alternating parity good-for-games automata, 2020. arXiv:2009.14437.
5 Udi Boker, Orna Kupferman, and Michał Skrzypczak. How deterministic are good-for-games

automata? In Proceedings of FSTTCS, pages 18:1–18:14, 2017.
6 Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to

alternation. In Proceedings of CONCUR, 2019.
7 Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding

parity games in quasipolynomial time. In Proceedings of STOC, pages 252–263, 2017.

http://arxiv.org/abs/2009.14437

U. Boker, D. Kuperberg, K. Lehtinen, and M. Skrzypczak 41:13

8 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Proceedings of ICALP, pages 139–150, 2009.

9 Thomas Colcombet. Fonctions régulières de coût. Habilitation thesis, 2013.
10 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata:

New tools for infinite duration games. In Proceedings of FOSSACS, pages 1–26, 2019.
11 Christian Dax and Felix Klaedtke. Alternation elimination by complementation. In Proceedings

of LPAR, pages 214–229, 2008.
12 Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings

of CSL, pages 395–410, 2006.
13 Simon Iosti and Denis Kuperberg. Eventually safe languages. In Proceedings of DLT, pages

192–205, 2019.
14 Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz. Are good-for-games

automata good for probabilistic model checking? In Proceedings of LATA, pages 453–465,
2014.

15 Denis Kuperberg and Anirban Majumdar. Computing the width of non-deterministic automata.
Logical Methods in Computer Science, 15(4), 2019.

16 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In Proceedings of ICALP, pages 299–310, 2015.

17 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant of
weakness. In Proceedings of FSTTCS, pages 66–77, 2011.

18 Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. In
Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages
689–702, 2020.

19 Christof Löding and Stefan Repke. Decidability Results on the Existence of Lookahead
Delegators for NFA. In Proceedings of FSTTCS, pages 327–338, 2013.

20 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

21 Domenic Quirl. Bachelor Thesis, supervised by Christof Löding, RWTH Aachen, 2018.

FSTTCS 2020

A Framework for Consistency Algorithms
Peter Chini
TU Braunschweig, Germany
p.chini@tu-braunschweig.de

Prakash Saivasan
The Institute of Mathematical Sciences, HBNI, Chennai, India
prakashs@imsc.res.in

Abstract
We present a framework that provides deterministic consistency algorithms for given memory models.
Such an algorithm checks whether the executions of a shared-memory concurrent program are
consistent under the axioms defined by a model. For memory models like SC and TSO, checking
consistency is NP-complete. Our framework shows, that despite the hardness, fast deterministic
consistency algorithms can be obtained by employing tools from fine-grained complexity.

The framework is based on a universal consistency problem which can be instantiated by different
memory models. We construct an algorithm for the problem running in time O∗(2k), where k is
the number of write accesses in the execution that is checked for consistency. Each instance of
the framework then admits an O∗(2k)-time consistency algorithm. By applying the framework, we
obtain corresponding consistency algorithms for SC, TSO, PSO, and RMO. Moreover, we show that
the obtained algorithms for SC, TSO, and PSO are optimal in the fine-grained sense: there is no
consistency algorithm for these running in time 2o(k) unless the exponential time hypothesis fails.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Problems, reductions and completeness

Keywords and phrases Consistency, Weak Memory, Fine-Grained Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.42

Related Version A full version is available via [20] or https://arxiv.org/abs/2007.11398.

1 Introduction

The paper at hand develops a framework for consistency algorithms. Given an execution of
a concurrent program over a shared-memory system, consistency algorithms check whether
the execution is consistent under the intended behavior of the memory. Our framework
takes an abstraction of this intended behavior, a memory model, and yields a deterministic
consistency algorithm for it. By applying the framework, we obtain provably optimal
consistency algorithms for the well-known memory models SC [38], TSO, and PSO [1].

Checking consistency is central in the verification of shared-memory implementations.
Such implementations promise programmers consistency guarantees according to a certain
memory model. However, due to the complex and performance-oriented design, implementing
shared memories is sensitive to errors and implementations may not provide the promised
guarantees. Consistency algorithms test this. They take an execution over a shared-memory
implementation, multiple sequences of read and write events, one for each thread. Then they
check whether the execution is viable under the memory model, namely whether read and
write events can be arranged in an interleaving that satisfies the axioms of the model.

In 1997, Gibbons and Korach [32] were the first ones that studied consistency checking as
it is considered in this work. They focused on the basic memory model Sequential Consistency
(SC) by Lamport [38]. In SC, read and write accesses to the memory are atomic making each
write of a thread immediately visible to all other threads. Gibbons and Korach showed that

© Peter Chini and Prakash Saivasan;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 42; pp. 42:1–42:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.chini@tu-braunschweig.de
mailto:prakashs@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.42
https://arxiv.org/abs/2007.11398
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 A Framework for Consistency Algorithms

checking consistency in this setting is, in general, NP-complete. Moreover, they considered
restrictions of the problem showing that even under the assumption that certain parameters
like the number of threads are constant, the problem still remains NP-complete.

The SPARC memory models Total Store Order (TSO), Partial Store Order (PSO), and
Relaxed Memory Order (RMO) were investigated by Cantin et al. in [15]. The authors
showed that, like for SC, checking consistency for these models is NP-hard. Furbach et al. [31]
extended the NP-hardness to almost all models appearing in the Steinke-Nutt hierarchy [46],
a hierarchy developed for the classification of memory models. This yields NP-hardness
results for memory models like Causal Consistency (CC) [37], Pipelined RAM (PRAM) [44],
Cache Consistency [33] or variants of Processor Consistency [33, 4]. Bouajjani et al. [11]
independently found that checking (variants of) CC for a given execution is NP-hard as well.

We approach consistency checking under the assumption of data-independence [11, 50, 10].
In fact, the behavior of a shared-memory implementation or a database does not depend on
precise values in many practical applications [49, 3]. We can therefore assume that in a given
execution, a value is written at most once. However, the NP-hardness of checking consistency
under SC, TSO, and PSO carries over to the data-independent case [32, 31]. Deterministic
consistency algorithms for these models will therefore face exponential running times. By
employing a fine-grained complexity analysis, we show that one can still obtain consistency
algorithms that have only a mild exponential dependence on certain parameters. Moreover,
we show that the obtained algorithms are provably optimal.

Fine-grained complexity analyses are a task of Parameterized Complexity [30, 22, 24]. The
goal of this new field within complexity theory is to measure the influence of certain parameters
on a problem’s complexity. In particular, if a problem is NP-hard, one can determine which
parameter k of the problem still offers the opportunity for a fast deterministic algorithm.
Such an algorithm runs in time f(k) · poly(n), where f is a computable function that only
depends on the parameter, and poly(n) is a polynomial in the size of the input n. Problems
admitting such algorithms lie in the class FPT of fixed-parameter tractable problems. The
time-complexity of a problem in FPT is denoted by O∗(f(k)) since f(k) dominates. A
fine-grained complexity analysis determines the precise function f that is needed to solve the
problem. While finding upper bounds amounts to finding algorithms, lower bounds on f

can be obtained from the exponential time hypothesis (ETH) [35]. It assumes that n-variable
3-SAT cannot be solved in time 2o(n). Among other hardness assumptions, ETH is considered
standard in parameterized complexity and was used to derive lower bounds for a variety of
problems [22, 39, 21, 16]. A function f is optimal when upper and lower bound match.

Our contribution is a framework which yields consistency algorithms that are optimal
in the fine-grained sense. Obtained algorithms run in time O∗(2k), where k is the number
of write events in the given execution. We demonstrate the applicability by obtaining
corresponding consistency algorithms for SC, TSO, PSO, and RMO. Relying on the ETH, we
prove that for the former three models, consistency cannot be checked in time 2o(k). This
shows that our framework yields optimal algorithms for these models. Moreover, we are
significantly improving upon already existing deterministic algorithms that are usually based
on a simple iteration running in time O∗(kk). Note that considering other parameters like
the number of threads, the number of events per thread, or the size of the underlying data
domain yields W[1]-hard problems [42, 32] that are unlikely to admit FPT-algorithms [22, 24].

Our framework is based on a universal consistency problem that can be instantiated by a
memory model of choice. We develop an algorithm for this universal problem running in
time O∗(2k). Then, any instance by a memory model automatically admits an O∗(2k)-time
consistency algorithm. For the formulation of the problem, we rely on the formal framework

P. Chini and P. Saivasan 42:3

of Alglave [5] and Alglave et al. [6] for describing memory models in terms of relations. In
fact, checking consistency then amounts to finding a particular store order [50] on the write
events that satisfies various acyclicity constraints.

For solving the universal consistency problem, we show that instead of a store order
we can also find a total order on the write events satisfying similar acyclicity constraints.
The latter are algorithmically simpler to find. We develop a notion of snapshot orders that
mimic total orders on subsets of write events. This allows for shifting from the relation-based
domain of the problem to the subset lattice of writes. On this lattice, we can perform a
dynamic programming which builds up total orders step by step and avoids an explicit
iteration over such which would result in an O∗(kk)-time algorithm. Keeping track of the
acyclicity constraints is achieved by so-called coherence graphs. The dynamic programming
runs in time O∗(2k) which constitutes the time-complexity.

To apply the framework, we follow the formal description of SC, TSO, PSO, and RMO,
given in [5, 6] and instantiate the universal consistency problem. Optimality of the algorithms
for SC, TSO, and PSO is obtained from the ETH. To this end, we construct a reduction from
3-SAT to the corresponding consistency problem that generates only linearly many write
events. The reduction transports the assumed lower bound on 3-SAT to consistency checking.

Related Work. In its general form, consistency checking is NP-hard for most memory
models. Furbach et al. [31] show that LOCAL [2] is an exception. Checking consistency
under LOCAL takes polynomial time. This also holds for Cache Consistency and PRAM
if certain parameters of the consistency problem are assumed to be constant. In the case
of data-independence, Bouajjani et al. [11] show that checking consistency under CC and
variants of CC also takes polynomial time. Wei et al. [48] present a similar result for PRAM.
In [50], Bouajjani et al. present practically efficient algorithms for the consistency problems
of SC and TSO under data-independence. They rely on the polynomial-time algorithm for
CC [11] and obtain a partial store order, which is completed by an enumeration. In theory,
the enumeration has a worst-case time complexity of O∗(kk). We avoid such an enumeration
by a dynamic programming running in time O∗(2k). Consistency checking for weaker and
stronger notions of consistency, like linearizability [34], is considered in [26, 27, 25].

Instead of checking consistency for a single execution of a shared-memory implementation,
there were efforts in verifying that all executions are consistent under a certain memory
model. Alur et al. show in [7] that for SC, the problem is undecidable. This also holds for
CC [11]. Under data-independence, the problem becomes decidable for CC [11]. Verifying
Eventual Consistency [47] was shown to be decidable by Bouajjani et al. in [12]. There
has also been work on other verification problems like reachability and robustness. Atig
et al. show in [8] that, under TSO and PSO, reachability is decidable. In [9] the authors
extend their results and present a relaxation of TSO with decidable reachability problem.
Robustness against TSO was considered in [13] and shown to be PSPACE-complete. This also
holds for POWER [40, 45], as shown in [23], and for partitioned global address spaces [14].

Parameterized complexity has been applied to other verification problems as well. Biswas
and Enea [10] study the complexity of transactional consistency and obtain an FPT-algorithm
in the size and the width of a history. This also yields an algorithm for the serializability
problem, proven to be NP-hard by Papadimitriou [43] in 1979. A fine-grained algorithm for
serializability under TSO was given in [28]. The authors of [29] present an FPT-algorithm
for predicting atomicity violations as well as an intractability result. The parameterized
complexity of data race prediction was considered in [42]. Fine-grained complexity analyses
were conducted for reachability under bounded context switching on finite-state systems [17],
and for reachability and liveness on parameterized systems [18, 19].

FSTTCS 2020

42:4 A Framework for Consistency Algorithms

2 Preliminaries

To state our framework, we introduce some basic notions around memory models and the
consistency problem. We mainly follow [6, 5, 50, 11]. Further, we give a short introduction
into fine-grained complexity. For standard textbooks in this field, we refer to [30, 24, 22].

Relations, Histories, and Memory Models. We consider the consistency problem: given
an execution of a concurrent program and a model of the shared memory, decide whether the
execution adheres to the model. Formally, executions consist of events modeling write and
read accesses to the shared memory. To define these, letVar be the finite set of variables of
the program. Moreover, letVal be its finite data domain andLab a finite set of labels. A write
event is defined by w :wr(x, v), where w ∈Lab is a label, x ∈Var is a variable, and v ∈Val is
a value. The set of write events is defined byWR = {w :wr(x, v) | w ∈Lab, x ∈Var , v ∈Val}.
A read event is given by r : rd(x, v). The set of read events is denoted by RD. We define
the set of all events by E =WR ∪RD. If it is clear from the context, we omit the label of
an event. Given an event o ∈ E, we access the variable of o by var(o) ∈Var . For a subset
O ⊆ E, we denote byWR(O) andRD(O) the set of write and read events in O.

For modeling dependencies between events we use strict orders. Let O ⊆ E be a set of
events. A strict partial order on O is an irreflexive, transitive relation over O1. A strict total
order is a strict partial order that is total. We often refer to the notions without mentioning
that they are strict. Given two relations rel, rel ′ ⊆ O × O, we denote by rel ◦ rel ′ their
composition, by rel+ the transitive closure, and by rel−1 the inverse. For variable x, we denote
by relx the restriction of rel to events on x: relx = {(o, o′) ∈ rel | var(o) = var(o′) = x}.

Executions are modeled by histories. A history is a tuple h = 〈O, po, rf 〉, where O ⊆ E is
a set of events executed by the threads of the program. The program order po is a partial
order on O which orders the events of a thread according to the execution. Typically, it is
a union of total orders, one for each thread. The relation rf ⊆WR(O)×RD(O) is called
reads-from relation. It specifies the write event providing the value for a read event in the
history. Moreover, for each read event r ∈RD(O) we have a write event w ∈WR(O) such
that (w, r) ∈ rf and if (w, r) ∈ rf , both events access the same variable.

I Example 1. Consider the history given in Figure 1. It consists of three threads T1, T2,
and Tpre that communicate via the variables x, y, z over the data domain {0, 1}. The set
of events O is given by the events listed in the figure. Each thread processes from top to
bottom indicating the program order po. Hence, po is the union of three total orders, one for
each thread. For simplicity, we do not draw it. The reads-from relation is determined by the
arrows labeled rf . The relation shows that each read event is linked to its corresponding write
event. For instance, the two read events rd(z, 0) are linked to the write wr(z, 0). Intuitively
this means that in an actual execution, the threads T1 and T2 cannot start until Tpre finishes
and writes wr(z, 0) to the memory since the correct value for z is not available earlier.

Note that in a history, we assume the reads-from relation rf to be given. This is due
to the data-independence of shared-memory and database implementations in practice
[49, 10, 3, 11, 50]. This means that the behavior of the implementation does not depend on
actual values and in an execution, we may assume each value to be written at most once.
From such an execution, we can simply read off the relation rf .

1 Note that the relation has to be irreflexive. This separates it from a usual partial order.

P. Chini and P. Saivasan 42:5

T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

Figure 1 Example of a history. The program order is given implicitly by the arrangement of the
events. For each thread, T1, T2, and Tpre, the program order progresses top to bottom. Formally, it
is a union of the resulting three total orders. Arrows labeled by rf show the reads-from relation.

Our framework is compatible with histories that feature initial writes. These histories
have a write event for each variable writing the initial value of that variable. Formally, these
write events are smaller than all other events under program order. If a history h = 〈O, po, rf 〉
is fixed, we abuse notation and also useWR andRD to denoteWR(O) andRD(O). For a
variable x, we writeWR(x) = {w ∈WR | var(w) = x} for the set of write events on x in h.
Furthermore, we will later make use of the relation po -loc, defined by restricting po to events
on the same variable: po -loc = {(o, o′) ∈ po | var(o) = var(o′)}.

A memory model is an abstraction of the memory behavior defining axioms that
the relations in a history must adhere to. Formally, a memory model MM is a tuple
MM = (po -mm, rf -mm). The relation po -mm, also called preserved program order, is a sub-
relation of po describing the structure maintained by the memory model. The latter relation
rf -mm is a subrelation of rf . It shows which write events are visible globally under MM.

Fine-Grained Complexity. For many memory models, the consistency problem is NP-hard
[31, 32, 15, 11]. Hence, deterministic consistency algorithms usually face exponential running
times. But exponents might only depend on certain parameters of the problem which still allow
the algorithm for being fast. Finding such parameters is a task of parameterized complexity.

The basis of parameterized complexity are parameterized problems. That is, subsets P

of Σ∗ × N, where Σ is a finite alphabet. An input to P is of the form (x, k), with k being
called the parameter. A particularly interesting class of parameterized problems are the
fixed-parameter tractable (FPT) problems. A problem P is FPT if it can be solved by a
deterministic algorithm running in time f(k) · |x|O(1), where f is a computable function only
dependent on k. The running time of such an algorithm is usually denoted by O∗(f(k)) to
suppress the polynomial part. The class FPT is contained in the class W[1]. Problems that
are W[1]-hard are considered intractable since they are unlikely to be FPT.

Given a fixed-parameter tractable problem P , finding an upper bound for f is achieved
by constructing an algorithm for P . Lower bounds on f are usually obtained from the
exponential time hypothesis (ETH) [35]. This standard hardness assumptions asserts that
3-SAT cannot be solved by an algorithm running in time 2o(n), where n is the number of
variables. A lower bound on f is then obtained by a suitable reduction from 3-SAT to P . We
are interested in finding the optimal f for the consistency problem where upper and lower
bound match. The search for such an f is referred to as fine-grained complexity.

3 Framework

We present our framework. Given a model describing the memory, the framework provides
an (optimal) deterministic algorithm for the corresponding consistency problem. That is,
whether a given history can be scheduled under the axioms imposed by the model. The
obtained algorithm can then be used within a testing routine for concurrent programs.

FSTTCS 2020

42:6 A Framework for Consistency Algorithms

At the heart of the framework is a universal consistency problem that can be instantiated
with different memory models. We solve the problem by switching from a relation-based
domain, where the problem is defined, to a subset-based domain. On the latter, we can then
apply a dynamic programming which constitutes the desired deterministic algorithm.

3.1 Universal Consistency
The basis of our framework is a universal consistency problem which can be instantiated to
simulate a particular memory model. For its formulation, we make use of a consistency notion
that allows for the construction of a fast algorithm but deviates from the literature [5, 6, 50]
at first sight. Therefore, it is proven in Section 4 that instantiating the problem with a
particular memory model yields the correct notion of consistency.

We clarify our notion of consistency. Intuitively, a history is consistent under a memory
model if it can be scheduled such that certain axioms defined by the model are satisfied.
Following the formal framework of [5, 6], finding such a schedule amounts to finding a
particular order of the write events that satisfies acyclicity requirements imposed by the
axioms. Formally, let h = 〈O, po, rf 〉 be a history and let MM be a memory model described
by the tuple (po -mm, rf -mm). Then h is called MM-consistent if there exists a strict total
order tw on the write eventsWR of h such that the graphs

Gloc = (O, po -loc ∪ rf ∪ tw ∪ cf) and Gmm = (O, po -mm ∪ rf -mm ∪ tw ∪ cf)

are both acyclic. Here, the conflict relation cf is defined by cf = rf−1 ◦
⋃

x∈Var twx. Phrased
differently, (r, w) ∈ cf if r is a read event on a variable x, w is a write event on x, and there
is a write event w′ on x such that (w′, r) ∈ rf and (w′, w) ∈ tw.

The acyclicity of Gloc is called uniprocessor requirement [5] or memory coherence for
each location [15]. Roughly, it demands that an order among writes to the same location
that can be extracted from the history, is kept in tw. The second acyclicity requirement in
the definition resembles the underlying memory model MM. If Gmm is acyclic, the history
can be scheduled adhering to the axioms defined by MM.

I Example 2. Consider the history given in Example 1. We check consistency under the
simple memory model SC. As we will see later in Section 4.2, SC is defined by the tuple
(po -sc, rf -sc) = (po, rf). For checking consistency, we need to construct the graphs Gloc and
Gsc. To this end, we fix a total order tw on the write events. It is shown as the red edges
labeled by tw in Figure 2. Formally, the strict total order tw is the transitive closure of these
edges. The next step is to determine the conflict relation cf . It contains two edges. There is
an edge rd(y, 0)→ wr(y, 1), shown in blue in Figure 2. This is due to the inverted rf -edge
rd(y, 0)→ wr(y, 0) and the tw-edge wr(y, 0)→ wr(y, 1). Note that the latter edge exists in
tw (transitive closure) and connects writes to the same variable y which is mandatory for cf .
The second cf -edge rd(x, 0)→ wr(x, 1) is obtained similarly but is not shown in the figure.

According to the chosen memory model SC, the graph in Figure 2 shows a subgraph of
Gsc = (O, po ∪ rf ∪ tw ∪ cf). In fact, only the second conflict edge is missing. But we already
obtain a cycle in this graph which traverses as follows:

rd(y, 0) cf−→ wr(y, 1) tw−→ wr(x, 1) po−→ rd(y, 0).

This constitutes a cycle in Gsc and shows that the chosen total order tw does not lead to
acyclic graphs and is therefore not a witness for consistency. However, any total order on
the write events will cause a cycle implying that the history is not SC-consistent.

P. Chini and P. Saivasan 42:7

T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

tw

tw

tw

tw
cf

Figure 2 A subgraph of Gsc. The total order tw is the transitive closure of the red edges. The
blue edge is part of the conflict relation cf . One cf -edge, namely rd(x, 0) → wr(x, 1), is missing.
The graph contains a cycle showing that the underlying history is not SC-consistent.

Our definition of consistency deviates from the literature in two aspects. First, we demand
a total order tw instead of a store order, a partial order that is total on writes to the same
location [5, 6, 50]. In Section 4 we will show that the resulting notions of consistency are
equivalent. A further difference is that we do not explicitly test for out of thin air values [41].
For the majority of memory models considered in this work, the test is not necessary as it is
implied by the acyclicity of Gloc and Gmm. But it can easily be added when needed.

We are ready to state the universal consistency problem. To this end, let MM be a fixed
memory model. Given a history h, the problem asks whether h is MM-consistent.

MM-Consistency
Input: A history h = 〈O, po, rf 〉.
Question: Is h MM-consistent?

Instantiations of the problem by well-known memory models like SC or TSO are typically
NP-hard [32, 31]. However, we are interested in a deterministic algorithm for MM-Consistency.
While we cannot avoid an exponential running time for such an algorithm, a fine-grained
complexity analysis can determine the optimal exponential dependence. Many parameters of
MM-Consistency like the number of threads, the maximum size per thread, or the size of
the data domain yield parameterizations that are W[1]-hard [42, 32]. Therefore, we conduct
a fine-grained analysis for the parameter k = |WR|, the number of writes in h. The main
finding is an algorithm for MM-Consistency running in time O∗(2k). The optimality of this
approach is shown in Section 5 by a complementing lower bound. We formally state the
upper bound in the following theorem. There, n = |O| denotes the number of events in h.

I Theorem 3. The problem MM-Consistency can be solved in time O(2k · k2 · n2).

Note that an algorithm for MM-Consistency running in time O∗(kk) is immediate. One
can iterate over all total orders ofWR and check the acyclicity of Gloc and Gmm in polynomial
time. Since we cannot afford this iteration in O∗(2k), improving the running time needs an
alternative approach and further technical development that we summarize in Section 3.2.

3.2 Algorithm
We present the upper bound for MM-Consistency as stated in Theorem 3. Our algorithm
is a dynamic programming. It switches from the domain of total orders to subsets of write
events and iterates over the latter. The crux is that for a particular subset we do not need to

FSTTCS 2020

42:8 A Framework for Consistency Algorithms

remember a precise order. In fact, we only need to store that it can be ordered by a so-called
snapshot order that mimics total orders on subsets. Not having a precise order at hand yields
a disadvantage: we cannot just test both acyclicity requirements in the end. Instead, we
perform an acyclicity test on a coherence graph in each step of the iteration. These graphs
carry enough information to ensure acyclicity as it is required by MM-Consistency.

We begin our technical development by introducing snapshot orders. Intuitively, these
simulate total orders of the write events on subsets of writes. Given a subset, a snapshot
order consists of two parts: a total order on the subset and a partial order. The latter
expresses that the complement of the given set precedes the subset but is yet unordered.

I Definition 4. Let V ⊆WR. A snapshot order on V is a union tw[V] = t[V] ∪ r [V].

The relation t[V] is a strict total order on V and r [V] = {(v, v) | v ∈ V , v ∈ V } arranges
that the elements of V are smaller than the elements of V . By V , we denote the complement
of V in the write events, V =WR \ V . Note that r [V] does not impose an order among V .

A snapshot order is indeed a strict partial order. Even more, when the considered set
is the whole write eventsWR, a snapshot order tw[WR] is a total order onWR. Therefore,
MM-consistency can be checked by finding a snapshot order onWR satisfying both acyclicity
requirements. The advantage of this formulation is that we can construct such an order from
snapshot orders on subsets. Technically, we parameterize2 the problem along all V ⊆WR.

For the acyclicity requirements, we need a similar parameterization. To this end, let
V ⊆WR be a subset and tw[V] a snapshot order on V . We parameterize the above graphs
Gloc and Gmm via exchanging the total order by the snapshot order:

Gloc(tw[V]) = (O, po -loc ∪ rf ∪ tw[V] ∪ cf [V]),
Gmm(tw[V]) = (O, po -mm ∪ rf -mm ∪ tw[V] ∪ cf [V]).

As above, the conflict relation is defined by cf [V] = rf−1 ◦
⋃

x∈Var tw[V]x. Note that for a
snapshot order tw[WR] on the whole set of write events, the resulting graphs Gloc(tw[WR])
and Gmm(tw[WR]) are exactly those appearing in the acyclicity requirement.

I Example 5. We reconsider the history of Examples 1 and 2. Our goal is to construct
the graph Gsc(tw[V]) along a snapshot order tw[V]. To this end, we first fix a set V . Let
V = {wr(y, 1), wr(x, 1)}. The set is shown in Figure 3 by the gray highlighted write events.
As a snapshot order we chose tw[V] = t[V] ∪ r [V], where t[V] consists of only one edge:
wr(y, 1) → wr(x, 1). Note that this is a total order on V . The edge is shown in Figure 3,
it is marked red and labeled by t[V]. The relation r [V] is fixed by definition. It contains
an edge from each write event in V to each write event in V . These are marked green in
Figure 3. To construct Gsc(tw[V]) it is left to determine the relation cf [V]. The relation
contains two edges, rd(y, 0)→ wr(y, 1) and rd(x, 0)→ wr(x, 1). We show the former edge in
Figure 3 as well. The latter is omitted to ease readability.

Note that the graph clearly shows that the set V is totally ordered by t[V] while the
set V is not. The only information that we obtain, from r [V], is that the write events in
V are smaller than the elements in V . In this case, this is already enough to obtain a
cycle. This means that each total order on write events that contains tw[V] cannot witness
SC-consistency. Note that the total order of Example 2 is such an order.

2 The parameterization here does not refer to parameterized complexity.

P. Chini and P. Saivasan 42:9

T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

r [V] r [V]

t[V]cf [V]

Figure 3 The graph Gsc(tw[V]) with set V = {wr(y, 1), wr(x, 1)}, highlighted gray. The snapshot
order tw[V] is given as the union of the total order t[V], marked red, and the partial order r [V],
marked green. The relation cf [V] consists of two edges, rd(y, 0) → wr(y, 1), shown in blue, and
rd(x, 0) → wr(x, 1), not shown in the figure.

Now we have the tools to state the parameterization of MM-Consistency along subsets of
write events. This allows for leaving the domain of total orders and switch to subsets instead.
To this end, we define a table T with a Boolean entry T [V] for each V ⊆WR. Entry T [V]
will be 1, if there is a snapshot order on V satisfying the acyclicity requirement on both
parameterized graphs. Otherwise, T [V] will evaluate to 0. Formally, T [V] is defined by

T [V] =
{

1, if ∃ snapshot ord. tw[V] : Gloc(tw[V]) and Gmm(tw[V]) are acyclic,
0, otherwise.

The following lemma relates MM-Consistency to the table T . It is crucial in our devel-
opment as it states the correctness of the constructed parameterization. The proof follows
from the beforehand definitions and the fact that a snapshot order onWR is already total.

I Lemma 6. History h is MM-consistent if and only if T [WR] = 1.

We are now left with the problem of evaluating the entry T [WR]. Our approach is to set
up a recursion among the entries of T and evaluate it via a bottom-up dynamic programming.
The recursion will explain how entries of subsets are aggregated to compute entries of larger
sets. In fact, write events are added element by element: the recursion shows how an entry
T [V] can be utilized to compute the entry of an enlarged set V ∪ {v}, where v ∈ V .

When passing from T [V] to T [V ∪ {v}], we need to provide a snapshot order on V ∪ {v}
that satisfies the acyclicity requirements. A snapshot order on V can always be extended to a
snapshot order on V ∪ {v}: we insert v as new minimal element in the contained total order.
But we need to keep track of whether the acyclicity is compatible with the new minimal
element v. To this end, we perform acyclicity tests on coherence graphs. These do not depend
on a snapshot order and solely rely on the fact that v is the new minimal element. This will
later allow for an evaluation of the table without touching precise orders.

I Definition 7. Let V ⊆WR and v ∈ V . The coherence graphs of V and v are defined by

Gloc[V, v] = (O, po -loc ∪ rf ∪ r [V, v] ∪ cf [V, v]),
Gmm[V, v] = (O, po -mm ∪ rf -mm ∪ r [V, v] ∪ cf [V, v]).

In the definition, relation r [V, v] expresses that V ∪ {v} is smaller than V ∪{v} and that v is
the minimal element in V ∪{v}. Formally, it is given by r [V, v] = r [V ∪{v}]∪{(v, w) | w ∈ V }.
The conflict relation is defined by cf [V, v] = rf−1 ◦

⋃
x∈Var r [V, v]x.

FSTTCS 2020

42:10 A Framework for Consistency Algorithms

Coherence graphs are key for the recursion among the entries of T . Assume we are given
a snapshot order tw[V] on V meeting the acyclicity requirements of T and we extend it to a
snapshot order tw[V ′] on V ′ = V ∪ {v}, as above - by inserting v as minimal element of V ′.
We show that each potential cycle in Gloc(tw[V ′]) or Gmm(tw[V ′]) either implies a cycle in a
coherence graph Gloc[V, v] or Gmm[V, v] or in one of the graphs Gloc(tw[V]) or Gmm(tw[V]).
If T [V] = 1, we can assume the latter graphs to be acyclic. Moreover, if we have checked
that the coherence graphs are acyclic as well, we obtain that T [V ′] = 1. Hence, a recursion
should check whether T [V] = 1 and whether the corresponding coherence graphs are acyclic.

We formulate the recursion in the subsequent lemma. Note that it is a top-down
formulation that only refers to non-empty subsets of write events. An evaluation of the
base case is immediate. Entry T [∅] is evaluated to 1 if Gloc(∅) = (O, po -loc ∪ rf) and
Gmm(∅) = (O, po -mm ∪ rf -mm) are both acyclic. Otherwise it is evaluated to 0.

I Lemma 8. Let V ⊆WR be a non-empty subset. Entry T [V] admits the following recursion:

T [V] =
∨

v∈V

(Gloc[V \{v}, v] acyclic) ∧ (Gmm[V \{v}, v] acyclic) ∧ T [V \{v}].

We interpret the expression (Gloc[V \{v}, v] acyclic) as a predicate evaluating to 1 if the
graph is acyclic and to 0 otherwise. Hence, the recursion requires the existence of a write
event v ∈ V such that both coherence graphs are acyclic and entry T [V \{v}] evaluates to 1.
A proof of Lemma 8 is provided in the full version of the paper.

With the recursion at hand we can evaluate the table T by a dynamic programming.
To this end, we store already computed entries and look them up when needed. An entry
T [V] is evaluated as follows. We branch over all write events v ∈ V and test whether the
coherence graphs Gloc[V \{v}, v] and Gmm[V \{v}, v] are acyclic. Then, we look up whether
T [V \ {v}] = 1. If all three queries are positive, we store T [V] = 1. Otherwise, T [V] = 0.

The complexity estimation of Theorem 3 is obtained as follows. The table has 2k many
entries that we evaluate, which constitutes the exponential factor. For each entry T [V], we
branch over at most k write events v ∈ V . Looking up the value of T [V \{v}] can be done
in constant time. The following lemma shows that O(k · n2) time suffices to construct the
coherence graphs and to check them for acyclicity. The latter checks are based on Kahn’s
algorithm [36] for finding a topological sorting. This completes the proof of Theorem 3.

I Lemma 9. Let V ⊆WR and v ∈ V . Constructing the coherence graphs Gloc[V, v] and
Gmm[V, v] and testing both for acyclicity can be done in time O(k · n2).

4 Instantiating the Framework

We show the applicability of our framework and obtain consistency algorithms for the memory
models SC, TSO, PSO, and RMO. To this end, we first need to show that our notion of
consistency coincides with the notion of consistency used in the literature for these models.
This ensures that the obtained algorithms really solve the correct problem. Once this is
achieved, we can directly apply the framework to SC, TSO, and PSO. For RMO, we show
how the framework can be slightly modified to also capture this more relaxed model.

4.1 Validity
Consistency, as it is considered in the literature, is also known as validity [5, 6]. We use
the latter name to avoid confusion with our notion of consistency. Before we show that
both notions actually coincide, we formally define validity. The definition is based on store

P. Chini and P. Saivasan 42:11

orders [5, 6, 50] (also known as coherence orders). Given a history h = 〈O, po, rf 〉, a store
order ww ⊆WR×WR takes the form ww =

⋃
x∈Var wwx so that each wwx is a strict total

order onWR(x). Phrased differently, store orders are unions of total orders on writes to the
same variable. Note that, in contrast to a total order onWR, a store order does not have
any edge between write events referring to distinct variables.

Validity is similar to consistency. But instead of a total order, the acyclicity require-
ments need to be satisfied by a store order. Let MM be a memory model described by
(po -mm, rf -mm). A history h = 〈O, po, rf 〉 is MM-valid if there exists a store order so that

Gww
loc = (O, po -loc ∪ rf ∪ ww ∪ fr) and Gww

mm = (O, po -mm ∪ rf -mm ∪ ww ∪ fr)

are acyclic. The from-read relation is defined by fr = rf−1 ◦ww. Note that the definition, as
in the case of consistency above, omits checking for out of thin air values. We will later add
an explicit test for memory models that require it. This will not affect the complexity.

We show the equivalence of validity and consistency. To this end, we need to prove that a
store order can be replaced by a total order on the write events while acyclicity is preserved.
The following lemma states the result. It is crucial for the applicability of our framework.

I Lemma 10. A history h is MM-valid if and only if it is MM-consistent.

Before we give the proof of Lemma 10, we need an auxiliary statement. It shows that a
store order ww in Gww

loc can be replaced by any linearization of ww without affecting acyclicity.
Phrased differently, any total order tw on the write events that contains ww can be inserted
into the graph Gww

loc - it will still be acyclic. We state the corresponding lemma.

I Lemma 11. Let h = 〈O, po, rf 〉 be a history, ww a store order, and tw a total order on
WR such that ww ⊆ tw. If Gww

loc is acyclic, then so is Gtw
loc = (O, po -loc ∪ rf ∪ tw ∪ fr).

The proof of Lemma 11 is given in the full version. We turn to the proof of Lemma 10.

Proof of Lemma 10. First assume that h = 〈O, po, rf 〉 is MM-valid. Then there is a store
order ww such that Gww

loc and Gww
mm are acyclic. Consider the edges of the latter graph. They

form a relation ord -mm = po -mm ∪ rf -mm ∪ ww ∪ fr . Since Gww
mm is acyclic, the transitive

closure ord -mm+ is a strict partial order on O. Hence, there exists a linear extension, a
strict total order L containing ord -mm+. We define tw = L ∩WR×WR. Then, tw is a total
order onWR and we have ww ⊆ L∩WR×WR = tw. We show that Gloc and Gmm are acyclic.
Note that the latter refer to the graphs from the definition of consistency.

The store order ww is contained in tw. Hence, we obtain that wwx ⊆ twx for each
variable x ∈Var . This implies that wwx = twx since wwx is total onWR(x). We can deduce
ww =

⋃
x∈Var wwx =

⋃
x∈Var twx and thus cf = rf−1 ◦

⋃
x∈Var twx = rf−1 ◦ ww = fr .

Since fr = cf , we get the acyclicity of Gloc = Gtw
loc from Lemma 11. The acyclicity of

Gmm follows since its edges po -mm ∪ rf -mm ∪ tw ∪ cf form a subrelation of L. A cycle would
mean that L has a reflexive element, but L is a strict order. Hence, h is MM-consistent.

For the other direction, assume that h is MM-consistent. By definition, there is a
total order tw on WR such that Gloc and Gmm are acyclic. We construct the store order
ww =

⋃
x∈Var twx. Note that, since twx is total on WR(x), ww is indeed a store order

and we have ww ⊆ tw. We show that Gww
loc and Gww

mm are acyclic. In fact, we have that
fr = rf−1 ◦ ww = cf . This implies that Gww

loc and Gww
mm are subgraphs of Gloc and Gmm,

respectively. Hence, the two graphs are acyclic and h is MM-valid. J

FSTTCS 2020

42:12 A Framework for Consistency Algorithms

4.2 Instances
We apply the algorithmic framework to the mentioned memory models and obtain (optimal)
deterministic algorithms for their corresponding validity/consistency problem. To this end,
we employ the formal description of these models given in [5, 6].

Sequential Consistency. Sequential Consistency (SC) is a basic memory model, first defined
by Lamport in [38]. Intuitively, SC strictly follows the given program order and flushes each
issued write immediately to the memory so that it is visible to all other threads.

Formally, SC is described by the tuple SC = (po -sc, rf -sc) with po -sc = po and rf -sc = rf .
Hence, it employs the full program order and reads-from relation, making the uniprocessor
test on Gloc obsolete. However, our framework still applies. It yields an algorithm for the
corresponding validity/consistency problem running in time O(2k · k2 · n2). We show in
Section 5 that the obtained algorithm is optimal under ETH.

Total Store Ordering. The SPARC memory model Total Store Order (TSO) [1] resembles
a more relaxed memory behavior. Instead of flushing writes immediately to the memory, like
in SC, each thread has an own FIFO buffer and issued writes of that thread are pushed into
the buffer. Writes in the buffer are only visible to the owning thread. If the owner reads a
certain variable, it first looks through the buffer and reads the latest issued write on that
variable. This is called early read. At some nondeterministic point, the buffer is flushed to
the memory, making the writes visible to other threads as well.

The formal description of TSO is given by the tuple TSO = (po -tso, rf -tso), where
po -tso = po\WR×RD is a relaxation of the program order, containing no write-read pairs.
The relation rf -tso = rf e is a restriction of rf to write-read pairs from different threads:

rf e = {(w, r) ∈ rf | (w, r) /∈ po, (r, w) /∈ po}.

Unlike in the case of SC, we do not have the full program order and reads-from relation at
hand. Hence, the uniprocessor test is essential. Applying the framework yields an algorithm
for the validity/consistency problem of TSO running in time O(2k · k2 · n2). The optimality
of the obtained algorithm is shown in Section 5.

Partial Store Ordering. The second SPARC model that we consider is Partial Store Order
(PSO) [1]. It is weaker than TSO since writes to different locations issued by a thread may
not arrive at the memory in program order. Intuitively, in PSO each thread has a buffer per
variable where the corresponding writes to the variable are pushed. Like for TSO, threads
can read early from their buffers and the buffers are, at some point, flushed to the memory.

Formally, PSO is captured by the tuple PSO = (po -pso, rf -pso). Here, the relation
po -pso = po\(WR×RD ∪WR×WR) takes away the write-read pairs and the write-write pairs
from the program order and, like for TSO, we have rf -pso = rf e. Hence, we can apply our
framework and obtain an O(2k · k2 · n2)-time algorithm. The obtained algorithm is optimal.

Relaxed Memory Order. We extend the framework to also capture SPARC’s Relaxed
Memory Order (RMO) [1]. The model needs an explicit out of thin air test and allows for
so-called load-load hazards. We show how both modifications can be built into the framework
without affecting the complexity of the resulting consistency algorithm.

The model RMO relies on an additional dependency relation resembling address and data
dependencies among events in an execution of a program. For instance, if a read event has
influence on the value written by a subsequent write event. We assume that the dependency

P. Chini and P. Saivasan 42:13

relation dp is given along with a history h = 〈O, po, rf 〉 and is a subrelation of po ∩ (RD×O).
The latter means that dp always starts in a read event. With the relation at hand we can
perform an out of thin air test. In fact, such a test [5] requires that (O, dp ∪ rf) is acyclic.
This can be checked by Kahn’s algorithm [36] in time O(n2). Hence, the test can be added to
the framework without increasing the time complexity of the obtained consistency algorithm.

Load-load hazards are allowed by RMO. These occur when two reads of the same variable
are scheduled not following the program order. To obtain an algorithm from the framework in
this case, we need to weaken the uniprocessor check [5]. In fact, we replace the relation po -loc
by po -locllh = po -loc\RD×RD and require that the graph Gloc−llh = (O, po -locllh∪rf∪tw∪cf)
is acyclic. The correctness of the framework is ensured since Lemma 10 still holds in this
setting. Moreover, the running time of the resulting algorithm is not affected.

With these modifications, we can obtain a consistency algorithm for RMO. Formally,
RMO = (po -rmo, rf -rmo) where po -rmo = dp and rf -rmo = rf e. Applying the framework
with out of thin air test and Gloc−llh yields a consistency algorithm running in O(2k ·k2 ·n2).

5 Lower Bounds

We show that the framework provides optimal consistency algorithms for SC, TSO, and
PSO. To this end, we employ the ETH and prove that checking consistency under these
three memory models cannot be achieved in subexponential time 2o(k). Since the algorithms
obtained in Section 4 match the lower bound, they are indeed optimal.

We begin with the lower bound for SC-Consistency. For its proof, we rely on a characteri-
zation of the ETH, known as the Sparsification Lemma [35]. It states that ETH is equivalent
to the assumption that 3-SAT cannot be solved in time 2o(n+m), where n is the number
of variables and m is the number of clauses of the input formula. To transport the lower
bound to consistency checking, we construct a polynomial-time reduction from 3-SAT to
SC-Consistency which controls the number of writes k. Technically, for a given formula ϕ,
the reduction yields a history hϕ that has only k = O(n + m) many write events and is
SC-consistent if and only if ϕ is satisfiable. By invoking the reduction, an 2o(k)-time algorithm
for SC-Consistency, would yield an 2o(n+m)-time algorithm for 3-SAT, contradicting the ETH.

I Theorem 12. SC-Consistency cannot be solved in time 2o(k) unless ETH fails.

It is left to construct the reduction. Let ϕ be a 3-SAT-instance over the variables
X = {x1, . . . , xn} and with clauses C1, . . . , Cm. Moreover, let L denote the set of literals.
We construct a history hϕ the number of writes of which depends linearly on n + m.

The main idea of the reduction is to mimic an evaluation of ϕ by an interleaving of the
events in hϕ. To this end, we divide evaluating ϕ into three steps: (1) choose an evaluation
of the variables, (2) evaluate the literals accordingly, and (3) check whether the clauses are
satisfied. For each of these steps we have separate threads taking care of the task. Scheduling
them in different orders will yield different evaluations. An overview is given in Figure 4.

Figure 4 presents hϕ as a collection of threads. The program order is obtained from
reading threads top to bottom. The reads-from relation is given since each value is written at
most once to a variable. Hence, there is always a unique write event providing the read value.

We elaborate on the details of the reduction. For realizing Step (1), we construct two
threads, T0(x) and T1(x), for each variable x ∈ X. These mimic an evaluation of the variable
and consist of only one write event. Thread T0(x) writes 0 to x, thread T1(x) writes 1. If
T0(x) gets scheduled before T1(x), variable x is evaluated to 1 and to 0 otherwise. Hence,
the thread that is scheduled later will determine the actual evaluation of x.

FSTTCS 2020

42:14 A Framework for Consistency Algorithms

T0(x) :
wr(x, 0)

T1(x) :
wr(x, 1)

T0(`) :
rd(x, 0)
wr(`, c)
rd(x, 0)

T1(`) :
rd(x, 1)
wr(`, d)
rd(x, 1)

T 1(C) :
rd(`3, 0)
rd(`1, 1)

T 2(C) :
rd(`1, 0)
rd(`2, 1)

T 3(C) :
rd(`2, 0)
rd(`3, 1)

Figure 4 Parts of the history hϕ for a variable x ∈ X, a literal ` ∈ L, and a clause C = `1 ∨`2 ∨`3.
Values of c and d depend on `. If ` = x, then c = 0, d = 1. Otherwise, c = 1, d = 0.

In Step (2), we propagate the evaluation of the variables to the literals. To this end, we
construct two threads for each literal ` ∈ L. Let ` = x/¬x be a literal on variable x ∈ X. The
first thread T0(`) is responsible for evaluating ` when x is evaluated to 0. It first performs a
read event rd(x, 0), followed by wr(`, c) and rd(x, 0). The value c depends on the literal: if
` = x, then c = 0. Otherwise c = 1. Note that the read events guard the write event. This
ensures that T0(`) can only run if x is already evaluated to 0 and once T0(`) is running, the
evaluation of x cannot change until the thread finishes. Thread T1(`) behaves similar. It
evaluates the literal ` when x is evaluated to 1. Both threads cannot interfere. Like for the
variables, the later scheduled thread determines the actual evaluation of the literal.

It is left to evaluate the clauses. For a clause C = `1 ∨ `2 ∨ `3, we have threads T 1(C),
T 2(C), and T 3(C) as shown in Figure 4. It is the task of these threads to ensure that at least
one literal in C evaluates to 1. To see this, assume we have the contrary, an evaluation of the
variables (and the literals) such that `1, `2, and `3 evaluate to 0. Due to the construction, `1
storing 0 implies that wr(`1, 1) preceded the write event wr(`1, 0). Hence, the read event
rd(`1, 1) in T 1(C) must have already been scheduled. In particular, it has to occur before
rd(`1, 0) in T 2(C). Since `2 and `3 also store 0, we get a similar dependency among their
reads: rd(`2, 1) occurs before rd(`2, 0) and rd(`3, 1) occurs before rd(`3, 0). Due to program
order, we obtain a dependency cycle involving all these reads:

rd(`1, 1)→ rd(`1, 0)→ rd(`2, 1)→ rd(`2, 0)→ rd(`3, 1)→ rd(`3, 0)→ rd(`1, 1).

An arrow r → r′ means that r has to precede r′ in an interleaving of the events in hϕ. Since
cycles cannot occur in an interleaving, the threads can only be scheduled properly when a
satisfying assignment is given. The construction of a proper schedule is subtle. We provide
details in the full version of the paper. The following lemma states the correctness.

I Lemma 13. Formula ϕ is satisfiable if and only if the history hϕ is SC-consistent.

Clearly, hϕ can be constructed in polynomial time. We determine the number of write
events. For each variable x ∈ X and each literal ` ∈ L, we introduce two write events. Hence,
k = 2 · n + 2 · |L|. Since there are at most 3 ·m many literals in ϕ, we get that k is bounded
by 2 · n + 6 ·m, a number linear in n + m. This finishes the proof of Theorem 12.

We obtain lower bounds for TSO and PSO by constructing a similar reduction from 3-SAT
to TSO and PSO-Consistency. To this end, we extend the above reduction by only adding
read events that enforce sequential behavior. Intuitively, we can force the FIFO buffers
of TSO and PSO to push each issued write to the memory immediately. Then, the above
correctness argument still applies. The number of write events does not change and is still
linear in n + m. This yields the following result. Details are given in the full version.

I Theorem 14. TSO and PSO-Consistency cannot be solved in time 2o(k) unless ETH fails.

P. Chini and P. Saivasan 42:15

6 Conclusion

We studied the problem of checking whether an execution of a shared-memory concurrent
program is consistent under the intended behavior of the memory, formalized by a memory
model. The main finding is a framework which, given a memory model, yields a deterministic
consistency algorithm for it. Obtained algorithms run in time O∗(2k), where k is the number
of writes in the execution. Technically, the framework works on an abstract memory model
and can be instantiated by a concrete one. We applied it to obtain O∗(2k)-time consistency
algorithms for SC, TSO, PSO, and RMO. This improves on the formerly known O∗(kk)-time
algorithms for these models. Furthermore, for SC, TSO, and PSO we have proven that the
obtained algorithms are optimal in the fine-grained sense. To this end, we employed the
exponential time hypothesis to show that deterministic consistency algorithms for these
models cannot run in time 2o(k) unless the ETH fails. Our framework relies on the assumption
of data-independence. It is an interesting question, and considered future work, whether one
can obtain a similar framework yielding optimal algorithms if the assumption is dropped.

References
1 The sparc architecture manual - version 8 and version 9, 1992,1994.
2 H. Sinha A. Heddaya. Coherence, non-coherence and local consistency in distributed shared

memory for parallel computing. Technical Report BU-CS-92-004, Boston University, 1992.
3 P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine. An integrated specification

and verification technique for highly concurrent data structures. In TACAS, volume 7795 of
Lecture Notes in Computer Science, pages 324–338. Springer, 2013.

4 M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consistency.
In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures,
page 251–260. ACM, 1993.

5 J. Alglave. A formal hierarchy of weak memory models. Formal Methods Syst. Des., 41(2):178–
210, 2012.

6 J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

7 R. Alur, K. L. McMillan, and D. A. Peled. Model-checking of correctness conditions for
concurrent objects. Inf. Comput., 160(1-2):167–188, 2000.

8 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem for
weak memory models. In POPL, pages 7–18. ACM, 2010.

9 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s decidable about weak
memory models? In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 26–46.
Springer, 2012.

10 R. Biswas and C. Enea. On the complexity of checking transactional consistency. Proc. ACM
Program. Lang., 3(OOPSLA):165:1–165:28, 2019.

11 A. Bouajjani, C. Enea, R. Guerraoui, and J. Hamza. On verifying causal consistency. In
POPL, pages 626–638. ACM, 2017.

12 A. Bouajjani, C. Enea, and J. Hamza. Verifying eventual consistency of optimistic replication
systems. In POPL, pages 285–296. ACM, 2014.

13 A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness against total store ordering.
In ICALP, volume 6756 of Lecture Notes in Computer Science, pages 428–440. Springer, 2011.

14 G. Calin, E. Derevenetc, R. Majumdar, and R. Meyer. A theory of partitioned global address
spaces. In FSTTCS, volume 24 of LIPIcs, pages 127–139. Schloss Dagstuhl, 2013.

15 J. F. Cantin, M. H. Lipasti, and J. E. Smith. The complexity of verifying memory coherence
and consistency. IEEE Transactions on Parallel and Distributed Systems, 16(7):663–671, 2005.

16 J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and G. Xia. Tight lower
bounds for certain parameterized np-hard problems. Inf. Comput., 201(2):216–231, 2005.

FSTTCS 2020

42:16 A Framework for Consistency Algorithms

17 P. Chini, J. Kolberg, A. Krebs, R. Meyer, and P. Saivasan. On the complexity of bounded
context switching. In ESA, volume 87 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl, 2017.

18 P. Chini, R. Meyer, and P. Saivasan. Fine-grained complexity of safety verification. In TACAS,
volume 10806 of Lecture Notes in Computer Science, pages 20–37. Springer, 2018.

19 P. Chini, R. Meyer, and P. Saivasan. Complexity of liveness in parameterized systems. In
FSTTCS, volume 150 of LIPIcs, pages 37:1–37:15. Schloss Dagstuhl, 2019.

20 P. Chini and P. Saivasan. A framework for consistency algorithms. CoRR, abs/2007.11398,
2020.

21 M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh,
and M. Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–
41:24, 2016.

22 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Springer, 2015.

23 E. Derevenetc and R. Meyer. Robustness against power is pspace-complete. In ICALP, volume
8573 of Lecture Notes in Computer Science, pages 158–170. Springer, 2014.

24 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
25 M. Emmi and C. Enea. Monitoring weak consistency. In CAV, volume 10981 of Lecture Notes

in Computer Science, pages 487–506. Springer, 2018.
26 M. Emmi and C. Enea. Sound, complete, and tractable linearizability monitoring for concurrent

collections. Proc. ACM Program. Lang., 2(POPL):25:1–25:27, 2018.
27 M. Emmi, C. Enea, and J. Hamza. Monitoring refinement via symbolic reasoning. In PLDI,

pages 260–269. ACM, 2015.
28 C. Enea and A. Farzan. On atomicity in presence of non-atomic writes. In TACAS, volume

9636 of Lecture Notes in Computer Science, pages 497–514. Springer, 2016.
29 A. Farzan and P. Madhusudan. The complexity of predicting atomicity violations. In TACAS,

volume 5505 of Lecture Notes in Computer Science, pages 155–169. Springer, 2009.
30 F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer

Science. Springer, 2010.
31 F. Furbach, R. Meyer, K. Schneider, and M. Senftleben. Memory-model-aware testing: A

unified complexity analysis. ACM Trans. Embedded Comput. Syst., 14(4):63:1–63:25, 2015.
32 P. B. Gibbons and E. Korach. Testing shared memories. SIAM J. Comput., 26(4):1208–1244,

1997.
33 J. R. Goodman. Cache consistency and sequential consistency. Technical Report 1006,

University of Wisconsin-Madison, 1991.
34 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.
35 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. JCSS, 62(2):367–375, 2001.
36 A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, 1962.
37 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,

21(7):558–565, 1978.
38 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Computers, 28(9):690–691, 1979.
39 D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized problems.

In SODA, pages 760–776. SIAM, 2011.
40 S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave, S. Owens, R. Alur, M. M. K.

Martin, P. Sewell, and D. Williams. An axiomatic memory model for POWER multiprocessors.
In CAV, volume 7358 of Lecture Notes in Computer Science, pages 495–512. Springer, 2012.

41 J. Manson, W. Pugh, and S. V. Adve. The java memory model. In POPL, pages 378–391.
ACM, 2005.

42 U. Mathur, A. Pavlogiannis, and M. Viswanathan. The complexity of dynamic data race
prediction. In LICS, pages 713–727. ACM, 2020.

P. Chini and P. Saivasan 42:17

43 C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–
653, 1979.

44 J. S. Sandberg R. J. Lipton. PRAM: A scalable shared memory. Technical Report CS-TR-
180-88, Princeton University, 1988.

45 S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding POWER
multiprocessors. In PLDI, pages 175–186. ACM, 2011.

46 R. C. Steinke and G. J. Nutt. A unified theory of shared memory consistency. J. ACM,
51(5):800–849, 2004.

47 D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser. Managing
update conflicts in bayou, a weakly connected replicated storage system. In SOSP, pages
172–183. ACM, 1995.

48 H. Wei, Y. Huang, J. Cao, X. Ma, and J. Lu. Verifying PRAM consistency over read/write
traces of data replicas. CoRR, abs/1302.5161, 2013.

49 P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In
POPL, pages 184–193. ACM, 1986.

50 R. Zennou, A. Bouajjani, C. Enea, and M. Erradi. Gradual consistency checking. In CAV,
volume 11562 of Lecture Notes in Computer Science, pages 267–285. Springer, 2019.

FSTTCS 2020

Equivalence of Hidden Markov Models with
Continuous Observations
Oscar Darwin
Department of Computer Science, Oxford University, UK
https://www.cs.ox.ac.uk/people/oscar.darwin/
oscar.darwin@cs.ox.ac.uk

Stefan Kiefer
Department of Computer Science, Oxford University, UK
https://www.cs.ox.ac.uk/people/stefan.kiefer/
stefan.kiefer@cs.ox.ac.uk

Abstract
We consider Hidden Markov Models that emit sequences of observations that are drawn from
continuous distributions. For example, such a model may emit a sequence of numbers, each of which
is drawn from a uniform distribution, but the support of the uniform distribution depends on the
state of the Hidden Markov Model. Such models generalise the more common version where each
observation is drawn from a finite alphabet. We prove that one can determine in polynomial time
whether two Hidden Markov Models with continuous observations are equivalent.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Stochastic processes; Theory of computation → Logic and verification

Keywords and phrases Markov chains, equivalence, probabilistic systems, verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.43

Related Version A full version of the paper is available at [12], https://arxiv.org/abs/2009.12978.

Funding Oscar Darwin: Darwin is supported by a Royal Society Enhancement Award.
Stefan Kiefer : Kiefer is supported by a Royal Society University Research Fellowship.

Acknowledgements he authors would like to thank anonymous reviewers for their helpful comments
and Nikhil Balaji for useful discussions on polynomial identity testing.

1 Introduction

A (discrete-time, finite-state) Hidden Markov Model (HMM) (often called labelled Markov
chain) has a finite set Q of states and for each state a probability distribution over its possible
successor states. For any two states q, q′, whenever the state changes from q to q′, the HMM
samples and then emits a random observation according to a probability distribution D(q, q′).
For example, consider the following diagram visualising a HMM:

q1 q21
2 (1

4a+ 3
4b)

1
2 (a)

2
3 (b)

1
3 (a)

In state q1, the successor state is q1 or q2, with probability 1
2 each. Upon transitioning

from q1 to itself, observation a is drawn with probability 1
4 and observation b is drawn with

probability 3
4 ; upon transitioning from q1 to q2, observation a is drawn surely.1

1 One may allow for observations also on the states and not only on the transitions. But such state
observations can be equivalently emitted upon leaving the state. Hence we can assume without loss of
generality that all observations are emitted on the transitions.

© Oscar Darwin and Stefan Kiefer;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5016-014X
https://www.cs.ox.ac.uk/people/oscar.darwin/
mailto:oscar.darwin@cs.ox.ac.uk
https://orcid.org/0000-0003-4173-6877
https://www.cs.ox.ac.uk/people/stefan.kiefer/
mailto:stefan.kiefer@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.43
https://arxiv.org/abs/2009.12978
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Equivalence of Hidden Markov Models with Continuous Observations

In this way, a HMM, together with an initial distribution on states, generates a random
infinite sequence of observations. In the example above, if the initial distribution is the Dirac
distribution on q1, the probability that the observation sequence starts with a is 1

2 ·
1
4 + 1

2
and the probability that the sequence starts with ab is 1

2 ·
1
4 ·

1
2 ·

3
4 + 1

2 ·
2
3 .

In the example above the observations are drawn from a finite observation alphabet
Σ = {a, b}. Indeed, in the literature HMMs most commonly have a finite observation alphabet.
In this paper we lift this restriction and consider continuous-observation HMMs, by which
we mean HMMs as described above, but with continuous observation set Σ. For example,
instead of the distributions on {a, b} in the picture above (written there as (1

4a+ 3
4b), (a), (b),

respectively), we may have distributions on the real numbers. For example in the following
diagram, where U [a, b) denotes the uniform distribution on [a, b) and Exp(λ) denotes the
exponential distribution with parameter λ:

q1 q21
2Exp(2)

1
2U [−1, 0)

2
3Exp(1)

1
3U [0, 2)

HMMs, both with finite and infinite observation sets, are widely employed in fields such
as speech recognition (see [22] for a tutorial), gesture recognition [7], signal processing [11],
and climate modeling [1]. HMMs are heavily used in computational biology [15], more
specifically in DNA modeling [9] and biological sequence analysis [14], including protein
structure prediction [19] and gene finding [2]. In computer-aided verification, HMMs are the
most fundamental model for probabilistic systems; model-checking tools such as Prism [20]
and Storm [13] are based on analyzing HMMs efficiently.

One of the most fundamental questions about HMMs is whether two HMMs with
initial state distributions are (trace) equivalent, i.e., generate the same distribution on
infinite observation sequences. For finite observation alphabets this problem is very well
studied and can be solved in polynomial time using algorithms that are based on linear
algebra [23, 21, 24, 10]. Checking trace equivalence is used in the verification of obliviousness
and anonymity, properties that are hard to formalize in temporal logics, see, e.g., [3, 18, 5].

Although the generalisation to continuous observations (such as passed time, consumed
energy, sensor readings) is natural, there has been little work on the algorithmics of such
HMMs. One exception is continuous-time Markov chains (CTMCs) [4, 8] which are similar
to HMMs described above, but with two kinds of observations: on the one hand they emit
observations from a finite alphabet, but on the other hand they also emit the time spent in
each state. Typically, each state-to-state transition is labelled with a parameter λ; for each
transition its time of “firing” is drawn from an exponential distribution with parameter λ;
the transition with the smallest firing time “wins” and causes the corresponding change of
state. CTMCs have attractive properties: they are in a sense memoryless, and for many
analyses, including model checking, an equivalent discrete-time model can be calculated
using an efficient and numerically stable process called uniformization [16].

In [17] a stochastic model more general than ours was introduced, allowing not only
for uncountable sets of observations (called labels there), but also for infinite sets of states
and actions. The paper [17] focuses on bisimulation; trace equivalence is not considered. It
emphasizes nondeterminism, a feature we do not consider here.

O. Darwin and S. Kiefer 43:3

To the best of the authors’ knowledge, this paper is the first to study equivalence of
HMMs with continuous observations. As continuous functions are part of the input, an
equivalence checking algorithm, if it exists (which is not a priori clear), needs to be symbolic,
i.e., needs to perform computations on functions. Our contributions are as follows:
1. We show in Section 3 that certain aspects of the linear-algebra based approach for checking

equivalence of finite-observation HMMs carry over to the continuous case naturally. In
particular, equivalence reduces to orthogonality in a certain vector space of state-indexed
real vectors, see Proposition 7.

2. However, we show in Section 4 that in the continuous case there can be additional linear
dependencies between the observation density functions (which is impossible in the finite
case, where the different observations can be assumed linearly independent). This renders
a simple-minded reduction to the finite case incorrect. Therefore, an equivalence checking
algorithm needs to consider the interplay with the vector space from item 1.

3. For the required computations on the observation density functions we introduce in
Section 5 linearly decomposable profile languages, which are languages (i.e., sets of finite
words) whose elements encode density functions on which basis computations can be
performed efficiently. In Section 5.1 we provide an extensive example of such a language,
encoding (linear combinations of) Gaussian, exponential, and piecewise polynomial density
functions. The proof that this language has the required properties is non-trivial itself
and requires alternant matrices and comparisons of the tails of various density functions.

4. In Section 6 we finally show that HMMs whose observation densities are given in terms
of linearly decomposable profile languages can be checked for equivalence in polynomial
time, by a reduction to the finite-observation case. We also indicate, in Example 23, how
our result can be used to check for susceptibility of certain timing attacks.

2 Preliminaries

We write N for the set of positive integers, Q for the set of rationals and Q+ for the set
of positive rationals. For d ∈ N and a finite set Q we use the notation |Q| for the number
of elements in Q, [d] = {1, . . . , d} and [Q] = {1, . . . , |Q|}. Vectors µ ∈ RN are viewed as
row vectors and we write I = (1, . . . , 1) ∈ RN . Superscript T denotes transpose; e.g., IT
is a column vector of ones. A matrix M ∈ RN×N is stochastic if M is non-negative and∑N
j=1Mi,j = 1 for all i ∈ [N]. For a domain Σ and subset E ⊆ Σ the characteristic function

χE : Σ→ {0, 1} is defined as χE(x) = 1 if x ∈ E and χE(x) = 0 otherwise.
Throughout this paper, we use Σ to denote a set of observations. We assume Σ is

a topological space and (Σ,G, λ) is a measure space where all the open subsets of Σ are
contained within G and have non-zero measure. Indeed R and the usual Lebesgue measure
space on R satisfy these assumptions. The set Σn is the set of words over Σ of length n and
Σ∗ =

⋃∞
n=0 Σn.

A matrix valued function Ψ : Σ→ [0,∞)N×N can be integrated element-wise. We write∫
E

Ψ dλ for the matrix with entries
(∫
E

Ψ dλ
)
i,j

=
∫
E

Ψi,j dλ, where Ψi,j : Σ → [0,∞) is
defined by Ψi,j(x) =

(
Ψ(x)

)
i,j

for all x ∈ Σ.
A function f : Σ → Rm is piecewise continuous if there is an open set C ⊆ Σ, called

a set of continuity, such that f is continuous on C and for every point x ∈ Σ \ C there is
some sequence of points xn ∈ C such that limn→∞ xn = x and limn→∞ f(xn) = f(x). For a
non-negative function f : Σ→ [0,∞) we use the notation supp f = {x ∈ Σ | f(x) > 0}.

I Definition 1. A Hidden Markov Model (HMM) is a triple (Q,Σ,Ψ) where Q is a finite set
of states, Σ is a set of observations, and the observation density matrix Ψ : Σ→ [0,∞)|Q|×|Q|
specifies the transitions such that

∫
Σ Ψ dλ is a stochastic matrix.

FSTTCS 2020

43:4 Equivalence of Hidden Markov Models with Continuous Observations

I Example 2. The second HMM from the introduction is the triple ({q1, q2},R,Ψ) with

Ψ(x) =
(1

2 · 2 exp(−2x) · χ[0,∞)(x) 1
2 · 1 · χ[−1,0)(x)

1
3 ·

1
2 · χ[0,2)(x) 2

3 · exp(−x) · χ[0,∞)(x)

)
. (1)

We assume that Ψ is piecewise continuous and extend Ψ to the mapping Ψ : Σ∗ →
[0,∞)|Q|×|Q| with Ψ(x1 · · ·xn) = Ψ(x1)×· · ·×Ψ(xn) for x1, . . . , xn ∈ Σ. If C is the set of con-
tinuity for Ψ : Σ→ [0,∞)|Q|×|Q|, then for fixed n ∈ N the restriction Ψ : Σn → [0,∞)|Q|×|Q|
is piecewise continuous with set of continuity Cn. We say that A ⊆ Σn is a cylinder set
if A = A1 × · · · × An and Ai ∈ G for i ∈ [n]. For every n there is an induced measure
space (Σn,Gn, λn) where Gn is the smallest σ-algebra containing all cylinder sets in Σn and
λn(A1 × · · · ×An) =

∏n
i=1 λ(Ai) for any cylinder set A1 × · · · ×An. Let A ⊆ Σn and write

AΣω for the set of infinite words over Σ where the first n observations fall in the set A.
Given a HMM (Q,Σ,Ψ) and initial distribution π on Q viewed as vector π ∈ R|Q|, there
is an induced probability space (Σω,G∗,Pπ) where Σω is the set of infinite words over Σ,
and G∗ is the smallest σ-algebra containing (for all n ∈ N) all sets AΣω where A ⊆ Σn is a
cylinder set and Pπ is the unique probability measure such that Pπ(AΣω) = π

∫
A

Ψ dλnIT
for any cylinder set A ⊆ Σn.

I Definition 3. For two distributions π1 and π2 and a HMM C = (Q,Σ,Ψ), we say that
π1 and π2 are equivalent, written π1 ≡C π2, if Pπ1(A) = Pπ2(A) holds for all measurable
subsets A ⊆ Σω.

One could define equivalence of two pairs (C1, π1) and (C2, π2) where Ci = (Qi,Σ,Ψi) are
HMMs and πi are initial distributions for i = 1, 2. We do not need that though, as we can
define, in a natural way, a single HMM over the disjoint union of Q1 and Q2 and consider
instead equivalence of π1 and π2 (where π1, π2 are appropriately padded with zeros).

Given an observation density matrix Ψ, a functional decomposition consists of functions
fk : Σ→ [0,∞) and matrices Pk ∈ R|Q|×|Q| for k ∈ [d] such that Ψ(x) =

∑d
k=1 fk(x)Pk for

all x ∈ Σ and
∫

Σ fk dλ = 1 for all k ∈ [d]. We sometimes abbreviate this decomposition as
Ψ =

∑d
k=1 fkPk and this notion has a central role in our paper.

I Example 4. The observation density matrix Ψ from Example 2 has a functional decom-
position

Ψ(x) = 2 exp(−2x)χ[0,∞)(x)
(1

2 0
0 0

)
+ χ[−1,0)(x)

(
0 1

2
0 0

)
+

1
2χ[0,2)(x)

(
0 0
1
3 0

)
+ exp(−x)χ[0,∞)(x)

(
0 0
0 2

3

)

I Lemma 5. Let (Q,Σ,Ψ) be a HMM. If Ψ has functional decomposition Ψ =
∑d
k=1 fkPk

then
∑d
k=1 Pk is stochastic.

Proof. By definition of a HMM,
∫

Σ Ψ dλ is stochastic, and we have

∫
Σ

Ψ dλ =
∫

Σ

d∑
k=1

fkPk dλ =
d∑
k=1

Pk

∫
Σ
fk dλ =

d∑
k=1

Pk. J

When Σ is finite, it follows that
∫

Σ Ψ dλ =
∑
a∈Σ Ψ(a). Hence

∑
a∈Σ Ψ(a) is stochastic.

O. Darwin and S. Kiefer 43:5

Encoding. For computational purposes we assume that rational numbers are represented
as ratios of integers in binary. The initial distribution of a HMM with state set Q is given
as a vector π ∈ Q|Q|. We also need to encode continuous functions, in particular, density
functions such as Gaussian, exponential or piecewise-polynomial functions. A profile is a
finite word (i.e., string) that describes a continuous function. It may consist of (an encoding
of) a function type and its parameters. For example, the profile (N , µ, σ) may denote a
Gaussian (also called normal) distribution with mean µ ∈ Q and standard deviation σ ∈ Q+.
A profile may also consist of a description of a rational linear combination of such building
blocks. For any profile γ we write [[γ]] : Σ→ [0,∞) for the function it encodes. For example,
a profile γ = (N , µ, σ) with µ ∈ Q, σ ∈ Q+ may encode the function [[γ]] : R→ [0,∞) given
as [[γ]](x) = 1

σ
√

2π exp− (x−µ)2

2σ2 . Without restricting ourselves to any particular encoding, we
assume that Γ is a profile language, i.e., a finitely presented but usually infinite set of valid
profiles. For any Γ0 ⊆ Γ we write [[Γ0]] = {[[γ]] | γ ∈ Γ0}.

We use profiles to encode HMMs C = (Q,Σ,Ψ): we say that C is over Γ if the observation
density matrix Ψ is given as a matrix of pairs (pi,j , γi,j) ∈ Q+ × Γ such that Ψi,j = pi,j [[γi,j]]
and

∫
Σ[[γi,j]] dλ = 1 hold for all i, j ∈ [Q]. In this way the pi,j form the transition probabilities

between states and the γi,j encode the probability densities of the observations upon each
transition.

I Example 6. For a suitable profile language Γ, the HMM from Example 2 may be over Γ,
with the observation density matrix given as(

(1
2 , (Exp, 2)) (1

2 , (U,−1, 0))
(1

3 , (U, 0, 2)) (2
3 , (Exp, 1))

)
(2)

The observation density matrix Ψ of a HMM (Q,Σ,Ψ) with finite Σ can be given as a list of
matrices Ψ(a) ∈ Q|Q|×|Q|+ for all a ∈ Σ such that

∑
a∈Σ Ψ(a) is a stochastic matrix.

3 Equivalence as Orthogonality

For finite-observation HMMs it is well known [23, 21, 24, 10] that two initial distributions
given as vectors π1, π2 ∈ R|Q| are equivalent if and only if π1 − π2 is orthogonal (written
as ⊥) to a certain vector space. Indeed, this property holds more generally:

I Proposition 7. Consider a HMM (Q,Σ,Ψ). For any π1, π2 ∈ R|Q| we have

π1 ≡ π2 ⇐⇒ π1 − π2 ⊥ span {Ψ(w)IT | w ∈ Σ∗}.

The general case is proven in [12]. In the finite-observation case, Proposition 7 leads
to an efficient algorithm for deciding equivalence: it suffices to compute a basis for V =
span {Ψ(w)IT | w ∈ Σ∗}. This can be done using a fixed-point algorithm that computes a
sequence of (bases of) increasing subspaces of V: start with B = {IT }, and as long as there
is a ∈ Σ and v ∈ B such that Ψ(a)v 6∈ span B, add Ψ(a)v to B. Since dimV ≤ |Q|, this
algorithm terminates after at most |Q| iterations, and returns B such that span B = V . It is
then easy to check whether π1 − π2 ⊥ V. It follows:

I Proposition 8. Given a HMM (Q,Σ,Ψ) with finite Σ and initial distributions π1, π2 ∈ Q|Q|,
it is decidable in polynomial time whether π1 ≡ π2.

This is not an effective algorithm when Σ is infinite.

FSTTCS 2020

43:6 Equivalence of Hidden Markov Models with Continuous Observations

4 Labelling Reductions

Our goal is to reduce in polynomial time the equivalence problem in continuous-observation
HMMs to the equivalence problem in finite-observation HMMs. Since the latter is decidable
in polynomial time by Proposition 8, a polynomial time algorithm for deciding equivalence
in continuous-observation HMMs follows.

Towards this objective, consider a reduction where each continuous density function is
given a label and these labels form the observation alphabet of a finite-observation HMM.
For example consider the chain on the left in the diagram below. This disconnected HMM
emits letters from two distinct normal distributions with profiles (N , 0, 1) and (N , 1, 2).
Assigning each distribution letters a, b respectively yields the HMM given on the right. Since
in the right chain states q1 and q2 are equivalent so too are the same labelled states in the
continuous chain.

q1

q2

q3

2
3 (N , 0, 1) + 1

3 (N , 1, 2)

2
3 (N , 0, 1) 1

3 (N , 1, 2)

1
3 (N , 1, 2)

2
3 (N , 0, 1)

q1

q2

q3

2
3a+ 1

3b

2
3 (a) 1

3 (b)

1
3 (b)

2
3 (a)

More rigorously, if C = (Q,Σ,Ψ) is a HMM over Γ = {β1, . . . , βK} and Ψ is encoded as a
matrix of coefficient-profile pairs (pi,j , γi,j) ∈ Q+ × Γ then we call the labelling reduction the
HMM (Q, Σ̂, M̂) where Σ̂ = {a1, . . . , aK} is an alphabet of fresh observations and

M̂i,j(ak) =
{
pi,j γi,j = βk

0 otherwise.

Since Ψ has functional decomposition Ψ =
∑K
k=1[[βk]]M̂(ak), it follows by Lemma 5 that∑K

k=1 M̂(ak) is stochastic and the labelling reduction is a well defined HMM which may
be computed in polynomial time. As discussed in the previous example, equivalence in the
labelling reduction implies equivalence in the original chain:

I Proposition 9. Let C = (Q,Σ,Ψ) be a HMM with labelling reduction L = (Q, Σ̂, M̂).
Then for any initial distributions π1 and π2

π1 ≡L π2 =⇒ π1 ≡C π2.

For the proof of Proposition 9 we use the following lemma proven in [12] which will be re-used
in Section 6.

I Lemma 10. Let C1 = (Q,Σ1,Ψ1) and C2 = (Q,Σ2,Ψ2) be two HMMs with the same state
space Q. Suppose that span {Ψ1(x) | x ∈ Σ1} ⊆ span {Ψ2(x) | x ∈ Σ2}. Then, for any two
initial distributions π1 and π2,

π1 ≡C2 π2 =⇒ π1 ≡C1 π2.

O. Darwin and S. Kiefer 43:7

Proof of Proposition 9. Ψ has a functional decomposition Ψ =
∑K
k=1[[βk]]M̂(ak). Thus,

span {Ψ(x) | x ∈ Σ} ⊆ span {M̂(ak) | ak ∈ Σ̂} and the statement follows by Lemma 10. J

I Example 11. Consider the HMMs in the diagram below. The HMM on the left is a
continuous-observation chain where D and D′ are distributions on [0, 1] with probability
density functions 2xχ[0,1)(x) and 2(1− x)χ[0,1)(x) respectively, and U [a, b) is the uniform
distribution on [a, b). The HMM on the right is the corresponding labelling reduction.

Since U [0, 1) = 1
2D + 1

2D
′, (the Dirac distributions on) states q1 and q4 are equivalent

but as the distributions U [0, 1), D,D′ are distinct, they get assigned different labels a, b, c,
respectively in the labelling reduction. The states q1 and q4 are therefore not equivalent in
the right chain.

q1

q2

q3

q4

1U [0, 2)

1U [0, 1)

1U [0, 2)

1
2D

1
2D
′ q1

q2

q3

q4

1(d)

1(a)

1(d)

1
2 (b)

1
2 (c)

5 Linearly Decomposable Profile Languages

Example 11 shows that the linear combination of two continuous distributions can “imitate”
a single distribution. Therefore we consider the transition densities as part of a vector space
of functions. In the usual way L1(Σ, λ) is the quotient vector space where functions that
differ only on a λ-null set are identified. In particular, when Σ ⊆ R and λ is the Lebesgue
measure λLeb, the functions χ[a,b) and χ(a,b] are considered the same.

Let Γ be a profile language with [[Γ]] ⊆ L1(Σ, λ). We say that Γ is linearly decomposable
if for every finite set {γ1, . . . , γn} = Γ0 ⊆ Γ one can compute in polynomial time profiles
β1, . . . , βm ∈ Γ0 such that {[[β1]], . . . , [[βm]]} is a basis for span {[[γ1]], . . . , [[γn]]} (hence m ≤ n),
and further a set of coefficients bi,j ∈ Q for i ∈ [n], j ∈ [m] such that

[[γi]] =
m∑
j=1

bi,j [[βj]] for all i ∈ [n].

The following theorem is the main result of this paper:

I Theorem 12. Given a HMM (Q,Σ,Ψ) over a linearly decomposable profile language,
and initial distributions π1, π2 ∈ Q|Q|, it is decidable in polynomial time (in the size of the
encoding) whether π1 ≡ π2.

We prove Theorem 12 in Section 6. To make the notion of linearly decomposable profile
languages more concrete, we give a concrete example in the following subsection.

5.1 Example: Gaussian, Exponential, and Piecewise Polynomial
Functions

We describe a profile language, ΓGEM , that can specify linear combinations of Gaussian,
exponential, and piecewise polynomial density functions.

FSTTCS 2020

43:8 Equivalence of Hidden Markov Models with Continuous Observations

We call a function of the form x 7→ xkχI(x) where k ∈ N ∪ {0} and I ⊂ R is an interval
an interval-domain monomial. To avoid clutter, we often denote interval-domain monomials
only by xkχI . Recall that L1(R, λLeb) is a quotient space, so half open intervals I = [a, b) are
sufficient. Any piecewise polynomial is a linear combination of interval-domain monomials.

Let M be a set of profiles encoding interval-domain monomials xkχ[a,b) in terms of
k ∈ N ∪ {0} and a, b ∈ Q. Gaussian and exponential density functions can be fully described
using their parameters, which we assume to be rational. We write G and E for corresponding
sets of profiles, respectively. Finally, we fix a profile language ΓGEM ⊃ G ∪ E ∪M obtained
by closing G ∪ E ∪M under linear combinations. That is, for any γ1, . . . , γk ∈ ΓGEM and
λ1, . . . , λk ∈ Q, there exists a profile γ ∈ ΓGEM such that [[γ]] = λ1[[γ1]] + · · ·+ λk[[γk]]. This
closure can be achieved using a specific constructor, say S, for linear combinations, so that
γ = S(λ1, γ1, . . . , λk, γk).

I Example 13. The HMM (Q,R,Ψ) from Example 11 is over ΓGEM : the observation density
matrix Ψ can be encoded as a matrix of coefficient-profile pairs

0 (1
2 , γ1) (1

2 , γ2) 0
0 (1, γ3) 0 0
0 (1, γ3) 0 0
0 (1, γ4) 0 0


with γ1, γ2, γ3, γ4 ∈ ΓGEM and [[γ1]] = 2xχ[0,1) and [[γ2]] = 2(1− x)χ[0,1) and [[γ3]] = 1

2χ[0,2)
and [[γ4]] = χ[0,1).

I Lemma 14. Let H be a set of disjoint half open intervals. Suppose that m1, . . . ,mI are
distinct interval-domain monomials such that supp mi ∈ H for all i ∈ [I]. In addition, let
g1, . . . , gJ and e1, . . . , eK be distinct Gaussian and exponential density functions, respectively.
Then, the set {m1, . . . ,mI , g1, . . . , gJ , e1, . . . , eK} is linearly independent.

For the proof of this lemma we need a result concerning alternant matrices. Consider
functions f1, . . . , fn : Σ→ R and let x1, . . . , xn ∈ Σ. Then,

M =


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xn) f2(xn) . . . fn(xn)


is called the alternant matrix for f1, . . . , fn and input points x1, . . . , xn.

I Lemma 15. Suppose f1, . . . , fn ∈ L1(Σ, λ). Then, the fi are linearly dependent if and
only if all alternant matrices for the fi are singular.

Sketch proof of Lemma 14. Under the assumption that a linear combination exists almost
surely equal to 0, by examining the limit at +∞ we show that the exponential and Gaussian
coefficients are zero. Then, by constructing an appropriate alternant matrix with full rank
we invoke Lemma 15 which means the remaining interval-domain monomials are linearly
independent and thus must also have zero coefficients. J

I Proposition 16. The profile language ΓGEM is linearly decomposable.

Full proofs of Lemmas 14 and 15 and Proposition 16 can be found in [12]. From the
latter we obtain the following corollary of Theorem 12:

I Corollary 17. Given a HMM (Q,Σ,Ψ) over ΓGEM , and initial distributions π1, π2 ∈ Q|Q|,
it is decidable in polynomial time whether π1 ≡ π2.

O. Darwin and S. Kiefer 43:9

6 Proof of Theorem 12

Suppose that Ψ has a functional decomposition
∑d
k=1 fkPk such that the set {f1, . . . , fd} is

linearly independent. Then,
∑d
k=1 fkPk is called an independent functional decomposition.

The efficient computation of an independent functional decomposition is the key ingredient
for the proof of Theorem 12. We start with the following lemma.

I Lemma 18. Suppose Ψ : Σ→ [0,∞)|Q|×|Q| has an independent functional decomposition
Ψ =

∑d
k=1 fkPk. Then, span {Ψ(x) | x ∈ Σ} = span {Pk | k ∈ [d]}.

Proof. Since Ψ(x) =
∑d
k=1 fk(x)Pk, we have span {Ψ(x) | x ∈ Σ} ⊆ span {Pk | k ∈ [d]}. For

the reverse inclusion, since the fi are linearly independent, by Lemma 15 there exists an
alternant matrix M with full rank for f1, . . . , fd with input points x1, . . . , xd. Hence, for
each of the standard basis vectors ek ∈ {0, 1}d, k ∈ [d], there exists vk = (v1,k, . . . , vd,k) ∈ Rd
such that vkM = ek. Writing δj,k for the Kronecker delta function it follows that

d∑
i=1

vi,kΨ(xi) =
d∑
i=1

vi,k

d∑
j=1

fj(xi)Pj =
d∑
j=1

Pj

d∑
i=1

vi,kfj(xi) =
d∑
j=1

Pjδj,k = Pk ,

which implies that span {Ψ(x) | x ∈ Σ} ⊇ span {Pk | k ∈ [d]}. J

The proof of the following proposition re-uses Lemma 10 from Section 4.

I Proposition 19. Suppose that HMM C = (Q,Σ,Ψ) has independent functional decomposi-
tion Ψ =

∑d
k=1 fkPk and each Pk is non-negative for all k ∈ [d]. Define a set Σ = {a1, . . . , ad}

of fresh observations and the observation density matrix M with M(ak) = Pk for all k ∈ [d].
Then F = (Q,Σ,M) is a finite-observation HMM and for any initial distributions π1, π2

π1 ≡C π2 ⇐⇒ π1 ≡F π2.

Proof. It follows by Lemma 5 that
∑d
k=1 Pk is stochastic. Thus F defines a HMM. By

Lemma 18, span {Ψ(x)IT | x ∈ Σ} = span {M(a)IT | a ∈ Σ} which combined with Lemma 10
gives the result. J

I Example 20. We use the HMM C discussed in Examples 11 and 13 to illustrate the
construction of Proposition 19. The basis {2xχ[0,1), 2(1 − x)χ[0,1),

1
2χ[0,2)} leads to the

independent functional decomposition

Ψ = 2xχ[0,1)


0 1

2 0 0
0 0 0 0
0 0 0 0
0 1

2 0 0

+2(1−x)χ[0,1)


0 0 1

2 0
0 0 0 0
0 0 0 0
0 1

2 0 0

+ 1
2χ[0,2)


0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0

 .

Therefore, Proposition 19 implies that two initial distributions π1, π2 ∈ R|Q| are equivalent
in C if and only if they are equivalent in the following HMM:

q1

q2

q3

q4

1(c)

1(1
2a+ 1

2b)

1(c)

1
2 (a)

1
2 (b)

Here, states q1 and q4 are equivalent. Hence, they are also equivalent in C.

FSTTCS 2020

43:10 Equivalence of Hidden Markov Models with Continuous Observations

If an observation density matrix has an entry with pdf 2e−x − 2e−2x (which is encodable
in ΓGEM due to its convex closure property), the independent functional decomposition
generated by the algorithm described in the proof of Proposition 16 in [12] has matrices which
are not all non-negative. Therefore, Proposition 19 cannot be applied directly. However,
given an independent functional decomposition Ψ =

∑d
k=1 fkPk and noting that

∑d
k=1 Pk is

stochastic by Lemma 5, the following proposition shows that there is a small θ > 0 such that
P − θPk is non-negative for all k ∈ [d]. Furthermore, span {Pk | k ∈ [d]} = span {P − θPk |
k ∈ [d]}. These two facts lead us to construct a finite-observation HMM using the scaled
transition matrices 1

d−θ (P − θPk).

I Proposition 21. Let C = (Q,Σ,Ψ) be a HMM with independent functional decomposition
Ψ =

∑d
k=1 fkPk. Let P =

∑d
k=1 Pk and

θ = min
{

1
2 ,

min{(P)i,j | (P)i,j > 0}
max{

(
Pk
)
i,j
| i, j ∈ [Q], k ∈ [d]}

}
.

Define an alphabet Σ̃ = {a1, . . . , ad} of fresh observations and the HMM F = (Q, Σ̃,M) with
M(ak) = 1

d−θ (P − θPk). Then, for any initial distributions µ1, µ2

µ1 ≡F µ2 ⇐⇒ µ1 ≡C µ2.

Proof. First we show that F is a well-defined HMM. Matrix
∑d
k=1M(ak) is stochastic as

d∑
k=1

M(ak) = 1
d− θ

d∑
k=1

(P − θPk) =
dP − θ

∑d
k=1 Pk

d− θ
= P , (3)

and by Lemma 5, P is stochastic. In addition we must show that M(ak) is non-negative
for each k ∈ [d]. Since θ ≤ 1

2 , it is enough to show that P − θPk is non-negative for each
k ∈ [d]. Suppose that (P)i,j = 0. Then,

∫
Σ Ψi,j dλ = (P)i,j = 0, which implies that Ψi,j = 0

since Ψ is piecewise continuous. Thus,
∑d
k=1 fk(Pk)i,j = Ψi,j = 0. Since {fk}dk=1 is linearly

independent, it follows that (Pk)i,j = 0 for all k ∈ [d] and so (P − θPk)i,j = 0. Now suppose
that (P)i,j > 0. By the definition of θ, it follows that (θPk)i,j ≤ (P)i,j . Thus, F is a well
defined HMM.

Observe that span {P − θPk | k ∈ [d]} ⊆ span {Pk | k ∈ [d]}. The opposite inclusion
follows from the fact that, by Equation (3), we have P ∈ span {P − θPk | k = 1, . . . , d}.
Thus, by Lemma 18,

span {M(a) | a ∈ Σ̃} = span {P−θPk | k ∈ [d]} = span {Pk | k ∈ [d]} = span {Ψ(x) | x ∈ Σ}

and hence, the proposition follows from Lemma 10. J

Now we can prove Theorem 12:

Proof of Theorem 12. Suppose the HMM C = (Q,Σ,Ψ) is over the linearly decomposable
profile language Γ. Let Γ0 = {γ1, . . . , γn} be the set of profiles appearing in the description
of Ψ. From the description of Ψ as a matrix of coefficient-profile pairs, we can easily compute
matrices P ′1, . . . , P ′n ∈ Q|Q|×|Q| such that Ψ =

∑n
i=1[[γi]]P ′i . Since Γ is linearly decomposable,

one can compute in polynomial time a subset {β1, . . . , βd} ⊆ Γ0 such that [[{β1, . . . , βd}]] is
linearly independent and also a set of coefficients bi,k such that [[γi]] =

∑d
k=1 bi,k[[βk]] for all

i ∈ [n]. Hence:

Ψ =
n∑
i=1

[[γi]]P ′i =
n∑
i=1

d∑
k=1

[[βk]]bi,kP ′i =
d∑
k=1

[[βk]]
n∑
i=1

bi,kP
′
i

O. Darwin and S. Kiefer 43:11

Setting Pk =
∑n
i=1 bi,kP

′
i for all k ∈ [d], we thus obtain the independent functional decom-

position Ψ =
∑d
k=1[[βk]]Pk. Now it is straightforward to compute the finite-observation

HMM F from Proposition 21 in polynomial time, thus reducing the equivalence problem
in C to the equivalence problem in the finite-observation HMM F . By Proposition 8 the
theorem follows. J

I Example 22. We illustrate aspects of the proof of Theorem 12 using the HMM:

q1 q21
2 (1

2χ[0,2))

1
2 (1

2χ[1,3))

1
2 (1

2χ[2,4))

1
2 (1

2 (χ[0,1) + χ[3,4)))

Noting that 1
2 (χ[0,1) +χ[3,4)) = 1

2χ[0,2)− 1
2χ[1,3) + 1

2χ[2,4) and the set { 1
2χ[0,2),

1
2χ[1,3),

1
2χ[2,4)}

is linearly independent we obtain the independent functional decomposition

Ψ = 1
2χ[0,2)

(1
2 0
0 1

2

)
+ 1

2χ[1,3)

(
0 1

2
0 − 1

2

)
+ 1

2χ[2,4)

(
0 0
1
2

1
2

)
.

According to Proposition 21, P =
(1

2
1
2

1
2

1
2

)
. Further we compute θ = 1

2 and d− θ = 5
2 and

M(a) = 2
5

[(1
2

1
2

1
2

1
2

)
− 1

2

(1
2 0
0 1

2

)]
=
(1

10
1
5

1
5

1
10

)
M(b) = 2

5

[(1
2

1
2

1
2

1
2

)
− 1

2

(
0 1

2
0 − 1

2

)]
=
(1

5
1
10

1
5

3
10

)
M(c) = 2

5

[(1
2

1
2

1
2

1
2

)
− 1

2

(
0 0
1
2

1
2

)]
=
(1

5
1
5

1
10

1
10

)
.

It follows that any initial distributions π1 and π2 are equivalent in (Q,Σ,Ψ) if and only if
they are equivalent in the following HMM:

q1 q21
2 (1

5a+ 2
5b+ 2

5c)

1
2 (2

5a+ 1
5b+ 2

5c)

1
2 (2

5a+ 2
5b+ 1

5c)

1
2 (1

5a+ 3
5b+ 1

5c)

For any initial distributions π1, π2 ∈ Q2 this can be checked with Proposition 8. (In this
example π1 ≡ π2 holds only if π1 = π2.)

I Example 23. We also discuss an example, inspired from [6], where HMM non-equivalence
means susceptibility to timing attacks, and HMM equivalence means immunity to such
attacks. Consider a system that emits two kinds of observations, both visible to an attacker:
a function to be executed (we arbitrarily assume a choice between two functions a and b,
and impute a probability distribution between them) and the time it takes to execute that
function. An attacker therefore sees a sequence `1t1`2t2 . . ., where `i ∈ {a, b} and ti ∈ [0,∞).
In [6] the times t1, t2, . . . are all identical and depend only on the secret key held by the
system, but we assume in the following that the ti are drawn from a probability distribution
that depends on the function (a or b) and the key. We assume that with key i the execution

FSTTCS 2020

43:12 Equivalence of Hidden Markov Models with Continuous Observations

times have uniform distributions U [ma
i − 1

2 ,m
a
i + 1

2) and U [mb
i − 1

2 ,m
b
i + 1

2). The situation
can then be modelled with the HMM below.2

sitai tbi

U [ma
i − 1

2 ,m
a
i + 1

2)

1
3a

U [mb
i − 1

2 ,m
b
i + 1

2)

2
3b

A timing leak occurs if the attacker can glean the key from the execution times. For example,
the attacker can distinguish between keys k1 and k2 if and only if states s1 and s2 are not
equivalent. One can check, using the algorithm we have developed in this section, that s1 and
s2 are equivalent if and only if ma

1 = ma
2 and mb

1 = mb
2. Moreover, it follows from Section 5

that if instead of U [ma
1 − 1

2 ,m
a
1 + 1

2) and U [ma
2 − 1

2 ,m
a
2 + 1

2) we had two distributions with
density functions from [[ΓGEM]] with the same mean and the same variance, states s1, s2
would still be non-equivalent whenever the two distributions are not identical.

One may try to guard against this timing leak by “padding” the execution time, so that
the sum of the execution time and an added time is constant (and independent of the key).
After the execution of the function, an idling loop would be executed until the worst-case
(among all keys) execution time of the functions has been reached or exceeded. Let us call
this worst-case execution time w ∈ (0,∞). This idling loop would take time u > 0 in each
iteration, so the total idling time is always an integer multiple of u. It is argued in [6] that
this guard is in general ineffective in that the attacker can still glean the execution time
modulo u. Therefore, it is suggested in [6] to add, in addition, a time that is uniformly
distributed on [0, u).

This remedy also works in our case with random execution times. Indeed, one can show
that for any independent random variables X,Y , where Y is distributed with U [0, u], we
have that (X + Y) mod u is distributed with U [0, u). Therefore, by adding an independent
U [0, u) random time to the padding described above, the times observable by the attacker
now have a U [w + u,w + 2u) distribution, independent of the key.

sitai tbi

U [w + u,w + 2u)

1
3a

U [w + u,w + 2u)

2
3b

All states si are now equivalent, so the key does not leak.

7 Conclusions

We have shown that equivalence of continuous-observation HMMs is decidable in polynomial
time, by reduction to the finite-observation case. The crucial insight is that, rather than
integrating the density functions, one needs to consider them as elements of a vector space and
computationally establish linear (in)dependence of functions. Therefore, our polynomial-time
reduction performs symbolic computations on continuous density functions. As a suitable
framework for these computations we have introduced the notion of linearly decomposable
profile languages, and we have established ΓGEM as such a profile language.

2 In this case the observation set Σ = [0, ∞) ∪ {a, b} is a disjoint union of topological spaces and there is
a natural measure space induced from the Lebesgue measure space on [0, ∞) and a discrete measure on
{a, b}.

O. Darwin and S. Kiefer 43:13

In future work, it would be desirable to extend ΓGEM and/or develop other linear
decomposable profile languages, including over sets Σ of observations that are not real
numbers. The authors believe that the developed computational framework may be the
foundation for further algorithms on continuous-observation HMMs. For example, one may
want to compute the total-variation distance of two continuous-observation HMMs. Can
Markov chains with continuous emissions be model-checked efficiently?

References
1 P. Ailliot, C. Thompson, and P. Thomson. Space-time modelling of precipitation by using a

hidden Markov model and censored Gaussian distributions. Journal of the Royal Statistical
Society, 58(3):405–426, 2009.

2 M. Alexandersson, S. Cawley, and L. Pachter. SLAM: Cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Research, 13:469–502, 2003.

3 M.S. Alvim, M.E. Andrés, C. Palamidessi, and P. van Rossum. Safe equivalences for security
properties. In Theoretical Computer Science, pages 55–70. Springer, 2010.

4 C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–541,
2003.

5 M.S. Bauer, R. Chadha, and M. Viswanathan. Modular verification of protocol equivalence in
the presence of randomness. In Computer Security – ESORICS 2017, pages 187–205. Springer,
2017.

6 B.A. Braun, S. Jana, and D. Boneh. Robust and efficient elimination of cache and timing side
channels, 2015. arXiv:1506.00189.

7 F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand gesture recognition using a real-time tracking
method and hidden Markov models. Image and Vision Computing, 21(8):745–758, 2003.

8 T. Chen, M. Diciolla, M.Z. Kwiatkowska, and A. Mereacre. Time-bounded verification of
CTMCs against real-time specifications. In Proceedings of Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 6919 of LNCS, pages 26–42. Springer, 2011.

9 G.A. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of Mathematical
Biology, 51(1):79–94, 1989.

10 C. Cortes, M. Mohri, and A. Rastogi. Lp distance and equivalence of probabilistic automata.
International Journal of Foundations of Computer Science, 18(04):761–779, 2007.

11 M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Wavelet-based statistical signal processing
using hidden Markov models. IEEE Transactions on Signal Processing, 46(4):886–902, April
1998.

12 Oscar Darwin and Stefan Kiefer. Equivalence of hidden markov models with continuous
observations. Technical report, arXiv.org, 2020. Available at http://arxiv.org/abs/2009.12978.

13 C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A Storm is coming: A modern probabilistic
model checker. In Proceedings of Computer Aided Verification (CAV), pages 592–600. Springer,
2017.

14 R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

15 S.R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315–1316, October
2004.

16 W.K. Grassmann. Finding transient solutions in Markovian event systems through randomiza-
tion. In Numerical solution of Markov chains, pages 357–371, 1991.

17 H. Hermanns, J. Krčál, and J. Křetínský. Probabilistic bisimulation: Naturally on distributions.
In CONCUR 2014 – Concurrency Theory, pages 249–265. Springer, 2014.

18 S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equivalence
for probabilistic automata. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV), volume 6806 of LNCS, pages 526–540. Springer, 2011.

FSTTCS 2020

http://arxiv.org/abs/1506.00189

43:14 Equivalence of Hidden Markov Models with Continuous Observations

19 A. Krogh, B. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting transmembrane
protein topology with a hidden Markov model: Application to complete genomes. Journal of
Molecular Biology, 305(3):567–580, 2001.

20 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In Proceedings of Computer Aided Verification (CAV), volume 6806 of LNCS, pages
585–591. Springer, 2011.

21 A. Paz. Introduction to Probabilistic Automata (Computer Science and Applied Mathematics).
Academic Press, Inc., Orlando, FL, USA, 1971.

22 L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

23 M.P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2):245–270, 1961.

24 W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput., 21(2):216–227, April 1992.

Nivat-Theorem and Logic for
Weighted Pushdown Automata on Infinite Words
Manfred Droste
Institut für Informatik, Universität Leipzig, Germany
droste@informatik.uni-leipzig.de

Sven Dziadek
Institut für Informatik, Universität Leipzig, Germany
dziadek@informatik.uni-leipzig.de

Werner Kuich
Institut für Diskrete Mathematik und Geometrie, Technische Unversität Wien, Austria
werner.kuich@tuwien.ac.at

Abstract
Recently, weighted ω-pushdown automata have been introduced by Droste, Ésik, Kuich. This new
type of automaton has access to a stack and models quantitative aspects of infinite words. Here,
we consider a simple version of those automata. The simple ω-pushdown automata do not use
ε-transitions and have a very restricted stack access. In previous work, we could show this automaton
model to be expressively equivalent to context-free ω-languages in the unweighted case. Furthermore,
semiring-weighted simple ω-pushdown automata recognize all ω-algebraic series.

Here, we consider ω-valuation monoids as weight structures. As a first result, we prove that for
this weight structure and for simple ω-pushdown automata, Büchi-acceptance and Muller-acceptance
are expressively equivalent. In our second result, we derive a Nivat theorem for these automata
stating that the behaviors of weighted ω-pushdown automata are precisely the projections of very
simple ω-series restricted to ω-context-free languages. The third result is a weighted logic with the
same expressive power as the new automaton model. To prove the equivalence, we use a similar
result for weighted nested ω-word automata and apply our present result of expressive equivalence
of Muller and Büchi acceptance.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Quantitative automata; Theory of computation → Automata over infinite objects;
Theory of computation → Grammars and context-free languages

Keywords and phrases Weighted automata, Pushdown automata, Infinite words, Weighted logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.44

Funding Sven Dziadek: supported by DFG Research Training Group 1763 (QuantLA).
Werner Kuich: partially supported by Austrian Science Fund (FWF): grant no. I1661 N25.

1 Introduction

Languages of infinite words or ω-languages are intensively researched due to their applications
in model checking and verification [30, 3, 9]. Context-free languages of infinite words have
been investigated in a fundamental study by Cohen and Gold [10].

Weighted languages allow us to model the use of resources. In formal language theory,
we consider a word to be in the language or not. Contrary to this, weighted languages relate
words to resources such as costs, gains, probabilities, counts, time, and of course Boolean
values. There exist generalizations to several language classes (regular, context-free, star-free
languages, etc.), to various structures (words, trees, pictures, nested words, infinite words,
etc.) and to different weight structures (semirings, valuation monoids, etc.). See [20] for

© Manfred Droste, Sven Dziadek, and Werner Kuich;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9128-8844
mailto:droste@informatik.uni-leipzig.de
https://orcid.org/0000-0001-6767-7751
mailto:dziadek@informatik.uni-leipzig.de
mailto:werner.kuich@tuwien.ac.at
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

an overview. While weighted context-free languages already date back to Chomsky and
Schützenberger [8], more recently, Droste, Ésik, Kuich [27, 19, 16] generalized context-free
languages of infinite words to the weighted setting.

In this paper, we investigate a type of weighted ω-pushdown automata called simple
ω-reset pushdown automaton in [12]. They do not allow ε-transitions and the stack can only
be altered by at most one symbol. Simple automata have been shown to be expressively
equivalent to general pushdown automata in the unweighted case for finite words [4] and
for infinite words [15] (i.e., the language classes accepted by these two kinds of automata
coincide). For continuous commutative star-omega semirings we could show in [13, 12, 14]
that for every ω-algebraic series r, there exists a simple ω-reset pushdown automaton with
behavior r.

Here, we consider ω-valuation monoids as weight structures. They include complete
semirings but also discounted and average behavior. Valuation monoids first appeared in [22]
but their idea is based on [7]. By an example, we show how a basic web server and its average
response time for requests can be modeled by a simple ω-pushdown automaton with weights
in a suitable ω-valuation monoid.

Our first main result is the expressive equivalence of Büchi and Muller acceptance for
weighted simple ω-pushdown automata; i.e., the classes of behaviors of these two weighted
automata models coincide.

Then we show several closure properties for weighted ω-pushdown automata. Our second
main result is a Nivat-like decomposition theorem [31] that shows that by the help of a
morphism, we can express the behavior of every weighted ω-pushdown automaton as the
intersection of an unweighted ω-pushdown automaton and a very simple ω-series. Nivat’s
theorem was extended to weighted automata of finite words over semirings by [21].

Büchi, Elgot, Trakhtenbrot [5, 26, 33] (BET-Theorem) proved that regular languages are
exactly those languages definable by monadic second-order logic. Their result was extended
by Lautemann, Schwentick, Thérien [29] to context-free languages. While both these former
results are for finite words, we defined a logic that is expressively equivalent to context-free
languages of infinite words (cf. [15]). The BET-Theorem has been extended to the weighted
setting [17]. Weighted logics allow the logical description of weights of finite words [17, 24, 34]
and also of infinite words [25, 18, 22].

In this paper, as the third main result, we extend the BET-Theorem to weighted simple
ω-pushdown automata. We extend the logic in [29, 11] and prove its equivalence to weighted
simple ω-pushdown automata. For the proof, we do not reinvent the wheel but use the
already existing BET-Theorem for weighted nested ω-word automata [11]. The application
of a projection allows us to lift the result on weighted nested ω-word automata to weighted
simple ω-pushdown automata. We show how the quantitative behavior of the basic web
server example mentioned above can be described in our weighted matching ω-MSO logic.

An expressive equivalence result for arbitrary weighted ω-pushdown automata, besides
our Nivat-like result, remains open at present.

We structure the paper as follows. We give basic definitions and compare Muller and Büchi
acceptance in Section 2. Then, we prove the Nivat-like result in Section 3. Section 4 defines
the logic. Section 5 summarizes the known results about weighted nested ω-word languages
and also shows the new projection. In Section 6, we prove our weighted BET-Theorem.

M. Droste, S. Dziadek, and W. Kuich 44:3

2 Weight Structure and Simple ω-Pushdown Automata

This section introduces our weight structure, the ω-valuation monoids (cf. [22]), and the
weighted automata we want to discuss in this paper. At the end of this section, we give our
first main result, the comparison of Muller and Büchi acceptance.

An alphabet denotes a finite set of symbols. Let N be the set of non-negative integers.
A monoid (D,+,0) is called complete, if it is equipped with sum operations

∑
I : DI → D

for all families (ai | i ∈ I) of elements of D, where I is an arbitrary index set, such that the
following conditions are satisfied:

(i)
∑
i∈∅

di = 0,
∑
i∈{k}

di = dk,
∑

i∈{j,k}

di = dj + dk for j 6= k, and

(ii)
∑
j∈J

(∑
i∈Ij

di

)
=
∑
i∈I

di if
⋃
j∈J

Ij = I and Ij ∩ Ik = ∅ for j 6= k .

This means that a monoid D is complete if it has infinitary sum operations (i) that are an
extension of the finite sums and (ii) that are associative and commutative (cf. [28]).

For a set D we denote by C ⊆fin D that C is a finite subset of D. Let (Dfin)ω =⋃
C⊆finD

Cω. An ω-valuation monoid (D,+,Valω,0) consists of a complete monoid (D,+,0)
and an ω-valuation function Valω : (Dfin)ω → D such that Valω(di)i∈N = 0 whenever di = 0
for some i ∈ N. A product ω-valuation monoid (ω-pv-monoid) is a tuple (D,+,Valω, �,0,1)
where (D,+,Valω,0) is an ω-valuation monoid, � : D2 → D is a product function and further
1 ∈ D, V alω(1ω) = 1 and 0 � d = d � 0 = 0, 1 � d = d � 1 = d for all d ∈ D.

A monoid (D,+,0) is called idempotent if d+d = d for all d ∈ D. An ω-valuation monoid
(D,+,Valω,0) is equally called idempotent if its underlying monoid (D,+,0) is idempotent.

In [11, 22], ω-valuation monoids are classified by specific properties. More specific ω-
valuation monoids will later lead to more loose restrictions on our logic. Due to space
constraints, we omit properties on ω-valuation monoids here and refer the interested reader
to [11]. Additionally, we will only present one possible restriction on our logic.

I Example 1 (ω-valuation monoids). The first two examples are inspired by [7].
1. Let R̄ = R ∪ {−∞,∞} and −∞+∞ = −∞. Then (R̄, sup, lim avg,+,−∞, 0) is an ω-pv-

monoid where lim avg(di)i∈N = lim infn→∞ 1
n

∑n−1
i=0 di.

2. Let R̄+ = {x ∈ R | x ≥ 0} ∪ {−∞}. Then (R̄+, sup,discλ,+,−∞, 0) for 0 < λ < 1 is an
ω-pv-monoid where discλ(di)i∈N = limn→∞

∑n
i=0 λ

idi.
3. Any complete semiring (S,⊕,⊗,0,1) is an ω-pv-monoid (S,⊕,

⊗
,⊗,0,1).

As it simplifies the logical characterization, we follow [23, 15] and use a restricted type
of pushdown automaton. We call it simple ω-pushdown automaton. For the unweighted
setting, we proved in [15] that this automaton model is expressively equivalent to general
ω-pushdown automata; for finite words, this equivalence is hidden in [4]. For the weighted
case and for continuous semirings, we show a corresponding result for finite words in [13].
For weights in continuous semirings and for infinite words, we showed in [12, 14] that all
ω-algebraic series are recognized by weighted simple ω-pushdown automata.

Simple ω-pushdown automata are realtime, i.e. they do not use ε-transitions. Additionally,
we restrict transitions in a way to only allow either to keep the stack unaltered, to push one
symbol or to pop one symbol. Thus, let S(Γ) = ({↓} × Γ) ∪ {#} ∪ ({↑} × Γ) be the set of
stack commands for a stack alphabet Γ. Note that this implies that the automaton can only
read the top of the stack when popping it. Additionally, for technical reasons, we start runs
with an empty stack and therefore allow to push onto the empty stack.

FSTTCS 2020

44:4 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

I Definition 2. An (unweighted) ω-pushdown automaton (ωPDA) over the alphabet Σ is a
tuple M = (Q,Γ, T, I, F) where

Q is a finite set of states,
Γ is a finite stack alphabet,
T ⊆ Q× Σ×Q× S(Γ) is a set of transitions,
I ⊆ Q is the set of initial states,
F ⊆ Q is a set of (Büchi-accepting) final states.

I Definition 3. A weighted ω-pushdown automaton (ωWPDA) over the alphabet Σ and the
ω-valuation monoid (D,+,Valω,0) is a tuple M = (Q,Γ, T, I, F,wt) where

(Q,Γ, T, I, F) is an unweighted ω-pushdown automaton over Σ,
wt : T → D is a weight function.

I Definition 4. A Muller-accepting ω-pushdown automaton over the alphabet Σ is a tuple
M = (Q,Γ, T, I,F) where Q,Γ, T, I are defined as for ωPDA, but F ⊆ 2Q is a set of Muller-
accepting subsets of Q. Similarly, a weighted Muller-accepting ω-pushdown automaton over
the alphabet Σ and the ω-valuation monoid D is a tuple M = (Q,Γ, T, I,F ,wt).

A configuration of an ωPDA or ωWPDA is a pair (q, γ), where q ∈ Q and γ ∈ Γ∗. We
define the transition relation between configurations as follows. Let γ ∈ Γ∗ and t ∈ T . For
t = (q, a, q′, (↓, A)), we write (q, γ) `tM (q′, Aγ). For t = (q, a, q′,#), we write (q, γ) `tM (q′, γ).
Finally, for t = (q, a, q′, (↑, A)), we write (q, Aγ) `tM (q′, γ). These three types of transitions
are called push, internal and pop transitions, respectively.

We denote by label(q, a, q′, s) = a the label and by state(q, a, q′, s) = q the state of
a transition. Both, as well as the function wt will be extended to infinite sequences of
transitions by letting label((ti)i≥0) = (label(ti))i≥0 ∈ Σω for the infinite word constructed
from the labels and similar for state((ti)i≥0) ∈ Qω and for wt((ti)i≥0) ∈ Dω.

An infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T is called a run of the ωWPDA
or ωPDA M on w = label(ρ) iff there exists an infinite sequence of configurations (pi, γi)i≥0
with p0 ∈ I and γ0 = ε such that (pi, γi) `tiM (pi+1, γi+1) for each i ≥ 0. We abbreviate a run
ρ = (ti)i≥0 with (p0, γ0) `t0M (p1, γ1) `t1M · · · where label(ti) = ai by ρ : (p0, γ0) a0−→ (p1, γ1)
a1−→ · · · such that the word becomes visible.

For an infinite sequence of states (qi)i≥0, let Inf((qi)i≥0) =
{
q | q = qi for infinitely many

i ≥ 0
}
be the set of states that occur infinitely often. For Büchi-accepting automata, a run ρ

is called successful if Inf(state(ρ)) ∩ F 6= ∅. For Muller-accepting automata, a run ρ is called
successful if Inf(state(ρ)) ∈ F . For an ωPDA M = (Q,Γ, T, I, F), the language accepted by
M is denoted by L(M) = {w ∈ Σω | ∃ successful run of M on w}. A language L ⊆ Σω is
called ωPDA-recognizable if there exists an ωPDA M with L(M) = L. For an ωWPDA M ,
we introduce the following function ‖M‖ : Σω → D which is called the behavior of M and
which is defined by ‖M‖(w) =

∑
(Valω(wt(ρ)) | ρ successful run ofM on w).

An ωPDA or ωWPDA M over Σ is called unambiguous if there exists at most one
successful run of M on every word w ∈ Σω. If there exists an unambiguous ωPDA M with
L(M) = L, the language L is called unambiguous.

Any function s : Σω → D is called a series over Σ and D. The set of all such series is
denoted by D〈〈Σω〉〉. Every series s : Σω → D which is the behavior of some ωWPDA over
D is called ωWPDA-recognizable.

An ωWPDA M = (Q,Γ, T, I, F,wt) that only uses internal transitions, i.e., for which
Γ = ∅ and for all transitions t = (q, a, q′, s) ∈ T holds s = #, is called a weighted finite
automaton, or short ωWFA. Series that are the behavior of some ωWFA are called ωWFA-
recognizable.

M. Droste, S. Dziadek, and W. Kuich 44:5

1 2

req, (↓, X) : 0

ans, (↑, X) : 0

wait,# : 1
call, (↓, Y) : 1
ret, (↑, Y) : 1

Figure 1 Example 5: Weighted ω-pushdown automaton over the alphabet Σ = {req, ans,
call, ret,wait} and the ω-valuation monoid R̄. The value after the “:” are the used weights 0 and 1.

1 2

3 4

M ′:

⇒

1 2

3 4

1̄

3̄

M ′′:

Figure 2 Proof of Theorem 6: The states 1, 2, 3, and 4 stand for the set of states that are
initial and final, initial but not final, final but not initial, or neither initial nor final, respectively.
Groups 1 and 3 are copied into 1̄ and 3̄. Transitions into 1̄ and 3̄ are only allowed from originally
non-accepting states.

I Example 5 (ωWPDA). We extend the ω-pv-monoid 1 of Example 1 as (R̄, sup, specialavg,
+,−∞, 0) where we define a new ω-valuation function to count and take the average of the
counted values. Let h be a function that maps natural numbers to strings as follows.

h : N→ {0, 1}∗, n 7→ 0 11 . . . 1︸ ︷︷ ︸
n-times

0

Then we extend h to infinite sequences of natural numbers h : Nω → {0, 1}ω in the natural way.
We will consider its inverse where we have for instance h−1(011100110011110 . . .) = 324
Then let specialavg = lim avg ◦h−1. For w /∈ (01∗0)ω we set specialavg(w) = −∞.

Now, we define an automaton A as shown in Figure 1. We let A = ({1, 2}, {X,Y },
T, {1}, {1},wt) be an ωWPDA over the alphabet Σ = {req, ans, call, ret,wait}, where T is
defined as shown in the Figure and the weights are indicated after the colon symbol.

The automaton simulates some kind of (web) server that takes requests from clients and
answers them. For every request, the server has to call some amount of other services and
await their returns. Only when all calls have been returned, the server answers the original
request. This is a context-free property. Only runs that always eventually return to state 1
to serve new clients are considered valid.

Every call, return, or wait takes one second to operate and this operation time is accounted
for in the weight. The specialavg operation sums up all the waiting time per request and
returns the long run average response time.

We now state our first main result.

I Theorem 6. Let s : Σω → D be a series. The following are equivalent:
s is recognizable by a Büchi-accepting ωWPDA,
s is recognizable by a Muller-accepting ωWPDA.

Proof Idea. In the direction Büchi to Muller acceptance, the standard approach works also
in the weighted case.

FSTTCS 2020

44:6 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

For the other direction, the standard approach usually employs a special set of accepting
states that have to be traversed to be accepted. This construction needs to be adjusted as it
creates infinitely many possible runs in the Büchi automaton for every run of the Muller
automaton.

A solution to this problem was presented in [25] whose construction allows exactly one
entry point into the special set of accepting states. Entering the group of accepting states is
forbidden from a state that is already accepting. In this way, the only successful runs are
the ones that switch from the original states to the new group of accepting states at the last
possible moment. In contrast to [25], we cannot assume an initially normalized automaton
to solve the remaining question of the initial states that are also final.

Instead, the automaton decides non-deterministically if it will eventually see a non-final
state in the run. If not, and only in this case, it already starts in the new group of accepting
states. Figure 2 depicts the idea of the construction. J

3 Closure Properties

Let Σ, ∆ be alphabets and h : Σ→ ∆ a mapping. We can extend h to infinite words in the
natural way by setting h(w) = h(a0)h(a1)h(a2) · · · ∈ ∆ω for w = a0a1a2 · · · ∈ Σω.

Let now h : ∆→ Σ and let h−1(w) = {v ∈ ∆ω | h(v) = w}. Then for a series s : ∆ω → D,
we define the series h(s) : Σω → D by h(s)(w) =

∑
v∈h−1(w) s(v) for all w ∈ Σω.

I Lemma 7. Let Σ, ∆ be alphabets, (D,+,Valω,0) an ω-valuation monoid and h : ∆→ Σ
a mapping. If s : ∆ω → D is ωWPDA-recognizable, then so is h(s) : Σω → D.

Let g : Σ→ D be a mapping. We denote by Valω ◦ g : Σω → D the series defined for all
w ∈ Σω by (Valω ◦ g)(w) = Valω(g(w)).

I Lemma 8. Let Σ be an alphabet, (D,+,Valω,0) an ω-valuation monoid and g : Σ→ D a
mapping. Then Valω ◦ g is ωWFA-recognizable by an ωWFA with only one state.

Let (D,+,Valω,0) be an ω-valuation monoid, s : Σω → D an ωWFA-recognizable series
and L ⊆ Σω an ωPDA-recognizable language. By s ∩ L : Σω → D, we denote the series that
assigns the weights of s to the words accepted by L. Formally, for words u ∈ Σω,

(s ∩ L)(u) =
{
s(u), if u ∈ L
0, otherwise .

I Lemma 9. Let (D,+,Valω,0) be an ω-valuation monoid, s : Σω→D an ωWFA-recognizable
series and L ⊆ Σω an ωPDA-recognizable language.
1. If L is unambiguous, then the series s ∩ L : Σω → D is ωWPDA-recognizable.
2. If D is idempotent, then the series s ∩ L : Σω → D is ωWPDA-recognizable.

Proof Idea. To allow final states of both original Büchi-accepting automata to be visited
alternately, we use the standard construction for intersecting unweighted Büchi automata for
infinite words, see [32] for details. The assumptions of (1), respectively (2), imply that the
weights for s ∩ L are computed correctly (cf. [2]). J

Intersection with inherently ambiguous languages over non-idempotent ω-valuation
monoids might not be ωWPDA-recognizable. For a counterexample, consider the ω-valuation
monoid (N∞,+,

∏
, 0) of natural numbers or ∞ with the natural operations, an inherently

ambiguous language like e.g. L = {aibjckdω | i = j or j = k} and intersect it with the

M. Droste, S. Dziadek, and W. Kuich 44:7

constant series s(u) = 1 for all u ∈ Σω. But then, the intersection (s ∩ L) is no longer
ωWPDA-recognizable which can be seen as follows. An automaton M for the series (s ∩ L)
would yield the value 1 precisely for the words in L. Since the ω-valuation monoid N∞ only
allows non-negative integers or ∞ as weights, each word in L can have only one successful
run in M . Stripping M of its weights while only keeping transitions with non-zero weight,
we obtain an unweighted pushdown automaton M ′. The new automaton M ′ has only one
successful run for every input u ∈ L and is thus unambiguous; moreover, M ′ accepts the
language L. This contradicts L being inherently ambiguous.

I Definition 10. Let Σ be an alphabet and (D,+,Valω,0) an ω-valuation monoid.
We denote by Drec〈〈Σω〉〉 the family of ωWPDA-recognizable series over Σ and D. Let

further DN 〈〈Σω〉〉 (with N meaning Nivat) denote the set of series s over Σ and D such that
there exist an alphabet ∆, mappings h : ∆→ Σ and r : ∆→ D and an ωPDA-recognizable
language L ⊆ ∆ω such that

s = h((Valω ◦ r) ∩ L) .

We further define DNunamb〈〈Σω〉〉 (DNdet〈〈Σω〉〉) like DN 〈〈Σω〉〉 with the difference that L is
an unambiguous (deterministic, respectively) ωPDA-recognizable language.

I Example 11. We extend the ω-pv-monoid 1 of Example 1 as (Ṙ, sup,partialavg,+,−∞, 0)
where we add a new value d that will later be ignored, i.e., Ṙ = R̄∪{d}. We set sup(−∞, d) = d

and sup(r, d) = r for every r ∈ R. We define a new ω-valuation function to ignore d and take
the average of the remaining values. Let now h be defined as follows.

h : Ṙ→ R̄∗, r 7→ r, for r ∈ R̄

d 7→ ε

Then we extend h to infinite sequences h : Ṙω → R̄ω in the natural way. Now let partialavg =
lim avg ◦h and Σ = {a, b}. We make the following definitions:

∆ = Σ× {0, 1, . . . , 6} ,
L =

{
(σ1, d1)(σ2, d2)(σ3, d3) · · · | di = i mod 7, σi ∈ Σ

}
,

r(b, i) = d for all i ∈ {0, . . . , 6} and r(a, i) =
{

1, if 5 ≤ i ≤ 6
0, otherwise ,

h(σ, i) = σ

The language L ⊆ ∆ω is obviously ωPDA-recognizable. As we will see in the following
theorem, the series s = h((Valω ◦ r) ∩ L) ∈ ṘN 〈〈Σω〉〉 is ωWPDA-recognizable because Ṙ is
idempotent. The series s calculates the greatest accumulation point of the ratio of events a
happening at the weekend (days 5 and 6) compared to all occurrences of events a.

The following is the second main Nivat-like decomposition result.

I Theorem 12. Let Σ be an alphabet and (D,+,Valω,0) an ω-valuation monoid. Then,

Drec〈〈Σω〉〉 = DNdet〈〈Σω〉〉 = DNunamb〈〈Σω〉〉 ⊆ DN 〈〈Σω〉〉 .

If D is idempotent, DN 〈〈Σω〉〉 = Drec〈〈Σω〉〉.

Proof. First, we show Drec〈〈Σω〉〉 ⊆ DNdet〈〈Σω〉〉: Let s ∈ Drec〈〈Σω〉〉. Thus there exists an
ωWPDA M = (Q,Γ, T, I, F, wt) over Σ such that ‖M‖ = s. We will show that there exist
∆, h, r and L such that s = h((Valω ◦ r) ∩ L).

FSTTCS 2020

44:8 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

Let ∆ = T and let r = wt: ∆→ D. We define h : ∆→ Σ by h((q, a, q′, s)) = a. Note that
the automaton does not allow ε-transitions and therefore, h is well-defined. We construct an
unweighted ωPDA M ′ = (Q,Γ, T ′, I, F) over ∆ with

T ′ = {(q, (q, a, p, s), p, s) | (q, a, p, s) ∈ T} .

Note that M ′ accepts exactly the successful runs of M . As there is at most one transition of
M ′ with label (q, a, p, s), M ′ is deterministic (and unambiguous). Define L = L(M ′).

Let w ∈ Σω. Therefore,

h((Valω ◦ r) ∩ L)(w) =
∑(

((Valω ◦ r) ∩ L)(w′) | w′ ∈ Σω and h(w′) = w
)

=
∑(

(Valω ◦ r)(w′) | w′ ∈ L and h(w′) = w
)

=
∑

(Valω(wt(w′)) | w′ successful run of M on w)

= ‖M‖(w) = s(w) .

The inclusionsDNdet〈〈Σω〉〉⊆DNunamb〈〈Σω〉〉⊆DN 〈〈Σω〉〉 is true by definition. The converse
DNunamb〈〈Σω〉〉⊆Drec〈〈Σω〉〉 is proven by the closure properties of Lemmas 7, 8 and 9(1).

If D is idempotent, by Lemmas 7, 8 and 9(2), we get DN 〈〈Σω〉〉 ⊆ Drec〈〈Σω〉〉. J

The inclusion DN 〈〈Σω〉〉 ⊆ Drec〈〈Σω〉〉 does not hold in general for non-idempotent D.
For the proof, one can consider an adaptation of the counterexample after Lemma 9.

4 Logic for Weighted ω-Pushdown Automata

The third main goal of this paper is a logical characterization of weighted ω-context-free
languages. This section introduces this logic. It is based on [15, 17, 29].

Our logic has three components. The first component is a monadic second-order logic
(MSO). By Büchi, Elgot, Trakhtenbrot [5, 6, 26, 33], MSO has the same expressive power on
finite and infinite words as finite automata.

The second component adds the weights to the logic. Here, this is done by a new layer of
formulas that are to be interpreted quantitatively, using the operations of the ω-pv-monoid.
Formulas of the unweighted part of the logic will be interpreted as 0 or 1 in the ω-pv-monoid.

The third component is a dyadic second-order predicate – a binary relation that is called
matching relation. Every formula will be allowed to use exactly one such predicate to link
positions in words. A matching relation has a specific shape that makes it possible to argue
about the stack in pushdown automata or the brackets in Dyck languages or even about the
nesting in nested words.

Let w ∈ Σω. The set of all positions of w is N. A binary relation M ⊆ N × N is a
matching (cf. [29]) if M is compatible with <, i.e., (i, j) ∈M implies i < j, if each element i
belongs to at most one pair in M , and if M is noncrossing, i.e., (i, j) ∈ M and (k, l) ∈ M
with i < k < j imply i < l < j. Let Match(N) denote the set of all matchings in N× N.

Let V1, V2 denote countable and pairwise disjoint sets of first-order and second-order
variables, respectively. We fix a matching variable µ /∈ V1 ∪ V2. Let V = V1 ∪ V2 ∪ {µ}.
Furthermore, D is always an ω-pv-monoid (D,+,Valω, �,0,1).

I Definition 13. Let Σ be an alphabet. The set ωMSO(D,Σ) of weighted matching ω-MSO
formulas over Σ and D is defined by the extended Backus-Naur form

β ::= Pa(x) | x ≤ y | x ∈ X | µ(x, y) | ¬β | β ∨ β | ∃x. β | ∃X.β
ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where a ∈ Σ, d ∈ D, x, y ∈ V1 and X ∈ V2. We call all formulas β boolean formulas.

M. Droste, S. Dziadek, and W. Kuich 44:9

Table 1 The semantics of boolean (left) and weighted (right) ωMSO(D,Σ) formulas.

(w, σ) |= Pa(x) iff aσ(x) = a Jϕ⊕ ψK(w, σ) = JϕK(w, σ) + JψK(w, σ)
(w, σ) |= x ≤ y iff σ(x) ≤ σ(y) Jϕ⊗ ψK(w, σ) = JϕK(w, σ) � JψK(w, σ)
(w, σ) |= x ∈ X iff σ(x) ∈ σ(X) J

⊕
x ϕK(w, σ) =

∑
i∈N(JϕK(w, σ[x/i]))

(w, σ) |= µ(x, y) iff (σ(x), σ(y)) ∈ σ(µ) J
⊕

X ϕK(w, σ) =
∑
I⊆N(JϕK(w, σ[X/I]))

(w, σ) |= ¬ϕ iff (w, σ) 6|= ϕ JValx ϕK(w, σ) = Valω((JϕK(w, σ[x/i]))i∈N)

(w, σ) |= ϕ ∨ ψ
(w, σ) |= ∃x. ϕ

iff (w, σ) |= ϕ or (w, σ) |= ψ

iff ∃j ∈ N. (w, σ[x/j]) |= ϕ
JβK(w, σ) =

{
1, if (w, σ) |= β,

0, otherwise

(w, σ) |= ∃X.ϕ iff ∃J ⊆ N. (w, σ[X/J]) |= ϕ JdK(w, σ) = d

Variables denote positions in the word. Pa(x) is a predicate indicating that the x-th letter
of the word is a. Furthermore, µ(x, y) says that x and y will be matched. The operations ⊕
and ⊗ evaluate to the operations + and � of the ω-pv-monoid D, respectively. The formulas⊕

x and
⊕

X sum up over all possible instances of x and X, respectively. Valx ϕ applies
Valω to the sequence of infinitely many ϕ, each of them instantiated with a position x ∈ N.

Let V̄ be the collection of all V-assignments, i.e., mappings σ : V → N ∪ 2N ∪Match(N)
where σ(V1) ⊆ N, σ(V2) ⊆ 2N and σ(µ) ∈ Match(N). Let σ be a V-assignment. For x ∈ V1
and j ∈ N, the update σ[x/j] is the V-assignment σ′ with σ′(x) = j and σ′(y) = σ(y) for all
y ∈ V \ {x}. The updates σ[X/J] and σ[µ/M] are defined similarly.

Let ϕ ∈ ωMSO(D,Σ) be a formula, w = a0a1a2 . . . ∈ Σω and let σ be a V-assignment.
We inductively define (w, σ) |= ϕ if ϕ is boolean and JϕK : Σω × V̄ → D if ϕ is non-boolean
over the structure of ϕ as shown in the Table 1, where a ∈ Σ, d ∈ D, x, y ∈ V1 and X ∈ V2.
The logical counterparts ∧, →, ∀x. ϕ, ∀X.ϕ, x 6= y, x < y and i < j < k can be gained from
negation and the existing operators.

Note how formulas φ⊗ ψ are evaluated by the product operation � in the ω-pv-monoid
and also note that our ωWPDAs do not have direct access to this operation. However, the
first two layers of our logic, the ωMSO(D,Σ) formulas, will be translated into weighted
nested ω-word automata and simple series of those automata are closed under intersection
and therefore, � can be translated by a product construction.

We now define MATCHING(µ) ∈ ωMSO(D,Σ) which ensures that µ ∈ Match(N). Let

MATCHING(µ) = ∀x∀y. (µ(x, y)→ x < y)∧
∀x∀y∀k.

(
(µ(x, y) ∧ k 6= x ∧ k 6= y)→ ¬µ(x, k) ∧ ¬µ(k, x) ∧ ¬µ(y, k) ∧ ¬µ(k, y)

)
∧

∀x∀y∀k∀l.
(
(µ(x, y) ∧ µ(k, l) ∧ x < k < y) → x < l < y

)
.

IDefinition 14. The set of formulas of weighted matching ω-logic over Σ and D,ωML(D,Σ),
denotes the set of all formulas ψ of the form

ψ =
⊕

µ

(
ϕ⊗MATCHING(µ)

)
,

for short ψ =
⊕match

µ ϕ, where ϕ ∈ ωMSO(D,Σ).

Let ψ =
⊕match

µ ϕ, w ∈ Σω and let σ be a V-assignment. Then,

JψK(w, σ) =
∑

M∈Match(N)

(JϕK(w, σ[µ/M])) .

FSTTCS 2020

44:10 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

Let ψ ∈ ωML(D,Σ). We denote by Free(ψ) ⊆ V the set of free variables of ψ. A formula
ψ with Free(ψ) = ∅ is called a sentence. For a sentence ψ, JψK(w, σ) does not depend on
σ. It will therefore be omitted and we only write JψK(w) where the series JψK : Σω → D is
called defined by ψ. A series s : Σω → D is weighted-ωML-definable if there exists a sentence
ψ ∈ ωML(D,Σ) such that JψK = s.

I Example 15. Here we define a logical sentence that defines the same series as in Example 5.
Consider the same ω-pv-monoid (R̄, sup, specialavg,+,−∞, 0) as there.

The subformula pstructure ensures that the first symbol is a request and that requests
occur directly after answers. The formula pmatching relates corresponding call and returns
and forbids calls without returns and vice versa. Furthermore, calls must be returned before
giving the answer to the clients. Finally, the server has to serve clients infinitely often.

next(x, y) = x < y ∧ ¬(∃z. x ≤ z ≤ y)
first(x) = ∀y. x ≤ y
pstructure = ∀x. (first(x)→ Preq(x)) ∧ ∀x∀y.next(x, y)→ (Pans(x)↔ Preq(y))
pmatching = ∀x. Pcall(x)→ ∃y. Pret(y) ∧ µ(x, y)

∧ ∀y. Pret(y)→ ∃x. Pcall(x) ∧ µ(x, y)
∧ ∀x. ∀y.

[
µ(x, y)→ ¬

(
∃z. x ≤ z ≤ y ∧ Pans(z)

)]
∧ ∀x. ∀y.

[
µ(x, y)→

(
(Preq(x) ∧ Pans(y)) ∨ (Pcall(x) ∧ Pret(y))

)]
pinf_serving = ∀x. ∃y. (x < y ∧ Preq(y))
ϕunweighted = pstructure ∧ pmatching ∧ pinf_serving

The weights of the words are distributed depending on the symbol and the formula ϕweighted
also applies the Valω function to the resulting sequence of weights.

ϕweighted = Valx
[(
Preq(x) ∨ Pans(x)

)
⊕
(
(Pcall(x) ∨ Pret(x) ∨ Pwait(x))⊗ 1

)]
Then, we we quantify over the matching variable and only consider the weight calculated in
ϕweighted if the formula ϕunweighted is true:

ψ =
⊕match

µ ϕunweighted ⊗ ϕweighted

Finally, we have JψK = ‖A‖ for the ωWPDA A of Example 5.

The weighted matching ω-logic, ωML(D,Σ), contains exactly one predicate µ and exactly
one quantification over it. This corresponds to the behavior of pushdown automata where
exactly one pushdown tape is used. In contrast, the pushdown automaton uses the ω-valuation
function Valω only once per run and never recursively. As formulas ValxValy ϕ ∈ ωMSO(D,Σ)
are not always translatable into automata, we follow [11, 17, 22] and define some possible
restrictions of our logic.

The set of almost boolean formulas is the smallest set of all formulas of ωMSO(D,Σ)
containing all constants d ∈ D and all boolean formulas which is closed under ⊕ and ⊗.

I Definition 16 ([11, 22]). Let ϕ ∈ ωMSO(D,Σ). We call ϕ
1. strongly-⊗-restricted if for all subformulas µ⊗ ν of ϕ:

either µ and ν are almost boolean or µ is boolean or ν is boolean.
2. Val-restricted if for all subformulas Valx µ of ϕ, µ is almost boolean.
3. syntactically restricted if it is both Val-restricted and strongly-⊗-restricted.
Let now ψ =

⊕match
µ ϕ ∈ ωML(D,Σ). For X ∈ {strongly-⊗,Val, syntactically}, we also say

that ψ is X-restricted if ϕ is X-restricted.

M. Droste, S. Dziadek, and W. Kuich 44:11

The following will be the third main result. Regular ω-pv-monoids will be defined in
the next section on page 11 as they depend on nested ω-word automata. We will prove the
following theorem in Section 6.

I Theorem 17. Let D be a regular ω-pv-monoid and s : Σω → D be a series. The following
are equivalent:
1. s is ωWPDA-recognizable
2. There is a syntactically restricted ωML(D,Σ)-sentence ϕ with JϕK = s.

5 Weighted Nested ω-Word Languages

The ωMSO(D,Σ) formulas correspond exactly to weighted nested ω-word languages [11]
(cf. [1]). In fact, without considering the existential quantification over the matching relation
∃matchµ, the matching must explicitly be encoded in the words; the result is a nested word.
Because of limited space, we refrain from a detailed definition of weighted nested ω-word
automata and refer the reader to [11].

A nested ω-word nw over Σ is a pair (w, ν) = (a0a1a2 . . . , ν) where w ∈ Σω is an ω-word
and ν ∈ Match(N) is a matching relation over N. Let NWω(Σ) denote the set of all nested
ω-words over Σ. For two positions i, j ∈ N with ν(i, j), we call i a call position and j a
return position. If i is neither call nor return, we call it an internal position. A position i for
i ∈ N is called top-level if there exist no positions j, k ∈ N with j < i < k and ν(j, k).

A weighted stair Muller nested word automaton (ωWNWA) as defined in [11] is a Muller
automaton on nested ω-words (w, ν) that for every return position has access to the state at
the corresponding call position. The stair Muller acceptance condition is a Muller acceptance
condition used exclusively on top-level position, i.e., only the states occurring infinitely often
in the infinite sequence of top-level positions are considered.

Every function s : NWω(Σ)→ D is called a nested ω-word series (nw-series). Every nw-
series s which is the behavior of some ωWNWA over D is called ωWNWA-recognizable.

We will now discuss how ωMSO is an equivalent logic to ωWNWAs. Note that ωMSO(D,Σ)
formulas may contain the free variable µ. Given a nested word nw = (w, ν), we let σ(µ) = ν

and make no difference between (w, σ) ∈ Σω × ({µ} → Match(N)) and the nested word nw.
We extend the semantics definitions as follows. Let ϕ ∈ ωMSO(D,Σ) and Free(ϕ) ⊆ {µ},
then we define JϕKnw : NWω(Σ)→ D by letting

JϕKnw(w, ν) = JϕK(w, σ) for σ(µ) = ν .

Let d ∈ D denote the constant series with value d, i.e., d(nw) = d for each nw ∈ NWω(Σ).
An ω-pv-monoid D is called regular if all constant series of D are ωWNWA-recognizable.

In other words, D is regular if for any alphabet Σ, we have: For each d ∈ D, there exists an
ωWNWA Ad with ‖Ad‖ = d.

Note that for this paper, regularity of ω-pv-monoids is defined by the means of ωWNWAs.
In the proof of Theorem 18, this is used in the structural induction as a logical formula
ϕ = d, for a weight d, can otherwise not necessarily be translated into an automaton.

Sufficient properties for an ω-pv-monoid to be regular are shown in [22]. Especially
left-multiplicative and left-Valω-distributive ω-pv-monoids are regular, i.e., if we have d �
Valω((di)i∈N) = Valω((d � di)i∈N) or d � Valω((di)i∈N) = Valω(d � d0, (di)i≥1) for all d ∈ D
and (di)i∈N ∈ Dω, then D is regular because we can easily construct ωWNWAs (and even
ωWFAs) for every constant series. All ω-pv-monoids in Example 1 are regular.

FSTTCS 2020

44:12 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

I Theorem 18 ([11]). Let D be a regular ω-pv-monoid and s : NWω(Σ)→ D be a nw-series.
The following are equivalent:
1. s is ωWNWA-recognizable
2. There is a syntactically restricted ωMSO(D,Σ)-formula ϕ with Free(ϕ) ⊆ {µ} and

JϕKnw = s.

The mapping π : NWω(Σ)→ Σω removes the nesting relation from the nested word, i.e.,
for nw = (w, ν), we define π(nw) = w. This can be extended to nw-series s : NWω(Σ)→ D

by setting π(s)(w) =
∑
nw∈π−1(w) s(nw) which equals π(s)(w) =

∑
M∈Match(N) s(w, ∅[µ/M]).

The following is crucial for the rest of the paper.

I Lemma 19. Let s : NWω(Σ)→ D be an ωWNWA-recognizable nw-series. Then the series
π(s) : Σω → D is ωWPDA-recognizable.

For unweighted languages, there is a similar proof in [4, 15]. Here, the proof is more
complicated because the acceptance conditions differ. We have to construct a Büchi-accepting
pushdown automaton from a stair Muller nested-word automaton.

Proof. By Theorem 6, it suffices to construct a Muller-accepting ωWPDA from a given
ωWNWA. We simulate the transitions of the ωWNWA by pushing states onto the stack.
Additionally, we enrich the states by the information if we are top-level or not. This
information is also pushed onto the stack for the reconstruction of the top-level property
upon popping. Furthermore, we allow the new Muller-accepting ωWPDA to visit arbitrary
subsets of states that are not top-level in between the original Muller-accepting states. J

6 Equivalence of Logic and Automata

This section proves the equivalence of ωML(D,Σ) and weighted simple ω-pushdown automata.

I Lemma 20. Let D be a regular ω-pv-monoid and s : Σω → D be an ωWPDA-recognizable
series. Then s is ωML-definable by a syntactically restricted ωML(D,Σ)-sentence.

Proof. The proof builds a syntactically restricted ωML(D,Σ)-sentence θ such that JθK = s.
The sentence θ defines exactly the behavior of an ωWPDA. Hereby, we proceed similarly
to [15] and [17, 34, 11]. J

I Lemma 21. Let D be a regular ω-pv-monoid and let ψ be a syntactically restricted
ωML(D,Σ)-sentence. Then JψK : Σω → D is ωWPDA-recognizable.

Proof. Let ψ =
⊕Match

µ ϕ for ϕ ∈ ωMSO(D,Σ). Apply Theorem 18 to infer that JϕKnw is
ωWNWA-recognizable. Now, we use the projection π : NWω(Σ)→ Σω of Section 5 to get
π(JϕKnw)(w) =

∑
M∈Match(N)(JϕK(w, ∅[µ/M])) = JψK(w). By Lemma 19, JψK = π(JϕKnw) is

ωWPDA-recognizable. J

Proof of Theorem 17. This is immediate by Lemmas 20 and 21. J

7 Conclusion

We defined ω-pv-monoids and ω-pushdown automata with weights from ω-pv-monoids. We
first generalized a fundamental result of unweighted automata theory: Büchi acceptance and
Muller acceptance are expressively equivalent; we can show that this remains the case for
weighted simple pushdown automata of infinite words.

M. Droste, S. Dziadek, and W. Kuich 44:13

For the class of languages recognized by our automata, we proved several closure properties
and, as our second main result, a Nivat-like decomposition theorem. It states that the weighted
languages in our class are induced by an unweighted context-free language and a very simple
weighted part; the two components can be intersected and a projection of this intersection
gives us the original language.

The third main result is an expressively equivalent logic. This logic has three layers. The
first layer basically describes nested ω-word-languages. The first two layers together describe
weighted nested ω-word-languages. The third layer existentially quantifies the matching
variable and corresponds to a projection from nested words to context-free languages. In
this way, we can apply the Büchi-Elgot-Trakhtenbrot-Theorem for weighted regular nested
ω-word-languages to obtain our equivalence result.

The present result raises the question how weighted simple ω-pushdown automata on ω-
valuation monoids and therefore also our weighted matching ω-logic relate to a corresponding
notion of weighted context-free ω-grammars; for weighted simple ω-pushdown automata over
commutative complete star-omega semirings, this was described in [12].

In Theorem 17, it would be desirable to generalize the notion of regular ω-pv-monoids
to only require ωWPDA instead of ωWNWA. The classical inductive proof method of
Theorem 18 not longer works in this case. However it seems that ω-pv-monoids where
constant series are ωWPDA-recognizable but not ωWNWA-recognizable are very artificial.

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In ACM Symposium on Theory of

Computing (STOC 2004), pages 202–211, 2004. doi:10.1145/1007352.1007390.
2 P. Babari and M. Droste. A Nivat theorem for weighted picture automata and weighted MSO

logics. J. Comput. Syst. Sci., 104:41–57, 2019. doi:10.1016/j.jcss.2017.02.009.
3 C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
4 A. Blass and Y. Gurevich. A note on nested words. Microsoft Research, 2006. URL: https:

//www.microsoft.com/en-us/research/publication/180-a-note-on-nested-words/.
5 J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly,

6:66–92, 1960. doi:10.1002/malq.19600060105.
6 J. R. Büchi. Symposium on decision problems: On a decision method in restricted second order

arithmetic. In Logic, Methodology and Philosophy of Science, volume 44 of Studies in Logic and
the Foundations of Mathematics, pages 1–11. Elsevier, 1966. doi:10.1016/S0049-237X(09)
70564-6.

7 K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. In Computer Science
Logic (CSL 2008), pages 385–400. Springer, 2008. doi:10.1007/978-3-540-87531-4_28.

8 N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics, volume 35: Computer Programming
and Formal Systems, pages 118–161. Elsevier, 1963. doi:10.1016/S0049-237X(08)72023-8.

9 E. M Clarke, T. A Henzinger, H. Veith, and R. P. Bloem. Handbook of Model Checking.
Springer, 2016. doi:10.1007/978-3-319-10575-8.

10 R. S. Cohen and A. Y. Gold. Theory of ω-languages I: Characterizations of ω-context-free
languages. Journal of Computer and System Sciences, 15(2):169–184, 1977. doi:10.1016/
S0022-0000(77)80004-4.

11 M. Droste and S. Dück. Weighted automata and logics for infinite nested words. Information
and Computation, 253:448–466, 2017. doi:10.1016/j.ic.2016.06.010.

12 M. Droste, S. Dziadek, and W. Kuich. Greibach normal form for ω-algebraic systems and
weighted simple ω-pushdown automata. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2019), volume 150 of LIPIcs, pages 38:1–38:14, 2019. doi:
10.4230/LIPIcs.FSTTCS.2019.38.

13 M. Droste, S. Dziadek, and W. Kuich. Weighted simple reset pushdown automata. Theoretical
Computer Science, 777:252–259, 2019. doi:10.1016/j.tcs.2019.01.016.

FSTTCS 2020

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/j.jcss.2017.02.009
https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://www.microsoft.com/en-us/research/publication/180-a- note-on-nested-words/
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/S0022-0000(77)80004-4
https://doi.org/10.1016/j.ic.2016.06.010
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.38
https://doi.org/10.1016/j.tcs.2019.01.016

44:14 Nivat-Theorem and Logic for Weighted ω-Pushdown Automata

14 M. Droste, S. Dziadek, and W. Kuich. Greibach normal form for ω-algebraic systems and
weighted simple ω-pushdown automata, 2020. Submitted. arXiv:2007.08866.

15 M. Droste, S. Dziadek, and W. Kuich. Logic for ω-pushdown automata. Information and
Computation, 2020. Special issue on "Weighted Automata", Accepted for publication.

16 M. Droste, Z. Ésik, and W. Kuich. The triple-pair construction for weighted ω-pushdown
automata. In Conference on Automata and Formal Languages (AFL 2017), volume 252 of
Electronic Proceedings in Theoretical Computer Science, pages 101–113, 2017. doi:10.4204/
EPTCS.252.12.

17 M. Droste and P. Gastin. Weighted automata and weighted logics. Theoretical Computer
Science, 380(1-2):69–86, 2007. doi:10.1016/j.tcs.2007.02.055.

18 M. Droste and P. Gastin. Weighted automata and weighted logics. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of Weighted Automata, EATCS Monographs in Theoretical Com-
puter Science, chapter 5, pages 175–211. Springer, 2009. doi:10.1007/978-3-642-01492-5_5.

19 M. Droste and W. Kuich. A Kleene theorem for weighted ω-pushdown automata. Acta
Cybernetica, 23:43–59, 2017. doi:10.14232/actacyb.23.1.2017.4.

20 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, 2009. doi:10.1007/978-3-642-01492-5.

21 M. Droste and D. Kuske. Weighted automata. In J.-E. Pin, editor, Handbook of Automata
Theory, chapter 4. European Mathematical Society, to appear.

22 M. Droste and I. Meinecke. Weighted automata and weighted MSO logics for average and
long-time behaviors. Information and Computation, 220:44–59, 2012. doi:10.1016/j.ic.
2012.10.001.

23 M. Droste and V. Perevoshchikov. A logical characterization of timed pushdown languages. In
Computer Science Symposium in Russia (CSR 2015), volume 9139 of LNCS, pages 189–203.
Springer, 2015. doi:10.1007/978-3-319-20297-6_13.

24 M. Droste and V. Perevoshchikov. Logics for weighted timed pushdown automata. In Fields of
Logic and Computation II, pages 153–173. Springer, 2015. doi:10.1007/978-3-319-23534-9_
9.

25 M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In
Developments in Language Theory (DLT 2006), volume 54, pages 49–58. Springer, 2006.
doi:10.1007/11779148_6.

26 C. C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions
of the American Mathematical Society, 98:21–51, 1961. doi:10.2307/2270940.

27 Z. Ésik and W. Kuich. A semiring-semimodule generalization of ω-context-free languages.
In Theory Is Forever, volume 3113 of LNCS, pages 68–80. Springer, 2004. doi:10.1007/
978-3-540-27812-2_7.

28 D. Krob. Monoides et semi-anneaux complets. Semigroup Forum, 36:323–339, 1987. doi:
10.1007/BF02575025.

29 C. Lautemann, T. Schwentick, and D. Thérien. Logics for context-free languages. In Computer
Science Logic (CSL 1994), volume 933 of LNCS, pages 205–216. Springer, 1994. doi:10.1007/
BFb0022257.

30 K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. doi:10.1007/
978-1-4615-3190-6.

31 M. Nivat. Transductions des langages de Chomsky. Annales de l’Institut Fourier, 18(1):339–455,
1968. doi:10.5802/aif.287.

32 W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics, chapter 4, pages 133–191. Elsevier, 1990. doi:
10.1016/B978-0-444-88074-1.50009-3.

33 B. A. Trakhtenbrot. Finite automata and the logic of single-place predicates. Doklady Akademii
Nauk, 140(2):326–329, 1961. In Russian. URL: http://mi.mathnet.ru/dan25511.

34 H. Vogler, M. Droste, and L. Herrmann. A weighted MSO logic with storage behaviour
and its Büchi-Elgot-Trakhtenbrot theorem. In Language and Automata Theory and Ap-
plications (LATA 2016), volume 9618 of LNCS, pages 127–139. Springer, 2016. doi:
10.1007/978-3-319-30000-9_10.

http://arxiv.org/abs/2007.08866
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.4204/EPTCS.252.12
https://doi.org/10.1016/j.tcs.2007.02.055
https://doi.org/10.1007/978-3-642-01492-5_5
https://doi.org/10.14232/actacyb.23.1.2017.4
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1007/978-3-319-20297-6_13
https://doi.org/10.1007/978-3-319-23534-9_9
https://doi.org/10.1007/978-3-319-23534-9_9
https://doi.org/10.1007/11779148_6
https://doi.org/10.2307/2270940
https://doi.org/10.1007/978-3-540-27812-2_7
https://doi.org/10.1007/978-3-540-27812-2_7
https://doi.org/10.1007/BF02575025
https://doi.org/10.1007/BF02575025
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.5802/aif.287
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
http://mi.mathnet.ru/dan25511
https://doi.org/10.1007/978-3-319-30000-9_10
https://doi.org/10.1007/978-3-319-30000-9_10

Synchronization of Deterministic Visibly
Push-Down Automata
Henning Fernau
Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany
fernau@uni-trier.de

Petra Wolf
Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany
https://www.wolfp.net/
wolfp@informatik.uni-trier.de

Abstract
We generalize the concept of synchronizing words for finite automata, which map all states of the
automata to the same state, to deterministic visibly push-down automata. Here, a synchronizing
word w does not only map all states to the same state but also fulfills some conditions on the
stack content of each run after reading w. We consider three types of these stack constraints: after
reading w, the stack (1) is empty in each run, (2) contains the same sequence of stack symbols
in each run, or (3) contains an arbitrary sequence which is independent of the other runs. We
show that in contrast to general deterministic push-down automata, it is decidable for deterministic
visibly push-down automata whether there exists a synchronizing word with each of these stack
constraints, more precisely, the problems are in EXPTIME. Under the constraint (1), the problem is
even in P. For the sub-classes of deterministic very visibly push-down automata, the problem is in P
for all three types of constraints. We further study variants of the synchronization problem where
the number of turns in the stack height behavior caused by a synchronizing word is restricted, as
well as the problem of synchronizing a variant of a sequential transducer, which shows some visibly
behavior, by a word that synchronizes the states and produces the same output on all runs.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Grammars and context-free languages; Theory of computation → Automata
extensions; Theory of computation → Transducers

Keywords and phrases Synchronizing word, Deterministic visibly push-down automata, Deterministc
finite atuomata, Finite-turn push-down automata, Sequential transducer, Computational complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.45

Related Version A full version of the paper is available at ArXiv [17], https://arxiv.org/abs/
2005.01374.

Funding Petra Wolf : DFG project FE 560/9-1.

1 Introduction

The classical synchronization problem asks, given a deterministic finite automaton (DFA),
whether there exists a synchronizing word that brings all states of the automaton to a single
state. While this problem is solvable in polynomial time [12, 34, 43], many variants, such
as synchronizing only a subset of states [34], or synchronizing a partial automaton without
taking an undefined transition (called carefully synchronizing) [25], are PSPACE-complete.
Restricting the length of a potential synchronizing word by a parameter in the input also
yields a harder problem, namely the NP-complete short synchronizing word problem [31, 16].
The field of synchronizing automata has been intensively studied over the last years, among
others in attempt to verify the famous Černý conjecture claiming that every synchronizable
DFA admits a synchronizing word of quadratic length in the number of states [12, 13, 39, 40].

© Henning Fernau and Petra Wolf;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
https://orcid.org/0000-0003-3097-3906
https://www.wolfp.net/
mailto:wolfp@informatik.uni-trier.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.45
https://arxiv.org/abs/2005.01374
https://arxiv.org/abs/2005.01374
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Synchronization of Deterministic Visibly Push-Down Automata

The currently best upper bound on this length is cubic, and only very little progress has
been made, basically improving on the multiplicative constant factor in front of the cubic
term, see [37, 41]. More information on synchronization of DFA and the Černý conjecture
can be found in [43, 7, 1]. In this work, we want to move away from deterministic finite
automata to more general deterministic visibly push-down automata.1

The synchronization problem has been generalized in the literature to other automata
models including infinite-state systems with infinite branching such as weighted and timed
automata [15, 36] or register automata [5]. Here, register automata are infinite state systems
where a state consists of a control state and register contents.

Another automaton model, where the state set is enhanced with a possibly infinite memory
structure, namely a stack, is the class of nested word automata (NWAs were introduced in [3]),
where an input word is enhanced with a matching relation determining at which pair of
positions in a word a symbol is pushed to and popped from the stack. The class of languages
accepted by NWAs is identical to the class of visibly push-down languages (VPL) accepted
by visibly push-down automata (VPDA) and forms a proper sub-class of the deterministic
context-free languages. VPDAs have first been studied by Mehlhorn [27] under the name
input-driven pushdown automata and became quite popular more recently due to the work
by Alur and Madhusudan [2], showing that VPLs share several nice properties with regular
languages. For more on VPLs we refer to the survey [30]. In [14], the synchronization problem
for NWAs was studied. There, the concept of synchronization was generalized to bringing all
states to one single state such that for all runs the stack is empty (or in its start configuration)
after reading the synchronizing word. In this setting, the synchronization problem is solvable
in polynomial time (again indicating similarities of VPLs with regular languages), while the
short synchronizing word problem (with length bound given in binary) is PSPACE-complete;
the question of synchronizing from or into a subset is EXPTIME-complete. Also, matching
exponential upper bounds on the length of a synchronizing word are given.

Our attempt in this work is to study the synchronization problem for real-time (no
ε-transitions) deterministic visibly push-down automata (DVPDA) and several sub-classes
thereof, like real-time deterministic very visibly push-down automata (DVVPDA for short;
this model was introduced in [24]), real-time deterministic visibly counter automata (DVCA
for short; this model appeared a.o. in [6, 38, 9, 21, 22, 23]) and finite turn variants thereof.
We want to point out that, despite the equivalence of the accepted language class, the
automata models of nested word automata and visibly push-down automata still differ and
the results from [14] do not immediately transfer to VPDAs, as for NWAs an input word
is equipped with a matching relation, which VPDAs lack of. In general, the complexity of
the synchronization problem can differ for different automata models accepting the same
language class. For instance, in contrast to the polynomial time solvable synchronization
problem for DFAs, the generalized synchronization problem for finite automata with one
ambiguous transition is PSPACE-complete, as well as the problem of carefully synchronizing
a DFA with one undefined transition [26]. We will not only consider the synchronization
model introduced in [14], where reading a synchronizing word results in an empty stack on
all runs; but we will also consider a synchronization model where not only the final state
on every run must be the same but also the stack content needs to be identical, as well as
a model where only the states needs to be synchronized and the stack content might be

1 The term synchronization of push-down automata already occurs in the literature, i.e., in [11, 4], but
there the term synchronization refers to some relation of the input symbols to the stack behavior [11] or
to reading different words in parallel [4]; not to confuse it with our notion of synchronizing states.

H. Fernau and P. Wolf 45:3

arbitrary. These three models of synchronization have been introduced in [28], where length
bounds on a synchronizing word for general DPDAs have been studied dependent on the
stack height. The complexity of these three concepts of synchronization for general DPDAs
are considered in [18], where it is shown that synchronizability is undecidable for general
DPDAs and deterministic counter automata (DCA). It becomes decidable for deterministic
partially blind counter automata and is PSPACE-complete for some types of finite turn
DPDAs, while it is still undecidable for other types of finite turn DPDAs.

In contrast, we will show in the following that for DVPDAs and considered sub-classes
hereof, the synchronization problem for all three stack models, with restricted or unrestricted
number of turns, is in EXPTIME and hence decidable. For DVVPDAs and DVCAs, the
synchronization problems for all three stack models (with unbounded number of turns) are
even in P. Like the synchronization problem for NWAs in the empty stack model considered
in [14], we observe that the synchronization problem for DVPDAs in the empty stack model is
solvable in polynomial time, whereas synchronization of DVPDAs in the same and arbitrary
stack models is at least PSPACE-hard. If the number of turns caused by a synchronizing
word on each run is restricted, the synchronization problem becomes PSPACE-hard for all
considered automata models for n > 0 and is only in P for n = 0 in the empty stack model.
We will further introduce variants of synchronization problems distinguishing the same and
arbitrary stack models by showing complementary complexities in these models. For problems
considered in [18], these two stack models have always shared their complexity status.

Due to lack of space, missing proof details can be found in the long version of this
work [17].

2 Fixing Notations

We refer to the empty word as ε. For a finite alphabet Σ, we denote with Σ∗ the set of
all words over Σ and with Σ+ = ΣΣ∗ the set of all non-empty words. For i ∈ N, we set
[i] = {1,2, . . . , i}. For w ∈ Σ∗, we denote with ∣w∣ the length of w, with w[i] for i ∈ [∣w∣] the
i’th symbol of w, and with w[i..j] for i, j ∈ [∣w∣] the subword w[i]w[i + 1] . . .w[j] of w. We
call w[1..i] a prefix and w[i..∣w∣] a suffix of w. If i < j, then w[j, i] = ε.

We call A = (Q,Σ, δ, q0, F) a deterministic finite automaton (DFA for short) if Q is a finite
set of states, Σ is a finite input alphabet, δ is a transition function Q×Σ→ Q, q0 is the initial
state, and F ⊆ Q is the set of final states. The transition function δ is generalized to words by
δ(q,w) = δ(δ(q,w[1]),w[2..∣w∣]) for w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(q0,w) ∈ F
and the language accepted by A is defined by L(A) = {w ∈ Σ∗ ∣ δ(q0,w) ∈ F}. We extend δ to
sets of states Q′ ⊆ Q or to sets of letters Σ′ ⊆ Σ, letting δ(Q′,Σ′) = {δ(q′, σ′) ∣ (q′, σ′) ∈ Q′×Σ′}.
Similarly, we may write δ(Q′,Σ′) = p to define δ(q′, σ′) = p for each (q′, σ′) ∈ Q′ ×Σ′. The
synchronization problem for DFAs (called DFA-Sync) asks for a given DFA A whether there
exists a synchronizing word for A. A word w is called a synchronizing word for a DFA A if it
brings all states of the automaton to one single state, i.e., ∣δ(Q,w)∣ = 1.

We call M = (Q,Σ,Γ, δ, q0,�, F) a deterministic push-down automaton (DPDA for short)
if Q is a finite set of states; the finite sets Σ and Γ are the input and stack alphabet,
respectively; δ is a transition function Q ×Σ × Γ→ Q × Γ∗; q0 is the initial state; � ∈ Γ is the
stack bottom symbol which is only allowed as the first (lowest) symbol in the stack, i.e., if
δ(q, a, γ) = (q′, γ′) and γ′ contains �, then � only occurs in γ′ as its prefix and moreover,
γ = �; and F is the set of final states. We will only consider real-time push-down automata
and forbid ε-transitions, as can be seen in the definition. Notice that the bottom symbol can
be removed, but then the computation gets stuck.

FSTTCS 2020

45:4 Synchronization of Deterministic Visibly Push-Down Automata

Following [14], a configuration of M is a tuple (q, υ) ∈ Q × Γ∗. For a letter σ ∈ Σ and a
stack content υ, with ∣υ∣ = n, we write (q, υ) σÐ→ (q′, υ[1..(n − 1)]γ) if δ(q, σ, υ[n]) = (q′, γ).
This means that the top of the stack υ is the right end of υ. We also denote with Ð→ the
reflexive transitive closure of the union of σÐ→ over all letters in Σ. The input words on top
of Ð→ are concatenated accordingly, so that Ð→= ⋃w∈Σ∗

wÐ→. The language L(M) accepted
by a DPDA M is L(M) = {w ∈ Σ∗ ∣ (q0,�)

wÐ→ (qf , γ), qf ∈ F}. We call the sequence of
configurations (q,�) wÐ→ (q′, γ) the run induced by w, starting in q, and ending in q′. We
might also call q′ the final state of the run.

We will discuss three different concepts of synchronizing DPDAs. For all concepts, we
require that a synchronizing word w ∈ Σ∗ maps all states, starting with an empty stack, to
the same synchronizing state, i.e., for all q, q′ ∈ Q∶ (q,�) wÐ→ (q, υ), (q′,�) wÐ→ (q, υ′). In other
words, for a synchronizing word all runs started on some states in Q end up in the same
state. In addition to synchronizing the states of a DPDA, we will consider the following two
conditions for the stack content: (1) υ = υ′ = �, (2) υ = υ′. We will call (1) the empty stack
model and (2) the same stack model. In the third case, we do not put any restrictions on the
stack content and call this the arbitrary stack model.
As we are only interested in synchronizing a DPDA, we can neglect the start and final states.

Starting from DPDAs, we define the following sub-classes thereof:
A deterministic visibly push-down automaton (DVPDA) is a DPDA where the input
alphabet Σ can be partitioned into Σ = Σcall ∪Σint ∪Σret such that the change in the stack
height is determined by the partition of the alphabet. To be more precise, the transition
function δ is modified such that it can be partitioned accordingly into δ = δc ∪ δi ∪ δr such
that δc∶Q ×Σ→ Q × (Γ/{�}) puts a symbol on the stack, δi∶Q ×Σ→ Q leaves the stack
unchanged, and δr∶Q ×Σ × Γ→ Q reads and pops a symbol from the stack [2]. If � is the
symbol on top of the stack, then � is only read and not popped. We call letters in Σcall
call or push letters; letter in Σint internal letters; and letters in Σret return or pop letters.
The language class accepted by DVPDA is equivalent to the class of languages accepted
by deterministic nested word automata (see [14]).
A deterministic very visibly push-down automaton (DVVPA) is a DVPDA where not only
the stack height but also the stack content is completely determined by the input alphabet,
i.e., for a letter σ ∈ Σ and all states p, q ∈ Q for δc(p, σ) = (p′, γp) and δc(q, σ) = (q′, γq) it
holds that γp = γq.
A deterministic visibly (one) counter automaton (DVCA) is a DVPDA where ∣Γ/{�}∣ = 1;
note that every DVCA is also a DVVPDA.

We are now ready to define a family of synchronization problems, the complexity of which
will be our subject of study in the following sections.

I Definition 1 (Sync-DVPDA-Empty).
Given: DPDA M = (Q,Σ,Γ, δ,�).
Question: Does there exist a word w ∈ Σ∗ that synchronizes M in the empty stack model?

For the same stack model, we refer to the synchronization problem above as Sync-DVPDA-
Same and as Sync-DVPDA-Arb in the arbitrary stack model. Variants of these problems
are defined by replacing the DVPDA in the definition above by a DVVPDA, and DVCA. If
results hold for several stack models or automata models, then we summarize the problems
by using set notations in the corresponding statements. For the problems Sync-DVPDA-
Same and Sync-DVPDA-Arb, we introduce two further refined variants of these problems,
denoted by the extension -Return and -NoReturn, where for all input DVPDA in the
former variant Σret ≠ ∅ holds, whereas in the latter variant Σret = ∅ holds. In the following,

H. Fernau and P. Wolf 45:5

Table 1 Complexity status of the synchronization problem for different classes of deterministic
real-time visibly push-down automata in different stack synchronization modes. For the n-turn
synchronization variants, n takes all values not explicitly listed. All our problems are in EXPTIME.

class of automata empty stack model same stack model arbitrary stack model

DVPDA P PSPACE-complete PSPACE-hard
DVPDA-NoReturn P PSPACE-complete P
DVPDA-Return P P PSPACE-hard
n-Turn-Sync-DVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVPDA P PSPACE-complete PSPACE-complete
DVVPDA P P P
n-Turn-Sync-DVVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVVPDA P PSPACE-complete PSPACE-complete
DVCA P P P
n-Turn-Sync-DVCA PSPACE-hard PSPACE-hard PSPACE-hard
1-Turn-Sync-DVCA PSPACE-complete PSPACE-complete PSPACE-complete
0-Turn-Sync-DVCA P PSPACE-complete PSPACE-complete

these variants reveal insights in the differences between synchronization in the same stack
and arbitrary stack models, as well as connections to a concept of trace-synchronizing a
sequential transducer showing some visibly behavior.

We will further consider synchronization of these automata classes in a finite-turn setting.
Finite-turn push-down automata were introduced in [20]. We adopt the definition in [42].
For a DVPDA M , an upstroke of M is a sequence of configurations induced by an input
word w such that no transition decreases the stack-height. Accordingly, a downstroke of M
is a sequence of configurations in which no transition increases the stack-height. A stroke is
either an upstroke or downstroke. A DVPDA M is an n-turn DVPDA if for all w ∈ L(M) the
sequence of configurations induced by w can be split into at most n + 1 strokes. Especially,
for 1-turn DVPDAs, each sequence of configurations induced by an accepting word consists of
one upstroke followed by a most one downstroke. Two subtleties arise when translating this
concept to synchronization: (a) there is no initial state so that there is no way to associate a
stroke counter with a state, and (b) there is no language of accepted words that restricts the
set of words on which the number of strokes should be limited. Hence, in the synchronization
setting the finite turn property is not a property of the push-down automaton but rather of
the word applied to all states in parallel. We therefore generalize the concept of finite-turn
DVPDAs to finite-turn synchronization for DVPDAs as follows.

I Definition 2 (n-Turn-Sync-DVPDA-Empty).
Given: DVPDA M = (Q,Σ,Γ, δ, q0,�, F).
Question: Is there a synchronizing word w ∈ Σ∗ in the empty stack model, such that for all
states q ∈ Q, the sequence of configurations (q,�) wÐ→ (q,�) consists of at most n + 1 strokes?

We call such a synchronizing word w an n-turn synchronizing word for M . We define
n-Turn-Sync-DVPDA-Same and n-Turn-Sync-DVPDA-Arb accordingly for the same
stack and arbitrary stack model. Further, we extend the problem definition to other classes
of automata such as real-time DVVPDAs, and DVCAs. Table 1 summarizes our results,
obtained in the next sections, on the complexity status of these problems together with the
above introduced synchronization problems.

Finally, we introduce two PSPACE-complete problems for DFAs to reduce from later.

FSTTCS 2020

45:6 Synchronization of Deterministic Visibly Push-Down Automata

I Definition 3 (DFA-Sync-Into-Subset (PSPACE-complete [32])).
Given: DFA A = (Q,Σ, δ), subset S ⊆ Q.
Question: Is there a word w ∈ Σ∗ such that δ(Q,w) ⊆ S?

I Definition 4 (DFA-Sync-From-Subset (PSPACE-complete [34])).
Given: DFA A = (Q,Σ, δ) with S ⊆ Q.
Question: Is there a word w ∈ Σ∗ that synchronizes S, i.e., for which ∣δ(S,w)∣ = 1 is true?

3 DVPDAs – Distinguishing the Stack Models

We start with some positive result showing that we come down from the undecidability of
the synchronization problem for general DPDAs in the empty set model to a polynomial
time solvable version by considering visibly DPDAs.

I Theorem 5. The problems Sync-DVPDA-Empty, Sync-DVCA-Empty, and Sync-
DVVPDA-Empty are decidable in polynomial time.

Proof. We prove the claim for Sync-DVPDA-Empty as the other automata classes are
sub-classes of DVPDAs. Let M = (Q,Σcall ∪Σint ∪Σret,Γ, δ,�) be a DVPDA. First, observe
that if Σret is empty, then any synchronizing word w for M in the empty stack model cannot
contain any letter from Σcall. Hence, M is basically a DFA and for DFAs the synchronization
problem is in P [12, 43, 34]. From now on, assume Σret ≠ ∅. We show that a pair argument
similar to the one for DFAs can be applied, namely that M is synchronizable in the empty
stack model if and only if every pair of states p, q ∈ Q can be synchronized in the empty stack
model. The only if direction is clear as every synchronizing word for Q also synchronizes
each pair of states. For the other direction, observe that since M is a DVPDA, the stack
height of each path starting in any state of M is predefined by the sequence of input symbols.
Hence, if we focus on the two runs starting in p, q and ensure that their stacks are empty
after reading a word w, then also the stacks of all other runs starting in other states in
parallel are empty after reading w. Therefore, we can successively concatenate words that
synchronize some pair of active states in the empty stack model and end up with a word that
synchronizes all states of M in the empty stack model. Further formal algorithmic details
can be found in the long version [17]. J

Does this mean everything is easy and we are done? Interestingly, the picture is not that
simple, as considering the same and arbitrary stack models shows.

I Theorem 6. The problem Sync-DVPDA-Same is PSPACE-hard.

Proof. We reduce from DFA-Sync-Into-Subset. Let A = (Q,Σ, δ) be a DFA and S ⊆ Q.
We construct from A a DVPDA M = (Q∪{qS},Σcall∪Σint∪Σret,{,,/,�}, δ′ = δ′c∪δ′i ∪δ′r,�)
with qS ∉ Q, Σcall = {a}, Σint = Σ, Σret = ∅ and Σcall ∩Σint = ∅. The transition function δ′i
agrees with δ on all letters in Σint. For qS , we set δ′c(qS , a) = (qS ,,) and δ′i(qS , σ) = qS for
all σ ∈ Σint. For q ∈ S, we set δ′c(q, a) = (qS ,,), and for q ∉ S, δ′c(q, a) = (q,/).

Note that qS is a sink-state and can only be reached from states in S with a transition
by the call-letter a. For states not in S, the input letter a pushes an / on the stack which
cannot be pushed to the stack by any letter on a path starting in qS . Hence, in order
to synchronize M in the same stack model, a letter a might only and must be read in a
configuration where only states in S ∪ {qS} are active. Every word w ∈ Σ∗

int that brings M in
such a configuration also synchronizes Q in A into the set S. J

H. Fernau and P. Wolf 45:7

From the proof of Theorem 6, we can conclude the next results by observing that a DVPDA
without any return letter cannot make any turn.

I Corollary 7. Sync-DVPDA-Same-NoReturn and 0-Turn-Sync-DVPDA-Same are
PSPACE-hard.

In contrast with the two previous results, Sync-DVPDA-Same is solvable in polynomial
time if we have the promise that Σret ≠ ∅.

I Theorem 8. Sync-DVPDA-Same-Return is in P.

Proof. We prove the claim by straight reducing to Sync-DVPDA-Empty with the identity
function. If a DVPDA M with Σret ≠ ∅ can be synchronized in the same stack model with a
synchronizing word w, then w can be extended to ww′ where w′ ∈ Σ∗

ret empties the stack.
As M is deterministic and complete, w′ is defined on all states. As after reading w, the stack
content on all paths is the same, reading w′ extends all paths with the same sequence of
states. Conversely, a word w synchronizing a DVPDA M with Σret ≠ ∅ in the empty stack
model also synchronizes M in the same stack model. J

The arbitrary stack model requires the most interesting construction in the following proof.

I Theorem 9. Sync-DVPDA-Arb is PSPACE-hard.

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-From-Subset.
Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVPDA M = (Q,Σcall ∪
Σint ∪Σret,Q ∪ {�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�) where all unions in the definition of M are disjoint.
Let Σcall = Σ, Σint = ∅, and Σret = {r} with r ∉ Σ.

For states s ∈ S, we set δ′r(s, r,�) = s and for states q ∈ Q/S, we set δ′r(q, r,�) = t for some
arbitrary but fixed t ∈ S. For states p, q ∈ Q, we set δ′r(q, r, p) = p.

For each call letter σ ∈ Σcall, we set for q ∈ Q, δ′c(q, σ) = (δ(q, σ), q).
First, assume w is a word that synchronizes the set S in the DFA A. Then, it can easily

be observed that rw is a synchronizing word for M in the arbitrary stack model.
Now, assume w is a synchronizing word for M in the arbitrary stack model. If w ∈ Σ∗

call,
then w is also a synchronizing word for A and especially synchronizes the set S in A. (*)
Next, assume w contains some letters r. The action of r is designed such that it maps Q
to the set S if applied to an empty stack and otherwise gradually undoes the transitions
performed by letters from Σcall. This is possible as each letter σ ∈ Σcall stores its pre-image
on the stack when σ is applied. Further, r acts as the identity on the states in S if applied to
an empty stack. Hence, whenever the stacks are empty while reading some word, all states
in S are active.

Hence, if σr is a subword of a synchronizing word w = uσrv of M , with σ ∈ Σcall,
then w′ = uv is also a synchronizing word of M . This justifies the set of rewriting rules
R = {σr → ε ∣ σ ∈ Σcall}. Now, consider a synchronizing word w of M where none of the
rewriting rules from R applies, and, which by (*) contains some letter r. Hence, w ∈ {r}∗Σ∗

call.
By (*), w = rkv, with k > 0, and v ∈ Σ∗

call. Then, w′ = rv is also a synchronizing word of
M , because for all states q ∈ Q, M is in the same configuration after reading r, starting in
configuration (q,�), as after reading rr. But as only (and all) states from S are active after
reading r, v is also a word in Σ∗ that synchronizes the set S in A. J

Observe that in the construction above, Σret ≠ ∅ for all input DFAs. The next corollary
follows from Theorem 9 and should be observed together with the next theorem in contrast
to Theorem 8 and Corollary 7.

FSTTCS 2020

45:8 Synchronization of Deterministic Visibly Push-Down Automata

I Corollary 10. Sync-DVPDA-Arb-Return is PSPACE-hard.

I Theorem 11. Sync-DVPDA-Arb-NoReturn ≡ DFA-Sync.

Proof. Let M be a DVPDA with empty set of return symbols. As there is no return-symbol,
the transitions of M cannot depend on the stack content. Hence, we can redistribute the
symbols in Σcall into Σint and obtain a DFA. The converse is trivial. J

If we move from deterministic visibly push-down automata to even more restricted classes, like
deterministic very visibly push-down automata or deterministic visibly counter automata, the
three stack models do no longer yield synchronization problems with different complexities.
Instead, all three models are equivalent, as stated next. Hence, their synchronization problems
can be solved by the pair-argument presented in Theorem 5 in polynomial time.

I Theorem 12. Sync-DVCA-Empty ≡ Sync-DVCA-Same ≡ Sync-DVCA-Arb.
Sync-DVVPDA-Empty ≡ Sync-DVVPDA-Same ≡ Sync-DVVPDA-Arb.

Proof. First, note that every DVCA is also a DVVPDA. If for a DVVPDA Σret ≠ ∅, then we
can empty the stack after synchronizing the state set, as the very visibly conditions ensures
that the contents of the stacks on all runs coincide. As the automaton is deterministic, all
transitions for letters in Σret are defined on each state. As the stack content on all runs
coincides in every step, the arbitrary stack model is identical to the same stack model and
hence equivalent to the empty stack model. If Σret = ∅, then we can reassign Σcall to Σint
in order to reduce from the same-stack and arbitrary stack to the empty stack variant, as
transitions cannot depend on the stack content which is again the same on all runs due to
the very visibly condition. J

4 Restricting the Number of Turns Makes Synchronization Harder

Let us now restrict the number of turns a synchronizing word may cause on any run. Despite
the fact that we are hereby restricting the considered model even further, the synchronization
problem becomes even harder, in contrast to the previous section.

I Theorem 13. For every fixed n ∈ N with n > 0, the problems n-Turn-Sync-DVCA-Same
and n-Turn-Sync-DVCA-Arb are PSPACE-hard.

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-Into-Subset.
Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVCA M = (Q ∪ {qsync} ∪
{qstalli ∣ 0 ≤ i ≤ n},Σcall ∪Σint ∪Σret,{1,�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�}), where all unions are disjoint.
We set Σint = Σ, Σcall = {a} and Σret = {b}. For all internal letters, δ′i agrees with δ on all
states in Q. For the letter a, we set for all q ∈ S, δ′c(q, a) = (qstall0 , 1) and for all q ∈ Q/S, we
set δ′c(q, a) = (q,1). For b, we loop in every state in Q. For qsync, we loop with every letter
in qsync (incrementing the counter with a and decrementing it with b).

Let r be an arbitrary but fixed state in Q. For the states qstalli , we set for i < n,
δ′c(qstalli , a) = (qstalli ,1). Further, for even index i < n, we set δ′r(qstalli , b,1) = qstalli+1 and
δ′r(qstalli , b,�) = r. For odd index i < n, we set δ′r(qstalli , b,1) = r, and δ′r(qstalli , b,�) = qstalli+1 .
For even n, let δ′c(qstalln , a) = (qsync,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = r. For
odd n, let δ′c(qstalln , a) = (qstalln ,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = qsync. All other
transitions (on internal letters) act as the identity.

Observe that the state qsync must be the synchronizing state of M , since it is a sink
state. In order to reach qsync from any state in Q, the automaton must pass through all the
states qstalli for all 0 ≤ i ≤ n, by construction. Since we can only pass from a state qstalli to

H. Fernau and P. Wolf 45:9

qstalli+1 with an empty or non-empty stack in alternation, passing through all states qstalli , for
0 ≤ i ≤ n, forces M to make n turns. For even n, the last upstroke is enforced by passing from
qstalln to qsync by explicitly increasing the stack. As M is only allowed to make n turns while
reading the n-turn synchronizing word it follows that any of the states qstalli might be visited
at most once, as branching back into Q by taking a transition that maps to r would force M
to go through all states qstalli again, which exceeds the allowed number of strokes. Note that
only counter values of at most one are allowed in any run which is currently in a state in
qstalli as otherwise the run will necessarily branch back into Q later on.2 Especially, this is
the case for qstall0 which ensures that each n-turn synchronizing word has first synchronized
Q into S before the first letter a is read, as otherwise qstall0 is reached with a counter value
greater than 1, or M has already made a turn in Q and hence cannot reach qsync anymore.

In the construction above, for odd n, each run enters the synchronizing state with an
empty stack (*). For even n, each run enters the synchronizing state with a counter value
of 1. The visibly condition, or more precisely very visibly condition as we are considering
DVCAs, tells us that at each time while reading a synchronizing word, the stack content of
every run is identical. In particular, this is the case at the point when the last state enters
the synchronizing state and, hence, any n-turn synchronizing word for M is a synchronizing
word in both the arbitrary and the same stack models. J

By observing that in the empty stack model allowing n even turns is as good as allowing
(n − 1) turns, essentially (*) from the previous proof yields the next result.

I Corollary 14. For every fixed n ∈ N, with n > 0, the problem n-Turn-Sync-DVCA-Empty
is PSPACE-hard.

I Corollary 15. For every fixed n ∈ N, with n > 0, the problems n-Turn-Sync-DVPDA and
n-Turn-Sync-DVVPDA in the empty, same, and arbitrary stack models are PSPACE-hard.

I Theorem 16. 0-Turn-Sync-DVPDA-Empty ≡ DFA-Sync.

Proof. The visibly condition and the fact that we can only synchronize with an empty stack
mean that we cannot read any letter from Σcall, hence we cannot use the stack at all. Delete
(a) all transitions with a symbol from Σcall and (b) all transitions with a symbol from Σret
and a non-empty stack. Then, assigning the elements in Σret to Σint gives us a DFA. J

The next result is obtained by a reduction from DFA-Sync-From-Subset.

I Theorem 17. The problems 0-Turn-Sync-DVCA-{Same, Arb} are PSPACE-hard.

I Corollary 18. The problems 0-Turn-Sync-DVVPDA-{Same, Arb}, and 0-Turn-Sync-
DVPDA-{Same, Arb} are PSPACE-hard.

5 (Non-)Tight Upper Bounds

In this section, we will prove that at least all considered problems are decidable (in contrast
to non-visibly DPDAs and DCAs, see [18]) by giving exponential time upper bounds. We will
also give some tight PSPACE upper bounds for some PSPACE-hard problems discussed in the
previous section, but for other previously discussed problems, a gap between PSPACE-hardness
and membership in EXPTIME remains.

2 In some states, such as qstalln
for even n, it is simply impossible to have a higher counter value.

FSTTCS 2020

45:10 Synchronization of Deterministic Visibly Push-Down Automata

I Theorem 19. All problems listed in Table 1 are in EXPTIME.

Proof. We show the claim explicitly for Sync-DVPDA-Same, Sync-DVPDA-Arb,
n-Turn-Sync-DVPDA-Empty, n-Turn-Sync-DVPDA-Same, and n-Turn-Sync-
DVPDA-Arb. The other results follow by inclusion of automata classes.

Let M = (Q,Σcall ∪Σint ∪Σret,Γ, δ,�) be a DVPDA. We construct from M the ∣Q∣-fold
product DVPDA M ∣Q∣ with state set Q∣Q∣, consisting of ∣Q∣-tuples of states, and alphabet
Σcall ∪Σint ∪Σret. Since M is a DVPDA, for every word w ∈ (Σcall ∪Σint ∪Σret)∗, the stack
heights on runs starting in different states in Q is equal at every position in w. Hence, we can
multiply the stacks to obtain the stack alphabet Γ∣Q∣ for M ∣Q∣. For the transition function
δ∣Q∣ (split up into δ∣Q∣c ∪ δ∣Q∣i ∪ δ∣Q∣r) of M ∣Q∣, we simulate δ independently on every state in an
∣Q∣-tuple, i.e., for (q1, q2, . . . , qn) ∈ Q∣Q∣ and letters σc ∈ Σcall, σi ∈ Σint, σr ∈ Σret, we set

δ
∣Q∣
c ((q1, q2, . . . , qn), σc) = ((q′1, q′2, . . . , q′n), (γ1, γ2, . . . , γn)) if δ(qj , σc) = (q′j , γj) for j ∈[n];
δ
∣Q∣
i ((q1, q2, . . . , qn), σi) = (δ(q1, σi), δ(q2, σi), . . . , δ(qn, σi));
δ
∣Q∣
r ((q1, q2, . . . , qn), σr, (γ1, γ2, . . . , γn)) = (δ(q1, σr, γ1), δ(q2, σr, γ2), . . . , δ(qn, σr, γn)).

The bottom symbol of the stack is the ∣Q∣-tuple (�,�, . . . ,�). Let p1, p2, . . . , pn be an
enumeration of the states in Q and set (p1, p2, . . . , pn) as the start state of M ∣Q∣.

For Sync-DVPDA-Arb, set {(q, q, . . . , q) ∈ Q∣Q∣ ∣ q ∈ Q} as the final states for M ∣Q∣.
Clearly, for Sync-DVPDA-Arb, M ∣Q∣ is a DVPDA and the words accepted by M ∣Q∣ are
precisely the synchronizing words for M in the arbitrary stack model. As the emptiness
problem can be decided for visibly push-down automata in time polynomial in the size of
the automaton [2], the claim follows observing that M ∣Q∣ is exponentially larger than M .

For Sync-DVPDA-Same, we produce a DVPDA M
∣Q∣
same by enhancing the automaton

M ∣Q∣ with three additional states qcheck, qfin, and qfail and an additional new return letter r and
set qfin as the single accepting state of M ∣Q∣

same, while the start state coincides with the one of
M ∣Q∣. For states (q1, q2, . . . , qn) ∈ Q∣Q∣, we set δ∣Q∣r ((q1, q2, . . . , qn), r, (γ1, γ2, . . . , γn)) = qcheck
if qi = qj and γi = γj , γi ≠ � for all i, j ∈ [n]. We set δ∣Q∣r ((q1, q2, . . . , qn), r, (�,�, . . . ,�)) = qfin
if qi = qj for all i, j ∈ [n]. For all other cases, we map with r to qfail. We let the transitions
for qfail be defined such that qfail is a non-accepting trap state for all alphabet symbols. For
qcheck, we set δ∣Q∣r (qcheck, r, (γ1, γ2, . . . , γn)) = qcheck if γi = γj for i, j ∈ [n]. Further, we set
δ
∣Q∣
r (qcheck, r, (�,�, . . . ,�)) = qfin and map with r to qfail in all other cases. The state qcheck
also maps to qfail with all input symbols other than r. We let the transitions for qfin be
defined such that qfin is an accepting trap state for all alphabet symbols.

Clearly, for Sync-DVPDA-Same M ∣Q∣
same is a DVPDA and the words accepted by M ∣Q∣

same
are precisely the synchronizing words for M in the same stack model, potentially prolonged
by a sequence of r’s, as the single accepting state qfin can only be reached from a state in
Q∣Q∣ where the states are synchronized and the stack content is identical for each run (which
is checked in the state qcheck). As the size of M ∣Q∣

same is exponential in the size of M , we get
the claimed result as in the previous case.

For the n-Turn synchronization problems, we have to modify the previous construction
by adding a stroke counter similar as in the proof of Theorem 13. J

I Remark 20. It cannot be expected to show PSPACE-membership of synchronization
problems concerning DVPDAs using a ∣Q∣-fold product DVPDA, as the resulting automata
is exponentially large in the size of the DVPDA that is to be synchronized, as the emptiness
problem for DVPDAs is P-complete [30]. Rather, one would need a separate membership
proof. We conjecture that a PSPACE-membership proof similar to the one for the short
synchronizing word problem presented in [14] can be obtained if exponential upper bounds
for the length of shortest synchronizing words for DVPDAs in the respective models can be

H. Fernau and P. Wolf 45:11

obtained. For the empty stack model, an exponential upper bound on the length of a shortest
synchronizing word should follow by applying analogous arguments as in [14, Theorem 6]. For
the same and arbitrary stack model, the question is open as we cannot reduce the problem
to considering pairs like in the empty stack model.

I Theorem 21. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Same are in
PSPACE.

Proof sketch. LetM = (Q,Σcall∪Σint∪Σret,Γ, δ,�) be a DVPDA. For the same stack model,
the 0-turn condition forbids us to put in simultaneous runs different letters on the stack at
any time while reading a synchronizing word, as we cannot exchange symbols on the stack
with visible PDAs. Note that this is a dynamic runtime-behavior and does not imply that
M is necessarily very visibly. Further, the 0-turn and visibility condition enforce that at
each step the next transition does not depend on the stack content if the symbol on top
of the stack is not �. Hence, we can construct from M a ∣Q∣-fold DFA (with a state set
exponential in the size of ∣Q∣) in a similar way as in the proof of Theorem 19 by neglecting
the stack as nothing is ever popped from the stack. As the emptiness problem for DFAs
can be solved in NLOGSPACE, the claim follows with Savitch’s famous theorem stating that
NPSPACE = PSPACE [35].3 J

I Corollary 22. Sync-DVPDA-Same-NoReturn, Sync-DVPDA-Same are in PSPACE.

I Theorem 23. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Arb, and
1-Turn-Sync-DVCA-{Empty, Same, Arb} are in PSPACE.

Proof. The claim follows from [18, Theorem 16 & 17] by inclusion of automata classes. J

6 Sequential Transducers

In [18], the concept of trace-synchronizing a sequential transducer has been introduced. We
want to extend this concept to sequential transducers showing some kind of visible behavior
regarding their output, inspired by the predetermined stack height behavior of DVPDAs. We
call T = (Q,Σ,Γ, q0, δ, F) a sequential transducer (ST for short) if Q is a finite set of states,
Σ is an input alphabet, Γ is an output alphabet, q0 is the start state, δ∶Q ×Σ→ Q × Γ∗ is a
total transition function, and F collects the final states. We generalize δ from input letters
to words by concatenating the produced outputs. T is called a visibly sequential transducer
(VST for short) [or very visibly sequential transducer (VVST for short)] if for each σ ∈ Σ
and for all q1, q2 ∈ Q and γ1, γ2 ∈ Γ∗, it holds that δ(q1, σ) = (q′1, γ1) and δ(q2, σ) = (q′2, γ2)
implies that ∣γ1∣ = ∣γ2∣ [or that γ1 = γ2, respectively]. A VVST T is thereby computing the
same homomorphism hT , regardless of which states are chosen as start and final states (*).
Hence, if AT is the underlying DFA (ignoring any outputs), then hT (L(AT)) ⊆ Γ∗ describes
the language of all possible output of T . By Nivat’s theorem [29], a language family is a full
trio iff it is closed under VVST and inverse homomorphisms. Our considerations also show
that a language family is a full trio iff it is closed under VVST and inverse VVST mappings.

We say that a word w trace-synchronizes a sequential transducer T if, for all states
p, q ∈ Q, δ(p,w) = δ(q,w), i.e., a synchronizing state is reached, producing identical output.
Notice that from the viewpoint of trace-synchronization, we do not assume that a VVST has
only one state.

3 Here, a smaller powerset-construction would also work but, for simplicity, we stuck with the introduced
∣Q∣-fold product construction.

FSTTCS 2020

45:12 Synchronization of Deterministic Visibly Push-Down Automata

I Definition 24 (Trace-Sync-Transducer).
Given: Sequential transducer T = (Q,Σ,Γ, δ).
Question: Does there exist a word w ∈ Σ∗ that trace-synchronizes T?

We define Trace-Sync-VST and Trace-Sync-VVST by considering a VST, respec-
tively VVST. In contrast to the undecidability of Trace-Sync-Transducer [18], we get
the following results for trace-synchronizing VST and VVST from previous results.

I Theorem 25. Trace-Sync-VST is PSPACE-complete.

Proof. First, observe that there is a straight reduction from the problem Sync-DVPDA-
Same-NoReturn to Trace-Sync-VST as the input DVPDAs to the problem Sync-
DVPDA-Same-NoReturn have no return letters and, hence, the stack is basically a write
only tape. Further, as the remaining alphabet is partitioned into letters in Σcall, which write
precisely one symbol on the stack, and into letters in Σint, writing nothing on the stack, the
visibly condition is satisfied when interpreting the DVPDA with Σret = ∅ as a VST.

There is also a straight reduction from Trace-Sync-VST to Sync-DVPDA-Same-
NoReturn as follows. For a VST T = (Q,Σ,Γ, δ), we construct a DVPDA M = (Q,Σcall ∪
Σint,Γ′, δ) with Σret = ∅ by introducing for each σ ∈ Σ a new alphabet Σσ = {w ∈ Γ∗ ∣ ∃q, q′ ∈
Q∶ δ(q, σ) = (q′,w)}. Observe that Σσ is either {ε} or contains only words of the same length.
By setting Σint = {σ ∈ Σ ∣ Σσ = {ε}}, Σcall = {σ ∈ Σ ∣ Σσ ≠ {ε}}, Γ′ = ⋃σ∈Σ(Σσ/{ε}), and
interpreting the output sequence w ∈ Γ∗ produced by δ as the single stack symbol in Γ′. J

Yet, by Observation (*), we inherit from Sync-DFA the following algorithmic result.

I Theorem 26. Trace-Sync-VVST is in P.

7 Discussion

Our results concerning DVPDAs and sub-classes thereof are summarized in Table 1. While
all problems listed in the table are contained in EXPTIME, the table lists several problems
for which their known complexity status still contains a gap between PSPACE-hardness
lower bounds and EXPTIME upper bounds. Presumably, their precise complexity status
is closely related to upper bounds on the length of synchronizing words which we want to
consider in the near future. One of the questions which could be solved in this work is if
there is a difference between the complexity of synchronization in the same stack model
and synchronization in the arbitrary stack model. While for general DPDA, DCA, and
sub-classes thereof, see [18], these two models admitted synchronization problems with the
same complexity, here we observed that these models can differ significantly. While the
focus of this work is on determining the complexity status of synchronizability for different
models of automata, an obvious question for future research is the complexity status of
closely related, and well understood questions in the realm of DFAs, such as the problem
of shortest synchronizing word, subset synchronization, synchronization into a subset, and
careful synchronization.

Here is one subtlety that comes with shortest synchronizing words: While for finding
synchronizing words of length at most k for DFAs, it does not matter if the number k is
given in unary or in binary due to the known cubic upper bounds on the lengths of shortest
synchronizing words, this will make a difference in other models where such polynomial length
bounds are unknown. More precisely, for instance with DVPDAs, it is rather obvious that
with a unary length bound k, the problem becomes NP-complete, while the status is unclear
for binary length bounds. As there is no general polynomial upper bound on the length of

H. Fernau and P. Wolf 45:13

shortest synchronizing words for VPDAs, they might be of exponential length. Hence, we
do not get membership in PSPACE easily, not even for synchronization models concerning
DVPDA for which general synchronizability is solvable in P, as it might be necessary to store
the whole word on the stack in order to test its synchronization effects.

References

1 Journal of Automata, Languages and Combinatorics – Essays on the Černý Conjecture.
https://www.jalc.de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

2 Rajeev Alur and P. Madhusudan. Visibly Pushdown Languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004.

3 Rajeev Alur and P. Madhusudan. Adding Nesting Structure to Words. J. ACM, 56(3):16:1–
16:43, 2009.

4 Marcelo Arenas, Pablo Barceló, and Leonid Libkin. Regular Languages of Nested Words:
Fixed Points, Automata, and Synchronization. Theory of Computing Systems, 49(3):639–670,
2011.

5 Parvaneh Babari, Karin Quaas, and Mahsa Shirmohammadi. Synchronizing Data Words
for Register Automata. In 41st International Symposium on Mathematical Foundations of
Computer Science (MFCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

6 Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems for Visibly Pushdown
Languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, volume 3884 of Lecture Notes in
Computer Science, pages 420–431. Springer, 2006.

7 Marie-Pierre Béal and Dominique Perrin. Synchronised Automata, page 213–240. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2016.

8 Jean Berstel. Transductions and Context-Free Languages, volume 38 of Teubner Studienbücher:
Informatik. Teubner, 1979.

9 Benedikt Bollig. One-Counter Automata with Counter Observability. In Akash Lal, S. Akshay,
Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2016, Proceedings, volume 65
of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

10 Olivier Carton. The Growth Ratio of Synchronous Rational Relations is Unique. Theoretical
Computer Science, 376(1-2):52–59, 2007.

11 Didier Caucal. Synchronization of Pushdown Automata. In Oscar H. Ibarra and Zhe Dang,
editors, Developments in Language Theory, 10th International Conference, DLT 2006, Santa
Barbara, CA, USA, June 26-29, 2006, Proceedings, volume 4036 of Lecture Notes in Computer
Science, pages 120–132. Springer, 2006.

12 Ján Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-
fyzikalny Časopis Slovensk, 14(3):208–215, 1964.

13 Ján Cerný. A Note on Homogeneous Experiments with Finite Automata. Journal of Automata,
Languages and Combinatorics, 24(2-4):123–132, 2019.

14 Dmitry Chistikov, Pavel Martyugin, and Mahsa Shirmohammadi. Synchronizing Automata
over Nested Words. Journal of Automata, Languages and Combinatorics, 24(2-4):219–251,
2019.

15 Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey, and Mahsa Shirmo-
hammadi. Synchronizing Words for Weighted and Timed Automata. In 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014, December 15-17, 2014, New Delhi, India, pages 121–132, 2014.

16 David Eppstein. Reset Sequences for Monotonic Automata. SIAM Journal on Computing,
19(3):500–510, 1990.

FSTTCS 2020

https://www.jalc.de/issues/2019/issue_24_2-4/content.html

45:14 Synchronization of Deterministic Visibly Push-Down Automata

17 Henning Fernau and Petra Wolf. Synchronization of Deterministic Visibly Push-Down Au-
tomata. CoRR, abs/2005.01374, 2020. arXiv:2005.01374.

18 Henning Fernau, Petra Wolf, and Tomoyuki Yamakami. Synchronizing Deterministic Push-
Down Automata Can Be Really Hard. CoRR, abs/2005.01381, 2020. An extended abstract is
accepted at MFCS 2020. arXiv:2005.01381.

19 Seymour Ginsburg. The mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.
20 Seymour Ginsburg and Edwin H Spanier. Finite-Turn Pushdown Automata. SIAM Journal

on Control, 4(3):429–453, 1966.
21 Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter

Languages and the Structure of NC1. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald
Sannella, editors, Mathematical Foundations of Computer Science 2015 - 40th International
Symposium, MFCS 2015, volume 9235 of Lecture Notes in Computer Science, pages 384–394.
Springer, 2015.

22 Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. On Distinguishing NC1 and NL. In
Igor Potapov, editor, Developments in Language Theory - 19th International Conference, DLT
2015, volume 9168 of Lecture Notes in Computer Science, pages 340–351. Springer, 2015.

23 Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter Languages and
Constant Depth Circuits. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, volume 30 of LIPIcs,
pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

24 Michael Ludwig. Tree-Structured Problems and Parallel Computation. PhD thesis, Univer-
sity of Tübingen, Germany, 2019. URL: https://publikationen.uni-tuebingen.de/xmlui/
handle/10900/85960/.

25 Pavel Martyugin. Computational Complexity of Certain Problems Related to Carefully Syn-
chronizing Words for Partial Automata and Directing Words for Nondeterministic Automata.
Theory of Computing Systems, 54(2):293–304, 2014.

26 Pavel V. Martyugin. Synchronization of Automata with One Undefined or Ambiguous
Transition. In Nelma Moreira and Rogério Reis, editors, Implementation and Application of
Automata - 17th International Conference, CIAA 2012, Porto, Portugal, July 17-20, 2012.
Proceedings, volume 7381 of Lecture Notes in Computer Science, pages 278–288. Springer,
2012.

27 Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-Recognition. In
J. W. de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming, 7th
Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, volume 85 of
Lecture Notes in Computer Science, pages 422–435. Springer, 1980.

28 Eitatsu Mikami and Tomoyuki Yamakami. Synchronizing Pushdown Automata and Reset
Words, 2020. An article appeared in Japanese as Technical Report of The Institute of Electonics,
Information and Communication Engineers, COMP2019-54(2020-03), pp. 57–63.

29 Maurice Nivat. Transductions des langages de Chomsky. Ann. Inst. Fourier, Grenoble,
18:339–456, 1968.

30 Alexander Okhotin and Kai Salomaa. Complexity of Input-Driven Pushdown Automata.
SIGACT News, 45(2):47–67, 2014.

31 I. K. Rystsov. On Minimizing the Length of Synchronizing Words for Finite Automata. In
Theory of Designing of Computing Systems, pages 75–82. Institute of Cybernetics of Ukrainian
Acad. Sci., 1980. (in Russian).

32 I. K. Rystsov. Polynomial Complete Problems in Automata Theory. Information Processing
Letters, 16(3):147–151, 1983.

33 Jacques Sakarovitch. Eléments de Théorie des Automates. Vuibert informatique, 2003.
34 Sven Sandberg. Homing and Synchronizing Sequences. In Manfred Broy, Bengt Jonsson,

Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing
of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33. Springer, 2005.

http://arxiv.org/abs/2005.01374
http://arxiv.org/abs/2005.01381
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/

H. Fernau and P. Wolf 45:15

35 Walter J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complexi-
ties. Journal of Computer and System Sciences, 4(2):177–192, 1970.

36 Mahsa Shirmohammadi. Qualitative Analysis of Synchronizing Probabilistic Systems. (Analyse
qualitative des systèmes probabilistes synchronisants). PhD thesis, École normale supérieure
de Cachan, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01153942.

37 Yaroslav Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words of Finite
Automata. Journal of Automata, Languages and Combinatorics, 24(2-4):367–373, 2019.

38 Jirí Srba. Beyond Language Equivalence on Visibly Pushdown Automata. Logical Methods in
Computer Science, 5(1), 2009.

39 Peter H. Starke. Eine Bemerkung über homogene Experimente. Elektronische Informationsver-
arbeitung und Kybernetik (J. Inf. Process. Cybern.), 2(4):257–259, 1966.

40 Peter H. Starke. A Remark About Homogeneous Experiments. Journal of Automata, Languages
and Combinatorics, 24(2-4):133–137, 2019.

41 Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of
Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of
LIPIcs, pages 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

42 Leslie G. Valiant. Decision Procedures for Families of Deterministic Pushdown Automata.
PhD thesis, University of Warwick, Coventry, UK, 1973. URL: http://wrap.warwick.ac.uk/
34701/.

43 Mikhail V. Volkov. Synchronizing Automata and the Černý Conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA, volume 5196 of LNCS, pages 11–27. Springer, 2008.

FSTTCS 2020

https://tel.archives-ouvertes.fr/tel-01153942
http://wrap.warwick.ac.uk/34701/
http://wrap.warwick.ac.uk/34701/

Synthesis from Weighted Specifications with
Partial Domains over Finite Words
Emmanuel Filiot
Université libre de Bruxelles, Belgium
efiliot@ulb.ac.be

Christof Löding
RWTH Aachen University, Germany
loeding@cs.rwth-aachen.de

Sarah Winter
Université libre de Bruxelles, Belgium
swinter@ulb.ac.be

Abstract
In this paper, we investigate the synthesis problem of terminating reactive systems from quantitative
specifications. Such systems are modeled as finite transducers whose executions are represented as
finite words in (Σi × Σo)∗, where Σi, Σo are finite sets of input and output symbols, respectively. A
weighted specification S assigns a rational value (or −∞) to words in (Σi × Σo)∗, and we consider
three kinds of objectives for synthesis, namely threshold objectives where the system’s executions
are required to be above some given threshold, best-value and approximate objectives where the
system is required to perform as best as it can by providing output symbols that yield the best
value and ε-best value respectively w.r.t. S. We establish a landscape of decidability results for
these three objectives and weighted specifications with partial domain over finite words given by
deterministic weighted automata equipped with sum, discounted-sum and average measures. The
resulting objectives are not regular in general and we develop an infinite game framework to solve
the corresponding synthesis problems, namely the class of (weighted) critical prefix games.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Transducers; Theory of computation → Quantitative automata

Keywords and phrases synthesis, weighted games, weighted automata on finite words

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.46

Funding Emmanuel Filiot: This work is partially supported by the MIS project F451019F (F.R.S.-
FNRS). Emmanuel Filiot is a research associate at F.R.S.-FNRS.

1 Introduction

Reactive synthesis. The goal of automatic synthesis is to automatically construct programs
from specifications of correct pairs of input and output. The goal is to liberate the developer
from low-level implementation details, and to automatically generate programs which are
correct by construction. In the automata-based approach to synthesis [14, 20], the programs to
be synthesized are finite-state reactive programs, which react continuously to stimuli received
from an environment. Such systems are not assumed to terminate and their executions are
modeled as ω-words in (ΣiΣo)ω, alternating between input symbols in Σi and output symbols
in Σo. Specifications of such systems are then languages S ⊆ (ΣiΣo)ω representing the set
of acceptable executions. The synthesis problem asks to check whether there exists a total
synchronous1 function f : Σω

i
→ Σω

o
such that for all input sequences u = i0i1 . . . , there exists

1 f : Σω
i → Σω

o is synchronous if it is induced by a strategy s : Σ+
i
→ Σo in the sense that f(i0i1 . . .) =

s(i0)s(i0i1)s(i0i1i2) . . . for all i0i1 · · · ∈ Σω

© Emmanuel Filiot, Christof Löding, and Sarah Winter;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:efiliot@ulb.ac.be
mailto:loeding@cs.rwth-aachen.de
mailto:swinter@ulb.ac.be
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Synthesis from Weighted Specifications with Partial Domains over Finite Words

an output sequence v = o0o1 . . . such that f(u) = v and the convolution u⊗ v = i0o0i1o1 . . .

belongs to S. The function f is called a realizer of S. Automatic synthesis of non-terminating
reactive systems has first been introduced by Church [19], and a first solution has been given
by Büchi and Landweber [14] when the specification S is ω-regular. In this setting, when
a realizer exists, there is always one which can be computed by a finite-state sequential
transducer, a finite-state automaton which alternates between reading one input symbol and
producing one output symbol. This result has sparked much further work to make synthesis
feasible in practice, see e.g., [31, 27, 7]. The synthesis problem is classically modeled as
an infinite-duration game on a graph, played by two players, alternatively picking input
and output symbols. One player, representing the system, must enforce an objective that
corresponds to the specification. Finite-memory winning strategies are in turn systems
that realize the specification. This game metaphor has triggered a lot of research on graph
games [20, Chapter 27]. There has also been a recent effort to increase the quality of
the automatically generated systems by enhancing Boolean specifications with quantitative
constraints, e.g., [5, 16, 12, 2]. This has also triggered a lot of research on quantitative
extensions of infinite-duration games, for example mean-payoff, energy, and discounted-sum
games, see, e.g., [24, 34, 22, 10, 11, 4, 29].

Partial-domain specifications. In the classical formulation of the synthesis problem, it
is required that a realizer f meets the specification for all possible input sequences. In
particular, if there is a single input sequence u such that u⊗ v 6∈ S for all output sequences
v, then S admits no realizer. In other words, when the domain of S is partial, then S

is unrealizable. Formally, the domain of S is dom(S) = {u ∈ Σω
i
| ∃v : u ⊗ v ∈ S}. As

noticed recently and independently in [1], asking that the realizer meets the specification
for all input sequences is often too strong and a more realistic setting is to make some
assumptions on the environment’s behaviour, namely, that the environment plays an input
sequence in the domain of the specification. This problem is called good-enough synthesis
in [1] and can be formulated as follows: given a specification S, check whether there exists a
partial synchronous function f : Σω

i
→ Σω

o
whose domain is dom(S), and such that for all

input sequence u ∈ dom(S) = dom(f), u⊗ f(u) ∈ S. Decidability of the latter problem is
entailed by decidability of the classical synthesis problem when the specification formalism
used to describe S is closed under expressing the assumption that the environment provides
inputs in dom(S). It is the case for instance when S is ω-regular, because the specification
S ∪ dom(S) ⊗ Σω

o
has total domain and is effectively ω-regular. [1] investigates the more

challenging setting of S being expressed by a multi-valued (in contrast to Boolean) LTL
logic. More generally, there is a series of works on solving games under assumptions on the
behaviour of the environment [18, 6, 30, 21, 13, 2].

Our setting: Partial-domain weighted specifications. In this paper, motivated by the
line of work on quantitative extensions of synthesis and the latter more realistic setting of
partial-domain specifications, we investigate synthesis problems from partial-domain weighted
specifications (hereafter just called weighted specifications). We conduct this investigation in
the setting of terminating reactive systems, and accordingly our specifications are over finite
words. Formally, a specification is a mapping S : (Σi.Σo)∗ → Q∪{−∞}. The domain dom(S)
of S is defined as all the input sequences u ∈ Σ∗

i
such that S(u⊗ v) ∈ Q for some v ∈ Σ∗

o
.

We consider three quantitative synthesis problems, which all consists in checking whether
there exists a function f computable by a finite transducer such that dom(f) = dom(S) and
which satisfies respectively the following conditions:

E. Filiot, C. Löding, and S. Winter 46:3

Table 1 Complexity results for weighted specifications. Here, D stands for decidable, the suffix
-c for complete, λ for discount factor, and n for a natural number.

Problem Spec Sum-automata Avg-automata Dsum-automata
strict threshold NP ∩ coNP NP ∩ coNP NP

non-strict threshold NP ∩ coNP NP ∩ coNP NP ∩ coNP
best-value Ptime [3] Ptime [3] NP ∩ coNP

strict approximate EXPtime-c [26] D NEXPtime forλ=1/n
non-strict approx. EXPtime-c [26] D EXPtime forλ=1/n

for all u ∈ dom(S) it holds that S(u⊗f(u)).t for a given threshold t ∈ Q and . ∈ {>,≥},
called threshold synthesis, or
S(u⊗ f(u)) = bestValS(u), that is, the maximal value that can be achieved for the input
u, i.e., bestValS(u) = sup{S(u⊗ v) | v ∈ Σ∗

o
}, called best-value synthesis, or

bestValS(u) − S(u ⊗ f(u)) / r for a given threshold r ∈ Q and / ∈ {<,≤}, called
approximate synthesis.

Following the game metaphor explained before, those quantitative synthesis problems
can be formulated as two-player games in which Adam (environment) and Eve (system)
alternatively pick symbols in Σi and Σo respectively. Additionally, Adam has the power to
stop the game. If it does not, then Eve wins the game. Otherwise, a finite play spells a word
u ⊗ v. For the Boolean synthesis problem, Eve has won if either u 6∈ dom(S) where S is
the specification, or u⊗ v ∈ S. Additionally, for the threshold synthesis problem, the value
S(u⊗ v) must be greater than the given threshold; for the best-value synthesis problem, it
must be equal to bestValS(u) and for approximate synthesis it must be r-close to bestValS(u).

Contributions. Our main contribution is a clear picture about decidability of threshold
synthesis, best-value synthesis and approximate synthesis for weighted specifications over
finite words defined by deterministic weighted finite automata [23], equipped with either sum,
average or discounted-sum measure. Such automata extend finite automata with integer
weights on their transitions, computing a value through a payoff function that combines
those integers, with sum, average, or discounted-sum. The results (presented in Section 4)
are summarized in Table 1. We also give an application of our results to the decidability
of quantitative extensions of the Church synthesis problem over infinite words, for some
classes of weighted safety specifications, which intuitively require that all prefixes satisfy a
quantitative requirement (being above a threshold, equal to the best-value, or close to it).

As we explain in the related works section, some of our results are obtained via reduction
to solving known quantitative games or to the notions of r-regret determinization for weighted
automata. We develop new techniques to solve the strict threshold synthesis problem for
discounted-sum specifications in NP (Theorem 9), the best-value synthesis problem for
discounted-sum specifications in NP ∩ coNP (Theorem 12) and approximate synthesis for
average specifications (Theorem 13), which are to the best of our knowledge new results.

Moreover, as our main tool to obtain our synthesis results, we introduce in Section 3 a new
kind of (weighted) games called critical prefix games tailored to handle weighted specifications
with partial domain of finite words. We believe these kind of games are interesting on their
own and are described below in more detail.

FSTTCS 2020

46:4 Synthesis from Weighted Specifications with Partial Domains over Finite Words

Critical prefix games. Following the classical game metaphor of synthesis, we design
weighted games into which some of our synthesis problems can be directly encoded. Those
games still have infinite-duration, but account for the fact that specifications are on finite
words and have partial domains. In particular, the quantitative constraints must be checked
only for play prefixes that correspond to input words of the environment which are in the
domain of the specification. So, a critical prefix game is defined as a two-player turn-based
weighted game with some of the vertices being declared as critical. When the play enters a
critical vertex, a quantitative requirement must be fulfilled, otherwise Eve loses. For instance,
critical prefix threshold games require that the payoff value when entering a critical vertex is
at least or above a certain threshold. We show that these threshold games are all decidable
for sum, average, and discounted-sum payoffs, see Theorems 3 and 4. For solving approximate
average synthesis, we use a reduction to critical prefix energy games of imperfect information
starting with fixed initial credit (the energy level must be at least zero whenever the play is
in a critical vertex). Without critical vertices (where the energy level must be at least zero all
the time) these games are known to be decidable [22]. We show that adding critical vertices
makes these games undecidable, in general, see Theorem 7. However, a large subclass of
imperfect information critical prefix energy games, sufficient for our synthesis problems, is
shown to be decidable, see Theorem 8.

Domain-safe weighted specifications. Most of our quantitative synthesis problems reduce
to two-player games. While we need games of different natures, they all model the fact that
Eve constructs a run of the (deterministic) automaton, given the input symbols provided by
Adam so far. By choosing outputs, Eve must make sure that this run is accepting whenever
the input word played by Adam so far is in the domain of S. Otherwise Adam can stop and
Eve loses. While this condition can be encoded in the game by enriching the vertices with
subsets of states (in which Eve could have been by choosing alternative output symbols),
this would result in an exponential blow-up of the game. We instead show that the weighted
automaton can be preprocessed in polynomial-time into a so called domain-safe automaton,
in which there is no need to monitor the input domain when playing, see Theorem 2.

Related works. Boolean synthesis problems for finite words have been considered in [33, 32]
where the specification is given as an LTL formula over finite traces. In the quantitative
setting, it has also been considered in [25] for weighted specifications given by deterministic
weighted automata. In these works however, it is the role of Eve to eventually stop the game.
While this makes sense for reachability objectives and planning problems, this setting does
not accurately model a synthesis scenario where the system has no control over the provided
input sequence. Our setting is different and needs new technical developments.

Threshold problems in quantitative infinite-duration two-player games with discounted-
and mean-payoff measures are known to be solvable in NP ∩ coNP [4, 34]. Our threshold
synthesis problems all directly reduce to critical prefix threshold games with corresponding
payoff functions. The latter games, for sum and average, are shown to reduce to mean-payoff
games, so our NP∩ coNP upper-bound follows from [34]. For critical prefix discounted-sum
games with a non-strict threshold, we show a polynomial time reduction to infinite-duration
discounted sum games and hence our result follows from [4]. Such a reduction fails for
a strict threshold and we develop new techniques to solve critical prefix discounted-sum
games with strict threshold, by first showing that memoryless strategies suffice for Eve
to win, and then by showing how to check in PTime whether a memoryless strategy is
winning for Eve. The latter result actually shows how to test in PTime whether there exists,

E. Filiot, C. Löding, and S. Winter 46:5

in a weighted graph, a path from a source to a target vertex of discounted-sum greater
or equal to some given threshold. This result entails that the non-emptiness problem for
non-deterministic discounted-sum max-automata2 is solvable in PTime (Theorem 6). To
the best of our knowledge, up to now this problem is only known to be in PSpace for the
subcase of functional discounted-sum automata [25, 9].

As we show, the best-value synthesis problems correspond to zero-regret determinization
problems for non-deterministic weighted automata, i.e., deciding whether there is a non-
determinism resolving strategy for Eve that guarantees the same value as the maximal value of
an accepting run in the non-deterministic weighted automaton. Such a problem is in PTime
for sum-automata [3] and the average case easily reduces to the sum-case. For discounted-sum,
zero-regret determinization is known to be decidable in NP for dsum-automata over infinite
words [29]. We improve this bound to NP ∩ coNP for finite words.

Finally, approximate synthesis corresponds to a problem known as r-regret determinization
of non-deterministic weighted automata. For sum-automata, it is known to be ExpTime-
complete [26]. For average-automata, there is no immediate reduction to the sum case,
because the sum value computed by an r-regret determinizer can be arbitrarily faraway
from the best sum, while its averaged value remains close to the best average. Instead,
we show a reduction to the new class of partial observation critical prefix energy games.
For dsum-automata over infinite words, total domain and integral discount factor, r-regret
determinization is known to be decidable [29]. Our setting does not directly reduce to this
setting, but we use similar ideas.

2 Preliminaries

Languages and relations. Let N be the set of non-negative integers. Let Σ be a finite
alphabet. We denote by Σ∗, respectively Σω, the set of finite, respectively infinite, words
over Σ, and Σ+ the set of non-empty finite words over Σ. The empty word is denoted by ε.
A language over Σ is a set of words over Σ. A (binary) relation R is a subset of Σ∗

i
×Σ∗

o
, i.e.,

a set of pairs of words. Its domain is the set dom(R) = {u | ∃v : (u, v) ∈ R}. Given a pair of
words, we refer to the first (resp. second) component as input (resp. output) component, the
alphabets Σi and Σo are referred to as input resp. output alphabet. We let Σio = Σi ∪ Σo.

Automata. A nondeterministic finite state automaton (NFA) is a tuple A = (Q, qi,Σ,∆, F),
where Q is a finite state set, qi ∈ Q is the initial state, Σ is a finite alphabet, ∆ ⊆ Q×Σ×Q
is a transition relation, and F ⊆ Q is a set of final states. A run of the automaton on a word
w = a1 . . . an is a sequence ρ = τ1 . . . τn of transitions such that there exist q0, . . . , qn ∈ Q
such that τj = (qj−1, aj , qj) for all j. A run on ε is a single state. A run is accepting
if it begins in the initial state and ends in a final state. The language recognized by the
automaton is defined as L(A) = {w | there is an accepting run of A on w}. The automaton
is deterministic (a DFA) if ∆ is given as a partial function δ : Q× Σ→ Q.

Transducers. A transducer is a tuple T = (Q, qi,Σi,Σo, δ, F), where Q is a finite state
set, qi ∈ Q is the initial state, Σi and Σo are finite alphabets, δ :

(
Q × Σi

)
→
(
Σo × Q

)
is a transition function, and F ⊆ Q is a set of final states. A transition is also denoted
as a tuple for convenience. A run is either a non-empty sequence of transitions ρ =
(q0, u1, v1, q1)(q1, u2, v2, q2) . . . (qn−1, un, vn, qn) or a single state. The input (resp. output) of

2 i.e., checking whether there exists a word with value greater or equal to some threshold, where the value
is defined by taking the max over all accepting runs.

FSTTCS 2020

46:6 Synthesis from Weighted Specifications with Partial Domains over Finite Words

ρ is u = u1 . . . un (resp. v = v1 . . . vn) if ρ ∈ ∆+, both are ε if ρ ∈ Q. We denote by p u|v−−→ q

that there exists a run from p to q with input u and output v. A run is accepting if it starts
in the initial and ends in a final state. The partial function recognized by the transducer is
fT : Σ∗

i
→ Σ∗

o
defined as fT (u) = v if there is an accepting run of the form p

u|v−−→ q.

Weighted automata. Let n > 0. Given a finite sequence φ = j1 . . . jn of integers,
and a discount factor λ ∈ Q such that 0 < λ < 1, we define the following functions:
Sum(φ) =

∑n
i=1 ji, Avg(φ) = Sum(φ)

n , Dsum(φ) =
∑n
i=1 λ

iji if φ is non-empty and
Sum(φ) = Avg(φ) = Dsum(φ) = 0 otherwise. Let V ∈ {Sum,Avg,Dsum}. A weighted
V -automaton (WFA) is a tuple A = (Q,Σ, qi,∆, F, γ), where (Q,Σ, qi,∆, F) is a classical de-
terministic finite state automaton, and γ : δ → Z is a weight function. Its recognized language,
etc., is defined as for classical finite state automata. The value V (ρ) of a run ρ = τ1 . . . τn is
defined as V (γ(τ1) . . . γ(τn)) if ρ is accepting and −∞ otherwise. The value A(w) of a word
w is given by the total function, called the function recognized by A, A : Σ∗ → Q ∪ {−∞}
defined as w 7→ V (ρ), where ρ is the run of A on w, that is, the value of a word is the value
of its accepting run, or −∞ if there exists none.

Weighted specifications. A weighted specification is a total function S : (ΣiΣo)∗ → Q ∪
{−∞} recognized by a WFA A. Note that by our definition, A is deterministic by default.
Given u = u1 . . . un ∈ Σ∗

i
and v = v1 . . . un ∈ Σ∗

o
, u⊗v denotes its convolution u1v1 . . . unvn ∈

(ΣiΣo)∗. We usually write S(u⊗ v) instead of S(u1v1 . . . unvn). The relation (or Boolean
specification) of S, denoted by R(S), is given by the set of pairs that are mapped to a rational
number, i.e., R(S) = {(u, v) | S(u⊗v) > −∞}. We usually write u⊗v ∈ S instead of (u, v) ∈
R(S). The domain of S, denoted by dom(S), is defined as {u ∈ Σ∗

i
| ∃v ∈ Σ∗

o
: u⊗ v ∈ S}. If

a weighted specification is given by some V -automaton, we refer to it as V -specification.

Quantitative synthesis problems. The (Boolean) synthesis problem asks, given a weighted
specification S, whether there exists a partial function f : Σ∗

i
→ Σ∗

o
defined by a transducer

with dom(f) = dom(S) such that u⊗ f(u) ∈ S for all u ∈ dom(f).
We define three quantitative synthesis problems that pose additional conditions, we only

state the additions. The threshold synthesis problem additionally asks, given a threshold
ν ∈ Q, and . ∈ {>,≥}, that S(u ⊗ f(u)) . ν for all u ∈ dom(f). The best-value synthesis
problem additionally asks that S(u⊗f(u)) = bestValS(u), where bestValS(u) = sup{S(u⊗v) |
u⊗ v ∈ S} for all u ∈ dom(f). The approximate synthesis problem additionally asks, given a
threshold ν ∈ Q, and / ∈ {<,≤}, that bestValS(u)− S(u⊗ f(u)) / ν for all u ∈ dom(f).

In these settings, if such a function f exists, it is called S-realization, a transducer that
defines f is called S-realizer, and is said to implement an S-realization. A transducer whose
implemented function f only satisfies the Boolean condition is called Boolean S-realizer.

I Example 1. Let Σi = {a, b} and Σo = {c, d}, and consider the weighted specification S
defined by the following automaton A.

a|0

c| − 2

a|0

d|2

b|0 d|12

d|2

b|0 d|4

E. Filiot, C. Löding, and S. Winter 46:7

Clearly, S has a Boolean realizer (infinitely many, in fact). First, we view A as a Sum-
automaton. There exists a realizer that ensures a value of at least 6, for example, the
transducer that always outputs d. There exists no best-value realizer. To see this, we look at
the maximal values. We have bestVal(b) = 12, bestVal(ab) = 10, and bestVal(aib) = 2i+ 4
for i > 1. The maximal value for ab is achieved with cd and the maximal value for aaab
with dddd. So, the first output symbol depends on the length of the input word, which is
unknown to a transducer when producing the first output symbol. However, there exists an
approximate realizer for the non-strict threshold 4: the transducer that outputs c solely for
the first a. The difference to the maximal value is 0 for the inputs b and ab, and 4 for all
other inputs. Secondly, we view A as an Avg-automaton. With the same argumentation as
for Sum, it is easy to see that there exists no best-value realizer, there exists an approximate
realizer for the non-strict threshold 2

3 : the transducer that outputs c solely for the first a.
The difference to the maximal value is 0 for the inputs b and ab, and 2

i+1 for inputs of the
form aib for i > 1. Note that the difference decreases with the input length unlike for Sum.

Boolean synthesis and domain-safe automata. The quantitative synthesis problems that
we have defined, ask for Boolean realizers that additionally satisfy a quantitative condition.
We start by showing that a weighted specification A can be preprocessed in polynomial time
such that dealing with the Boolean part becomes very simple. Basically, we remove all parts
of A that cannot be used by a Boolean realizer. We call the result of this preprocessing
a domain-safe weighted specification, to be defined formally below. In Section 4 we use
domain-safe specifications.

Denote by dom(A) ⊆ Σ∗
i
the domain of the weighted specification defined by A. We can

easily obtain an NFA (with ε-transitions) for dom(A) by removing the weights and turning
all transitions that are labelled by an output letter into an ε-transition. We call the resulting
NFA the domain automaton of A, and denote it by Adom. For a state q of A, we denote
by L(Adom, q) the language of Adom accepted by runs starting in q. An output transition
(q, a, q′) of A is called domain-safe if L(Adom, q) = L(Adom, q

′), i.e., it does not restrict the
language of input words that can be accepted by Adom. Otherwise, such a transition is called
domain-unsafe. We call a weighted specification A domain-safe if it is trim, i.e., all states
are accessible and co-accessible, and all its output transitions are domain-safe.

A transducer that produces an input/output pair whose run in A uses a domain-unsafe
transition of A cannot be a Boolean realizer of A because it cannot complete all inputs
in the domain with an output in the relation R(A). We now show that we can compute
in polynomial time for a given weighted specification A a sub-automaton A′ of A that is
domain-safe and has the same Boolean realizers as A. We would like to mention that there
is a tight connection between domain-safe automata and the problem of “determinization
by pruning” (DBP) as it is studied in [3]. The following result can also be derived from the
proof of [3, Theorem 4.1]. Furthermore, the proof of Theorem 2 directly yields an alternative
game-based proof of the “determinization by pruning” problem.

I Theorem 2. There is a polynomial time procedure that takes as input a weighted specification
A, and either returns “no realizer” if A does not have Boolean realizers, or, otherwise, returns
a sub-automaton A′ of A that is domain-safe, has the same domain as A, and has the same
Boolean realizers as A.

A direct consequence of the above theorem is that the Boolean synthesis problem is
decidable in polynomial time.

FSTTCS 2020

46:8 Synthesis from Weighted Specifications with Partial Domains over Finite Words

3 Critical prefix games

In this section we introduce the necessary definitions and notations regarding games. Moreover,
we introduce critical prefix games and establish our results for these kind of games.

Games. A weighted game with imperfect information is an infinite-duration two-player
game played on a game arena G = (V, v0, A,E,O, w), where V is a finite set of vertices,
v0 ∈ V is the initial vertex, A is a finite set of actions, E ⊆ V ×A× V is a labeled transition
relation, O ⊆ 2V is a set of observations that partition V , and w : E → Z is a weight function.
Without loss of generality, we assume that the arena has no dead ends, i.e., for all v ∈ V
there exists a ∈ A and v′ ∈ V such that (v, a, v′) ∈ E. The unique observation containing a
vertex v is denoted obs(v). A game with perfect information is such that O = {{v} | v ∈ V }.
In that case we omit O from the tuple G.

Games are played in rounds in which Eve chooses an action a ∈ A, and Adam chooses an
a-successor of the current vertex. The first round starts in the initial vertex v0. A play π in
G is an infinite sequence v0a0v1a1 . . . such that (vi, ai, vi+1) ∈ E for all i ∈ N. The prefix
of π up to vn is denoted π(n), its last element vn is denoted by last(π(n)). The set of all
plays resp. prefixes of plays in G is denoted by Plays(G) resp. Prefs(G). The observation
sequence of the play π is defined as obs(π) = obs(v0)a0obs(v1)a1 . . . and the finite observation
sequence of the play prefix π(n) is obs(π(n)) = obs(v0)a0 . . . obs(vn). Naturally, obs extends
to sets of (prefixes of) plays.

A game is defined by an arena G and an objective Win ⊆ Plays(G) describing a set of
good plays in G for Eve. A strategy for Eve in G is a mapping σ : Prefs(G)→ A, it is called
observation-based if for all play prefixes ρ, ρ′ ∈ Prefs(G), if obs(ρ) = obs(ρ′), then σ(ρ) = σ(ρ′).
Equivalently, an observation-based strategy is a mapping σ : obs(Prefs(G))→ A. We do not
formally introduce strategies for Adam, intuitively, given a play prefix and an action a, a
strategy of Adam selects an a-successor of its last vertex. Given a strategy σ, let Playsσ(G)
denote the set of plays compatible with σ in G, and Prefsσ(G) denote the set of play prefixes
of Playsσ(G). An Eve’s strategy σ in G is winning if Playsσ(G) ⊆Win.

We now define quantitative objectives. The energy level of the play prefix π(n) is
EL(π(n)) =

∑n
i=1 w((vi−1, ai−1, vi)), the sum value is Sum(π(n)) =

∑n
i=1 w((vi−1, ai−1, vi)),

the average value is Avg(π(n)) = 1
nSum(π(n)), and the discounted-sum value is Dsum(π(n)) =∑n

i=1 λ
iw((vi−1, ai−1, vi)), and we let Dsum(π) =

∑∞
i=1 λ

iw((vi−1, ai−1, vi)) (we do not
explicitly mention the discount factor λ in this notation because it is always clear from the
context).

The energy objective in G is parameterized by an initial credit c0 ∈ N and is given by
PosEnG(c0) = {π ∈ Plays(G) | ∀i ∈ N : c0 + EL(π(i)) ≥ 0}. It requires that the energy
level of a play never drops below zero when starting with initial energy level c0. The
fixed initial credit problem for imperfect information games asks whether there exists an
observation-based winning strategy for Eve for the objective PosEnG(c0). The discounted-sum
objective in G is parameterized by a threshold ν ∈ Q, and . ∈ {>,≥}. It is given by
DS.G(ν) = {π ∈ Plays(G) | Dsum(π) . ν} and requires that the discounted-sum value of a play
is greater than resp. at least ν. The discounted-sum game problem asks whether there exists
a winning strategy for Eve for the objective DS.G(ν).

A game with perfect information is a special case of an imperfect information game.
Classically, instead of using the above model with full observation, a (weighted) perfect
information game, simply called game, is defined over an arena (V, V∃, v0, E, w), where the
set of vertices V is partitioned into V∃ and V \ V∃, the vertices belonging to Eve and Adam,

E. Filiot, C. Löding, and S. Winter 46:9

respectively, v0 ∈ V is the initial vertex, E ⊆ V × V is a transition relation, and w : E → Z

is a weight function. In a play on such a game arena, Eve chooses a successor if the current
vertex belongs to her, otherwise Adam chooses. For games with perfect information the two
models are equivalent and we shall use both.

Critical prefix games. A critical prefix game is a game, where the winning objective is
parameterized by a set C ⊆ V of critical vertices, and a set of play prefixesW ⊆ Prefs(G). Its
objective is defined as CritC,W (G) = {π ∈ Plays(G) | ∀i last(π(i)) ∈ C → π(1) . . . π(i) ∈W}.
The idea of a critical prefix game is that the state of a play is only relevant whenever the
play is in a critical vertex. For convenience, in the case of critical prefix games, we also refer
to the set W as objective.

The threshold problem for critical prefix games asks whether there exists a winning strategy
for Eve for the objective CritC,W (G), where W is of the form ThresV .G (ν) = {ϕ ∈ Prefs(G) |
V (ϕ) . ν} parameterized by a threshold ν ∈ Q, . ∈ {>,≥}, and V ∈ {Sum,Avg,Dsum}.

The initial credit problem for critical prefix imperfect information energy games asks
whether there exists an observation-based winning strategy for Eve for the objective
CritC,W (G), where W is of the form PrefPosEnG(c0) = {ϕ ∈ Prefs(G) | c0 + EL(ϕ) ≥ 0}
parameterized by an initial credit c0 ∈ N.

I Theorem 3. The threshold problem for critical prefix games for V ∈ {Sum,Avg} and a
strict or non-strict threshold is decidable in NP ∩ coNP. Moreover, positional strategies are
sufficient for Eve to win such games.

Proof sketch. For Sum and Avg and a strict or non-strict threshold, the critical prefix
threshold games reduce to mean-payoff games which are solvable in NP ∩ coNP [34].
Positional strategies suffice for mean-payoff games, a winning strategy in the constructed
mean-payoff game directly yields a positional winning strategy in the critical prefix threshold
game. J

I Theorem 4. The threshold problem for critical prefix games for Dsum and a strict resp.
non-strict threshold is decidable in NP resp. NP ∩ coNP. Moreover, positional strategies
are sufficient for Eve to win such games.

To prove the above theorem, we first show a result on weighted graphs which is interesting
in itself.

I Lemma 5. Given a weighted graph G, a source vertex v0 ∈ V , a target set T ⊆ V and a
threshold ν ∈ Q, checking whether there exists a path π from v0 to some vertex v ∈ T such
that Dsum(π) ≤ ν can be done in Ptime.

Lemma 5 can be used to show that the ≥ ν-non-emptiness problem for nondeterministic
discounted-sum automata3 can be checked in Ptime, a result which is, to the best of
our knowledge, new. It was known to be in PSpace for unambiguous discounted-sum
automata [25, 9]. This problem asks for the existence of a word of value greater or equal than
a given threshold ν. Since the value of a word is the maximal value amongst its accepting
runs, it suffices to check for the existence of a run from the initial state to an accepting state
of discounted-sum value ≥ ν. By inverting the weights, the latter is equivalent to checking

3 In contrast to deterministic weighted automata, there might be serveral accepting runs on an input and
the value of the word is defined as the maximal value of its accepting runs [25, 28].

FSTTCS 2020

46:10 Synthesis from Weighted Specifications with Partial Domains over Finite Words

whether there exists a run from the initial state to an accepting state of discounted-sum
value ≤ −ν. By seeing the (inverted) discounted-sum automaton as a weighted graph, the
latter property can be checked in Ptime by Lemma 5, thus proving the following theorem.

I Theorem 6. The ≥ ν non-emptiness problem is decidable in PTime for nondeterministic
discounted-sum automata.

We now go back to the proof of Theorem 4.

Proof sketch of Theorem 4. For Dsum, and a non-strict threshold, the problem can be
directly reduced to discounted-sum games which are solvable in NP ∩ coNP [4].

For Dsum, and a strict threshold, such a reduction fails. To solve the problem, we first
show that positional strategies are sufficient for Eve to win in a critical prefix threshold
discounted-sum game (for strict and non-strict thresholds). The NP-algorithm guesses a
positional strategy σ for Eve, and then verifies in polynomial time whether σ is winning. Let
G′ be the game restricted to Eve’s σ-edges, seen as a weighted graph. The strategy σ is not
winning iff Adam can form a path in G′ from the initial vertex to a critical vertex that has
weight ≤ ν. This property can be checked in Ptime thanks to Lemma 5 (by taking as target
set the set of critical vertices). J

The following is shown by reduction from the halting problem for 2-counter machines.

I Theorem 7. The fixed initial credit problem for imperfect information critical prefix energy
games is undecidable.

The above result contrasts the fixed initial credit problem for imperfect information
energy games which is decidable [22].

I Theorem 8. The fixed initial credit problem for imperfect information critical prefix energy
games is decidable if from each vertex Adam has a strategy to reach a critical vertex against
observation based strategies. Moreover, finite-memory strategies are sufficient for Eve to win.

Proof sketch. This problem is reduced to the fixed initial credit problem for imperfect
information energy games which is decidable [22]. In classical energy games, Eve loses as
soon as the energy goes below zero. The idea of the reduction is that if in the critical prefix
energy game the initial credit is c0, then in the classical energy game we start the game with
an additional buffer, i.e., with c0 +B, for some computable bound B. In the critical prefix
energy game, if the energy level drops below −B Adam can force to visit a critical vertex
such that the energy level can rise by at most B, ensuring that a critical vertex is visited
with energy level below zero. Thus, the additional buffer B suffices in the classical energy
game. J

4 Synthesis problems

Here, we solve the quantitative synthesis problems defined in Section 2. Recall that weighted
specifications are given by weighted automata that alternate between reading one input and
one output symbol. In other words, we prove the decidability results of Table 1. We then
show consequences of these results to quantitative synthesis problems over infinite words.

E. Filiot, C. Löding, and S. Winter 46:11

Threshold synthesis problems. Since weighted specifications S are given by weighted
automata, the synthesis problem naturally reduces to a game played on the automaton.
In order to solve threshold synthesis problems, in contrast to best-value and approximate
synthesis problems, it is not necessary to compare the values of runs of the specification
automaton that have the same input sequence. Hence, it is relatively straightforward to
reduce threshold synthesis problems to critical prefix threshold games. An important point
needs to be taken care of due to the fact the domain of S might be partial, and therefore lead
Eve into the following bad situation (?): Eve must choose her outputs in such a way that
she does not go in a state of the automaton which is non-accepting, while the input word
played by Adam so far is in the domain of S. Otherwise, the pair of input and output word
formed would not even be in S, something which is required by the definition of synthesis
problems. So, Eve has to monitor the domain, which is easy if the domain is total, but
more involved if it is partial. Thanks to Theorem 2, this can be done in polynomial time.
More precisely, we first run the algorithm of Theorem 2 which either returns that there is
no Boolean realizer, or returns a domain-safe deterministic weighted automaton A′ which
has the same Boolean realizers as S. By the very definition of domain-safe automata, the
bad situation (?) described above cannot happen. Hence, Eve can freely play on A′ without
taking care of the domain constraint. Only the quantitative constraint matters, and it has to
be enforced whenever Eve is in an accepting state of A′ (this corresponds to the situation
where Adam has chosen an input word in the domain of S). Hence, only accepting states
of A′ matter for the quantitative constraint and these are declared as critical. To conclude,
by projecting away the symbols of A′ and by declaring its accepting states to be critical,
we obtain a critical prefix game. For the threshold synthesis problem, decidability follows
directly from the decidability of the threshold problem for critical prefix games (Theorems 3
and 4). For Sum- and Avg-specifications, this can be done in NP ∩ coNP. We leave open
whether it is solvable in Ptime and show that this would also solve the long standing open
problem of whether mean-payoff games are solvable in Ptime.

I Theorem 9. The threshold synthesis problem for a V -specification with V ∈ {Sum,Avg}
and a strict or non-strict threshold is decidable in NP ∩ coNP and PTIME-equivalent to
mean-payoff games. The threshold synthesis problem for a Dsum-specification and a strict
resp. non-strict threshold is decidable in NP resp. in NP ∩ coNP.

Synthesis and regret determinization. Before we prove our results about best-value and
approximate synthesis, we highlight the tight connection between the approximate synthesis
problem and the so-called regret determinization problem for nondeterministic weighted
automata4. This problem has for instance been studied in [26] for Sum-automata and in [29]
for Dsum-automata. We formalize this connection here. Given r ∈ Q and / ∈ {<,≤}, a
nondeterministic WFA A = (Q,Σ, qi,∆, F, γ) is called r/-regret determinizable if there exists
a finite set of memory states M and a deterministic WFA Ar = (Q×M,Σ, qri ,∆r, Fr, γr),
where qri = (qi,m) for some m ∈ M , Fr ⊆ F × M ,

(
(q,m), a, (q,m′)

)
∈ ∆r implies

that (q, a, q′) ∈ ∆, and γr
((

(q,m), a, (q,m′)
))

= γ((q, a, q′)) for all m,m′ ∈ M , such that
L(A) = L(Ar) and A(w) − Ar(w) / r for all w ∈ dom(L(A)). The regret determinization
problem asks, given a nondeterministic weighted automaton A, a threshold r ∈ Q, and
/ ∈ {<,≤}, whether A is r/-regret determinizable.

4 In contrast to deterministic weighted automata, there might be serveral accepting runs on an input and
the value of the word is defined as the maximal value of its accepting runs [25, 28].

FSTTCS 2020

46:12 Synthesis from Weighted Specifications with Partial Domains over Finite Words

I Lemma 10. The approx. synthesis problem for weighted specifications reduces in linear time
to the regret determinization problem for nondet. weighted automata (with the same threshold).
The converse is true (in linear time and with the same threshold) for Sum-automata.

Lemma 10 is independent from any payoff function. Regarding the converse direction,
when going from the regret determinization problem to the approximate synthesis problem,
a transition (for an input symbol) must be translated into two transitions (adding an output
symbol). This step can cause difficulties depending on the used payoff function, e.g., Dsum.

Best-value synthesis problems. Best-value synthesis is equivalent to zero-regret synthesis,
which is, by Lemma 10, equivalent to zero-regret determinization of weighted automata.
In [9], the authors showed that if a Sum-automaton is zero-regret determinizable, then no
memory states are needed, i.e., a sub-automaton suffices. We give general sufficient conditions
on weighted finite automata (which hold for Sum-, Avg- and Dsum-automata) under which
the latter result can be generalized.

Let V : Z∗ → Q be a payoff function. A V -automaton defining a V -specification, where
V is applied to runs as usual, is called ≤-stable if for all runs ρ, ρ′, ρ′′ such that the end state
of ρ is the beginning state of ρ′ and ρ′′, w′ = u⊗ v′, and w′′ = u⊗ v′′ for some u ∈ Σ∗

i
and

v′, v′′ ∈ Σ∗
o
, where w′ and w′′ are the words associated to ρ′ and ρ′′, respectively, holds that

if V (ρ′) ≤ V (ρ′′) then V (ρρ′) ≤ V (ρρ′′).

I Lemma 11. Given a weighted specification S by a ≤-stable weighted automaton A, if there
exists a transducer that implements a best-value S-realization, then there exists a transducer
that implements a best-value S-realization that is defined as a sub-automaton of A.

While the above lemma can be used to obtain our decidability results for best-value
synthesis, we use other techniques to obtain the complexity results stated below.

I Theorem 12. The best-value synthesis problem is decidable in Ptime for Sum-specifications
and Avg-specifications, and in NP∩coNP for Dsum-specifications.

Proof sketch. For Sum, the problem reduces to the zero-regret determinization problem for
Sum-automata, see Lemma 10, aka the determinization by pruning problem for Sum-automata,
known to be decidable in Ptime in [3]. For Avg, it easily reduces to Sum by interpreting
the Avg-specification as a Sum-specification. For Dsum, we show that the problem reduces
in Ptime to a critical prefix threshold game, for non-strict threshold, which is solvable in
NP∩coNP by Theorem 4. J

Alternatively, decidability for Dsum can be obtained by reduction to the zero-regret
determinization problem for Dsum-automata over infinite words which was shown to be
decidable in NP in [29, Theorem 6]. However, our techniques allow us to get NP∩coNP.

Approximate synthesis problems. We now turn to the approximate synthesis problems
and show its decidability for Sum and Avg. We leave the decidability status open for Dsum,
but nevertheless show decidability for a large class, namely when the discount factor is of
the form 1

n for n ∈ N. Nondeterministic Dsum-automata in this class have been considered
in [8] and shown to be determinizable.

I Theorem 13. The approximate synthesis problem is
EXPtime-complete for Sum-specifications and strict or non-strict thresholds;
decidable and EXPtime-hard for Avg-specifications and strict or non-strict thresholds;
in NEXPtime (resp. EXPtime) for Dsum-specifications with a discount factor λ of the
form 1

n with n ∈ N and strict (resp. non-strict) thresholds.

E. Filiot, C. Löding, and S. Winter 46:13

Proof sketch. For Sum, we reduce the problem to r-regret determinization of Sum-automata,
known to be EXPtime-complete, using the back-and-forth connection given by Lemma 10.

For an Avg-specifications S, it is worth noting that even though r-approximate synthesis
reduces to r-approximate synthesis for Sum when r = 0, interpreting S as a Sum-specification,
this reduction is wrong for r > 0 in general. It is because in an Avg-specification, Eve can
deviate more and more from the best sum, while the average of this difference can stay
low. We instead rely on a reduction to critical prefix energy games of imperfect information
and fixed initial credit (which falls into the decidable subclass of Theorem 8). Intuitively,
in this game, Adam constructs a run ρ on a pair of words (u, v) and Eve constructs a run
ρ′ on some (u, v′). She only sees u and not ρ. The energy level of such a play is set to
Sum(ρ′) + |uv| · r − Sum(ρ) and must be positive whenever Adam reaches an accepting state.
ExpTime-hardness is perhaps the most technical result of the paper, and is a non-trivial
adaptation of reduction from countdown games used to show ExpTime-hardness of the
regret determinization of Sum-automata [26].

Finally, for Dsum, we use that by projecting away the output in the Dsum-automaton
defining the specification, we obtain a nondeterministic weighted automaton which is deter-
minizable by [8]. This allows us to reduce the problem to the threshold synthesis problem for
Dsum, which is decidable by Theorem 9. To obtain the complexity results, we first analyze
the determinization procedure. It yields an automaton whose states are exponential in the
number of states and polynomial in the weights of the nondeterministic one. Its weights are
polynomial in the weights of the nondeterministic one. For a strict threshold, the claimed
complexity bound follows directly from Theorem 9. For a non-strict threshold, we use that
critical prefix threshold games are reduced in polynomial time to discounted-sum games.
Using value iteration [34] to solve discounted-sum games yields the claimed complexity bound,
because it runs in polynomial time in the size of the arena, logarithmic in the absolute
maximal weight of the arena, and exponential in the representation of the discount factor,
i.e., polynomial in the discount factor. J

Infinite words and Church synthesis. An ω-specification is a subset S ⊆ (Σi.Σo)ω. The
(Church) synthesis problem asks to decide whether there exists a strategy to pick a correct
output sequence given longer and longer prefixes of an infinite input sequence. Formally, an
ω-specification S is said to be realizable if there exists a function λ : Σ∗

i
→ Σo such that for

all i1i2 · · · ∈ Σω
i
, it holds that i1λ(i1)i2λ(i1i2)i3λ(i1i2i3) · · · ∈ S.

Strategies of interest are those which can be represented by a finite-state machine, and in
particular a Mealy machine, that is, roughly, a transducer running on ω-words and without
acceptance condition. Formally, it is a tuple M = (P, p0, δ) such that P is a finite set of
states with initial state p0, and δ : P × Σi → Σo × P is a (total) transition function. The
function δ can be extended to δ∗ : P ×Σ+

i
→ Σo × P as usual. Then, M defines the strategy

λM such that for all u ∈ Σ∗
i
, λM (u) = π1(δ∗(p0, u)), where π1 is the first projection. It

is well-known that when S is ω-regular (given e.g. as a parity automaton), it is decidable
whether S is realizable [14]. Moreover, realizability implies realizability by a Mealy machine.

Weighted safety specifications. In this paper, we go beyond ω-regular specifications, by
considering safety ω-specifications induced by weighted specifications of finite words defined by
deterministic weighted automata. Let W : (ΣiΣo)∗ → Q∪ {−∞} be a weighted specification.
For a threshold t ∈ Q and . ∈ {>,≥}, we define the ω-specification Thres.t(W) = {i1o1 · · · ∈
(Σi.Σo)ω | ∀k ≥ 0, i1 . . . ik ∈ dom(W) → W (i1o1 . . . ikok) . t}. In words, an ω-word w is
in Thres.t(W) iff for all finite prefixes u = i1o1 . . . ikok of w, either i1 . . . ik 6∈ dom(W) or

FSTTCS 2020

46:14 Synthesis from Weighted Specifications with Partial Domains over Finite Words

W (u) . t. So, the quantitative condition is checked only for prefixes whose input belongs
to dom(W). The ω-specification Thres.t(W) is a safety specification 5. More generally, any
set S ⊆ (Σi.Σo)∗ induces a safety ω-specification Safe(S) = {i1o1 · · · ∈ (Σi.Σo)ω | ∀k ≥
0, i1 . . . ik ∈ dom(S)→ i1o1 . . . ikok ∈ S}.

For example, we have the equality Thres.t(W) = Safe({u ∈ (Σi.Σo)∗ | W (u) . t}).
Likewise, we define best-value and approximate safety ω-specifications. Formally, given a
finite word i1 . . . ik ∈ Σ∗

i
and / ∈ {<,≤}, we let BestVal(W) = Approx≤(W, 0) where for all

r ∈ Q≥0 we have Approx/(W, r) = Safe({u = i1o1 . . . ikok | bestValW (i1 . . . ik) −W (u) / r}.
Note that the three notions of safety ω-specifications we have defined are not necessarily
ω-regular, even if W is given by a deterministic weighted automaton. Nevertheless, an
immediate consequence of the results we have obtained previously on finite words is that

I Theorem 14. The synthesis problem for an ω-specification O ⊆ (Σi.Σo)ω is decidable
when O is given by a deterministic V -automaton defining a weighted V -specification of finite
words W s.t. O ∈ {Thres>t(W),Thres≥t(W),BestVal(W),Approx<(W, r),Approx≤(W, r)}
and V = Sum, V = Avg or V = Dsum with discount factor 1/n for n ∈ N. Moreover, if O is
realizable, it is realizable by a Mealy machine.

5 Future work

In this paper, weighted specifications are defined by deterministic weighted automata.
Nondeterministic, even unambiguous, weighted automata, are strictly more expressive than
their deterministic variant in general, and in particular for Sum, Avg and Dsum. An
interesting direction is to revisit our quantitative synthesis problems for specifications defined
by nondeterministic weighted automata. Using similar ideas as the undecidability of critical
prefix energy games of imperfect information, it can be shown that threshold synthesis
becomes undecidable for unambiguous sum- and avg-specifications. The problem is open for
best-value and approximate synthesis, and we plan to investigate it.

Two other directions seem interesting as future work, both in the setting of infinite words.
First, natural measures in this setting are discounted-sum and mean-payoff. While the
threshold synthesis problems directly reduce to known results and best-value/approximate
synthesis for dsum has been studied in [29], nothing is known to the best of our knowledge
about best-value/approximate synthesis for mean-payoff. We expect the techniques to be
different because such a measure is prefix-independent, unlike our measures in the setting
of finite words. As a second direction, we have seen how our results apply to synthesis on
infinite words through weighted safety conditions. An interesting direction is to consider
such weighted requirements in conjunction with ω-regular conditions such as parity, in the
line of [17] that combines energy and parity objectives in games.

References
1 Shaull Almagor and Orna Kupferman. Good-enough synthesis. In International Conference

on Computer Aided Verification, pages 541–563. Springer, 2020.
2 Shaull Almagor, Orna Kupferman, Jan Oliver Ringert, and Yaron Velner. Quantitative assume

guarantee synthesis. In International Conference on Computer Aided Verification, pages
353–374. Springer, 2017.

5 A language of ω-words S is a safety language if any ω-word w whose finite prefixes u are such that
uvu ∈ S for some ω-word vu, belongs to S [15].

E. Filiot, C. Löding, and S. Winter 46:15

3 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.

4 Daniel Andersson. An improved algorithm for discounted payoff games. In ESSLLI Student
Session, pages 91–98, 2006.

5 Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In International Conference on
Computer Aided Verification, pages 140–156. Springer, 2009.

6 Roderick Bloem, Rüdiger Ehlers, and Robert Könighofer. Cooperative reactive synthesis.
In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, Automated Technology for
Verification and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China,
October 12-15, 2015, Proceedings, volume 9364 of Lecture Notes in Computer Science, pages
394–410. Springer, 2015.

7 Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012. doi:10.1016/j.jcss.2011.
08.007.

8 Udi Boker and Thomas A. Henzinger. Exact and approximate determinization of discounted-
sum automata. Logical Methods in Computer Science, 10(1), 2014.

9 Udi Boker, Thomas A. Henzinger, and Jan Otop. The target discounted-sum problem. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 750–761. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.74.

10 Patricia Bouyer, Uli Fahrenberg, Kim G Larsen, and Nicolas Markey. Timed automata with
observers under energy constraints. In Proceedings of the 13th ACM international conference
on Hybrid systems: computation and control, pages 61–70, 2010.

11 Tomáš Brázdil, Petr Jančar, and Antonín Kučera. Reachability games on extended vector
addition systems with states. In International Colloquium on Automata, Languages, and
Programming, pages 478–489. Springer, 2010.

12 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games for reactive
synthesis. In Language and Automata Theory and Applications, pages 3–23. Springer, 2016.

13 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Informatica, 54(1):41–83, 2017. doi:10.1007/s00236-016-0273-2.

14 J Richard Büchi and Lawrence H Landweber. Solving sequential conditions finite-state
strategies. Trans. Ameri. Math. Soc., 138:295–311, 1969.

15 Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress classification. In Logic
and Algebra of Specification, pages 143–202. Springer, 1993.

16 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoretical Computer
Science, 458, 2012.

17 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012. doi:10.1016/j.tcs.2012.07.038.

18 Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science, pages 261–275.
Springer, 2007.

19 A Church. Applications of recursive arithmetic to the problem of circuit synthesis–summaries
of talks. Institute for Symbolic Logic, Cornell University, 1957.

20 Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
model checking, volume 10. Springer, 2018.

21 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
complexity of rational synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,

FSTTCS 2020

https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1016/j.tcs.2012.07.038

46:16 Synthesis from Weighted Specifications with Partial Domains over Finite Words

and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

22 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon
Toruńczyk. Energy and mean-payoff games with imperfect information. In International
Workshop on Computer Science Logic, pages 260–274. Springer, 2010.

23 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer
Science & Business Media, 2009.

24 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Interna-
tional Journal of Game Theory, 8(2):109–113, 1979.

25 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Quantitative languages
defined by functional automata. In CONCUR, volume 7454 of Lecture Notes in Computer
Science, pages 132–146. Springer, 2012.

26 Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.
On delay and regret determinization of max-plus automata. In LICS, pages 1–12. IEEE
Computer Society, 2017.

27 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and compositional
algorithms for LTL synthesis. Formal Methods in System Design, 39(3):261–296, 2011.

28 Axel Haddad and Benjamin Monmege. Why value iteration runs in pseudo-polynomial time
for discounted-payoff games. Technical note, Université libre de Bruxelles, 2015.

29 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Minimizing regret in discounted-
sum games. In CSL, volume 62 of LIPIcs, pages 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

30 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environments.
Ann. Math. Artif. Intell., 78(1):3–20, 2016.

31 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional synthesis.
In Computer Aided Verification, 18th International Conference, CAV 2006, volume 4144 of
Lecture Notes in Computer Science, pages 31–44. Springer, 2006.

32 Jianwen Li, Kristin Y. Rozier, Geguang Pu, Yueling Zhang, and Moshe Y. Vardi. Sat-
based explicit ltlf satisfiability checking. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
2946–2953. AAAI Press, 2019.

33 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic
ltlf synthesis. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
pages 1362–1369. ijcai.org, 2017.

34 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1-2):343–359, 1996.

Reachability for Updatable Timed Automata
Made Faster and More Effective
Paul Gastin
LSV, ENS Paris-Saclay, CNRS, Université Paris–Saclay, France
paul.gastin@ens-paris-saclay.fr

Sayan Mukherjee
Chennai Mathematical Institute, India
sayanm@cmi.ac.in

B Srivathsan
Chennai Mathematical Institute, India
sri@cmi.ac.in

Abstract
Updatable timed automata (UTA) are extensions of classical timed automata that allow special
updates to clock variables, like x := x− 1, x := y + 2, etc., on transitions. Reachability for UTA is
undecidable in general. Various subclasses with decidable reachability have been studied. A generic
approach to UTA reachability consists of two phases: first, a static analysis of the automaton is
performed to compute a set of clock constraints at each state; in the second phase, reachable sets of
configurations, called zones, are enumerated. In this work, we improve the algorithm for the static
analysis. Compared to the existing algorithm, our method computes smaller sets of constraints
and guarantees termination for more UTA, making reachability faster and more effective. As the
main application, we get an alternate proof of decidability and a more efficient algorithm for timed
automata with bounded subtraction, a class of UTA widely used for modelling scheduling problems.
We have implemented our procedure in the tool TChecker and conducted experiments that validate
the benefits of our approach.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases Updatable timed automata, Reachability, Zones, Simulations, Static analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.47

Related Version A full version of the paper is available at https://arxiv.org/abs/2009.13260.

Funding Work supported by IRL ReLaX. Paul Gastin is supported by ANR project TickTac (ANR-
18-CE40-0015). B Srivathsan is supported by CEFIPRA project IoTTTA (DST/CNRS ref. 2016-01).
Sayan Mukherjee and B Srivathsan are additionally supported by Infosys Foundation (India).

1 Introduction

Timed automata [1] are finite automata equipped with real-time variables called clocks.
Values of the clock variables increase at the same rate as time progresses. Transitions are
guarded by constraints over the clock variables. During a transition, the value of a variable
can be updated in several ways. In the classical model, variables can be reset to 0, written
as a command x := 0 in transitions. Generalizations of this involve x := c with c ≥ 0 or
x := y + d where d is an arbitrary integer. Automata with these more general updates
are called Updatable Timed Automata (UTA) [8, 6]. The updates provide a “discrete jump”
facility during transitions. These are useful syntactic constructs for modeling real-time
systems and have been used in several studies [12, 23, 19, 18, 25].

On the one hand, variables with both a continuous and a discrete flow offer modeling
convenience. On the other hand, the discrete jumps are powerful enough to simulate counter
machines through the use of x := x + 1 and x := x − 1 updates, in fact with zero time

© Paul Gastin, Sayan Mukherjee, and B Srivathsan;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1313-7722
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0001-6473-3172
mailto:sayanm@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
mailto:sri@cmi.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.47
https://arxiv.org/abs/2009.13260
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Reachability for Updatable Timed Automata Made Faster and More Effective

elapse during the entire simulation [8]. This makes reachability for this model undecidable.
Various decidable subclasses have been investigated over the years [8, 12]. The most common
technique to prove decidability involves showing the existence of a region automaton [1],
which is a finite automaton accepting the (untimed) sequences of actions that have a timed
run in the UTA. Although this gives decidability, the algorithm via the region construction
is impractical due to the presence of exponentially many regions. Practical algorithms in
current tools like UPPAAL [24], PAT [27], Theta [28] and TChecker [20] work with zones,
which are bigger sets of configurations than regions and can be efficiently represented and
manipulated using Difference-Bound Matrices (DBMs) [10]. Notably, these tools implement
zone based algorithms only for UTA with restricted updates x := c for c ≥ 0, which behave
similar to the reset x := 0. Most of the efforts in making the zone based algorithm more
efficient have concentrated on this subclass of timed automata with only resets [4, 22, 26].

Recently, we have presented a zone based algorithm for updatable timed automata [14].
Due to the undecidability of the problem, it cannot deal with the whole class of UTA. It
however covers the subclasses tabulated in [8]. The algorithm consists of two phases: first, a
static analysis of the automaton is performed to compute a set of clock constraints at each
state of the automaton; in the second phase, reachable sets of configurations, stored as zones,
are enumerated. None of these phases has a guaranteed termination. If the static analysis
terminates, a simulation relation between zones based on the constraints generated in the
static analysis can be used to guarantee termination of the zone enumeration. Moreover, a
smaller set of constraints in the static analysis gives a coarser simulation which leads to a
faster zone enumeration. The simulation used in [14] lifts the efficient LU -simulation [4, 22]
studied for diagonal-free reset-only timed automata to automata with diagonal constraints
and updates.

Contributions. In this work, we strongly improve the static analysis of [14]. The new
approach accumulates fewer clock constraints and terminates for a wider class of UTA. In
particular, it terminates for timed automata with bounded subtraction, which was not the
case before. This class contains updates x := x− c with c ≥ 0 along with resets. However,
an update x := x − c is allowed in a transition only when there is a promise that each
configuration that can take this transition has a bounded x-value. This boundedness property
gives decidability thanks to a finite region equivalence. This class has been used to model
schedulability problems [12], where updates x := x− c have been crucially used to model
preemption. Thus, our new static analysis allows to use efficient simulations during the zone
enumeration for this class.

At an algorithmic level, the new analysis is a slight modification of the older one.
However, this makes some of the technical questions significantly harder: we show that
deciding termination of the new analysis can be done in polynomial-time if the constants in
the guards and updates are encoded in unary, whereas the problem is Pspace-complete when
the constants are encoded in binary. The older analysis does not depend on the encoding of
constants, and has a polynomial-time algorithm for deciding termination.

For the experiments, the differences in the encoding and the hardness result do not carry
much importance. The static analysis is implemented as a fixed-point iteration which can
continue for a fixed number of steps determined by the size of the automaton, or can be
stopped after a fixed time-out. We have implemented the new static analysis in the open
source tool TChecker [20]. We noticed that the new method terminates and produces a result
for more cases, and when both methods produce a result, the new method is faster.

P. Gastin, S. Mukherjee, and B. Srivathsan 47:3

Related work. Static analysis for timed automata without diagonal constraints and with
updates restricted to x := c and x := y + c with c ≥ 0 was studied in [3] in the context of
M -simulations, which were implemented in earlier versions of UPPAAL and KRONOS [29].
Latest tools implement a more efficient LU -simulation [4, 22]. Our method clarifies how some
optimizations of [3] can be lifted to the context of LU -simulations and more general updates,
and also provides additional optimizations. TIMES [2] is a tool for modeling scheduling
problems. It is mentioned in [12] that TIMES implements an algorithm using zones based
on “the UPPAAL DBM library extended with a subtraction operator”. However, the exact
simulations used in the zone enumeration are not clear to us. A different approach to
reachability is presented in [21] where the constraints needed for simulation are learnt during
the zone enumeration directly. This potentially gives more relevant constraints and hence
coarser simulations. On the flip side, it requires a sophisticated zone enumeration method
with observable overheads. Moreover [21] deals with timed automata without diagonal
constraints and general updates. Static analysis is lucrative since it is cheap, and maintains
the reachability procedure as two simple steps. Apart from verification of UTA, studies on
the expressive power of updates and diagonal constraints have been carried out in [8, 7].
Timed register automata [5] are a variant of UTA that have been looked at in the context of
canonical representations.

Organization. Section 2 gives the preliminary definitions. Section 3 introduces the new
static analysis approach. Some classes of UTA where the new static analysis performs better
are discussed in Section 4. The subsequent Section 5 discusses the termination problem for
the new static analysis. Section 6 provides the results of our experiments. We conclude with
Section 7. The extended version [15] contains missing proofs and details about the models
used for the experiments.

2 Preliminaries

We denote by R the set of reals, by R≥0 the non-negative reals, by Z the integers and by N
the natural numbers. Let X be a finite set of variables over R≥0 called clocks. A valuation is
a function v : X → R≥0 that maps every clock to a non-negative real number. For δ ∈ R≥0
we define valuation v + δ as (v + δ)(x) := v(x) + δ. The set of valuations is denoted by V.

A non-diagonal constraint is an expression of the form x / c or c / x, where x ∈ X,
c ∈ N and / ∈ {<,≤}, that is, x / 3 stands for either x < 3 or x ≤ 3. A diagonal constraint
is an expression of the form x − y / c or c / x − y where x, y ∈ X are clocks and c ∈ N.
An atomic constraint is either a non-diagonal constraint or a diagonal constraint. We also
consider two special atomic constraints > (true) and ⊥ (false). A constraint ϕ is either an
atomic constraint or a conjunction of atomic constraints, generated by the following grammar:
ϕ ::= > | ⊥ | x / c | c / x | x − y / c | c / x − y | ϕ ∧ ϕ with c ∈ N, / ∈ {<,≤}. Given
a constraint ϕ and a valuation v, we write v(ϕ) for the boolean expression that we get by
replacing every clock x present in ϕ with the value v(x). A valuation v is said to satisfy a
constraint ϕ, written as v |= ϕ, if the expression v(ϕ) evaluates to true. For every valuation
v, we have v |= > and v 6|= ⊥. Given a constraint ϕ, we define the set [[ϕ]] := {v | v |= ϕ}.

An update up : V 7→ V is a partial function mapping valuations to valuations. The update
up is specified by an atomic update for each clock x, given as either x := c or x := y + d

where c ∈ N, d ∈ Z and y ∈ X (is possibly equal to x). We write upx for the right hand
side of the atomic update of x, that is, upx is either c or y + d. Note that we want d to be
an integer, since we allow for decrementing clocks, and on the other hand c ∈ N since clock
values are always non-negative. Given a valuation v and an update up, we define v(upx) to

FSTTCS 2020

47:4 Reachability for Updatable Timed Automata Made Faster and More Effective

be c or v(y) + d depending on upx being c or y + d. We say up(v) ≥ 0 if v(upx) ≥ 0 for all
x ∈ X. In this case the valuation up(v) ∈ V is defined by up(v)(x) = v(upx) for all x ∈ X. In
general, due to the presence of updates upx := y + d with d < 0, the update may not yield a
clock valuation and for those valuations v, up(v) is not defined. For example, if v(x) = 5 and
upx = x− 10 then up(v) is undefined. Hence, the domain of the partial function up : V→ V
is the set of valuations v such that up(v) ≥ 0. Updates can be used as transformations in
timed automata transitions. An updatable timed automaton is an extension of a classical
timed automaton which allows updates of clocks on transitions.

I Definition 1. An updatable timed automaton (UTA) A = (Q,X, q0, T, F) is given by a
finite set Q of states, a finite set X of clocks, an initial state q0, a set T of transitions and
F ⊆ Q of accepting states. Transitions are of the form (q, g, up, q′) where g is a constraint
(also called guard) and up is an update, q, q′ ∈ Q are the source and target states respectively.

Fix a UTA A := (Q,X, q0, T, F) for the rest of this section. A configuration of A is a
pair (q, v) with q ∈ Q and v ∈ V. Semantics of A is given by a transition system over its
configurations. There are two kinds of transitions: delay and action. For every configuration
(q, v) and every δ ∈ R≥0 there is a delay transition (q, v) δ−→ (q, v + δ). For every transition
t := (q, g, up, q′) in the automaton, there is an action transition (q, v) t−→ (q′, v′) in the
semantics if v |= g (v satisfies the guard), up(v) ≥ 0 (the update on v is defined) and
v′ = up(v). The initial configuration is (q0, v0) with v0(x) = 0 for every clock x. We
write (q, v) δ,t−→ (q′, v′) for the sequence of delay δ and action t from (q, v). A run is an
alternating sequence of delay and action transitions starting from the initial configuration:
(q0, v0) δ1,t1−−−→ (q1, v1) δ2,t2−−−→ · · · δn,tn−−−→ (qn, vn). The run is accepting if qn ∈ F .

The reachability problem for UTA asks if a given UTA has an accepting run. This
problem is undecidable in general [8]. Various decidable fragments with a Pspace-complete
reachability procedure have been studied [8, 12, 14]. The basic reachability procedure
involves computing sets of reachable configurations of the UTA stored as constraints which
are popularly called as zones [9]. A zone is a set of valuations given by a conjunction of
atomic constraints x / c, c / x, x− y / c and c / x− y with c ∈ N and x, y ∈ X. For example
(x− y ≤ 5) ∧ (2 < x) is a zone. Given a state-zone pair (q, Z) (henceforth called a node) and
a transition t := (q, g, up, q′), the set of valuations Zt := {up(v) + δ | v ∈ Z, v |= g, up(v) ≥
0, δ ≥ 0} is a zone. This is the set of valuations obtained from the v in Z that satisfy the
guard g of the transition, get updated to up(v) and then undergo a delay δ. The initial node
(q0, Z0) is obtained by delay from the initial configuration: Z0 := {v0 + δ | δ ≥ 0} is a zone.
This lays the foundation for a reachability procedure: start with the initial node (q0, Z0);
from each node (q, Z) that is freshly seen, explore the transitions t := (q, g, up, q′) out of q
to compute resulting nodes (q′, Zt). If a pair (q, Z) with q ∈ F is visited then the accepting
state is reachable in the UTA. This naïve zone enumeration might not terminate [9]. For
termination, simulations between zones are used.

A simulation relation on the UTA semantics is a preorder relation (in other words, a
reflexive and transitive relation) (q, v) v (q, v′) between configurations having the same
state such that the relation is preserved (1) on delay: (q, v + δ) v (q, v′ + δ) for all δ ∈ R≥0

and (2) on actions: if (q, v) t−→ (q1, v1), then (q, v′) t−→ (q1, v
′
1) with (q1, v1) v (q1, v

′
1) for

all t = (q, g, up, q1). This relation gets naturally lifted to zones: (q, Z) v (q, Z ′) if for all
v ∈ Z there exists a v′ ∈ Z ′ such that (q, v) v (q, v′). Intuitively, when (q, Z) v (q, Z ′), all
sequences of transitions enabled from (q, Z) are enabled from (q, Z ′). Therefore, all control
states reachable from (q, Z) are reachable from (q, Z ′). This allows for an optimization
in the zone enumeration: a fresh node (q, Z) is not explored if there is an already visited
node (q, Z ′) with (q, Z) v (q, Z ′). A simulation v is said to be finite if in every sequence

P. Gastin, S. Mukherjee, and B. Srivathsan 47:5

of the form (q, Z0), (q, Z1), . . . there are two nodes (q, Zi) and (q, Zj) with i < j such that
(q, Zj) v (q, Zi). Using a finite simulation in the reachability procedure ensures termination.
Various finite simulations have been studied in the literature, the most prominent being
LU -simulation [4, 22, 13] and more recently the G-simulation [14]. In addition to ensuring
termination, one needs simulations which can quickly prune the search. One main focus
of research in timed automata reachability has been in finding finite simulations which are
efficient in pruning the search.

In a previous work [14], we introduced a new simulation relation for UTA, called the
G-simulation. This relation is parameterized by a set of constraints G(q) associated to every
state q of the automaton. The sets G(q) are identified based on the transition sequences from
q. We now present the basic definitions and properties of G-simulation. The presentation
differs from [14], but the essence of the technical content is the same.

I Definition 2 (G-preorder). Given a finite or infinite set of constraints G, we say v vG v′
if for every δ ≥ 0, and every ϕ ∈ G: v + δ |= ϕ implies v′ + δ |= ϕ.

We simply write vϕ instead of v{ϕ} when G = {ϕ} is a singleton set.

Directly from the definition of vG, we get that the relation vG is a preorder. The
definition also entails the following useful property: when v vG v′, v |= ϕ implies v′ |= ϕ for
all ϕ ∈ G. This is a first step towards getting a simulation on the UTA semantics. It says
that all guards that v satisfies are satisfied by v′, and hence all transitions enabled at v will
be enabled at v′ provided the transition guards are present in G. Valuations get updated on
transitions and this property needs to be preserved over these updates. This motivates the
following definition. It gives a constraint ψ such that v vψ v′ will imply up(v) vϕ up(v′).

I Definition 3. Given an update up and a constraint ϕ, we define up−1(ϕ) to be the constraint
resulting by simultaneously substituting upx for x in ϕ: up−1(ϕ) := ϕ[upx/x,∀x ∈ X].

For example, for ϕ = x − y / c, up−1(x − y / c) = upx − upy / c. Similarly, up−1(x /
c) = upx / c and up−1(c / x) = c / upx. Note that, up−1(ϕ) need not be in the syntax
defined by the grammar for constraints. But, it can be easily rewritten to an equivalent
constraint satisfying this syntax. For example: consider the constraint x − y / c and the
update upx = z + d and upy = y, then up−1(ϕ) = z + d− y / c, which is not syntactically
a constraint. However, it is equivalent to the constraint z − y / c − d. If c − d < 0, we
further rewrite as d− c / y − z. It is also useful to note that up−1(ϕ) may sometimes yield
constraints equivalent to > or ⊥. For example: if ϕ = x / c and upx = d with d > c, then
the constraint up−1(ϕ) is equivalent to ⊥, similarly, if d < c then up−1(ϕ) is equivalent to >.

I Lemma 4. Given a constraint ϕ, an update up and two valuations v, v′ such that up(v) ≥ 0
and up(v′) ≥ 0, if v vup−1(ϕ) v

′ then up(v) vϕ up(v′).

I Definition 5 (G-maps). Let A = (Q,X, q0, T, F) be a UTA. A G-map GA for UTA A is a
tuple (GA(q))q∈Q with each GA(q) being a set of atomic constraints, such that the following
conditions are satisfied. For every transition (q, g, up, q′) ∈ T :

every atomic constraint of g belongs to GA(q),
up−1(0 ≤ x) ∈ GA(q) for every x ∈ X,
up−1(ϕ) ∈ GA(q) for every ϕ ∈ GA(q′) (henceforth called the propagation criterion)

When the UTA A is clear from the context, we write G instead of GA.

The propagation criterion allows to maintain the property described after Definition 2
even after the update occurring at transitions, and leads to a simulation relation on the
configurations of the corresponding UTA, thanks to Lemma 4.

FSTTCS 2020

47:6 Reachability for Updatable Timed Automata Made Faster and More Effective

q0 q1 q2

x ≤ 3
x := x− 1 x− y < 1

G(q0) =
G(q1) =
G(q2) =

{x ≤ 3, 1 ≤ x}
{x− y < 1}
{}

{ . . . , x− y < 2}
{ . . . , x ≤ 3, 1 ≤ x}
{}

{ . . . , x ≤ 4, 2 ≤ x}
{ . . . , x− y < 2}
{}

{ . . . , x− y < 3}
{ . . . , x ≤ 4, 2 ≤ x}
{}

. . .

Figure 1 Example automaton for which the G-map computation of [14] does not terminate.

I Definition 6 (G-simulation). Given a G-map G, the relation vG on the UTA semantics
defined as (q, v) vG (q′, v′) whenever q = q′ and v vG(q) v

′, is called the G-simulation.

In general, an automaton may not have finite G-maps due to the propagation criterion
generating more and more constraints. When a G-map is finite, there is an algorithm to
check (q, Z) vG(q) (q, Z ′). The fewer the constraints in a G(q), the larger is the simulation
vG(q) (c.f. Definition 2). Hence there is more chance of getting (q, Z) vG(q) (q, Z ′) which in
turn makes the enumeration more efficient. Moreover, fewer constraints in G(q) give a quicker
simulation test (q, Z) vG(q) (q, Z ′). The goal therefore is to get a G-map as small as possible.
Notice that if G1 and G2 are G-maps, then the map Gmin defined as Gmin(q) := G1(q) ∩ G2(q)
is also a G-map. A static analysis of the automaton to get a G-map is presented in [14].
The analysis performs an iterative fixed-point computation which gives the smallest G-map
(for the pointwise inclusion order) whenever it terminates. A procedure to detect if the
fixed-point iteration will terminate at all is also given in [14].

3 A new static analysis with reduced propagation of constraints

In this section we give a refined propagation criterion, which cuts short certain propagations.
We start with a motivating example. Figure 1 presents an automaton and illustrates the
fixed-point iteration computing the smallest G-map. Identity updates (like y := y) are
not explicitly shown. Only the newly added constraints at each step are depicted. The
first step adds constraints that meet the first two conditions of Definition 5. Note that
up−1(0 ≤ y) is 0 ≤ y which is semantically equivalent to >. So we do not add it explicitly to
the G-maps. Consider two transitions (q0, v) t−→ (q1, up(v)) and (q0, v

′) t−→ (q1, up(v′)) with
t = (q0, x ≤ 3, x := x−1, q1), and up being x := x−1. Suppose we require up(v) vx−y<1 up(v′).
By Definition 2, we need to satisfy the condition: if up(v) |= x−y < 1, then up(v′) |= x−y < 1.
Rewriting in terms of v: if v(x)− 1− v(y) < 1, then v′(x)− 1− v′(y) < 1. In other words, we
need: if v |= x−y < 2, then v′ |= x−y < 2. This is achieved by adding x−y < 2, the constraint
up−1(x− y < 1), to G(q0) in the second step. This is the essence of the propagation criterion
of Definition 5, which asks that for each ϕ ∈ G(q1), we have up−1(ϕ) ∈ G(q0). The fixed-point
computation iteratively ensures this criterion for each edge of the automaton. As illustrated,
the computation does not terminate in Figure 1. There are three sources of increasing
constants: (1) x ≤ 3, x ≤ 4, . . . , (2) 1 ≤ x, 2 ≤ x, . . . and (3) x− y < 1, x− y < 2,

We claim that this conservative propagation is unnecessary to get the required simulation.
Suppose v vG(q0) v

′ and (q0, v) t−→ (q1, up(v)), with t := (q0, x ≤ 3, x := x− 1, q1). Since t is
enabled at v, we have v(x) ≤ 3, hence v′(x) ≤ 3 since guard x ≤ 3 is present in G(q0). We
get v, v′ |= x− y ≤ 3 as y ≥ 0 for all valuations. The presence of x− y < 4, x− y < 5, . . .
at G(q0) is useless as both v, v′ already satisfy these guards. Stopping the propagation of
x− y < 3 from G(q1) will cut the infinite propagation due to (3). A similar reasoning cuts

P. Gastin, S. Mukherjee, and B. Srivathsan 47:7

Table 1 Cases where up−1(ϕ) can be eliminated or replaced by a constraint with a smaller
constant. We write / and /1 to insist that the operator / need not be same as the operator /1.

up−1(ϕ) g contains pre(ϕ, g, up)
1. x / d x /1 c >
2. d / x x /1 c with c < d c ≤ x

3. x− y / d or d / x− y
x /1 c or x− y /1 c or e /1 x− y

>
s.t. c < d < e

the propagation of x ≤ 3 from G(q1) and stops (1). The remaining source (2) is trickier,
but it can still be eliminated. Here is the main idea. Consider a constraint 3 ≤ x ∈ G(q0)
which propagates unchanged to G(q1) and then back to G(q0) as up−1(3 ≤ x) = 4 ≤ x.
This propagation can be cut since v v3≤x v

′ already ensures v v4≤x v
′ for the valuations

that are relevant: the ones that satisfy the guard x ≤ 3 of t. Indeed, v, v′ |= x ≤ 3 and
v v3≤x v

′ implies v(x) ≤ v′(x) which in turn implies v v4≤x v
′. Overall, it can be shown that

G(q0) = {x ≤ 3, 3 ≤ x, x− y < 2, x− y < 3} and G(q1) = {x− y < 1} ∪ G(q0) suffices for
the G-simulation.

Taking guards into account for propagations. The propagation criterion of Definition 5
which is responsible for non-termination, is oblivious to the guard that is present in the
transition. We will now present a new propagation criterion that takes the guard into
account and cuts out certain irrelevant constraints. Consider a transition (q, g, up, q′) and a
constraint ϕ ∈ G(q′). All we require is a constraint ψ ∈ G(q) such that v vψ v′ and v |= g

implies up(v) vϕ up(v′). The additional “and v |= g” was missing in the intuition behind the
previous propagation. Of course, setting ψ := up−1(ϕ) is sufficient. However, the goal is to
either eliminate the need for ψ or find a ψ with a smaller constant compared to up−1(ϕ). We
will see that in many cases, we can even get the former, when we plug in the “and v |= g”.

I Definition 7 (pre of an atomic constraint ϕ under a “guard-update” pair (g, up)). Let (g, up)
be a pair of a guard and an update. For a constraint ϕ we define pre(ϕ, g, up) to be an atomic
constraint as given by Table 1, when g and up−1(ϕ) satisfy corresponding conditions. When
the conditions of Table 1 do not apply, pre(ϕ, g, up) = up−1(ϕ).

For a set of constraints G, we define pre(G, g, up) to be the set
⋃
ϕ∈G{pre(ϕ, g, up)}.

Our aim is to replace the up−1(ϕ) in the older propagation criterion with pre(ϕ, g, up).
Before showing the correctness of this approach, we state a useful lemma that follows directly
from the definition of G-simulation.

I Lemma 8. Let v, v′ be valuations.
v vx/d v′ iff either v 6|= x / d or v′(x) ≤ v(x)
v vd/x v′ iff either v′ |= d / x or v(x) ≤ v′(x)

Readers familiar with the LU -simulation for diagonal-free automata [22] may recognize
that the above lemma is almost an alternate formulation of the LU -simulation. The lemma
makes a finer distinction between < and ≤ in the constraints whereas LU does not.

The next proposition allows to replace the up−1(ϕ) in Definition 5 by pre(ϕ, g, up) to get
smaller sets of constraints at each q that still preserve the simulation. We write v vg v′ for
v vCg v′, where Cg is the set of atomic constraints in g.

I Proposition 9. Let (g, up) be a guard-update pair, v, v′ be valuations such that v |= g and
v vg v′, and ϕ be an atomic constraint. Then, v vpre(ϕ,g,up) v

′ implies v vup−1(ϕ) v
′.

FSTTCS 2020

47:8 Reachability for Updatable Timed Automata Made Faster and More Effective

Proof. When pre(ϕ, g, up) = up−1(ϕ), there is nothing to prove. We will now prove the
theorem for the combinations given in Table 1.

(Case 1). From the hypothesis v vg v′, we get v vx/1c v
′. From the other hypothesis

v |= g, we get v |= x /1 c. Therefore, by using the formulation of v vx/1c v
′ from Lemma 8,

we get v′(x) ≤ v(x). This entails v vx/d v′ for all upper bounded guards, once again from
Lemma 8.

(Case 2). We have pre(ϕ, g, up) = c ≤ x and c < d. Moreover, as guard g contains x /1 c,
we have v′(x) ≤ v(x) as in Case 1. Since v satisfies the guard, we get: v′(x) ≤ v(x) ≤ c < d.
From Lemma 8, for such valuations, v vc≤x v′ implies v′(x) = v(x). Hence v vd/x v′.

(Case 3). There are sub-cases depending on whether the guard contains a non-diagonal
constraint or the diagonal constraints. When the guard contains x /1 c, we have v′(x) ≤
v(x) ≤ c as above. Hence v′(x− y) ≤ c and v(x− y) ≤ c. Since we are given that c < d, both
v and v′ satisfy the diagonal constraint x−y / d and neither of them satisfies d / x−y. Notice
that time elapse preserves the satisfaction of diagonal constraints as for every valuation u,
(u+ d)(x− y) = u(x− y). From Definition 2, v vψ v′ for a diagonal constraint ψ is satisfied
if v 6|= ψ or v′ |= ψ. Hence, v vx−y/d v′ and v vd/x−y v′.

For the other sub-cases of the guard containing x− y /1 c or e /1 x− y, the hypotheses
v |= g, v vg v′ and the fact that c < d < e ensure the same effect, that either v does not
satisfy the diagonal constraint up−1(ϕ) or v′ does. Hence, by definition v vup−1(ϕ) v

′. J

I Definition 10 (Reduced G-maps). A G-map is said to be reduced if for every transition
(q, g, up, q′):

every atomic constraint of g belongs to G(q),
pre(0 ≤ x, g, up) ∈ G(q) for every x ∈ X, and
pre(ϕ, g, up) ∈ G(q) for every ϕ ∈ G(q′) (reduced propagation)

Recall the definition of G-simulation of Definition 6. This is a relation vG defined as
(q, v) vG (q′, v′) whenever q = q′ and v vG(q) v

′. The next theorem says that this relation
stays a simulation even when the G-map is reduced.

I Theorem 11. Let (G(q))q∈Q be a reduced G-map. The relation vG is a simulation.

As in the case of (non-reduced) G-maps, notice that if G1 and G2 are reduced G-maps,
the map Gmin given by Gmin(q) = G1(q) ∩ G2(q) is a reduced G-map. There is therefore a
smallest reduced G-map, given by the pointwise intersection of all reduced G-maps.

I Lemma 12. The smallest reduced G-map with respect to pointwise inclusion is the least
fixed-point of the following system of equations:

G(q) =
⋃

(q,g,up,q′)

{atomic constraints of g}∪{pre(0 ≤ x, g, up) | x ∈ X}∪{pre(ϕ, g, up) | ϕ ∈ G(q′)}

The smallest reduced G-map can be computed by a standard Kleene iteration. For every
state q and every i ≥ 0:

G0(q) =
⋃

(q,g,up,q′)

{atomic constraints of g} ∪ {pre(0 ≤ x, g, up) | x ∈ X}

Gi+1(q) = Gi(q) ∪
⋃

(q,g,up,q′)

{pre(ϕ, g, up) | ϕ ∈ Gi(q′)}

When Gk+1 = Gk, a fixed-point has been found and Gk is a reduced map satisfying Defini-
tion 10. Moreover, Gk gives the least fixed-point to the system of equations of Lemma 12 and

P. Gastin, S. Mukherjee, and B. Srivathsan 47:9

hence Gk is the smallest reduced G-map. When Gi+1 6= Gi for all i, the least fixed-point is
infinite and no reduced G-map for the automaton can be finite. For instance, if in the UTA
of Figure 1, the guard x ≤ 3 is removed, the smallest reduced G-map will be infinite, and
the fixed-point will continue forever, each iteration producing an x− y < c with increasing
constants c.

It is not clear apriori how to detect whether the fixed-point computation will terminate,
or will continue forever. For the non-reduced G-maps, [14] gives an algorithm that runs
the fixed-point computation (using up−1 instead of pre) for a bounded number of steps
and determines whether the computation will be non-terminating by looking for a certain
witness. The reduced G-map fixed-point is different due to Table 1, as certain propagations
are disallowed (Cases 1 and 3), or truncated to a constant determined by the guard (Case
2). These optimizations are responsible for giving finite G-maps even when the non-reduced
G-maps are infinite. This makes the termination analysis significantly more involved. We
postpone this discussion to Section 5. In the next section, we identify some sufficient
conditions that make the reduced G-maps finite and describe how it leads to new applications.
These observations throw more light on the mechanics of the reduced G-computation and
provide a preparation to the more technical Section 5.

4 Applications of the reduced propagation

We exhibit three subclasses of UTA for which the reduced G-maps are superior than the
non-reduced G-maps: either reduced G-maps are finite whereas non-reduced G-maps are not
guaranteed to be finite, or when both are finite, the reduced G-map gives a bigger simulation.

Timed automata with bounded subtraction. Timed automata with diagonal constraints
and updates restricted to classic resets x := 0 and subtractions x := x− c with c ≥ 0 have
been used for modeling certain scheduling problems [12]. Reachability is undecidable for
this restricted update model [8]. An important result in [12] is that reachability is decidable
for a subclass called timed automata with bounded subtraction, and this decidability is used
for answering the schedulability questions. Proof of decidability proceeds by constructing a
region equivalence based on a maximum constant derived from the automaton. We prove
that timed automata with bounded subtraction have finite reduced G-maps. This gives an
alternate proof of decidability and a zone-based algorithm using G-simulation for this class
of automata. This exercise also brings out the significance of reduced G-maps: without the
reduced computation, we cannot conclude finiteness.

I Definition 13 (Timed Automata with Bounded Subtraction [12]). A timed automaton with
“subtraction” is an updatable timed automaton with updates restricted to the form x := 0 and
x := x− c for c ≥ 0. Guards contain both diagonal and non-diagonal constraints.

A timed automaton with “bounded subtraction” is a timed automaton with subtraction
such that there is a constant Mx for each clock x satisfying the following property for all its
reachable configurations (q, v): if there exists a transition (q, g, up, q′) such that v |= g and
upx = x− c with c > 0, then v(x) ≤Mx.

It is shown in [12] that reachability is decidable for timed automata with bounded
subtraction when the bounds Mx are known. This definition of bounded subtraction puts
a semantic restriction over timed automata. Indeed, reachability is decidable only when
the bounds Mx are apriori known. The following is a syntactically restricted class of timed
automata, that captures the bounded subtraction model when the bounds Mx are given.

FSTTCS 2020

47:10 Reachability for Updatable Timed Automata Made Faster and More Effective

I Definition 14 (Timed Automata with Syntactically Bounded Subtraction). This is a timed
automaton with subtraction such that, for every transition (q, g, up, q′) and clock x, if upx =
x− c with c > 0 then the guard g contains an upper bound constraint x / c′ for some c′ ∈ N.

I Lemma 15. For every timed automaton with bounded subtraction A′ where the bound
Mx for every clock x is known, there exists a timed automaton with syntactically bounded
subtraction A such that the runs of A and A′ are the same.

I Theorem 16. The smallest reduced G-maps are finite for timed automata with syntactically
bounded subtraction.

Proof. Let M be the maximum constant appearing among the guards and updates of the
given automaton. Define G to be the (finite) set of all atomic constraints with constant at
most M . We will show that the finite map G assigning G(q) = G for all q is a reduced G-map.
This then proves the theorem.

The first two conditions of Definition 10 are trivially true. It remains to show that
pre(G, g, up) ⊆ G for every transition (q, g, up, q′). Choose a constraint ϕ ∈ G. Note that
pre(ϕ, g, up) is a constraint having a larger constant than ϕ only if up contains subtractions
(since the other possible update is only a reset to 0 in this class). Thus, if up does not
contain subtractions, from the construction of G it follows that pre(ϕ, g, up) ⊆ G. Now, if
upx = x− c for some clock x and c > 0, then g contains x /1 c1 by definition. If up−1(ϕ) is
some x / d, then Case 1 of Table 1 gives pre(ϕ, g, up) = >. If up−1(ϕ) is d / x, from Case 2
of the table, we have pre(ϕ, g, up) = c1 ≤ x or pre(ϕ, g, up) = d / x with d ≤ c1, which are
both present in G by construction.

Finally, assume that up−1(ϕ) is a diagonal constraint x− y / d or d / x− y and Case 3
of Table 1 does not apply. We have upx = x− c1 with c1 ≥ 0 and upy = y − c2 with c2 ≥ 0
(a reset for x or y is not possible). Moreover, if c1 > 0 (resp. c2 > 0) then g contains some
x /1 c

′
1 (resp. y /2 c

′
2). If c1 > 0 then, since Case 3 does not apply, we get d ≤ c′1 ≤M and

up−1(ϕ) belongs to G. If c1 = 0 and c2 > 0 then the constraint ϕ is respectively x−y / d+c2
or d+ c2 / x− y. Since 0 ≤ d < d+ c2 ≤M , the constraint up−1(ϕ) is already in G. J

Lemma 15 and Theorem 16 give an alternate proof of decidability and more importantly
a zone based algorithm with optimized simulations for this model. The definition of timed
automata with bounded subtraction can be seamlessly extended to include updates x := y− c
where c ≥ 0 and x, y are potentially different clocks. Definition 14, Lemma 15 and Theorem
16 can suitably be modified to use y / c′ instead of x / c′. This preserves the decidability,
with similar proofs, even for this extended class.

Clock bounded reachability. Inspired by Theorem 16, we consider the problem of clock-
bounded reachability: given UTA and a bound B ≥ 0, does there exist an accepting run
(q0, v0) −→ (q1, v1) −→ · · · (qn, vn) where vi(x) ≤ B for all i and all clocks x? This problem is
decidable for the entire class of UTA. The algorithm starts with a modified zone enumeration:
each new zone is intersected with

∧
x x ≤ B before further exploration. This way, only the

reachable configurations within the given bound are stored. The number of bounded zones is
finite. Hence the enumeration will terminate without the use of any simulations. On the other
hand, for efficiency, it is useful to prune the search through simulations. To use G-simulation,
we need a finite G-map. Since we are interested in clock bounded reachability, we can inject
the additional guard

∧
x x ≤ B in all transitions. The following theorem says that for such

automata, the reduced G-map will be finite. This is not true with non-reduced G-maps. For
instance, consider a modification of the automaton in Figure 1 with all transitions having
x ≤ 3 ∧ y ≤ 3. This does not help cutting any of the three sources of infinite propagation
that have been discussed in the text below the figure.

P. Gastin, S. Mukherjee, and B. Srivathsan 47:11

I Theorem 17. Suppose every transition of a UTA has a guard containing an upper constraint
x / c for every clock. The reduced G-map for such a UTA is finite.

UTA with finite non-reduced G-maps. Given a finite set of atomic constraints G, the
algorithm for Z vG Z ′ first divides G as Gnd ∪Gd where Gnd and Gd are respectively the
subsets of non-diagonal and diagonal constraints in G. From Gnd, two functions L : X 7→
N ∪ {−∞} and U : X 7→ N ∪ {−∞} are defined: L(x) = max{c | c / x ∈ Gnd} and
U(x) = max{c | x / c ∈ Gnd}. When there is no c / x, L(x) = −∞. Similarly for U(x).
Denote these functions as L(G) and U(G). Once G is rewritten as L(G), U(G) and Gd, [14]
gives a procedure to compute Z vG Z ′.

For two G-maps G1 and G2 we write LU(G2) ≤ LU(G1) if for every q and every clock x,
L(G2(q))(x) ≤ L(G1(q))(x) and U(G2(q))(x) ≤ U(G1(q))(x). We write Gd2 ⊆ Gd1 if G2(q)d ⊆
G1(q)d for every q. It can be shown that for two G-maps G1 and G2 with LU(G2) ≤ LU(G1)
and Gd2 ⊆ Gd1 , the G2-simulation is bigger than the G1-simulation (using Lemma 8 for non-
diagonals and the direct Definition 2 for diagonals). The following theorem asserts that
when the non-reduced G-map is finite, the reduced G-map is finite and it induces a bigger
simulation. The proof of this theorem proceeds by showing that every upper constraint x / c
and diagonal constraint added by the reduced propagation is also added by the non-reduced
propagation, and for every lower constraint c / x in the reduced G, there is some c′ /′ x in
the non-reduced G with c ≤ c′.

I Theorem 18. When the smallest (non-reduced) G-map G1 is finite, the smallest reduced
G-map G2 is also finite. Moreover, LU(G2) ≤ LU(G1) and Gd2 ⊆ Gd1 .

5 Termination of the reduced propagation

We present an algorithm and discuss the complexity for the problem of deciding whether the
smallest reduced G-map of a given automaton is finite. Briefly, we present a large enough
bound B such that if the fixed point iteration does not terminate in B steps, it will never
terminate and hence the smallest reduced G-map given by the least fixed-point is infinite.

Let us first assume that there are no strict inequalities in the atomic constraints present
in guards. For the termination analysis, we can convert all strict inequalities < to weak
inequalities ≤. The reduced propagation does not modify the nature of the inequality except
in Case 2 of Table 1 where strict may change to weak. Any propagation in the original
automaton is preserved in the converted automaton with the same constants and vice-versa.
Hence the G-map computation terminates in one iff it terminates in the other. We denote by
cϕ the constant of an atomic constraint ϕ.

Let A = (Q,X, q0, T, F) be some UTA. Let M = max{c | c occurs in some guard of A}
and L = max{|d| | d occurs in some update of A}. Let G be the smallest reduced G-map
computed by the least fixed-point of the equations in Lemma 12. We can show that this
fixed-point computation does not terminate iff a constraint with a large constant is added to
some G(q).

I Proposition 19. The reduced G-map computation does not terminate iff for some state q,
there is an atomic constraint ϕ ∈ G(q) with a constant cϕ > N = max(M,L) + 2L|Q||X|2.

For the analysis, we make use of strings of the form x ≤, ≤ x, x− y ≤ and ≤ x− y where
x, y ∈ X and call them contexts. Given a context ϕ and a constant c, we denote by ϕ[c] the
atomic constraint obtained by plugging the constant into the context.

FSTTCS 2020

47:12 Reachability for Updatable Timed Automata Made Faster and More Effective

In the proof, we shall use the notion of propagation sequence, which is a sequence
(qi, ϕi[ci]) → (qi+1, ϕi+1[ci+1]) → · · · → (qj , ϕj [cj]) such that for all i ≤ k < j we have
ϕk+1[ck+1] = pre(ϕk[ck], gk, upk) for some transition (qk+1, gk, upk, qk) of A.

Proof of Proposition 19. The left to right implication of Proposition 19 is clear. Conversely,
assume that ϕ[c] ∈ G(q) for some (q, ϕ[c]) with c > max(M,L) + 2L|Q||X|2. Consider the
smallest n ≥ 0 such that ϕ[c] ∈ Gn(q). There is a propagation sequence π = (q0, ϕ0[c0])→
(q1, ϕ1[c1])→ · · · → (qn, ϕn[cn]) such that ϕ0[c0] ∈ G0(q0) and (qn, ϕn[cn]) = (q, ϕ[c]). Notice
that ϕi[ci] ∈ Gi(qi) for all 0 ≤ i ≤ n. We first show that the propagation sequence π contains
a positive cycle with large constants.

I Lemma 20. We can find 0 < i < j ≤ n such that (qi, ϕi) = (qj , ϕj), ci < cj and
max(M,L) < ck for all i ≤ k ≤ j.

Proof. First, since ϕ0[c0] ∈ G0(q0) we have 0 ≤ c0 ≤ max(M,L). We consider the last
occurrence of a small constant in the propagation sequence. More precisely, we define
m = max{k | 0 ≤ k < n ∧ ck ≤ max(M,L)}. Hence, ck > max(M,L) for all m < k ≤ n.

Notice that, for m < k < n, the constraint in the sequence cannot switch from an upper
diagonal to a lower diagonal and vice-versa. Indeed, assume that ϕk[ck] = (x− y ≤ ck) and
ϕk+1[ck+1] = (ck+1 ≤ y′ − x′). Then the update upk contains x := x′ + d, y := y′ − e with
ck+1 = d+ e− ck. This is a contradiction with d, e ≤ L and ck, ck+1 > L. Similarly, we can
show that an upper (resp. lower) diagonal constraint cannot switch to a lower (resp. upper)
non-diagonal constraint. On the other hand, it is possible to switch once from an upper
(resp. lower) diagonal constraint to an upper (resp. lower) non-diagonal constraint.

The other remark is that |ck+1− ck| ≤ 2L for all m ≤ k < n. Since cm ≤ max(M,L) and
cn > max(M,L) + 2L|Q||X|2, we find an increasing sequence m < i1 < i2 < · · · < i` ≤ n

with ci1 < ci2 < · · · < ci` and ` > |Q||X|2. As noticed above, the ϕk are either all upper
constraints or all lower constraints, hence the set {(qk, ϕk) | m < k ≤ n} contains at most
|Q||X|2 elements (|X| for non-diagonals and |X|(|X| − 1) for diagonals). Therefore, we find
i, j ∈ {i1, . . . , i`} such that i < j and (qi, ϕi) = (qj , ϕj). Recall that ck > max(M,L) for all
m < k ≤ n. J

The next step is to show that a positive cycle with large constants can be iterated resulting
in larger and larger constants.

I Lemma 21. Let (qi, ϕi[ci]) → (qi+1, ϕi+1[ci+1]) → · · · → (qj , ϕj [cj]) be a propagation
sequence with (qi, ϕi) = (qj , ϕj), δ = cj − ci > 0 and M < ck for all i ≤ k ≤ j. Then,
(qi, ϕi[ci + δ])→ (qi+1, ϕi+1[ci+1 + δ])→ · · · → (qj , ϕj [cj + δ]) is also a propagation sequence.

This allows to conclude the proof of Proposition 19. Using Lemma 20 we obtain from π a
positive cycle with large constants. This cycle can be iterated forever thanks to Lemma 21.
We deduce that ϕi[ci + kδ] ∈ Gi(qi) for all k ≥ 0 and the reduced G-computation does not
terminate. J

Algorithm to detect termination. Proposition 19 gives a termination mechanism: run
the fixed-point computation G0,G1, . . ., stop if either it stabilises with Gn = Gn+1 or if
we add some constraint ϕ ∈ Gn(q) with cϕ > N . The number of pairs (q, ϕ) with cϕ ≤
N is 2N |Q||X|2 (the factor 2 is for upper or lower constraints). Therefore, the fixed-
point computation stops after at most 2N |Q||X|2 steps and the total computation time is
poly(M,L, |Q|, |X|). If the constants occurring in guards and updates of the UTA A are
encoded in unary, the static analysis terminates in time poly(|A|). If the constants are encoded

P. Gastin, S. Mukherjee, and B. Srivathsan 47:13

in binary, (non-)termination of the G-computation can be detected in NPspace = Pspace:
it suffices to search for a propagation sequence (q0, ϕ0) → (q1, ϕ1) → · · · → (qn, ϕn) such
that ϕ0 ∈ G0(q0) and cϕn > N . For this, we only need to store the current pair (qk, ϕk),
guess some transition (qk+1, gk, upk, qk) of A, and compute the next pair (qk+1, ϕk+1) with
ϕk+1 = pre(ϕk, gk, upk). This can be done with polynomial space. We can also show a
matching Pspace lower-bound.

Lower bound. We now show that when constants are encoded in binary, deciding termina-
tion of the reduced propagation is Pspace-hard. To do this, we give a reduction from the
control-state reachability of bounded one-counter automata.

A bounded one-counter automaton [17, 11] is given by (L, `0,∆, b) where L is a finite
set of states, `0 is an initial state, ∆ is a set of transitions and b ≥ 0 is the global bound
for the counter. Each transition is of the form (`, p, `′) where ` is the source and `′ the
target state of the transition, p ∈ [−b,+b] gives the update to the counter. A run of the
counter automaton is a sequence (`0, c0)→ (`1, c1)→ · · · → (`n, cn) such that c0 = 0, each
ci ∈ [0, b] and there are transitions (`i, pi, `i+1) with ci+1 = ci + pi. All constants used in the
automaton definition are encoded in binary. Reachability problem for this model asks if there
exists a run starting from (`0, 0) to a given state `t with any counter value ct. This problem
is known to be Pspace-complete [11]. We will now reduce the reachability for bounded
one-counter automata to the problem of checking if the fixed-point computing the smallest
reduced G-map terminates (i.e, whether the smallest reduced G-map is finite).

From a bounded one counter automaton B = (L, `0,∆, b) we construct a UTA AB. States
of AB are L ∪ {`′0, `′t} where `′0 and `′t are new states not in L. There are two clocks x, y.
For each transition (`, p, `′) of B, there is a transition (`′, g, up, `) with guard x ≤ b ∧ y ≤ 0
and updates x := x− p and y := y. We add some extra transitions using the new states `′0
and `′t: (1) `0

x−y≤0−−−−→ `′0, (2) `′t −→ `t and (3) `′t
x:=x,y:=y+1−−−−−−−−−−→ `′t.

In the reduced G-map computation for AB, the constraint x− y ≤ 0 is added to G0(`0).
The propagation sequence starting from (`0, x − y ≤ 0) mimicks the runs of the counter
machine B with the value of the diagonal constraint x− y ≤ c giving the counter value. To
keep this value bounded between 0 and b, we use Case 3 of Table 1. Guard x ≤ b disallows
propagation of constraints x − y ≤ d with d > b. But, it can allow d to go smaller and
smaller, and at one point the constant becomes negative and the constraint gets rewritten:
x − y ≤ b, x − y ≤ b − 1, . . . , x − y ≤ 0, 1 ≤ y − x, 2 ≤ y − x, etc. The presence of the
constraint y ≤ 0 in the guard eliminates 1 ≤ y − x, 2 ≤ y − x, etc. once again due to Case 3.

I Lemma 22. For every run (`0, 0)→ (`1, c1)→ · · · → (`n, cn) in B, there is a propagation
sequence (`0, x− y ≤ 0)→ (`1, x− y ≤ c1)→ · · · → (`n, x− y ≤ cn) in AB.

I Lemma 23. For every propagation sequence (`0, x− y ≤ 0) → (`1, x− y ≤ c1) → · · · →
(`n, x − y ≤ cn) in AB with `i ∈ L for 0 ≤ i ≤ n, there is a run (`0, 0) → (`1, c1) → · · · →
(`n, cn) in B.

It now remains to notice that the only transition that can generate infinitely many
constraints during the propagation is the loop l′t → l′t, since the other transitions between
states coming from the counter automaton have a guard to cut out infinite propagations.
For this to happen some constraint needs to reach lt, and propagate to l′t via l′t → lt.

I Proposition 24. The final state is reachable in the counter automaton B iff the smallest
reduced G-map of AB is infinite.

FSTTCS 2020

47:14 Reachability for Updatable Timed Automata Made Faster and More Effective

Table 2 # nodes is the number of nodes enumerated during a breadth-first-search; “-” denote
that there was no answer for 20 minutes; N/A denotes not-applicable. Experiments were conducted
on a MacBook Pro with 8 GB RAM, 2.3Ghz processor running macOS 10.14.

New static analysis Static analysis of [14]
Model Schedulable? # nodes time # nodes time
SporadicPeriodic-5 Yes 677 1.710s - -
SporadicPeriodic-20 No 852 1.742s - -
Mine-Pump Yes 31352 7m 23.509s - -
Flower task triggering automaton: (computation time, deadline)
(1,2), (1,2), (1,2) No 212 0.057s - -
(1,10), (1,10), (1,10), (1,4) Yes 105242 8m 57.256s - -
Worst-case task triggering automaton: (computation time, deadline)
(1,2), (1,2), (1,2) No 20 0.050s - -
(1,10), (1,10), (1,10), (1,4) Yes 429 0.454s - -
12 copies of (1,20) Yes 786 12m 5.250s - -
Again × 3 N/A 24389 7.611s 24389 12.402s
Again × 4 N/A 707281 14m 12.369s 707281 27m 13.540s

I Theorem 25. Deciding termination of the reduced G-map computation for a given UTA
A is in Ptime if the constants in A are encoded in unary, and Pspace-complete if the
constants are encoded in binary.

6 Experiments

We report on experiments conducted using the open source tool TChecker [20]. The models
are given as networks of timed automata which communicate via synchronized actions. We
have implemented the new static analysis discussed in Section 3. The older static analysis
and zone enumeration with the G-simulation were already implemented [14].

Compositionality of static analysis. Both these static analyses are performed individually
on each component. For each local state qi a map G(qi) is computed. During the zone
enumeration the product of the automata is computed on-the-fly. Each node is of the
form (q, Z) where q = 〈q1, q2, . . . , qk〉 is a tuple of local states, one from each component
of the network and Z is a zone over all clocks of the network. The G-map is then taken
as G(q) =

⋃
i G(qi). This approach creates a problem when there are shared clocks. A

component i might update x and another component j 6= i might contain a guard with
x. The G-maps computed component-wise will then not give a sound simulation. In our
experiments, we construct models without shared clocks.

Benchmarks. Our primary benchmarks are models of task scheduling problems using the
Earliest-Deadline-First (EDF) policy. Each task has a computation time and a deadline.
Tasks are released either periodically or via a specification given as a timed automaton. The
goal is to verify if for a given set of released tasks, all of them can be finished within their
deadline. Preemption of tasks is allowed. This problem has been encoded as a reachability
in a network of timed automata that uses bounded subtraction [12]. The main challenge
is to model preemption. Each task ti has an associated clock ci which is reset as soon as
the task starts to execute. While ti is running, and some other task tj preempts ti, the
clock ci continues to elapse time. When tj is done, an update ci := ci − Cj is performed,

P. Gastin, S. Mukherjee, and B. Srivathsan 47:15

where Cj denotes the computation time of tj . This way, when ti is scheduled again, clock ci
maintains the computation time that has elapsed since it was started. Whenever the EDF
scheduler has to choose between task ti and tj , it chooses the one which is closest to its
deadline. To get this, when ti is released, a clock di is reset. Task ti is prioritized over tj if
Di−di < Dj −dj where Di, Dj are the deadlines. We have constructed a model for the EDF
scheduler based on these ideas (more details in [15]). For the experiments in Table 2, we
consider some task release strategies given in the literature (SporadicPeriodic from TIMES
tool, and a variant of Mine-Pump from [16]) and also create some of our own (Flower and
Worst-case task triggers). The last model Again is an automaton with reset-to-zero only
updates illustrating the gain when both static analyses terminate.

Comparison. For all the EDF examples, the old static analysis did not terminate, as seen
in the last two columns of Table 2. This is expected since the model contains an update of
the form x := x−C which repeatedly adds guards x ≤ K,x ≤ K +C, x ≤ K + 2C, The
new static analysis cuts this out, since the update x := x − C occurs along with a guard
x ≤ D, making it a timed automaton with bounded subtraction. The Again example runs
with both the static analyses. However, the new static analysis minimizes the propagation of
diagonal constraints. The time taken by the simulation test used in the zone enumeration
phase is highly sensitive to the number of diagonal constraints. Fewer diagonals therefore
result in a faster zone enumeration. We have also tried our new static analysis for standard
benchmarks of diagonal-free timed automata and observed no gain. In these models, the
distance between a clock reset and a corresponding guard (in a component automaton) is
small, usually within one or two transitions. Hence resets already cut out most of the guards
and the optimizations of Table 1 do not seem to help here. We expect to gain primarily in
the presence of updates or diagonal constraints. We also remark that the last experiment
cannot be performed on the TIMES tool which is built for scheduling problems and the
previous ones cannot be modeled in other timed automata tools UPPAAL, PAT and Theta
since they cannot handle timed automata with subtraction updates. Our prototype therefore
subsumes existing tools in terms of modeling capability.

7 Conclusion

We have presented a static analysis procedure for UTA. This method terminates for a wider
class of UTA compared to [14], and hence makes powerful simulations applicable to these
systems. We have experimented with a prototype implementation. At a technical level, we
get a unifying framework to show decidability of the reachability problem for automata with
diagonal constraints and updates x := c and x := y + d that covers the decidable subclasses
of [8], [12] and [14], the only known decidable classes upto our knowledge. Our framework
provides a high-level technique to extend to broader classes: to show decidability, check if
there is a finite reduced G-map (c.f. proof of Theorem 16 and the subsequent remark). Earlier
route via regions [8, 12] requires a more involved low-level reasoning to show the correctness
of the region equivalence. From a practical perspective, we have a prototype with a richer
modeling language and a more efficient way to handle updates than the existing real-time
model checkers. As future work, we plan to engineer the prototype to make it applicable for
bigger models and release the implementation and benchmarks in the public domain.

FSTTCS 2020

47:16 Reachability for Updatable Timed Automata Made Faster and More Effective

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. TIMES: A

tool for schedulability analysis and code generation of real-time systems. In Formal Modeling
and Analysis of Timed Systems (FORMATS), volume 2791 of Lecture Notes in Computer
Science, pages 60–72. Springer, 2003.

3 Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static guard analysis
in timed automata verification. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2619 of Lecture Notes in Computer Science, pages 254–270.
Springer, 2003.

4 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper
bounds in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

5 Mikolaj Bojanczyk and Slawomir Lasota. A machine-independent characterization of timed
languages. In International Colloquium on Automata, Languages and Programming (ICALP),
volume 7392 of Lecture Notes in Computer Science, pages 92–103. Springer, 2012.

6 Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in System
Design, 24(3):281–320, 2004.

7 Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed automata.
Journal of Automata, Languages and Combinatorics, 10(4):393–405, 2005.

8 Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theoretical Computer Science, 321(2-3):291–345, 2004.

9 Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties using
abstractions. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1384 of Lecture Notes in Computer Science, pages 313–329. Springer, 1998.

10 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

11 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is pspace-
complete. Inf. Comput., 243:26–36, 2015.

12 Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task automata: Schedulability,
decidability and undecidability. Inf. Comput., 205(8):1149–1172, 2007.

13 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In International Conference on Concurrency Theory (CONCUR), volume
118 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

14 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In Computer Aided Verification (CAV), pages 41–59, Cham,
2019. Springer International Publishing.

15 Paul Gastin, Sayan Mukherjee, and B Srivathsan. Reachability for updatable timed automata
made faster and more effective, 2020. arXiv:2009.13260.

16 Thorsten Gerdsmeier and Rachel Cardell-Oliver. Analysis of scheduling behaviour using
generic timed automata. Electronic Notes in Theoretical Computer Science, 42:143–157, 2001.
Computing: The Australasian Theory Symposium (CATS).

17 Christoph Haase, Joël Ouaknine, and James Worrell. Relating reachability problems in timed
and counter automata. Fundam. Inform., 143(3-4):317–338, 2016.

18 Leo Hatvani, Alexandre David, Cristina Cerschi Seceleanu, and Paul Pettersson. Adaptive
task automata with earliest-deadline-first scheduling. ECEASST, 70, 2014.

19 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.

20 Frédéric Herbreteau and Gerald Point. TChecker. URL: https://github.com/
ticktac-project/tchecker.

http://arxiv.org/abs/2009.13260
https://github.com/ticktac-project/tchecker
https://github.com/ticktac-project/tchecker

P. Gastin, S. Mukherjee, and B. Srivathsan 47:17

21 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for timed
automata. In Computer Aided Verification (CAV), volume 8044 of Lecture Notes in Computer
Science, pages 990–1005. Springer, 2013.

22 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. Information and Computation, 251:67–90, 2016.

23 Pavel Krcál, Martin Stigge, and Wang Yi. Multi-processor schedulability analysis of preemptive
real-time tasks with variable execution times. In Formal Modeling and Analysis of Timed
Systems (FORMATS), volume 4763 of Lecture Notes in Computer Science, pages 274–289.
Springer, 2007.

24 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

25 Yuki Osada, Tim French, Mark Reynolds, and Harry Smallbone. Hourglass automata. In
Games, Automata, Logic and Formal verification (GandALF), volume 161 of EPTCS, pages
175–188, 2014.

26 Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction refinement algorithms for
timed automata. In Computer Aided Verification (CAV), volume 11561 of Lecture Notes in
Computer Science, pages 22–40. Springer, 2019.

27 Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification under
fairness. In Computer Aided Verification (CAV), volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer, 2009.

28 Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: a
framework for abstraction refinement-based model checking. In Daryl Stewart and Georg
Weissenbacher, editors, Conference on Formal Methods in Computer-Aided Design (FMCAD),
pages 176–179, 2017. doi:10.23919/FMCAD.2017.8102257.

29 Sergio Yovine. Kronos: A verification tool for real-time systems. (Kronos user’s manual release
2.2). International Journal on Software Tools for Technology Transfer, 1:123–133, 1997.

FSTTCS 2020

https://doi.org/10.23919/FMCAD.2017.8102257

Active Prediction for Discrete Event Systems
Stefan Haar
INRIA, LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
stefan.haar@inria.fr

Serge Haddad
LSV, ENS Paris-Saclay, CNRS, INRIA, Université Paris-Saclay, France
haddad@lsv.fr

Stefan Schwoon
LSV, ENS Paris-Saclay, CNRS, INRIA, Université Paris-Saclay, France
schwoon@lsv.fr

Lina Ye
LRI, Université Paris-Saclay, CentraleSupélec, France
lina.ye@lri.fr

Abstract
A central task in partially observed controllable system is to detect or prevent the occurrence of
certain events called faults. Systems for which one can design a controller avoiding the faults are
called actively safe. Otherwise, one may require that a fault is eventually detected, which is the task
of diagnosis. Systems for which one can design a controller detecting the faults are called actively
diagnosable. An intermediate requirement is prediction, which consists in determining that a fault
will occur whatever the future behaviour of the system. When a system is not predictable, one may
be interested in designing a controller to make it so. Here we study the latter problem, called active
prediction, and its associated property, active predictability. In other words, we investigate how to
determine whether or not a system enjoys the active predictability property, i.e., there exists an
active predictor for the system.

Our contributions are threefold. From a semantical point of view, we refine the notion of
predictability by adding two quantitative requirements: the minimal and maximal delay before the
occurence of the fault, and we characterize the requirements fulfilled by a controller that performs
predictions. Then we show that active predictability is EXPTIME-complete where the upper bound
is obtained via a game-based approach. Finally we establish that active predictability is equivalent to
active safety when the maximal delay is beyond a threshold depending on the size of the system, and
we show that this threshold is accurate by exhibiting a family of systems fulfilling active predictability
but not active safety.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Mathematics of computing → Discrete mathematics

Keywords and phrases Automata Theory, Partially observed systems, Diagnosability, Predictability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.48

Related Version A full version of the paper is available at [14], https://hal.archives-ouvertes.
fr/hal-02951944.

Funding Lina Ye: This research was done while Lina Ye was on leave at MEXICO team of INRIA.

1 Introduction

Monitoring faulty systems. In monitoring faulty systems, two central tasks consist in
detecting a fault that has occurred, resp. will occur, i.e. the tasks of diagnosis and prediction,
respectively, based on observations. However, such tasks may be defeasible due to ambiguity
(i.e. observations associated with both correct and faulty runs). In this case, one may

© Stefan Haar, Serge Haddad, Stefan Schwoon, and Lina Ye;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1892-2703
mailto:stefan.haar@inria.fr
https://orcid.org/0000-0002-1759-1201
mailto:haddad@lsv.fr
https://orcid.org/0000-0001-6622-6510
mailto:schwoon@lsv.fr
https://orcid.org/0000-0002-2217-4752
mailto:lina.ye@lri.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.48
https://hal.archives-ouvertes.fr/hal-02951944
https://hal.archives-ouvertes.fr/hal-02951944
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Active Prediction for Discrete Event Systems

introduce a controller to restrict the behaviour in order to enforce diagnosis (resp. prediction)
to be processed. Such a controller is called an active diagnoser (resp. active predictor). Here
we focus on the existence of an active predictor, a problem called active predictability.

Diagnosis. In partially observed discrete-event systems, diagnosis was defined and studied
in the seminal paper by Sampath et al [17] (see also [6, 7]). That work builds a deterministic
version of the original model, a so-called diagnoser, that tries to detect the occurrence of
faults. A system is called diagnosable if the diagnoser can detect every fault occurrence,
possibly after some delay. As an illustration, consider the system in Figure 1, which we
shall use as a running example, sometimes with different values for Σ1 and Σ2, where Σ1
and Σ2 are subsets of events in the system. Precisely, Σ1,Σ2 ⊆ {a, b, c, d}, all of which are
observable, while f represents a fault that is not directly observable. If, e.g., a is contained
in both Σ1 and Σ2, then the system is not diagnosable because any observation adan may
belong to a faulty run or a correct one.

The diagnosability problem is in PTIME [22], via an approach called twin-plant construc-
tion. When the system is not diagnosable, it may have to be redesigned, e.g. by adding further
sensors to enhance observability, or by forbidding some actions. Sampath et al [16] followed
the last approach, called active diagnosis: one strives to synthesise a controller, based on
partial observations, that forces the behaviour of the system to stay within a diagnosable
subset of its behaviours. For instance, if the system in Figure 1 has Σ1 = Σ2 = {b} and the
controller has the right to block a, then the system is actively diagnosable.

The algorithm for the active-diagnosability problem in [16] operates in doubly exponential
time. In [13], we revisited the problem using automata and game theory and established that
in fact the active-diagnosability problem is EXPTIME-complete. Later on, we generalised
the framework, e.g. allowing the controller to be aware of deadlocks [4]. We also studied
active diagnosis for probabilistic systems [1].

In loosely related works. Chanthery and Pencolé [9] proposed a planning-based approach
that allows the verdict of the diagnoser to be ambiguous; the works in [8, 10, 20] studied the
problem of dynamic sensor activation to ensure some observation properties. In work more
closely related to ours [19], Yin and Lafortune proposed a uniform approach for synthesizing
property-enforcing supervisor by mapping the considered property to a suitably-defined
information state, which is applicable to a class of properties that can be expressed in
terms of such information states, including safety, diagnosability, opacity and so on. Note
that predictability cannot be formulated as an information state in that framework since it
depends also on future behaviours of the system; its enforcement thus requires new methods.

q0 q1 q2 q3q4q5

Σ2 d f
a, c

Σ1d
a, b

Figure 1 Running example, with unobservable events indicated by dashed lines.

Prediction. Several works have studied the (passive) predictability problem, i.e. where
no control is involved. For instance, if Σ1 = {b} and Σ2 = {c} in Figure 1, then upon
first seeing c, an observer can predict that a fault will necessarily occur. In [11], Genc and
Lafortune introduced a diagnoser construction to derive a necessary and sufficient condition
for predictability in systems modeled by regular languages. Ye, Dague, and Nouioua [18]
proposed a polynomial time algorithm for predictability analysis in a centralized way and

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:3

then extend it to a distributed framework. Brandan Briones and Madalinski [5] introduced
and studied two variants of predictability by defining an additional requirement about either
a lower bound or an upper bound on the number of events between the fault prediction
and the fault occurrence. Then Yin and Li [21] investigated the bounded predictability in
the decentralized framework, and proposed a polynomial-time algorithm for its verification.
Madalinski and Khomenko [15] reduce the predictability problem for a Petri net to LTL-X
model checking. All these previous works focus on passive predictability.

Our contributions. First we refine the paradigm of prediction by allowing an observer to
quantify its observations. Unlike [5] but similar to [21], our predictors can at the same time
provide both lower and upper bounds on the number of observations before a fault may (resp.
must) occur. For instance, upon seeing c in the previous example, an observer can not only
predict that a fault will eventually happen but that it will necessarily happen between the
first and the second observable event after c. In practice, if a fault prediction is issued, the
reaction procedure of the system should be triggered. As such interventions may require
a certain amount of time to take effect, having both lower and upper bounds are relevant
performance criteria for capture such timing issues.

We then turn to the case of active prediction, where a controller tries to restrict the
system’s behaviour so that faults can be reliably predicted. For instance, if Σ1 = {a, b} and
Σ2 = {a, c} in Figure 1, then faults are unpredictable, but if a controller has the right to
block a, it becomes actively predictable (with the aforementioned bounds). We formalize the
idea of active predictability and then propose a class of controller, called active predictor.
We then show that active predictability is equivalent to the existence of an active predictor.

Next, we focus on the decision and synthesis problems, i.e. to decide whether the system
is actively predictable, and if so, how to build an active predictor. In active diagnosability
[13], the solution exploited the fact that whether a sequence of observations is ambiguous (i.e.
corresponds to both faulty and correct runs) is independent of the control that was applied
in the past. In prediction, by contrast, the eventuality of a fault occurence in the future
depends on the control that is going to be applied. Thus solving the active-predictability
problems requires new techniques.

We establish that the decision problem is EXPTIME-complete by reducing it to a turn-
based game with a Büchi objective of exponential size. A memoryless winning strategy of
this game provides the main ingredient to build an active predictor. Furthermore we show
that instead of solving this Büchi game (which takes quadratic time), one can equivalently
in linear time (1) solve a reachability game, (2) build a safety game that depends on the
winning states of the reachability game, and (3) solve it and combine the winning strategies
to get a winning strategy for the Büchi game when it exists (see [14] for all details).

Finally we study the relation between the lower prediction bound k and the number of
states n of the system. We establish that if k ≥ 2n then a system is k-actively predictable if
and only if it is actively safe. This bound is tight since we exhibit a family of systems of size
O(n) such that the system is 2n-actively predictable but not actively safe.

Organization. In Section 2, we introduce prediction in both the uncontrollable and control-
lable framework and establish a class of controller called active predictor. The existence of
such a controller is equivalent to active predictability. The construction of an active predictor
(if it exists) is carried out in Section 3, providing simultaneously the solutions to the decision
and synthesis problems. Section 4 complements these results by a tight analysis of complexity
bounds. We conclude and give some perspectives to this work in Section 5. The missing
proofs are developed in [14].

FSTTCS 2020

48:4 Active Prediction for Discrete Event Systems

2 The Active Prediction Problem

As usual, for an alphabet Σ, we use Σ∗ and Σω, to denote the finite and infinite words over
Σ, and Σ∞ := Σ∗ ∪ Σω. The length of a word σ ∈ Σ∗ is denoted |σ|, and � represents the
prefix notation.

Labeled transition systems

When dealing with discrete event systems (DES), systems are often modeled using labeled
transition systems (LTS).

I Definition 1. A labeled transition system is a tuple A = 〈Q, q0,Σ, T 〉 where:
Q is a set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q× Σ×Q is a set of transitions.

We note q a−→A q′ for (q, a, q′) ∈ T ; this transition is said to be enabled in q. A run over
the infinite word σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 with qi

ai+1−−−→A qi+1 for
all i ≥ 0, and we write q0

σ=⇒
A

if such a run exists. A finite run over σ ∈ Σ∗ is defined

analogously, and we write q σ=⇒
A
q′ if it ends at state q′. A state q is reachable if there exists

a run q0
σ=⇒
A
q for some σ. The index A in those relations will be omitted if unambiguous.

In order to formalize problems related to prediction, we partition Σ into two disjoint
sets Σo and Σuo, the sets of observable and of unobservable events, respectively. Moreover,
we distinguish a special fault event f ∈ Σuo. We say σ is correct if σ ∈ (Σ \ {f})∗ (we will
denote Σ \ {f} with the short form Σ\f in the following), and that σ is faulty otherwise. For
Σ′ ⊆ Σ, define its projection PΣ′(σ) inductively by: PΣ′(ε) = ε; PΣ′(σa) = PΣ′(σ)a when
a ∈ Σ′, and PΣ′(σa) = PΣ′(σ) otherwise. For the sake of simplicity, write P for PΣo , |σ|o for
|P(σ)|, |σ|Σ′ for |PΣ′(σ)|, and for a ∈ Σ, write |σ|a for |σ|{a}. When σ is an infinite word, its
projection is the limit of the projections of its finite prefixes. This projection can be either
finite or infinite. As usual the projection is extended to languages.

I Definition 2 (Languages of an LTS). Let A = 〈Q, q0,Σ, T 〉 be an LTS. The finite and the
infinite (correct) languages of A are defined by:
L∗(A) = {σ ∈ Σ∗ | ∃q q0

σ=⇒ q } and Lω(A) = {σ ∈ Σω | q0
σ=⇒};

L∗c(A) = {σ ∈ (Σ\f)∗ | ∃q q0
σ=⇒ q } and Lωc (A) = {σ ∈ (Σ\f)ω | q0

σ=⇒}
A is safe if L∗(A) = L∗c(A) (i.e. no fault ever occurs).

The union of finite and infinite languages of A is denoted L∞(A) = L∗(A)∪Lω(A). The
inverse observable projection with respect to A and w ∈ Σ∗o is defined as P−1

A (w) = {σ ∈
L∗(A) | P(σ) = w}, which can be simply denoted by P−1(w) if there is no ambiguity. An
LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there is at most one q′ such that q a−→ q′.
For a deterministic LTS we write T (q, a) = q′ if q a−→ q′. As is the case for classical diagnosis
problems, we make two assumptions on A:

Liveness: ∀q ∈ Q, ∃a, q′, q a−→ q′.
Convergence: Lω(A) ∩ Σ∗Σωuo = ∅.

Liveness implies that from any reachable state of an LTS, there exists at least one trans-
ition enabled in that state. Convergence guarantees that there is no infinite sequence of
unobservable events. When A is convergent, then for all σ ∈ Lω(A), one has P(σ) ∈ Σωo .

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:5

I Example 3. Figure 1 shows a live and convergent LTS with Σo = {a, b, c, d}, Σuo = {f},
Σ1 ⊆ Σo, Σ2 ⊆ Σo and Σ1 ∪ Σ2 6= ∅. Transitions labelled by unobservable events are dashed.
We also factorize transitions with same source and target states. Depending on Σ1 and Σ2,
this LTS may have different levels of predictability (see Example 7 for further explanation).

Predictability
Intuitively, a system is predictable with respect to a fault f if in every faulty run, an
observer can be certain that f is going to occur before it actually happens. Before formally
defining predictability, we first present some useful notations. Given σ ∈ L∞(A) and
n ≤ |σ|o, pren(σ) denotes the minimal (w.r.t. �) prefix of σ such that |pren(σ)|o = n. As
an abbreviation, pre(σ) := pre|σ|o(σ) removes unobservable events from the end of σ. For
example, in the LTS of Figure 1, we have (as f is unobservable) pre0(bdf) = ε, pre1(bdf) = b

and pre(bdf) = pre2(bdf) = bd. We naturally extend pre to sets of words.
An observed sequence w forbids prediction of a fault when a correct, infinite future

behavior is still possible. We introduce different kinds of observed sequences.

I Definition 4. (observation properties) Let A be an LTS, w ∈ Σ∗o, and m ∈ N. Then w is:
surely correct in A if pre(P−1

A (w)) ∩ Σ∗fΣ∗ = ∅;
surely faulty in A if P−1

A (w) ∩ L∗c(A) = ∅;
ambiguous in A if it is neither surely correct nor surely faulty in A;
m-correct in A if ww′ is surely correct in A for all w′ ∈ Σmo ;
m-faulty in A if ww′ is surely faulty in A for all w′ ∈ Σmo ;
ω-faulty in A if there exists m ∈ N such that w is m-faulty.

We now define the notion of k-l-predictability, which means that the occurrence of a
fault can be predicted with certainty, based on what has been observed so far, at least k
observations before it does occur, and such that the fault definitely occurs before the l-th
additional observation. In the sequel, N+ denotes N \ {0} and Nω (resp. N+

ω) denotes N
(resp. N+) enlarged with ω which is an absorbing item for addition.

I Definition 5. (Predictability) Let A be an LTS, w ∈ Σ∗o, k ∈ N, and l ∈ N+
ω .

w is k-l-faulty in A if w is k-correct and (k + l)-faulty in A.
A is k-l-predictable if for all σf ∈ L∗(A), P(σ) has a k-l-faulty prefix.

I Remark 6. If w is k-l-faulty in A, then w is also k′-l′-faulty in A for all k′ ≤ k and
k′ + l′ ≥ k + l.

As an abbreviation, we will call A k-predictable if it is k-ω-predictable, and simply
predictable if it is 0-predictable. Thus, Remark 6 implies that predictability is weaker than
any other notion of k-l-predictability.

I Example 7. Consider the LTS of Figure 1:
it is not predictable if Σ1 ∩ Σ2 6= ∅;
it is 1-1-predictable and not 2-predictable if Σ1∩Σ2 = ∅, and both of them are not empty;
it is 2-1-predictable if Σ1 = ∅ and Σ2 6= ∅.

Proposition 8 establishes bounds for predictability in finite LTS:

I Proposition 8. Let A be a k-predictable LTS with n states, where n is finite.
(i) A is k-n-predictable.
(ii) If A is not safe, then k < n.

FSTTCS 2020

48:6 Active Prediction for Discrete Event Systems

Active predictability
We suppose that Σo is partitioned into subsets Σc ⊆ Σo of controllable and Σuco = Σo\Σc of
uncontrollable actions. Intuitively, a controller may forbid a subset of the controllable actions
based on the observations made so far, thereby restricting the behaviour of A.

I Definition 9 (Controlled LTS). Let A be an LTS. A controller for A is a mapping cont :
P(L∗(A)) → 2Σ such that for all w, Σuco ∪ Σuo ⊆ cont(w). The controlled LTS Acont =
〈Qcont , q0cont ,Σ, Tcont〉 is defined as the smallest LTS satisfying:

q0cont = 〈ε, q0〉 ∈ Qcont;
if 〈w, q〉 ∈ Qcont, a ∈ cont(w), and q a−→A q′, then 〈wP(a), q′〉 ∈ Qcont and 〈w, q〉 a−→Acont

〈wP(a), q′〉.

The goal of our controllers is to make the system predictable by preserving liveness and
to perform prediction at the same time. Before formally defining prediction verdicts in
Definition 11, we discuss their intuitive meanings: > means that the controller is currently
unable to predict a fault, while 〈k, l〉 means that the run is correct so far but a fault can
be predicted to happen between the next k and k + l observations. When l = ω, a fault
is predicted but without an upper bound. 〈?,m〉 means that a fault may or may not have
happened yet but one will surely occur within m further observations, and ⊥ means that a
fault has definitely already occurred.

I Example 10. Consider again the LTS from Figure 1 and assume that Σ1 = {a} and
Σ2 = {b}. At the beginning, no fault can be predicted, so a controller would be expected
to emit the prediction >. After observing b, the controller could predict that a fault will
happen between the first and second next observation to come, i.e. 〈1, 1〉. After seeing d,
this would change to 〈0, 1〉, and finally to ⊥.

I Definition 11 (predictions). Let P := {>} ∪ (N × N+
ω) ∪ ({?} × N+

ω) ∪ {⊥} be the set of
possible predictions. We define the following measures κ, µ : P→ Nω ∪ {−1, ω + 1}:

κ(>) = ω + 1, κ(〈k, l〉) = k, and κ(p) = −1 otherwise;
µ(>) = ω + 1, µ(〈k, l〉) = k + l, µ(〈?,m〉) = m, and µ(⊥) = 0.

We also define two particular types of subsets of P: For k ∈ N and l ∈ N+, let Pk,l := {>,⊥}∪
{ 〈k′, l′〉 | k′ ≤ k, l′ ≤ l } ∪ { 〈?,m〉 | m < l } and Pk,ω := {>,⊥, 〈?, ω〉} ∪ { 〈k′, ω〉 | k′ ≤ k }.

The values κ(p) and µ(p) define the “window” (lower and upper bound on future obser-
vations) within which a fault is to occur according to prediction p. Here, −1 indicates that
the fault may or must have occurred in the past, and in the case of >, ω + 1 is chosen for
technical convenience. A predictor using values from Pk,l makes firm commitments on both
the lower and upper bounds within which a fault is going to occur, while a predictor with
values from Pk,ω only commits to a lower bound.

I Definition 12 (compatible predictions). Let p, p′ ∈ P and k ∈ N, l ∈ N+
ω . We say that 〈p, p′〉

are k-l-compatible if the following conditions are all satisfied:
if p = >, then κ(p′) ≥ k else κ(p′) ≥ κ(p)− 1;
µ(p′) ≤ µ(p), and if 0 < µ(p) < ω, then µ(p′) < µ(p);
if p′ 6= >, then µ(p′) ≤ k + l.

Moreover, p is called k-l-initial if 〈>, p〉 are k-l-compatible.

The conditions in Definition 12 describe the relations that should reasonably hold between
a prediction p made for some observation w and the prediction p′ made when one has observed
one additional event in a k-l-predictable controlled LTS. Intuitively these are:

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:7

1. When a fault is first predicted, it should be at least k observations in advance, and the
gap between this lower bound and the upper bound should be at most l. This is why
p = > should imply κ(p′) ≥ k. In particular, one cannot switch from > to 〈k′, l′〉 for
any k′ < k, nor directly to 〈?,m〉 or ⊥. Moreover, the third condition ensures that when
switching from > to 〈k′, l′〉, we have k′ + l′ ≤ k + l, which with k′ ≥ k implies l′ ≤ l.

2. Having predicted a fault within a certain “window”, the subsequent predictions can only
become more precise. Thus, one can maintain or shrink that window, but not enlarge,
shift, or forget about it. Figure 2 illustrates this idea. E.g., when a predictor announces a
fault between the 3rd and 7th following observation, expressed by p = 〈3, 4〉, then one step
later it must give p′ = 〈2, 4〉 or a more precise verdict such as 〈3, 2〉. As another example,
if the controller has arrived at a verdict of 〈?, 6〉, meaning “a fault has occurred, or will
occur within six further observations”, then the information gained from an additional
observation may lead it to conclude that the fault has now definitely occurred (⊥), will
occur later (e.g., 〈1, 3〉), or to maintain the prediction (e.g., 〈?, 5〉). Note that 〈?, 6〉 could
only be reached by passing through 〈0,m〉, for some m > 6, earlier in the observation.
These relations are ensured by allowing κ to decrease by at most one and requiring µ to
strictly decrease (if an upper bound was given).

A k-l-initial prediction is one that is admissible for the empty observation.

|w|
n n+1

〈3, 4〉 3 4

〈2, 4〉

〈3, 2〉

|w|
n n+1

〈?, 6〉 6

〈?, 5〉

〈1, 3〉

⊥

Figure 2 Examples of compatible predictions 〈p, p′〉 after n resp. n + 1 observations, where p is
illustrated above the timeline, and p′ is one of the predictions below. Solid intervals indicate periods
in which a fault is predicted.

I Definition 13 (active predictor). Let A be an LTS, P′ ⊆ P, and h = 〈cont, pred〉, where
cont is a controller and pred is a mapping from P(L∗(Acont)) to P′. We call h a k-l-active
predictor over P′, for k ∈ N and l ∈ N+

ω , if and only if:
(i) Acont is live;
(ii) pred(ε) is k-l-initial;
(iii) for w ∈ P(L∗(Acont)), the prediction satisfies the following:

if pred(w) = >, then w is (k + 1)-correct in Acont;
if pred(w) = 〈k′, l′〉, then w is k′-l′-faulty in Acont;
if pred(w) = 〈?,m〉, then w is ambiguous and m-faulty in Acont;
if pred(w) = ⊥, then w is surely faulty in Acont;

(iv) for a ∈ Σo, w,wa ∈ P(L∗(Acont)), 〈pred(w), pred(wa)〉 are k-l-compatible.

Intuitively, condition (i) requires that the control cannot introduce deadlocks, and
conditions (ii),(iii) ensure that the predictions have the intended semantics. Condition (iv)
ensures compatibility between two subsequent predictions along an observation. If there
exists a k-l-active predictor for A, we call A k-l-active-predictable, or just actively predictable.
Moreover, A is called actively safe if there exists an active predictor for A over {>}, which
entails that Acont is safe.

FSTTCS 2020

48:8 Active Prediction for Discrete Event Systems

I Example 14. In the LTS A of Figure 1, assume that Σ1 = {a, c}, Σ2 = {a, b}, Σc = {a, b, c}.
Let h = 〈cont, pred〉 be defined by:

cont(ε) = {b, c, d, f}, and cont(w) = Σ otherwise;
pred(ε) = pred(w) = >, where w ∈ cΣ∗o ∩ P(L∗(A)), pred(b) = 〈1, 1〉, pred(bd) = 〈0, 1〉,
and pred(bda+) = ⊥.

In this example, h is a 1-1-active predictor.

Proposition 15 and Proposition 16 will exhibit a tight correspondence between the
existence of a k-l-predictor for A and the existence of a controller that makes A k-l-predictable.
Additionally, Proposition 16 shows that the set of predictions used in a predictor can be
limited to a finite set, either committing the prediction to a lower and upper bound for the
occurrence of a fault, or just a lower bound.

I Proposition 15. If h = 〈cont, pred〉 is a k-l-active predictor for an LTS A, then Acont is
k-l-predictable.

I Proposition 16. Let A be an LTS. If there exists a controller cont such that Acont is live
and k-l-predictable, then there exist k-l-active predictors h = 〈cont, pred〉 for A over both
Pk,l and Pk,ω.

Finally, we introduce the notion of pilot as an automata-based representation of k-l-active
predictors. In Section 3 we will show how to find a finite-state pilot when A is actively
predictable and finite-state.

I Definition 17 (pilot). Let A be an LTS, then C = 〈BC , contC , predC〉 is called pilot for A
over P′ ⊆ P if BC = 〈Qc, qc0,Σo, T c〉 is a deterministic LTS with labellings 〈contC , predC〉 :
Qc → 2Σ × P′. Let hC = 〈cont, pred〉 associated with C be defined by cont(w) = contC(q) and
pred(w) = predC(q) for all w ∈ P(L∗(A)), where q is the unique state such that qc0

w=⇒ q.
Then C is a k-l-active predictor for A if hC is one.

3 Controller construction

We solve the decision and synthesis problems simultaneously. We try to construct a pilot-
based k-l-active predictor over some P′ ⊆ P for an LTS A. The construction succeeds if
and only if A is k-l-actively predictable. According to Definition 13, the main challenges in
building an active predictor are to ensure that (i) the controlled system remains live, (ii) the
fault can be predicted at least k observations before its occurrences, and (iii) the prediction
information is provided.

Our solution consists in building a turn-based game (see [12] for turn-based games) by
taking into account the control that has already been performed.

I Definition 18 (turn-based game). A game G with two players called Control and Environ-
ment is a tuple 〈VC , VE , E, v0,WIN 〉, where:

VC , VE are the vertices owned by Control and Environment, respectively, and VG = VC]VE
denoting all vertices, with v0 ∈ VC being an initial vertex;
E ⊆ VG × VG is a set of directed edges such that for all v ∈ VG, there exists (v, v′) ∈ E;
WIN ⊆ V ωG is a set of winning sequences.

Given a sequence ρ = v0v1...vn, we denote ρ[i] = vi. A play is a sequence of V ωG such that
ρ[0] = v0 and 〈ρ[i], ρ[i+ 1]〉 ∈ E for all i ≥ 0; we call ρk := ρ[0] · · · ρ[k], for some k ≥ 0, a
partial play if ρ[k] ∈ VC , and define last(ρk) := ρ[k]. We write Play∗(G) for the set of partial
plays of G. A play ρ is called winning (for Control) if ρ ∈WIN .

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:9

A Büchi game 〈VC , VE , E, v0, VF 〉 defines a game 〈VC , VE , E, v0,WIN 〉 such that WIN =
{ ρ ∈ V ωG | ρ[i] ∈ VF for infinitely many i }. A reachability game 〈VC , VE , E, v0, VF 〉 defines
a game 〈VC , VE , E, v0,WIN 〉 such that WIN = V ∗G VFV

ω
G . A safety game 〈VC , VE , E, v0, VF 〉

defines a game 〈VC , VE , E, v0,WIN 〉 such that WIN = V ωF .

I Definition 19 (strategy). Let G = 〈VC , VE , E, v0,WIN 〉 be a game. A strategy (for Control)
is a function θ : Play∗(G)→ VG such that (last(ξ), θ(ξ)) ∈ E for all ξ ∈ Play∗(G). A play ρ
adheres to θ if ρ[i] ∈ VC implies ρ[i+ 1] = θ(ρi) for all i ≥ 0. A strategy is called winning
if every play ρ that adheres to θ is winning. A positional (also called memoryless) strategy
is a function θ′ : VC → VG such that (v, θ′(v)) ∈ E for all v ∈ VC ; we call θ′ winning if the
strategy θ with θ(ξ) = θ′(last(ξ)) is winning.

To verify k-l-active predictability of a given system, the controller that we propose
needs to memorize two subsets of states with the corresponding prediction information
〈Qc, Qf , p〉. The subset Qc (resp. Qf) represents the possible states reached by a correct
(resp. faulty) run after the last observable action, and Qc ∪ Qf 6= ∅. The prediction
information p ∈ P′ is (non-deterministically) decided based on the current observations.
We denote Reach(〈Qc, Qf , p〉) := Qc ∪ Qf and Q̃ := 2Q \ {∅}. The set of possible tuples
memorized by the controller is defined as SP′ = ScP′ ∪ SaP′ ∪ SfP′ , where:

ScP′ = Q̃× {∅} × { p ∈ P′ | κ(p) ≥ 0 }
SaP′ = Q̃× Q̃×

(
P′ ∩ ({?} × N+

ω)
)

SfP′ = {∅} × Q̃× {⊥}
In the following, we will simply write S for SP′ when P′ is clear from context.

The controller needs to update the state subsets after an observable action, for which we
first define some sets of possible next states from a given state q after a ∈ Σo.

NOA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ Σ∗uoa }

NOCA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ (Σuo \ {f})∗a }

NOFA(q, a) = { q′ | q σ=⇒
A
q′, σ ∈ Σ∗uofΣ∗uoa }

One can omit the subscript A when there is no ambiguity. The extension to a set of states is
defined in a natural way, e.g. NO(Q′, a) =

⋃
q∈Q′ NO(q, a). We now define how the controller

updates its tuple once an observable action occurs. In the following, � represents a state in
which the controller has lost, and we denote S� := S ∪ {�}.

IDefinition 20 (knowledge update). Let A be an LTS, P′ ⊆ P, and k ≥ 0. Then the knowledge
transition relation ∆k

A ⊆ S × Σo × S� is defined as follows. Let s = 〈Qc, Qf , p〉 ∈ S and
a ∈ Σo. Then 〈s, a, s′〉 ∈ ∆k

A if and only if:
1. either s′ = 〈NOC (Qc, a),NOF(Qc, a) ∪NO(Qf , a), p′〉 ∈ S and 〈p, p′〉 are k-l-compatible;
2. or s′ = � when there is no s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k

A.

Notice that, given s and a, the choice of s′ is largely deterministic except for p′, which
must be k-l-compatible with p. When s′ has no prediction consistent with the updated
correct resp. faulty state subsets, cf Definition 13(iii), then the only possible update is to �.

I Example 21. Consider the LTS in Figure 1 and assume that Σ1 = {a, c}, Σ2 = {a, b} and
Σc = {a, b, c}.
1. Let s = 〈{q0}, ∅,>〉. If the observable action a is chosen, then we have 〈s, a, s′〉 ∈ ∆k

A,
where s′ = 〈{q1, q4}, ∅,>〉. Notice that 〈>,>〉 are k-l-compatible.

2. Let s = 〈{q2, q5}, ∅,>〉 after observing a and d. If a is chosen from here, we can only
have 〈s, a,�〉 ∈ ∆k

A. The reason is that after a, the system can end up in either q3 (with
a fault) or in q5 (without fault), the next prediction should thus be an ambiguous one,

FSTTCS 2020

48:10 Active Prediction for Discrete Event Systems

i.e., 〈?,m〉. However, 〈>, 〈?,m〉〉 are not k-l-compatible. It follows that there does not
exist s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k

A. Hence we have 〈s, a,�〉 ∈ ∆k
A by Definition 20.

The objective of Control is to obtain a winning play by suitably restricting the possible
actions, and any winning strategy corresponds to a controller with which the controlled
system is predictable. The game begins with Control to choose a prediction for ε. Then
the game proceeds in rounds: 1) Control restricts the set of possible actions to some Σ′; 2)
Environment chooses a ∈ Σ′ to determine the next state. 3) Control updates its knowledge.

The choices of Control are subject to some restrictions. Indeed, each state s = 〈Qc, Qf , p〉
represents Control’s knowledge about the current potential states of A as well as the
corresponding prediction information. To ensure that the controlled system remains live, the
set of possible actions Σ′ must not cause deadlocks in any state reachable by unobservable
actions from Qc ∪Qf . Also, Control cannot prevent the uncontrollable actions. So we define
the admissible sets and the game as follows, where we use ΣPO(q) = {a ∈ Σo | q

σ=⇒ q′′, σ ∈
Σ∗uoa } to denote the possible next observable actions from the state q, which can be extended
to a set of states in a natural way.

I Definition 22 (admissible action set). Let A = 〈Q, q0,Σ, T 〉 be an LTS and Q′ ⊆ Q be a
subset of states. We call Σ′ ⊆ Σo an admissible set for Q′ if it fulfills the following conditions:

Σuco ⊆ Σ′ as any action in Σuco is observable but not controllable.
for all q′ ∈ Q′, q ∈ Q, and σ ∈ Σ∗uo, q′

σ=⇒ q implies ΣPO(q) ∩ Σ′ 6= ∅.
The set of admissible sets for Q′ are denoted as adm(Q′), which is not empty when Q′ 6= ∅
as A is a live and convergent LTS.

I Example 23. Consider the same LTS as in Example 21. Let Q′ = {q0}. Then adm(Q′) =
{Σ′ | Σ′ ⊆ Σo, {d} (Σ′}. In other words, adm(Q′) contains all subsets of Σo = {a, b, c, d}
that include d, except the singleton {d}, which is not an admissible set as it blocks the system.
More precisely, the set of possible next observable actions from q0 is ΣPO(q0) = {a, b, c},
whose intersection with {d} is empty. Thus {d} cannot be an admissible set for Q′.

The vertices of our controller-synthesis game consist of an initial vertex ι, the states
of S�, a set V1 := S × 2Σo where Control has chosen a set of permitted actions, and a set
V2 := S × Σo where Environment has chosen an observable action. The winning condition
assures that once a fault has been predicted, it will eventually happen.

I Definition 24 (controller-synthesis game). Let A be an LTS and P′ ⊆ P. We denote
Gk,lA,P′ the Büchi game 〈VC , VE , E, ι, VF 〉, where VC = {ι} ∪ S� ∪ V2, VE = V1, VF =(
Q̃× {∅} × {>}

)
∪
(
{∅} × Q̃× {⊥}

)
⊆ S, and E = Eι ∪ E1 ∪ E2 ∪ E3 ∪ {〈�,�〉}, where

Eι =
{ 〈
ι, 〈{q0}, ∅, p〉

〉
| p is k-l-initial

}
⊆ {ι} × S;

E1 =
{ 〈
s, 〈s,Σ′〉

〉
| s ∈ S, Σ′ ∈ adm(Reach(s))

}
⊆ S × V1;

E2 =
{ 〈
〈s,Σ′〉, 〈s, a〉

〉
| s ∈ S, a ∈ ΣPO(Reach(s)) ∩ Σ′

}
⊆ V1 × V2;

E3 =
{ 〈
〈s, a〉, s′

〉
| 〈s, a, s′〉 ∈ ∆k

A
}
⊆ V2 × S�.

Note that the set V2 records the sequence of observable actions that occur during a play.

I Example 25. Figure 3 depicts a part of a game for some k, l and the LTS of Figure 1, for
which we assume again Σ1 = {a, c}, Σ2 = {a, b} and Σc = {a, b, c}. From ι, Controller can
choose any k-l-initial prediction; we consider the case where > is chosen, so s0 = 〈{q0}, ∅,>〉.
Then from Example 23, we have adm(Reach(s0)) = adm({q0}) = {Σ′ | Σ′ ⊆ Σo, {d} (Σ′}.
Environment cannot choose the action d even when d is in the admissible set since d /∈
ΣPO(Reach(s0)). After Environment chooses an available action (say a, leading to 〈s0, a〉),
Control updates its knowledge and chooses a new prediction, say >, leading to s1, with q1, q4

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:11

ι

s0 s0,Σo

s0, {a, b, d}

s0, {c, d}

s0, b

s0, c

s0, a s1 s1, {d} s1, d s4 s4, {a, d} s4, a �

s2

s3

Figure 3 Part of the game for the LTS in Figure 1 (Example 25):
s0 = 〈{q0}, ∅,>〉, s1 = 〈{q1, q4}, ∅,>〉, s2 = 〈{q1}, ∅, p2〉, s3 = 〈{q4}, ∅, p3〉, and s4 = 〈{q2, q5}, ∅,>〉.

as the possible new states. From here, d is the only choice for Environment. Suppose that
Control then again chooses > as its new prediction in s4, thus s4 = 〈{q2, q5}, ∅,>〉. If a is
now chosen, from the second case of Example 21, we know that the game enters �. To avoid
losing, Control needs to switch to a different prediction early enough.

Now we establish the strong connection between winning strategies and active predictors.

I Proposition 26. Given h = 〈cont, pred〉 a k-l-active predictor over P′ for an LTS A, there
exists a corresponding winning strategy θh in the game Gk,lA,P′ .

The existence of a winning strategy implies the existence of a positional one due to
well-known results of game theory (see e.g. [12] for all results here related to turn-based
games). For the reverse direction, we next define a pilot from a positional winning strategy
in Gk,lA,P′ before proving that this pilot is a k-l-active predictor.

I Definition 27. Let θ be a positional winning strategy in Gk,lA,P′ . We define a pilot Cθ :=
〈Bθ, contθ, predθ〉 over P′ as follows:
Bθ = 〈Qθ, qθ0 ,Σo, T θ〉, where
1. Qθ = {q ∈ S | q = last(ξθ) and ξθ ∈ Play∗(Gk,lA,P′) adhering to θ}
2. qθ0 = θ(ι)
3. T θ(s, a) = θ(〈s, a〉)
contθ(s) = Σ′ ∪ Σuo for any s ∈ Qθ, where θ(s) = 〈s,Σ′〉;
predθ(s) = p, for any s = 〈Qc, Qf , p〉 ∈ Qθ

I Proposition 28. Let θ be a positional winning strategy in Gk,lA,P′ . Then Cθ is a k-l-active
predictor over P′ for A.

Combining the results of Propositions 26 and 28, we obtain that the active-predictability
problem for an LTS A with n states reduces to solving a Büchi game with 2O(n) vertices.
Since Büchi games can be solved in polynomial time, we obtain the following result:

I Theorem 29. The active-predictability problem for finite-state LTS belongs to EXPTIME.

We conclude the section with a supplementary result showing that due to the special
structure of Gk,lA,P′ it can actually be solved in linear time (w.r.t. the size of the game), and
not in quadratic time as performed for general Büchi games.

I Proposition 30. If A is a finite-state LTS and P′ ⊆ P, then Gk,lA,P′ can be solved in O(|E|).

FSTTCS 2020

48:12 Active Prediction for Discrete Event Systems

4 Bound analysis

We first prove that it is EXPTIME-hard to decide whether a given LTS A is actively k-l-
predictable, independently of k and `. The proof (developed in [14]) is similar to the proof
in [13] that active diagnosability is EXPTIME-hard and relies on a reduction from safety
games with imperfect information [3].

I Theorem 31. The active-predictability decision problem is EXPTIME-hard.

Together with Theorem 29, we obtain the following corollary.

I Corollary 32. The active-predictability decision problem is EXPTIME-complete.

We study the relation between active predictability and active safety. Theorem 33 relates
the maximal advance warning for fault predictions to the number of states in A.

I Theorem 33. Let A be an LTS with n states. If A is 2n-active-predictable, then it is
actively safe.

Proof. If A is 2n-ω-active-predictable then by definition there exists a 2n-ω-active predictor
h = 〈cont, pred〉 over P′ := Pk,ω for A, and by Proposition 26 there exists a winning strategy
θ in Gk,ωA,P′ . In turn, this winning strategy provides a pilot Cθ = 〈B, cont′, pred ′〉 according
to Proposition 28; let B = 〈Q, q0,Σo, T 〉. We shall construct a new pilot C for A over {>},
proving that A is actively safe.

Remember that Q is the set of Controller-owned vertices in Gk,ωA,P′ that can be reached
by plays adhering to θ and that these vertices are a subset of SP′ . For q, q′ ∈ Q, let us
write q ≺ q′ if q′ is reachable from q in B. Since θ is positional and winning, ≺ must be an
acylic relation between those states of Q that are not members of VF , i.e. their associated
prediction is neither > nor ⊥ (cf Definition 24). We now call q ∈ Q a cutoff if q is of the form
〈Qc, Qf , p〉 and there exists a state q′ = 〈Qc, Qf , p′〉 with p′ 6= p and q′ ≺ q. Let co(q), the
corresponding state of q, denote the state that is ≺-minimal among all the choices for q′; due
to the structure of the states outside VF , co(q) is unique and not a cutoff itself. Moreover, a
state of Q is called useless if it is either a cutoff or all its (immediate) predecessors in B are
useless, and useful otherwise.

Remember that SP′ is a union of ScP′ , SaP′ , and SfP′ , where ScP′ contains the states of the
form 〈Qc, ∅, p〉, with κ(p) ≥ 0. Thus, states in ScP′ are only reached through correct runs
in Acont′ . Let S′ := { 〈Qc, ∅, p〉 | κ(p) = 0 }. It follows from the construction of Gk,ωA,P′ (cf
Definition 20 and Definition 24) that any path from q0 to a state from S′ is of length at least
2n, so by pigeonhole principle, any path leading to S′ contains a cutoff. Since SaP′ ∪ SfP′ can
only be reached by going through S′, those states are useless.

We can now construct the desired pilot C by “folding” cutoffs back onto their corresponding
states. We remark in this context that Reach(q) = Reach(co(q)), and therefore the admissible
control choices for both states are the same; proving that the resulting controlled system is
live depends only on this property. Since the controlled system never admits a fault, the
prediction can be > in all cases. More formally, C := 〈〈Q′, q0,Σo, T ′〉, cont′, pred ′′〉, where
Q′ is the useful subset of Q, and for all q ∈ Q′, a ∈ Σo:

T ′(q, a) = T (q, a) if T (q, a) ∈ Q′ and T ′(q, a) = co(T (q, a)) otherwise;
pred ′′(q) = >. J

Theorem 33 implies that if a system is not actively safe, then there is an exponential
upper bound on the advance warning that an active predictor can issue. This bound is
asymptotically precise, as the following family of examples shows.

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:13

I Theorem 34. There exists a family of systems (An)n≥1 with O(n) states such that An is
not actively safe but 2n-active-predictable.

p

sn−1 s1 s0

q q′

p′ p′′

n− 1
Σn−1

1 Σ1 0
Σ0

Γn−1 Γ1

n− 1
1 0

u

f
n

Γn
n f

n

.

Figure 4 A 2n-active predictable LTS with O(n) states, where Σo = Σc = {0, ..., n}, Σi =
{i + 1, ..., n}, and Γi = {0, ..., i− 1}.

Proof. Figure 4 shows a family of LTS with O(n) states but an alphabet of size O(n) and
O(n2) transitions. We first provide a proof for this family as it is easier to understand. After
this, we provide a more complex example with a constant-size alphabet and O(n) states and
transitions.

Variable-size alphabet

Consider the LTS shown in Figure 4. The observable actions are {0, . . . , n}, all of which are
controllable. There are only two unobservable actions, u and the fault f . We abbreviate by
Σi := {i+ 1, . . . , n} the actions larger than i for 0 ≤ i < n, and by Γi := {0, . . . , i− 1} the
actions smaller than i for 0 < i ≤ n.

The initial state is p. Evidently An is actively safe if a controller can avoid both p′ and q;
as we shall see, this is impossible. However, the system is actively predictable if the controller
can at least avoid q. We shall see that this is indeed possible while entering p′ only after 2n
steps, by simulating a binary counter.

We can assume (w.l.o.g.) that the controller permits a single action from Σo in each step
and hence the controlled system will admit a single infinite observation sequence ρ. Having
allowed a prefix σ of ρ, let R(σ) be the set of states that this sequence can lead to. If the
controller wants to keep the system from making a fault, it must ensure that R(σ) remains
within the set R := {p, s0, . . . , sn−1}. When R(σ) ⊆ R, let us associate a measure defined as
I(σ) :=

∑
si∈R(σ) 2i. We observe the following:

R(ε) = {p}, hence I(ε) = 0.
If si ∈ R(σ), then the controller must not allow action i in the next step, otherwise the
system may go to q, rendering it unpredictable.
As long as I(σ) < 2n − 1, the controller must permit an action i such that I(σi) > I(σ).
To see this, let si /∈ R(σ), then R(σi) = (R(σ) ∪ {si}) \ {s0, . . . , si−1}. We shall assume
that i is chosen minimally, so I(σi) = I(σ) + 1.
Therefore, after 2n − 1 steps, the controlled system will have performed a sequence σ̂
with I(σ̂) = 2n − 1. The only possible course of action for the controller is to permit
n from now on, i.e. ρ = σ̂nω. We then have R(σ̂n) = {p, p′}, R(σ̂nn) = {p′, p′′}, and
R(σ̂nnn) = {p′′}.

FSTTCS 2020

48:14 Active Prediction for Discrete Event Systems

Going backwards, we can now associate predictions with each prefix of ρ: pred(σ̂nk) = ⊥
for k ≥ 3, pred(σ̂nn) = 〈?, 1〉, pred(σ̂n) = 〈0, 2〉, and pred(σ) = 〈2n − |σ|, 2〉 for every prefix
σ of σ̂. Thus, An is 2n-2-active predictable. Notice that the system could be made 2n-1-active
predictable if states s0, . . . , sn−1 transitioned with n to p′ instead, which we avoided simply
to keep the drawing of the automaton planar.

Constant-size alphabet

To see that the proof with a variable-size alphabet can be adapted to an alphabet of
constant size, consider the LTS A′n in Figure 5. A′n has O(n) states and three observable
and controllable actions 0, 1, a and two unobservable actions u and f . Initially, the LTS
performs an a going to either p or r. The LTS then simulates An of Figure 4, using a unary
encoding, in the following sense: Let code(i) = 1i0n−ia, for i = 0, . . . , n. The reader can
verify, case-by-case, that for any two states u, v ∈ {p, p′, s0, . . . , sn−1, q} and i ∈ {0, . . . , n},
we have u i−→ v in An iff u code(i)−−−−→ v in A′n. Moreover, the controller must account for the
possibility that the system has gone to state r. Then, to keep the controlled system live, the
only possible sequences that the controller can enforce are code(i) for i = 0, . . . , n, and we
have r code(i)−−−−→ r for i < n. After the initial a, the controller must therefore admit code(σ̂n),
for σ̂ as in An. On this basis, a closer look shows that A′n is k-l-active predictable for
k = 1 + (n+ 1) · 2n and l = n+ 2. J

Note that Theorem 34 does not contradict Proposition 8, which establishes linear predic-
tion bounds w.r.t. the number of states of A. However, Proposition 8 talks about passive
predictability, whereas Theorem 34 is about active predictability.

5 Conclusion and perspectives

We have extended the prediction paradigm by introducing parameters related to the number
of observations before fault may or must occur. Within this framework, we have established
that active predictability is EXPTIME-complete through a procedure for synthetising active
predictors that builds a Büchi game. Solving this game is proved linear in the number of
edges in the game. We have shown that if the observation threshold for eventual prediction
is chosen large enough (namely ≥ 2n with n the number of states in the system), then
active predictability is equivalent to active safety. Furthermore we have exhibited a family of
systems proving that this bound is tight.

Out of several possible extensions for the present results, three stand out as natural
continuations. First, we want to introduce a measure that quantifies the faultiness of the
system, and then aim to find an active predictor that minimizes this criterium, or at least
ensures a value below some threshold. Second, we plan to study the notion of prediagnosis
introduced in [2] that combines predictability and diagnosability for controllable systems.
Finally, we also want to study active predictability for probabilistic systems, as we had
previously done for diagnosis in [1].

S. Haar, S. Haddad, S. Schwoon, and L. Ye 48:15

p p1 pn−1 pn p′

p′′

r r1 rn−1

tn−1tn−2t1t0

sn−1sn−2s1s0

q

q′

a 1 1 a

f

a, 1

a 1 1

0 0 0

0a

0 0 0

00

aaaa

a a a a

1110
10

0
00

0

0

00

1

1

0, 1

a

aaaa

uf

a, 1

0

1

1

0

0

1

0

.

Figure 5 Variant of Figure 4 with constant-size alphabet, with Σo = Σc = {0, 1, a}.

References

1 N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabilistic
systems. In FOSSACS 2014, Grenoble, France, volume 8412 of LNCS, pages 29–42, 2014.

2 N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of Diagnosis and Predictability in
Probabilistic Systems. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’14), volume 29 of LIPIcs, pages 417–429, New
Delhi, India, December 2014.

3 D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. FSTTCS,
volume 2 of LIPICS, pages 73–82, Bangalore, India, 2008.

4 S. Böhm, S. Haar, S. Haddad, P. Hofman, and S. Schwoon. Active diagnosis with observable
quiescence. In Proc. CDC: 54th IEEE Conf. on Decision and Control, pages 1663–1668, Osaka,
Japan, December 2015.

FSTTCS 2020

48:16 Active Prediction for Discrete Event Systems

5 L. Brandán Briones and A. Madalinski. Bounded predictability for faulty discrete event
systems. In 30nd International Conference of the Chilean Computer Science Society, SCCC,
pages 142–146, Curico, Chile, November 2011.

6 C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems - Second Edition.
Springer, 2008.

7 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta
Informaticae, 88:497–540, 2008.

8 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundam.
Informaticae, 88(4):497–540, 2008.

9 E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-event systems. In
Proc. SafeProcess’09, pages 1545–1550, 2009.

10 E. Dallal and S. Lafortune. On most permissive observers in dynamic sensor activation
problems. IEEE Trans. Autom. Control., 59(4):966–981, 2014.

11 S. Genc and S. Lafortune. Predictability of event occurrences in partially-observed discrete-
event systems. Autom., 45(2):301–311, 2009. doi:10.1016/j.automatica.2008.06.022.

12 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

13 S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis.
Journal of Computer and System Sciences, 83(1):101–120, 2017.

14 Stefan Haar, Serge Haddad, Stefan Schwoon, and Lina Ye. Active Prediction for Discrete Event
Systems. working paper or preprint, September 2020. URL: https://hal.archives-ouvertes.
fr/hal-02951944.

15 A. Madalinski and V. Khomenko. Predictability verification with parallel LTL-X model
checking based on Petri net unfoldings. IFAC Proceedings Volumes, 45(20):1232–1237, 2012.
8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.

16 M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Transactions on Automatic Control, 43(7):908–929, July 1998.

17 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability
of discrete-event systems. IEEE Trans. Aut. Cont., 40(9):1555–1575, 1995.

18 L. Ye, P. Dague, and F. Nouioua. Predictability Analysis of Distributed Discrete Event
Systems. In 52nd IEEE Conference on Decision and Control, pages 5009–5015, Florence, Italy,
December 2013.

19 X. Yin and S. Lafortune. A uniform approach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE Trans. Autom. Control., 61(8):2140–2154,
2016.

20 X. Yin and S. Lafortune. A general approach for optimizing dynamic sensor activation for
discrete event systems. Autom., 105:376–383, 2019.

21 X. Yin and Z. Li. Decentralized fault prognosis of discrete event systems with guaranteed
performance bound. Autom., 69:375–379, 2016.

22 T-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. Automat. Contr., 47(9):1491–1495, 2002.

https://doi.org/10.1016/j.automatica.2008.06.022
https://hal.archives-ouvertes.fr/hal-02951944
https://hal.archives-ouvertes.fr/hal-02951944

Comparing Labelled Markov Decision Processes
Stefan Kiefer
Department of Computer Science, University of Oxford, UK
stekie@cs.ox.ac.uk

Qiyi Tang
Department of Computer Science, University of Oxford, UK
qiyi.tang@cs.ox.ac.uk

Abstract
A labelled Markov decision process is a labelled Markov chain with nondeterminism, i.e., together
with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval
Markov chains. Motivated by applications of equivalence checking for the verification of anonymity,
we study the algorithmic comparison of two labelled MDPs, in particular, whether there exist
strategies such that the MDPs become equivalent/inequivalent, both in terms of trace equivalence
and in terms of probabilistic bisimilarity. We provide the first polynomial-time algorithms for
computing memoryless strategies to make the two labelled MDPs inequivalent if such strategies
exist. We also study the computational complexity of qualitative problems about making the total
variation distance and the probabilistic bisimilarity distance less than one or equal to one.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of com-
putation → Models of computation; Mathematics of computing → Probability and statistics

Keywords and phrases Markov decision processes, Markov chains, Behavioural metrics

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.49

Related Version A full version of the paper is [24], available at https://arxiv.org/abs/2009.11643.

Funding Stefan Kiefer : Supported by a Royal Society University Fellowship.

Acknowledgements We thank the anonymous reviewers of this paper for their constructive feedback.

1 Introduction

Given a model of computation (e.g., finite automata), and two instances of it, are they
semantically equivalent (i.e., do they accept the same language)? Such equivalence problems
can be viewed as a fundamental question for almost any model of computation. As such,
they permeate computer science, in particular, theoretical computer science.

In labelled Markov chains (LMCs), which are Markov chains whose states (or, equivalently,
transitions) are labelled with an observable letter, there are two natural and very well-studied
versions of equivalence, namely trace (or language) equivalence and probabilistic bisimilarity.

The trace equivalence problem has a long history, going back to Schützenberger [33]
and Paz [29] who studied weighted and probabilistic automata, respectively. Those models
generalize LMCs, but the respective equivalence problems are essentially the same. It can
be extracted from [33] that equivalence is decidable in polynomial time, using a technique
based on linear algebra. Variants of this technique were developed in [38, 16]. More recently,
the efficient decidability of the equivalence problem was exploited, both theoretically and
practically, for the verification of probabilistic systems, see, e.g., [22, 23, 30, 28, 27]. In
those works, equivalence naturally expresses properties such as obliviousness and anonymity,
which are difficult to formalize in temporal logic. In a similar vein, inequivalence can mean
detectibility and the lack of anonymity.

© Stefan Kiefer and Qiyi Tang;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4173-6877
mailto:stekie@cs.ox.ac.uk
https://orcid.org/0000-0002-9265-3011
mailto:qiyi.tang@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.49
https://arxiv.org/abs/2009.11643
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Comparing Labelled Markov Decision Processes

Probabilistic bisimilarity is an equivalence that was introduced by Larsen and Skou [26].
It is finer than trace equivalence, i.e., probabilistic bisimilarity implies trace equivalence.
A similar notion for Markov chains, called lumpability, can be traced back at least to the
classical text by Kemeny and Snell [21]. Probabilistic bisimilarity can also be computed in
polynomial time [2, 13, 39]. Indeed, in practice, computing the bisimilarity quotient is fast
and has become a backbone for highly efficient tools for probabilistic verification such as
Prism [25] and Storm [19].

In this paper, we study equivalence problems for (labelled) Markov decision processes
(MDPs), which are LMCs plus nondeterminism, i.e., each state may have several actions
(or “moves”) one of which is chosen by a controller, potentially randomly. An MDP and a
controller strategy together induce an LMC (potentially with infinite state space, depending
on the complexity of the strategy). The nondeterminism in MDPs gives rise to a spectrum of
equivalence queries: one may ask about the existence of strategies for two given MDPs such
that the induced LMCs become trace/bisimulation equivalent, or such that they become
trace/bisimulation inequivalent. Another potential dimension of this spectrum is whether to
consider general strategies or more restricted ones, such as memoryless or even memoryless
deterministic (MD) ones.

In this paper, we focus on memoryless strategies, for several reasons. First, these questions
for unrestricted strategies quickly lead to undecidability. For example, in [17, Theorem 3.1] it
was shown that whether there exists a general strategy such that a given MDP becomes trace
equivalent with a given LMC is undecidable. Second, memoryless strategies are sufficient for
a wide range of objectives in MDPs, and their simplicity means that even if it was known
that a general strategy exists to accomplish (in)equivalence one might still wonder if there
also exists a memoryless strategy. Third, probabilistic bisimilarity is a less natural notion for
LMCs induced by general strategies: such LMCs will in general have an infinite state space,
even when the MDP is finite. Fourth, applying a memoryless strategy in an MDP is related
to choosing an instance of an interval Markov chain (IMC). IMCs are like Markov chains,
but the transitions are labelled not with probabilities but with probability intervals. IMCs
were introduced by Jonsson and Larsen [20] and have been well studied in verification-related
domains [34, 7, 12, 3, 6], but also in areas such as systems biology, security or communication
protocols, see, e.g., [11]. Selecting a memoryless strategy in an MDP corresponds to selecting
a probability from each interval (one out of generally uncountably many). Parametric Markov
chains and parametric MDPs are further related models, see, e.g., [18, 41] and the references
therein.

LMCs can also be compared in terms of their distance. We consider two natural distance
functions between two LMCs: the total variation distance (between the two trace distributions)
and the probabilistic bisimilarity distance [15]. Both distances can be at most 1. The total
variation (resp. probabilistic bisimilarity) distance is 0 if and only if the LMCs are trace
equivalent (resp. probabilistic bisimilar). Further, the probabilistic bisimilarity distance is an
upper bound on the total variation distance [8]. It was shown in [9] (resp. [37]) that whether
the total variation (resp. probabilistic bisimilarity) distance of two LMCs equals 1 can be
decided in polynomial time. This raises the question whether these results can be extended
to MDPs, i.e., what is the complexity of deciding whether there exists a memoryless strategy
to make the distance less than 1 or equal to 1, respectively. It turns out that some of these
problems are closely related to the corresponding (in)equivalence problem.

Instead of comparing two MDPs with initial distributions/states, one may equivalently
compare two initial distributions/states in a single MDP (by taking a disjoint union of the
states). In this paper we study the computational complexity of the following problems:

S. Kiefer and Q. Tang 49:3

TV = 0 (TV> 0), which asks whether there is a memoryless strategy such that the two
initial distributions are (not) trace equivalent in the induced labelled Markov chain;
TV = 1 (TV< 1), which asks whether there is a memoryless strategy such that the two
initial distributions (do not) have total variation distance one;
PB = 0 (PB> 0), which asks whether there is a memoryless strategy such that the two
initial states are (not) probabilistic bisimilar;
PB = 1 (PB< 1), which asks whether there is a memoryless strategy such that the two
initial states (do not) have probabilistic bisimilarity distance one.

In Sections 3 and 4 we provide the first polynomial-time algorithms for TV> 0 and PB> 0,
respectively. We also show how to compute memoryless strategies that witness trace and
probabilistic bisimulation inequivalence, respectively. In Section 5 we discuss TV = 1 and
PB = 1, and in Section 6 we establish the complexity of the remaining four problems, which
are about making the distance small (= 0 or <1). We conclude in Section 7. Table 1
summarises the results in the paper. Missing proofs can be found in the full version of this
paper [24].

Table 1 Summary of the results. These results also imply results for the problems which state
“for all memoryless strategies”. For example, TV > 0 is the complement of the decision problem
whether for all memoryless strategies the two initial distributions are trace equivalent in the induced
labelled Markov chains.

Problem Complexity

TV = 0 ∃R-complete
TV> 0 in P
TV = 1 NP-hard and in ∃R
TV< 1 ∃R-complete
PB = 0 NP-complete
PB> 0 in P
PB = 1 NP-complete
PB< 1 NP-complete

2 Preliminaries

We write R for the set of real numbers and N the set of nonnegative integers. Let S be a finite
set. We denote by Distr(S) the set of probability distributions on S. By default we view
vectors, i.e., elements of RS , as row vectors. For a vector µ ∈ [0, 1]S we write |µ| :=

∑
s∈S µ(s)

for its L1-norm. A vector µ ∈ [0, 1]S is a distribution (resp. subdistribution) over S if |µ| = 1
(resp. 0< |µ| ≤ 1). We denote column vectors by boldface letters; in particular, 1 ∈ {1}S
and 0 ∈ {0}S are column vectors all whose entries are 1 and 0, respectively. For s ∈ S we
write δs for the (Dirac) distribution over S with δs(s) = 1 and δs(r) = 0 for r ∈ S \ {s}. For
a (sub)distribution µ we write support(µ) = {s ∈ S | µ(s)> 0} for its support.

A labelled Markov chain (LMC) is a quadruple 〈S,L, τ, `〉 consisting of a nonempty finite
set S of states, a nonempty finite set L of labels, a transition function τ : S → Distr(S), and
a labelling function ` : S → L.

We denote by τ(s)(t) the transition probability from s to t. Similarly, we denote by
τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from s to E ⊆ S. A trace in a LMCM

is a sequence of labels w = a1a2 · · · an where ai ∈ L. We denote by L≤n the set of traces
of length at most n. Let M : L → [0, 1]S×S specify the transitions, so that

∑
a∈LM(a)

FSTTCS 2020

49:4 Comparing Labelled Markov Decision Processes

is a stochastic matrix, M(a)(s, t) = τ(s)(t) if `(s) = a and M(a)(s, t) = 0 otherwise. We
extend M to the mapping M : L∗ → [0, 1]S×S with M(w) = M(a1) · · ·M(an) for a trace
w = a1 · · · an. If the LMC is in state s, then with probability M(w)(s, s′) it emits a trace
w and moves to state s′ in |w| steps. For a trace w ∈ L∗, we define Run(w) := {w}Lω; i.e.,
Run(w) is the set of traces starting with w. To an initial distribution π on S, we associate
the probability space (Lω,F ,PrM,π), where F is the σ-field generated by all basic cylinders
Run(w) with w ∈ L∗ and PrM,π : F → [0, 1] is the unique probability measure such that
PrM,π(Run(w)) = |πM(w)|. We generalize the definition of PrM,π to subdistributions π in
the obvious way, yielding sub-probability measures. We may drop the subscriptM if it is
clear from the context.

Given two initial distributions µ and ν, the total variation distance between µ and ν is
defined as follows:

dtv(µ, ν) = sup
E∈F
|Prµ(E)− Prν(E)|.

We write µ ≡ ν to denote that µ and ν are trace equivalent, i.e., |Prµ(Run(w))| =
|Prν(Run(w))| holds for all w ∈ L∗. We have that trace equivalence and the total variation
distance being zero are equivalent [9, Proposition 3(a)].

The pseudometric probabilistic bisimilarity distance of Desharnais et al. [14] , which we
denote by dpb, is a function from S × S to [0, 1], that is, an element of [0, 1]S×S . It can be
defined as the least fixed point of the following function:

∆(d)(s, t) =


1 if `(s) 6= `(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v) otherwise

where the set Ω(µ, ν) of couplings of µ, ν ∈ Distr(S) is defined as Ω(µ, ν) ={
ω ∈ Distr(S × S)

∣∣ ∑
t∈S ω(s, t) = µ(s) ∧

∑
s∈S ω(s, t) = ν(t)

}
. Note that a coupling ω ∈

Ω is a joint probability distribution with marginals µ and ν (see, e.g., [4, page 260-262]).
An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,

`(s) = `(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼M (or ∼ whenM is clear), is the largest probabilistic bisimulation. For all
s, t ∈ S, s ∼ t if and only if dpb(s, t) = 0 [14, Theorem 1].

A (labelled) Markov decision process (MDP) is a tuple 〈S,A, L, ϕ, `〉 consisting of a
finite set S of states, a finite set A of actions, a finite set L of labels, a partial function
ϕ : S×A 7→ Distr(S) denoting the probabilistic transition, and a labelling function ` : S → L.
The set of available actions in a state s is A(s) = {m ∈ A | ϕ(s,m) is defined}. A memoryless
strategy for an MDP is a function α : S → Distr(A) that given a state s, returns a probability
distribution on all the available actions at that state. Such strategies are also known as
positional, as they do not depend on the history of past states. A strategy α is memoryless
deterministic (MD) if for all states s there exists an action m ∈ A(s) such that α(s)(m) = 1;
we thus view an MD strategy as a function α : S → A.

For the remainder of the paper, we fix an MDP D = 〈S,A, L, ϕ, `〉. Given a memoryless
strategy α for D, an LMC D(α) = 〈S,L, τ, `〉 is induced, where τ(s)(t) =

∑
m∈A(s) α(s)(m) ·

ϕ(s,m)(t). The matrix Mα specifies the transitions of the LMC D(α) as is defined previously.
We fix two initial distributions µ and ν on S (resp. two initial states s and t) for problems

related to total variation distance (resp. probabilistic bisimilarity distance).

S. Kiefer and Q. Tang 49:5

3 Trace Inequivalence

In this section we show that one can decide in polynomial time whether there exists a
memoryless strategy α so that µ 6≡ ν in D(α). In terms of the notation from the introduction,
we show that TV> 0 is in P. Define the following column-vector spaces.

V1 = 〈Mα1(a1)Mα2(a2) · · ·Mαm(am)1 : αi is a memoryless strategy; ai ∈ L〉 and
V2 = 〈Mα(w)1 : α is a memoryless strategy;w ∈ L∗〉 and
V3 = 〈Mα(w)1 : α is an MD strategy;w ∈ L∗〉.

Here and later we use the notation 〈·〉 to denote the span of (i.e., the vector space spanned by)
a set of vectors. By the definitions, we have that µ ≡ ν in all LMCs induced by all memoryless
strategies α if and only if µMα(w)1 = νMα(w)1 holds for all memoryless strategies α and
all w ∈ L∗. It follows:

I Proposition 1. For all distributions µ, ν over S we have:

∃ a memoryless strategy α such that µ 6≡ ν in D(α) ⇐⇒ µv 6= νv for some v ∈ V2.

To decide TV> 0 and to compute the “witness” memoryless strategy such that µ 6≡ ν in
the induced LMC, it suffices to compute a basis for V2; more precisely, a set of α and w such
that the vectors Mα(w)1 span V2. As the set of memoryless strategies is uncountable, this is
not straightforward. From the definitions, we know V3 ⊆ V2 ⊆ V1. We will show V1 ⊆ V3 and
thus establish the equality of these three vector spaces. It follows from [17, Theorem 5.12]
that computing a basis for V1 is in P. It follows that our problem TV> 0 is also in P, but
this does not explicitly give the witnessing memoryless strategy. Since V2 = V3, there must
exist an MD strategy that witnesses µ 6≡ ν. To find this MD strategy, one can go through all
MD strategies (potentially exponentially many). In the following, by considering the vector
spaces while restricting the word length, we show that a witness MD strategy can also be
computed in polynomial time.

We define the following column-vector spaces. For each j ∈ N,

Vj1 = 〈Mα1(a1)Mα2(a2) · · ·Mαk
(ak)1 : αi is a memoryless strategy; ai ∈ L; k ≤ j〉 and

Vj2 = 〈Mα(w)1 : α is a memoryless strategy;w ∈ L≤j〉 and

Vj3 = 〈Mα(w)1 : α is an MD strategy;w ∈ L≤j〉.

Let α be an MD strategy and m be an action available at state i. Recall that an MD
strategy can be viewed as a function α : S → A. We define αi→m to be the MD strategy such
that αi→m(i) = m and αi→m(s) = α(s) for all s ∈ S \ {i}. Let ci ∈ {0, 1}S be the column
bit vector whose only non-zero entry is the ith one. For a set B ⊆ RS , we define 〈B〉 to be
the vector space spanned by B.

We call a column vector an MD vector if it is of the form Mα(w)1 for an MD strategy α
and w ∈ L∗. Let P be a set of MD strategy and word pairs, i.e., P = {(α1, w1), (α2, w2), · · · ,
(αm, wm)} where αi is an MD strategy and wi ∈ L∗. We define a function B transforming
such a set P to the set of corresponding MD vectors, i.e., B(P) = {Mα1(w1)1,Mα2(w2)1, · · · ,
Mαn

(wn)1}.

I Lemma 2. Let j ∈ N. For all MD strategies α1 and α2, a ∈ L and w ∈ L≤j, we have
Mα1(a)Mα2(w)1 ∈ 〈Vj1 ∪ B({(α, aw)})〉 where α is the MD strategy defined by

α(i) =
{
α1(i) if ci 6∈ Vj1
α2(i) otherwise

FSTTCS 2020

49:6 Comparing Labelled Markov Decision Processes

The next lemma shows that a basis for Vj1 for some j < |S| consisting only of MD vectors
can be computed in polynomial time.

I Lemma 3. Let j ∈ N with j < |S|. One can compute in polynomial time a set Pj =
{(α0, w0), · · · , (αk, wk)} in which all αi are MD strategies and all wi are in L≤j such that
B(Pj) is a basis of Vj1 .

Proof sketch. We prove this lemma by induction on j. The base case where j = 0 is
vacuously true with P0 = {(α0, w0)} where α0 is an arbitrary MD strategy, w0 = ε and
B(P0) = {1}. For the induction step, assume that we can compute in polynomial time a set
Pj = {(α0, w0), · · · , (αk, wk)} where all the strategies are MD strategies and all the words
are in L≤j such that B(Pj) is a basis for Vj1 . We show that the statement holds for j + 1.
Define

Σ = {α0}∪{αs→m
0 : s ∈ S, m ∈ A(s)} and M = {Mα(a) ∈ RS×S : α ∈ Σ, a ∈ L}.

Next, we present Algorithm 1 which computes a set Pj+1 in polynomial time such that

for all M ∈M and all b ∈ B(Pj) : M · b ∈ 〈B(Pj+1)〉 (1)

Algorithm 1 Polynomial-time algorithm computing Pj+1.

1 Pj+1 := Pj
2 foreach α1 ∈ Σ, a ∈ L and (α2, w) ∈ Pj do
3 if Mα1(a)Mα2(w)1 6∈ 〈B(Pj+1)〉 then
4 add (α, aw) to Pj+1 where α is the MD strategy defined as

α(i) =
{
α1(i) if ci 6∈ Vj1
α2(i) otherwise.

5 end
6 end

All the vectors in B(Pj+1) are linearly independent, as we only add a pair if the corres-
ponding vector is linearly independent to the existing vectors in B(Pj+1) (lines 3-4). Since
B(Pj) is a basis for Vj1 , we can decide whether ci ∈ Vj1 for i ∈ S in polynomial time, and
thus compute a pair (α, aw) on line 4 in polynomial time. Since |Σ| and |L| are polynomial
in the size of the MDP, |Pj |< |S|, the number of iterations is polynomial in the size of the
MDP. The construction of Pj+1 is then in polynomial time. It remains to show that after
adding (α, aw) to Pj+1 (line 4), we have M · b = Mα1(a)Mα2(w)1 ∈ 〈B(Pj+1)〉 . Since the
pair (α2, w) is in Pj , we have w ∈ L≤j . Then,

M · b
= Mα1(a)Mα2(w)1
∈ 〈Vj1 ∪ B({(α, aw)})〉 [Lemma 2]
= 〈B(Pj) ∪ B({(α, aw)})〉 [B(Pj) is a basis for Vj1 by induction hypothesis]
= 〈B

(
Pj ∪ {(α, aw)}

)
〉

Since Pj ⊆ Pj+1 (line 1), we have B(Pj) ⊆ B(Pj+1). By adding the pair (α, aw) to Pj+1, we
have 〈B

(
Pj ∪ {(α, aw)}

)
〉 ⊆ 〈B(Pj+1)〉, and thus M · b ∈ 〈B(Pj+1)〉.

S. Kiefer and Q. Tang 49:7

Finally, we show that the set Pj+1 satisfies Vj+1
1 = 〈B(Pj+1)〉. We have

〈B(Pj+1)〉 ⊆ Vj+1
3 for all (α,w) ∈ Pj+1 : α is an MD strategy and w ∈ L≤j+1

⊆ Vj+1
1 from the definitions

We prove the other direction Vj+1
1 ⊆ 〈B(Pj+1)〉 in [24]. J

Combining classical linear algebra arguments about equivalence checking (see, e.g., [38])
with Lemma 3, we obtain:

I Lemma 4.
1. For all j < |S| we have Vj1 = Vj2 = Vj3 .
2. We have V1 = V2 = V3 = V |S|−1

1 = V |S|−1
2 = V |S|−1

3 .
Thus we obtain:

I Proposition 5. One can compute in polynomial time a set P = {(α0, w0), · · · , (αk, wk)}
of MD strategy and word pairs such that B(P) is a basis of V2.

Proof. By Lemma 4 it suffices to invoke Lemma 3 for j = |S| − 1. J

Now we can prove the main theorem of this section.

I Theorem 6. The problem TV>0 is in P. Further, for any positive instance of the problem
TV> 0, we can compute in polynomial time an MD strategy α and a word w that witness
µ 6≡ ν, i.e., Prµ,D(α)(Run(w)) 6= Prν,D(α)(Run(w)).

Proof. A polynomial algorithm follows naturally from Proposition 5 and Proposition 1. We
first compute a set P of MD strategy and word pairs such that B(P) is a basis for V2. For
each b ∈ B(P), we check whether µb 6= νb and output “yes” indicating a positive instance
if the inequality holds. Otherwise, we have µb = νb for all b ∈ B(P), and the algorithm
outputs “no” indicating that µ ≡ ν holds for all memoryless strategies.

If the instance is positive, there exists a vector b ∈ B(P) such that µb 6= νb. Since b
is an MD vector which corresponds to a pair (α,w) ∈ P , we have µMα(w)1 6= νMα(w)1,
equivalently Prµ,D(α)(Run(w)) 6= Prν,D(α)(Run(w)). J

4 Probabilistic Bisimulation Inequivalence

In this section we show that one can decide in polynomial time whether there exists a
memoryless strategy α so that s 6∼ t in D(α), i.e., we show that PB> 0 is in P.

For some MDPs, there might be memoryless strategies such that s 6∼ t in the induced
LMC but no such strategy is MD. The MDP in Figure 1 is such an example. Similar to
the or-gate construction of [8, Theorem 2], we have s ∼ t if and only if q1 ∼ q2 or q2 ∼ q3.
We have q2 ∼ q1 if the MD strategy maps q2 to the action that goes to state u, otherwise
q2 ∼ q3 if the MD strategy maps q2 to the action that goes to state v. This rules out the
algorithm that goes through all the MD strategies.

We define an equivalence relation and run the classical polynomial-time partition re-
finement as shown in Algorithm 2, with an equivalence relation ≡X defined below. At the
beginning, all states are in the same equivalence class. In a refinement step, a pair of states
is split if there could exist a memoryless strategy that makes them not probabilistic bisimilar.
Two states s, t remain in the same equivalence class until the end if and only if they are
probabilistic bisimilar under all memoryless strategies.

FSTTCS 2020

49:8 Comparing Labelled Markov Decision Processes

s

t

sa

sb

ta

tb

q1

q2

m1

m2

q3

u

v

Figure 1 In this MDP no MD strategy witnesses s 6∼ t. All states have the same label except
state v. By default the transition probabilities out of each action are uniformly distributed.

Algorithm 2 Partition Refinement.

1 i = 0;X0 := {S}
2 repeat
3 i := i+ 1
4 Xi := S/≡Xi−1

5 until Xi = Xi−1

The correctness of this approach is not obvious, as some splits that occurred in differ-
ent iterations of the algorithm may have been due to different, potentially contradictory,
memoryless strategies. Furthermore, the algorithm does not compute a memoryless strategy
that witnesses s 6∼ t. The key to solving both problems will be Lemma 11.

A partition of the states S is a set X consisting of pairwise disjoint subsets E of
S with

⋃
E∈X = S. Recall that ϕ(s,m)(s′) is the transition probability from s to s′

when choosing action m. Similarly, ϕ(s,m)(E) is the transition probability from s to
E ⊆ S when choosing action m. We write ϕ(s,m)(X) to denote the vector (probability
distribution) (ϕ(s,m)(E))E∈X . We define ϕ(s)(X) = {ϕ(s,m)(X) : m ∈ A(s)}, which is a
set of probabilistic distributions over the partition X when choosing all available actions of
s. Each partition is associated with an equivalence relation ≡X on S: s ≡X s′ if and only if
- `(s) = `(s′);
- s 6= s′ =⇒ |ϕ(s)(X)| = 1 and ϕ(s)(X) = ϕ(s′)(X).

Let S/≡X denote the set of equivalence classes with respect to ≡X , which forms a
partition of S. We present in Table 2 the partitions of running the algorithm on the MDP in
Figure 1. Notice that states s and t are no longer in the same equivalence class at the end.

Table 2 Example of running Algorithm 2 on the MDP in Figure 1.

X0 = {S}
X1 =

{
{v}, S \ {v}

}
X2 =

{
{v}, {q2}, {q3}, S \ {v, q2, q3}

}
X3 =

{
{v}, {q2}, {q3}, {sa}, {sb}, {ta}, {tb}, {s, t, q1, u}

}
X4 =

{
{v}, {q2}, {q3}, {sa}, {sb}, {ta}, {tb}, {s}, {t}, {q1, u}

}

S. Kiefer and Q. Tang 49:9

The following lemma is standard, and claims that the partition gets finer.

I Lemma 7. For all i ∈ N, we have ≡Xi+1 ⊆ ≡Xi .

If the loop in Algorithm 2 is performed |S| − 1 times then X|S|−1 consists of |S| one-
element sets. Hence at most after |S| − 1 refinement steps the partition Xi cannot be refined.
We aim at proving that s ≡X|S|−1 t if and only if s ∼D(α) t for all memoryless strategies α.
In the following lemma we show the forward direction:

I Lemma 8. Let X be a partition and X = S/≡X . We have ≡X ⊆ ∼D(α) for all memoryless
strategies α.

For the converse, to guarantee ≡X|S|−1 is not too fine, it suffices to show that there exists
a memoryless strategy α′ such that ∼D(α′) ⊆ ≡X where X = S/≡X . To do that, we define
the equivalence relations ∼iD(α) with 0 ≤ i ≤ |S| for all memoryless strategies α.

Let α be a memoryless strategy. Let τ be the transition function for the LMC D(α).
Define the equivalence relation ∼iD(α) with 0 ≤ i ≤ |S| on S: s ∼iD(α) s

′ if and only if
- `(s) = `(s′);
- i > 0 =⇒ τ(s)(E) = τ(s′)(E) for all E ∈ S/∼i−1

D(α).

Note that for the LMC D(α), we have ∼i+1
D(α) ⊆ ∼

i
D(α) for all i ∈ N and ∼|S|−1

D(α) is the
probabilistic bisimilarity for the LMC D(α) (see, e.g., [2]).

Since the witness strategy might not be MD, we compute a set of prime numbers that
can be used to form the weights of the actions. The prime numbers are used to rule out
certain “accidental” bisimulations. We denote by size(D) the size of the representation of an
object D. We represent rational numbers as quotients of integers written in binary.

For u ∈ S, m ∈ A(u) and E ⊆ S, we express ϕ(u,m)(E) as an irreducible fraction au,m,E

bu,m,E

where au,m,E and bu,m,E are coprime integers. Similarly, for u ∈ S, m1,m2 ∈ A(u) and
E ⊆ S, ϕ(u,m1)(E) − ϕ(u,m2)(E) is expressed as an irreducible fraction cu,m1,m2,E

du,m1,m2,E
that

cu,m1,m2,E and du,m1,m2,E are coprime integers. Let N ⊆ N be the following set:

N = {bu,m,E : u ∈ S, m ∈ A(u) and E ∈
⋃
iXi} ∪

{cu,m1,m2,E : u ∈ S, m1,m2 ∈ A(u), E ∈
⋃
iXi and cu,m1,m2,E > 0}.

We denote by θ(x) the number of different prime factors of a positive integer x, and by θ(N)
the number of different prime factors in N where N is a set of positive integers.

I Lemma 9. θ(N) is polynomial in size(D).

Using the prime number theorem, we obtain the following lemma which guarantees that
one can find |S| extra different prime numbers other than the prime factors in N in time
polynomial in size(D).

I Lemma 10. One can find |S| different prime numbers in time polynomial in size(D) such
that any of them is coprime to all numbers in the set N .

To each u ∈ S, we assign a different prime number pu that is coprime with all b ∈ N .
This can be done in polynomial time by Lemma 10. We have

pu - b for all b ∈ N and u 6= v =⇒ pu 6= pv for all u, v ∈ S (2)

We define a partial memoryless strategy for D to be a partial function α′ : S 7→ Distr(A)
that, given a state s ∈ S, returns α′(s) ∈ Distr(A(s)) if α′(s) is defined. A memoryless
strategy α is compatible with a partial memoryless strategy α′, written as α w α′, if and
only if α(s) = α′(s) for all s such that α′(s) is defined. We construct the partial memoryless
strategy iteratively.

FSTTCS 2020

49:10 Comparing Labelled Markov Decision Processes

I Lemma 11. Let i ∈ N with i ≤ |S|. One can compute in polynomial time a partial strategy
α′i such that ∼iD(α) ⊆ ≡Xi

for all α w α′i.

Proof sketch. We prove the statement by induction on i. Let s, t ∈ S. The base case is
i = 0. By definition, we have if s 6≡X0 t then `(s) 6= `(t). We also have if `(s) 6= `(t), then
s 6∼0

D(α) t in D(α) for all memoryless strategy α. We simply let α′0 be the empty partial
function such that α w α′0 holds for any memoryless strategy α.

For the induction step, assume that we can compute in polynomial time a partial strategy
α′i such that ∼iD(α) ⊆ ≡Xi for all α w α′i, i.e., if s 6≡Xi t then s 6∼iD(α) t in D(α). We show
the statement holds for i+ 1.

Algorithm 3 Polynomial-time algorithm constructing α′
i+1.

1 α′i+1 := α′i
2 foreach u ∈ S such that |ϕ(u)(Xi)| = 1 and |ϕ(u)(Xi+1)| 6= 1 do
3 pick m1,m2 ∈ A(u) such that for a set E ∈ Xi+1 : ϕ(u,m1)(E)> ϕ(u,m2)(E)
4 α′i+1(u)(m1) := 1

pu

5 α′i+1(u)(m2) := 1− 1
pu

6 end

Algorithm 3 computes the partial memoryless strategy α′i+1 in polynomial time. We
show that α′j does not overwrite α′k for all k < j. It follows that for any α w α′i+1, it satisfies
α w α′i. Let α w α′i+1. Assume s 6≡Xi+1 t. We distinguish the two cases: s 6∼iD(α) t and
s ∼iD(α) t. For both cases we can derive s 6∼i+1

D(α) t, i.e., ∼
i+1
D(α) ⊆ ≡Xi+1 as desired. The

details can be found in [24]. J

For example, let pq2 , the prime number assigned to state q2 in Figure 1, be 3 which is coprime
with numbers in N = {1, 2}.1 We show how the partial strategy α′1 is constructed. On line 1
of Algorithm 3, α′1 is equal to α′0, the empty partial function. Since |ϕ(q2)(X0)| = 1 and
|ϕ(q2)(X1)| = 2, we enter the for loop. We can pick m1,m2 ∈ A(q2) and E = S \ {v} ∈ X1
on line 3, since ϕ(q2,m1)(E) = 1 > 0 = ϕ(q2,m2)(E). We then define the strategy for q2
(line 4 and 5): α′1(q2)(m1) = 1

3 and α′1(q2)(m2) = 2
3 . We have completed the construction of

α′1 as |ϕ(u)(X0)| = |ϕ(u)(X1)| = 1 for all other state u.

I Theorem 12. One can compute in polynomial time a memoryless strategy β such that
∼D(β) ⊆ ∼D(α) for all memoryless strategies α.

Proof. By invoking Lemma 11 for i = |S| − 1, a partial strategy α′|S|−1 can be computed in
polynomial time such that ∼|S|−1

D(α) ⊆ ≡X|S|−1 for all α w α′|S|−1. Since ∼
|S|−1
D(α) = ∼D(α), we

have ∼D(α) ⊆ ≡X|S|−1 for all α w α′|S|−1. Let β be a memoryless strategy defined by

β(u) =
{

α′|S|−1(u) if α′|S|−1(u) is defined
δmu

where mu ∈ A(u) otherwise

By definition the memoryless strategy β is compatible with α′|S|−1. We have:

∼D(β) ⊆ ≡X|S|−1 β w α′|S|−1

⊆ ∼D(α) for all strategy α X|S|−1 = S/≡X|S|−1 and Lemma 8 J

1 We have 2 ∈ N since ϕ(s,ms)({sa}) = 1
2 where ms is the only available action at state s.

S. Kiefer and Q. Tang 49:11

s

s′

sa sb

1

1 1

1 1

t

t1 t2

ta tb

1
2

1
2

1 1

1 1

Figure 2 In this MDP, no MD strategy witnesses dtv(δs, δt) = 1 (nor dpb(s, t) = 1). States sb and
tb have label b while all other states have label a.

I Corollary 13. The problem PB > 0 is in P. Further, for any positive instance of the
problem PB> 0, we can compute in polynomial time a memoryless strategy that witnesses
s 6∼ t.

5 The Distance One Problems

In this section, we summarise the results for the two distance one problems, namely TV = 1
and PB = 1. The existential theory of the reals, ETR, is the set of valid formulas of the form

∃x1 . . . ∃xn R(x1, . . . , xn),

where R is a boolean combination of comparisons of the form p(x1, . . . , xn) ∼ 0, in
which p(x1, . . . , xn) is a multivariate polynomial (with rational coefficients) and ∼ ∈
{<,>,≤,≥,=, 6=}. The complexity class ∃R [32] consists of those problems that are many-
one reducible to ETR in polynomial time. Since ETR is NP-hard and in PSPACE [5, 31], we
have NP ⊆ ∃R ⊆ PSPACE.

For some MDPs there exist memoryless strategies that make dtv(δs, δt) = 1 but no such
strategy is MD. For example, consider the MDP in Figure 2 which has two MD strategies. We
have dtv(δs, δt) = 1

2 which is less than 1 in the LMC induced by any of the two MD strategies,
and dtv(δs, δt) = 1 in the LMC induced by any other strategy. Thus, we cannot simply guess
an MD strategy. We show that the problem TV = 1 is in ∃R, using the characterization
from [9, Theorem 21] of total variation distance 1 in LMCs and some reasoning on convex
polyhedra:

I Theorem 14. The problem TV = 1 is in ∃R.

The problem TV = 1 is NP-hard, and PB = 1 is NP-complete. The hardness results for
both problems are by reductions from the Set Splitting problem. Given a finite set S and a
collection C of subsets of S, Set Splitting asks whether there is a partition of S into disjoint
sets S1 and S2 such that no set in C is a subset of S1 or S2.

Let 〈S, C〉 be an instance of Set Splitting where S = {e1, · · · , en} and C = {C1, · · · , Cm}
is a collection of subsets of S. We construct an MDP D consisting of the following states: two
states s and t, a state ei for each element in S, twin states Cj and C ′j for each element in C,
two sink states u and v. State v has label b while all other states have label a. State s (t) has a
single action which goes with uniform probability 1

m to states Ci (C ′i) for 1 ≤ i ≤ m. For each

FSTTCS 2020

49:12 Comparing Labelled Markov Decision Processes

s t

C1 C2 C ′1 C ′2

e1 e2 e3

u v

1
2

1
2

1
2

1
2

11

Figure 3 The MDP in the reduction from Set Splitting for NP-hardness of TV = 1 (or PB = 1).

ei ∈ Cj , there is an action from state Cj and C ′j leading to state ei with probability one. Each
state ei has two actions going to the sink states u and v with probability one, respectively. We
have: 〈S, C〉 ∈ Set Splitting ⇐⇒ ∃memoryless strategy α such that dtv(δs, δt) = 1 in D(α).

For example, let S = {e1, e2, e3} and C = {C1, C2} with C1 = {e1, e2} and C2 = {e2, e3}.
Figure 3 shows the corresponding MDP. The MD strategy highlighted, corresponding to the
partition of S1 = {e1, e3} and S2 = {e2}, witnesses dtv(δs, δt) = 1.

I Theorem 15. The Set Splitting problem is polynomial-time many-one reducible to TV = 1,
hence TV = 1 is NP-hard.

The problem PB = 1 is NP-complete. The MDP in Figure 2 is also an example of no
MD strategy witnessing dpb(s, t) = 1, which rules out the algorithm of simply guessing an
MD strategy. By [36], deciding whether dpb(s, t) = 1 in an LMC can be formulated as a
reachability problem on a directed graph induced by the LMC. One can nondeterministically
guess the graph induced by the LMC and use Algorithm 3 to construct a memoryless strategy
that witnesses dpb(s, t) = 1.

I Theorem 16. The problem PB = 1 is NP-complete.

6 Making Distances Small

In this section, we summarise the results for the remaining problems, which are all about
making the distance small (equal to 0 or less than 1).

We show that TV = 0 and TV< 1 are ∃R-complete. The proof for the membership of
TV = 0 in ∃R is similar to [17, Theorem 4.3]. For both hardness results we provide reductions
from the Nonnegative Matrix Factorization (NMF) problem, which asks, given a nonnegative
matrix J ∈ Qn×m and a number r ∈ N, whether there exists a factorization J = A ·W with
nonnegative matrices A ∈ Rn×r and W ∈ Rr×m. The NMF problem is ∃R-complete by [35,
Theorem 2], see also [10, 40, 1] for more details on the NMF problem. The reduction is
similar to [17, Theorem 4.5].

I Theorem 17. The problem TV = 0 is ∃R-complete.

S. Kiefer and Q. Tang 49:13

s

m1 m2

sa sb

t

ta tb

1 1
1
2

1
2

Figure 4 In this MDP, no MD strategy witnesses dpb(s, t) = 0. States sb and tb have label b
while all other states have label a.

s

m1 m2

sa sb

t

ta tb

1 1

1
2

1
2

1 1 1 1

Figure 5 In this MDP, no MD strategy witnesses dpb(s, t)< 1. States sb and tb have label b while
all other states have label a.

I Theorem 18. The problem TV< 1 is ∃R-complete.

Finally, we show that PB = 0 and PB< 1 are NP-complete. For some MDPs there exist
memoryless strategies that make dpb(s, t) = 0 (resp. dpb(s, t) < 1) but no such strategy is
MD. Indeed, for the MDP in Figure 4 (resp. Figure 5), it is easy to check that the only
strategy α which makes dpb(s, t) = 0 (resp. dpb(s, t) < 1), requires randomness, that is,
α(s)(m1) = α(s)(m2) = 1

2 , where m1 and m2 are the two available actions of state s. Thus,
to show the NP upper bound, we cannot simply guess an MD strategy. Instead, one can
nondeterministically guess a partition of the states and check in polynomial time if the
partition is a probabilistic bisimulation.

The hardness results for both problems are by reductions from the Subset Sum problem.
The reduction is similar to [17, Theorem 4.1].

I Theorem 19. The problem PB = 0 is NP-complete.

By [36], deciding whether dpb(s, t) < 1 in an LMC can be formulated as a reachability
problem on a directed graph induced by the LMC. In addition to a partition, our NP
algorithm also guesses the graph induced by the LMC.

I Theorem 20. The problem PB< 1 is NP-complete.

7 Conclusions

We have studied the computational complexity of qualitative comparison problems in labelled
MDPs. Motivated by the connection between obliviousness/anonymity and equivalence, we
have devised polynomial-time algorithms to decide the existence of strategies for trace and
bisimulation inequivalence. In case of trace inequivalence, there always exists an MD witness

FSTTCS 2020

49:14 Comparing Labelled Markov Decision Processes

strategy, and our algorithm computes it. The trace inequivalence algorithm is based on linear-
algebra arguments that are considerably more subtle than in the LMC case. For bisimulation
inequivalence, MD strategies may not exist, but we have devised a polynomial-time algorithm
to compute a memoryless strategy witnessing inequivalence; here the randomization is based
on prime numbers to rule out certain “accidental” bisimulations. The other 6 problems do
not have polynomial complexity (unless P = NP), and we have established completeness
results for all of them except TV = 1, where a complexity gap between NP and ∃R remains.

Concerning the relationship to interval Markov chains and parametric Markov chains
mentioned in the introduction, the lower complexity bounds that we have derived in this
paper carry over to corresponding problems in these models. Transferring the upper bounds
requires additional work, as, e.g., even the consistency problem for IMCs (i.e., whether there
exists a Markov chain conforming to an IMC) is not obvious to solve. Nevertheless, the
algorithmic insights of this paper will be needed.

References
1 Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra. Computing a nonnegative matrix

factorization - provably. In STOC, pages 145–162. ACM, 2012.
2 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation.

In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification, pages 50–61,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

3 Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model checking of interval
Markov chains. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2013.

4 Patrick Billingsley. Probability and measure. Wiley Series in Probability and Statistics. Wiley,
New York, NY, USA, 3rd edition, 1995.

5 John Canny. Some algebraic and geometric computations in PSPACE. In STOC, pages
460–467, 1988.

6 Souymodip Chakraborty and Joost-Pieter Katoen. Model checking of open interval Markov
chains. In Marco Gribaudo, Daniele Manini, and Anne Remke, editors, Analytical and Stochastic
Modelling Techniques and Applications, pages 30–42. Springer International Publishing, 2015.

7 Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-checking omega-
regular properties of interval Markov chains. In Roberto M. Amadio, editor, Foundations of
Software Science and Computational Structures, 11th International Conference, FOSSACS
2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings, volume 4962 of
Lecture Notes in Computer Science, pages 302–317. Springer, 2008.

8 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic
bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th International Conference on
Foundations of Software Science and Computational Structures, volume 7213 of Lecture Notes
in Computer Science, pages 437–451, Tallinn, Estonia, March/April 2012. Springer-Verlag.

9 Taolue Chen and Stefan Kiefer. On the total variation distance of labelled Markov chains.
In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY, USA, 2014. ACM.

10 Joel E. Cohen and Uriel G. Rothblum. Nonnegative ranks, decompositions, and factorizations
of nonnegative matrices. Linear Algebra and its Applications, 190:149–168, 1993.

11 Benoît Delahaye. Consistency for parametric interval markov chains. In Étienne André and
Goran Frehse, editors, 2nd International Workshop on Synthesis of Complex Parameters,

S. Kiefer and Q. Tang 49:15

SynCoP 2015, April 11, 2015, London, United Kingdom, volume 44 of OASICS, pages 17–32.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

12 Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej Wasowski.
Decision problems for interval Markov chains. In Adrian-Horia Dediu, Shunsuke Inenaga,
and Carlos Martín-Vide, editors, Language and Automata Theory and Applications - 5th
International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings,
volume 6638 of Lecture Notes in Computer Science, pages 274–285. Springer, 2011.

13 Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal state-space lumping in
Markov chains. Inf. Process. Lett., 87(6):309–315, 2003.

14 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors, Proceedings of the 10th
International Conference on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 258–273, Eindhoven, The Netherlands, August 1999. Springer-Verlag.

15 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

16 L. Doyen, T.A. Henzinger, and J.-F. Raskin. Equivalence of labeled Markov chains. Interna-
tional Journal on Foundations of Computer Science, 19(3):549–563, 2008.

17 Nathanaël Fijalkow, Stefan Kiefer, and Mahsa Shirmohammadi. Trace refinement in labelled
Markov decision processes. Logical Methods in Computer Science, 16(2), 2020.

18 Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. Int. J. Softw. Tools Technol. Transf., 13(1):3–19, 2011.

19 Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and Matthias Volk.
The probabilistic model checker Storm, 2020. arXiv:arXiv:2002.07080.

20 Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic
processes. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS
’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 266–277. IEEE Computer Society,
1991.

21 John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer, 1976.
22 S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equivalence for

probabilistic automata. In CAV, volume 6806 of LNCS, pages 526–540. Springer, 2011.
23 S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. APEX: An analyzer for

open probabilistic programs. In CAV, volume 7358 of LNCS, pages 693–698. Springer, 2012.
24 Stefan Kiefer and Qiyi Tang. Comparing labelled markov decision processes, 2020. arXiv:

2009.11643.
25 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time

systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

26 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991.

27 L. Li and Y. Feng. Quantum Markov chains: Description of hybrid systems, decidability
of equivalence, and model checking linear-time properties. Information and Computation,
244:229–244, 2015.

28 T.M. Ngo, M. Stoelinga, and M. Huisman. Confidentiality for probabilistic multi-threaded
programs and its verification. In Engineering Secure Software and Systems, volume 7781 of
LNCS, pages 107–122. Springer, 2013.

29 A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
30 S. Peyronnet, M. de Rougemont, and Y. Strozecki. Approximate verification and enumeration

problems. In ICTAC, volume 7521 of LNCS, pages 228–242. Springer, 2012.
31 James Renegar. On the computational complexity and geometry of the first-order theory of

the reals. Parts I–III. Journal of Symbolic Computation, 13(3):255–352, 1992.

FSTTCS 2020

http://arxiv.org/abs/arXiv:2002.07080
http://arxiv.org/abs/2009.11643
http://arxiv.org/abs/2009.11643

49:16 Comparing Labelled Markov Decision Processes

32 Marcus Schaefer and Daniel Stefankovic. Fixed points, Nash equilibria, and the exist-
ential theory of the reals. Theory Comput. Syst., 60(2):172–193, 2017. doi:10.1007/
s00224-015-9662-0.

33 M.-P. Schützenberger. On the definition of a family of automata. Information and Control,
4:245–270, 1961.

34 Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking markov chains in the
presence of uncertainties. In Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 12th International Conference, TACAS 2006
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of Lecture Notes
in Computer Science, pages 394–410. Springer, 2006.

35 Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations, 2016. arXiv:
1606.09068.

36 Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for labelled
Markov chains. In Hana Chockler and Georg Weissenbacher, editors, Proceedings of the
30th International Conference on Computer Aided Verification, volume 10981 of Lecture
Notes in Computer Science, pages 681–699, Oxford, UK, July 2018. Springer-Verlag. doi:
10.1007/978-3-319-96145-3_39.

37 Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for
probabilistic automata. Journal of Computer and System Sciences, 111:57–84, 2020.

38 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM Journal on Computing, 21(2):216–227, 1992.

39 Antti Valmari and Giuliana Franceschinis. Simple O(m logn) time Markov chain lumping. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages
38–52. Springer, 2010.

40 Stephen A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on
Optimization, 20(3):1364–1377, 2009.

41 Tobias Winkler, Sebastian Junges, Guillermo A. Pérez, and Joost-Pieter Katoen. On the
complexity of reachability in parametric markov decision processes. In Wan J. Fokkink and Rob
van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019,
August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 14:1–14:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.
14.

https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
http://arxiv.org/abs/1606.09068
http://arxiv.org/abs/1606.09068
https://doi.org/10.1007/978-3-319-96145-3_39
https://doi.org/10.1007/978-3-319-96145-3_39
https://doi.org/10.4230/LIPIcs.CONCUR.2019.14
https://doi.org/10.4230/LIPIcs.CONCUR.2019.14

Computable Analysis for Verified Exact Real
Computation
Michal Konečný
School of Engineering and Applied Science, Aston University, UK
m.konecny@aston.ac.uk

Florian Steinberg
Inria Saclay, France
fsteinberg@gmail.com

Holger Thies
Department of Informatics, Kyushu University, Japan
thies@inf.kyushu-u.ac.jp

Abstract
We use ideas from computable analysis to formalize exact real number computation in the Coq proof
assistant. Our formalization is built on top of the Incone library, a Coq library for computable
analysis. We use the theoretical framework that computable analysis provides to systematically
generate target specifications for real number algorithms. First we give very simple algorithms that
fulfill these specifications based on rational approximations. To provide more efficient algorithms, we
develop alternate representations that utilize an existing formalization of floating-point algorithms
and interval arithmetic in combination with methods used by software packages for exact real
arithmetic that focus on execution speed. We also define a general framework to define real number
algorithms independently of their concrete encoding and to prove them correct. Algorithms verified
in our framework can be extracted to Haskell programs for efficient computation. The performance
of the extracted code is comparable to programs produced using non-verified software packages.
This is without the need to optimize the extracted code by hand.

As an example, we formalize an algorithm for the square root function based on the Heron
method. The algorithm is parametric in the implementation of the real number datatype, not
referring to any details of its implementation. Thus the same verified algorithm can be used with
different real number representations. Since Boolean valued comparisons of real numbers are not
decidable, our algorithms use basic operations that take values in the Kleeneans and Sierpinski
space. We develop some of the theory of these spaces. To capture the semantics of non-sequential
operations, such as the “parallel or”, we use multivalued functions.

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics
of computing → Continuous mathematics

Keywords and phrases Computable Analysis, exact real computation, formal proofs, proof assistant,
Coq

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.50

Supplementary Material The incone library at https://github.com/FlorianSteinberg/incone

Funding Michal Konečný: This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No
731143.
Holger Thies: Supported by JSPS KAKENHI Grant Numbers JP18J10407 and JP20K19744 and
by the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced
Research Networks).

© Michal Konečný, Florian Steinberg, and Holger Thies;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 50; pp. 50:1–50:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2374-9017
mailto:m.konecny@aston.ac.uk
mailto:fsteinberg@gmail.com
https://orcid.org/0000-0003-3959-0741
mailto:thies@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.50
https://github.com/FlorianSteinberg/incone
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Computable Analysis for Verified Exact Real Computation

1 Introduction

Computable analysis is a formal model for computation on real numbers and other spaces of
interest in analysis [25, 9]. It extends classical computability theory from discrete structures
to continuous ones. The model of computation used in computable analysis operates on
properly infinite data while being realistic in the sense that proofs of computability specify
algorithms that can in principle be implemented. Software for computation on the reals
based on ideas from computable analysis is often labeled as exact real computation as such
software allows to approximate real number outputs up to any desired precision. In practice,
this can be realized in different ways and several implementations exist [22, 17, 3, 13]. In
contrast to implementations using floating-point arithmetic, algorithms from computable
analysis have sound compositional semantics and come with a mathematical correctness
proof, making them well-suited for safety-critical applications. Proof assistants and formal
methods are increasingly used to verify the correctness of such software and computable
analysis goes well with this kind of verification.

In this work we present a new and fully formally verified implementation of exact real
computation in Coq that makes use of Coq’s code extraction features to generate efficient
Haskell code for algorithms written and verified inside the proof assistant. The work builds
on the Incone library, a formalization of ideas from computable analysis in Coq [24].
Implementations of exact real computation usually hide the internal details of the encoding
from the user and instead provide a set of basic operations on real numbers that can be
used to build more complicated algorithms. We follow this approach by defining a structure
for basic operations on real numbers. Instantiating this structure means to explicitly give
an encoding of the reals and algorithms for the basic operations and proving them correct.
More complicated operations can then be defined using tools for composing functions that
are available in the Incone library. Correctness proofs can be made independent of the
concrete representation and different representations can be exchanged and compared easily.
As algorithms verified in the proof assistant can be extracted to efficient Haskell code we
hope that our work allows developers of exact real computation libraries to verify some
particularly critical fragments and easily integrate the generated code into the library.

Computing with real numbers is central in many applications. It should therefore not
be surprising that a treatment of the reals is available in most modern proof assistants
[6]. In the Coq proof assistant in particular there exist a wide range of work covering the
spectrum from purely mathematical and inherently non-computational [5, 2] to verification
of approximate computations and concrete error bounds [7, 20].

In this work we treat the real numbers as a represented space. A represented space is
an infinite data type that is both exact and fully computational but reasoned about using
classical mathematics. Our work is by far not the first implementation of fully computational
reals in a proof assistant, or even in Coq. A popular implementation is the C-CoRn library
[12] which is based on constructive mathematics. Working constructively has the advantage
that every proof has computational content. A constructive proof of an existential statement,
for instance, gives rise to an algorithm to compute said object. The price to pay is that a
constructive proof is harder to find and this extra effort may not be worthwhile in particular
for proofs of correctness, where the computational content is of little to no interest. Most
mathematicians and computer scientists distinguish formulation of algorithms from proving
its correctness, and prefer the use of classical reasoning for the latter.

Our work and the Incone library are based on computable analysis which is a part
of classical mathematics. For our implementation this means that we use the classical
axiomatization of the reals from Coq’s standard library for specification. Computational

M. Konečný, F. Steinberg, and H. Thies 50:3

content is added in a second step through the use of encodings over certain spaces of functions
and the formulation of algorithms on these. Thus, there is a clear separation between the
formulation of an algorithm that operates only on computationally meaningful objects and
its (possibly non-constructive) correctness proof that may involve purely mathematical
objects such as abstract real numbers. We consider this a more pragmatic approach towards
computational reasoning over mathematical structures and hope that it can be appealing
to classically trained mathematicians and computer scientists. There are also some more
practical advantages of our approach. Many Coq libraries are verified against the reals from
the standard library and such libraries can easily be integrated into our development. For
example, we rely on a Coq library for interval arithmetic [21, 20] to be able to imitate how
the most efficient non-verified packages for exact real computation operate [22, 17].

While we consider the Coq formalization one of the main contributions of this work, we
keep the presentation on a more informal mathematical level and only give a short overview
of the implementation in Section 6. The interested reader can find all of the source code as
part of the Incone library [23]. The parts of the library relevant for this paper are listed in
Section 6 as well. A more exhaustive overview of the Incone library can be found in [24].

2 Computable analysis and the Incone library

Computable analysis gives computational meaning to abstract mathematical entities such
as real numbers by use of encodings over Baire space NN called representations [19, 25].
To avoid an overload of coding, here and in our formal development we allow the use of
arbitrary countable sets in place of the two copies of the natural numbers in Baire space.
Let Q and A be two countable sets of questions and answers and let B := AQ be the set
of functions from questions to answers. A representation of a set X is a partial, surjective
function δ : ⊆ B → X. For x ∈ X, each ϕ ∈ B with δ(ϕ) = x is called a name of x and
should be understood to provide on demand information about x by assigning a valid answer
to each question about x. A represented space is a pair X := (X, δX) of a set X and a
representation δX of X.

A standard example is the encoding of reals by rational approximations:

I Example 1 (RQ: Reals via rational approximations). We denote by RQ the represented
space of the real numbers together with the representation δRQ : ⊆ QQ → R such that

δRQ(ϕ) = x ⇐⇒ ∀ε > 0: |x− ϕ(ε)| ≤ ε.

While we do not make this a formal requirement, for all of our concrete examples there
exist obvious and explicitly definable bijections of Q and A with the natural numbers. The
skeptical reader can therefore always replace the questions and answers by natural numbers to
regain the classical setting from computable analysis where B is only allowed to be the Baire
space. Whenever we talk about computability, we assume that such bijections were fixed
and refer to the well-established notion of computability of elements and of partial functions
on Baire space. For instance, we call an element x of a represented space X computable if
it has a name that is computable as an element of Baire space.

Let X and X′ be represented spaces and B := AQ denote the space of names of X and
B′ := A′Q′ that of X′. We say that a function f : X→ X′ is realized by a partial operator
F : ⊆ B → B′ if for each name ϕ ∈ B of some x ∈ X the value F (ϕ) is defined and a name
of f(x) ∈ X′. As f can be called continuous resp. computable if it can be realized by
such an operator, it suffices to introduce these notions for the partial operators on Baire
space. For continuity we use the standard topology that Baire space comes with. Thus,

FSTTCS 2020

50:4 Computable Analysis for Verified Exact Real Computation

F : ⊆ B → B′ is continuous if for each q′ ∈ Q′ its return value on a functional input ϕ is
determined by a finite number of ϕ’s values. Formally, we say F is continuous if

∀ϕ ∈ dom(F), q′,∃L ∈ seq(Q),∀ψ ∈ dom(F) : ϕ|L = ψ|L ⇒ F (ϕ)(q′) = F (ψ)(q′)

where seq(Q) denotes the set of finite words over Q. Computability is defined using oracle
Turing machines [14], but we refrain from stating this definition here and assume the reader
to fill this gap or use his intuition. This intuition should include that computable operations
can be partial but never discontinuous.

Different representations of the same set can be compared with regards to intertrans-
latability, that is by asking whether the identity function is computable if the source and
target spaces are equipped with the different representations. If there are continuous resp.
computable translations in both directions, the spaces are isomorphic and carry the same
topological resp. computability structure.

2.1 Specification of algorithms with multifunctions
Usually each element of a represented space has many names. Thus, it may happen that an
operator returns on input of each name of an element a name of a solution of a certain problem
but for different names of the same input element returns names of different solutions. In this
case the algorithm solves the problem but does not realize any function on the represented
spaces. This is a situation that is regularly encountered in computable analysis and a popular
tool for capturing the semantics of such algorithms are multivalued functions.

A multivalued function f : X ⇒ Y assigns to each element x ∈ X a possibly empty
set of eligible return values f(x) ⊆ Y . Those x for which f(x) is non-empty constitute
the domain dom(f) ⊆ X of f . The multifunction is called total if its domain is all of X
and single-valued if each value set has at most one element. A partial function can be
considered a single-valued multi-function; this multifunction uniquely specifies the partial
function and is total if and only if the partial function is.

A partial function f is said to choose through a multifunction f if on each x ∈ dom(f)
it returns an eligible return value, i.e. f(x) is defined and an element of f(x). Note that this
allows for the domain of the partial function to be bigger than that of the multifunction. A
multifunction should be considered a specification of all the partial functions that choose
through it and this defines an important ordering on the multifunctions: A multifunction f
is said to tighten another multifunction g, in symbols f ≺ g, if any partial function that is
a choice for f is also a choice for g. This can equivalently be formulated as

f ≺ g ⇐⇒ dom(g) ⊆ dom(f) ∧ ∀x ∈ dom(g), f(x) ⊆ g(x).

If f and g correspond to partial functions f and g then f ≺ g if and only if f is an extension
of g and a partial function chooses through a multifunction if and only if the induced
multifunction tightens it.

The multivalued functions from X to Y are in one-to-one correspondence with the
relations but the natural operations on them differ from those on relations. For instance, for
f : Y ⇒ Z and g : X ⇒ Y the composition as multivalued functions is defined as

f ◦ g(x) := {z ∈ Z | g(x) ⊆ dom(f) ∧ ∃y ∈ g(x) : z ∈ f(y)}.

This defines an associative operation that is asymmetric in contrast to the natural composition
of relations which is symmetric. The multifunction composition has the advantage that
it respects the interpretation as specifications. Namely, if the partial functions f and g

M. Konečný, F. Steinberg, and H. Thies 50:5

choose through f and g respectively, then their composition as partial functions chooses
through the composition of f and g as multifunctions. The multifunction composition can be
characterized as returning the minimal multifunction w.r.t. tightening such that this is true
and not only respects being a choice function but more generally the tightening ordering.

A multifunction f : X⇒ X′ between represented spaces X and X′ is realized by a partial
operator F : ⊆ B → B′ if F chooses through δ−1

X′ ◦ f ◦ δX. Such an f is called continuous or
computable if it can be realized by an operator with that property. The above definition
unfolds to the usual “a realizer translates each name of an element of the domain to a name
of some eligible return value”.

2.2 The Incone library
The Incone library formalizes ideas from computable analysis in the Coq proof assistant
closely following the outline in the previous section. The equivalent of a represented space in
Incone is called a continuity space. A continuity space X is defined as a record consisting
of an abstract type X, a space BX of names that determines a countable inhabited type of
questions QX and a countable type of answers AX and finally a specification of a partial
surjective function δX : ⊆ BX → X referred to as representation.

A number of standard constructions on represented spaces are made available by Incone.
For represented spaces X and Y there exists a represented space X×Y whose underlying
set is the Cartesian product of the sets underlying X and Y. Similarly, there exists a disjoint
union X + Y of spaces and a space Xω of infinite sequences in X. There is also a space
YX of continuous functions, but while this is interesting for possible applications it is of
lesser interest for the current paper. Details about these constructions and instructions for
installation and use of Incone can be found in [24].

While Incone defines continuity as we presented it earlier, computability is not reflected
in a definition but instead captured on the meta level via Coq’s type/prop distinction. That
is, an axiom-free definition of a realizer should be considered a certificate of computability
of a function. While such a realizer is automatically continuous, a proof of this fact would
proceed by induction on the structure of Coq terms and can clearly not be carried out
internally. In principle it would be possible to extract continuity proofs using a tactic but for
now the proofs have to be provided on a case by case basis by hand. Partiality is modeled
using sigma types: A partial function takes as input not only an element of Baire space but
also a proof that the element is contained in the domain which has to be specified beforehand.
This means that the dependent type system of Coq gets involved in a meaningful way.

3 Finite spaces and operations on multifunctions

Besides allowing for computation on spaces of continuum cardinality, the methods of com-
putable analysis can be used to operate on non-discrete finite spaces.

I Example 2 (Sierpinski space). Consider the two-element set {>S,⊥S} with the following
representation: Let the questions and answers be given by Q := N and A := B = {true, false}
and as representation use the total function δS such that

δS(ϕ) = >S ⇐⇒ ∃n, ϕ(n) = true.

The represented space S := ({>S,⊥S}, δS) is called Sierpinski space. The elements of Sier-
pinski space denote convergence and divergence, respectively: For any kind of computational
process with a meaningful notion of basic computational steps, we can obtain a name of an

FSTTCS 2020

50:6 Computable Analysis for Verified Exact Real Computation

element of Sierpinski space by saying ϕ(n) = true if the computation terminates within the
first n steps and ϕ(n) = false otherwise. This reflects the interpretation of >S and ⊥S: we
produce a name of >S if and only if we started out with a terminating computation.

I Example 3 (Kleeneans). Another finite space that is important in computable analysis is
the three-point set {trueK, falseK,⊥K} with names of type N→ optB and representation

δK(ϕ) =
{
bK if ∃n, ϕ(n) = Some b ∧ ∀m < n,ϕ(m) = None
⊥K otherwise.

Here, opt A is the disjoint union of A with a single new element and for each a ∈ A we use
Some a for the corresponding element of opt A and None for the new element. This space
denoted by K is known as the Kleeneans as it models Kleene’s three-valued logic [4].

A continuously realizable multifunction need not have any partial continuous choice function.
As example of such behavior let us consider a version of the parallel or.

I Example 4 (The which function). Consider the multifunction which: S× S⇒ K such that

which(sfalse, strue) :=
{
{bK | sb = >S} if this set is non-empty
{⊥K} otherwise,

This means that the which function specifies the correct answers to the question which of the
input processes terminates. It has many applications including one later in this paper.

A realizer of which can be defined from the projections πi that get names of the components
from a name of a pair via

F (ϕ)(n) :=


Some false if (π0ϕ)(n) = true
Some true if (π1ϕ)(n) = true
None otherwise.

The case distinction above is overlapping and we have to add that if more than one of the
conditions are satisfied we choose the top-most option. This corresponds to a non-canonical
choice and reordering the overlapping cases in the case distinction gives another valid realizer.
Either of the realizers is clearly continuous and even computable and thus, the multivalued
function which is computable and in particular continuous. However, both realizers return
both names of trueK and falseK on input of two converging processes and switch between the
return values depending on the names of these inputs. This is no coincidence, one may verify
that no singlevalued choice function for which is continuously realizable.

The element ⊥K of the Kleeneans stands for being undefined and the case distinction in
the definition of which can be understood as extending a (partial) multivalued function in a
canonical way to a total multivalued function. The use of such extensions is standard in more
order-oriented models of computation [1]. In general, such an extension embodies a stricter
specification than the non-extended version, as a realizer for the latter may behave arbitrarily
on elements outside its domain, while a realizer for the former has to guarantee divergence.
As the which function is computable, there is no difference in this case. Generally, there can
only be a difference if the domain of the non-extended function is sufficiently complicated.

3.1 Operations on multifunctions and multivalued branching
Given f : X⇒ Y and f ′ : X′ ⇒ Y′ consider the multifunction f × f ′ : X×X′ ⇒ Y×Y′ that
on input of a pair returns the Cartesian product of the value sets, i.e.

(f × f ′)(x, x′) := f(x)× f ′(x′).

M. Konečný, F. Steinberg, and H. Thies 50:7

As the Cartesian product is empty if one of the value sets is empty, f×f ′ should be understood
as the parallelization of f and f ′. That is, if computable realizers of f and f ′ are given, a
computable realizer for f × f ′ can be specified by running the realizers for f and f ′ in parallel
and returning something once both computations have come to an end.

To appropriately capture multivalued branching we need a similar operation for sums.
Given f : X⇒ Y and f ′ : X′ ⇒ Y′ define a multifunction f + f ′ : X + X′ ⇒ Y + Y′ by

(f + f ′)(p) :=
{
{inl y | y ∈ f(x)} if p = inlx
{inr y′ | y′ ∈ f ′(x′)} if p = inrx′.

Now, while f × f ′ corresponds to parallel execution, f + f ′ corresponds to selective execution.
Next let us formulate branching over multivalued predicates. Consider the function

ifX : B×X→ X + X defined by

ifX(b, x) :=
{

inl x if b = true
inrx if b = false.

Branching over the values of a function b : X → B given f0, f1 : X → Y can be expressed
using the × and + operations and the ifX function:

if b(x) then f1(x) else f0(x) = (∇ ◦ (f1 + f0) ◦ ifX ◦(b× id) ◦∆)(x),

where ∆(x) := (x, x) is the diagonal mapping and ∇ : Y + Y→ Y is the backwards diagonal
that returns y on both of the inputs inl y and inr y. Replacing the functions b, f0 and f1 by
multifunctions is what we use as semantics for multivalued branching. The use of a sum reflects
that only one of the if-statement branches should be evaluated. That is: if b(x) = {true}
the eligible return-values are f1(x) even if f0(x) is empty, but if b(x) = {true, false} the
eligible return-values of the if-statement are empty if either of f0(x) and f1(x) is empty and
f0(x) ∪ f1(x) otherwise. This is the behaviour one would expect from combining realizers.

4 Representations for computation on the reals

The represented space RQ from Section 2 is widely considered to provide the “correct”
computability structure on the reals and is sometimes even used as a benchmark representation
in works that reason about complexity in computable analysis. It provides an easy to
understand question and answer structure that gives concrete meaning to the realizers. For
the sake of automatically obtaining efficient algorithms carrying out a large number of
arithmetic operations, on the other hand, other representations are superior. Such efficient
representations should clearly reproduce the computability structure of RQ.

Our goal is to provide a framework to define operations on real numbers without explicitly
referring to implementation details while still allowing to replace the representations used and
take advantage of some of their properties for improved performance. We therefore specify a
set of operations that are convenient as building-blocks for higher-level operations. This can
be seen as a computational axiomatization of the real numbers. Working relative to such an
axiomatization allows to recompile the same algorithms for a new representation once these
building-blocks, i.e. the axioms have been instantiated natively. Programs obtained this way
can take better advantage of the details of the new representation than programs that just
translate back and forth.

Other formal developments of real numbers such as the C-CoRn library use a constructive
axiomatization. As the setting of our and prior work on real computation is fairly different,
we chose to not directly reuse any of the constructive axiomatizations that can be found

FSTTCS 2020

50:8 Computable Analysis for Verified Exact Real Computation

in the literature [11]. Instead we used work from computable analysis such as [8, 10] and
efficient non-verified software packages like iRRAM and AERN as guideline for choosing
appropriate basic operations. We ended up requiring the following to be implemented:

Arithmetic operations (addition, multiplication, subtraction and division),
The efficient limit limeff : ⊆ Rω → R, that maps any sequence (xi) ∈ Rω that is efficiently
Cauchy, i.e. such that for all i and j, |xi − xj | ≤ 2−i + 2−j , to its limit lim(xi).
The function FtoR : Z × Z → R, (m, e) 7→ m · 2−e that embeds the dyadic rational
numbers, or arbitrary-precision floating-point numbers, into R.
Rational approximation approx : R×Q⇒ Q, where approx(x, ε) := {q | |x− q| ≤ ε}.
The Kleenean comparison function <K of type R × R → K, defined from the Boolean
comparison < on the reals by

x <K y :=
{

(x < y)K if x 6= y

⊥K otherwise.

A clean-up function that realizes the identity function id: R → R. This function can
always be instantiated with the identity function on the corresponding name spaces but in
concrete cases it can be very useful as an optional performance enhancer that translates
names to simpler names for the same object.

An equivalent formulation of the fourth item requires the availability of a translation to the
rational representation from Example 1. The second and third item together are sufficient to
define a translation in the other direction, so that any representation for which the above
are instantiated is equivalent to the rational representation.

For the space RQ from Example 1 we instantiated the above basic operations straight-
forwardly. This does not lead to satisfactory performance and there are several reasons
for the inefficiency; one of these we addressed by providing a clean-up function: Iterated
multiplication of rational numbers leads to huge numerators and denominators and this is
exactly what happens if realizers are implemented using multiplication of rationals and then
composed in a naive way. Efficiency can be recovered by replacing exact operations on rational
numbers by rounded operations. Note that the direct use of rounded rational operations in
the implementation of arithmetic operations would undermine the main advantage of the
rational representation, namely, that the approximations have a nice mathematical structure.
Instead, we round a rational name only when the clean-up operation is explicitly called.

4.1 The interval reals and their arithmetic operations
There are more problems with the rational representation that make it difficult to optimize
in applications. Approximations to the same real number may be required by different parts
of an algorithm with different precision leading to extensive re-evaluation and the backwards
propagation of errors requires building computation trees and results in blowup of time and
space consumption if not done carefully. While these problems are in principle solvable,
we decided to mostly use the rational representation for handling input and output and to
translate to a representation based on sequences of intervals with dyadic endpoints [21]. Such
a representation is commonly used in software packages for exact real arithmetic such as
iRRAM [22]. The developers of C-CoRn made a similar switch in a fully constructive setting,
also for performance reasons [12].

The dyadic numbers are the rational numbers of the form z
2n for some z ∈ Z and

n ∈ N. Let ID be the set of all closed intervals with dyadic endpoints together with the
infinite interval I∞ := (−∞,∞). For an interval I ∈ ID let |I| denote the diameter of I,

M. Konečný, F. Steinberg, and H. Thies 50:9

i.e. |[a, b]| := b− a and |I∞| =∞. To define the represented space RID of Interval reals use
QRID := N, ARID := ID and the representation δRID : ⊆ BRID → R uniquely specified by

δRID(In) = x ⇐⇒ x ∈
⋂

n∈N
In and lim

n→∞
|In| = 0.

That is, a sequence of intervals (In)n∈N is a name for x ∈ RID if x is contained in each interval
and the diameter of the intervals approaches zero when n goes to infinity. In particular⋂

n∈N In = {x} and we call the interval with index n the n-th approximation of x. We do
not require the diameter to decrease monotonically as this would complicate operations and
deteriorate performance.

In the formal development we made use of an existing formalization of interval arithmetic
in Coq known as the Coq-interval library [20]. The library provides interval versions for
many standard functions and in particular for arithmetic operations. For example, for any
two intervals I, J ∈ ID and any precision n ∈ N, the Coq-interval function add returns an
interval add(n,I,J) such that for all real numbers x, y with x ∈ I and y ∈ J , x+y ∈ add(n,I,J).
The new endpoints are obtained by using arbitrary-precision floating-point operations with
different rounding modes to compute the upper and lower interval bounds. The parameter n
determines the bits used for the mantissa.

Using the Coq-interval functions, realizers of the arithmetic operations can be defined
in a pointwise manner. The realizer for addition is e.g. defined as the function that maps
(In)n∈N, (Jn)n∈N and a question n ∈ N to add(n, In, Jn). Here, and in other realizer definitions
we round the n-th approximation to n mantissa digits to make the computational effort
for different arithmetic operations on approximations with identical indices comparable.
That these realizers return sequences of intervals each containing the correct result can
be concluded from the inclusion property of the interval operations already proven in the
interval library. Showing that the produced interval sequence converges requires bounds on
the diameters that are not included in Coq-interval as they are not of particular interest
for interval computation. We derive the error bounds from the theorems for the basic
multiple precision floating-point operations from the Flocq library [7]. These operations
use relative error bounds and we need bounds on the absolute error, which makes the proofs
more complicated than one might first expect. The bounds usually depend not only on the
diameter of the intervals but also on the values of the end-points.

4.2 The efficient limit operator and name cleanup
As compared to RQ, an implementation of the limit operator on RID is more complicated.
Recall that one has to transform a name of some efficiently Cauchy sequence (xj) ⊆ R to a
name of its limit x. That is, given a sequence of sequences of intervals (Ii,j)i,j∈N such that
for each j ∈ N, xj is contained in each Ii,j and |Ii,j | → 0 for i→∞ the goal is to return a
sequence (Ji)i∈N such that x ∈ Ji for all i and |Ji| → 0 for i→∞. The double-sequence (Ii,j)
can be thought of as an infinite matrix where each column contains a name, and intuitively it
should be possible to find a name of the limit by traversing this matrix diagonally. However,
it is at least necessary to slightly enlarge each interval to ensure that the limit is contained.
But still after that, naively using the diagonal does not guarantee convergence. There
are several strategies to search through the intervals and extract a name of the limit. In
our implementation, we use a simple strategy known as vertical search. To get the n-th
approximation, we choose the (n+ 1)-st element of the sequence, do an unbounded search
for an interval of size less than 2−(n+1) and extend it by 2−(n+1). An advantage of this
strategy is that it returns names with quickly converging intervals, resetting any precision
loss incurred in other operations.

FSTTCS 2020

50:10 Computable Analysis for Verified Exact Real Computation

On concrete examples one quickly notices that computing a limit at low precisions tends
to return useless results and yet takes a long time. This is because iterated use of arithmetic
operations leads to intervals with large diameter and endpoints with big integer parts. We
avoid this using the heuristic that the diameter of an interval should never be bigger than 1/2

so that at least the integer part of intermediate results is correct. This can be forced using
a clean-up function that replaces any interval whose diameter is too large with the infinite
interval. As the interval operations barely do any computation if one of the input intervals is
infinite, this leads to a considerable speedup at low precision. Another cause for performance
issues is the functional nature of names: Function values are not cached automatically leading
to extensive reevaluation. As the questions are natural numbers in unary, there exists a
simple solution: we internally replace the names by elements of a coinductive datatype of
streams that are treated as lazy lists in evaluation.

5 A verified parametric square root algorithm

As a case study on how the basic operations can be used to define other operations on real
numbers, let us study the example of the square root function in some detail. By the square
root function we mean the partial function from reals to reals whose domain is [0,∞) and
whose return value on input of x ≥ 0 is

√
x. This function is a popular example as it being

continuous but not analytic in 0 is a challenge in providing a good algorithm to compute it.
We aim to recover this function in a compositional way from the basic operations listed in
Section 4. A computable realizer for the square root function can then be extracted almost
automatically by composing the realizers of the relevant basic operations independently from
the exact implementation of the data-type of real numbers.

5.1 Square root approximation using Heron’s method
A well known and efficient way to approximate the square root of a real number x is the
Heron iteration inductively defined by x0 := 1 and xi+1 = 1

2

(
xi + x

xi

)
. Let the function

heron: R→ Rω be defined by heron(x)i := xdlog2 ie. This function can be defined from our
basic operations and returns an efficiently convergent sequence:

I Lemma 5. |heron(x)i −
√
x| ≤ 2−i, whenever 1

4 ≤ x ≤ 2.

Proof Sketch. It is well-known that (xi) converges quadratically to
√
x in the above interval.

This means |xi −
√
x| ≤ 2−2i and thus heron returns an efficiently convergent sequence. J

Thus, the square root of some x ∈ [1
4 , 2] can be approximated using heron and the efficient

limit. We aim to extend the scope of this algorithm from the bounded interval [1
4 , 2] to all of

[0,∞). Our strategy is to handle 0 as a special case and scale strictly positive numbers to
end up in the interval, apply the method above and then rescale the result appropriately.
The following Lemma follows directly from Lemma 5.

I Lemma 6. Let p ∈ Z such that 4−px ∈ [1
4 , 2], then |2pheron(4−px)i+p −

√
x| ≤ 2−i.

Let us call such a p a scale for x. Note that a scale exists if and only if x > 0 and there
always exists more than one possible choice in that case. Since Z is discrete and R connected,
the semantics of an algorithm extracting an appropriate p from x are necessarily multivalued.

The treatment of the special case 0 requires branching. If x ≤ 2−2i then 0 is already an
approximation of the square root with error at most 2−i. Boolean-valued comparisons on
the reals are discontinuous and therefore not computable. We may only use the Kleenean

M. Konečný, F. Steinberg, and H. Thies 50:11

x

x+ 2−n
false

true

y

Figure 1 sc(n, x, y)
plotted over y for fixed
x and n.

0 2−n 2 · 2−n 3 · 2−n 2−n+2.

2−n <n+2 x may be true

2−n <n+2 x2−n <n+2 x may be false

x <n+2 3 · 2−n + 2−(n+2) may be true

Figure 2 −n ∈ mag(x) if both inequality tests may be true. For
x ∈ (0, 1) there is a number n ∈ N such that both tests have true as
the only valid value.

comparison R× R→ K that we included in our basic operations. Luckily, we do not need
exact comparison but only need to know if either x > 0 or x ≤ 2−2i and such a test can be
implemented from the Kleenean comparison. To disregard the controlled divergence and
define a total function in the end, we also go through multivaluedness.

For each of the previous two paragraphs let us develop some general purpose tools that
may also be useful in other applications. For the branching needed around zero we use soft
comparisons and for obtaining p we use a multivalued magnitude function, both of which we
implement using the basic operations.

5.2 From Kleenean comparisons to soft comparison
Kleenean-valued comparisons are easy to implement but often inconvenient to use for
implementation of total functions as they feature explicit divergence. A popular version of
real number comparison trades off divergence for multivaluedness and is known as ε-test or
soft comparison in numerics. For simplicity, we restrict to ε of the form 2−n and consider
the multi-valued soft comparison sc : N× R× R⇒ B specified by

true ∈ sc(n, x, y)⇔ x < y and false ∈ sc(n, x, y)⇔ y < x+ 2−n. (1)

This multifunction is total and properly multivalued as there is an interval of size 2−n where
both cases overlap (see Figure 1).

Multivaluedness makes moving from prefix to infix notation more complicated. We fix
the following conventions: x <n y without any additions means sc(n, x, y) = {true}, for
true ∈ sc(n, x, y) we state “x <n y may be true” and for false ∈ sc(n, x, y) we write “x <n y

may be false”. This is illustrated by means of an example at the top of Figure 2. For functions
f0, f1 : R⇒ R expressions such as “if x <n 0 then f1(x) else f0(x)” are meaningful as soft
comparison is a multivalued predicate and branching works as explained in Section 3.1.

Soft comparison can be implemented using the Kleenean comparison and the which
function from Example 4. We state this in the next Lemma. We use slightly sloppy notation
as we identify the Booleans with a subspace of the Kleeneans, which in turn we consider
elements of Sierpinski space by identifying trueK with >S and everything else with ⊥S.

I Lemma 7. Soft comparison can be expressed from the which function and <K via

sc(n, x, y) = which(x <K y, y <K x+ 2−n).

Proof. No matter x and y we always have either x <K y = trueK or y <K x+ 2−n = trueK.
Thus the which function on the above input always returns a Boolean. Further, true is a valid
return value if and only if x < y and false is a valid return value if and only if y < x+2−n. J

FSTTCS 2020

50:12 Computable Analysis for Verified Exact Real Computation

5.3 The magnitude function for scaling
Recall that for computation of the value of the square root of a strictly positive real via
rescaling, we needed to find an integer p such that x2p is from a bounded interval and that
such an integer cannot be found algorithmically without introducing multivaluedness. We
thus implement the multifunction mag : R⇒ Z that extracts the magnitude of x in the sense
that z ∈ mag(x) ⇔ 2z < x < 2z+2. Such a z exists whenever x > 0, i.e., the domain of
magnitude are the positive real numbers.

Let us first argue that we may restrict to the case that 0 < x < 1.

I Lemma 8. The function mag can be recovered from its restriction to (0, 1) as

mag(x) = if x <1 2 then mag |(0,1)(x/2) + 1 else −mag |(0,1)(1/x)− 2.

Proof. In the first case x < 2 and therefore x/2 ∈ (0, 1). In the second case x > 3/2 and
therefore 1/x ∈ (0, 1). That the bounds are correct can be checked easily. J

Thus, assume 0 < x < 1 in the following.

I Lemma 9. There always exists an n ∈ N such that 2−n <n+2 x and x <n+2 3·2−n+2−(n+2),
i.e. true is the only possible value for both conditions. Moreover, for any n ∈ N

2−n <n+2 x may be true∧x <n+2 3 · 2−n + 2−(n+2) may be true =⇒ −n ∈ mag(x).

Proof Sketch. 2−n + 2−(n+2) ≤ x implies 2−n <n+2 x and x ≤ 3 · 2−n implies x <n+2
3·2−n+2−(n+2) (see Figure 2) and both these inequalities hold for instance for n = −dlog2(x

3)e.
Further, the two soft comparisons may only be true if 2−n < x < 3 · 2−n + 2−(n+2) < 2−n+2

and thus −n ∈ mag(x). J

In particular, a linear search for the first n such that the equation holds implemented using the
realizers for the soft-comparison will always terminate and give a realizer for mag |(0,1), which
in turn can be used to implement the full magnitude function via multivalued branching.

5.4 Defining the square root function
For any x > 0 and m ∈ mag(x), dm+1

2 e is a scale for x in the sense of Lemma 6. Thus, we
finally have all tools necessary to define the square root function. We define an approximation
function sqapprox : R⇒ Rω with domain [0,∞) by

sqapprox(x)i := if x <2i+1 2−2i then 0 else 2pheron(4−px)i+p where p is a scale for x.

Correctness is given by the following Lemma.

I Lemma 10. limeff ◦ sqapprox tightens the square root function.

Proof. It suffices to show that for each i ∈ N, sqapprox(x)i is a 2−i approximation of
√
x. If

x <2i+1 2−2i may be true then x < 2−2i and 0 is a 2−i approximation of
√
x. If x <2i+1 2−2i

may be false then 2−(2i+1) ≤ x and thus x ∈ dom(mag) and we can apply Lemma 6. J

This means that any realizer for limeff ◦ sqapprox is also a realizer for the square root function
and can thus be defined only by using realizers for basic operations.

M. Konečný, F. Steinberg, and H. Thies 50:13

6 Implementation

All results of this paper have been formally verified in the Coq proof assistant. The
implementation is part of the Incone library. It is in the development branch and will be
featured in a future release. An overview of the library and instructions on how to get started
can be found in [24]. The content of the current work can be found in a folder for examples
about real numbers in the development branch of the library [23]. The real number structure
from Section 4, the treatment of interval reals and the interval representation are each given
their own files in that folder. The error bound estimates for operations from the Coq-interval
library needed for the interval representation have been exported to a separate file so that
the file sizes remain manageable. The content of Section 5 is separated into a file for the soft
comparison, one for the magnitude function and finally one where the square root function is
implemented. The finite spaces from Section 3 have been integrated into Incone and can be
found in the folder for constructions on continuity spaces under the name “hyperspaces”.

Our development uses a fairly small set of axioms, namely those used in the axiomatic
formalization of the reals, the law of excluded middle, functional extensionality and some
choice principles. The reasoning is usually divided into two parts, where the first is coming
by with mathematics and the second part is to define realizers and prove them correct. We
carefully define the realizers such that they do not rely on the non-constructive axioms of
the reals and actually correspond to executable programs.

As a concrete example, let us consider some parts of the formalization of the square root
algorithm from Section 5. While the more difficult part and most of the content of the sqrt.v
file constitutes the extension to the whole real line, for simplicity we here only consider the
restriction to the interval [1

4 , 2] where the Heron method converges quadratically.
The Coq standard library already defines a function sqrt for the square root built on

the axiomatization of the reals and proves some of its properties. Assume we have fixed
some representation of the reals and denote the spaces of questions and answers by Q and
A, respectively. An algorithm implementing the square root function thus takes and returns
elements of AQ. In a first approximation such an algorithm may be represented by a Coq
function of type sqrt_rlzr: (Q -> A) -> (Q -> A). For this function to actually correspond
to an algorithm, its definition should not involve incomputable axioms. The correctness of
the algorithm is guaranteed by a specification Lemma of the form:

Lemma sqrt_rlzr_spec: sqrt_rlzr \realizes sqrt.

The notation \realizes is part of the Incone library and means that sqrt_rlzr(ϕ) is name
of sqrt(x) whenever ϕ is a name of x. Incone defines several such notations making the
formal statements look very similar to the informal mathematical statements.

Unfortunately, the situation is usually more complicated as the realizer may need to be
partial. Some algorithm can diverge if the input is not a valid name of a real number. In
Coq, all functions are total but partial functions can be modeled using dependent types. A
partial function takes as input a pair consisting of the actual input and a proof that this
input is contained in its domain. Note that Coq’s sqrt function itself is not partial. For
the restriction, as the realized function does not carry computational information, we take a
different approach to partiality here and instead of using the dependent type system we move
to a relational specification right away. That is, we replace the function sqrt by its induced
multifunction F2MF sqrt which can be restricted by adding a domain condition. Finally we
may bundle the realizing function with its correctness proof so that result to be found in
Incone actually takes the following form:

FSTTCS 2020

50:14 Computable Analysis for Verified Exact Real Computation

Lemma sqrt_rlzr_exists :
{f : partial_function | f \solves (F2MF sqrt)|_[/4,2]}.

The partial function itself can be retrieved by (sval sqrt_rlzr_exists) and its correctness
proof by (svalP sqrt_rlzr_exists). The function definition can be extracted to Haskell code
and then be executed. The terms usually fail to reduce internally due to the use of non-
computational real numbers in the specification part that entangled with the definitional
part through the use of partial functions and sigma types.

For broad applicability we do not only work with a specific representation but define a
structure of computable_reals that can be instantiated with different representations. This
structure closely resembles the informal description in Section 4 and serves as an intermediate
level for real number operations. It contains a representation for the reals and partial functions
realizing the basic operations together with correctness proofs. Other operations can be
defined by composition, product, sums and branching on the basic operations. For instance,
the square root function in our implementation has a parameter Rc of type computable_reals
and returns for each instance of this structure an executable program. The actual algorithm is
based on Heron’s method and closely follows the outline in Section 5. Let us list the definition
and specification Lemma of the sqrt_approx function from the paper as an example:

Fixpoint sqrt_approx x0 n x :=
match n with
| 0 => x0
| S n' => let x' := sqrt_approx x0 n' x in (x' + x / x') / 2
end.

Lemma sqrt_approx_correct x n:
/4 <= x <= 2 -> Rabs (sqrt_approx 1 n x - sqrt x) <= /2^(2^n).

The Incone library equips the space of infinite sequences with the structure of a represented
space again. An algorithm to find the limit of an efficiently convergent sequence as operation
lim_eff: Rcω -> Rc is part of the computable_reals structure. As outlined in Section 5 one
can use the iteration above to obtain a function heron: Rc -> Rcω that returns an efficiently
convergent sequence for certain real numbers. The composition of heron with the limit
operator returns the sqrt function:

Lemma sqrt_as_lim :
(lim_eff \o heron) \tightens (F2MF sqrt)|_[/4,2]

Once this specification is available, a realizer of the right hand side can be obtained from
the realizers of the operations on the left hand side by compositionality. The realizer of the
heron function is obtained by piecing together the realizers for the arithmetic operations.

6.1 Executability and code extraction
As the definitions of the domains of the partial functions we use as realizers involve the
non-computational real numbers, the corresponding functions can not be executed Coq
internally using term reduction. These problems can be worked around for instance by
using a fuel-based approach [18], but in our current implementation this method leads to
considerably worse running times and we therefore refrain from giving details here. An
additional drawback is that extra information about the realizers of the basic operations is
needed and additional work is necessary for propagating this information through operations
such as composition and taking fix points.

M. Konečný, F. Steinberg, and H. Thies 50:15

As the main purpose of our implementation is not to do computation inside Coq but
to provide an easy to use interface for developers in exact real computation frameworks
to define and verify their algorithms, we focus on using Coq’s code extraction features to
generate efficient code instead of direct execution inside of Coq. We hope that the extracted
programs can be integrated into other developments for parts where particularly strong
correctness guarantees are needed.

Coq’s code extraction feature can be used to generate executable programs. However, the
performance of the extracted programs depends on how the extraction is done exactly. For
instance, if the basic operations on integers are translated from their Coq implementation
that is targeted towards simple proofs instead of efficiency, the performance will suffer. It is
possible to instruct Coq to extract these operations to native implementations in Haskell
instead. We have extracted all arithmetic operations and comparisons on integer types such
as Z, nat or positive to the corresponding operations on arbitrary-sized integers in Haskell.
Some other operations such as shifting and taking integer logarithms that turned out to be
particularly slow were also replaced by more efficient implementations available in Haskell. Of
course, these Haskell operations are not formally verified and each modification increases the
size of the trusted core and the risk for errors in the final program. As the set of operations
we trust for the extraction is quite small, we believe this risk to be manageable.

The replacement of functions by streams discussed in Section 4.2 can either be done
directly in Coq or in Haskell by adding some instructions for the extraction. The replacement
in Haskell performed slightly better in experiments and we used it as the default option.

7 Conclusion and Future work

On paper the approach of computable analysis is very much in accordance with the spirit
of Coq. In principle it should be possible to parameterize the theories over an abstract
type so that the classical treatment of real numbers and similar structures is hidden in the
propositional layer. In practice there are a lot of additional hurdles in maintaining a clean
mathematical presentation, executability and reuseability of existing work. Much of the
existent infrastructure for computation on the reals such as the Flocq and Interval libraries
are specified against the classical axiomatization of real numbers from the standard library.
This axiomatization of the real numbers states classical properties, such as decidability of
equality, as global facts and makes maintaining executability challenging.

Currently, we have only implemented a few basic operations on real numbers, mostly
to demonstrate that our framework indeed can be used for efficient computation. Adding
further operations such as trigonometric functions should not be too difficult. An interesting
direction for future work is to extend the computation on real numbers to operators on real
functions such as integration and ODE solving. The tools contained in the Incone library
can already be used to automatically generate a representation for real functions from a
representation for real numbers. Ideas from real number complexity theory [16, 15] suggest
that the use of specialized representations over this generic function representation might
yield even better results.

References

1 S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3, pages 1–168. Clarendon
Press, Oxford, 1994.

FSTTCS 2020

50:16 Computable Analysis for Verified Exact Real Computation

2 Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization techniques for asymptotic
reasoning in classical analysis. Journal of Formalized Reasoning, 11(1):43–76, 2018. doi:
10.6092/issn.1972-5787/8124.

3 Andrea Balluchi, Alberto Casagrande, Pieter Collins, Alberto Ferrari, Tiziano Villa, and
Alberto L Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid
automata. In In: Proceedings of the International Syposium on Mathematical Theory of
Networks and Systems., 2006.

4 Merrie Bergmann. An introduction to many-valued and fuzzy logic: semantics, algebras, and
derivation systems. Cambridge University Press, 2008.

5 Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly library
of real analysis for Coq. Mathematics in Computer Science, 9(1):41–62, 2015.

6 Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis:
A survey of proof assistants and libraries. Mathematical Structures in Computer Science,
26(7):1196–1233, 2016. URL: http://hal.inria.fr/hal-00806920.

7 Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-point
algorithms in coq. In 2011 IEEE 20th Symposium on Computer Arithmetic, pages 243–252.
IEEE, 2011.

8 Vasco Brattka and Peter Hertling. Feasible real random access machines. J. Complexity,
14(4):490–526, 1998. doi:10.1006/jcom.1998.0488.

9 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A Tutorial on Computable Analysis. In
S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms:
Changing Conceptions of What is Computable, pages 425–491. Springer, 2008.

10 Franz Brauße, Pieter Collins, Johannes Kanig, SunYoung Kim, Michal Konečnỳ, Gyesik Lee,
Norbert Müller, Eike Neumann, Sewon Park, Norbert Preining, et al. Semantics, logic, and
verification of" exact real computation". arXiv preprint arXiv:1608.05787, 2016.

11 Alberto Ciaffaglione and Pietro Di Gianantonio. A certified, corecursive implementation of
exact real numbers. Theoretical Computer Science, 351(1):39–51, 2006. Real Numbers and
Computers. doi:10.1016/j.tcs.2005.09.061.

12 Luís Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the constructive Coq
repository at Nijmegen. In International Conference on Mathematical Knowledge Management,
pages 88–103. Springer, 2004.

13 Martín Hötzel Escardó. PCF extended with real numbers. Theoretical Computer Science,
162(1):79–115, 1996.

14 Akitoshi Kawamura. Computational complexity in analysis and geometry. University of
Toronto, 2011.

15 Akitoshi Kawamura, Norbert Th. Müller, Carsten Rösnick, and Martin Ziegler. Computational
Benefit of Smoothness. Journal of Complexity, 2015. doi:10.1016/j.jco.2015.05.001.

16 Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Parameterized complexity for
uniform operators on multidimensional analytic functions and ODE solving. In International
Workshop on Logic, Language, Information, and Computation, pages 223–236. Springer, 2018.

17 Michal Konecnỳ. AERN-Real: Arbitrary-precision interval arithmetic for approximating exact
real numbers, 2008.

18 Michal Konečný, Florian Steinberg, and Holger Thies. Continuous and Monotone Machines.
In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 56:1–56:16, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.56.

19 Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical computer
science, 38:35–53, 1985.

20 Guillaume Melquiond. Proving bounds on real-valued functions with computations. In
International Joint Conference on Automated Reasoning, pages 2–17. Springer, 2008.

https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
http://hal.inria.fr/hal-00806920
https://doi.org/10.1006/jcom.1998.0488
https://doi.org/10.1016/j.tcs.2005.09.061
https://doi.org/10.1016/j.jco.2015.05.001
https://doi.org/10.4230/LIPIcs.MFCS.2020.56

M. Konečný, F. Steinberg, and H. Thies 50:17

21 R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis. SIAM e-
books. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 2009.

22 Norbert Th. Müller. The iRRAM: Exact arithmetic in C++. In Computability and complexity
in analysis. 4th international workshop, CCA 2000. Swansea, GB, September 17–19, 2000.
Selected papers, pages 222–252. Berlin: Springer, 2001.

23 Florian Steinberg. The Incone library. https://github.com/FlorianSteinberg/incone,
2019. release v1.0.

24 Florian Steinberg, Laurent Thery, and Holger Thies. Computable analysis and notions of
continuity in coq. arXiv preprint arXiv:1904.13203, 2019.

25 Klaus Weihrauch. Computable Analysis. Springer, Berlin/Heidelberg, 2000.

A Experimental results

To show that our implementation indeed gives a feasible implementation of exact real
computation we did a small experimental study where we compared the running times
to approximate some simple functions using our implementation to an implementation in
the C-CoRn library and non-verified implementations using exact real arithmetic packages.
While the experiments show that our implementation is not yet optimal, the difference in
running time was only by a small factor and we think that it could be further reduced by
optimizing our representation.

For all experiments we extracted Haskell code from the specification in Coq (version
8.9.0) using the code extraction mechanism. Apart from the simple optimizations for the code
extraction mentioned above we did not do any additional changes to increase performance. In
particular we did not change the extracted code except for adding a few includes of standard
Haskell libraries in the beginning of the file. The Haskell code was compiled with GHC version
8.8.1 and profiling options turned on. The running times were taken from the total time
written in the Time and Allocation Profiling Report generated by Haskell. All experiments
were done on a Macbook Pro 2015 model with 16 GB RAM and 2.2 GHz Intel Core i7
processor. We tried the experiments with both the rational and interval representation for
real numbers, however as expected the (non-optimized) rational representation performed
very poorly and we thus focus on the results for the interval representation.

We also compared the running time to computing the same problem with the C-CoRn
library (using the same code extraction techniques) and a (non-verified) C++ implementation
using the iRRAM framework. These comparisons have to be taken with a grain of salt as
many details of the implementations differ. For instance, our implementation outputs the
result as a rational number giving numerator and denominator while iRRAM and C-CoRn
output decimal approximations.

The first experiment is to compute iterations of the logistic map xn+1 = rxn(1− xn) for
x0 = 0.5 and r = 3.75. The logistic map is often used as a benchmark problem in exact real
computation as it exhibits chaotic behavior, i.e., a slight change in the initial condition leads
to completely different values at later iterations. In particular, computations using standard
floating-point methods quickly diverge from the correct solution. While it may be argued
that computing the exact values is not of any practical relevance, it is a popular example for
where floating point computations fail completely, while exact methods can quickly produce
correct results.

In this experiment we output an approximation of the result after several iterations of
the logistic map with error less than 10−1000 (i.e. approximately 1000 decimal digits). In
our experiments our implementation performed quite well (see Table 3a) and was only a

FSTTCS 2020

https://github.com/FlorianSteinberg/incone

50:18 Computable Analysis for Verified Exact Real Computation

N Incone iRRAM
100 0.02 0
500 0.1 0.01
1000 0.18 0.01
5000 0.94 0.27
10000 3.03 0.83
20000 12.02 4.32
50000 67.23 38.4

(a) Approximating 1000 digits of the N -th iter-
ation of the logistic map.

n
√

5
√

5
32

10 0.12 0.08
100 0.33 0.23
500 1.05 0.64
1000 1.78 1.12
2000 2.74 1.76
5000 6.33 3.61
10000 8.51 5.13
50000 18.02 10.33
100000 27.93 15.98
500000 91.1 48.72

(b) Computing n digits of the square root.

Figure 3 Running times (seconds) for the different experiments.

factor 2− 5 slower than the iRRAM implementation. A straightforward implementation
in C-CoRn did not give good results as evaluating xn twice in the iteration rule leads to
exponential growth and therefore already computing more than a few iterations takes a very
long time. However, this is probably just due to our naive implementation and it might be
possible to do a more clever implementation in C-CoRn that caches the intermediate values.

Our second experiment was to compute some square roots, i.e., compute the square root
of a given rational number and output an approximation with a certain error bound. We
give the results for

√
5 and

√
5
32 as representatives for numbers that are scaled down resp.

up in our algorithm. Other numbers performed mostly similarly, however as computing the
magnitude uses a linear search for very large numbers the running time gets significantly
worse. Here, while our algorithm is still usable, its performance was far worse than both
the iRRAM and C-CoRn versions. For example iRRAM could still compute 500000 digits
in less than 0.01 seconds. The C-CoRn version was nearly as fast as the iRRAM version
for up to 10000 digits. For higher precision it got significantly slower and for 500000 digits
even performed worse than our implementation. The performance log shows that this is
not a bug in C-CoRn but due to some integer operation being extracted to a sub-optimal
implementation. As C-CoRn is made for execution inside of Coq and not optimized for
Haskell code extraction, it is quite hard to compare these numbers.

Our implementation has similar issues when using the interval library. The Coq interval
library is built for fast execution inside of Coq, however that makes the extracted code quite
complicated and many operations could be implemented much more efficiently in Haskell.
Moving to a simpler implementation of interval arithmetic should therefore lead to a drastic
improvement.

As the performance hugely depends on factors that have mostly to do with code extraction,
it is questionable how valuable a thorough performance comparison of the different frameworks
is. We think the main take-away message from this experimental study should be that while
possibly not as fast as some of the alternatives, our simple implementation still performs
reasonably well and can be used to compute approximations up to very high precision.

Perspective Games with Notifications
Orna Kupferman
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

Noam Shenwald
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
noam.shenwald@mail.huji.ac.il

Abstract
A reactive system has to satisfy its specification in all environments. Accordingly, design of
correct reactive systems corresponds to the synthesis of winning strategies in games that model the
interaction between the system and its environment. The game is played on a graph whose vertices
are partitioned among the players. The players jointly generate a path in the graph, with each
player deciding the successor vertex whenever the path reaches a vertex she owns. The objective of
the system player is to force the computation induced by the generated infinite path to satisfy a
given specification. The traditional way of modelling uncertainty in such games is observation-based.
There, uncertainty is longitudinal: the players partially observe all vertices in the history. Recently,
researchers introduced perspective games, where uncertainty is transverse: players fully observe the
vertices they own and have no information about the behavior of the computation between visits
in such vertices. We introduce and study perspective games with notifications: uncertainty is still
transverse, yet a player may be notified about events that happen between visits in vertices she
owns. We distinguish between structural notifications, for example about visits in some vertices, and
behavioral notifications, for example about the computation exhibiting a certain behavior. We study
the theoretic properties of perspective games with notifications, and the problem of deciding whether
a player has a winning perspective strategy. Such a strategy depends only on the visible history,
which consists of both visits in vertices the player owns and notifications during visits in other
vertices. We show that the problem is EXPTIME-complete for objectives given by a deterministic or
universal parity automaton over an alphabet that labels the vertices of the game, and notifications
given by a deterministic satellite, and is 2EXPTIME-complete for LTL objectives. In all cases, the
complexity in the size of the graph and the satellite is polynomial – exponentially easier than games
with observation-based partial visibility. We also analyze the complexity of the problem for richer
types of satellites.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Logic and verification

Keywords and phrases Games, Incomplete Information, Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.51

Related Version https://www.cs.huji.ac.il/~ornak/publications/fsttcs20.pdf.

1 Introduction

A reactive system has to satisfy its specification in all environments. Accordingly, design of
correct reactive systems corresponds to the synthesis of a winning strategy for the system
in a game that model the interaction between the system and its environment. The game
is played on a graph whose vertices correspond to configurations along the interaction. We
study here settings in which each configuration is controlled by either the system or its
environment. Thus, the set of vertices is partitioned between the players, and the game is
turn-based: starting from an initial vertex, the players jointly generate a play, namely a path
in the graph, with each player deciding the successor vertex when the play reaches a vertex
she controls. Each vertex is labeled by an assignment to a set AP of atomic propositions –

© Orna Kupferman and Noam Shenwald;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 51; pp. 51:1–51:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orna@cs.huji.ac.il
mailto:noam.shenwald@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.51
https://www.cs.huji.ac.il/~ornak/publications/fsttcs20.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Perspective Games with Notifications

these with respect to which the system is defined. The objective of the system is given by a
language L ⊆ (2AP)ω, and it wins if the computation induced by the generated play, namely
the word that labels its vertices, is in L [14, 4].

A strategy for a player directs her how to continue a play that reaches her vertices.
We consider deterministic strategies, which choose a successor vertex. In games with full
visibility, strategies may depend on the full history of the play. In games with partial visibility,
strategies depend only on visible components of the history [16]. A well studied model of
partial visibility is observation based [9, 6, 5, 2]. There, a player does not see the vertices
of the game and can only observe the assignments to a subset of the atomic propositions.
Accordingly, strategies cannot distinguish between different plays in which the observable
atomic propositions behave in the same manner. Recently, [8] introduced perspective games.
There, the visibility of each player is restricted to her vertices. Accordingly, a perspective
strategy for a player cannot distinguish among histories that differ in visits to vertices owned
by other players. As detailed in [8], the perspective model corresponds to switched systems
and component-based software systems [1, 11, 12, 13].

Note that visibility and lack of visibility in the observation-based model are longitudinal
– players observe all vertices, but partially. On the other hand, in the perspective model,
players have full visibility on the parts of the system they control, and no visibility (in
particular, even no information on the number of transitions taken) on the parts they do not
control. Thus, visibility and lack of visibility are transverse – some vertices the players do
not see at all, and some they fully see. For a comparison of perspective games with related
visibility models (in particular, games with partial visibility in an asynchronous setting [15],
switched systems [7], and control-flow composition in software and web service systems [12]),
see [8].

In many settings, players indeed cannot observe the evolution of the computation in parts
of the system they do not control, yet they may have information about events that happen
during these parts. For example, if the system is synchronous with a global clock, then all
players know the length of the invisible parts of the computation. Likewise, visits in some
vertices of the other players may be observable, for example in a communication network
in which all companies observe routers that belong to an authority and can detect visits to
routers that leave a stamp. Finally, behaviors may be visible too, like an airplane that flies
high, or a robot that enters a zone that causes an alarm to be activated. In this paper we
introduce and study perspective games with notifications, which model such settings.

Formally, perspective games with notifications include, in addition to the game graph and
the winning condition, an information satellite: a finite state machine that is executed in
parallel with the game and may notify the players about events it monitors. We distinguish
between structural satellites, which monitor the generated play, and behavioral satellites,
which monitor the generated computation. Examples to structural satellites include ones
that notify the players about visits in designated sets of states, transitions among regions
in the system, say calls and returns in software systems, traversal of loops, etc. Another
useful structural satellite notifies the players about the assignment to a subset of the atomic
propositions. Note that such a satellite combines the transverse visibility of perspective games
with the longitudinal visibility in observation-based games. A typical behavioral satellite
is associated with a regular language R ⊆ (2AP)∗. The satellite may notify the players
whenever the computation induced by the play is in R (termed a single-track satellite), or
whenever a suffix of the computation is in R (termed a multi-track satellite). The language
R may vary from simple propositional assertion over AP , to rich finite on-going behaviors.
Note that even very simple satellites may be very useful. For example, when R = (2AP)∗,
the satellite acts as a clock, notifying the players about the length of the invisible parts of
the computation.

O. Kupferman and N. Shenwald 51:3

We start by studying some theoretical aspects of perspective games with notifications.
We consider two-player games with a winning condition L ⊆ (2AP)ω such that Player 1
aims for a play whose computation is in L, and Player 2 aims for a play whose computation
is not in L. Unsurprisingly, the basic features of the game are inherited from the model
without notifications. In particular, perspective games with notifications are not determined.
Thus, there are games in which Player 1 does not have a perspective strategy that forces
the generated computation to satisfy L nor Player 2 has a perspective strategy that forces
the generated computation not to satisfy L. Also, the restriction to a perspective strategy
(as opposed to one that fully observes the computation) makes a difference only for one of
the players. Thus, if Player 1 has a strategy to win against all perspective strategies of
Player 2, she also has a perspective strategy to win against all strategies of Player 2.

The prime problem when reasoning about games is to decide whether a player has a
winning strategy. Here the differences between perspective games and other models of
partial visibility become significant: handling of observation-based partial visibility typically
involves some subset-construction-like transformation of the game graph into a game graph
of exponential size with full visibility. Accordingly, deciding of observation-based partial-
visibility games is EXPTIME-complete in the graph [2, 6, 5, 3]. In perspective games, one
can avoid this exponential blow-up in the size of the graph and trade it with an exponential
blow-up in the (typically much smaller) winning condition [8].

Our main technical contribution is an extension of these good news to perspective games
with notifications, and a study of the complexity in terms of the satellite. The solution in [8]
is based on the definition of a tree automaton for winning strategies. The extension to a
model with notifications is not easy, as the type of strategies is different. Let V1 denote the
set of vertices that Player 1 controls. With no notifications, a strategy for Player 1 is a
function f : V ∗1 → V , mapping each visible history to a successor vertex. With notifications,
the visible histories of Player 1 consist not only of vertices in V1 but refer also to a set I of
notifications that Player 1 may receive from the satellite. Moreover, histories that end in a
notification in I correspond to vertices in the game in which Player 1 do not have control.
Accordingly, the outcome of the strategy in them is not important, yet they should still
be taken into account. We are still able to define a tree automaton for winning strategies.
Essentially, the tree automaton follows both the satellite and the automaton for the winning
condition, where a tree that encodes a strategy includes branches not only for vertices in
V1 but also branches for notifications in I. We analyze the complexity of our algorithm for
winning conditions given by deterministic or universal co-Büchi or parity automata, as well
as by LTL formulas, and show that the problem is EXPTIME-complete for all above types
of automata and is 2EXPTIME-complete for LTL. In all cases, the complexity in terms of
the graph and the satellite is polynomial.

While EXPTIME-hardness follows immediately from the setting with no notifications
[8], we analyse the complexity also in terms of the satellite. Recall that given a finite
language R ⊆ (2AP)∗, a satellite may be single-track, notifying about computations in R, or
multi-track, notifying about computations in (2AP)∗ ·R. We examine four cases, depending
on whether the satellite is single- or multi-track and whether R is given by a deterministic
or nondeterministic automaton. For deterministic single-track satellites, the complexity of
deciding whether Player 1 wins is polynomial. In the other three cases, a naive construction
of a satellite requires determinization and involves an exponential blow-up. Note that this
applies also to the case where R is given by a deterministic automaton yet the satellite is
multi-track, and thus has to follow all suffixes. We show that this blow up is unavoidable.
Thus, deciding whether Player 1 wins is EXPTIME-hard even when the winning condition,

FSTTCS 2020

51:4 Perspective Games with Notifications

which is the source for the exponential complexity in the setting with no notifications, is
fixed. On the positive side, we show that many interesting cases need a fixed-size satellite, or
a satellite whose state space can be merged with that of the game.

2 Preliminaries

2.1 Perspective games
A game graph is a tuple G = 〈AP, V1, V2, v0, E, τ〉, where AP is a finite set of atomic
propositions, V1 and V2 are disjoint sets of vertices, owned by Player 1 and Player 2,
respectively, and we let V = V1 ∪ V2. Then, v0 ∈ V1 is an initial vertex, which we assume to
be owned by Player 1, and E ⊆ V × V is a total edge relation, thus for every v ∈ V there
is u ∈ V such that 〈v, u〉 ∈ E. The function τ : V → 2AP maps each vertex to a set of atomic
propositions that hold in it. The size |G| of G is |E|, namely the number of edges in it.

In a beginning of a play in the game, a token is placed on v0. Then, in each turn, the
player that owns the vertex that hosts the token chooses a successor vertex and move there the
token. A play ρ = v0, v1,... in G, is an infinite path in G that starts in v0; thus for all i ≥ 0 we
have that 〈vi, vi+1〉 ∈ E. The play ρ induces a computation τ(ρ) = τ(v0), τ(v1), ... ∈ (2AP)ω.

A game is a pair G = 〈G,L〉, where G is a game graph, and L ⊆ (2AP)ω is a behavioral
winning condition, namely an ω-regular language over the atomic propositions, given by an
LTL formula or an automaton. Intuitively, Player 1 aims for a play whose computation is
in L, while Player 2 aims for a play whose computation is in comp(L) = (2AP)ω\L.

Let Prefs(G) be the set of nonempty prefixes of plays in G. For a sequence ρ = v0, . . . , vn
of vertices, let Last(ρ) = vn. For j ∈ {1, 2}, let Prefsj(G) = {ρ ∈ Prefs(G) : Last(ρ) ∈ Vj}. In
games with full visibility, the players have a full view of the generated play. Accordingly,
a strategy for Player j maps Prefsj(G) to vertices in V in a way that respects E. In
perspective games [8], Player j can view only visits to Vj . Accordingly, strategies are
defined as follows. For a prefix ρ = v0, . . . , vi ∈ Prefs(G), and j ∈ {1, 2}, the perspective
of player j on ρ, denoted Perspj(ρ), is the restriction of ρ to vertices in Vj . We denote
the perspectives of player j on prefixes in Prefsj(G) by PPrefsj(G), namely PPrefsj(G) =
{Perspj(ρ) : ρ ∈ Prefsj(G)}. Note that PPrefsj(G) ⊆ Vj

∗. A perspective strategy for player
j, is then a function fj : PPrefsj(G) → V such that for all ρ ∈ PPrefsj(G), we have that
〈Last(ρ), fj(ρ)〉 ∈ E. That is, a perspective strategy for player j maps her perspective of
prefixes of plays that end in a vertex v ∈ Vj to a successor of v.

The outcome of P-strategies f1 and f2 for Player 1 and Player 2, respectively, is
the play obtained when the players follow their P-strategies. Formally, Outcome(f1, f2) =
v0, v1, ... is such that for all i ≥ 0 and j ∈ {1, 2}, if vi ∈ Vj , then vi+1 = fj(Perspj(v0, . . . , vi)).

We use F and P to indicate the visibility type of strategies, namely whether they are
full (F) or perspective (P). Consider a game G = 〈G,L〉. For α, β ∈ {F, P}, we say
that Player 1 (α, β)-wins G if there is an α-strategy f1 for Player 1 such that for every
β-strategy f2 for Player 2, we have that τ(Outcome(f1, f2)) ∈ L. Similarly, Player 2
(α, β)-wins G if there is an α-strategy f2 for Player 2 such that for every β-strategy f1 for
Player 1, we have that τ(Outcome(f1, f2)) /∈ L.

2.2 Automata
Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗
and c ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty word ε is
the root of T . For every x ∈ T , the nodes x · c, for c ∈ D, are the successors of x. A path π

O. Kupferman and N. Shenwald 51:5

of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf or there
exists a unique c ∈ D such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair
〈T, τ〉 where T is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas true and
false. For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning true
to elements in Y and assigning false to elements in X \ Y makes θ true. An alternating tree
automaton is A = 〈Σ, D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions,
Q is a finite set of states, δ : Q×Σ→ B+(D×Q) is a transition function, qin ∈ Q is an initial
state, and α is an acceptance condition. We consider here the Büchi, co-Büchi, and parity
acceptance conditions. For a state q ∈ Q, we use Aq to denote the automaton obtained from
A by setting the initial state to be q. The size of A, denoted |A|, is the sum of lengths of
formulas that appear in δ.

The alternating automaton A runs on Σ-labeled D-trees. A run of A over a Σ-labeled
D-tree 〈T, τ〉 is a (T × Q)-labeled IN-tree 〈Tr, r〉. Each node of Tr corresponds to a node
of T . A node in Tr, labeled by (x, q), describes a copy of the automaton that reads the
node x of T and visits the state q. Note that many nodes of Tr can correspond to the
same node of T . The labels of a node and its successors have to satisfy the transition
function. Formally, 〈Tr, r〉 satisfies the following: (1) ε ∈ Tr and r(ε) = 〈ε, qin〉. (2)
Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a (possibly empty)
set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S satisfies θ, and for all
0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = 〈x · ci, qi〉.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. Given
a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π) if and
only if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. That is, inf(π) contains
exactly all the states that appear infinitely often in π. In Büchi and co-Büchi automata, the
acceptance condition is α ⊆ Q. A path π satisfies a Büchi condition α iff inf(π) ∩ α 6= ∅,
and satisfies a co-Büchi condition α iff inf(π) ∩ α = ∅. In parity automata, the acceptance
condition α : Q → {1, . . . , k} maps each vertex to a color. A path π satisfies a parity
condition α iff the minimal color that is visited infinitely often in π is even. Formally,
min{i : inf(π)∩ α−1(i) 6= ∅} is even. An automaton accepts a tree iff there exists a run that
accepts it. We denote by L(A) the set of all Σ-labeled trees that A accepts.

The alternating automaton A is nondeterministic if for all the formulas that appear in
δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 6= c2. (i.e., if the transition is
rewritten in disjunctive normal form, there is at most one element of {c}×Q, for each c ∈ D,
in each disjunct). The automaton A is universal if all the formulas that appear in δ are
conjunctions of atoms in D ×Q, and A is deterministic if it is both nondeterministic and
universal. The automaton A is a word automaton if |D| = 1. Then, we can omit D from the
specification of the automaton and denote the transition function of A as δ : Q×Σ→ B+(Q).
If the word automaton is nondeterministic or universal, then δ : Q× Σ→ 2Q, and we often
extend δ to sets of states and to finite words: for S ⊆ Q, we have that δ(S, ε) = S and for a
word w ∈ Σ∗ and a letter σ ∈ Σ, we have δ(S,w · σ) = δ(δ(S,w), σ). When α ⊆ Q, we are
ometimes interested in reachability via a nonempty path that visits α. For this, we define
δα : 2Q × Σ+ → 2Q as follows. First, δα(S, σ) = δ(S, σ) ∩ α. Then, for a word w ∈ Σ+, we
define δα(S,w · σ) = δ(δα(S,w), σ) ∪ (δ(S,w · σ) ∩ α). Thus, either α is visited in the prefix
of the run that reads w after leaving S, or the last state of the run is in α. It is not hard to
prove by an induction on the length of w that for all states q ∈ Q, we have that q ∈ δα(S,w)
iff there is a run from S on w that reaches q and visits α after leaving S. We sometimes refer
also to word automata on finite words. There, α ⊆ Q and a (finite) run is accepting if its
last state is in α.

FSTTCS 2020

51:6 Perspective Games with Notifications

We denote each of the different types of automata by three-letter acronyms in {D,N,U,A}×
{F,B,C,P}×{W,T}, where the first letter describes the branching mode of the automaton
(deterministic, nondeterministic, universal, or alternating), the second letter describes the
acceptance condition (finite, Büchi, co-Büchi, or parity), and the third letter describes the
object over which the automaton runs (words or trees). For example, UCT stands for a
universal co-Büchi tree automaton.

3 Perspective Games with Notifications

Consider a game graph G = 〈AP, V1, V2, v0, E, τ〉. An information satellite for G (satellite,
for short) is finite-state machine I = 〈O, I, S, s0,M, i1, i2〉, where O and I are observation
and information alphabets, S is a finite set of states, s0 ∈ S is an initial state,M : S×O → S

is a deterministic transition function, and i1, i2 : S → I ∪ {ε} are information functions for
Players 1 and 2, respectively, where ε 6∈ I is a special letter, standing for “no information”.
We distinguish between structural satellites, where O = V , and behavioral satellites, where
O = 2AP . Intuitively, the satellite is executed during the play, updating its state according
to the current vertex or its label, possibly notifying the players with information in I.

I Example 1. Assume there is an atomic proposition alarm ∈ AP . Both players can
hear whenever an alarm is activated, but they do not know for how many rounds it
is on. A satellite that informs the players about the activation of the alarm is I =
〈2{alarm}, {activated}, S, s0,M, i1, i2〉, with S = {s0, s1, s2}, M(si,¬alarm) = s0, for all
i ∈ {0, 1, 2}, M(s0, alarm) = s1, and M(s1, alarm) = M(s2, alarm) = s2. Thus, the satellite
moves to s1 whenever a ¬alarm · alarm pattern is read, and then moves to and stays in s2
as long as the alarm is on. When the alarm is deactivated, the satellite moves to s0. Also,
i1(s1) = i2(s1) = activated, and i1(s0) = i1(s2) = i2(s0) = i2(s2) = ε. Thus, when the
satellite is in s1, it notifies both players about the activation of the alarm.

A perspective game with notifications is a tuple G = 〈G, I, L〉 where G and L are as in
perspective games with no notifications, and I = 〈O, I, S, s0,M, i1, i2〉 is a satellite. As
in usual perspective games, Player 1 aims for a play whose computation is in L, while
Player 2 aims for a play whose computation is in comp(L). Now, however, the perspectives
of the players contain, in addition to visits in their sets of vertices, also information from the
satellite. Below we formalize this intuition.

We define the function ζ : V → O that maps each vertex of G to the appropriate
observation alphabet letter of I. Thus, for every v ∈ V , we have that ζ(v) = v if I
is structural, and ζ(v) = τ(v) if I is behavioral. An attributed path in G is a sequence
η ∈ (V × S)∗ obtained by attributing a path ρ = v0, v1, v2, . . . , vn ∈ V ∗ in G by the state
in S that I visits when a play proceeds along ρ. Formally, η = 〈v0, s0〉, 〈v1, s1〉, . . . , 〈vn, sn〉
is such that for all 1 ≤ i ≤ n, we have that si = M(si−1, ζ(vi)). Note that first the play
proceeds from vi−1 to vi, and then the satellite reads ζ(vi) and proceeds accordingly. We use
Last(η) to refer to vn. Let PrefsI(G) ⊆ (V × S)∗ be the set of nonempty attributed prefixes
of plays in G. For j ∈ {1, 2}, let PrefsIj (G) = {η ∈ PrefsI(G) : Last(η) ∈ Vj}. For a prefix
η ∈ PrefsI(G), the rich perspective of Player j on η, denoted PerspIj (η), is the restriction of η
to vertices in Vj and notifications of I that occur in vertices not in Vj . Formally, the function
infoj : (V ×S)→ Vj ∪ I describes the information added to Player j in each round. For all
〈v, s〉 ∈ V ×S, if v ∈ Vj , then infoj(〈v, s〉) = v; if v 6∈ Vj , then infoj(〈v, s〉) = ij(s). Note that
in the latter case, it may be that ij(s) = ε. Thus, if η = 〈v0, s0〉, 〈v1, s1〉, . . . , 〈vn, sn〉, then
PerspIj (η) = infoj(〈v0, s0〉) · infoj(〈v1, s1〉) · · · infoj(〈vn, sn〉). Note that ε does not contribute

O. Kupferman and N. Shenwald 51:7

letters to PerspIj (η), and so the length of PerspIj (η) is the number of the vertices in Vj in η
plus the number of vertices not in Vj in which the satellite provides to Player j information
in I.

I Example 2. Consider the alarm activation satellite described in Example 1, and consider a
game graph G. Let v↑2 and v↓2 be vertices of Player 2 with alarm∈τ(v↑2) and alarm /∈τ(v↓2).
Then, the rich perspective of Player 1 on the path v↓2 , v

↓
2 , v
↓
2 , v
↑
2 , v
↑
2 , v
↓
2 , v
↑
2 , v
↑
2 , v
↑
2 , v
↓
2 is •, •,

reflecting the two activations of the alarm during its traversal. Now, if v↑1 ∈ V1, and alarm ∈
τ(v↑1), then the rich perspective of Player 1 on v↓2 , v

↓
2 , v
↑
1 , v
↓
2 , v
↑
2 , v
↑
2 , v
↑
1 , v
↓
2 , v
↑
1 , v
↑
2 , v
↑
2 , v
↑
2 , v
↓
2 , v
↑
1

is v↑1 , •, v
↑
1 , v
↑
1 , v
↑
1 .

We denote the perspective of Player j on prefixes in PrefsIj (G) by PPrefsIj (G); thus
PPrefsIj (G) = {PerspIj (η) : η ∈ PrefsIj (G)}. A perspective strategy for Player j (P-strategy
for short) is then a function fj : PPrefsIj (G)→ V such that for all ρ ∈ PPrefsIj (G), we have
that 〈Last(η), fj(η)〉 ∈ E. That is, a perspective strategy for Player j maps her perspective
prefixes of plays that end in a vertex v ∈ Vj to a successor of v. The definitions of the
outcome of F or P-strategies and F or P-winning are similar to the definitions in perspective
games with no notifications, with PerspIj instead of Perspj .

I Example 3. Consider the game graph G appearing in Figure 1. For simplicity, we assume
that the atomic propositions in AP are mutually exclusive, and thus each vertex is labeled
by a letter in Σ = {p, q,#, $}.

Figure 1 The game graph G over {p, q, #, $}. The vertices of Player 1 are circles, and those of
Player 2 are squares. The initial vertex is v#.

Note that whenever the token reaches v$, there are four possible sub-computations it may
generate before returning to v#; these are $ · p ·#, $ · q ·#, $ · q · p ·# and $ · q · q ·#. Let
G1 = 〈G,ϕ1〉 be a perspective game with ϕ1 = G(((q∧Xq)→ XXXq)∧((q∧Xp)→ XXXp)).
That is, ϕ1 requires every q · q subword to be followed by a subword in Σ · q, and every
q · p subword to be followed by Σ · p. It is easy to see that Player 1 cannot (P, F)-win
G1, because she is unable to distinguish between the different possible sub-computations,
and thus every P-strategy of hers chooses the same successor of v# for all four cases. Now
consider the perspective game with notifications G′1 = 〈G, I1, ϕ1〉 where I1 is a structural
satellite that notifies Player 1 whenever a visit in wq occurs. The information from the
satellite restricts the possibilities; when Player 1 gets a notification, she knows that the
last sub-computation is $ · q · q ·#. When she does not get a notification, she knows that the
last sub-computation is one of the other possibilities. Therefore, Player 1 (P, F)-wins G′1,
as she can distinguish between the sub-computations $ · q · q ·# and $ · q · p ·#, and can
choose the successor of v# after each visit in it in a way that satisfies ϕ1.

FSTTCS 2020

51:8 Perspective Games with Notifications

Let G2 = 〈G,ϕ2〉 be a perspective game with ϕ2 = G((($ ∧ Xp) → XXXp) ∧ ((q ∧
Xp) → XXXq)). Again, Player 1 cannot (P, F)-win G2. Now consider the perspective
game with notifications G′2 = 〈G, I2, ϕ2〉, where I2 is a behavioral satellite that notifies
Player 1 whenever the computation generated so far is a word in the regular language
(p+ q + # + $)∗ · $ · p. Now, when Player 1 gets a notification, she knows that the last
sub-computation is $ · p ·#, and when she does not get a notification, she knows that the
last sub-computation is one of the other possibilities. Therefore, Player 1 (P, F)-wins G′2.
Indeed, Player 1 can distinguish between the sub-computations $ · p ·# and $ · q · p ·#,
and can choose the successor of v# after each visit in it in a way that satisfies ϕ2.

Note that Player 1 cannot P-win the games 〈G, I1, ϕ2〉 and 〈G, I2, ϕ1〉. Indeed, I1 does
not enable Player 1 to distinguish between the sub-computations $ ·p ·# and $ ·q ·p ·#, and
I2 does not enable Player 1 to distinguish between the sub-computations $ · q · q ·# and
$ · q · p ·#. Therefore, in both games, a P-strategy of Player 1 chooses the same successor
of v# in these undistinguishable cases.

Example 3 shows that, as is the case in perspective games with no notifications [8],
P-strategies with no notifications are weaker than P-strategies with notifications, which are
weaker than F-strategies. It also shows that perspective games with notifications are not
determined. That is, there are perspective games with notifications where both Player 1
and Player 2 do not have P-winning strategies. Also, the visibility type of Player 2 does
not matter. Essentially, it follows from the fact that if a perspective strategy of Player 1
loses against an F-strategy f2 of Player 2, then it also loses to a P-strategy of Player 2
that is induced from f2. The formal proofs of the above properties are similar to the case of
perspective games with no notifications [8] and we leave them to the full version.

Since the visibility type of Player 2 does not matter, we can omit it from our notation
and talk about Player 1 P-winning a game. Also, specifying satellites, we remove the
function i2 from their description.

4 Deciding Perspective Games with Notifications

Consider a game G = 〈G, I, L〉, for a game graph G = 〈AP, V1, V2, v0, E, τ〉 and a satellite
I = 〈O, I, S, s0,M, i1〉. For a regular expression R over the alphabet V , an R-path from v
is a finite path v1, . . . , vk ∈ L(R) in G such that v1 = v. For a subset X ⊆ V , an Xω-path
from v is an infinite path v1, v2, ... ∈ Xω in G with v1 = v. Note, for example, that when
Player 1 moves the token to a vertex v ∈ V2, the token may traverse a (V +

2 · V1)-path ρ
from v, in which case it returns to V1 in Last(ρ), or it my traverse a V ω2 -path from v, in
which case it never returns to a vertex in V1. For a regular expression R over the alphabet
V × S, an R-path from 〈v, s〉 is an attributed path 〈v1, s1〉, . . . , 〈vk, sk〉 ∈ L(R) in G with
v1 = v and s1 = s. For such a path ρ, we denote its projections on V and S by ρ|

V
and ρ|

S
,

respectively.
Consider the satellite I. For σ ∈ I ∪ {ε}, we denote by Sσ the set of states in I in which

Player 1 is notified σ. That is, Sσ = {s ∈ S : i1(s) = σ}. Then, SI =
⋃
σ∈I Sσ is the set of

states in which Player 1 is notified some information. Equivalently, SI = S \ Sε.
We focus on games in which the winning condition L is given by a UCW. For simplicity,

we denote them by G = 〈G, I,U〉, for a UCW U . Let U = 〈2AP , Q, q0, δ, α〉 In order for
Player 1 to P-win G, her objective in the beginning of the game is to force a token that is
placed in v0 into computations that U accepts from q0 with the satellite being in state s0.
We can describe this objective by the triple 〈v0, q0, s0〉. As the play progresses, the objective
of Player 1 is updated. Moreover, as U is universal, the objective may contain several such
triples. Below we formalize this intuition.

O. Kupferman and N. Shenwald 51:9

Consider a UCW U = 〈2AP , Q, q0, δ, α〉, a state q ∈ Q, and a state s ∈ S. Suppose that
the token is placed in some vertex v ∈ V1, the objective of Player 1 is to force the token
into computations in L(Uq), and the satellite is in state s after seeing ζ(v). Assume further
that Player 1 chooses to move the token to a successor v′ of v and that s′ = M(s, ζ(v′)).
We distinguish between two cases.
1. v′ ∈ V1. Then, the new objective of Player 1 is to force the token in v′ into computations

in L(Uq′), for all states q′ ∈ δ(q, τ(v)), with the satellite being in state s′.
2. v′ ∈ V2. Then, there are three cases:

a. There is a V2
ω-path ρ from v′ with τ(ρ) /∈ L(Uq′) for some q′ ∈ δ(q, τ(v)). We then say

that v′ is a trap for 〈v, q〉. Indeed, Player 2 can stay in vertices in V2 and force the
token into a computation not in L(Uq′). Note that once Player 1 chooses a vertex
that is a trap for 〈v, q〉, Player 2 has a strategy to win the game.

b. v′ is not a trap for 〈v, q〉, yet there is no (V2
+ · V1)-path from v′. That is, all paths

from v′ stay in vertices in V2 and are in L(Uq′) for all q′ ∈ δ(q, τ(v)). We then say
that v′ is safe for 〈v, q〉. Indeed, Player 2 stays in vertices in V2 and all the possible
plays induce a computation in L(Uq). Note that once Player 1 chooses a safe vertex
for 〈v, q〉, her objective is fulfilled regardless of the stragety of Player 2.

c. v′ is neither a trap nor safe for 〈v, q〉, in which case:
i. For every (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 Player 1 should

force a token that is placed in v′′ into computations in L(Uq′), for all states
q′ ∈ δ(q, τ(v · ρ|

V
)), with the satellite being in state s′′. Note that for all 〈v̂, ŝ〉 along

ρ, we have info1(〈v̂, ŝ〉) = ε, and so the visit in v′′ is the first event that Player 1
observes after placing the token in v′.

ii. For every (V2 × Sε)∗ · (V2×SI)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉, Player 1 should force
a token that is placed in v′′ with the satellite being in state s′′ into computations
in L(Uq′), for all states q′ ∈ δ(q, τ(v · ρ|

V
)). Note that for all 〈v̂, ŝ〉 along ρ, we

have info1(〈v̂, ŝ〉) = ε, and so i1(s′′) is the first event that Player 1 observes
after placing the token in v′. Also note that ρ might be empty, in particular when
Player 1 moves the token to a vertex in V2 that invokes a notification of I. In
this case, 〈v′, s′〉 = 〈v′′, s′′〉.

The above analysis induces the definition of updated objectives: Consider a triple 〈v, q, s〉 ∈
V1 × Q × S, standing for an objective of Player 1 to force a token placed on v to be
accepted by Uq with the satellite being in state s. For a successor v′ of v, we define the
set Sv′

v,q,s ⊆ (V × Q × S × {⊥,>}) ∪ {false} of objectives that Player 1 has to satisfy
in order to fulfil her 〈v, q, s〉 objective after choosing to move the token to v′. Also, for a
triple 〈v, q, s〉 ∈ V2 × Q × S, we define the set Sv,q,s ⊆ V × Q × S × {⊥,>} of objectives
that Player 1 has to satisfy in order to fulfil her 〈v, q, s〉 objective for every successor that
Player 2 might choose for v. In both cases, the {⊥,>} flag in the objectives is used for
tracking visits in α: an updated objective 〈v′′, q′, s′′, c〉 ∈ Sv′

v,q,s has c = > if Player 2 can
force a visit in α when U runs from q to q′ along a word that labels a path from v via v′
to v′′.

Formally, for a triple 〈v, q, s〉 ∈ V × Q × S we define the set of updated objectives as
follows. Let s′ = M(s, ζ(v′)).
1. If v ∈ V1 and E(v, v′), we distinguish between three cases.

a. If v′ is a trap for 〈v, q〉, then Sv′

v,q,s = {false}.
b. If v′ is safe for 〈v, q〉, then Sv′

v,q,s = ∅.
c. Otherwise, a tuple 〈v′′, q′, s′′, c〉 is in Sv′

v,q,s iff one of the following holds.
i. v′ ∈ V1, v′′ = v′, q′ ∈ δ(q, τ(v)), and s′′ = s′. Then, c = > iff q′ ∈ α.

FSTTCS 2020

51:10 Perspective Games with Notifications

ii. v′ ∈ V2, and there is an (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such that
q′ ∈ δ(q, τ(v ·ρ|

V
)). Then, c = > iff there is an (V2×Sε)+ · (V1×S)-path ρ · 〈v′′, s′′〉

from 〈v′, s′〉 such that q′ ∈ δα(q, τ(v · ρ|
V

)).
iii. v′ ∈ V2, and there is an (V2 × Sε)∗ · (V2 × SI)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such

that q′ ∈ δ(q, τ(v · ρ|
V

)). Then, c = > iff there is an (V2 × Sε)∗ · (V2 × SI)-path
ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such that q′ ∈ δα(q, τ(v · ρ|

V
)).

2. If v ∈ V2, a tuple 〈v′′, q′, s′′, c〉 is in Sv,q,s iff one of the following holds.
a. There is an (V2×Sε)+ ·(V1×S)-path ρ·〈v′′, s′′〉 from 〈v, s〉 such that q′ ∈ δ(q, τ(v ·ρ|

V
)).

Then, c = > iff there is an (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v, s〉 such that
q′ ∈ δα(q, τ(v · ρ|

V
)).

b. There is an (V2×Sε)∗ ·(V2×SI)-path ρ·〈v′′, s′′〉 from 〈v, s〉 such that q′ ∈ δ(q, τ(v ·ρ|
V

)).
Then, c = > iff there is an (V2 × Sε)∗ · (V2 × SI)-path ρ · 〈v′′, s′′〉 from 〈v, s〉 such that
q′ ∈ δα(q, τ(v · ρ|

V
)).

The notion of updated objectives is the key to our algorithm for deciding P-winning in
perspective games with notifications. Recall that a perspective strategy for Player 1 is a
function f1 : PPrefs1(G)→ V such that for all ρ ∈ PPrefs1(G), we have that 〈Last(ρ), f1(ρ)〉 ∈
E, where PPrefs1(G) contains words in V1 ∪ I that end with a vertex in V1. Accordingly, we
describe a strategy for Player 1 by a (V ∪ {;})-labeled (V1 ∪ I)-tree, where the letter ;
label nodes x 6∈ PPrefs1(G), namely nodes x ∈ (V1 ∪ I)∗ · I. Formally, a (V ∪ {;})-labeled
(V1 ∪ I)-tree 〈(V1 ∪ I)∗, η〉 is a P-strategy of Player 1 if for all ρ ∈ (V1 ∪ I)∗ and v ∈ V1,
we have that η(ρ · v) = v′, where v′ ∈ V is such that E(v, v′), and for all σ ∈ I we have
that η(ρ · σ) = ;, indicating Player 1 does not move the token when she receives the σ
notification, and just keeps this notification in mind.

I Theorem 4. Let G = 〈G, I,U〉 be a game with notifications, where G is a game graph,
I = 〈O, I, S, s0,M, i1〉 is a satellite, and U is a UCW. We can construct a UCT AG over
(V ∪ {;})-labeled (V1 ∪ I)-trees such that AG accepts a (V ∪ {;})-labeled (V1 ∪ I)-tree
〈(V1 ∪ I)∗, η〉 iff 〈(V1 ∪ I)∗, η〉 is a winning P-strategy for Player 1. The size of AG is
polynomial in |G|, |I|, and |U|.

Proof. Let U = 〈2AP , Q, q0, δ, α〉. We define AG = 〈V ∪ {;}, V1 ∪ I,Q′, q′0, δ′, α′〉, where:
1. Q′ = V ×Q× S × {⊥,>}. Intuitively, when AG is in state 〈v, q, s, c〉 it accepts strategies

that force a token placed on v into a computation accepted by Uq with the satellite being
in state s. The flag c is used for tracking visits in α.

2. q′0 = 〈v0, q0, s0,⊥〉.
3. The transitions are defined, for all states 〈v, q, s, c〉 ∈ V1 ×Q× S × {⊥,>}, as follows.

a. If v ∈ V1, then δ′(〈v, q, s, c〉,;) = false, and for every v′ ∈ V we have the following
transitions.
i. If Sv′

v,q,s = {false} or ¬E(v, v′), then δ′(〈v, q, s, c〉, v′) = false.
ii. If Sv′

v,q,s = ∅, then δ′(〈v, q, s, c〉, v′) = true.
iii. Otherwise, δ′(〈v, q, s, c〉, v′) =∧
〈v′′,q′,s′′,c′〉∈Sv′

v,q,s:v′′∈V1

(v′′, 〈v′′, q′, s′′, c′〉) ∧
∧

〈v′′,q′,s′′,c′〉∈Sv′
v,q,s:v′′∈V2

(i1(s′′), 〈v′′, q′, s′′, c′〉).

b. If v ∈ V2, then for all v′ ∈ V , we have that δ′(〈v, q, s, c〉, v′) = false.
Also, δ′(〈v, q, s, c〉,;) =∧
{〈v′′,q′,s′′,c′〉∈Sv,q,s:v′′∈V1}

(v′′, 〈v′′, q′, s′′, c′〉) ∧
∧

{〈v′′,q′,s′′,c′〉∈Sv,q,s:v′′∈V2}

(i1(s′′), 〈v′′, q′, s′′, c′〉).

O. Kupferman and N. Shenwald 51:11

Thus, for every updated objective 〈v′′, q′, s′′, c′〉, the automaton AG sends a copy in state
〈v′′, q′, s′′, c′〉 to direction v′′ if v′′ ∈ V1, and to direction i1(s′′), if v′′ ∈ V2. Note that
several updated requirements may be sent to the same direction. In particular, in addition
to multiple copies sent to the same direction due to universal branches in U , a direction
σ ∈ I may “host” updated objectives associated with different vertices in V2. Intuitively,
such vertices are indistinguishable by Player 1.

4. α′ = V × Q × S × {>}. Recall that a > flag indicates that Player 2 may reach the
Q-element in an updated objective traversing a path that visits α. Accordingly, the
co-Büchi requirement to visit α only finitely many times amounts to a requirement to
visit states with > only finitely many times. J

Theorem 4 gives us an upper bound on the problem of deciding whether Player 1 P-wins
a perspective game with notifications.

I Theorem 5. Deciding whether Player 1 P-wins a perspective game with notifications
G = 〈G, I,U〉, for a UCW U , is EXPTIME-complete, and can be solved in time polynomial
in |G| and |I|, and exponential in |U|.

Proof. Let G = 〈G, I,U〉 and I = 〈O, I, S, s0,M, i1〉. By Theorem 4, we can construct a
UCT AG over (V ∪ {;})-labeled (V1 ∪ I)-trees such that L(AG) is not empty iff there is a
winning P-strategy for Player 1 in G. The size of AG is polynomial in |G|, |I| and |U|.

We construct an NBT A′G over (V ∪ {;})-labeled (V1 ∪ I)-trees such that L(A′G) is not
empty iff there is a winning P-strategy for Player 1 in G. The size of A′G is polynomial in
|G| and |I|, and is exponential in |U|. As has been the case in the setting with no notifications
[8], the transformation from AG to A′G uses the fact that AG is deterministic in the V and
S components, in order to generate, following the construction of [10], an NBT that it is
polynomial in |G| and |I| and exponential only in |U|. Since the nonemptiness problem for
an NBT can be solved in quadratic time, the specified complexity follows.

Since perspective games with notifications are a special case of perspective game (tech-
nically, with a satellite that only outputs ε), EXPTIME-hardness of the former implies an
EXPTIME lower bound for our setting. J

Since an LTL ψ formula can be translated to a UCW Uψ with an exponential blow up
(for example, by translating ¬ψ to an NBW [17], and then dualizing the NBW), Theorem 5
implies a 2EXPTIME upper bound for perspective games with notifications in which the
winning condition is given by an LTL formula. Also, as has been the case in [8], it is possible
to refine the {⊥,>} flag in the updated objectives to maintain the minimal parity color that
is visited, and adjust the construction to games in which the winning condition is given by a
UPW. The complexity stays exponential in the automaton. Formally, we have the following.

I Theorem 6. Deciding whether Player 1 P-wins a perspective game with notifications
G = 〈G, I,U〉, for a UPW U , is EXPTIME-complete, and can be solved in time polynomial
in |G| and |I|, and exponential in |U|.

Proof. The updated objectives defined for the case where the winning condition is given by
a UCW contain a flag that records visits in the co-Büchi condition. When U is a UPW with
k colors, we define the flag such that it records the minimal color visited instead. That is,
Sv

′

v,q,s, Sv,q,s ⊆ (V ×Q× S × {1, ..., k}) ∪ {false}, is such that for every updated objective
〈v′′, q′, s′′, c〉 ∈ Sv′

v,q,s ∪ Sv,q,s, Player 2 can force a path from v (via v′) to v′′ in which the

FSTTCS 2020

51:12 Perspective Games with Notifications

minimal color visited in the run of U along it from q to q′ is c. We then use a construction that
is similar to the one in the proof of Theorem 4 to construct a UPT AG over (V ∪{�})-labeled
(V1 ∪ I)-trees such that L(AG) is not empty iff there is a winning P-strategy for Player 1
in G. The size of AG is polynomial in |G|, |I| and |U|.

By [10], APT emptiness can be reduced to UCT emptiness with a polynomial blow up.
From there, determinizm in the V -component implies the required complexity. J

5 Examples of Information Satellites

Consider a game graph G = 〈AP, V1, V2, v0, E, τ〉. Recall that a structural satellite for G
is a satellite I = 〈O, I, S, s0,M, i1〉 with O = V . Thus, the satellite can view the state in
which the play is, and can decide about outputs to Player 1 based on this visibility. Then,
a behavioral satellite for G has O = 2AP . Thus, the satellite can only observe the labels of
vertices, and its outputs to Player 1 are based only on these labels. In this section we
describe some natural structural and behavioral satellites.

5.1 Structural Information Satellites
A visible subset of vertices. As discussed in Section 1, in some settings there is a subset
of vertices I1 ⊆ V2 such that Player 1 is notified whenever the play visits a vertex in I1.
Then, the satellite is 〈V, I1, V, v0,M, i1〉, where for all v, u ∈ V , we have that M(v, u) = u,
i1(v) = v if v ∈ I1, and i1(v) = ε, otherwise. Thus, the state of the satellite follows the vertex
of the game, and it produces an output during visits in I1. Note that Player 1 is notified
not only about visits in I1, but also about the specific vertex that is visited. Alternatively, we
could define the satellite with output in only, i1(v) = in if v ∈ I1, and i1(v) = ε, otherwise.
Here, Player 1 is notified that some vertex in I1 has been visited, with no information
about which vertex it is.

Observation-based uncertainty. Assume that there is a subset of the atomic propositions
AP1 ⊆ AP , such that Player 1 observes the assignments to AP1 in Player 2’s vertices.
A corresponding satellite is 〈V, 2AP1 , V, v0,M, i1〉, where for all v, u ∈ V , we have that
M(v, u) = u, i1(v) = τ(v) ∩ AP1 if v ∈ V2, and i1(v) = ε, otherwise. Note that this case
combines the transverse visibility of perspective games with the longitudinal visibility in
observation-based games. Indeed, when the token is in Player 2’s vertices, Player 1’s
visibility is observation based. In particular, Player 1 knows the number of vertices visited,
yet cannot distinguish between paths that differ only in assignments to atomic propositions
in AP \AP1. It is not hard to see that when AP1 = AP , then, as the winning condition is
behavioral (that is, refers to AP rather than to V), the setting coincides with games with
full visibility. Also, note that even though the notifications of the satellite are in 2AP1 , we
could not define it as a behavioral information satellite.

Visible switches among regions. Assume that the vertices in V2 is partitioned into disjoint
regions V 1

2 , . . . , V
k

2 . For example, the regions may correspond to modules or procedures. If
Player 1 is notified upon entry to the different regions, then the corresponding satellite is
〈V, {1, . . . , k}, S, 〈v0, ◦〉,M, i1〉, where S = (V1 × {◦}) ∪ (V2 × {◦, •}). Thus, the state space
of the satellite has one copy of the vertices in V1 and two copies of the vertices in Player 2.
Then, M and i1 are as follows. For a vertex v ∈ V2, let reg(v) be the region of v; thus
v ∈ V reg(v)

2 . Then, for all v, u ∈ V and j ∈ {◦, •}, we have that M(〈v, j〉, u) = 〈u, ◦〉 if u ∈ V1
or reg(v) = reg(u), and M(〈v, j〉, u) = 〈u, •〉 if reg(v) 6= reg(u). Also, for every 〈v, j〉 ∈ S we

O. Kupferman and N. Shenwald 51:13

have that i1(〈v, j〉) = reg(v) if j = •, and i1(〈v, j〉) = ε, otherwise. As in the case of a visible
subset of vertices, the satellite can notify Player 1 only about a switch in a region, without
specifying which region it is. Then, the satellite has only output •, and i1(〈v, j〉) = • if j = •,
and i1(〈v, j〉) = ε, otherwise. Note that in both case, Player 1 is not notified about the
number of rounds that Player 2 is spending in each region, and only about switches among
them.

An interesting variant of the above is a satellite that notifies Player 1 whenever
Player 2 loops in a vertex. Note that this is a special case of the above, where each
vertex of V2 has its own region, with a dual {◦, •} notification. Namely, we let Player 1
know when there is no change in the region. Then, the satellite is 〈V, {•}, S, 〈v0, ◦〉,M, i1〉,
where i1 is as above, yet for every v, u ∈ V and j ∈ {◦, •}, we have that M(〈v, j〉, u) = 〈u, ◦〉
if u ∈ V1 or v 6= u, and M(〈v, j〉, u) = 〈u, •〉, otherwise.

5.2 Behavioral Information Satellites
Visible regular properties. Assume there is a property, given by a regular language R over
2AP , such that Player 1 is notified whenever the computation generated since the beginning
of the play is in R. For example, if AP = {p, q}, the property may be true∗ · p · (¬q)∗, thus
we want to notify Player 1 whenever a vertex satisfying p has been visited with no visit in
a vertex satisfying q following this visit. Then, if AR = 〈2AP , S, s0,M, F 〉 is a DFW that
recognizes R, an appropriate satellite is I = 〈2AP , {•}, S,M(s0τ(v0)),M, i1〉, where for every
s ∈ S, we have that i1(s) = • if s ∈ F , and i1(s) = ε, otherwise. Note that the initial state
of the satellite is the state of AR after reading the label of v0. Indeed, notifications inform
Player 1 about the membership of the computation up to (and including) the vertex where
the token visits. A useful special case of regular properties are these of the form true∗ ·R,
for a regular language R over 2AP . Thus, Player 1 is notified whenever the computation
generated since the beginning of the play has a suffix in R. As we discuss in Section 6,
handling of the two types of notifications is of different complexity.

The above can be generalized to multiple regular languages R1, . . . , Rk over 2AP , where for
every 1 ≤ i ≤ k, Player 1 is notified whenever the computation generated since the begin-
ning of the play is in Ri. Indeed, if for every 1 ≤ i ≤ k, the DFW Ai = 〈2AP , Si, s0

i ,Mi, Fi〉
recognizes Ri, then an appropriate satellite is I = 〈2AP , 2{•1,...,•k}, S, s0,M, i1〉, where
S = S1 × S2 × · · · × Sk, s0 = 〈M1(s0

1, τ(v0)), . . . ,Mk(s0
k, τ(v0))〉, the transitions are as in a

usual product of automata, and for every 〈s1, s2, . . . , sk〉 ∈ S and 1 ≤ i ≤ k, we have that
•i ∈ i1(〈s1, s2, . . . , sk〉) iff si ∈ Fi.

A clock. A clock notifies Player 1 how many vertices of Player 2 are visited between
visits in her own vertices. This is done by a behavioral satellite for the regular language
R = (2AP)∗. Indeed, then, Player 1 is notified in every step.

6 Complexity for the Different Satellites

Recall that the complexity of deciding a game depends on the size of the satellite. Formally,
for a satellite I = 〈O, I, S, s0,M, i1, i2〉, the state space of the NBT whose nonemptiness we
check in Theorem 5 is a product of S with other parameters. In this section we study the
size of different satellites, and the way it affects the complexity.

We start with structural satellites. It is easy to see that the structural satellites described
in Section 5.1 are such that S = V or S = V × C, for some constant set C. Moreover, since
the satellite follows the play (formally, in all states of the UCT constructed in Theorem 4,

FSTTCS 2020

51:14 Perspective Games with Notifications

the V -component agrees with the V -component of S. Accordingly, we don’t need the V -
component in the state space and can maintain C only. In other words, the state space of
AG can be redefined as V ×Q× C × {⊥,>}, and the complexity of the decision problem is
reduced accordingly.

We continue to simple behavioral satellites. One is the clock from Section 5.2, which
involves a satellite with a single state, leading to AG with state space V × Q × {⊥,>},
and a simpler definition of updated objectives. Another easy special case are propositional
satellites, which notify Player 1 whenever the play visits a vertex v such that τ(v) |= θ,
for an assertion θ over AP . Indeed, for such notifications we need a two-state satellite.
We note that in both cases, EXPTIME-hardness of the game is valid. While the case of
propositional satellites this follows by an easy reduction from the case of perspective games
with no notifications, for the case of clocks such a reduction is impossible. Nevertheless, since
the game constructed in the reduction in the lower-bound proof in [8] alternates between V1
and V2, the result applies also in the clock setting.

Our focus in this section is general behavioral satellites. Consider a regular language
R. We distinguish between the case where the satellite notifies Player 1 whenever the
computation since the beginning of the game is in R (termed single-track satellites, as they
follow a single computation), and the case where the satellite notifies Player 1 whenever a
suffix of the computation is in R, or equivalently, whenever the computation is in true∗ ·R
(termed multi-track satellites, as they follow all suffixes of the computation). Analyzing
the complexity of games with behavioral satellites, we assume a game is given by a tuple
G = 〈G,AR,U , t〉, where G and U are the game graph and winning condition, AR is the pattern
automata, namley the automata describing a regular property R, and t ∈ {single,multi},
is a flag indicating whether the satellite is single- or multi-track.

I Theorem 7. Deciding whether Player 1 P-wins in a game G = 〈G,AR,U , t〉 can be
solved in time polynomial in |G|, exponential in |U|, and

polynomial in |AR| when t = single and AR is a DFW.
exponential in |AR| when t = multi or AR is an NFW. Moreover, the problem is
EXPTIME-complete already for a fixed-size U .

Proof. The upper bounds follow from Theorem 5, and the fact we can generate from AR a
satellite with no blow-up when t = single and AR is a DFW, and a satellite exponential
in AR when t = multi or AR is an NFW. Note that when t = multi, we first add to AR a
true∗ self-loop leading to the initial state, which makes it nondeterministic.

We continue to the EXPTIME lower bound, and start with the case t = single and AR
is an NFW. We describe a reduction from linear-space alternating Turing machines (ATM).
An ATM is a tuple M = 〈Qe, Qu,Γ,∆, qinit, qacc, qrej〉, where Γ is the alphabet, Qe and Qu
are finite sets of existential and universal states, and we let Q = Qe ∪Qu. Then, qinit, qacc,
and qrej are the initial, accepting, and rejecting states, respectively. In the membership
problem, we get as input an ATM M and a word w ∈ Γ∗, and we decide whether M accepts
w. The membership problem is EXPTIME-hard already for M of a fixed size, and when ∆
has a binary branching degree and alternates between existential and universal states, Thus,
∆ ⊆ (Qe × Γ×Qu × Γ× {L,R}) ∪ (Qu × Γ×Qe × Γ× {L,R}).

A configuration of M on w = w1, . . . , wn describes its state, the content of the working
tape, and the location of the reading head. Assume s : N→ N is a linear function such that
the number of cells used by the working tape in every configuration of M on its run on w
is bounded by s(n). We encode a configuration of M by a string #γ1γ2 · · · (q, γi) · · · γs(n).
That is, a configuration starts with #, and all its other letters are in Γ, except for one letter

O. Kupferman and N. Shenwald 51:15

in Q× Γ. Then, M is in state q, the content of the j-th tape cell is γj , and the reading head
points at cell i. We say that the configuration is existential if q ∈ Qe and that it is universal
if q ∈ Qu. The initial configuration of M on w, is then #(qinit, w1) · ... · wn · ␣s(n)−n, for
the special letter ␣ ∈ Γ. We also assume that the initial configuration is existential. If the
current state is qacc or qrej , then the configuration is final and has no successors. Otherwise,
the successors of a configuration #γ1γ2...(q, γi), . . . , γs(n) are determined by ∆.

Given an ATM M and a word w ∈ Γ∗, we construct a game G = 〈G,AR,U , single〉 such
that Player 1 P-wins G iff M accepts w. The size of U is fixed, and G and AR are of size
linear in s(n), for n = |w|. The details of the reduction can be found in the full version.
Below we describe the key ideas in it.

Essentially, Player 1 generates a legal accepting computation in the computation tree
of M on w. Thus Player 1 chooses successors in existential configurations, and Player 2
chooses successors in universal ones. The challenging part of the reduction is to guarantee
that the sequence of configurations generated is a legal computation, and to do it with
a fixed size winning condition. Recall that we encode a configuration of M by a string
#γ1γ2 · · · (q, γi) · · · γs(n). When U is polynomial, it is easy to relate letters in the same address
in successive configurations, making sure that the transition function of M is respected.
When U is of a fixed size, it is not clear how to do it, as such letters are s(n)-letters apart.
The key idea is to use AR in order to do the required counting: We let Player 2 choose an
address k ∈ {1, . . . , s(n)} and challenge Player 1 by raising a flag whenever the address is k.
The winning condition U checks that the transition function of M is respected whenever the
flag is raised, which forces Player 1 to respect the transitions function of M in address k.
Moreover, since Player 1 does not know k, she has to always respect the transition function.
The above mechanism is not sufficient, as Player 2 may try to fail Player 1 by raising the
flag maliciously, that is, not sticking to one address k. This is where the notifications enter
the picture: the language R detects malicious flag raises and notifies Player 1 about them.
For this, AR has to count to s(n), but this is allowed, and enables U to skip the counting. In
addition, U restricts the check of Player 1 only to ones in which the flag is raised properly.

Then, when t = multi and AR is a DFW (or NFW), the reduction is similar and is based
on the fact that the only nondeterminism in AR above is in guessing malicious flag raises,
namely raises that are not s(n) letters apart. Such a behavior can be specified by a regular
expression true∗ ·R for R that can be described by a DFW of size polynomial in s(n). J

References
1 S. Agarwal, M. S. Kodialam, and T. V. Lakshman. Traffic engineering in software defined

networks. In Proc. 32nd IEEE International Conference on Computer Communications, pages
2211–2219, 2013.

2 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49(5):672–713, 2002.

3 D. Berwanger, K. Chatterjee, M. DeWulf, L. Doyen, and T. A. Henzinger. Strategy construction
for parity games with imperfect information. Information and Computation, 208(10):1206–1220,
2010.

4 R. Bloem, K. Chatterjee, and B. Jobstmann. Graph games and reactive synthesis. In Handbook
of Model Checking., pages 921–962. Springer, 2018.

5 K. Chatterjee and L. Doyen. The complexity of partial-observation parity games. In Proc.
16th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning, pages 1–14.
Springer, 2010.

6 K. Chatterjee, L. Doyen, T. A. Henzinger, and J-F. Raskin. Algorithms for ω-regular games
with imperfect information. In Proc. 15th Annual Conf. of the European Association for

FSTTCS 2020

51:16 Perspective Games with Notifications

Computer Science Logic, volume 4207 of Lecture Notes in Computer Science, pages 287–302,
2006.

7 D. Fisman and O. Kupferman. Reasoning about finite-state switched systems. In 5th
International Haifa Verification Conference, volume 6405 of Lecture Notes in Computer
Science, pages 71–86. Springer, 2009.

8 O. Kupferman and G. Vardi. Perspective games. In Proc. 34th IEEE Symp. on Logic in
Computer Science, pages 1–13, 2019.

9 O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in
Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

10 O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

11 D. Liberzon. Switching in Systems and Control. Birkhauser, 2003.
12 Y. Lustig and M.Y. Vardi. Synthesis from component libraries. Software Tools for Technology

Transfer, 15(5-6):603–618, 2013.
13 M. Margaliot. Stability analysis of switched systems using variational principles: an introduc-

tion. Automatica, 42(12):2059–2077, 2006.
14 D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363–371, 1975.
15 B. Puchala. Asynchronous omega-regular games with partial information. In 35th Int. Symp.

on Mathematical Foundations of Computer Science, pages 592–603. Springer, 2010.
16 J.H. Reif. The complexity of two-player games of incomplete information. Journal of Computer

and Systems Science, 29:274–301, 1984.
17 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-

tation, 115(1):1–37, 1994.

On the Complexity of Multi-Pushdown Games
Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-bs.de

Sören van der Wall
TU Braunschweig, Germany
s.van-der-wall@tu-bs.de

Abstract
We study the influence of parameters like the number of contexts, phases, and stacks on the
complexity of solving parity games over concurrent recursive programs. Our first result shows that
k-context games are b-EXPTIME-complete, where b = max{k−2, 1}. This means up to three contexts
do not increase the complexity over an analysis for the sequential case. Our second result shows
that for ordered k-stack as well as k-phase games the complexity jumps to k-EXPTIME-complete.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases concurrency, complexity, games, infinite state, multi-pushdown

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.52

Funding This work was partially supported by DFG grant 417532197 Effective Denotational Se-
mantics for Synthesis (EDS@SYN).

1 Introduction

Software verification and synthesis are difficult, even more so when concurrency comes into
play. Algorithmically, both tasks often amount to solving games [33] over an operational
model that captures implementation and specification details [62, 40]. What makes these
games hard to solve is the size of the underlying graph, which easily ends up having an infinite
set of positions. One reason is that software often computes over infinite data domains.
Another reason is that the control flow tends to be structured into recursive procedures or
even functional code. Despite this difficulty, efficent algorithms and tools for solving games
over infinite graphs have been proposed. Data aspects are discharged to logical reasoning
engines [9, 21]. Recursive functions are summarized to their call-return relationship [58, 54,
61, 10], an idea that generalizes to functional programs [3, 46, 45, 55, 34, 41, 36]. Alternatively,
the set of reachable call stacks is tracked symbolically and saturated until a fixed point is
reached [20, 14, 32, 23], which is again applicable to functional programs [15, 37, 26, 17, 25].
There are efficient implementations of saturation [18, 19]. Yet, tools that participate in the
Software Verification Competition [11], like CPAchecker [1, 12, 13] and the ULTIMATE
framework [2, 38, 39], favor summarization.

What remains a challenge, not only for game solvers but already for verification engines,
is concurrency. When combined with recursion, even the simplest analysis problems become
undecidable [31, 53]. One way out is under-approximation, analyzing only a (critical) subset
of the semantics. In context-bounded computations [52] the thread holding the processor
(the context) may switch only a bounded number of times. Phase-bounded computations [47]
generalize the idea. During a phase all threads may push their stack but only one thread can
pop. In ordered computations [16], the threads are ordered and a pop transition may only be
performed by the smallest thread whose stack is non-empty. The complexity is similar to the
phase-bounded case [6, 5]. Technically, the above results are obtained for multi-pushdown
systems [16], a programming model with multiple stacks accessed by a sequential control
flow representing the interleaving of the threads.

© Roland Meyer and Sören van der Wall;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 52; pp. 52:1–52:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roland.meyer@tu-bs.de
mailto:s.van-der-wall@tu-bs.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.52
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 On the Complexity of Multi-Pushdown Games

Table 1 Overview of the state-of-the-art and new results with technical highlights marked.

Previous results New results
Upper bounds k fixed k input k fixed k input
k-stack ordered — — k-EXP non-elem.
k-context k-EXP [57] non-elem. [57] max{k − 2, 1}-EXP non-elem.
k-phase k-EXP [57] non-elem. [57] k-EXP non-elem.
Lower bounds
k-stack ordered — — k-EXP non-elem.
k-context — — max{k − 2, 1}-EXP non-elem.
k-phase — non-elem. [7, 8] k-EXP non-elem.

The aforementioned works are limited to (linear-time) verification. There are considerably
less results towards under-approximate synthesis (and branching-time model checking). Seth
was the first to study parity games over multi-pushdown systems, multi-pushdown games
(MPDG) for short [57]. He considered phase boundedness and gave a summarization-based
decision procedure. It can be lifted to a subclass of concurrent higher-order programs [56].
Using saturation, Hague [35] was able to capture the full class of concurrent higher-order
programs. The algorithm works for orderedness, bounded phases, and the bounded scopes
explained below. The winning condition is reachability. Also using saturation, Atig et al. [8]
showed how to reduce the number of phases in an MPDG, leading to a recursive decision
procedure. It yields a k-EXPTIME upper bound for k phases. If the phases are part of the
input, the upper bound is non-elementary and the authors present a matching lower bound.
An also non-elementary lower bound was shown for the related problem of branching-time
model checking under a given context bound [7].

Contribution. We determine the precise influence of the number of contexts, phases, and
stacks on the complexity of solving parity MPDG (Table 1). The practically most relevant
and at the same time technically most interesting case is k-context parity MPDG for which
we show max{k − 2, 1}-EXPTIME-completeness.1 The upper bound reflects the fact that
three contexts can be translated into a single stack pushdown. Interestingly, each further
context increases the complexity by one exponent, as in the case of the seemingly more
expressive phase-bounded MPDG. There, the complexity settles at k-EXPTIME-complete for
k phases. The same complexity holds for ordered k-stack parity MPDG.

Motivated by the success of summarization algorithms [1, 13, 2, 38], we decided to derive
our upper bounds by summarization. The algorithms reduce the given MPDG to a finite game
by abstracting plays through completed function calls (between matching pushes and pops)
to their effect on the control states. This approach has been pioneered by Walukiewicz for
pushdown games [61] and generalized to phase-bounded MPDG by Seth [57]. Our algorithms
are generalizations and optimizations of Seth’s work. Unlike [57], we do not assume a constant
number of stacks under context bounds.

Unfortunately, we also discovered a flaw in [57] that makes the existing finite game
construction unsound. We explain and fix the problem, and thus obtain the first (correct)
summarization algorithm for MPDG.

We complement the findings by matching lower bounds. They work by reductions from
space-bounded alternating Turing machines. To demonstrate the expressiveness of MPDG
without getting lost in the case distinctions often involved with Turing machine reductions,

1 Class k-EXPTIME is the union of all DTIME(expk(poly(n))) with exp0(n) = n, expk+1(n) = 2expk(n).

R. Meyer and S. van der Wall 52:3

we propose the formalism of first-order relations. These are relations among words formulated
in a fragment of first-order logic. Our main result shows that k-phase, (k + 2)-context, and
k-stack ordered MPDG can decide first-order relations over words of length (k − 1)-fold
exponential. Reachability is sufficient as the winning condition. The reductions are a
considerable step beyond the non-elementary and parameterwise rough lower bounds in [7, 8].
We build on ideas in [7], the result for phase-bounded MPDG in [8] cannot be adapted to
context boundedness.

Related Work. There are further restrictions on concurrent recursive programs. Round-
bounded computations [48] schedule the threads in round-robin fashion for a given number of
rounds. Scope-bounded computations [49] require a matching pop to occur within a bounded
number of contexts from the corresponding push. Very recently, hole boundedness [4] has
been proposed as a generalization of bounded scope. Common to these notions is that they
limit the ability of the scheduler in contrast to the studied restrictions.

A framework that has led to algorithmic meta-theorems of the above form is bounded
tree-width [28, 50] and its developments like split-width [29, 22]. The idea is to capture
a programming model that acts on infinite storage by a finite-state device operating over
enriched computations. So far, this approach has not been lifted to games.

Remotely related is higher-order model checking [51]. The complexity is similar, namely
k-EXPTIME for schemes of order k. Moreover, besides Ong’s game semantics approach [51],
there are saturation [17] and summarization [46] algorithms. The technical challenges,
however, are different. In HOMC, the task is to represent and manipulate recursively defined
functions of higher order. In MPDG, the task is to capture the interferences among threads.

2 Multi-Pushdown Games

Multi-Pushdown Systems. A multi-pushdown system (MPDS) is a finite-control program
that operates on finitely many stacks of unbounded height [16]. Formally, it is a tuple
P = (Q,Γ, δ, n), where Q is a finite set of control states, n is the number of stacks, Γ is a
finite stack alphabet, and δ = δint ∪ δpush ∪ δpop is a set of internal, push, and pop transitions
with

δint ⊆ Q× [1..n]×Q δpush ⊆ Q× [1..n]× Γ×Q δpop ⊆ Q× Γ× [1..n]×Q .

Each transition acts on a stack r ∈ [1..n]. We refer to all internal transitions for stack r with
δint,r, and similarly for δpush,r and δpop,r. Let δr = δint,r ∪ δpush,r ∪ δpop,r. The size of P is
given by |P | = |Q|+ |Γ|+ |δ|.

The behavior of MPDS is defined in terms of configurations and labeled transitions
between them. A configuration of P is a pair (q,P) consisting of a control state q ∈ Q and a
vector of stack contents P ∈ (Γ∗)n. We use C = Q× (Γ∗)n for the set of all configurations.
The labeled transition relation −→ ⊆ C × δ × C implements the transitions given by P on its
configurations. We have (q,P) τ−→ (q′,P ′) if one of the following holds:

τ = (q, r, q′) ∈ δint and P ′ = P
τ = (q, r, s, q′) ∈ δpush and P ′ = P[r 7→s.P[r]]

τ = (q, s, r, q′) ∈ δpop and P ′[r 7→s.P′[r]] = P.

If transition label τ is not important, we may omit it. Vector P[j 7→y] is defined to coincide with
P except for the content of stack j which is replaced by y, P[j 7→y][j] = y and P[j 7→y][z] = P [z]
for all z 6= j. We use P[1..r] = y to indicate that stacks 1 to r hold content y.

FSTTCS 2020

52:4 On the Complexity of Multi-Pushdown Games

Ordered Computations, Contexts, and Phases. A computation of P is a finite or infinite
sequence of configurations (q0,P0) τ0−→ (q1,P1) τ1−→ . . . that respects the transition relation.
It is ordered [16] if for every pop transition from stack r the stacks 1, . . . , r − 1 are empty,
Pp[1..r − 1] = ε for all τp ∈ δpop,r. The computation is a context on stack r if all transitions
act on that stack, for all τp we have τp ∈ δr. It is a phase on stack r if every pop transition
acts on that stack, for all τp ∈ δpop we have τp ∈ δpop,r. A computation is said to have k
contexts [52] if it decomposes into k contexts but does not decompose into k − 1 contexts,
and similar for k phases [47].

Graph Games. A graph game is a two-player zero-sum game played by moving a pebble
along the edges of a potentially infinite graph [33]. Formally, it is a tuple (V,E, own,win),
where (V,E) is a directed graph, own : V → {Eve,Ana} is an ownership function, and
win : V ω → {Eve,Ana} is a winning condition. We call V the positions and E the moves of
the game. We call a graph game finite, if the set of positions is finite.

A play is a maximal path π in the graph (V,E) underlying the game. Eve wins the play
if either the play is infinite and win(π) = Eve, or the play is finite and ends in a position
from VAna (with no move left for Ana). Otherwise, Ana wins the play. Whenever a play
reaches a position, the owner of the position has to decide about the next move. A strategy
for Eve is a function σ : V ∗VEve → V such that v E σ(πv) holds for all πv ∈ V ∗VEve. The
strategy is positional if it only depends on the current position. In this case, the strategy
can be given as σ : VEve → V . A play π = π0π1 . . . is compliant with strategy σ for Eve if
for all πp ∈ VEve we have πp+1 = σ(π0 . . . πp). A strategy for Eve is winning from position v
if Eve wins all compliant plays that start in v. If there is a strategy that is winning from v,
we call v a winning position. The definitions for Ana are similar.

A reachability winning condition winW is defined by a set W ⊆ V of so-called winning
positions. We define winW (π) = Eve if a winning position πi ∈W is visited, and winW (π) =
Ana otherwise. A reachability game is a tuple (V,E, own,W). A parity winning condition
winΩ is defined by a mapping from positions to priorities, Ω : V → [0..max]. The winner of
a play is determined by the highest priority that occurs infinitely often during the play, i.e.
winΩ(π) = Eve if the highest infinitely often occurring priority is even, and winΩ(π) = Ana
if it is odd. A parity game is a tuple (V,E, own,Ω).

Multi-Pushdown Games. An n-stack multi-pushdown game (MPDG) [57] is a triple of the
form G = (P, own,win) consisting of a multi-pushdown system P = (Q,Γ, δ, n), an ownership
function own : Q→ {Eve,Ana}, and a winning condition win. The MPDG induces the graph
game (C,→, own,win), and we say that Eve wins the MPDG if she wins the induced graph
game. The set of positions C and the set of moves → are the configurations and transition
relation of P as defined above. The ownership function carries over from control states to
configurations, own(q,P) = own(q) for all (q,P) ∈ C. To be precise, in a reachability MPDG
we are given a set of control states Qreach to represent the winning set Creach = Qreach×(Γ∗)n.
In a parity MPDG, the winning condition is given by a priority assignment Ω : Q→ [0..max]
to the states. Again, we lift it to configurations by Ω(q,P) = Ω(q). The size of a reachability
MPDG G is |G| = |P |, the size of a parity MPDG is |G| = |P |+ max.

A k-context multi-pushdown game (G, k) is a restriction of the MPDG G so that plays
have at most k contexts [7]. The formal definition tracks the number of contexts within
the positions. Moves that would introduce context k + 1 do not exist. The definition of
k-phase multi-pushdown games is similar [57, 8]. An ordered n-stack multi-pushdown game
only admits moves that lead to an ordered play: a pop transition on stack r exists only in
positions where stacks 1 to r − 1 are empty.

R. Meyer and S. van der Wall 52:5

In our development, it will be convenient to assume that the MPDG of interest does not
deadlock. Every MPDG G can be turned into a deadlock-free MPDG G′ that has the same
winner, the same highest priority, and is larger by only a linear factor. This continues to
hold with a polynomial factor under the aforementioned restrictions.

3 Upper Bound for Ordered MPDG

We give an algorithm for computing the winning positions in an ordered n-stack MPDG
that works in n-EXPTIME. The algorithm is a slight optimization of Seth’s summarization
construction for phase-bounded MPDG [57]. We discovered a bug in this construction that
we explain and show how to correct. Details can be found in Appendix B.

I Theorem 1. Given an ordered n-stack MPDG G with parity winning condition, we can
compute Eve’s winning positions of the form (q, εn) in time expn(poly(|G|2)).

The algorithm constructs from the given MPDG G a finite parity game F and solves
the latter. The finite game preserves the winner for the positions of interest, the set of
priorities, and is not too costly to compute. For the complexity, note that n is not part of
the input but fixed. Further, parity games are solved in time exponential only in the number
of priorities [42, 43].

I Lemma 2. Let G be an ordered n-stack parity MPDG. In time expn(poly(|G|2)) we can
compute a finite parity game F so that Eve wins G from position (q, εn) if and only if she
wins F from a corresponding position. The priorities in G and F coincide.

3.1 Summarization for Ordered MPDG
We explain the summarization construction from [57], highlight our optimization for ordered
MPDG, and finally make the construction formal. The game G has infinitely many position
due to arbitrarily growing stacks. The finite parity game F removes the stacks and instead
tracks the current top of stack symbol for each stack. This forbids pop transitions in F .
When one player decides to make a pop transition F ends and determines a winner.

In order to model G’s behavior after a pop, F implements a summarization mechanism.
When a symbol s is pushed onto a stack r, Eve proposes a set of summaries. This set can be
understood as fixing a strategy for Eve in G that she will follow for as long as s remains on
stack r. Fixing a strategy results in the set of all plays that are compliant to it and lead
from the push of s to a situation where s is popped again. Each summary captures such a
situation and thereby abstracts a play from this set. The finite game F can thus skip any of
the abstracted plays up to the captured situation after the pop of s.

There is no guarantee that Eve will be honest in the sense that the proposed set of
summaries indeed abstracts all plays that pop s and are compliant to some fixed strategy. To
account for this, Ana is allowed to react to the proposal. First, she may trust Eve by choosing
a summary from the proposed set. In this case, F executes the skip of the abstracted play
and replaces (parts of) the current position with the position after the pop as captured by
the summary. This can be understood as also fixing a strategy for Ana in G that, together
with Eve’s strategy, leads to the abstracted play.

Second, she may doubt Eve’s proposal by executing the push transition instead of skipping.
This replaces the top of stack symbol for stack r. Executing the push also stores the set
of summaries proposed by Eve in the position of F . It is remembered for as long as s
remains the topmost symbol of stack r. To be precise, the position will hold a separate set of

FSTTCS 2020

52:6 On the Complexity of Multi-Pushdown Games

π
r i j

Figure 1 A fixed play π in G. Each arc matches a push to its pop. The highlighted paths show
different plays in F .

summaries for the topmost symbol of each stack. When a stack is popped, the remembered
set of summaries for that stack is checked for containing a summary that captures the current
situation of the play. Eve wins if and only if some summary in the set applies.

Finally, there may be another reason for Ana to execute the push transition. In this case,
she trusts Eve’s proposed set, but her own strategy will make sure that s is never removed
from the stack.

Ordered Summaries. To abstract a play π in G from a push to a matching pop on a stack r,
a summary for an ordered MPDG, or ordered summary for short, takes the shape

(q,m, T ,M,S) .

The entries q ∈ Q and T ∈ Γn−r describe the configuration resulting from the final pop
transition, with q the control state and T the topmost symbol for each stack. The orderedness
restriction forces the stacks 1, . . . , r− 1 to be empty. The entry m ∈ [0..max] is the maximal
priority encountered during the abstracted play, from after the push up to before the pop.
Each entry M[j] of M ∈ [0..max]n−r is the maximal priority encountered since after the
push of the topmost symbol T [j] of stack j.

The summary recursively holds a vector S ∈ (2OS)n−r of sets of summaries for the other
non-empty stacks. Here, OS is the set of all summaries as defined below. Assume the
abstracted play pushes the symbol T [j] onto a stack j 6= r and does not contain a matching
pop. The set of summaries S[j] is Eve’s proposed set for how the top of stack symbol T [j]
can be popped after the abstracted play. When the play skips to the position captured by
this summary, S[j] becomes the set of summaries stored for T [j].

Pathing. When Ana doubts a set of summaries for the push on stack r she might have a
strategy that pops stack r with a combination of control state, highest priority and top of
stack symbols, that are not present in the set. Alternatively, they coincide but after the
pop on stack r, her strategy pops stack j in a situation not captured by S[j]. Observe that
if Ana wants to doubt a set S[j], she needs to find a play in F , which runs into a pop on
stack j without running into a pop on another stack. Alternatively, if she wants to skip to a
situation captured by a summary within S[j], she needs to steer the play to run into the
push of T [j], so she gets the option of skipping.

To understand this, assume some summary abstracts a play π in G from the push to a
pop on stack r, which first contains a push on stack i and then a push on stack j (Figure 1).
If the set of summaries S[j] does not capture the situation how π pops T [j], Ana can run
into its pop as illustrated by the dashed path in the figure, i.e. Ana executes the push on
stack r and then skips upon the push on stack i. The play reaches the pop on stack j and is
checked against S[j]. If it is captured, Ana wants to continuetheplaybeyondthepopofstackj
byskipping to a summary in S[j]. To achieve this, she executes both, the push on stack r and
i. Then she can skip upon reaching the push on stack j as illustrated by the dotted path.

R. Meyer and S. van der Wall 52:7

I Definition 3. We proceed by induction on the stack from n down to one. The set of
ordered summaries for stack r is

OSr = Q× [0..max]× Γn−r × [0..max]n−r ×
∏

r<j≤n

2OSj .

In the base case r = n, the last three components are defined to be absent. The set of all
ordered summaries is OS =

⋃
1≤r≤nOSr.

Our optimization targets the orderedness restriction. During an abstracted play between a
push and a pop on stack r, if we find an unmatched push on another stack j, then we can
conclude that j > r. This means a summary for stack r only needs to contain summaries for
stacks of larger order. The largest set is OS1 which has size expn−1(O(|G|2)), Appendix A.1.
When we construct the game F , it will be convenient to assume that all vectors have length n.
We fill the missing entries for stacks one to r with ε for T , 0 forM, and ∅ for S.

3.2 The Finite Parity Game
Consider the ordered n-stack MPDG with parity winning condition G = (P, own,Ω), where
P = (Q,Γ, δ, n), own : Q→ {Eve,Ana}, and Ω : Q→ [0..max]. We define the finite parity
game F explained above, following Seth [57] but correcting a mistake. Rather than giving
the positions of F right away, we explain the behavior of the game and introduce them
together with their moves. Game F regularly visits check positions (Check, q, T ,M,S) with
q ∈ Q, T ∈ Γn,M ∈ [0..max]n, and S ∈ (2OS)n. Note that there is a set of summaries for
each stack. The owner and the priority are the ones for q.

Internal Transitions. Internal transitions (q, r, p) ∈ δint of game G are mirrored in F . They
only update the priorities:

(Check, q, T ,M,S) → (Check, p, T , upd(M, p),S) . (1)

The new priority vector is defined by upd(M, q)[j] = max{M[j],Ω(q)}, for each stack j. Note
that we use an implicit universal quantification over the parameters that are not specified
further, meaning the transition exists for all T ,M, and S.

Push Transitions. Push transitions (q, r, s, p) ∈ δpush in G lead to a series of transitions in
F originating from (Check, q, T ,M,S):

(Check, q, T ,M,S) → (Pushr, T ,M,S, p, s) (2)
(Pushr, T ,M,S, p, s) → (Claimr, T ,M,S, p, s, S) (3)

(Claimr, T ,M,S, p, s, S) → (Check, p, T[r 7→s], upd(M, p)[r 7→Ω(p)],S[r 7→S]) (4)
(Claimr, T ,M,S, p, s, S) → (Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) (5)

(Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) → (Check, q′, T ′′,M′′,S ′′) . (6)

The transitions introduce intermediary push, claim, and jump positions with the following
ownership and priority assignments:

own(Pushr,−) = Eve Ω(Pushr,−) = 0
own(Claimr,−) = Ana Ω(Claimr,−) = 0
own(Jumpr,−) = Eve Ω(Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) = m′.

FSTTCS 2020

52:8 On the Complexity of Multi-Pushdown Games

Move (2) remembers control state p and symbol s and gives Eve the next move. With
Move (3), Eve proposes a set of summaries S ⊆ OSr for the symbol to be pushed. By implicit
universal quantification, there is a transition for each such set. Move (4) performs the push:
the priority vector takes into account the priority of p for all stacks. For stack r, Ω(p) is the
highest (and only) priority seen since the push of s. Move (5) corresponds to a skip and exists
for every summary (q′,m′, T ′,M′,S ′) ∈ S. For stack r, we preserve the top of stack symbol
T [r] and the set of summaries S[r]. For the other stacks, we use the information given by
the summary. Thus, T ′′ = T ′[r 7→T [r]] and S ′′ = S ′[r 7→S[r]]. The role of the jump position is
to make visible the priority m′ of the summary. In Move (6), we update the priority vector
toM′′. For stack r, note that T [r] remains the topmost symbol after the skip. Hence, the
priority assignment has to take into accountM[r], the highest priority seen before the skip.
Thus,M′′ = upd(M′[r 7→max{M[r],m′}], q

′).

3.3 Pop Transitions and a Correction to a Mistake
As defined in [57] Ana may win F in cases where she does not win G. We correct the
definition and explain the difference to the original formulation. The ordered MPDG G can
only perform a pop (q, s, r, p) ∈ δpop of symbol s from stack r if the stacks 1 to r − 1 are
empty. Given the side condition, the finite game F has simulating moves only in positions
(Check, q, T[r 7→s],M,S) where T [1..r − 1] = ε, M[1..r − 1] = 0, and S[1..r − 1] = ∅. The
simulating moves immediately decide about the winner of the game and take the following
shape. The positions EveWin and AnaWin are winning for Eve resp. Ana. Both are owned
by Eve, have self-loops, and EveWin has priority 0 while AnaWin has priority 1.

(Check, q, T[r 7→s],M,S) → EveWin (7)
(Check, q, T[r 7→s],M,S) → AnaWin . (8)

Recall that the goal of a pop transition is to check whether Ana caught Eve lying on
the proposal of summaries for the popped symbol. If the current position is captured by a
summary, Eve was honest and Ana could have found a path to skip after the current pop.
Otherwise, Eve was lying, Ana was right in questioning the proposal and wins.

To check whether position (Check, q, T[r 7→s],M,S) is captured, we compare it to each
summary stored for stack r. The finite game has Move (7) if and only if there is a summary
x = (p,m, T ′,M′,S ′) ∈ S[r] with m =M[r], T ′ = T[r 7→ε],M′ =M[r 7→0], and

S ′[j] ⊆ S[j] for all j 6= r . (9)

If summary x exists, it indeed captures the current position in the game: The state after the
pop transition is p, the priority m is equal the maximal priority seen during the play with s
on stack r, i.e. m =M[r]. The top of stack symbols T ′ coincide with the current ones T ,
also the maximal priorities encountered since the moment these symbols have been pushed
coincide,M[j] =M′[j].

The problem in [57] refers to the relationship between S ′ and S. The incorrect definition
required an equality and therefore missed Moves (7) winning for Eve. The correction is to
require Inclusion (9). To understand the problem with equality, consider the play π in an
ordered MPDG G depicted in Figure 2. The play has two pushes with corresponding pops,
one on stack r and drawn above the play, the other on stack j and drawn below the play.
The push on stack j is simulated in the finite game F in two different ways.

Upon the push of stack r, Eve chooses a strategy up until the pop of stack r, enumerates
all compliant plays (up to the pop), and summarizes them in the proposed set S1. The play
π is among the compliant plays and yields summary x ∈ S1. The part of π abstracted by x

R. Meyer and S. van der Wall 52:9

π
S1

S2

x

S′2

Figure 2 Matching pushes and pops, the above on stack r, the below on stack j.

contains a push on stack j 6= r. Eve extends her strategy and enumerates all plays from the
push to the pop of stack j that coincide with π on the already fixed dashed part, from the
push of stack j to the pop of stack r. The resulting set of summaries S′2 is contained in x.

Ana may decide against skipping and execute the push on stack r. The play may follow π

and reach the push on stack j. Eve is again asked to summarize all plays up to the pop on
stack j, and proposes a set S2. Even though the proposed sets are for the same push in the
same play, the result may be S2 6= S′2. When forming S′2, the play was already fixed on the
dashed part, up to the pop of stack r. When forming S2, this does not hold. Hence, there
may be plays starting with the push of stack j that pop stack r in a situation not captured
by x and later pop stack j (e.g. with a different highest priority seen). However, Eve will
have to at least propose a summary for each play that coincides with π on the dashed part
and later pops stack j. Thus, the formed set of summaries S2 is a superset of the set S′2.
Accordingly, if Ana also executes the push on stack j, and the play runs into the pop of stack
r, checking whether summary x captures the situation at the pop of stack r requires that
S′2 ⊆ S2 and not S′2 = S2.

4 Upper Bound for Context-Bounded MPDG

We give an algorithm to solve context-bounded MPDG that takes max{1, k − 2}-EXPTIME
when considering k contexts. From a practical point of view, the interesting observation is that
communication across two context switches does not increase the complexity over the problem
of solving (sequential) pushdown games, which are EXPTIME-complete [61]. This compares
well to the fact that a 3-context MPDS can be encoded as a single stack PDS. Interestingly,
beyond the third context the complexity rises at the same pace as for phase-bounded MPDG,
namely by one exponent per context/phase (Section 5).

I Theorem 4. Given a k-context MPDG G with parity winning condition, we can compute
Eve’s winning positions of the form (q, εn) in time expmax{1,k−2}(poly(|G|)).

Note that we do not assume the number of stacks to be fixed. The observation is that in
a play with k contexts we can only make use of k stacks and it can be converted into an
MPDG with only k stacks at only polynomial overhead (cf. Appendix C).

Our algorithm starts by reducing the number of stacks, if necessary. Afterwards, we
construct a finite parity game identical to the one from the previous section except for a
different set of summaries. The correctness statement is therefore a variant of Lemma 2,
with a similar proof that can be found in [60].

I Lemma 5. Let G be a k-context k-stack parity MPDG. In time expmax{1,k−2}(poly(|G|))
we can compute a finite parity game F so that Eve wins G from position (q, εn) if and only
if she wins F from a corresponding position. The priorities in G and F coincide.

The set of summaries we use to construct F is an optimization of Seth’s summaries for
phase-bounded MPDG. We repeat Seth’s definition in our notation.

FSTTCS 2020

52:10 On the Complexity of Multi-Pushdown Games

I Definition 6 ([57]). We fix a stack r and define the set of phase summaries PSr,c by
induction on the phase c from k down to 1:

PSr,c = Q× {c} × [1..max]× Γn−1 × [1..max]n−1 ×
∏
j 6=r

2PSj,>c

where PSj,>c =
⋃k
i=c+1 PSj,i.

A phase summary (q, c,m, T ,M,S) in PSr,c still contains the information required to skip a
play from a push on stack r to the matching pop. The matching pop is defined to occur in
phase c. The meaning of q,m, T ,M is unchanged from Definition 3. The sets of summaries
for stacks j 6= r refer to phases later than c. If a symbol is popped in phase c from stack r
then stack j can only be popped in a later phase.

When considering context-bounded rather than phase-bounded MPDG, the key insight is
that the summaries for the first and the second context can be simplified. A summary for
these contexts describes a situation where the push and the matching pop happen within the
same context. As a consequence, the other stacks will not change between the push and the
pop. This means a summary for context one and two does not need to contain entries for
other stacks. This yields the following optimization of Definition 6.

I Definition 7. Consider stack r. We define the set of context summaries by CSr,c = PSr,c
for c from 3 to k. For c = 1, 2, the stack has no influence on the definition:

CSc = Q× {c} × [1..max] .

The largest set of summaries is CSr,3, which has size expk−3(O(|G|2k)) or expk−3(poly(|G|))
since k is fixed, Appendix A.2. Note that the optimization in Definition 7 is not sound for
phase-bounded MPDG. There, symbols can be pushed on all stacks in phases one and two.
The difference also manifests itself in the lower bound.

5 Lower Bounds

We show lower bounds on the complexity of solving context-bounded, phase-bounded, and
ordered MPDG. They match the upper bounds established in the previous sections. The
lower bounds already hold for reachability as the winning condition and thus carry over to
parity. Interestingly, for phase and context-bounded MPDG we only need two stacks.

I Theorem 8. Solving (k + 2)-context respectively k-phase 2-stack reachability MPDG is
k-EXPTIME-hard. Solving ordered n-stack reachability MPDG is n-EXPTIME-hard.

The proofs are by reduction from the membership problem for space-bounded alternating
Turing machines [27]. We want to focus on the main ideas. A detailed presentation can be
found in Appendix D and [60]. Let M be an alternating Turing machine that is guaranteed
to terminate (decider) and operate with space bound expk−1(poly(|w|)). Given an input
word w, we show how to construct a 2-stack reachability MPDG Gw satisfying the following.

I Lemma 9. Eve wins Gw if and only if w ∈ L(M). No play in Gw exceeds (k+ 2) contexts
and k phases. The construction of Gw works in time polynomial in |w|.

Note that the same MPDG Gw proves the lower bound for the context-bounded and for
the phase-bounded case. Appendix D.4 explains how to adapt the construction to ordered
MPDG. In that setting, we need n stacks. Together, this proves Theorem 8.

R. Meyer and S. van der Wall 52:11

We give the construction of Gw in three steps. First, we explain the overall idea of
how Gw simulates M . Next, we present the key techniques used in the construction,
first-order relations defined by a fragment of first-order logic, and Stockmeyer’s nested
indexing [59, 24, 36]. Finally, we give details of the construction.

5.1 Reduction
We recall the semantics of alternating Turing machines. Configurations (q, c) of M on input
w consist of a state q and tape content c. States are defined to be existentially or universally
branching. We generalize this terminology to configurations and speak of existential and
universal configurations, respectively. The tape content is a word over the tape alphabet
together with a marker denoting the head of the alternating Turing machine. We do not use an
additional work tape. A computation of M on w yields a tree. The nodes are configurations,
the edges are transitions. Existential configurations have one successor configuration, if a
transition is possible. Universal configurations have a successor for each possible transition.
A configuration is final if it is universal and no transitions are possible. The tree is accepting
if every branch reaches a final configuration. There may be different computation trees and
M accepts w if one of them is accepting.

Configurations (q, c) of the alternating Turing machine will be modeled by positions in
the game Gw. Alternation will be reflected by the ownership function: Eve will own the
positions modeling existential configurations, and hence decide about the transition to take
from there. Transitions between configurations will be mimicked by moves. A play of Gw
reflects a branch in some computation tree of M on input w. A winning strategy for Eve
will yield a computation tree of M on w that is accepting. A winning strategy for Ana will
find a branch that violates acceptance in any computation tree.

When modeling configuration (q, c), state q will be the control state of Gw. To understand
how tape content is stored, consider a computation branch of M that leads to (q, c). It is a
sequence of configurations (q0, c0) . . . (qm, cm)(q, c). The game stores the tape contents on
the first stack, in the form c#cm# . . .#c0. The owner of q chooses a transition δ to take
from (q, c), that results in a configuration (q′, c′). The game pushes the tape content c′ onto
the first stack and sets the new control state to q′.

The difficulty is that tape content c′ is of size expk−1(len) with len = poly(|w|) while the
size of Gw has to remain polynomial. This means the tape content cannot be pushed in a
faithful way by only using the control states of the MPDG. Instead, we let Eve propose a
sequence of symbols γ from an appropriate alphabet. Afterwards, we give Ana the opportunity
to check the sequence for correctness. Correctness is expressed by a number of relations
between γ and its predecessor c on the first stack.

For each relation, we show how to construct a verification mechanism, an MPDG that is
entered when Ana chooses to check correctness. Once entered, the verification mechanism
cannot be left again. It is constructed in such a way that Eve has a winning strategy from
the entry point if and only if the topmost sequences γ and c on the first stack are in the
required relation. The use of verification mechanisms forces a winning strategy for Eve in
the overall game to push a sequence γ that satisfies all relations.

Consider the verification mechanism required to implement the relation of a Turing
machine transition δ, say from configuration (q, c) to (q′, c′). The verification mechanism has
to check that γ = c′, the proposed word is the tape content of the successor configuration. If
not, then a single position will witness the mismatch. It is either a position that changed
without having the head, or the change did not respect δ. The verification mechanism
thus needs to compare the same position in γ and c. Still, the number of positions is not
polynomial and verification mechanisms cannot store the position in the control state.

FSTTCS 2020

52:12 On the Complexity of Multi-Pushdown Games

The idea is to annotate the letters in c and in γ with their positions. This reduces counting
to the problem of comparing annotations. However, even if the positions are encoded binary
the annotation is still expk−2(len) long. The problem can be addressed in the same way,
we again annotate the letters of the encoding with their positions. This recursive process
is known as Stockmeyer’s nested indexing [59, 24, 36], written here as function enc. As a
consequence, the first stack will actually hold the sequence enc(c)#enc(cm)# . . .#enc(c0).

The relations between γ and enc(c) that Ana will have to check by means of verification
mechanisms are: is γ a correct encoding at all, γ = enc(u) for some u, and is the encoded
tape content u the successor c′ of content c according to a Turing machine transition δ. We
already discussed how to check the latter relation. For the former, the essence is to check
the binary increment relation. We rely on further auxiliary relations.

Our key observation is that all relations required for the reduction are defined by a finite
alternation of quantifiers over the set of positions. We introduce first-order relations, a
formalism sufficiently expressive to capture each of these relations. Then we show how to
construct a verification mechanism for any first-order relation. This is the main technical
contribution of the section.

5.2 First-Order Relations
A first-order relation is a relation u ∼ϕ v between words u and v that is defined by a closed
formula ϕ from a fragment of first-order logic. For the definition of the fragment, let Σ be
a finite alphabet ranged over by s. Let V be a countable set of so-called position variables
ranged over by y. A term t is either an alphabet symbol or the symbol at position y in the
first or in the second word. A formula ϕ quantifies over positions, compares positions, and
compares symbols given by terms t1 and t2:

t ::= s | symb1(y) | symb2(y) ϕ ::= y1 ≤ y2 | t1 = t2 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃y.ϕ .

The remaining logical connectives, the universal quantifier, and common predicates are defined
as abbreviations. A formula is closed if every position variable is bound by a quantifier.

Formulas ϕ are evaluated over pairs of words u = u0 . . . un−1 and v = v0 . . . vn−1 over Σ
of the same length together with a valuation of the free position variables val : V → [0..n− 1].
The semantics of terms is

JsKval
u,v = s Jsymb1(y)Kval

u,v = uval(y) Jsymb2(y)Kval
u,v = vval(y) .

The semantics of first-order formulas is as expected [30]. For closed formulas, it is independent
of the valuation. A closed formula ϕ defines a so-called first-order relation among words
that contains all models of the formula, ∼ϕ = {(u, v) | u, v |= ϕ}. To give an example, the
ordering < on natural numbers in most-significant-bit-first encoding is defined by

∃y1.∀y2. [(y2 < y1) → symb1(y2) = symb2(y2)] ∧ symb1(y1) = 0 ∧ symb2(y1) = 1 .

A first-order formula is in prenex normal form if is has the shape Q1y1 . . . Qmym.ϕ, where
Qi ∈ {∃,∀} and ϕ does not contain quantifiers. Every first-order formula can be transformed
into an equivalent formula in prenex normal form [30].

5.3 Stockmeyer’s Nested Indexing
Our reduction relies on Stockmeyer’s nested indexing [59, 24, 36]. It takes a word of length
expd(n) and appends to each letter an index. The index is the letter’s position given in
most-significant-bit-first encoding. Each index has length expd−1(n). This encourages to
index it as well, and do so on until the indices have polynomial length.

R. Meyer and S. van der Wall 52:13

For each nesting depth d > 0 of indices we introduce the alphabet Σd = {0d, 1d}.
Let function msbf d assign to a number its most-significant-bit-first encoding over Σd. We
define the d-nested indexing indd(u) of words u = u0 . . . um by induction. The base case is
ind0(u) = u, the word itself and the inductive case is

indd+1(u) = u0x0 . . . um−1xm−1 , where xi = indd(msbf d+1(i)) .

To give an example, ind2(abra) = a02010211b02011211r12010211a12011211.
In our reduction, all words indexed by indd are of length expd(len) for some len ∈ N.

Then all indices in each layer d have the same length and their msbf d encoding ranges from
0expd−1(len) to 1expd−1(len). Since the tape contents in the reduction are of length (k− 1)-fold
exponential in the input word of the Turing machine, we define this to be our encoding,
enc(c) = indk−1(c). As a result, the lowest layer indices are of polynomial length.

5.4 Verification Mechanisms
We proceed by induction on the depth d of the nested indexing. We show how to construct
for every closed first-order formula ϕ a verification mechanism, a 2-stack MPDG Gdϕ that
decides ∼ϕ over words of length expd(len) in the following sense. We have u ∼ϕ v if and only
if Eve has a winning strategy from the initial position with u, v ∈ Σexpd(len) on top of the
first stack. The initial position takes the shape

(Checkdϕ, indd(u)γ1indd(v)γ2, γ3) ,

where γ1, γ2, γ3 are arbitrary stack contents up to some delimiting symbols. For the reduction,
we want to verify the relation of a Turing machine transition δ between encoded configurations
of length (k − 1)-fold exponential in the input. We invoke the next lemma with d = k − 1
and len = poly(|w|) and w the input to M . The verification mechanism thus takes at most
k + 1 contexts and k, once entered. The first phase for pushing the configurations has no
fixed stack, so it merges with the first phase of the verification mechanism for a total of k+ 2
contexts and k phases.

I Lemma 10. Let ϕ be a first-order formula over Σ and d ∈ N. In time poly(d+ |Σ|+ len) we
can construct a 2-stack reachability MPDG Gdϕ that decides ϕ over words of length expd(len).
Any play takes at most d+ 2 contexts and d+ 1 phases.

We explain the main ideas behind the construction. Details can be found in Appendix D
and [60]. Let ϕ = Qy1.Qym.ψ be a closed first-order formula in prenex normal form.
The game reflects the choice of a valuation val for y1, . . . , ym, discharging the quantifier
alternation to the players. For each yj , the responsible player chooses a position val(yj) whose
binary representation has length expd−1(len). Then she pushes the encoding indd−1(val(yj))
on the second stack (cf. Appendix D.3). When all variables have been processed, the second
stack holds a sequence ymindd−1(msbf d(val(ym))) . . . y1indd−1(msbf d(val(y1))) representing
val, where y1, . . . , ym serve as delimiting symbols.

After val has been chosen, we are interested in the value JψKval
u,v. Eve wins if and only if

it is true. The difficult case is to evaluate the atomic formulas in ψ. The idea is to let Eve
propose auxiliary information about u, v, and y1, . . . , ym, which is sufficient to evaluate the
atomic formulas. The size of this information is independent from d, len, so it can be stored
in the control state. Together, this means the game does not need to access the stack during
evaluation. As before, Ana may verify the proposed information.

FSTTCS 2020

52:14 On the Complexity of Multi-Pushdown Games

Atomic formulas can take the shape Jsymb1/2(y)Kval
u,v. Eve proposes symbol assignments

symbu, symbv : {y1, . . . , ym} → Σ, mapping each variable y stored on stack two to the symbol
of word u, v at the position val(y). If Ana chooses to verify symbu(y) (resp. symbv(y)) for
some y, Eve removes symbols from stack one until she claims to have found position val(y).
Ana then decides to either compare the symbol found on stack one to symbu(y) (symbv(y))
or verify the equality of the valuation indd−1(val(y)) on stack two and the annotated index
on stack one (Appendix D.1).

Alternatively, an atomic formula can be Jy ≤ y′Kval
u,v. For these, Eve proposes a variable

order, a sequence of variables interleaved with relations of the form

yl1 θ1 yl2 θ2 . . . θm−1 ylm , with θj ∈ {=, <} .

Verifying an entry y θ y′ amounts to verifying one of the first-order relations =, <, and > on
the corresponding valuations stored on stack two. This is an application of induction, since
the valuations are of smaller nested depth, i.e. indd−1(val(y)) and indd−1(val(y′)).

Note that the number of possible symbu, symbv, and variable orders is independent of
the indexing depth d and the input length len, but exponential in the size of ϕ.

Contexts and Phases. The verification mechanism begins by pushing the valuation onto
stack two. This process either succeeds with the final valuation on stack two, which costs
one context or phase, but does not fix the stack for the phase, or fails and takes at most
d+ 1 contexts and d phases (Appendices D.3, D.2).

Then, Eve proposes information. Ana may doubt that symb1(y) or symb2(y) equals
uval(y) resp. vval(y). Popping the first stack introduces a second context and sets the stack for
the first phase. The comparison routine adds (d− 1) + 2 contexts and phases (Appendix D.1).
Since the context and phase for popping merges with the first context or phase of this routine,
the resulting play has up to d+ 2 contexts and d+ 1 phases.

Alternatively, Ana may doubt an entry y θ y′ of the variable order. This includes removing
irrelevant variable values from stack two, which continues the first context and sets the stack
for the first phase. Then Gd−1

ϕθ
adds up to (d− 1) + 2 contexts and (d− 1) + 1 phases by the

induction hypothesis. This yields a bound of d+ 2 contexts and d phases.
If Ana believes the proposal, the game ends without a further context or phase. The

maximum across all plays is thus d+ 2 contexts and d+ 1 phases.

References
1 CPAchecker. URL: https://cpachecker.sosy-lab.org/index.php.
2 ULTIMATE Automizer and ULTIMATE Taipan. URL: https://monteverdi.informatik.

uni-freiburg.de/tomcat/Website/.
3 K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

LMCS, 3(3), 2007.
4 S. Akshay, P. Gastin, S. Krishna, and S. Roychowdhury. Revisiting underapproximate

reachability for multipushdown systems. In TACAS, volume 12078 of LNCS, pages 387–404.
Springer, 2020. doi:10.1007/978-3-030-45190-5_21.

5 M. F. Atig. From multi to single stack automata. In CONCUR, volume 6269 of LNCS, pages
117–131. Springer, 2010.

6 M. F. Atig. Global model checking of ordered multi-pushdown systems. In FSTTCS, volume 8
of LIPIcs, pages 216–227. Dagstuhl, 2010.

7 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. Model checking branching-time
properties of multi-pushdown systems is hard. CoRR, abs/1205.6928, 2012. URL: http:
//arxiv.org/abs/1205.6928.

https://cpachecker.sosy-lab.org/index.php
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
https://doi.org/10.1007/978-3-030-45190-5_21
http://arxiv.org/abs/1205.6928
http://arxiv.org/abs/1205.6928

R. Meyer and S. van der Wall 52:15

8 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. Parity games on bounded phase
multi-pushdown systems. In NETYS, volume 10299 of LNCS, pages 272–287. Springer, 2017.

9 T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based approach to
solving games on infinite graphs. In POPL, pages 221–234. ACM, 2014.

10 T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. Recursive games for compositional
program synthesis. In VSTTE, volume 9593 of LNCS, pages 19–39. Springer, 2015.

11 D. Beyer. Advances in automatic software verification: SV-COMP 2020. In TACAS, volume
12079 of LNCS, pages 347–367. Springer, 2020.

12 D. Beyer, M. Dangl, and P. Wendler. A unifying view on SMT-based software verification.
JAR, 60(3):299–335, 2018.

13 D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification.
In Proc. CAV, volume 6806 of LNCS, pages 184–190. Springer, 2011.

14 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150. Springer,
1997.

15 A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-free
processes. In FSTTCS, volume 3328 of LNCS, pages 135–147. Springer, 2004.

16 L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

17 C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. In ICALP, volume 7392 of LNCS, pages 165–176. Springer, 2012.

18 C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-SHORe: a collapsible approach to
higher-order verification. In ICFP, pages 13–24. ACM, 2013.

19 C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion
schemes. In CSL, volume 23 of LIPIcs, pages 129–148. Dagstuhl, 2013.

20 J. R. Büchi. Regular canonical systems. Archiv für mathematische Logik und Grundlagen-
forschung, 6(3):91–111, 1964.

21 T. Cathcart Burn, C.-H. L. Ong, and S. J. Ramsay. Higher-order constrained Horn clauses for
verification. Proc. ACM Program. Lang., 2(POPL):11:1–11:28, 2018.

22 Aiswarya C. Verification of communicating recursive programs via split-width. PhD thesis,
ENS Cachan, 2014.

23 T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, volume
2380 of LNCS, pages 704–715. Springer, 2002.

24 T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown automata.
CoRR, abs/0705.0262, 2007. URL: http://arxiv.org/abs/0705.0262.

25 A. Carayol and M. Hague. Saturation algorithms for model-checking pushdown systems. In
AFL, volume 151 of EPTCS, pages 1–24, 2014.

26 A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of higher-order
pushdown games. In LICS, pages 193–204. IEEE, 2008.

27 A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. JACM, 28(1):114–133, 1981.
28 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic. CUP, 2012.
29 A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems

via split-width. In CONCUR, volume 7454 of LNCS, pages 547–561. Springer, 2012. doi:
10.1007/978-3-642-32940-1_38.

30 H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
31 J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In

CAAP, volume 787 of LNCS, pages 115–129. Springer, 1994.
32 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown

systems. In Infinity, volume 9 of ENTCS, pages 27–37. Elsevier, 1997.
33 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games, volume

2500 of LNCS. Springer, 2002.

FSTTCS 2020

http://arxiv.org/abs/0705.0262
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-32940-1_38

52:16 On the Complexity of Multi-Pushdown Games

34 C. Grellois and P.-A. Melliès. Finitary semantics of linear logic and higher-order model-checking.
In MFCS, volume 9234 of LNCS, pages 256–268. Springer, 2015.

35 M. Hague. Saturation of concurrent collapsible pushdown systems. In FSTTCS, volume 24 of
LIPIcs, pages 313–325. Dagstuhl, 2013.

36 M. Hague, R. Meyer, and S. Muskalla. Domains for Higher-Order Games. In MFCS, volume 83
of LIPIcs, pages 59:1–59:15. Dagstuhl, 2017.

37 M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. LMCS, 4(4), 2008.

38 M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa, C. Schätzle,
C. Schilling, F. Schüssele, and Andreas Podelski. Ultimate Automizer with an on-demand
construction of Floyd-Hoare automata. In TACAS, volume 10206 of LNCS, pages 394–398.
Springer, 2017.

39 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

40 T. A. Henzinger. Games in system design and verification. In TARK, pages 1–4. National
University of Singapore, 2005.

41 M. Hofmann and J. Ledent. A cartesian-closed category for higher-order model checking. In
LICS, pages 1–12. IEEE, 2017.

42 M. Jurdzinski. Small progress measures for solving parity games. In STACS, volume 1770 of
LNCS, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3.

43 M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games. In LICS,
pages 1–9. IEEE, 2017.

44 M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM J. C., 38(4):1519–1532, 2008.

45 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In POPL, pages 416–428. ACM, 2009.

46 N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model
checking of higher-order recursion schemes. In LICS, pages 179–188. IEEE, 2009.

47 S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In
LICS, pages 161–170. IEEE, 2007.

48 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, volume 6174 of LNCS, pages 629–644. Springer,
2010.

49 S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-bounded
matching relations. In CONCUR, volume 6901 of LNCS, pages 203–218. Springer, 2011.

50 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages 283–294.
ACM, 2011.

51 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LICS,
pages 81–90. IEEE, 2006.

52 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS,
volume 3440 of LNCS, pages 93–107. Springer, 2005.

53 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
ToPLaS, 22(2):416–430, 2000.

54 T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In POPL, pages 49–61. ACM, 1995.

55 S. Salvati and I. Walukiewicz. A model for behavioural properties of higher-order programs.
In CSL, volume 41 of LIPIcs, pages 229–243. Dagstuhl, 2015.

56 A. Seth. Games on higher order multi-stack pushdown systems. In RP, volume 5797 of LNCS,
pages 203–216. Springer, 2009.

57 A. Seth. Games on multi-stack pushdown systems. In LFCS, volume 5407 of LNCS, pages
395–408. Springer, 2009.

https://doi.org/10.1007/3-540-46541-3

R. Meyer and S. van der Wall 52:17

58 M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. TR 2, NYU,
1978.

59 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, MIT, 1974.

60 S. van der Wall. Bounded analysis of concurrent and recursive programs. Mas-
ter’s thesis, TU Braunschweig, 2019. URL: http://www.tcs.cs.tu-bs.de/documents/
thesis-van-der-wall-2019.pdf.

61 I. Walukiewicz. Pushdown processes: games and model-checking. IC, 164(2):234–263, 2001.
62 I. Walukiewicz. A landscape with games in the background. In LICS, pages 356–366. IEEE,

2004.

A Details on Section 3

We argue that Theorem 1 follows from Lemma 2. To check whether Eve wins G, by
the first statement in the lemma it is sufficient to check whether she wins F . We thus
construct the finite game F , which takes (k − 2)-fold exponential time. We apply a modern
parity game solving algorithm to determine the winner in F , like the recent subexponential
algorithms [43, 44]. The algorithm takes time exponential only in the priorities of F , which
by the second statement in the lemma are the priorities [0..max] in G. We thus obtain an
overall time complexity

expk−2(poly(|G|)) + expk−2(poly(|G|))max ≤ expk−2((1 + max) poly(|G|)),

which is still expk−2(poly(|G|)).

A.1 Size of the sets of ordered summaries
We estimate the size of the optimized sets of summaries by induction on the stack. In the
base case:

|OSn| = |Q| ·max = expn−n(O(|G|2)) .

For the induction step, assume |OSr+1| = expn−(r+1)(O(|G|2)). For stack r we obtain

|OSr| = |Q| ·
n∏

j=r+1
|Γ| ·max · 2

∑n

i=r+1
|OSi| ≤ |Q| · |Γ|n−r ·maxn−r ·

n∏
j=r+1

2n|OSr+1|

≤ |G|2(n−r)+1 · 2(n−r)n|OSr+1| ≤ 2(2n+1)|G|+n2|OSr+1|

The equality is by definition. The first inequality relies on |OSr| ≥ . . . ≥ |OSn|. Since n is a
constant,

2(2n+1)|G|+n2|OSr+1| = 2(2n+1)|G|+n2expn−(r+1)(O(|G|2)) = expn−r(O(|G|2)) .

A.2 Size of the sets of context summaries
We estimate the size of the optimized sets of summaries by induction on the context. In the
base case:

|OSr,1| = |OSr,2| ≤ |OSr,k| ≤ |Q| ·max · |Γ|k−1 ·maxk−1 = expk−k(O(|G|2k)) .

FSTTCS 2020

http://www.tcs.cs.tu-bs.de/documents/thesis-van-der-wall-2019.pdf
http://www.tcs.cs.tu-bs.de/documents/thesis-van-der-wall-2019.pdf

52:18 On the Complexity of Multi-Pushdown Games

The function is indeed polynomial as the number of stacks k is fixed. For the induction step,
assume |OSr,c+1| = expk−(c+1)(O(|G|2k)) with 4 ≤ c+ 1 ≤ k. For context c we obtain

|OSr,c| = |Q| ·max ·
r−1∏
j=1
|Γ| ·max · 2

∑k

l=c+1
|OSj,l|

·
k∏

j=r+1
|Γ| ·max · 2

∑k

l=c+1
|OSj,l|

≤ |G|2k ·
k∏
j=1

2k|OSj,c+1| ≤ 22k|G|+k2|OSr,c+1| .

The equality is by definition. The first inequality relies on |OSr,c| ≥ . . . ≥ |OSr,k|. Also,
|OSj,c| = |OSj′,c| for stacks j 6= j′ by Symmetry.

22k|G|+k2|OSr,c+1| = 22k|G|+k2expk−(c+1)(O(|G|2k)) = expk−c(O(|G|2k))) .

B Equivalence of the MPDG G and the finite game F

In the following, we give a construction intuition for how winning strategies for Eve can be
converted between G and F .

B.1 Transforming a winning strategy from F to G

We proceed in the following steps: First, we introduce a strategy transducer T to transport σ
from F = (VF , EF , own,Ω) to G = (P, own,Ω). Then, we define the strategy ν it implements
and show an invariant between plays compliant with that strategy and runs of T (Lemma
14). Next, we show that if T can perform a run from a stair (q,R) to some configuration
(q′,R′), then there is a play compliant to σ in F from Tr(q,R) to Tr(q′,R′) (Lemma 15
and Lemma 16). Lastly, putting the previous results together, we get that a run compliant
to ν that is losing for Eve leads to a play in F that is compliant to σ losing for Eve, which
contradicts it being a winning strategy. Thus, ν is also a winning strategy.

Intuitively, the transducer T is a multi-pushdown system with the same number of stacks
as P . At any point in the game, the stack heights of T are identical to the stack heights
of P . However, the transitions are amplified to update all top of stack contents with each
transition.

The strategy automaton remembers information of the finite state game in the following
sense. If the finite state game would be in a position (Check, q, T ,M,S), then the strategy
automaton is in state q and the top of stack symbol of each stack r is a tuple (T [r],M[r],S[r]).
The automaton mimics a play of G. Whenever Eve has the next move, she can use it to
follow her strategy σ for F .

I Definition 11. Given a strategy σ for Eve in F , the strategy automaton T is a tuple
T = (Q,Γ × [0..max] × 2OS, 7→, n) where Q is the state space, Γ × [0..max] × 2OS is the
stack alphabet, and 7→ is a transition relation, which we will define directly on the set of
configurations CT .

A configuration of T ∈ CT is (q,R), where R : [1..n] → (Γ × [0..max])∗ × 2OS are the
stack contents. For each stack j, the stack contents R[j] = Rj |R[j]| R

j
|R[j]|−1 . . . R

j
1 is a

seqence of tuples, and Rj |R[j]| is the top of stack symbol. We denote the tuple contents by
Rj i = (γj i, m

j
i, S
j
i).

R. Meyer and S. van der Wall 52:19

For the sake of notation, we introduce a context sensitive top of stack pointer ↑. It obtains
the index value of the top of stack symbol:

R[j] = Rj |R[j]| R
j
|R[j]|−1 . . . R

j
1 = Rj ↑ R

j
↑−1 . . . R

j
1.

This notation also carries over to the individual tuple contents. Thus,

γj ↑ = γj |R[j]| Sj ↑ = Sj |R[j]| mj ↑ = mj |R[j]|.

I Definition 12. We define a transformation function Tr : CT → VF mapping configurations
of T to positions in F by Tr(q,R) = (Check, q, T ,M,S), where T [j] = γj ↑, M[j] = mj ↑
and S[j] = Sj ↑.

To define the transition relation 7→ ⊆ CT × δ × CT , let Tr(q,R) = (Check, q, T ,M,S)
and Tr(q′,R′) = (Check, q′, T ′,M′,S ′). For every transition rule τ of P , T has a transition
(q,R) τ7−→ (q′,R′), if either q is owned by Eve and σ tells her for position Tr(q,R) to use the
move simulating τ , or own(q) = Ana.

Further, for all stacks j 6= r, T ′[j] = γ′
j
↑ = γj ↑ = T ′[j] and T updates the stackcontents

R to R′ dependent on the transition:

Case 1 (τ is an internal transition (q, r, q′)): R = R′ except for each stack j, m′
j
↑ =

max{Ω(q′), mj ↑}.

Case 2 (τ is a push transition (q, r, s, q′)): R = R′, except for each stack j 6= r, m′
j
↑ =

max{Ω(q′), mj ↑}. And for stack r, R′[r] = (s,Ω(q′),S)R[r], where S is determined by σ:

σ(Pushr, T ,M,S, q′, s) = (Claimr, T ,M,S, q′, s, S).

Case 3 (τ is a pop transition (q, s, r, q′) ∈ δpop and R[j] = ε for all j < r):
Case 3.1 (there is (q′,M[r], T[r 7→ε],M[r 7→0],S) ∈ Sr ↑ s.t. for each j > r, S[j] ⊆ Sj ↑):
R = R′, except for each j > r, m′

j
↑ = max{Ω(q′), mj ↑} and S′

j
↑ = S[j]. And for stack r,

R′[r] = (γr ↑−1,max{ mr ↑, m
r
↑−1,Ω(q′)}, Sr ↑−1) Rr ↑−2 Rr ↑−3 . . . Rr 1.

Case 3.2 (there is no (q′,M[r], T[r 7→ε],M[r 7→0],S) ∈ Sr ↑ s.t. for each j > r, S[j] ⊆ Sj ↑):
R = R′, except for each j > r, m′

j
↑ = max{Ω(q′), mj ↑} and for stack r, R′[r] =

(γr ↑−1,max{ mr ↑, m
r
↑−1,Ω(q′)}, Sr ↑−1) Rr ↑−2 Rr ↑−3 . . . Rr 1.

Note that case 3.2 is almost a copy of case 3.1. It simply does not find a matching
summary. We will later use case distinction on whether a transition is due to case 3.1 or 3.2.
Also note that when a configuration (q,R) belongs to Eve, T can only perfom the transition
which σ wants to simulate from Tr(q,R).

The following lemma tells us, that during a run of T , the summary for a stack symbol
can only shrink during the run.

I Lemma 13. Let η = (q,R) and η′ = (q′,R′) with η τ7−→ η′ in T. For each stack j ∈ [1..n],
let shj = min{|R[j]|, |R[j]′|}.
For each stack j ∈ [1..n], S′

j
shj ⊆ Sj shj and for each u ∈ [1..shj − 1], Rj u = R′j

u.

Proof. By construction. Only transition case 3.1 changes Sj shj . When transition case 3.1
happens for a stack r, it changes on stacks j > r the set Sj ↑ to S[j]. But S[j] ⊆ Sj ↑ by the
conditions for transition 3. J

FSTTCS 2020

52:20 On the Complexity of Multi-Pushdown Games

A run of the strategy automaton is a sequence (qinit, (ε,∅,Ω(qinit)n) = η0
τ07−→ η1

τ17−→
We can use the strategy automaton to define a strategy ν on G for starting positions of the
form (qinit, εn). We define ν inductively on the play prefix. The proof of the next lemma
does both, it defines the strategy and states an invariant between plays in G conform to it
and runs of T .

I Lemma 14. Let π = π0
τ0−→ . . .

τl−1−−−→ πl be a play prefix compliant to the strategy ν and
η = η0

τ07−→ . . .
τl−17−−−→ ηl the corresponding run of T. At any position p ∈ N, if ηp = (q,R),

then
1. πp = (q, (γ1 ↑ γ1 ↑−1 . . . γ

1
1, γ

2
↑ γ

2
↑−1 . . . γ

2
1, . . . , γn ↑ γ

n
↑−1 . . . γn 1)).

2. If lupπj (p) 6= ⊥ is defined, then maxu∈[lupπ
j

(p)..p]{Ω(qu)} = mj ↑. And if lupπj (p) = ⊥ is
undefined, then maxu∈[0..p]{Ω(qu)} = mj ↑.

Proof.

I Base Case (π0, η0). π0 = (qinit, εn), η0 = ((qinit, 0, 0), (ε,∅,Ω(qinit))n). Both invariants
hold immediately.

I Inductive Case (πi to πi+1, ηi to ηi+1). Let π = π0
τ07−→ . . .

τi−17−−−→ πi = (q,P) τi7−→ (q,P ′) be
a play prefix in G. By induction, the strategy automaton has a run prefix η0

τ17−→ . . .
τi−17−−−→

ηi = (q,R), that fulfills the lemma.
In case of own(ηi) = Eve, by construction, T has only an enabled transition for a single

τ at ηi. Namely the one, which σ would choose to simulate from ψ(q,P). We choose
ν(π0

τ07−→ . . .
τi−17−−−→ πi) to use that transition.

In the other case, for every transition τi enabled in πi, a corresponding is enabled in T
by construction.

If π is compliant with ν, we continue η by the corresponding enabled transition ηi = (q,
R) τi7−→ (q′,R′) = ηi+1.

Remains to show, that the lemma holds for position i+ 1 as well.
For all stacks j 6= r, the third condition is fulfilled by construction and induction: By

induction, the maximal parity seen since position lupπj (i) up to πi is mj ↑. For all stacks
j 6= r, the stack height does not change. There has been seen a new parity Ω(q′). The
construction sets m′

j
↑ appropriately to max{Ω(q′), mj ↑}.

Case 1 (τi = (q, r, q′) ∈ δint): The first condition is fulfilled trivially, since the symbols in
the stack contents did not change. For the second condition, in this case, the same arguments
apply as for the other stacks.

Case 2 (τi = (q, r, s, q′) ∈ δpush): For the first condition, the symbols in the stack contents
don’t change for all stacks j 6= r. For stack r however, R′[r] = (s,Ω(q′),S)R[r], such that s
is the new additional symbol, which is the pushed symbol by τi. This meets the lemma’s
requirenment.

For the third condition, Ω(q′) is the only parity seen since the push of s.

Case 3 (τi = (q, s, r, q′) ∈ δpop): Be aware that T contains multiple possible transitions for
τi. These only differ in the sets of summaries Sj ↑ for each stack j > r. The lemma does not
state any conditions on the summary sets, so there is no need for case distinction.

For the first condition, the symbols in the stack contents don’t change for stacks j 6= r.
For stack r however, (s,Ω(q′),S)R[r]′ = R[r], removing the top most symbol from the stack,
which is the symbol removed by τi. This meets the lemma’s requirenment.

R. Meyer and S. van der Wall 52:21

For the second condition, the maximal parity seen since the push of γ′
r
↑ is determined

by the maximal parity seen since the last unmatched push before pushing s, the just popped
symbol. This is the position lupπr (i+ 1) = lupπr (lupπr i).

The correct priority is chosen by m′
r
↑ = max{ mr ↑, m

r
↑−1,Ω(q′)}. J

The next lemma ensures that the strategy automaton T and the mapping Tr of configu-
rations from T to positions in F behave well with respect to the strategy σ itself. When
the strategy automaton is able to make a move η τ7−→ η′, then there should be transitions
Tr(η) 7→ · · · 7→ Tr(η′) compliant with σ in F .

I Lemma 15. Let σ be a strategy for Eve in F and T the strategy automaton. Let η =
η0

τ07−→ η1
τ17−→ . . . be a computation of T starting in a stair η0.

For each position i ∈ N, let

ηi = (qi,Ri) Tr(ηi) = (Check, qi, T i,Mi,Si)

where for each stack j, Ri[j] = (γj i
↑, m
j i
↑, S
j i
↑)(γ

j i
↑−1, m

j i
↑−1, S

j i
↑−1) . . . (γj i

1, m
j i

1, S
j i

1).
Let i ∈ N. Let ηi

τi7−→ ηi+1 be a transition of T that is not by transition case 3.2.
Then the following transitions exist in F and are compliant with σ.

If τi = (qi, r, qi+1) ∈ δint:
Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

τi = (q, r, s, q′) ∈ δpush:
Tr(ηi) = (Check, qi, T i,Mi,Si)

7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i[r 7→s],M
i+1,Si[r 7→ Sr i+1

↑]) = Tr(ηi+1)

If τi = (q, s, r, q′) ∈ δpop: Since η0 is a stair, position i is in a push-pop-pair (t, i).
Tr(ηt) = (Check, qt, T t,Mt,St)

7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

7→ (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

7→ (Check, qi+1, T i+1,Mi+1,Si+1,) = Tr(ηi+1)

Proof. For any of the following, the correctness of qi+1 is immediate and therefore skipped.
Also be aware that both, F and T , respect the orderedness restriction.

Case 1 (τi = (qi, r, qi+1) ∈ δint): By construction of F , τi causes the existence of the
transition

Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T i,M′,Si)
!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Remains to show the equality of the last two check states. By definition of T , Ri = Ri+1.
Together with Tr we get that T i = T i+1 and Si = Si+1. By construction of F and T , for
any stack j,

M[j]i+1 = mj i+1
↑ = max{ mj i

↑,Ω(qi+1)} = max{M[j]i,Ω(qi+1)} =M[j]′.

FSTTCS 2020

52:22 On the Complexity of Multi-Pushdown Games

Also, by construction of T , the transition ηi
τi7−→ ηi+1 only exists, if own(qi) = Ana or

σ(Check, qi, T i,Mi,Si) = (Check, qi+1, T i,M′,Si). The transition is compliant with σ.

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): By construction of F , τi causes the existence of the
transitions

Tr(ηi) = (Check, qi, T i,Mi,Si)
7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i[r 7→s],M
′,Si[r 7→ Sr i+1

↑])

!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Remains to show the equality of the last two check states. By definition of T , Ri =
Ri+1, except for each j 6= r, mj i+1

↑ = max{Ω(qi+1), mj i
↑}, and for stack r, Ri+1[r] =

(s,Ω(qi+1), Sr i+1
↑)R[r], where

σ(Pushr, T i,Mi,Si, qi+1, s) = (Claimr, T i,Mi,Si, qi+1, s, Sr i+1
↑).

This immediately yields T i[r 7→s] = T i+1 and Si[r 7→ Sr i+1
↑] = Si+1.

Also,M′[r] = Ω(qi+1) = mr i+1
↑ and for each stack j 6= r:

M′[j] = max{Ω(qi+1),M[j]i} = max{Ω(qi+1), mj i
↑} = mj i+1

↑ .

Since the transition ηi
τi7−→ ηi+1 exists in T , by its construction,

σ(Pushr, T i,Mi,Si, qi+1, s) = (Claimr, T i,Mi,Si, qi+1, s, Sr i+1
↑).

Also, either own(qi) = Ana or

σ(Check, qi, T i,Mi,Si) = (Pushr, T i,Mi,Si, qi+1, s).

Thus, the transitions exist in F and are compliant with σ.

Case 3 (τi = (q, r, s, q′) ∈ δpop and (t, i) is a push-pop-pair): Since (t, i) is a push-pop-pair,
there is a push transition τt = (qt, r, s, qt+1).

By construction of F , τt causes the existence of the transitions

Tr(ηt) = (Check, qt, T t,Mt,St)
7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

which are compliant with σ, as discussed in the previous case. Since (t, i) is a push-pop-pair,
for any position t < p < i, |Rt+1[r]| = |Ri[r]| ≤ |Rp[r]|. Then, by repetitive use of Lemma
13, Sr i

↑ ⊆ Sr t+1
↑ .

Next, we show that

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑) 7→ (Jumpr, qi+1,Mi[r], T i+1,Mi

[r 7→0],S
i+1,Mt[r])

is a valid transition in F . Since the transition ηi
τi7−→ ηi+1 is not by transition case 3.2, it must

be by transition case 3.1 of T . Thus, T finds a summary (qi+1,Mi[r], T i[r 7→ε],Mi
[r 7→0],S) ∈

R. Meyer and S. van der Wall 52:23

Si[r] such that for each stack j 6= r, S[j] ⊆ Si[j]. By construction of F , there is the transition

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑)

7→ (Jumpr, qi+1,Mi[r], T i[r 7→T t[r]],Mi
[r 7→0],S[r 7→St[r]],Mt[r])

!= (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

To find the last equation, we need to identify T i[r 7→T t[r]] = T i+1 and S[r 7→St[r]] = Si+1.
Remember that τi = (qi, s, r, qi+1) is a popping transition with

ηi = (qi,Ri) τi7−→ (qi+1,Ri+1) = ηi+1,

that used transition case 3.1 of the strategy automaton conditions for a transition with the
prediction S ∈ Sr i

↑ = Si[r]. Since (t, i) is a push-pop-pair, for all positions t+ 1 ≤ p ≤ i,

|Rt[r]| = |Rt+1[r]| − 1 = |Ri[r]| − 1 = |Ri+1[r]| < |Rp[r]|.

As T does not change the symbol of its tuples and by repetitive use of Lemma 13,

T i+1[r] = γr i+1
↑ = γr t

↑ = T t[r] and St[r] = Sr t
↑ = Sr t+1

↑−1 = Sr i
↑−1 = Sr i+1

↑ = Si+1[r].

Since T used S for its case 3.1 transition, by its construction: For all stacks j 6= r,
S[j]i+1 = Sj i+1

↑ = S[j].
The last transition is

(Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r]) 7→ (Check, qi+1, T i+1,M′,Si+1)
!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

It remains to showM′ =Mi+1. For any stack j > r, by construction of F and T ,

Mi+1[j] = mj i+1
↑ = max{ mj i

↑,Ω(qi+1)} = max{Mi[j],Ω(qi+1)} =M′[j].

For stack r, again since (t, i) is a push-pop-pair, for all positions t+ 1 ≤ p ≤ i holds:

|Rt[r]| = |Rt+1[r]| − 1 = |Ri[r]| − 1 = |Ri+1[r]| < |Rp[r]|.

Repetitive use of Lemma 13 leads to mr t
↑ = mr t+1

↑−1 = mr i
↑−1. Finally,

Mi+1[r] = max{ mr i
↑, m
r i
↑−1,Ω(qi+1)}

= max{ mr i
↑, m
r t
↑,Ω(qi+1)} = max{Mi[r],Mt[r],Ω(qi+1)} =M′[r].

The positions

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑), (Jumpr, qi+1,Mi[r], T i+1,Mi

[r 7→0],S
i+1,Mt[r])

are both not owned by Eve. The transitions are compliant with σ. J

Let σ be a winning strategy for Eve in F from (Check, qinit, εn, 0n,∅n). We use T to
derive a strategy ν for Eve in G as described above (Lemma 14). Let there be a play π
compliant with ν together with its strategy automaton run η. Towards contradiction, assume
π is losing for Eve. We construct a play ρ = ρ0 . . . in F compliant with σ from ρ0 = (Check,
qinit, ε

n, 0n,∅n) that is losing for Eve.

FSTTCS 2020

52:24 On the Complexity of Multi-Pushdown Games

For each position i ∈ N, let

ηi = (qi,Ri), Tr(ηi) = (Check, qi, T i,Mi,Si).

where for each stack j, R[j]i = (γj i
↑, m
j i
↑, S
j i
↑)(γ

j i
↑−1, m

j i
↑−1, S

j i
↑−1) . . . (γj i

1, m
j i

1, S
j i

1).
In the following, assume that for all i ∈ N there is no transition ηi

τi7−→ ηi+1 following
transition case 3.2 of T for having a transition. We handle that case later.

I Lemma 16. Let p ∈ N be a stair of η. There is ψ : N → N, such that for each i ∈ N
with p ≤ i, there is a play ρi = ρi1 7→ · · · 7→ ρiψ(i) of length ψ(i) compliant with σ in F from
ρi1 = Tr(ηp) to ρiψ(i) = Tr(ηi) such that

max
u∈[p..i]

{Ω(qu)} = max
u∈[1..ψ(i)]

{Ω(ρu)}.

Proof. We show this by induction.

I Base Case (i = p). Set ψ(p) = 1. Immediatly, Tr(ηp) = Tr(ηi) and Ω(qp) = Ω(Tr(ηp)).

I Inductive Case (i 7→ i+ 1). Assume, that for each t ∈ [p..i], there is a play ρt compliant
with σ from Tr(ηp) = ρt1 to Tr(ηt) = ρtψ(t).

We create a play in F from Tr(ηp) to Tr(ηi+1) compliant with σ.

Case 1 (τi ∈ δint): Set ψ(i + 1) = ψ(i) + 1. The desired play is a continuation of ρi. By
Lemma 15, the following transition is compliant with σ.

Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T ,Mi+1,S) = Tr(ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max{ max
u∈[p..i]

{Ω(qu)},Ω(qi+1)}

= max{ max
u∈[1..ψ(i)]

{Ω(ρiu)},Ω(ρψ(t+1))} = max
u∈[1..ψ(i+1)]

{Ω(ρi+1
u)}

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): The desired play is a continuation of ρi, which ends in
Tr(ηi). By Lemma 15, the following transitions are compliant with σ.

Tr(ηi) = (Check, qi, T i,Mi,Si)
7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max
{

max
t∈[p..i]

{Ω(qt)},Ω(qi+1)
}

= max
{

max
u∈[1..ψ(i)]

{Ω(ρpu)}, 0, 0,Ω(qi+1)
}

= max
{

max
u∈[1..ψ(i)]

{Ω(ρpu)},Ω(Pushr,−),Ω(Claimr,−),

Ω(Check, qi+1,−)
}

= max
u∈[1..ψ(i+1)]

{Ω(ρpu)}

R. Meyer and S. van der Wall 52:25

Case 3 (τi = (qi, s, r, qi+1) ∈ δpop): Since p is a stair, position i is in a push-pop-pair (t, i)
such that p ≤ t < i. Set ψ(i + 1) = ψ(t) + 4. The desired play is a continuation of ρt.
Because ηi

τi7−→ ηi+1 is not by transition case 3.2 of T ’s transition conditions, by Lemma 15,
the following transitions are compliant with σ.

Tr(ηt) = (Check, qt, T t,Mt,St)
7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

7→ (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Since (t, i) is push-pop-pair, lupηr(i) = t. By Lemma 14,

Mi[r] = max
u∈[lupηr (i)..i]

{Ω(qu)} = max
u∈[t..i]

{Ω(qu)}.

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max
{

max
u∈[p..t]

{Ω(qu)}, max
u∈[t..i]

{Ω(qu)},Ω(qi+1)
}

= max
{

max
u∈[1..ψ(t)]

{Ω(ρtu)},M[r]i,Ω(ρtψ(i+1))
}

= max
u∈[1..ψ(i+1)]

{Ω(ρi+1
u)} J

Since (Nn,≤n) is a well-quasi ordering, η contains an infinite set of stairs ST η =
{p1, p2, . . . } ⊆ N with p1 < p2 < Towards contradiction, we can now construct a play
ρ = ρ0 7→ ρ1 7→ . . . in F that is winning for Ana and is compliant with σ. We need a
function φ : ST → N, such that for any p ∈ ST , Tr(ηp) = ρφ(p). Furthermore, we want for
each pi, pi+1 ∈ ST that

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)},

which leads to

max
u∈N

inf{Ω(πu)} = max
i∈N

inf{Ω(πpi), max
pi<u<pl+1

Ω(πu)} =

max
i∈N

inf{Ω(ρφ(pi)), max
φ(pi)<u<φ(pi+1)

Ω(ρu)} = max
u∈N

inf{Ω(ρu)}.

And thus ρ is a play compliant with σ, that is won by Ana, contradicting σ being a
winning strategy for Eve.

I Base Case (p1). Initial position of the play is ρ0 = (Check, qinit, εn, 0n,∅n) = Tr(η0),
which is a stair. Thus, p1 = 0.

I Inductive Case (pi → pi+1). Assume, we constructed ρ and the function φ, such that

ρ0 = Tr(η0) 7→ · · · 7→ ρφ(p1) = Tr(η1) 7→ · · · 7→ ρφ(p2) = Tr(η2) 7→ · · · 7→ ρφ(pi) = Tr(ηpi)

and for all i ∈ [1..i− 1],

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)}.

FSTTCS 2020

52:26 On the Complexity of Multi-Pushdown Games

Since ηpi is a stair and Tr(ηpi) = ρφ(pi), by Lemma 16, we can find a position for φ(pi+1)
and continue ρ by some transitions Tr(ηpi) = ρφ(pi) 7→ · · · 7→ ρφ(pi+1) = Tr(ηpi+1), such that

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)}.

Now we handle the case where one of the transitions in η is due to transition case 3.2
of the strategy automaton. Let there is a minimal position i ∈ N, such that ηi

τi7−→ ηi+1
is due to transition case 3.2 of T ’s transition conditions. Be aware, that the induction
in Lemma 16 still works up to position i. Thus, there is a play ρ compliant with σ from
(Check, qinit, εn, 0n,∅n), which is a stair, to ψ(ηi). Since T had a transition for τi, either
own(ψ(ηi)) = Ana or σ chose the transition introduced to F caused by τi. In either case,
the following transition is compliant with σ:

ψ(ηi) = (Check, qi, T i,Si,Mi) 7→ AnaWin.

Because τi used transition case 3.2, we know that there is no (qi+1,Mi[r], T i[r 7→ε],Mi
[r 7→0],S) ∈

S[r] such that for each stack j > r, S[j] ⊆ Sj ↑.
Thus the above transition is indeed a continuation of ρ, compliant with σ, that is won by

Ana, contradicting σ being a winning strategy for Eve.

B.2 Transforming a winning strategy from G to F

We handle a lot of play prefixes in this section. Let us introduce the notation π..i = π0π1 . . . πi
for play prefixes of π.

Let ν be a winning strategy for Eve in G. We construct a strategy σ for Eve in F . For
this, we need to maintain a play prefix of G. During a play ρ in F , we build up and continue
this prefix and use it to determine the moves to be taken by σ in ρ.

I Definition 17. Given a strategy ν for Eve in G, a play prefix π..l = π0
τ07−→ . . .

τl−17−−−→ πl
compliant with ν and an unmatched pushing position p ∈ [0..l−1] with τp = (q, r, s, q′) ∈ δpush,
we define the summary set Sπ..l,ν,p ⊆ OSr recursively:
For every play π..l′ that is a continuation of π..l, i.e. l < l′, and compliant with ν, if p is
matched in π..l′ , i.e. (p, t) is a push-pop-pair in π..l, we add a summary as follows to Sπ..l,ν,p:

Let q′′ be the state at position t+ 1, and T be the top of stack symbols at πt+1. For each
stack j ∈ [1..n], let tj = lupπ..tj (t). LetM be such that

M[j] =
{

maxu∈[tj+1..t]{Ω(πu)} tj 6= ⊥
maxu∈[0..t]{Ω(πu)} tj = ⊥

We add (q′′,M[r], T[r 7→ε],M[r 7→0],S) to Sπ..l,ν,p, where S[j] for each stack j > r,

S[j] = Sπ..t+1,ν,tj .

Be aware, that this construction is finite and the result is an actual prediction: The sets
Sπ..t+1,ν,tj contain sets of summaries for only stacks greater, thus the recursion terminates
for stack n. Furthermore, this construction is finite as OSj is finite.

For a play prefix π..l and its continuation π..l′ , i.e. l < l′, it is immediate that Sπ..l′ ,ν,p ⊆
Sπ..l,ν,p. This is because the set of play continuations for π..l′ is a subset of the play
continuations for π..l.

For a play ρ in F compliant with σ, we maintain the play prefix of G. In order to keep
the construction short, we define the strategy and an invariant (Lemma 18) between the

R. Meyer and S. van der Wall 52:27

two plays at the same time. For this, define the set Checksρ ⊆ N of all indecies where
ρ is in a Check-state. We can order these positions by their occurence in ρ so we get
Checksρ = {p1, p2, . . . } with p1 < p2 < We define a function ψ : Checksρ → N that
maps play indecies of Check-states in ρ to positions in π.

I Lemma 18. Let ρ be a play compliant with σ and π the corresponding play created.
π is compliant with ν
For any position p ∈ Checksρ, if ρp = (Check, q, T ,M,S), then πψ(p) is in state q and
the top of stack symbols are T . Let tj = lupπ..ψ(p)

j (ψ(p)). For every stack j with tj 6= ⊥,
Sπ..ψ(p),ν,tj ⊆ S[j].
for pi, pi+1 ∈ Checksρ,

max
u∈[pi..pi+1]

{Ω(ρu)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}

Proof and Construction. by induction.

I Base Case (i = 1). This is only the initial position. π0 = (qinit, εn), ρ0 = (Check,
qinit, ε

n,Ω(qinit)n,∅n). ψ(p1) = ψ(0) = 0.

I Inductive Case (i→ i+ 1). We first show how σ continues ρ and π..ψ(pi) before focussing
on the invariant stated in Lemma 18.

If own(ρpi) = Eve, we need to construct σ for ρpi = (Check, q, T ,M,S). In that case,
let πψ(pi)

τ7−→ ν(πψ(pi)) be the transition used by ν in G. If own(ρpi) = Ana, Ana takes some
transition in F that was introduced by some transition τ enabled in πψ(pi).

Let πψ(pi) = (q,P), where by indcution, the top of stack symbols form T .

Case 1 (τ = (q, r, q′) ∈ δint): ρ continues with the transition introduced in F :

ρpi = (Check, q, T ,M,S) τ7−→ (Check, q′, T ,M′,S) = ρpi+1

Further, we set ψ(pi+1) = ψ(pi) + 1 and continue π by

πψ(pi) = (q,P) τ7−→ (q′,P) = πψ(pi+1).

to arrive at π..ψ(pi+1).
To the invariant: This tranisition is compliant with ν. The state conditions are fulfilled

by construction, as well as the top of stack condition. The prediction sets did not change,
thus Sπ..ψ(pi+1),ν,tj ⊆ Sπ..ψ(pi),ν,tj ⊆ S[j]. And for the parity condition,

max
u∈[pi..pi+1]

{Ω(ρu)} = max{Ω(ρpi),Ω(ρpi+1)} =

max{Ω(πψ(pi)),Ω(πψ(pi+1))} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2 (τ = (q, r, s, q′) ∈ δpush): ρ continues with the transition introduced in F :

ρpi = (Check, q, T ,M,S) 7→ (Pushr, T ,M,S, q′, s)

First, we continue π..ψ(pi) by π..ψ(pi)+1 = π..ψ(pi)
τ7−→ πψ(pi)+1 which is compliant with ν.

Then, Eve has to make a claim in F . To define their strategy, we use the game prediction
from above.

σ(Pushr, T ,M,S, q′, s) = (Claimr, T ,M,S, q′, s, Sπ..ψ(pi)+1,ν,ψ(pi))

FSTTCS 2020

52:28 On the Complexity of Multi-Pushdown Games

Case 2.1 (Ana continues to (Check, q′, r, T[r 7→s],M′,S[r 7→Sπ..ψ(pi)+1,ν,ψ(pi)])): The transitions
in F up to pi+1 are

ρpi = (Check, q, T ,M,S)
7→ (Pushr, T ,M,S, q′, s)

7→ (Claimr, T ,M,S, q′, s, Sπ..ψ(pi)+1,ν,ψ(pi))
7→ (Check, q′, r, T[r 7→s],M′,S[r 7→Sπ..ψ(pi)+1,ν,ψ(pi)]) = ρpi+1

Thus, pi+1 = pi + 3. Set ψ(pi+1) = ψ(pi) + 1. Then, π..ψ(pi+1) = π..ψ(pi)+1.
To the invariant, state conditions are fulfilled by construction, as well as the top of stack

condition. The prediction sets for all stacks j 6= r did not change and tj = lupπ..ψ(pi)
j (ψ(pi)) =

lup
π..ψ(pi+1)

j (ψ(pi+1)), thus Sπ..ψ(pi+1),ν,tj ⊆ Sπ..ψ(pi),ν,tj ⊆ S[j] = S[r 7→Sπ..ψ(pi),ν,ψ(pi)][j].

For stack r, we have lup
π..ψ(pi+1)

j (ψ(pi+1)) = ψ(pi). Adequately, Sπ..ψ(pi+1),ν,ψ(pi) =
S[r 7→Sπ..ψ(pi),ν,ψ(pi)][r].

For the parity condition, we have

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , (Pushr,−), (Claimr,−), ρpi+1} =

max{ρpi , ρpi+1} = max{πψ(pi), πψ(pi+1)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2.2 (Ana continues to (Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])): The transitions

in F up to pi+1 are

ρpi = (Check, q, T ,M,S)
7→ (Pushr, T ,M,S, q′, s)

7→ (Claimr, T ,M,S, q′, s, Sπ..ψ(pi),ν,ψ(pi))
7→ (Jumpr, q′′,m, T ′[r 7→T [r]],M

′,S ′[r 7→S[r]],M[r])

7→ (Check, q′′, T ′[r 7→T [r]],M
′′,S ′[r 7→S[r]]) = ρpi+1

We set pi+1 = pi + 4. Further, it must be that (q′′,m, T ′,M′,S ′) ∈ Sπ..ψ(pi),ν,ψ(pi) in order
for

(Claimr, T ,M,S, q′, s, Sπ..ψ(pi),ν,ψ(pi)) 7→ (Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])

to exist. By construction of Sπ..ψ(pi),ν,ψ(pi), there is a play continuation π..l of π..ψ(pi)
compliant with ν, such that ψ(pi) is in a push-pop-pair (ψ(pi), t) with ψ(pi) < t < l.

Finally, we continue π..ψ(pi) to π..t+1 and set ψ(pi+1) = t+ 1.
To the invariant: By construction of Sπ..ψ(pi),ν,ψ(pi), this is compliant with ν.
By construction of Sπ..ψ(pi),ν,ψ(pi), πt+1 is in state q′′ with the top of stack symbols being

T ′[r 7→γ[r]].
Furthermore, for each stack j > r, since (q′′,m, T ′,M′,S ′) ∈ Sπ..ψ(pi),ν,ψ(pi), with

tj = lupπ..tj (t),

S ′[r 7→S[r]][j] = S ′[j] =
{
Sπ..t,ν,tj tj 6= ⊥
∅ tj = ⊥

.

For stack r, we know that since (ψ(pi), t) is a push-pop-pair, that

tr = lupπ..ψ(pi)
r (ψ(pi)) = lupπ..t+1

r (t+ 1) = lup
π..ψ(pi+1)
r (ψ(pi+1)).

R. Meyer and S. van der Wall 52:29

Due to π..ψ(pi+1) being a continuation of π..ψ(pi), we arrive at

Sπ..ψ(pi+1),ν,tr ⊆ Sπ..ψ(pi),ν,tr ⊆ S[r] = S ′[r 7→S[r]][r].

For the parity condition, be aware, that by construction of Sπ..ψ(pi),ν,ψ(pi),

m = max
u∈[ψ(pi)+1..t]

{Ω(πu)}.

Together, we arrive at:

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , ρpi+1 , (Pushr,−), (Claimr,−),

(Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])}

= max{ρpi , ρpi+1 ,m} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 3 (τ = (q, s, r, q′) ∈ δpop): ρ continues with the transition introduced for τ . This is
either

ρpi = (Check, q, T ,M,S) 7→ EveWin or
ρpi = (Check, q, T ,M,S) 7→ AnaWin.

We show, that the second case is impossible. Since τ is enabled in πψ(pi), we can
continue π..ψ(pi) by πψ(pi)

τ7−→ πψ(pi)+1. Due to the enabledness of a pop-transition, there is
tr = lupπ..ψ(pi)

r (ψ(pi)) and by definition of Sπ..ψ(pi),ν,tr , there is a summary (q′,M[r], T[r 7→ε],

M[r 7→0],S ′) ∈ Sπ..ψ(pi),ν,tr ⊆ S[r], such that for all stacks j > r:

S ′[j] = Sπ..ψ(pi)+1,ν,tj ⊆ S[j].

Thus, by construction of F , the second transition does not exist.

Now we can show, that ρ is winning for Eve:

Case 1 (ρ contains EveWin): This play is winning for Eve.

Case 2 (ρ contains AnaWin): We have just shown, that this can not happen.

Case 3 (ρ contains infinitly many Check states): In this case, Checksρ is infinite and

max
u∈N
{Ω(ρu)} = max

i∈N

{
max

u∈[pi..pi+1]
{Ω(ρu)}

}
= max

i∈N

{
max

u∈[ψ(pi)..ψ(pi+1)]
{Ω(πu)}

}
= max

u∈N
{Ω(πu)},

which is winning for Eve, since π is compliant with ν, which is a winning strategy. J

C Stack Elimination for Context-Bounded MPDG

For k-context bounded MPDG can only visit up to k stacks in a play, we can eliminate stacks
to obtain a k-context k-stack MPDG.

I Lemma 19. For every k-context-bounded n-stack MPDG G = (P, own,Ω) with MPDS
P = (Q,Γ, δ, n), there is k-context-bounded k-stack MPDG G′ = (P ′, own′,Ω′) with P ′ =
(Q′,Γ, δ′, k) such that Eve wins G if and only if she wins G′. The set of priorities coincide
and G′ is constructible in time O(|G| · nk+1).

FSTTCS 2020

52:30 On the Complexity of Multi-Pushdown Games

First, present the construction of P ′: The new state space is Q′ = [1..n]k× [0..k]× [1..n]×
[1..k] × Q. A configuration of P ′ is thus ((f, k, d, e, q),R), where the task of the different
parameters is as follows. f is an injective mapping from the available stacks [1..k] to the used
stacks of P . The inverse function is f−1. k tracks the current context. d tracks the stack of
the current context. e tracks the number of different stacks used so far. R : [1..k]→ Γ∗ are
the stack contents.

For each transition τ ∈ δd′ with (q,P) τ−→ (q′,P ′), P ′ has transitions

((f, k, d, e, q),R) τ−→ ((f ′, k′, d′, e′, q),R[(f ′)−1(d′) 7→P′[d′]]) ,

where either
d′ = d and f ′ = f , k′ = k, e′ = e or
d 6= d′ and k + 1 ≤ k and k′ = k + 1 and f−1(d′) 6= ⊥ and e′ = e and f ′ = f or
d 6= d′ and k + 1 ≤ k and k′ = k + 1 and f−1(d′) = ⊥ and e′ = e+ 1 and f ′ = f[e′ 7→d′].

Let π = π0 → · · · → πl be a play prefix of G. We define the function gπ, which takes a
position p of the run π and transforms it to stack contents Rp for P ′. It takes the stack
contents of πp = (qp,Pp) and reduces them to the stacks to which a transition belonged
in π0 → . . . → πp, then reorders them, so that they are in the order in which the stacks
were visited with their first respective context. Further, let fp be the corresponding stack
assigning function, ep the number of stacks visited so far, kp the context, and dp the stack of
that context at position p. Thus, for all already visited stacks d, Pp[d] = Rp[f(d)] Define
the function h(π) = ((f0, k0, d0, e0, q0), g(0))→ . . .→ ((f l, kl, dl, el, ql), g(l))

Vice versa, let π′ = π′0 → · · · → π′l be a play prefix of G′. We create the function
h′(π′) = (q0,P0)→ . . .→ (ql,P l), where for every position p and stack j,

Pp[j] =
{
ε (fp)−1(j) = ⊥
Rp[(fp)−1(j)] otherwise .

I Lemma 20. h and h′ form a bijection on the play prefixes starting with empty stack
contents, i.e. h′(h(π)) = π and h(h′(π′)) = π′ for all play prefixes π and π′ starting with
empty stacks.

Proof. By induction on the length l of the plays.

Base Case. At π0, no stacks were visited. Thus, f is undefined, no context has been visited
and there is no active stack, and no stacks have been used. Rerversely, at π′0, f is undefined
for every stack. Thus, h′(h(π)) = π = π0 and h(h′(π′)) = π′ = π′0.

Ind. Case. Let π = π0 → . . .→ πl
τ−→ πl+ with h′(h(π0 . . . πl)) = π0 . . . πl with h(π0 . . . πl) =

π′0 → . . .→ π′l. Then, π′l = ((f l, kl, dl, el, ql),Rl), where Rl = gπ(l).
We have h(π) = h(π0 . . . πl) → π′l+1, where π′l+1 = ((f l+1, kl+1, dl+1, el+1, ql+1),Rl+1)

and Rl+1 = gπ(l).
Case 1. τ ∈ δdp . Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]),

where d′ = dp and f ′ = fp, k′ = kp, e′ = ep. Since the stack did not change, these coincide
with dp+1, fp+1, kp+1, and ep+1. The stack contents did also change for the stack representing
stack dp by R[(fp)−1(dp) 7→P′[dp]]. Thus, h(π) is a play prefix in G′.

Case 2. τ ∈ δdp+1 and dp+1 6= dp and (fp)−1(dp+1) = ⊥. To be k-bounded, kp must
be less than k. Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]), where
e′ = ep + 1 and f ′ = fp[e′ 7→d′]. Since the stack was not seen before (by induction, it was not
found in fp)), f ′ = fp+1, further, kp+1 = k′ = kp+1, the next context is introduced and the

R. Meyer and S. van der Wall 52:31

active stack is dp+1 = d′. The stack contents did also change for the stack representing stack
dp by R[(fp+1)−1(dp+1)7→P′[dp+1]]. Thus, h(π) is a play prefix in G′.

Case 3. τ ∈ δdp+1 and dp+1 6= dp and (fp)−1(dp+1) 6= ⊥. To be k-bounded, kp must
be less than k. Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]), where
e′ = ep and f ′ = f . Since the stack was seen before (by induction, it was found in fp)),
f ′ = fp+1, further, kp+1 = k′ = kp+1, the next context is introduced and the active stack
is dp+1 = d′. The stack contents did also change for the stack representing stack dp by
R[(fp+1)−1(dp+1) 7→P′[dp+1]]. Thus, h(π) is a play prefix in G′.

Further, by induction h′(h(π))) = π0 . . . πl → (ql+1,P), where for every stack j,

P[j] =
{
Rl+1[(fp)−1(j)] = P l+1[j] (fp)−1(j) 6= ⊥
ε = P l+1[j] (fp)−1(j) = ⊥

Thus, h′(h(π)) = π.
Showing h(h′(π′)) = π′ is analogue. J

Proof of Lemma 19. Together with the ownership assignment of own′((f, k, d, e, q),R) =
own(q) and priority assignment Ω′((f, k, d, e, q),R) = Ω(q), the bijection of play prefixes
immediatly presents a portation of strategies for both players.

Starting positions with non-empty stacks need to be encoded into the MPDS P first. This
can be done by encoding them into the state space in the following sense: When a context
would first be initiated on a stack, it first pushes their stack content (The player doing this
is unimportant). When the first transition on that stack would be a pop, the player chosing
the pop transition will lose, if after the pushes, the symbol to be popped is not on top. J

D Construction of MPDG for the Lower Bound

Formally, we introduce 3 gadgets to prove correctness. Each represents a verification
mechanism.

Gdcomp, which checks, whether on top of two stacks is the same encoded word,
Gindd , which checks, whether the top of a stack is a valid encoding, and
Gdϕ, which checks the two topmost encoded words for the relation ∼ϕ.

We construct them by induction. Notably, the latter two are constructed by simultaneous
induction: Gdϕ needs Gindd−1 and Gd−1

ϕ internally. The latter mechanism is described in
section 5.4.

D.1 Construction of Gd
comp

This gadget expects the top of both stacks to be d-nested indexings w1, w2 of words u, v of
length expd(len). Eve has a winning strategy, if they index the same word.

To be precise, it is also sufficient if they are not on top, but marked by a delimiter Symbol.
In our construction we need the latter case for the verification mechanism Gdϕ, where Ana
wants to verify the position (of a variable after doubting the symbol is correct) and the
valuation is still complete on the second stack. Remembering the correct variable in the
control state is no problem as there are a constant amount of variables. For presentational
reasons, this differs a little from our detailed version [60].

I Lemma 21. There is a 2-stack MPDG such that Eve has a winning strategy from positions
(CheckEqd, w1σ1γ1⊥, w2σ2γ2⊥) if and only if u = v. It is contructible in time poly(d+|Σ|+n).
The maximal number of contexts or phases of any play from such a position is at most d+ 2.

FSTTCS 2020

52:32 On the Complexity of Multi-Pushdown Games

Proof idea. At the top of the stacks are the d-nested indexings w1 and w2, where w1 =
indd(u) and w2 = indd(v) for some u, v ∈ Σmaxd . They have form

w1 = u0x0 . . . umaxdxmaxd , w2 = v0x0 . . . vmaxdxmaxd .

Intuitively, Ana removes a sequence of (ΣΣ∗≤d)
∗ from stack one, until she claims to have

found a position p, where up 6= vp. She leaves xp on top of stack one and store the symbol
up in the control state. Then, Eve has to pop a sequence of (ΣΣ∗≤d)

∗ from stack two. They
are supposed to find the corresponding position in v. Removing the sequence leaves vp′xp′
on top of stack two for some position p′. After storing vp′ in the control state, Ana may now
choose to
1. Believe Eve’s choice to be p′ = p. Then, if up = vp′ , Eve wins and vice versa.
2. Doubt Eve’s choice and claim p 6= p. Since w1, w2 are d-nested indexings, xp =

indd−1(msbf (p)) and xp′ = indd−1(msbf (p′)). Checking p 6= p can thus be done by
(d− 1)-Equality(Σd).

Number of Contexts and Phases. The first context or phase starts by Ana removing
symbols from stack one. The second context or phase is then started by Eve popping from
stack two to find the corresponding position. Then, we can use a copy of Gd−1

comp, where the
stacks are swapped, so that it first pops from stack two. This way, the first context or phase
of that game merges with the second context or phase. By induction from Lemma 21, this
results in a bound of 1 + (d− 1) + 2 = d+ 2 contexts or phases. J

D.2 Construction of Gindd

This gadget checks the top of the first stack for whether it is a valid d-nested indexing.

I Lemma 22. There is a 2-stack MPDG Gindd such that Eve has a winning strategy from
an initial position (Check indd, wσγ1⊥, γ2⊥) if and only if w = indd(u), where u is any word.
It is contructible in time poly(d+ |Σ|+ n). Any play has at most d+ 2 contexts and d+ 1
phases.

From the initial position, with w ∈ (Σ ∪ Σ≤d)∗, the goal is to check whether w is a valid
d-nested indexing. This holds if and only if the following three conditions are met. (1) The
word has the shape w = u0x0 . . . umxm ∈ (ΣΣ∗≤d)

+. (2) Each xp is a valid (d − 1)-nested
indexing. (3) We have

x0 = indd−1(msbf d(0)) = indd−1(0expd−1(len)
d),

xm = indd−1(msbf d(maxd)) = indd−1(1expd−1(len)
d),

and for all positions 1 ≤ p < m with indexing xp = indd−1(msbf d(i)) and indexing xp+1 =
indd−1(msbf d(i′)) we have i′ = i+ 1.

We let Ana choose which condition is violated. In the first case, Eve has to prove that w
is of the form (ΣΣ∗≤d)

+. This can be done by a popping loop.
In the second case, Ana identifies a position p by removing a sequence from Σ(Σ∗≤dΣ)∗

and leaving xp on top of the stack. We use Gindd−1 from the induction hypothesis to check
whether xp is a (d− 1)-nested indexing.

In the last case, there are first-order formulas ϕ0 and ϕ1 for the constant conditions and
a formula ϕ+1 for the successor relation under most-significant-bit-first encodings. With
the induction hypothesis for Lemma 10, we construct the corresponding games Gk−1

ϕ0/ϕ1/ϕ+1
.

For checking relation ϕ1, before invoking the game, Eve has the task of removing symbols
until xm is on top of the stack. For checking relation ϕ+1, Ana first pops symbols to find a
position where xp = indd−1(msbf d(i)) and xp+1 = indd−1(msbf d(i′)), but i+ 1 6= i′.

R. Meyer and S. van der Wall 52:33

Number of Contexts and Phases. In either case the play starts by popping, leading to a
first context or phase on stack one. Actually, in the first case the play already ends after
having popped stack one.

In the second case, the play continues to invoke the game Gindd−1 . This adds (d− 1) + 2
contexts or (d − 1) + 1 phases respectively, by the induction hypothesis for Lemma 22.
However, the first context or phase in Gindd−1 also acts on stack one. So it merges with the
previous context or phase for popping from stack one, leading to d+ 1 contexts or d phases.

In the last case, the play enters the game Gd−1
ϕ for ϕ0, ϕ1, or ϕ+1, leading to (d− 1) + 2

contexts or d− 1 phases respectively, by induction from Lemma 10. With the initial context
or phase, we arrive at d+ 2 contexts and d phases

Together, this is at most d + 2 contexts and d phases. This covers the required d + 1
phases in the Lemma. The base case requires the additional phase.

D.3 Details on how the players push a valuation
Intuitively, we want to reuse the same principles for pushing successing configuration to push
a correctly indexed valuation for variable y. Eve pushes any sequence and afterwards, Ana
can verify that this is indeed a (d− 1)-nested indexing by the use of Gindd−1 . However, when
Ana has to choose the valuation, we can not check that Eve pushed the correct position
(that is a expd−1(n) long sequence from {0d, 1d} arbitrarily chosen by Ana). We also cannot
swap the roles: Whenever Ana gets the chance of pushing arbitrary long sequences, she can
just push symbols infinitely and win the safety winning condition. Thus, we need to let
Eve determine when to stop pushing symbols. We do so by letting Eve push sequences in
between Ana’s choices for single digits of the position. Also, Eve may choose to end the
pushing of the sequence at any time. Afterwards, Ana may choose to check, whether the
result is a (d− 1)-nested indexing.

D.4 Adaptions for ordered multi-pushdown systems
It is possible to adapt the lowerbound construction, so that it provides the same strategies
for ordered pushdowns. The key idea is to use d stacks to simulate the d phases in the
lowerbound construction. To this end, we need instances for the gadgets created in the
previous sections not only for two stacks, but for combinations of stacks j, r with j < r.
Further, it should be noted that the gadget Gdcomp can not be used as is, since it pops symbols
from both stacks alternatingly, which cannot be done with an ordered pushdown. Instead,
it will need some intermediate steps, which will copy the contents to be compared to the
another stack (higher in order). Further adaptions are of minor importance and will be
mentioned later for completeness.

To this end, we will adapt the gadgets and recieve for each stack j < r,
Gdcomp(j, r), comparing the top of stacks j and r,
Gdcopy(j, r), copying the top of stack indexing from stack j to r,
Gindd(j), checking the top of stack j for a d-indexing and
Gdϕ(j), checking the ∼ϕ relation on the marked indexings on stack j.

In this, Gdcopy(j, r) will internally use Gdcomp(j, r), which, in turn, uses Gd−1
copy(j, r). Again,

we create the gadget in simultaneous induction together with Gindd(j, r).
The adaptions for Gindd(j) and Gdϕ(j) are rather small: Gindd(j) only needs the stack

of the transitions to be changed to j. Gdϕ(j) also needs the stacks to be changed; stack one
becomes j and stack two becomes j + 1. Further, when doubting the suggested variable
order, stack j needs to be emptied, before Gd−1

ϕ (j + 1) can be called.

FSTTCS 2020

52:34 On the Complexity of Multi-Pushdown Games

After these adaptions, the construction of the multi-pushdown game simulating an
alternating Turing machine is the same as in Section 5. The only difference is, that the
ordered pushdown-system created posseses d stacks.

The following lemma states the same as Lemma 21, but for Gdcomp(j, r). Let u, u′ ∈ Σld+1,
w1 = indd(u), w2 = indd(u′) and j < r ≤ n− d. Note that the latter requires this gadget to
have at least d+ 2 stacks.

I Lemma 23. There is an n-stack ordered MPDG such that Eve has a winning strategy
from positions (start, [w1γ1]j , [w2γ1]r) if and only if u = v. It is contructible in time
poly(d+ |Σ|+ n).

I Base Case (d = 0). The gadget is almost the same as G0
comp, where transition rules for

stack one (2) are swapped for transition rules for stack j (r). The stacks j to r − 1 are
emptied before the transitions popping from r are executed. Correctness is follows as for
G0

comp.

I Inductive Case (d > 0). Instantiate Gd−1
copy(j, r + 1) on (copyPos, s) with out state

(copyDone, s) for each s ∈ Σ.
Instantiate Gd−1

comp(r, r + 1) on state disbelievePos.
Let s, s′ range over Σ.

(start, (ΣΣ∗≤d)
∗
s, j, (copyPos, s))

((copyDone, s), j, (reproducePos, s))
((reproducePos, s), (ΣΣ∗≤d)

∗
s′, r, (claimPos, s, s′))

((claimPos, s, s′), r, (believe, s, s′))
((claimPos, s, s′), r,disbelievePos)
((believe, s, s), r,EveWin)
((believe, s, s′), r,AnaWin) s 6= s′

Note that the induction hypothesis (Lemma 24) for the copy gadget holds: r+ 1 ≤ n− d+ 1.
Given by induction (Lemma 24) that each player possesses a strategy from ((copyPos, s),
[xsγ]j , [x′s′γ]r, [ε]r+1) to ((copyDone, s), [ε]j , [x′s′γ]r, [xsγ]r+1), the proof is analogue to the
proof for Lemma 21.

And for copying.

I Lemma 24. Let u ∈ Σld+1, w1 = indd(u) and j ≤ n− d. Each player possesses a strategy
from (start, [w1σ1γ1]j , [ε]r) to (Out, [ε]j , [w1]r).
The number of states of this gadget (not counting the states of additionally instantiated
gadgets) is polynomially in the size of Σ and l0.

The construction is pretty straightforward: Eve guesses the stackcontent for stack r and
Ana may doubt or believe it.

Instantiate Gindd(r) on position disbelieveValidity.
Instantiate Gdcomp(j, r) on position disbelieveEquality.

(start, (ΣΣ∗≤d)∗, r,pushed)
(pushed, r,disbelieveValidity)
(pushed, r,disbelieveEquality)
(pushed, j, (Σ ∪ Σ≤d)∗,Out)

R. Meyer and S. van der Wall 52:35

Be aware, that the definition of MPDS does not allow for testing a stack for ε. One can,
however, implement such a transition rule for games given the allowed transition rules.

Now to show that each player possesses a strategy from position (start, [w1σ1γ1]j , [ε]r) to
(start, [ε]j , [w1]r).

Be aware, that r ≤ n− d holds. The following assumes that Lemma 23 and 22 already
hold for the current induction step, which has been shown already.

The strategy for Eve pushes w1 on stack r in the first transition. If Ana chooses to go to
disbelieveValidity or disbelieveEquality, Eve wins (Lemma 22 and Lemma 23).

The strategy for Ana analyzes the pushed sequence w from Eve. If it is not a d-indexing,
Ana wins the play using the move to disbelieveValidity (Lemma 22). If it is a valid d-
indexing, but w 6= w1, i.e. w = indd(u′) with u′ 6= u, Ana wins the play using the move to
disbelieveEquality (Lemma 23).

FSTTCS 2020

Higher-Order Nonemptiness Step by Step
Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
We show a new simple algorithm that checks whether a given higher-order grammar generates a
nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar
of order n to a grammar of order n − 1, preserving nonemptiness, and increasing the size only
exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose
nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall
complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and
hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed
nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree
generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability)
automaton, because this question can be reduced to the nonemptiness problem by taking a product
of the recursion scheme with the automaton.

A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transfor-
mation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word
grammar of order n to a tree grammar of order n− 1. The step-by-step approach can be opposed
to previous algorithms solving the nonemptiness problem “in one step”, being compulsorily more
complicated.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases Higher-order grammars, Nonemptiness, Model-checking, Transformation,
Order reduction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.53

Related Version A full version of the paper is available at https://arxiv.org/abs/2009.08174.

Supplementary Material Coq formalisation: https://github.com/pparys/ho-transform-sbs

Funding Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

1 Introduction

Higher-order grammars, also known as higher-order OI grammars [8, 16], generalize context-
free grammars: nonterminals of higher-order grammars are allowed to take arguments. Such
grammars have been studied actively in recent years, in the context of automated verification
of higher-order programs. In this paper we concentrate on a very basic problem of language
nonemptiness: is the language generated by a given higher-order grammar nonempty. This
problem, being easy for most devices, is not so easy for higher-order grammars. Indeed, it is
n-EXPTIME-complete for grammars of order n [15].

We give a new simple algorithm solving the language nonemptiness problem. The
algorithm amounts to a procedure that transforms a grammar of order n to a grammar
of order n− 1, preserving nonemptiness, and increasing the size only exponentially. After
repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can
be easily checked. Since the size grows exponentially at each step, we reach the optimal
overall complexity of n-EXPTIME. In a more detailed view, the complexity looks even better:
the size growth is exponential only in the arity of types appearing in the grammar; if the
maximal arity is bounded by a constant, the transformation (and hence the whole algorithm)
is linear in the size of the grammar.

© Paweł Parys;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 53; pp. 53:1–53:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7247-1408
mailto:parys@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.53
https://arxiv.org/abs/2009.08174
https://github.com/pparys/ho-transform-sbs
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Higher-Order Nonemptiness Step by Step

While a higher-order grammar is a generator of a language of (finite) trees, virtually
the same object can be seen as a generator of a single infinite tree (encompassing the
whole language). In this context, the grammars are called higher-order recursion schemes.
The nonemptiness problem for grammars is easily equivalent to the question whether the
tree generated by a given recursion scheme is accepted by a given alternating safety (or
reachability) automaton; for the right-to-left reduction, it is enough to product the recursion
scheme with the automaton. Thus, our algorithm solves also the latter problem, called
a model-checking problem. This problem is decidable and n-EXPTIME-complete not only
for safety or reachability automata, but actually for all parity automata, with multiple
proofs using game semantics [17], collapsible pushdown automata [10], intersection types [14],
or Krivine machines [20], and with several extensions [5, 3, 6, 21, 18]. The problem for
safety automata was tackled in particular by Aehlig [1] and by Kobayashi [12]. To those
algorithms we add another one. The main difference between our algorithm and all the
others is that we solve the problem step by step, repeatedly reducing the order by one, while
most previous algorithms work “in one step”, being compulsorily more complicated. The
only proofs that have been reducing the order by one, were proofs using collapsible pushdown
automata [10, 3, 6], being very technical (and contained only in unpublished appendices). A
reduction of order was also possible for a subclass of recursion schemes, called safe recursion
schemes [11], but it was not known how to extend it to all recursion schemes.

Comparing the two variants of the model-checking problem for higher-order recursion
schemes – involving safety and reachability automata, and involving all parity automata –
we have to mention two things. First, while most theoretical results can handle all parity
automata, actual tools solving this problem in practice mostly deal only with safety and
reachability automata (called also trivial and co-trivial automata) [13, 4, 22, 19]. Second,
there exists a polynomial-time (although nontrivial) reduction from the variant involving
parity automata to the variant involving safety automata [9].

Our transformation is directly motivated by a recent paper of Asada and Kobayashi [2].
They show how to transform a grammar of order n generating a language of words to a
grammar of order n− 1 generating a language of trees, so that words of the original language
are written in leaves of trees of the new language. Unexpectedly, this transformation increases
the size of the grammar only polynomially. Our transformation is quite similar, but we
start from a grammar generating a language of trees, not words. In effect, on the one hand,
we do not say anything specific about the language after the transformation (except that
nonemptiness is preserved), and on the other hand, the size growth is exponential, not
polynomial.

2 Preliminaries

For a number k ∈ N we write [k] for {1, . . . , k}.
The set of (simple) types is constructed from a unique ground type o using a binary

operation →; namely o is a type, and if α and β are types, so is α→ β. By convention,
→ associates to the right, that is, α→ β → γ is understood as α→ (β → γ). We often
abbreviate α→ · · · → α︸ ︷︷ ︸

`

→ β as α`→ β. The order of a type α, denoted ord(α), is defined

by induction: ord(α1 → · · · → αk → o) = max({0} ∪ {ord(αi) + 1 | i ∈ [k]}); for example
ord(o) = 0, ord(o→ o→ o) = 1, and ord((o→ o)→ o) = 2.

Having a finite set of typed nonterminals X , and a finite set of typed variables Y, terms
over (X ,Y) are defined by induction:

every nonterminal X ∈ X of type α is a term of type α;

P. Parys 53:3

every variable y ∈ Y of type α is a term of type α;
if K1, . . . ,Kk are terms of type o, then •〈K1, . . . ,Kk〉 and ⊕〈K1, . . . ,Kk〉 are terms of
type o;
if K is a term of type α→ β, and L is a term of type α, then K L is a term of type β.

The type of a term K is denoted tp(K). The order of a term K, written ord(K), is defined
as the order of its type. We write Ω for ⊕〈〉, and • for •〈〉.

The construction ⊕〈K1, . . . ,Kk〉 is an alternative; such a term reduces to one of the terms
K1, . . . ,Kk. This construction is used to introduce nondeterminism to grammars (defined
below). In the special case of k = 0 (when we write Ω) no reduction is possible; thus Ω
denotes divergence.

The construction •〈K1, . . . ,Kk〉 can be seen as a generator of a tree node with k children;
subtrees starting in these children are described by the terms K1, . . . ,Kk. In a usual
presentation, nodes are labeled by letters from some finite alphabet. In this paper, however,
we do not care about the exact letters contained in generated trees, only about language
nonemptiness, hence we do not write these letters at all (in other words, we use a single-letter
alphabet, where • is the only letter). Actually, in the sequel we even do not consider trees;
we rather say that •〈K1, . . . ,Kk〉 is convergent if all K1, . . . ,Kk are convergent (which can
be rephrased as: the language generated from •〈K1, . . . ,Kk〉 is nonempty if the languages
generated from all K1, . . . ,Kk are nonempty).

A (higher-order) grammar is a tuple G = (X , X0,R), where X a finite set of typed
nonterminals, X0 ∈ X is a starting nonterminal of type o, and R a function assigning to
every nonterminal X ∈ X a rule of the form X y1 . . . yk → R, where tp(X) = (tp(y1)→
· · · → tp(yk)→ o), and R is a term of type o over (X , {y1, . . . , yk}). The order of a grammar
is defined as the maximum of orders of its nonterminals.

Having a grammar G = (X , X0,R), for every set of variables Y we define a reduction
relation −→G between terms over (X ,Y) and sets of such terms, as the least relation such
that
(1) XK1 . . . Kk −→G {R[K1/y1, . . . ,Kk/yk]} if the rule for X is X y1 . . . yk → R, where

R[K1/y1, . . . ,Kk/yk] denotes the term obtained from R by substituting Ki for yi for all
i ∈ [k],

(2) •〈K1, . . . ,Kk〉 −→G {K1, . . . ,Kk}, and
(3) ⊕〈K1, . . . ,Kk〉 −→G {Ki} for every i ∈ [k].

We say that a term M is G-convergent if M −→G N for some set N of G-convergent
terms. This is an inductive definition; in particular, the base case is when M −→G ∅. In
other words, M is G-convergent if there is a finite tree labeled by terms where for each node,
the node and its children satisfy one of (1)-(3). Moreover, the grammar G is convergent if its
starting nonterminal X0 is G-convergent.

3 Transformation

In this section we present a transformation, called order-reducing transformation, resulting
in the main theorem of this paper:

I Theorem 3.1. For any n ≥ 1, there exists a transformation from order-n grammars to
order-(n − 1) grammars, and a polynomial pn such that, for any order-n grammar G, the
resulting grammar G† is convergent if and only if G is convergent, and |G†| ≤ 2pn(|G|).

FSTTCS 2020

53:4 Higher-Order Nonemptiness Step by Step

Intuitions. Let us first present intuitions behind our transformation. While reducing the
order, we have to replace, in particular, order-1 functions by order-0 terms. Consider for
example a term K L of type o, where K has type o→ o. Notice that L generates trees
that are inserted somewhere in contexts generated by K. Thus, when is K L convergent?
There are two possibilities. First, maybe K is convergent without using its argument at all.
Second, maybe K can be convergent but only using its argument, and then L also has to be
convergent. Notice that in the first case K Ω is convergent (i.e., K is convergent even if the
argument is not convergent), and in the second case K • is convergent (i.e., K is convergent
if its argument is convergent). In the transformation, we transform K into two order-0 terms,
K0 and K1 corresponding to K Ω and K •, and then we replace K L by ⊕〈K0, •〈K1, L〉〉.

As a full example, consider an order-1 grammar with the following rules:

X→ Y Z, Y x → ⊕〈•, x〉, Z→ •.

It will be transformed to the order-0 grammar with the following rules:

X→ ⊕〈Y0, •〈Y1,Z〉〉, Y0 → ⊕〈•,Ω〉, Y1 → ⊕〈•, •〉, Z→ •.

Notice that the original grammar is convergent “for two reasons”: the ⊕ node in the rule for
Y may reduce either to the first possibility (i.e., to •), or to the second possibility (i.e., to x),
in which case convergence follows from convergence of the argument Z. This is reflected by
the two possibilities available for the ⊕ node in the new rule for X: we either choose the first
possibility and we depend only on convergence of Y0, or we choose the the second possibility
and we depend on convergence of both Y1 and Z. Notice that after replacing the (old and
new) rule for Z by Z → Ω, the modified grammars remain convergent thanks to the first
possibility above. Likewise, after replacing the original rule for Y by Y x → x, the new rules
will be Y0 → Ω and Y1 → •, and the modified grammars remain convergent thanks to the
second possibility above. However, after applying both these replacements simultaneously,
the grammars stop to be convergent.

If our term K takes multiple order-0 arguments, say we have K L1 . . . Lk, while trans-
forming K we need 2k variants of the term: each of the arguments may be either used
(replaced by •) or not used (replaced by Ω). This is why we have the exponential blow-up.
Let us compare this quickly with the transformation of Asada and Kobayashi [2], which
worked for grammars generating words (i.e., trees where every node has at most one child).
In their case, at most one of the arguments Li could be used, so they needed only k + 1
variants of K; this is why their transformation was polynomial.

For higher-order grammars we apply the same idea: functions of order 1 are replaced by
terms of order 0, and then the order of any higher-order function drops down by one. For
example, consider a grammar with the following rules:

X→ T Y, T y→ y (y •), Y x → ⊕〈•, x〉.

The nonterminal Y is again of type o→ o, hence it is replaced by two nonterminals Y0,Y1 of
type o, describing the situation when the parameter x is either not used or used. Likewise,
the corresponding parameter y of T is replaced by two parameters y0, y1. The resulting
grammar will have the following rules:

X→ T Y0 Y1, T y0 y1 → ⊕〈y0, •〈y1,⊕〈y0, •〈y1, •〉〉〉〉, Y0 → ⊕〈•,Ω〉, Y1 → ⊕〈•, •〉.

Formal definition. We now formalize the above intuitions. Having a type, we are interested
in cutting off its suffix being of order 1. Thus, we use the notation α1→ · · · → αk⇒ o`→ o
for a type α1 → · · · → αk → o` → o such that either k = 0 or αk 6= o. Notice that every

P. Parys 53:5

type α can be uniquely represented in this form. We remark that some among the types
α1, . . . , αk−1 (but not αk) may be o. For a type α we write gar(α) (“ground arity”) for the
number ` for which we can write α = (α1→· · ·→αk⇒ o`→ o); we also extend this to terms:
gar(M) = gar(tp(M)).

We transform terms of type α to terms of type α†, which is defined by induction:

(α1→ · · · → αk⇒ o`→ o)† =
(

(α†1)2gar(α1)
→ · · · → (α†k)2gar(αk)

→ o
)
.

Thus, we remove all trailing order-0 arguments, and we multiplicate (and recursively trans-
form) remaining arguments.

For a finite set S, we write 2S for the set of functions A : S → {0, 1}. Moreover, we
assume some fixed order on functions in 2S , and we write P (QA)A∈2S for an application
P QA1 . . . QA2|S| , where A1, . . . , A2|S| are all the function from 2S listed in the fixed order.
The only function in 2∅ is denoted ∅.

Fix a grammar G = (X , X0,R). For every nonterminal X and for every function
A ∈ 2[gar(X)] we consider a nonterminal X†A of type (tp(X))†. As the new set of nonterminals
we take X † = {X†A | X ∈ X , A ∈ 2[gar(X)]}. Likewise, for every variable y and for every
function A ∈ 2[gar(y)] we consider a variable y†A of type (tp(y))†, and for a set of variables Y
we denote Y† = {y†A | y ∈ Y, A ∈ 2[gar(y)]}.

We now define a function tr transforming terms. Its value tr(A,Z,M) is defined when M
is a term over some (X ,Y), and A ∈ 2[gar(M)], and Z : Y ⇀ {0, 1} is a partial function such
that dom(Z) contains only variables of type o. The intention is that A specifies which among
trailing order-0 arguments can be used, and Z specifies which order-0 variables (among those
in dom(Z)) can be used. The transformation is defined by induction on the structure of M ,
as follows:
(1) tr(A,Z,X) = XA for X ∈ X ;
(2) tr(A,Z, y) = yA for y ∈ Y \ dom(Z);
(3) tr(A,Z, z) = Ω if Z(z) = 0;
(4) tr(A,Z, z) = • if Z(z) = 1;
(5) tr(∅, Z, •〈K1, . . . ,Kk〉) = •〈tr(∅, Z,K1), . . . , tr(∅, Z,Kk)〉;
(6) tr(∅, Z,⊕〈K1, . . . ,Kk〉) = ⊕〈tr(∅, Z,K1), . . . , tr(∅, Z,Kk)〉;
(7) tr(A,Z,K L) = ⊕〈tr(A[`+1 7→ 0], Z,K), •〈tr(A[`+1 7→ 1], Z,K), tr(∅, Z, L)〉〉 if tp(K) =

(o`+1→ o);
(8) tr(A,Z,K L) = (tr(A,Z,K)) (tr(B,Z,L))B∈2[gar(L)] if tp(K) = (α1→ · · · → αk⇒ o`→ o)

with k ≥ 1.

For every rule X y1 . . . yk z1 . . . z` → R in R, where ` = gar(X), and for every function
A ∈ 2[`], to R† we take the rule

X†A (y†1,B)B∈2[gar(y1)] . . . (y†k,B)B∈2[gar(yk)] → tr(∅, [zi 7→ A(`+ 1− i) | i ∈ [`]], R).

In the function A it is more convenient to count arguments from right to left (then we do
not need to shift the domain in Case (7) above), but it is more natural to have variables
z1, . . . , z` numbered from left to right; this is why in the rule for X†A we assign to zi the
value A(`+ 1− i), not A(i).

Finally, the resulting grammar G† is (X †, X†0,∅,R
†).

FSTTCS 2020

53:6 Higher-Order Nonemptiness Step by Step

4 Complexity

In this section we analyze complexity of our transformation. First, we formally define the
size of a grammar. The size of a term is defined by induction on its structure:

|X| = |y| = 1, |K L| = 1 + |K|+ |L|,
|•〈K1, . . . ,Kk〉| = |⊕〈K1, . . . ,Kk〉| = 1 + |K1|+ · · ·+ |Kk|.

Then |G|, the size of G is defined as the sum of |R|+ k over all rules X y1 . . . yk → R of G.
In Asada and Kobayashi [2] such a size is called Curry-style size; it does not include sizes of
types of employed variables.

We say that a type α is a subtype of a type β if either α = β, or β = (β1→ β2) and α is a
subtype of β1 or of β2. We write AG for the largest arity of subtypes of types of nonterminals
in a grammar G. Notice that types of other objects appearing in G, namely variables and
subterms of right sides of rules, are subtypes of types of nonterminals, hence their arity is
also bounded by AG . It is reasonable to consider large grammars, consisting of many rules,
where simultaneously the maximal arity AG is respectively small.

While the exponential bound mentioned in Theorem 3.1 is obtained by applying the
order-reducing transformation to an arbitrary grammar, the complexity becomes slightly
better if we first apply a preprocessing step. This is in particular necessary, if we want
to obtain linear dependence in the size of G (and exponential only in the maximal arity
AG). The preprocessing, making sure that the grammar is in a simple form (defined below)
amounts to splitting large rules into multiple smaller rules. A similar preprocessing is present
already in prior work [13, 2, 7], however our definition of a simple form is slightly more
liberal, so that the order reduction applied to a grammar in a normal form gives again a
grammar in a normal form.

An application depth of a term R is defined as the maximal number of applications on
a single branch in R, where a compound application K L1 . . . Lk counts only once. More
formally, we define by induction:

ad(•〈K1, . . . ,Kk〉) = ad(⊕〈K1, . . . ,Kk〉) = max{ad(Ki) | i ∈ [k]},
ad(XK1 . . . Kk) = ad(y K1 . . . Kk) = max({0} ∪ {ad(Ki) + 1 | i ∈ [k]}).

We say that a grammar G is in a simple form if the right side of each its rule has application
depth at most 2.

Any grammar G can be converted to a grammar in a simple form, as follows. Consider a
rule X y1 . . . yk → R, and a subterm of R of the form f K1 . . . Km, where f is a nonterminal
or a variable, but some Ki already has application depth 2. Then we replace the occurrence
of Ki with Y y1 . . . yk (being a term of application depth 1) for a fresh nonterminal Y , and
we add the rule Y y1 . . . yk x1 . . . xs → Ki x1 . . . xs (whose right side already has application
depth 2; the additional variables x1, . . . , xs are added to ensure that the type is o). By
repeating such a replacement for every “bad” subterm of every rule, we clearly obtain a
grammar in a simple form.

I Lemma 4.1. Let G′ be the grammar in a simple form obtained by the above simplification
procedure from a grammar G. Then ord(G′) = ord(G), and AG′ ≤ 2AG, and |G′| = O(AG · |G|).
The procedure can be performed in time linear in its output size.

Proof. The parts about the order and about the running time are obvious.
Types of nonterminals originating from G remain unchanged. The type of a fresh

nonterminal Y introduced in the procedure is of the form α1→· · ·→αk→β1→· · ·→βs→ o,

P. Parys 53:7

where all αi and βi are types present also in G. The arity of the whole type is k+ s, where k
is the arity of the original nonterminal X (hence it is bounded by AG), and s is bounded by
the arity of the type of Ki (hence also by AG).

In order to bound the size of the resulting grammar, notice that the considered replacement
is performed at most once for every subterm of the right side of every rule, hence the number
of replacements is bounded by |G|. Each such a replacement increases the size of the grammar
by at most O(AG). J

I Lemma 4.2. For every grammar G in a simple form, the grammar G† (i.e., the result of
the order-reducing transformation) is also in a simple form, and ord(G†) = max(0, ord(G)−1),
and AG† ≤ AG ·2AG , and |G†| = O(|G|·25·AG). Moreover, the transformation can be performed
in time linear in its output size.

Proof. The part about the running time is obvious. It is also easy to see by induction that
ord(α†) = max(0, ord(α) − 1). It follows that the order of the grammar satisfies the same
equality, because nonterminals of G† have type α† for α being the type of a corresponding
nonterminal of G.

Recall that in the type α† obtained from α = (α1 → · · · → αk → o), every αi either
disappears or becomes (transformed and) repeated 2gar(αi) times, that is, at most 2AG times.
This implies the inequality concerning AG† .

Every compound application can be written as f K1 . . . Kk L1 . . . L`, where f is a
nonterminal or a variable, and ` = gar(f). In such a term, every Ki (after transforming)
becomes repeated 2gar(Ki) times, that is, at most 2AG times. Then, for every Li we duplicate
the outcome and we append a small prefix; this duplication happens ` times, that is, at
most AG times. In consequence, we easily see by induction that while transforming a term
of application depth d, its size gets multiplicated by at most O(22d·AG). Moreover, every
nonterminal X is repeated 2gar(X) times, that is, at most 2AG times. Because the application
depth of right sides of rules is at most 2, this bounds the size of the new grammar by
O(|G| · 25·AG).

Looking again at the above description of the transformation, we can notice that the
application depth cannot grow; in consequence the property of being in a simple form is
preserved. J

Thus, if we want to check nonemptiness of a grammar G of order n, we can first convert
it to a simple form, and then apply the order-reducing transformation n times. This gives us
a grammar of order 0, whose nonemptiness can be checked in linear time. By Lemmata 4.1
and 4.2, the whole algorithm works in time n-fold exponential in AG and linear in |G|.

If the original grammar G generates a language of words, we can start by applying
the polynomial-time transformation of Asada and Kobayashi [2], which converts G into an
equivalent grammar of order n− 1 (generating a language of trees); then we can continue
as above. Because their transformation is also linear in |G|, and increases the arity only
quadratically, in this case we obtain an algorithm working in time (n− 1)-fold exponential in
AG and linear in |G|.

5 Correctness

In this section we finish a proof of Theorem 3.1 by showing that the grammar G† resulting
from transforming a grammar G is convergent if and only if the original grammar G is
convergent. This proof is also formalised in the proof assistant Coq, and available at GitHub
(https://github.com/pparys/ho-transform-sbs). The strategy of our proof is similar as in

FSTTCS 2020

https://github.com/pparys/ho-transform-sbs

53:8 Higher-Order Nonemptiness Step by Step

Asada and Kobayashi [2]. Namely, we first show that reductions performed by G can be
reordered, so that we can postpone substituting for (trailing) variables of order 0. To store
such postponed substitutions, called explicit substitutions, we introduce extended terms.
Then, we show that such reordered reductions in G are in a direct correspondence with
reductions in G†.1

Extended terms. In the sequel, terms defined previously are sometimes called non-extended
terms, in order to distinguish them from extended terms defined below. Having a finite set of
typed nonterminals X , and a finite set Z of variables of type o, extended terms over (X ,Z)
are defined by induction:

if z 6∈ Z is a variable of type o, and E is an extended term over (X ,Z] {z}), and L is a
non-extended term of type o over (X ,Z), then E〈L/z〉 is an extended term over (X ,Z);
every non-extended term of type o over (X ,Z) is an extended term over (X ,Z).

The construction of the form E〈L/z〉 is called an explicit substitution. Intuitively, it denotes
the term obtained by substituting L for z in E. Notice that the variable z being free in E
becomes bound in E〈L/z〉, and that explicit substitutions are allowed only for the ground
type o.

Of course a (non-extended or extended) term over (X ,Z) can be also seen as a term
over (X ,Z ′), where Z ′ ⊇ Z. In the sequel, such extending of the set of variables is often
performed implicitly.

Having a grammar G = (X , X0,R), for every set Z of variables of type o we define an
ext-reduction relation G between extended terms over (X ,Z) and sets of such terms, as the
least relation such that
(1) XK1 . . . Kk L1 . . . L` G {R[K1/y1, . . . ,Kk/yk, z

′
1/z1, . . . , z

′
`/z`]〈L1/z

′
1〉 . . . 〈L`/z′`〉} if

` = gar(X), and R(X) = (X y1 . . . yk z1 . . . z` → R), and z′1, . . . , z′` are fresh variables
of type o not appearing in Z,

(2) •〈K1, . . . ,Kk〉 G {K1, . . . ,Kk},
(3) ⊕〈K1, . . . ,Kk〉 G {Ki} for every i ∈ [k],
(4) z〈L/z〉 G {L},
(5) z′〈L/z〉 G {z′} if z′ 6= z, and
(6) E〈L/z〉 G {F 〈L/z〉 | F ∈ F} whenever E G F .

We say that an extended term E over (X , ∅) is G-ext-convergent if E −→G F for some
set F of G-ext-convergent extended terms. The grammar G is ext-convergent if its starting
nonterminal X0 is G-ext-convergent.

There is an “expand” function from extended terms to non-extended terms, which performs
all the explicit substitutions written in front of an extended term:

exp(K〈L1/z1〉 . . . 〈L`/z`〉) = K[L1/z1] . . . [L`/z`].

We also write exp(F) for {exp(F) | F ∈ F} (where F is a set of extended terms). The
following lemma, saying that we can consider ext-convergence instead of convergence, can
be proved in a standard way (actually, Asada and Kobayashi have a very similar lemma [2,
Lemma 18]); a proof can be found in the full version of the paper (Appendix A).

1 Asada and Kobayashi have an additional step in their proof, namely a reduction to the case of recursion-
free grammars. This step turns out to be redundant, at least in the case of our transformation.

P. Parys 53:9

I Lemma 5.1. Let G = (X , X0,R) be a grammar. An extended term E over (X , ∅) is
G-ext-convergent if and only if exp(E) is G-convergent. In particular G is ext-convergent if
and only if it is convergent.

We extend the transformation function to extended terms, by adding the following rule,
where E〈L/z〉 is an extended term over (X ,Z), and Z ∈ 2Z (the first argument is always ∅,
because all extended terms are of type o):
(9) tr(∅, Z,E〈L/z〉) = ⊕〈tr(∅, Z[z 7→ 0], E), •〈tr(∅, Z[z 7→ 1], E), tr(∅, Z, L)〉〉.

Between ext-convergence and convergence of G†. Once we know that convergence and
ext-convergence of G are equivalent (cf. Lemma 5.1), it remains to prove that ext-convergence
of G is equivalent to convergence of G†, which is the subject of Lemma 5.2:

I Lemma 5.2. Let G = (X , X0,R) be a grammar. An extended term E over (X , ∅) is
G-ext-convergent if and only if tr(∅, ∅, E) is G†-convergent. In particular G is ext-convergent
if and only if G† is convergent.

The remaining part of this section is devoted to a proof of this lemma. Fix a grammar
G = (X , X0,R). Of course the second part (concerning the grammars) follows from the first
part (concerning an extended term) applied to the starting nonterminal X0. It is thus enough
to prove the first part. We start with the left-to-right direction (i.e., from G-ext-convergence
of E to G†-convergence of tr(∅, ∅, E)). We need two simple auxiliary lemmata. The first of
them says that the tr function commutes with substitution:

I Lemma 5.3. Let R[K1/y1, . . . ,Kk/yk] be a term over (X ,Z), let A ∈ 2[gar(R)], and let
Z ∈ 2Z . Then

tr(A,Z,R[K1/y1, . . . ,Kk/yk]) = (tr(A,Z,R))[tr(B,Z,Ki)/y†i,B | i ∈ [k], B ∈ 2[gar(Ki)]].

Proof. A straightforward induction on the structure of R. J

The second lemma says that by increasing values of the function Z we can make the
transformed term only more convergent:

I Lemma 5.4. Let E be an extended term over (X ,Z] {z}), and let Z ∈ 2Z . If tr(∅,
Z[z 7→ 0], E) is G†-convergent, then also tr(∅, Z[z 7→ 1], E) is G†-convergent.

Proof. Denote P 0 = tr(∅, Z[z 7→ 0], E) and P 1 = tr(∅, Z[z 7→ 1], E). Tracing the rules of
the transformation function, we can see that P 0 and P 1 are created in the same way, with
the exception that occurrences of z in E are transformed to Ω in P 0, and to • in P 1. Thus,
P 1 can be obtained from P 0 by replacing some occurrences of Ω to •. We know that P 0 is
G†-convergent, which means that it can be rewritten using the −→G relation until reaching
empty sets. Moreover, the subterms Ω (which are present in P 0, but not in P 1) cannot be
reached during this rewriting, because Ω is not G†-convergent. Thus, P 1 can be rewritten in
exactly the same way as P 0, so it is also G†-convergent. J

The next lemma shows how ext-reductions of G are reflected in G†:

I Lemma 5.5. Let E be an extended term over (X ,Z) and let Z ∈ 2Z . If E G F and
tr(∅, Z, F) is G†-convergent for every F ∈ F , then tr(∅, Z,E) is also G†-convergent.

FSTTCS 2020

53:10 Higher-Order Nonemptiness Step by Step

Proof. Induction on the definition of E G F . We analyze particular cases appearing in
the definition. Missing details are given in the full version of the paper (Appendix B).

In Case (1) E consists of an application of arguments to some nonterminal X. For
simplicity of presentation, suppose that X has two arguments: y of positive order, and z of
order 0 (the general case is handled in the full version of the paper). Then

E = XK L, and F = {F} for F = R[K/y, z′/z]〈L/z′〉,

where R(X) = (X y z → R) and z′ is a fresh variable of type o not appearing in Z. For
j ∈ {0, 1} let

P j = tr([1 7→ j], Z,X K), and Qj = tr(∅, Z[z′ 7→ j], R[K/y, z′/z]).

First, we prove that P j −→G† {Qj}. By definition we have that

P j = X†[17→j] (tr(B,Z,K))B∈2[gar(K)] ,

and by Lemma 5.3 we have that

Qj = tr(∅, Z[z′ 7→ j], R[z′/z])[tr(B,Z[z′ 7→ j],K)/y†B | B ∈ 2[gar(K)]]

= tr(∅, [z 7→ j], R)[tr(B,Z,K)/y†B | B ∈ 2[gar(K)]]],

where the second equality holds because the z′ does not appear in K and the variables from
dom(Z) do not appear in R. Recalling that the rule for X†A is

X†[1 7→j] (y†B)B∈2[gar(y)] → tr(∅, [z 7→ j], R),

we immediately see that indeed P j −→G† {Qj}. Having this, we recall that

tr(∅, Z,E) = ⊕〈P 0, •〈P 1, L′〉〉 and tr(∅, Z, F) = ⊕〈Q0, •〈Q1, L′〉〉 (1)

for appropriate L′ (obtained by transforming L). Recall that, by definition, a term M is
G†-convergent if and only if M −→G† N for some set N of G†-convergent terms. Thus,
the only way why tr(∅, Z, F) can be G†-convergent (which holds by assumption) is that
either Q0 is G†-convergent, or both Q1 and L′ are G†-convergent. Because of the reduction
P j −→G† {Qj} we have that either P 0 is G†-convergent, or both P 1 and L′ are G†-convergent,
which implies that tr(∅, Z,E) is G†-convergent.

In Cases (2) and (3), when E = •〈K1, . . . ,Kk〉 or E = ⊕〈K1, . . . ,Kk〉, we have a reduction
from tr(∅, Z,E) to {tr(∅, Z, F) | F ∈ F}, because tr distributes over •〈. . .〉 and ⊕〈. . .〉. In
Cases (4) and (5) (elimination of explicit substitution) we also have similar reductions.

Finally, in Case (6) we have that

E = E0〈L/z〉, F = {E1〈L/z〉, . . . , Ek〈L/z〉}, and E0 G {E1, . . . , Ek}.

By definition, for every i ∈ {0, . . . , k} we have that

tr(∅, Z,Ei〈L/z〉) = ⊕〈P 0
i , •〈P 1

i , L
′〉〉, where (2)

P 0
i = tr(∅, Z[z 7→ 0], Ei), P 1

i = tr(∅, Z[z 7→ 1], Ei), L′ = tr(∅, Z, L).

Thus, tr(∅, Z,Ei〈L/z〉) is G†-convergent if and only if either P 0
i is G†-convergent, or both P 1

i

and L′ are G†-convergent. By assumption this is the case for all i ∈ [k], and we have to prove
this for i = 0. If for every i ∈ [k] we have the former case (i.e., P 0

i is G†-convergent), by the

P. Parys 53:11

induction hypothesis (used with the function Z[z 7→ 0]) we have that P 0
0 is G†-convergent,

and we are done. In the opposite case, for some i ∈ [k] (but for at least one of them) we
have that both P 1

i and L′ are G†-convergent, and for the remaining i ∈ [k] we have that P 0
i

is G†-convergent. Using Lemma 5.4 we deduce that if P 0
i is G†-convergent, then also P 1

i is
G†-convergent. Thus actually P 1

i is G†-convergent for every i ∈ [k], and additionally L′ is
G†-convergent. By the induction hypothesis (used with the function Z[z 7→ 1]) we have that
P 1

0 is G†-convergent, and we are also done. J

We can now conclude with the left-to-right direction of Lemma 5.2:

I Lemma 5.6. Let E be an extended term over (X , ∅). If E is G-ext-convergent, then
tr(∅, ∅, E) is G†-convergent.

Proof. Induction on the fact that E is G-ext-convergent. Because E is G-ext-convergent,
E G F for some set F of G-ext-convergent extended terms, for which we can apply the
induction hypothesis. The induction hypothesis says that tr(∅, ∅, F) is G†-convergent for
every F ∈ F . In such a situation Lemma 5.5 implies that tr(∅, ∅, E) is also G†-convergent, as
required. J

For a proof in the opposite direction we need the following definition. We say that a term
M G†-convergent in n steps if M −→G† {N1, . . . , Nk}, and every Ni is G†-convergent in ni
steps, and n = 1 + n1 + · · ·+ nk (i.e., we count 1 for the above reduction, and we sum the
numbers of steps needed to reduce all Ni). Clearly a term M is G†-convergent if and only if
it is G†-convergent in n steps for some n ∈ N. Notice that the number n is not determined
by M (i.e., that the same term M can be G†-convergent in n steps for multiple values of n).
We can now state the converse of Lemma 5.5:

I Lemma 5.7. Let E be an extended term over (X ,Z) and let Z ∈ 2Z . If tr(∅, Z,E) is
G†-convergent in n steps and E is not a variable, then there exists a set F of extended terms
such that E G F and tr(∅, Z, F) is G†-convergent in less than n steps for every F ∈ F .

Proof. Induction on the number of explicit substitutions in E. Depending on the shape of
E, we have several cases. Missing details are given in the full version of the paper (Appendix
C).

One case is E consists of a nonterminal X with some arguments applied. For simplicity of
presentation, we again suppose that X has two arguments: y of positive order, and z of order
0. Thus, E is of the form E = XK L. Let X y z → R be the rule for X, and let z′ be a fresh
variable of type o not appearing in Z. In such a situation, taking F = R[K/y, z′/z]〈L/z′〉
we have that E G {F}. Recall the terms P j and Qj (for j ∈ {0, 1}) from the proof of
Lemma 5.5. In that proof we have observed that P j −→G† {Qj}. But clearly this is the
only way how P j can reduce, so if P j is G†-convergent in nj steps, then necessarily Qj is
G†-convergent in nj − 1 steps. By Equalities (1) we have that if tr(∅, Z,E) is G†-convergent
in n steps, then either P 0 is G†-convergent in n0 = n − 1 steps, or both P 1 and L′ are
G†-convergent in, respectively, n1 and n− n1 − 2 steps, for some n1 ∈ N. In the former case,
Q0 is G†-convergent in n0 − 1 = n− 2 steps, so tr(∅, Z, F) is G†-convergent in n− 1 steps,
and we are done. In the latter case, Q1 is G†-convergent in n1 − 1 steps, so tr(∅, Z, F) is
G†-convergent in (n1 − 1) + (n− n1 − 2) + 2 = n− 1 steps, and we are done again.

Notice that we do not have a similar case for a variable with some arguments applied,
because the whole E is not a variable, and because (by definition of an extended term) all
free variables of E are of type o.

The cases of E = •〈K1, . . . ,Kk〉 and E = ⊕〈K1, . . . ,Kk〉 are straightforward.

FSTTCS 2020

53:12 Higher-Order Nonemptiness Step by Step

It remains to assume that E is an explicit substitution. If E = z〈L/z〉, we should take
F = {L}, and if E = z′〈L/z〉 for z′ 6= z, we should take F = {z′} (in these two subcases
we cannot use the induction assumption, because it does not work for an extended term
being a single variable). Otherwise E = E0〈L/z〉, where E0 is not a variable. Recall that
tr(∅, Z,E) = ⊕〈P 0

0 , •〈P 1
0 , L

′〉〉 for P 0
0 , P

1
0 , L

′ as in the proof of Lemma 5.5. By assumption
tr(∅, Z,E) is G†-convergent in n steps, so either P 0

0 is G†-convergent in n′ = n− 1 steps, or
both P 1

0 and L′ are G†-convergent in, respectively, n′ and n− n′ − 2 steps, for some n′ ∈ N.
Let j = 0 in the former case and j = 1 in the latter case. The induction hypothesis gives us
a set {E1, . . . , Ek} such that E0 G {E1, . . . , Ek} and tr(∅, Z[z 7→ j], Ei) is G†-convergent
in less than n′ steps for every i ∈ [k]. We then take

F = {E1〈L/z〉, . . . , Ek〈L/z〉}.

Equality (2) holds now for all i ∈ {0, . . . , k}. For j = 0 we use that the fact that
tr(∅, Z,Ei〈L/z〉) −→G† {P 0

i }, which implies that tr(∅, Z,Ei〈L/z〉) is G†-convergent in less
than n′+1 = n steps, as required. For j = 1 we use that the fact that tr(∅, Z,Ei〈L/z〉) −→G†

{•〈P 1
i , L

′〉} and •〈P 1
i , L

′〉 −→G† {P 1
i , L

′}, which implies that tr(∅, Z,Ei〈L/z〉) is G†-conver-
gent in less than n′ + (n− n′ − 2) + 2 = n steps, as required. J

The next lemma finishes the proof of Lemma 5.2, and thus the proof of correctness of our
transformation:

I Lemma 5.8. Let E be an extended term over (X , ∅). If tr(∅, ∅, E) is G†-convergent then
E is G-ext-convergent.

Proof. Induction on the (smallest) number n such that tr(∅, ∅, E) is G†-convergent in n

steps. By assumption E is not a variable, because it is an extended term over (X , ∅) (no free
variables). So, by Lemma 5.5 there exists a set F of extended terms such that E G F and
tr(∅, ∅, F) is G†-convergent in less than n steps for every F ∈ F . By the induction hypothesis
every F ∈ F is G-ext-convergent, so by definition also E is G-ext-convergent. J

6 Conclusions

We have presented a new, simple algorithm checking whether a higher-order grammar
generates a nonempty language. One may ask whether this algorithm can be used in practice.
Of course the complexity n-EXPTIME for grammars of order n is unacceptably large (even if
we take into account the fact that we are n-fold exponential only in the arity of types, not in
the size of a grammar), but one has to recall that there exist tools solving the considered
problem in such a complexity. The reason why these tools work is that the time spent by
them on “easy” inputs is much smaller than the worst-case complexity (and many “typical
inputs” are indeed easy). Unfortunately, this is not the case for our algorithm: the size of
the grammar resulting from our transformation is always large, even if the original grammar
generated a nonempty (or empty) language for some “easy reason”. Thus, our algorithm is
mainly of a theoretical interest.

The presented transformation preserves nonemptiness, and thus can be used to solve
the nonemptiness problem for higher-order grammars. However, it seems feasible that other
problems concerning higher-order grammars (higher-order recursion schemes), like model-
checking against parity automata or the simultaneous unboundedness problem [7], can be
solved using similar transformations. Developing such transformations is a possible direction
for further work.

P. Parys 53:13

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

Log. Methods Comput. Sci., 3(3), 2007. doi:10.2168/LMCS-3(3:1)2007.
2 Kazuyuki Asada and Naoki Kobayashi. Size-preserving translations from order-(n+1) word

grammars to order-n tree grammars. In Zena M. Ariola, editor, 5th International Conference
on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020,
Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 22:1–22:22. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.22.

3 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Recursion
schemes and logical reflection. In Proceedings of the 25th Annual IEEE Symposium on Logic in
Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 120–129.
IEEE Computer Society, 2010. doi:10.1109/LICS.2010.40.

4 Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013
(CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 129–148.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.129.

5 Christopher H. Broadbent and C.-H. Luke Ong. On global model checking trees generated by
higher-order recursion schemes. In Luca de Alfaro, editor, Foundations of Software Science
and Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Science,
pages 107–121. Springer, 2009. doi:10.1007/978-3-642-00596-1_9.

6 Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion
schemes: Equivalence, safety and effective selection. In Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012,
pages 165–174. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.73.

7 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. CoRR, abs/1605.00371, 2016. arXiv:1605.
00371.

8 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi:
10.1016/0304-3975(82)90009-3.

9 Matthew Hague, Roland Meyer, Sebastian Muskalla, and Martin Zimmermann. Parity to
safety in polynomial time for pushdown and collapsible pushdown systems. In Igor Potapov,
Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume
117 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.MFCS.2018.57.

10 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA,
pages 452–461. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.34.

11 Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

12 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-
grams. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pages 416–428. ACM, 2009. doi:10.1145/1480881.1480933.

FSTTCS 2020

https://doi.org/10.2168/LMCS-3(3:1)2007
https://doi.org/10.4230/LIPIcs.FSCD.2020.22
https://doi.org/10.1109/LICS.2010.40
https://doi.org/10.4230/LIPIcs.CSL.2013.129
https://doi.org/10.1007/978-3-642-00596-1_9
https://doi.org/10.1109/LICS.2012.73
http://arxiv.org/abs/1605.00371
http://arxiv.org/abs/1605.00371
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.4230/LIPIcs.MFCS.2018.57
https://doi.org/10.1109/LICS.2008.34
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/1480881.1480933

53:14 Higher-Order Nonemptiness Step by Step

13 Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62, 2013.
doi:10.1145/2487241.2487246.

14 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, pages 179–188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.

15 Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Log. Methods Comput. Sci., 7(4), 2011. doi:
10.2168/LMCS-7(4:9)2011.

16 Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Inf. Comput.,
243:205–221, 2015. doi:10.1016/j.ic.2014.12.015.

17 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

18 Paweł Parys. Recursion schemes and the WMSO+U logic. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.53.

19 Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. A type-directed abstraction
refinement approach to higher-order model checking. In Suresh Jagannathan and Peter Sewell,
editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 61–72. ACM, 2014.
doi:10.1145/2535838.2535873.

20 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf.
Comput., 239:340–355, 2014. doi:10.1016/j.ic.2014.07.012.

21 Sylvain Salvati and Igor Walukiewicz. A model for behavioural properties of higher-order
programs. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 229–243.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.229.

22 Taku Terao and Naoki Kobayashi. A ZDD-based efficient higher-order model checking algorithm.
In Jacques Garrigue, editor, Programming Languages and Systems - 12th Asian Symposium,
APLAS 2014, Singapore, November 17-19, 2014, Proceedings, volume 8858 of Lecture Notes in
Computer Science, pages 354–371. Springer, 2014. doi:10.1007/978-3-319-12736-1_19.

https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.2168/LMCS-7(4:9)2011
https://doi.org/10.2168/LMCS-7(4:9)2011
https://doi.org/10.1016/j.ic.2014.12.015
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.4230/LIPIcs.STACS.2018.53
https://doi.org/10.1145/2535838.2535873
https://doi.org/10.1016/j.ic.2014.07.012
https://doi.org/10.4230/LIPIcs.CSL.2015.229
https://doi.org/10.1007/978-3-319-12736-1_19

The Degree of a Finite Set of Words
Dominique Perrin
Université Gustave Eiffel, LIGM, Marne-la-Vallée, France
dominique.perrin@esiee.fr

Andrew Ryzhikov
Université Gustave Eiffel, LIGM, Marne-la-Vallée, France
ryzhikov.andrew@gmail.com

Abstract
We generalize the notions of the degree and composition from uniquely decipherable codes to
arbitrary finite sets of words. We prove that if X = Y ◦ Z is a composition of finite sets of words
with Y complete, then d(X) ≤ d(Y) · d(Z), where d(T) is the degree of T . We also show that a
finite set is synchronizing if and only if its degree equals one.

This is done by considering, for an arbitrary finite set X of words, the transition monoid of
an automaton recognizing X∗ with multiplicities. We prove a number of results for such monoids,
which generalize corresponding results for unambiguous monoids of relations.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases synchronizing set, degree of a set, group of a set, monoid of relations

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.54

Acknowledgements We thank Jean-Eric Pin and Jacques Sakarovitch for references concerning the
composition of automata and transducers.

1 Introduction

Let X be a set of finite words. The set X∗ of all concatenations of words in X (often called
the Kleene star of X) plays an important role in formal languages theory and its applications.
The set X often represents a dictionary or a code transmitted over a channel, so the case
where X is finite is especially important. In general, a word in X∗ can have several different
factorizations over X, and it is useful to understand the relations between them. A word w
is called synchronizing for X if for any words u, v such that uwv ∈ X∗ we have uw,wv ∈ X∗.
In particular, we get that any word in X∗ containing ww as a factor, that is, any word of the
form uwwv, has a factorization where uw and wv are both in X∗, and thus can be factorized
separately. A set which admits a synchronizing word is also called synchronizing. A set X is
called complete if every word over the same alphabet occurs as a factor of a word in X∗.

Synchronizing words are studied a lot for uniquely decipherable codes (see e.g., Chapter
10 of [3]). A set X of words is called a uniquely decipherable code (often also called a variable
length code) if every word has at most one factorization over X. Such codes play a crucial
role in the theory of data compression and transmission [3].

Provided a set Z of words such that X ⊂ Z∗, one can rewrite X using Z as the alphabet,
thus resulting in a new set Y . The representation X = Y ◦ Z is then called a decomposition
of X, and the converse process of obtaining X is called composition. Decomposition of a
set allows to represent it by using simpler sets as building blocks, while preserving many
properties of the initial one. Conversely, compositions of codes allow to construct more
complicated codes by using simple ones, so they are interesting on their own. In particular,
the composition of two uniquely decipherable codes is again a uniquely decipherable code [3].
For any injective morphism α : A∗ → B∗, α(A) is a code, and each code can be obtained as
the image of A for some A and α [3]. Compositions of codes are then nothing more than

© Dominique Perrin and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominique.perrin@esiee.fr
https://orcid.org/0000-0002-2031-2488
mailto:ryzhikov.andrew@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.54
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 The Degree of a Finite Set of Words

compositions of injective morphisms between free monoids. The notion of composition of two
arbitrary finite sets of words is also natural as it corresponds to the composition of arbitrary
morphisms.

Our contributions. In this paper, we transfer the notions of composition, degree and
group from uniquely decipherable codes to arbitrary finite sets of words. This extends the
presentation of [3] made for uniquely decipherable codes.

Provided a finite set X of words, we associate a special automaton A (called the flower
automaton) recognizing X∗ with multiplicities. Let S be the set of fixed points of an
idempotent e of minimum rank in the transition relation of A, and Γ be the set of strongly
connected components of S. We consider a permutation group Ge acting on Γ. We show that
all such groups are equivalent for idempotents of minimum rank (Theorem 20). Moreover, we
show that for a given X all these groups are equivalent for any trim automaton recognizing
X∗ with multiplicities (Proposition 21). Thus this group is an invariant of a set. We introduce
the degree d(X) of X, which is the minimum rank of elements in the transition monoid of A.
We then show that synchronizing sets are exactly sets of degree one (Proposition 22). As our
main contribution, we use the obtained results to show that for a composition X = Y ◦ Z of
two finite sets Y, Z such that Y is complete we have d(X) ≤ d(Y) · d(Z) (Theorem 24).

For a finite set X, all these results were previously known only for the special case
of X being a uniquely decipherable code with the equality d(X) = d(Y)d(Z) instead of
an inequality [3]. Our generalization to the case of an arbitrary finite set requires more
complicated proofs. In particular, for uniquely decipherable codes it is enough to consider
a trim unambiguous automaton recognizing X∗ (which is a cornerstone of the theory),
while in our case we need a trim automaton recognizing X∗ with multiplicities. Intuitively,
such automata count the number of factorizations over X, and thus they are unambiguous
when X is a uniquely decipherable code. The technical difficulties then begin with the
replacement of unambiguous monoids of relations by arbitrary monoids of relations. Indeed,
the multiplication of matrices there is different from the result over the Boolean semiring. In
particular, the representation of maximal subgroups by permutations is still possible but
more complicated.

Motivation and related results. Larger classes of codes are considered both in theory and
in practice. Particular examples include multiset and set decipherable codes. A set X of
words is called a multiset [10] (respectively, set [13]) decipherable code if every factorization
of a word into codewords provides the same multiset (respectively, set) of codewords. Such
codes are used if one needs to transmit only the frequencies (or the fact of occurrences)
of elements, but the order of these elements does not matter. Lempel [13] reports online
compilations of inventories, construction of histograms, or updating of relative frequencies as
particular examples. An important property of multiset decipherable codes is that there exist
examples of such codes with Kraft-McMillan sum more than one, which shows that such
codes can be more efficient than uniquely decipherable codes [18]. An even wider class is that
of numerically decipherable codes, which are sets with the property that every factorization of
a word over such set has the same number of codewords [21]. A similar setting of multivalued
encodings allows to have several different codewords for the same symbol [4]. In view of that,
the transit of results from uniquely decipherable codes to arbitrary sets is interesting.

Another motivation for studying factorizations of words in X∗ for an arbitrary finite set X
is the area of static dictionary compression, where one looks for some specific factorization
of a text over some finite dictionary [1]. The dictionary does not have to be a uniquely

D. Perrin and A. Ryzhikov 54:3

decipherable code, thus a text can have several different factorizations. In this case, it is
useful to know the relation between different factorizations. The parallel version of this
problem is also considered [15]. In [6] a fast algorithm for checking if a given word w belongs
to X∗ is suggested. If the answer is positive, it also provides a factorization of w over X.

Only few results are known about decompositions and synchronization of arbitrary sets
of words. The defect theorem states that every finite set of words which is not a uniquely
decipherable code can be decomposed over a set of smaller size [2]. A survey of different
generalizations of this theorem is presented in [11]. Synchronization in arbitrary monoids
was studied in [5] and [7]. Other properties of factorizations are studied in [17, 20].

Organization of the paper. To transfer the results from uniquely decipherable code to
arbitrary finite sets of words, we first set a correspondence with an adequate class of automata,
namely automata recognizing with multiplicities (Sections 2 and 3). Then we introduce the
notion of a composition for arbitrary finite sets of words (Section 4). We extend the theory
of unambiguous monoids of relations by the theory of arbitrary monoids of relations (Section
5), and generalize the notion of the group G(X) and the degree d(X) of a finite set X of
words (Section 6). In this way, as for codes, a set is synchronizing if and only if it is of
degree 1 (Section 7). As the main result, we prove that if X = Y ◦ Z with Y complete, then
d(X) ≤ d(Y) · d(Z) (Section 8). In Section 9 we show that if we require Y to be complete,
we do not get any new decompositions of a uniquely decipherable code other than into two
uniquely decipherable codes.

2 Automata

We denote by A∗ the free monoid on a finite alphabet A, by 1 the empty word, and by A+

the set A∗ \ {1}. For notions not defined in this section see [3].
Let A = (Q, i, t) be an automaton on the alphabet A with Q as set of states, i as initial

state and t as terminal state (we will not need to have several initial or terminal states).
We do not specify in the notation the set of edges, which are triples (p, a, q) with two states
p, q ∈ Q and a label a ∈ A denoted p

a→ q. We form paths as usual by concatenating
consecutive edges. An automaton is called trim if there exists a path from i to every state,
and from every state to t.

The language recognized by A, denoted L(A), is the set of words in A∗ which are labels of
paths from i to t. There can be several paths from i to t for a given label, and this motivates
the introduction of multiplicities.

For a semiring K, a K-subset of A∗ is a map from A∗ into K. The value of a K-subset X
at w is called its multiplicity and denoted (X,w). We denote by K〈〈A〉〉 the semiring of
K-subsets of A∗ and by K〈A〉 the set of corresponding polynomials, that is the K-subsets
with a finite number of words with nonzero multiplicity (on these notions, see [8]).

If X,Y are K-subsets, then X + Y and XY are the K-subsets defined by

(X + Y,w) = (X,w) + (Y,w), (XY,w) =
∑
w=uv

(X,u)(Y, v).

Moreover, if X does not have a constant term, that is, if (X, 1) = 0, then X∗ is the K-subset

X∗ = 1 +X +X2 + . . .

Since X has no constant term, for every word w, the number of nonzero terms (Xn, w) in
the sum above is finite and thus X∗ is well-defined.

FSTTCS 2020

54:4 The Degree of a Finite Set of Words

For a set X ⊂ A∗, we denote by X the characteristic series of X, considered as an
N-subset. It is easy to verify that for X ⊂ A+, the mutiplicity of w ∈ A∗ in X∗ is the number
of factorizations of w in words of X.

For an automaton A = (Q, i, t) on the alphabet A, we denote by |A| its behaviour, which
is an element of N〈〈A〉〉. It is the N-subset of A∗ such that the multiplicity of w ∈ A∗ in |A|
is the number of paths from i to t labeled w in A.

We denote by µA the morphism from A∗ into the monoid of Q×Q-matrices with integer
coefficients defined for µA(w)p,q as the number of paths from p to q labeled by w. Thus, the
multiplicity of w in |A| is (|A|, w) = µA(w)i,t.

Given a set X ⊂ A+, we say that the automaton A recognizes X∗ with multiplicities if
the behaviour of A is the multiset assigning to x its number of distinct factorizations in X.
Formally, A recognizes X∗ with multiplicities if |A| = X∗.

I Example 1. Let X = {a, a2}. The number of factorizations of an in words of X is the
Fibonacci number Fn+1 defined by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 1. The
automaton A represented in Figure 1 recognizes X∗ with multiplicities, that is |A| = (a+a2)∗.

1 2a

a

a

Figure 1 An automaton recognizing X∗ with multiplicities.

We have indeed for every n ≥ 1,

µA(an) =
[
Fn+1 Fn
Fn Fn−1

]
For an automaton A = (Q, i, t) on the alphabet A, we denote by ϕA the morphism from A∗

onto the monoid of transitions of A. Thus, for w ∈ A∗, ϕA(w) is the Boolean Q×Q-matrix
defined by

ϕA(w)p,q =
{

1 if p w→ q,

0 otherwise

Let X ⊂ A+ be a finite set of words on the alphabet A. The flower automaton of X is the
following automaton. Its set of states is the subset Q of A∗ ×A∗ defined as

Q = {(u, v) ∈ A+ ×A+ | uv ∈ X} ∪ (1, 1).

We often denote ω = (1, 1). There are four type of edges labeled by a ∈ A

(u, av) a−→ (ua, v) for uav ∈ X, u, v 6= 1
ω

a−→ (a, v) for av ∈ X, v 6= 1
(u, a) a−→ ω for ua ∈ X, u 6= 1

ω
a−→ ω for a ∈ X.

The state ω is both initial and terminal.
The proof of the following result is straightforward. It generalizes the fact that the flower

automaton of a code recognizes X∗ and is unambiguous (see Theorem 4.2.2 in [3]).

D. Perrin and A. Ryzhikov 54:5

I Proposition 2. For any finite set X ⊂ A+, the flower automaton of X recognizes X∗ with
multiplicities.

I Example 3. Let X = {a, ab, ba}. The flower automaton of X∗ is represented in Figure 2.
As an example, there are two paths from ω to ω labeled aba, corresponding to the two
factorizations (a)(ba) = (ab)(a).

ω

b, a

a, b

a b

a

a

b

Figure 2 The flower automaton of X (Example 3).

A more compact version of the flower automaton is the prefix automaton A = (P, 1, 1) of
a finite set X ⊂ A+. Its set of states is the set P of proper prefixes of X and its edges are
the p a→ pa for every p ∈ P and a ∈ A such that pa ∈ P and the p a→ 1 such that pa ∈ X. It
also recognizes X∗ with multiplicities.

I Example 4. Let X = {a2, a3}. The flower automaton of X is shown in Figure 3 on the
left and its prefix automaton on the right.

a, a ω

a, a2

a2, a

a

a

a

a

a

1

a

a2

a

a a

a

Figure 3 The flower automaton and the prefix automaton of X (Example 4).

A reduction from an automaton A = (P, i, t) onto an automaton B = (Q, j, u) is a
surjective map ρ : P → Q such that ρ(i) = j, ρ(t) = u and such that for every q, q′ ∈ Q
and w ∈ A∗, there is a path q w→ q′ in B if and only if there is a path p w→ p′ in A for some
p, p′ ∈ P with ρ(p) = q and ρ(p′) = q′.

The reduction is sharp if ρ−1(j) = {i} and ρ−1(u) = {t}.

I Proposition 5. Let ρ be a reduction from A = (P, i, t) onto B = (Q, j, u). Then L(A) ⊂
L(B), with equality if ρ is sharp.

The term reduction is the one used in [3] and it is not standard but captures the general
idea of a covering. The term conformal morphism is the one used in [19]. The following
statement replaces [3, Proposition 4.2.5].

I Proposition 6. Let X ⊂ A+ be a finite set which is the minimal generating set of X∗.
For each trim automaton B = (Q, i, i) recognizing X∗ with multiplicities, there is a sharp
reduction from the flower automaton of X onto B.

Proof. Let A = (P, ω, ω) be the flower automaton of X. We define a map ρ : P → Q as
follows. We set first ρ(ω) = i. Next, if (u, v) ∈ P with (u, v) 6= ω, then uv ∈ X. Since X is

FSTTCS 2020

54:6 The Degree of a Finite Set of Words

the minimal generating set of X∗, there is only one factorization of uv into elements of X.
Since B recognizes X with multiplicities, there is only one path i u→ q

v→ i in B. We define
ρ
(
(u, v)

)
= q.

It is straightforward to verify that ρ is a reduction. Assume first that q w→ q′ in B.
Let i u→ q and q′

v′→ i be simple paths, that is not passing by i except at the origin or
the end. Then i

uwv′→ i and thus uwv′ = x1x2 · · ·xn with xi ∈ X, u a proper prefix of
x1 = uv and v′ a proper suffix of xn = u′v′. Thus ρ

(
(u, v)

)
= q and ρ

(
(u′, v′)

)
= q′. Since

w = vx2 · · ·xn−1u
′, we have in A a path (u, v) w→ (u′, v′). Conversely, consider a path

(u, v) w→ (u′, v′) in A. If the path does not pass by ω, then u′ = uw, v = wv′ and we have a
path q w→ q′ in B with ρ

(
(u, v)

)
= q and ρ

(
(u′, v′)

)
= q′. Otherwise, the path decomposes in

(u, v) v→ ω
x→ ω

v′→ (u′, v′) with x ∈ X∗. Since B recognizes X∗, we have a path i x→ i in B
and thus also a path q w→ q′ with q = ρ

(
(u, v)

)
and q′ = ρ

(
(u′, v′)

)
. J

The statement above is false if X is not the minimal generating set of X∗, as shown by
the following example.

I Example 7. Let X = {a, a2}. There is no sharp reduction from the automaton of Figure 1
onto the one-state automaton recognizing X∗ = {a}∗.

The statement is also false if the automaton B recognizes X∗, but does not recognize X∗
with multiplicities, as shown by the following example.

I Example 8. Let X = {a2}. The flower automaton of X is represented in Figure 4 on the
left. There is no reduction onto the automaton represented on the right which also recognizes
X∗ (but not with multiplicities).

1 2

a

a

3 1 2
a

a a

a

Figure 4 Two automata recognizing X∗.

3 Transducers

A literal transducer T = (Q, i, t) on a set of states Q with an input alphabet A and an output
alphabet B is defined by a set of edges E which are of the form p

(a,v)−→ q with p, q ∈ Q, a ∈ A
and v ∈ B ∪ {1}. The input automaton associated with a transducer is the automaton with
the same set of states and edges but with the output labels removed.

The relation realized by the transducer T is the set of pairs (u, v) ∈ A∗ ×B∗ such that
there is a path from i to t labeled (u, v). We denote by ϕT the morphism from A∗ to
the monoid of Q × Q-matrices with elements in N〈B〉 defined for u ∈ A∗ and p, q ∈ Q by
ϕT (u)p,q =

∑
p

u|v
−→q

v.
Let X ⊂ A+ be a finite set. Let β : B∗ → A∗ be a coding morphism for X, that is, a

morphism whose restriction to B is a bijection onto X. The decoding relation for X is the
relation γ = {(u, v) ∈ A∗ × B∗ | u = β(v)}. A decoder for X is a literal transducer which
realizes the decoding relation. The flower transducer associated to β is the literal tranducer
built on the flower automaton of X by adding an output label 1 to each edge ω a→ (a, v) or
(u, av) a→ (ua, v) and an output label b to each edge ω a→ ω such that a ∈ X with β(b) = a

or (u, a) a→ ω such that ua = x ∈ X with β(b) = x.

D. Perrin and A. Ryzhikov 54:7

I Proposition 9. For every finite set X ⊂ A+ with a coding morphism β, the flower
transducer associated to β is a decoder for X.

I Example 10. Let X = {a, ab, ba} and let β : u→ a, v → ab, w → ba. The flower transducer
associated to β is represented in Figure 5. One has

ω

b, a

a, b

a|u
b|1

a|w

a|1

b | v

Figure 5 The flower transducer associated to β.

ϕT (a) =

u 1 0
0 0 0
w 0 0

 and ϕT (b) =

0 0 1
v 0 0
0 0 0

 .
The prefix transducer T = (P, 1, 1) is the same modification of the prefix automaton. Its

states are the proper prefixes of the elements of X. There is an edge p a|1→ pa for every prefix
p and every letter a such that pa ∈ P , and an edge p a|b→ 1 for every prefix p and letter a such
that pa = β(b) ∈ X. Thus the input automaton of the prefix transducer of X is the prefix
automaton of X.

Let B = (Q, j, j) be an automaton on the alphabet B and let T = (P, i, i) be a literal
transducer with the input alphabet A and the output alphabet B. We build an automaton
A = B ◦ T on the alphabet A as follows. Its set of states is Q× P and for every a ∈ A, the
matrix ϕA(a) is obtained by replacing in ϕT (a) the word w = ϕT (a)p,q by the matrix ϕB(w).
The initial and terminal state is (j, i). The automaton A is also called the wreath product of
B and T (see [9]). The word 1 is replaced by the identity matrix, and 0 is replaced by the
zero matrix of appropriate size. An example of A = B ◦ T is provided in Example 13.

4 Composition

Let Y ⊂ B+ and Z ⊂ A+ be finite sets of words such that there exists a bijection β : B → Z.
Two such sets are called composable. Then X = β(Y) is called the composition of Y and
Z through β, where β(Y) = {β(y) | y ∈ Y } with β naturally extended to the mapping
B∗ → Z∗. We denote X = Y ◦β Z. We also denote X = Y ◦ Z when β is clear. We say that
X = Y ◦ Z is a decomposition of X.

I Example 11. Let Y = {u, uw, vu} and Z = {a, ab, ba} with β : u → a, v → ab, w → ba.
Then X = Y ◦β Z = {a, aba}.

A decomposition X = Y ◦β Z of a finite set X is trim if every letter of B appears in a
word of Y and every word in X is obtained in a unique way from words in Y , that is, if
the restriction of β to Y is injective. For any decomposition X = Y ◦ Z, there are Y ′ ⊂ Y
and Z ′ ⊂ Z such that X = Y ′ ◦ Z ′ is trim. Indeed, if x ∈ X has two decompositions in
words of Z as x = z1z2 · · · zn = z′1z

′
2 · · · z′n′ , we may remove β−1(z′1z′2 · · · z′n′) from Y without

FSTTCS 2020

54:8 The Degree of a Finite Set of Words

changing X. A finite number of these removals gives a trim decomposition. The set Z ′ is
obtained by removing all words in Z which correspond to the letters no longer occurring
in words in Y ′ (we also remove such letters from B). The decomposition in Example 11 is
not trim, since aba = β(uw) = β(vu), but it can be made trim by taking X = Y ′ ◦ Z ′ with
Y ′ = {u, uw} and Z ′ = {a, ba}. In this case, Y ′ ⊂ {u,w}+.

A set X ⊂ A∗ is complete if any word in A∗ is a factor of a word in X∗.

I Proposition 12. Let Y ⊂ B+ and Z ⊂ A+ be two composable finite sets and let X = Y ◦βZ
be a trim decomposition. Let B = (Q, 1, 1) be the prefix automaton of Y and let T = (P, 1, 1)
be the prefix transducer of Z. The automaton A = B ◦ T recognizes X∗ with multiplicities.

If Y is complete, there is a reduction ρ from A onto the prefix automaton of Z. Moreover,
the automaton B can be identified through β with the restriction of A to ρ−1(1).

Proof. The simple paths in A have the form (1, 1) z1→ (b1, 1) z2→ (b1b2, 1) · · · zn→ (1, 1) for
x = z1 · · · zn = β(b1 · · · bn) in X and zi ∈ Z. Since the decomposition is trim, there is exactly
one such path for every x ∈ X and thus A recognizes X∗ with multiplicities.

Let us show that, if Y is complete, the map ρ : (q, p)→ p is a reduction from A onto the
prefix automaton of Z. We have to show that one has p w→ p′ in the prefix automaton C of Z
if and only if there exist q, q′ ∈ Q such that (q, p) w→ (q′, p′). Assume that p w→ p′ in C. Then
we have p w|u→ p′ in the prefix transducer T for some u ∈ B∗. Since Y is complete, there are
some q, q′ ∈ Q such that q u→ q′ in B. Then (q, p) w→ (q′, p′) in A. The converse is obvious.

Finally, the edges of the restriction of A to ρ−1(1) are the simple paths (q, 1) z→ (q′, 1)
for z = β(b) ∈ Z and q b→ q′ an edge of B. This proves the last statement. J

1 uu

u

v

1 aa|u

a|1

b|v

(1, 1)

(u, 1)

(u, a)

a
a

a

b

Figure 6 The prefix automaton of Y , the prefix transducer T of Z and the trim part of A.

I Example 13. Let Y = {u, uv} and Z = {a, ab} with β : u→ a, v → ab. We have, in view
of Figure 6,

ϕA(a) =
[
ϕB(u) I

0 0

]
and ϕA(b) =

[
0 0

ϕB(v) 0

]
.

5 Monoids of relations

We consider monoids of binary relations and prove some results on idempotents and groups
in such monoids. Few authors have considered monoids of binary relations. In [16], the
Green’s relations in the monoid BQ of all binary relations on a set Q are considered. It is
shown in [14] that any finite group appears as a maximal subgroup of BQ (in contrast with
the monoid of all partial maps in which all maximal subgroups are symmetric groups).

We write indifferently relations on a set Q as subsets of Q×Q, as boolean Q×Q-matrices
or as directed graphs on a set Q of vertices.

The rank of a relation m on Q is the minimal cardinality of a set R such that m = uv

with u a Q×R relation and v an R×Q relation. Equivalently, the rank of m is the minimal
number of row (resp. column) vectors (which are possibly not rows or columns of m) which
generate over {0, 1} the set of rows (resp. columns) of m.

D. Perrin and A. Ryzhikov 54:9

For example, the full relation m = Q×Q has rank 1. In terms of matrices

m =


1
1
...
1

 [1 1 · · · 1
]

More generally, the rank of an equivalence relation is equal to the number of its classes.
A fixed point of a relation m on Q is an element q ∈ Q such that q m−→ q. The following

result appears in [20] (see also [12]).

I Proposition 14. Let e be an idempotent relation on a finite set Q, let S be the set of fixed
points of e and let Γ be the set of strongly connected components of the restriction of e to S.
1. For all p, q ∈ Q we have p e−→ q if and only if there exists an s ∈ S such that p e−→ s

and s e−→ q.
2. We have

e = `r (1)

where ` = {(p, σ) ∈ Q × Γ | p e−→ s for some s ∈ σ} and r = {(σ, q) ∈ Γ × Q | s e−→
q for some s ∈ σ}.

Proof. 1. Choose n > Card(Q). Since p en

−→ q, there is some s ∈ Q such that p ei

−→ s
ej

−→
s

ek

−→ q with i + j + k = n. Then p e−→ s
e−→ s

e−→ q and the statement is proved. The
other direction is obvious.

2. If p e−→ q, let s ∈ S be such that p e−→ s
e−→ q and let σ be the strongly connected

component of s. Then p `−→ σ
r−→ q. Thus e ≤ `r, which means that each element of e is

not larger than the corresponding element of `r when these relations are considered as binary
matrices. Conversely, if p `−→ σ

r−→ q there are s, s′ ∈ σ such that p e−→ s and s′
s′−→ q.

Since s, s′ are in the same stongly connected component, we have s e→ s′ and we obtain
p

e→ s
e→ s′

e→ q, whence p e→ q. J

The decomposition of e = lr given by Equation (1) is called the column-row decomposition
of e. Note that Proposition 14 is false without the finiteness hypothesis on Q. Indeed, the
relation e = {(x, y) ∈ R2 | x < y} is idempotent, but has no fixed points.

I Example 15. The matrix

m =


1 1 1 0
1 1 1 0
0 0 0 0
1 1 1 0


is an idempotent of rank 1.

For an element m of a monoid M , we denote by H(m) the H-class of m, where H is the
Green relation H = R∩ L (see [3] for the definitions). It is a group if and only if it contains
an idempotent e (see [3]). In this case, every m ∈ H(e) has a unique inverse m−1 in the
group H(e).

The following result is the transposition of Proposition 9.1.7 in [3] to arbitrary monoids
of relations. However, the result is restricted to a statement on the group H(e) instead of
the monoid eMe.

FSTTCS 2020

54:10 The Degree of a Finite Set of Words

I Proposition 16. Let M be a monoid of relations on a finite set Q, let e ∈M be idempotent
and let Γ be the set of strongly connected components of the fixed points of e. For m ∈ H(e),
let γe(m) be the relation on Γ defined by

γe(m) = {(ρ, σ) ∈ Γ× Γ | r m→ s
m−1

→ r for some r ∈ ρ and s ∈ σ}

Then m 7→ γe(m) is an isomorphism from H(e) onto a group of permutations on Γ.

Proof. First, γe(m) is a map. Indeed, let s m→ t
m−1

→ s and s′
m→ t′

m−1

→ s′. If s e→ s′, we
have t m

−1

→ s
e→ s′

m→ t′ and thus t e→ t′. By a symmetrical proof, we obtain that γe(m) is a
permutation.

Next, it is easy to verify that γe is a morphism.
Finally, γe is injective. Indeed, assume that for m,m′ ∈ H(e) we have γe(m) = γe(m′).

Suppose that p m→ q.
Assume first that p is a fixed point of e. Let r, r′ be such that p m→ r

m−1

→ p and
p
m′→ r′

m′−1

→ p. Since γe(m) = γe(m′), we obtain that r, r′ are in the same element of Γ. We
conclude that p m

′

→ r′
e→ r

m−1

→ p
m→ q which implies that p m

′

→ q.
Now if p is not a fixed point of e, since em = m, there is an r such that p e→ r

m→ q. By
Proposition 14, there is a fixed point r′ of e such that p e→ r′

e→ r
m→ q. Then r′ m→ q implies

r′
m′→ q by the preceding argument, and finally p m

′

→ q. J

We denote Ge = γe(H(e)). The definition of γe can be formulated differently.

I Proposition 17. Let M be a monoid of relations on a finite set Q and let e ∈ M be
an idempotent. Let σ, τ be two distinct connected components of fixed points of e and let
s ∈ σ, t ∈ τ . If es,t = 1, then mt,s = 0 for every m ∈ H(e) and thus (σ, τ) /∈ γe(m). If
es,t = et,s = 0 then s m→ t implies (σ, τ) ∈ γe(m).

Proof. Assume first that es,t = 1 so that the restriction of e to {s, t} is the matrix
[
1 1
0 1

]
.

If mt,s = 1, then the restriction of m to {s, t} is the matrix with all ones, which is impossible
since no power of m can be equal to e. If the restriction of e to {s, t} is the identity, then
the restriction of m ∈ H(e) is a permutation. Thus (σ, τ) ∈ γe(m) if and only if s m→ t. J

The following extends Proposition 9.1.9 in [3]. It uses the Green relation D = LR = RL.
Two permutation groups G over Q and G′ over Q′ are called equivalent if there exists a
bijection α : Q → Q′ and an isomorphism ψ : G → G′ such that for all q ∈ Q and g ∈ G
we have α(q.g) = α(q).ψ(g), where q.g is the action of g on q (see Section 1.13 of [3]). In a
more standard terminology, two permutation groups are equivalent if and only if their group
actions are isomorphic, though we use the terminology of [3] to simplify the comparison with
the results described there.

I Proposition 18. Let M be a monoid of relations on a finite set Q and let e, e′ ∈ M be
D-equivalent idempotents. Then the groups Ge and Ge′ are equivalent permutation groups.

Proof. Let (a, a′, b, b′) be a passing system from e to e′, that is such that

eaa′ = e, bb′e′ = e′, ea = b′e′.

We will verify that there is a commutative diagram of isomorphisms shown in Figure 7.

D. Perrin and A. Ryzhikov 54:11

H(e)
τ−−−−→ H(e′)yγe yγe′

Ge
τ ′

−−−−→ Ge′

Figure 7 Commutative diagram of isomorphisms.

We define the map τ by τ(m) = bma. Then it is easy to verify that τ is a morphism and
that m′ 7→ b′m′a′ is its inverse. Thus τ is an isomorphism.

We define τ ′ as follows. Let Γe,Γe′ be the sets of strongly connected components of fixed
points of e and e′ respectively. Let θ be the relation between Γe and Γe′ defined by (σ, σ′) ∈ θ
if for some s ∈ σ and s′ ∈ σ′, we have s eae

′

→ s′. One may verify that θ is a bijection between
Γe and Γe′ . Its inverse is the map on classes induced by e′be = e′a′e. Then τ ′(n) = θtnθ.

We verify that the diagram is commutative. Suppose that for some m ∈ H(e) (σ′1, σ′1) ∈
τ ′(γe(m)). By definition of τ ′ there exist σ1, σ2 ∈ Γe such that

(σ′1, σ1) ∈ θt, (σ1, σ2) ∈ γe(m) and (σ2, σ
′
2) ∈ θ.

Then for s1 ∈ σ1, s′1 ∈ σ′1, s′2 ∈ σ′2 and s2 ∈ σ2, we have

s′1
e′be→ s1, s1

m→ s2
m−1

→ s1. s2
eae′→ s′2.

Then s′1
bma→ s′2

bm−1a→ s′1 showing that (σ′1, σ′1) ∈ γe′(τ(m)). J

Note that, contrary to the case of a monoid of unambiguous relations, two D-equivalent
idempotents need not have the same number of fixed points, as shown by the following
example.

I Example 19. Let M be the monoid of all relations on Q = {1, 2}. The two idempotents

e =
[
1 0
0 0

]
, e′ =

[
1 1
1 1

]
are D-equivalent although the first has one fixed point and the second has two.

Let M be a monoid of relations on a finite set Q. The minimal rank of M , denoted r(M)
is the minimum of the ranks of the elements of M other than 0. The following statement
generalizes Theorem 9.3.10 in [3] from unambiguous to arbitrary transitive monoids of
relations. A D-class is regular if it contains an idempotent. A monoid of relations on Q is
transitive if for every p, q ∈ Q, there is an m ∈M such that p m→ q.

I Theorem 20. Let M be a transitive monoid of relations on a finite set Q. The set K
of elements of rank r(M) is a regular D-class. The groups Ge for e idempotent in K are
equivalent transitive permutation groups. Moreover, for a fixed point i of e, the minimal rank
r(M) is the index of the subgroup {m ∈ H(e) | i m→ i} in H(e).

Proof. The proof is the same as for the case of an unambiguous monoid of relations except
for the last statement. Let σ, τ be two distinct strongly connected components of fixed points
of e and let s ∈ σ, t ∈ τ . Since M is transitive there is an m ∈ M such that s m→ t. Then
eme is not 0 and thus eme ∈ H(e). Similarly, if n ∈M is such that t n→ s, then ene ∈ H(e).
This implies by Proposition 17 that the restriction of e to {s, t} is the identity and that
(σ, τ) ∈ γe(eme). Thus Ge is transitive. The last statement follows from the fact that for
any transitive permutation group on a set S, the number of elements of S is equal to the
index of the subgroup fixing one of the points of S (Proposition 1.13.2 of [3]). J

The Suschkevitch group of M is one of the equivalent groups Ge for e of rank r(M).

FSTTCS 2020

54:12 The Degree of a Finite Set of Words

6 Group and degree of a set

Let A = (P, i, i) and B = (Q, j, j) be automata and let ρ : P → Q be a reduction. For
m = ϕA(w), the relation n = ϕB(w) is well defined. We denote it by n = ρ̂(m). Then ρ̂ is a
morphism from ϕA(A∗) onto ϕB(A∗) called the morphism associated with ρ. The following
result extends Proposition 9.5.1 in [3] to arbitrary finite sets of words.

I Proposition 21. Let X ⊂ A+ be finite. Let A = (P, i, i) and B = (Q, j, j) be trim automata
recognizing X∗ with multiplicities. Let M = ϕA(A∗) and N = ϕB(A∗). Let E be the set of
idempotents in M and F the set of idempotents in N .

Let ρ be a sharp reduction of A onto B and let ρ̂ : M → N be the morphism associated
with ρ. Then
1. ρ̂(E) = F .
2. Let e ∈ E and f = ρ̂(e). The restriction of ρ to the set S of fixed points of e is a bijection

on the set of fixed points of f , and the groups He and Hf are equivalent.

Proof. 1. Let e ∈ E. Then ρ̂(e) is idempotent since ρ̂ is a morphism. Thus ρ̂(E) ⊂ F .
Conversely, if f ∈ F , let w ∈ A∗ be such that ϕB(w) = f . Let n ≥ 1 be such that e = ϕA(w)n
is idempotent. Then ρ̂(e) = f since ρ̂ ◦ ϕA = ϕB.

2. Let S be the set of fixed points of e and T the set of fixed points of f . Consider s ∈ S
and let t = ρ(s). From s

e→ s, we obtain t f→ t and thus ρ(S) ⊂ T . Conversely, let t ∈ T .
The restriction of e to the set R = ρ−1(t) is a non zero idempotent. Thus there is some
s ∈ R which is a fixed point of this idempotent, ans thus of e. Thus t ∈ ρ(S).

Since ρ̂ is a morphism from M onto N , we have ρ̂(H(e)) = H(f). It is clear that ρ maps
a strongly connected component of e on a strongly connected component of f . To show that
this map is a bijection, consider s, s′ ∈ S such that ρ(s), ρ(s′) belong to the same connected
component. We may assume that e is not the equality relation. Let w ∈ A+ be such that
ϕA(w) = e. Since X is finite, there are factorizations w = uv = u′v′ such that s u→ i

v→ s

and s′ u
′

→ i
v′→ s′. Then we have j v→ ρ(s) w→ ρ(s′) u′→ j. Since ρ is sharp, this implies i vwu

′

→ i

and finally s uvwu
′v′→ s′. This shows that s e→ s′. A similar proof shows that s′ e→ s. Thus,

s, s′ belong to the same connected component of e.
Moreover, for everym ∈ H(e), one has s m→ t

m−1

→ s if and only if ρ(s) ρ̂(m)→ ρ(t) ρ̂(m−1)→ ρ(s).
Thus He and Hf are equivalent permutation groups. J

Let X ⊂ A+ be a finite set and let A be the flower automaton of X. The degree of X,
denoted d(X) is the minimal rank of the monoid M = ϕA(A∗). The group of X is the
Suschkevitch group of M . Proposition 21 shows that the definitions of the group and of the
degree do not depend on the automaton chosen to recognize X∗, provided one takes a trim
automaton recognizing X∗ with multiplicities.

7 Synchronization

Let X ⊂ A+ be a finite set of words. A word x ∈ A∗ is synchronizing for X if for every
u, v ∈ A∗, uxv ∈ X∗ ⇒ ux, xv ∈ X∗. A set X is synchronizing if there is a synchronizing
word x ∈ X∗. The next proposition generalizes Proposition 10.1.11 of [3]

I Proposition 22. A finite set X ⊂ A+ is synchronizing if and only if its degree d(X) is 1.

Proof. Let A = (Q, i, i) be a trim automaton recognizing X∗.

D. Perrin and A. Ryzhikov 54:13

Assume first that d(X) = 1. Let x ∈ X∗ be such that ϕA(x) has rank 1. If uxv ∈ X∗, we
have i u→ p

x→ q
v→ i for some p, q ∈ Q. Since ϕA(x) has rank 1, we deduce from i

x→ i and
p
x→ q that we have also i x→ q and p x→ i. Thus ux, xv ∈ X∗, showing that x is synchronizing.
Assume conversely that X is synchronizing. Let x ∈ X∗ be a synchronizing word.

Replacing x by some its power, we may assume that ϕA(x) is an idempotent e. Let m ∈ H(e)
and let w ∈ ϕ−1

A (m). Since H(e) is finite, there is some n ≥ 1 such that mn = e. Then
(me)n = e implies that (wx)n ∈ X∗. Since x is synchronizing, we obtain wx ∈ X∗ and since
ϕA(wx) = me = m, this implies w ∈ X∗. This shows that H(e) is contained in ϕA(X∗) and
thus that d(X) = 1 by Theorem 20. J

I Example 23. Consider again X = {a, ab, ba} (Example 3). The flower automaton of X is
represented again for convenience in Figure 8 (left).

The minimal rank of the elements of ϕA(A∗) is 1. Indeed, we have

ϕA(a2) =

1 1 0
0 0 0
1 1 0

 =

1
0
1

 [1 1 0
]

Accordingly, aa is a synchronizing word.

1

3

2

a b

a

a

b

1, 2 1, 3 3

1, 3 * a2 * a2b * a2b2

1, 2 * ba2 * ba2b ba2b2

2 *b2a2 b2a2b b2a2b2

Figure 8 The flower automaton of X (left) and the set K of elements of rank 1 (right).

The set K of elements of rank 1 is represented in Figure 8 (right). For each H-class, we
indicate on its left the set of states p such that the row of index p in nonzero. Similarly, we
indicate above it the set of states q such that the column of index q is nonzero. A star ∗
indicates an H-class which is a group. Note that

ϕA(a2b) =

1 0 1
0 0 0
1 0 1


has two fixed points but only one strongly connected class, in agreement with fact that it is
of rank 1.

8 Groups and composition

Given a transitive permutation group G on a set Q, an imprimitivity relation of G is an
equivalence on Q compatible with the group action. If θ is such an equivalence relation, we
denote by Gθ the permutation group induced by the action of G on the classes of θ. The
groups induced by the action on the class of an element i ∈ Q by the action of the elements
of G stabilizing the class of i are all equivalent. We denote by Gθ one of them. For two
permutation groups G,H on sets P and Q respectively, we denote G ≤ H if there is an
imprimitivity equivalence θ on Q such that G = Hθ.

The next theorem generalizes Proposition 11.1.2 of [3].

FSTTCS 2020

54:14 The Degree of a Finite Set of Words

I Theorem 24. Let X ⊂ A+ be a finite set with a trim decomposition X = Y ◦ Z, where Y
is complete. There exists an imprimitivity equivalence θ of G = G(X) such that

Gθ ≤ G(Y), Gθ = G(Z).

In particular, d(X) ≤ d(Y) · d(Z).

Proof. Let B = (Q, i, i) be the flower automaton of Y and let T be the prefix transducer of
Z. Let A = B ◦ T . By Proposition 12, there is a reduction ρ from A = (Q× P, (i, 1), (i, 1))
onto the prefix automaton C of Z.

Let e be an idempotent of minimal rank in ϕA(X∗). Let S be the set of fixed points of
e and let Γ be the set of connected components (scc) of the elements of S. Let Ŝ be the
set of fixed points of ê = ρ̂(e) and let Γ̂ be the set of corresponding scc’s. If s, s′ ∈ S are in
the same scc, then ρ(s), ρ(s′) are in the same scc of Ŝ. Thus, we have a well-defined map
ρ̄ : Γ→ Γ̂ such that s ∈ Γ if and only if ρ(s) ∈ ρ̄(Γ).

We define an equivalence θ on Γ by σ ≡ σ′ if ρ̄(σ) = ρ̄(σ′). Let m ∈ H(e) and suppose
that (σ, τ), (σ′, τ ′) ∈ γe(m). If σ ≡ σ′ mod θ, then τ ≡ τ ′ mod θ. Let indeed s ∈ σ, s′ ∈ σ′
and t ∈ τ, t′ ∈ τ ′. We have by definition of γe

s
m→ t

m−1

→ s and s′ m→ t′
m−1

→ s′

and thus

ρ(s) ρ̂(m)→ ρ(t) ρ̂(m)−1

→ ρ(s) and ρ(s′) ρ̂(m)→ ρ(t′) ρ̂(m)−1

→ ρ(s′)

This implies that ρ(t) ê→ ρ(t′) and ρ(t′) ê→ ρ(t). But since γê(m̂) is a permutation, this forces
ρ̄(τ) = ρ̄(τ ′) and finally τ ≡ τ ′ mod θ. Since the action of H(e) on the classes of θ is the
same as the action of H(ê), we have G(Z) = Gθ.

Finally, let σ ∈ Γ be the scc of the initial state (i, 1) and let I be its class modθ. Thus
d(X) = Card(I)d(Z). Let x ∈ X∗ be such that ϕA(x) = e and let y = β−1(x). Then
f = ϕB(y) is an idempotent of ϕB(B∗) of rank d(Y). Let U be the set of fixed points of f
and let Φ be the set of scc of U for the action of f . Let σ be the equivalence on Φ induced by
the equivalence r ≡ s if (r, 1), (s, 1) belong to the same scc for e. Then σ is an imprimitivity
equivalence for G(Y) such that G(Y)σ = Gθ. Thus Gθ ≤ G(Y) and Card(I) ≤ d(Y), which
implies d(X) ≤ d(Y) · d(Z). J

I Example 25. Let Z = {a, ab, ba, ca} and X = Z2. We have X = Y ◦β Z with Y =
{u, v, w, x}2 and β : u 7→ a, v 7→ ab, w 7→ bc, x 7→ ca. The word aa is synchronizing for Z and
thus d(Z) = 1. In contrast, we have d(Y) = 2 and G(Y) = Z/2Z. It can be verified that the
word ca2b is synchronizing for X and thus d(X) = 1. Thus d(X) < d(Y) · d(Z) = 2 · 1 = 2.
Thus the case of a strict inequality can occur. This is made possible by the fact that Z is
not a code. Indeed, we have (ab)(ca) = a(bc)a.

9 Decompositions of codes

Finally, we use the developed techniques to show that for a uniquely decipherable code X for
all the trim decompositions of the form X = Y ◦ Z with Y complete we have that Z (and
thus Y) is a uniquely decipherable code as well. It shows that, as long as we require Y to be
complete, we do not get any new trim decompositions of uniquely decipherable codes even if
we decompose them as arbitrary sets of words.

D. Perrin and A. Ryzhikov 54:15

I Proposition 26. Let X = Y ◦ Z be a trim decomposition of a finite set X. If X is a
uniquely decipherable code and if Y is complete, then Z is a uniquely decipherable code.

Proof. Since β is trim, Y is a uniquely decipherable code. Let β : B → Z be the coding
morphism for Z such that X = Y ◦β Z. Assume that z ∈ Z∗ is a word with more than
one factorization into words of Z. Let u, v ∈ B∗ two distinct elements in β−1(z). Let A
be the flower automaton of Y . Let y ∈ Y ∗ be such that ϕA(y) has minimal rank. Then
yuy, yvy are not zero since Y is complete. Thus ϕA(yuy), ϕA(yvy) belong to the H-class of
ϕA(y) which is a finite group. Let e be its idempotent. There are integers n,m, p such that
ϕA(y)n = ϕA(yuy)m = ϕA(yvy)p = e. Since y ∈ Y ∗, this implies that e ∈ ϕA(Y ∗) and thus
that (yuy)m, (yvy)p are in Y ∗. We conclude that Y is not a uniquely decipherable code, a
contradiction. J

This is false if we do not require Y to be complete. Consider a codeX = {ab, abaab, abbab},
which can be decomposed into X = Y ◦ Z with Y = {u, uvu, uwu} and Z = {ab, a, b}. The
decomposition is obviously trim, the set X is a uniquely decipherable code, but the set Z is
not a uniquely decipherable code.

References
1 Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text compression. Prentice-Hall, Inc.,

1990.
2 Jean Berstel, Dominique Perrin, Jean-Francois Perrot, and Antonio Restivo. Sur le théorème

du défaut. Journal of Algebra, 60(1):169–180, 1979. doi:10.1016/0021-8693(79)90113-3.
3 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Cambridge

University Press, 2009.
4 Renato M. Capocelli, Luisa Gargano, and Ugo Vaccaro. A fast algorithm for the unique

decipherability of multivalued encodings. Theoretical Computer Science, 134(1):63–78, 1994.
doi:10.1016/0304-3975(94)90278-X.

5 Arturo Carpi and Flavio D’Alessandro. On incomplete and synchronizing finite sets. Theor.
Comput. Sci., 664:67–77, 2017. doi:10.1016/j.tcs.2015.08.042.

6 Julien Clément, Jean-Pierre Duval, Giovanna Guaiana, Dominique Perrin, and Giuseppina
Rindone. Parsing with a finite dictionary. Theoretical Computer Science, 340(2):432–442, 2005.
doi:10.1016/j.tcs.2005.03.030.

7 Aldo de Luca, Dominique Perrin, Antonio Restivo, and Settimo Termini. Synchronization
and simplification. Discrete Mathematics, 27(3):297–308, 1979. doi:10.1016/0012-365X(79)
90164-X.

8 Samuel Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.
9 Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic Press, 1976.
10 Fernando Guzmán. Decipherability of codes. Journal of Pure and Applied Algebra, 141(1):13–35,

1999. doi:10.1016/S0022-4049(98)00019-X.
11 Tero Harju and Juhani Karhumäki. Many aspects of defect theorems. Theoretical Computer

Science, 324(1):35–54, 2004. Words, Languages and Combinatorics. doi:10.1016/j.tcs.2004.
03.051.

12 Evelyne Le Rest and Michel Le Rest. Une représentation fidèle des groupes d’un monoïde
de relations binaires sur un ensemble fini. Semigroup Forum, 21(2-3):167–172, 1980. doi:
10.1007/BF02572547.

13 Abraham Lempel. On multiset decipherable codes (corresp.). IEEE Trans. Inf. Theor.,
32(5):714–716, 1986. doi:10.1109/TIT.1986.1057217.

14 J.S. Montague and R.J. Plemmons. Maximal subgroups of the semigroup of relations. Journal
of Algebra, 13(4):575–587, 1969.

FSTTCS 2020

https://doi.org/10.1016/0021-8693(79)90113-3
https://doi.org/10.1016/0304-3975(94)90278-X
https://doi.org/10.1016/j.tcs.2015.08.042

54:16 The Degree of a Finite Set of Words

15 H. Nagumo, Mi Lu, and KaranWatson. Parallel algorithms for the static dictionary compression.
In Proceedings DCC ’95 Data Compression Conference, pages 162–171, 1995.

16 R. J. Plemmons and M. T. West. On the semigroup of binary relations. Pacific J. Math.,
35(3):743–753, 1970.

17 Evelyne Barbin-Le Rest and Stuart W. Margolis. On the group complexity of a finite language.
In Proceedings of the 10th Colloquium on Automata, Languages and Programming, pages
433–444, Berlin, Heidelberg, 1983. Springer-Verlag.

18 Antonio Restivo. A note on multiset decipherable codes. IEEE Trans. Inf. Theor., 35(3):662–
663, 1989. doi:10.1109/18.30991.

19 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
20 Marcel-Paul Schützenberger. A property of finitely generated submonoids of free monoids. In

G. Pollak, editor, Algebraic Theory of Semigroups, pages 545–576. North-Holland, 1979.
21 Andreas Weber and Tom Head. The finest homophonic partition and related code concepts.

IEEE Transactions on Information Theory, 42(5):1569–1575, 1996.

https://doi.org/10.1016/j.tcs.2005.03.030
https://doi.org/10.1016/0012-365X(79)90164-X
https://doi.org/10.1016/0012-365X(79)90164-X
https://doi.org/10.1016/S0022-4049(98)00019-X
https://doi.org/10.1016/j.tcs.2004.03.051
https://doi.org/10.1016/j.tcs.2004.03.051
https://doi.org/10.1007/BF02572547
https://doi.org/10.1007/BF02572547
https://doi.org/10.1109/TIT.1986.1057217
https://doi.org/10.1109/18.30991

What You Must Remember When Transforming
Datawords
M. Praveen
Chennai Mathematical Institute, India
UMI ReLaX, Indo-French joint research unit

Abstract
Streaming Data String Transducers (SDSTs) were introduced to model a class of imperative and a
class of functional programs, manipulating lists of data items. These can be used to write commonly
used routines such as insert, delete and reverse. SDSTs can handle data values from a potentially
infinite data domain. The model of Streaming String Transducers (SSTs) is the fragment of SDSTs
where the infinite data domain is dropped and only finite alphabets are considered. SSTs have been
much studied from a language theoretical point of view. We introduce data back into SSTs, just
like data was introduced to finite state automata to get register automata. The result is Streaming
String Register Transducers (SSRTs), which is a subclass of SDSTs.

We use origin semantics for SSRTs and give a machine independent characterization, along
the lines of Myhill-Nerode theorem. Machine independent characterizations for similar models
are the basis of learning algorithms and enable us to understand fragments of the models. Origin
semantics of transducers track which positions of the output originate from which positions of the
input. Although a restriction, using origin semantics is well justified and is known to simplify many
problems related to transducers. We use origin semantics as a technical building block, in addition
to characterizations of deterministic register automata. However, we need to build more on top of
these to overcome some challenges unique to SSRTs.

2012 ACM Subject Classification Theory of computation → Transducers; Theory of computation
→ Automata over infinite objects

Keywords and phrases Streaming String Transducers, Data words, Machine independent character-
ization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.55

Related Version A full version of the extended abstract is available at https://arxiv.org/abs/
2005.02596.

Funding M. Praveen: Partially supported by a grant from the Infosys foundation.

Acknowledgements The author thanks C. Aiswarya, Kamal Lodaya, K. Narayan Kumar and
anonymous reviewers for suggestions to improve the presentation and pointers to related works.

1 Introduction

Transductions are in general relations among words. Transducers are theoretical models that
implement transductions. Transducers are used in a variety of applications, such as analysis
of web sanitization frameworks, host based intrusion detection, natural language processing,
modeling some classes of programming languages and constructing programming language
tools like evaluators, type checkers and translators. Streaming Data String Transducers
(SDSTs) were introduced in [2] to model a class of imperative and a class of functional
programs, manipulating lists of data items. Transducers have been used in [16] to infer
semantic interfaces of data structures such as stacks. Such applications use Angluin style
learning, which involves constructing transducers by looking at example operations of the
object under study. Since the transducer is still under construction, we need to make
inferences about the transduction without having access to a transducer which implements it.
Theoretical bases for doing this are machine independent characterizations, which identify
what kind of transductions can be implemented by what kind of transducers and give a

© M. Praveen;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 55; pp. 55:1–55:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.55
https://arxiv.org/abs/2005.02596
https://arxiv.org/abs/2005.02596
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 What You Must Remember When Transforming Datawords

template for constructing transducers. Indeed the seminal Myhill-Nerode theorem gives a
machine independent characterization for regular languages over finite alphabets, which form
the basis of Angluin style learning of regular languages [3]. A similar characterization for a
fragment of SDSTs is given in [5] and is used as a basis to design a learning algorithm.

Programs deal with data from an infinite domain and transducers modeling the programs
should also treat data as such. For example in [16], the state space reduced from 109 to 800
and the number of learning queries reduced from billions to 4000 by switching to a transducer
model that can deal with data from an infinite domain. We give a machine independent
characterization for a fragment of SDSTs more powerful than those in [16, 5]. The additional
power comes from significant conceptual differences. The transducers used in [16] produce
the output in a linear fashion without remembering what was output before. For example,
they cannot output the reverse of the input strings, which can be done by our model. The
model studied in [5] are called Streaming String Transducers (SSTs), the fragment obtained
from SDSTs by dropping the ability to deal with data values from an infinite domain. We
retain this ability in our model, called Streaming String Register Transducers (SSRTs). It is
obtained from SDSTs by dropping the ability to deal with linear orders in the data domain.
Apart from Angluin style learning algorithms, machine independent characterizations are
also useful for studying fragments of transducer models. E.g. in [5], machine independent
characterization of SSTs is used to study fragments such as non-deterministic automata with
output and transductions definable in First Order logic.

We use origin semantics of transducers, which are used in [5] to take into account how
positions of the output originate from the positions of the input. Using origin semantics is
known to ease some of the problems related to transducers, e.g., [7]. Origin semantics is a
restriction, but a reasonable one and is used extensively in this paper.

Contributions

Machine independent characterizations are known for automata over data values from an
infinite domain [15, 4] and for streaming transducers over finite alphabets [5], but not for
streaming transducers over data values, which is what we develop here. This involves both
conceptual and technical challenges. In [15, 4], data values that must be remembered by an
automaton while reading a word from left to right are identified using a machine independent
definition. We lift this to transducers and identify that the concept of factored outputs
from [5] is necessary for this. Factored outputs can let us ignore some parts of transduction
outputs, which is necessary to define when two words behave similarly. However, [5] does not
deal with data values from an infinite domain and it takes quite a bit of manipulation with
permutations on data values to make ideas from there work here. In transductions, suffixes
can influence how prefixes are transformed. This is elegantly handled in [5] using two way
transducer models known to be equivalent to SSTs. There are no such models known when
data values are present. To handle it in a one way transducer model, we introduce data
structures based on trees that keep track of all possible suffixes. This does raise the question
of whether there are interesting two way transducer models with data values. Recent work
[6] has made progress in this direction, which we discuss at the end of this extended abstract.
We concentrate here on SDSTs and its fragments, which are known to be equivalent to
classes of imperative and functional programming languages. In [2], it is explained in detail
which features of programming languages correspond to which features of the transducer.
Over finite alphabets, streaming string transducers are expressively equivalent to regular
transductions, which are also defined by two way deterministic finite-state transducers and
by monadic second order logic [1].

M. Praveen 55:3

Related Works

Studying transducer models capable of handling data values from an infinite domain is an
active area of research [13, 14]. Streaming transducers like SDSTs have the distinctive feature
of using variables to store intermediate values while computing transductions; this idea
appears in an earlier work [11] that introduced simple programs on strings, which implement
the same class of transductions as those implemented by SSTs. An Angluin style learning
algorithm for deterministic automata with memory is given in [17]. A machine independent
characterization of automata with finite memory is given in [8], which is further extended
to data domains with arbitrary binary relations in [9]. The learning algorithm of [17] is
extended to Mealy machines with data in [16]. However, Mealy machines are not as powerful
as SSRTs that we consider here. Using a more abstract approach of nominal automata, [19]
presents a learning algorithm for automata over infinite alphabets. Logical characterizations
of transducers that can handle data are considered in [12]. However, the transducers in
that paper cannot use data values to make decisions, although they are part of the output.
Register automata with linear arithmetic introduced in [10] shares some of the features of the
transducer model used here. Here, data words stored in variables can be concatenated, while
in register automata with linear arithmetic, numbers stored in variables can be operated
upon by linear operators.

Most proofs and some technical details in this extended abstract are skipped due to space
constraints. All the proofs and technical details can be found in the full version.

2 Preliminaries

Let I be the set of integers, N be the set of non-negative integers and D be an infinite set of
data values. We will refer to D as the data domain. For i, j ∈ I, we denote by [i, j] the set
{k | i ≤ k ≤ j}. For any set S, S∗ denotes the set of all finite sequences of elements from S.
The empty sequence is denoted by ε. Given u, v ∈ S∗, v is a prefix (resp. suffix) of u if there
exists w ∈ S∗ such that u = vw (resp. u = wv). The sequence v is an infix of u if there are
sequences w1, w2 such that u = w1vw2.

Let Σ,Γ be finite alphabets. We will use Σ for input alphabet and Γ for output alphabet. A
data word over Σ is a word in (Σ×D)∗. A data word with origin information over Γ is a word
in (Γ×D×N)∗. Suppose Σ = {title,firstName, lastName} and Γ = {givenName, surName}.
An example data word over Σ is (title,Mr.)(firstName,Harry)(lastName,Tom). If we were to
give this as input to a device that reverses the order of names, the output would be the data
word with origin information (surName,Tom, 3)(givenName, Harry, 2), over Γ. In the triple
(givenName,Harry, 2), the third component 2 indicates that the pair (givenName, Harry)
originates from the second position of the input data word. We call the third component
origin and it indicates the position in the input that is responsible for producing the output
triple. If a transduction is being implemented by a transducer, the origin of an output
position is the position of the input that the transducer was reading when it produced the
output. The data value at some position of the output may come from any position (not
necessarily the origin) of the input data word. We write transduction for any function from
data words over Σ to data words with origin information over Γ.

For a data word w, |w| is its length. For a position i ∈ [1, |w|], we denote by data(w, i)
(resp. letter(w, i)) the data value (resp. the letter from the finite alphabet) at the ith
position of w. We denote by data(w, ∗) the set of all data values that appear in w. For
positions i ≤ j, we denote by w[i, j] the infix of w starting at position i and ending at
position j. Note that w[1, |w|] = w. Two data words w1, w2 are isomorphic (denoted by

FSTTCS 2020

55:4 What You Must Remember When Transforming Datawords

w1 ' w2) if |w1| = |w2|, letter(w1, i) = letter(w2, i) and data(w1, i) = data(w1, j) iff
data(w2, i) = data(w2, j) for all positions i, j ∈ [1, |w1|]. For data values d, d′, we denote
by w[d/d′] the data word obtained from w by replacing all occurrences of d by d′. We say
that d′ is a safe replacement for d in w if w[d/d′] ' w. Intuitively, replacing d by d′ doesn’t
introduce new equalities/inequalities among the positions of w. For example, d1 is a safe
replacement for d2 in (a, d3)(b, d2), but not in (a, d1)(b, d2).

A permutation on data values is any bijection π : D → D. For a data word u, π(u)
is obtained from u by replacing all its data values by their respective images under π. A
transduction f is invariant under permutations if for every data word u and every permutation
π, f(π(u)) = π(f(u)) (permutation can be applied before or after the transduction).

Suppose a transduction f has the property that for any triple (γ, d, o) in any output
f(w), there is a position i ≤ o in w such that data(w, i) = d. If the data value d is output
from the origin o, then d should have already occurred in the input on or before o. Such
transductions are said to be without data peeking. We say that a transduction has linear
blow up if there is a constant K such that for any position o of any input, there are at most
K positions in the output whose origin is o.

Streaming String Register Transducers

We present an extension of SSTs to handle data values, just like finite state automata were
extended to finite memory automata [18]. Our model is a subclass of SDSTs, which can store
intermediate values (which can be long words) in variables. E.g., reversing an input word can
be achieved as follows: as each input symbol is read, concatenate it to the back of a variable
maintained for this purpose. At the end, the variable will have the reverse of the input.
There are also registers in these models, which can store single data values. Transitions can
be enabled/disabled based on whether the currently read data value is equal/unequal to the
one stored in one of the registers.

I Definition 1. A Streaming String Register Transducer (SSRT) is an eight tuple S =
(Σ,Γ, Q, q0, R,X,O,∆), where

the finite alphabets Σ,Γ are used for input, output respectively,
Q is a finite set of states, q0 is the initial state,
R is a finite set of registers and X is a finite set of data word variables,
O : Q ⇀ ((Γ× R̂) ∪X)∗ is a partial output function, where R̂ = R ∪ {curr}, with curr
being a special symbol used to denote the current data value being read and
∆ ⊆ (Q× Σ× Φ×Q× 2R × U) is a finite set of transitions. The set Φ consists of all
Boolean combinations of atomic constraints of the form r= or r 6= for r ∈ R. The set U is
the set of all functions from the set X of data word variables to ((Γ× R̂) ∪X)∗.

It is required that
For every q ∈ Q and x ∈ X, there is at most one occurrence of x in O(q) and
for every transition (q, σ, φ, q′, R′, ud) and for every x ∈ X, x appears at most once in
the set {ud(y) | y ∈ X}.

We say that the last two conditions above enforce a SSRT to be copyless, since it prevents
multiple copies of contents being made.

A valuation val for a transducer S is a partial function over registers and data word
variables such that for every register r ∈ R, either val(r) is undefined or is a data value in
D, and for every data word variable x ∈ X, val(x) is a data word with origin information
over Γ. The valuation val and data value d satisfies the atomic constraint r= (resp. r 6=) if
val(r) is defined and d = val(r) (resp. undefined or d 6= val(r)). Satisfaction is extended to

M. Praveen 55:5

Boolean combinations in the standard way. We say that a SSRT is deterministic if for every
two transitions (q, σ, φ, q′, R′, u) and (q, σ, φ′, q′′, R′′, u′) with the same source state q and
input symbol σ, the formulas φ and φ′ are mutually exclusive (i.e., φ ∧ φ′ is unsatisfiable).
We consider only deterministic SSRTs here.

A configuration is a triple (q, val, i) where q ∈ Q is a state, val is a valuation and i is the
number of symbols read so far. The transducer starts in the configuration (q0, valε, 0) where
q0 is the initial state and valε is the valuation such that valε(r) is undefined for every register
r ∈ R and valε(x) = ε for every data word variable x ∈ X. From a configuration (q, val, i),
the transducer can read a pair (σ, d) ∈ Σ×D and go to the configuration (q′, val ′, i+ 1) if
there is a transition (q, σ, φ, q′, R′, ud) and 1) d and val satisfies φ and 2) val ′ is obtained
from val by assigning d to all the registers in R′ and for every x ∈ X, setting val ′(x) to
ud(x)[y 7→ val(y), (γ, curr) 7→ (γ, d, i+ 1), (γ, r) 7→ (γ, val(r), i+ 1)] (in ud(x), replace every
occurrence of y by val(y) for every data word variable y ∈ X, replace every occurrence of
(γ, curr) by (γ, d, i+ 1) for every output letter γ ∈ Γ and replace every occurrence of (γ, r) by
(γ, val(r), i+ 1) for every output letter γ ∈ Γ and every register r ∈ R). After reading a data
word w, if the transducer reaches some configuration (q, val, n) and O(q) is not defined, then
the transducer’s output JSK(w) is undefined for the input w. Otherwise, the transducer’s
output is defined as JSK(w) = O(q)[y 7→ val(y), (γ, curr) 7→ (γ, d, n), (γ, r) 7→ (γ, val(r), n)],
where d is the last data value in w.

Intuitively, the transition (q, σ, φ, q′, R′, ud) checks that the current valuation val and the
data value d being read satisfies φ, goes to the state q′, stores d into the registers in R′ and
updates data word variables according to the update function ud. The condition that x
appears at most once in the set {ud(y) | y ∈ X} ensures that the contents of any data word
variable are not duplicated into more than one variable. This ensures, among other things,
that the length of the output is linear in the length of the input. The condition that for every
two transitions (q, σ, φ, q′, R′, ud) and (q, σ, φ′, q′′, R′′, ud ′) with the same source state and
input symbol, the formulas φ and φ′ are mutually exclusive ensures that the transducer cannot
reach multiple configurations after reading a data word (i.e., the transducer is deterministic).

I Example 2. Consider the transduction that is the identity on inputs in which the first
and last data values are equal. On the remaining inputs, the output is the reverse of the
input. This can be implemented by a SSRT using two data word variables. As each input
symbol is read, it is appended to the front of the first variable and to the back of the second
variable. The first variable stores the input and the second one stores the reverse. At the
end, either the first or the second variable is output, depending on whether the last data
value is equal or unequal to the first data value (which is stored in a register).

In Section 3, we define an equivalence relation on data words and state our main result in
terms of the finiteness of the index of the equivalence relation and a few other properties. In
Section 4, we prove that transductions satisfying certain properties can be implemented by
SSRTs (the backward direction of the main result) and we prove the converse in Section 5.

3 How Prefixes and Suffixes Influence Each Other

As is usual in many machine independent characterizations (like the classic Myhill-Nerode
theorem for regular languages), we define an equivalence relation on the set of data words to
identify similar ones. If the equivalence relation has finite index, it can be used to construct
finite state models. We start by looking at what “similar data words” mean in the context of
transductions.

FSTTCS 2020

55:6 What You Must Remember When Transforming Datawords

Suppose L is the set of all even length words over some finite alphabet. The words a
and aaa do the same thing to any suffix v: a · v ∈ L iff aaa · v ∈ L. So, a and aaa are
identified to be similar with respect to L in the classic machine independent characterization.
Instead of a language L, suppose we have a transduction f and we are trying to identify
words u1, u2 that do the same thing to any suffix v. The naive approach would be to check
if f(u1 · v) = f(u2 · v), but this does not work. Suppose a transduction f is such that
f(a · b) = (a, 1)(b, 2), f(aaa · b) = (a, 1)(a, 2)(a, 3) · (b, 4) and f(c · b) = (c, 1)(b, 2)(b, 2) (we
have ignored data values in this transduction). The words a and aaa do the same thing to
the suffix b (the suffix is copied as it is to the output), as opposed to c (which copies the
suffix twice to the output). But f(a · b) 6= f(aaa · b). The problem is that we are not only
comparing what a and aaa do to the suffix b, but also comparing what they do to themselves.
We want to indicate in some way that we want to ignore the parts of the output that come
from a or aaa: f(a | v) = left · (b, 2) and f(aaa | b) = left · (b, 4). We have underlined
a and aaa on the input side to indicate that we want to ignore them; we have replaced
a and aaa in the output by left to indicate that they are coming from ignored parts of
the input. This has been formalized as factored outputs in [5]. This is still not enough
for our purpose, since the outputs (b, 2) and (b, 4) indicate that a and aaa have different
lengths. This can be resolved by offsetting one of the outputs by the difference in the lengths:
f(a | v) = left · (b, 2) = f−2(aaa | b). The subscript −2 in f−2(aaa | b) indicates that we
want to offset the origins by −2. We have formalized this in the definition below, in which
we have borrowed the basic definition from [5] and added data values and offsets.

I Definition 3 (Offset factored outputs). Suppose f is a transduction and uvw is a data word
over Σ. For a triple (γ, d, o) in f(uvw), the abstract origin abs(o) of o is left (resp. middle,
right) if o is in u (resp. v, w). The factored output f(u | v | w) is obtained from f(uvw) by
first replacing every triple (γ, d, o) by (∗, ∗, abs(o)) if abs(o) = left (the other triples are
retained without change). Then all consecutive occurrences of (∗, ∗, left) are replaced by a
single triple (∗, ∗, left) to get f(u | v | w). Similarly we get f(u | v | w) and f(u | v | w)
by using (∗, ∗, middle) and (∗, ∗, right) respectively. We get f(u | v) and f(u | v) similarly,
except that there is no middle part. For an integer z, we obtain fz(u | v) by replacing every
triple (γ, d, o) by (γ, d, o+ z) (triples (∗, ∗, left) are retained without change).

Let w = (a, d1)(a, d2)(b, d3)(c, d4) and f be the transduction in Example 2. Then f(w) =
(c, d4, 4)(b, d3, 3)(a, d2, 2)(a, d1, 1) (assuming d4 6= d1). The factored output f((a, d1)(a, d2) |
(b, d3) | (c, d4)) is (c, d4, 4)(b, d3, 3)(∗, ∗, left).

It is tempting to say that two data words u1 and u2 are equivalent if for all v, f(u1 | v) =
fz(u2 | v), where z = |u1| − |u2|. But this does not work; continuing with the transduction
f from Example 2, no two data words from the infinite set {(a, di) | i ≥ 1} would be
equivalent: f((a, di) | (a, di)) 6= f((a, dj) | (a, di)) for i 6= j. To get an equivalence relation
with finite index, we need to realize that the important thing is not the first data value, but
its (dis)equality with the last one. So we can say that for every i, there is a permutation πi
on data values mapping di to d1 such that f(πi(a, di) | v) = f((a, d1) | v). This will get us
an equivalence relation with finite index but it is not enough, since the transducer model we
build must satisfy another property: it must use only finitely many registers to remember
data values. Next we examine which data values must be remembered.

Suppose L is the set of all data words in which the first and last data values are equal.
Suppose a device is reading the word d1d2d3d1 from left to right and trying to determine
whether the word belongs to L (we are ignoring letters from the finite alphabet here). The
device must remember d1 when it is read first, so that it can be compared to the last data
value. A machine independent characterization of what must be remembered is given in
[4, Definition 2]; it says that the first occurrence of d1 in d1d2d3d1 is L-memorable because

M. Praveen 55:7

replacing it with some fresh data value d4 (which doesn’t occur in the word) makes a
difference: d1d2d3d1 ∈ L but d4d2d3d1 /∈ L. We adapt this concept to transductions, by
suitably modifying the definition of “making a difference”.

I Definition 4 (memorable values). Suppose f is a transduction. A data value d is f -
memorable in a data word u if there exists a data word v and a safe replacement d′ for d in
u such that f(u[d/d′] | v) 6= f(u | v).

Let f be the transduction of Example 2 and d1, d2, d3, d
′
1 be distinct data values. We have

f(d1d2d3 | d1) = (∗, ∗, left)(d1, 4) and f(d′1d2d3 | d1) = (d1, 4)(∗, ∗, left). Hence, d1 is
f -memorable in d1d2d3.

We have to consider one more phenomenon in transductions. Consider the transduction
f whose output is ε for inputs of length less than five. For other inputs, the output is
the third (resp. fourth) data value if the first and fifth are equal (resp. unequal). Let
d1, d2, d3, d4, d5, d

′
1 be distinct data values. We have f(d1d2d3d4 | v) = ε = f(d′1d2d3d4 | v)

if v = ε and f(d1d2d3d4 | v) = (∗, ∗, left) = f(d′1d2d3d4 | v) otherwise. Hence, d1 is not
f -memorable in d1d2d3d4. However, any device implementing f must remember d1 after
reading d1d2d3d4, so that it can be compared to the fifth data value. Replacing d1 by d′1 does
make a difference but we cannot detect it by comparing f(d1d2d3d4 | v) and f(d′1d2d3d4 | v).
We can detect it as follows: f(d1d2d3d4 | d1) = (d3, 3) 6= (d4, 4) = f(d1d2d3d4 | d5). Changing
the suffix from d1 to d5 influences how the prefix d1d2d3d4 is transformed (in transductions,
prefixes are vulnerable to the influence of suffixes). The value d1 is also contained in the
prefix d1d2, but f(d1d2 | v) = f(d1d2 | v[d1/d5]) for all v. To detect that d1d2 is vulnerable,
we first need to append d3d4 to d1d2 and then have a suffix in which we substitute d1 with
something else. We formalize this in the definition below; it can be related to the example
above by setting u = d1d2, u′ = d3d4 and v = d1.

I Definition 5 (vulnerable values). A data value d is f -vulnerable in a data word u if there
exist data words u′, v and a data value d′ such that d does not occur in u′, d′ is a safe
replacement for d in u · u′ · v and f(u · u′ | v[d/d′]) 6= f(u · u′ | v).

Consider the transduction f defined as f(u) = f1(u) · f2(u); for i ∈ [1, 2], fi reverses its
input if the ith and last data values are distinct. On other inputs, fi is the identity (f1 is
the transduction given in Example 2). In the two words d1d2d3d1d2d3 and d1d2d3d2d1d3, d1
and d2 are f -memorable. For every data word v, f(d1d2d3d1d2d3 | v) = f(d1d2d3d2d1d3 | v),
so it is tempting to say that the two words are equivalent. But after reading d1d2d3d1d2d3, a
transducer would remember that d2 is the latest f -memorable value it has seen. After reading
d1d2d3d2d1d3, the transducer would remember that d1 is the latest f -memorable value it has
seen. Different f -memorable values play different roles and one way to distinguish which
is which is to remember the order in which they occurred last. So we distinguish between
d1d2d3d1d2d3 and d1d2d3d2d1d3. Suppose d2, d1 are two data values in some data word u.
We say that d1 is fresher than d2 in u if the last occurrence of d1 in u is to the right of the
last occurrence of d2 in u.

I Definition 6. Suppose f is a transduction and u is a data word. We say that a data value
d is f -influencing in u if it is either f -memorable or f -vulnerable in u. We denote by iflf (u)
the sequence dm · · · d1, where {dm, . . . , d1} is the set of all f -influencing values in u and for
all i ∈ [1,m−1], di is fresher than di+1 in u. We call di the ith f -influencing data value in u.
If a data value d is both f -vulnerable and f -memorable in u, we say that d is of type vm. If
d is f -memorable but not f -vulnerable (resp. f -vulnerable but not f -memorable) in u, we say
that d is of type m (resp. v). We denote by aiflf (u) the sequence (dm, t(dm)) · · · (d1, t(d1)),
where t(di) is the type of di for all i ∈ [1,m].

FSTTCS 2020

55:8 What You Must Remember When Transforming Datawords

To consider two data words u1 and u2 to be equivalent, we can insist that aiflf (u1) =
aiflf (u2). But as before, this may result in some infinite set of pairwise non-equivalent data
words. We will relax the condition by saying that there must be a permutation π on data
values such that aiflf (π(u2)) = aiflf (u1). This is still not enough; we have overlooked one
more thing that must be considered in such an equivalence. Recall that in transductions,
prefixes are vulnerable to the influence of suffixes. So if u1 is vulnerable to changing the
suffix from v1 to v2, then π(u2) must also have the same vulnerability. This is covered by
the third condition in the definition below.

I Definition 7. For a transduction f , we define the relation ≡f on data words as u1 ≡f u2
if there exists a permutation π on data values satisfying the following conditions:

λv.fz(π(u2) | v) = λv.f(u1 | v), where z = |u1| − |u2|,
aiflf (π(u2)) = aiflf (u1) and
for all u, v1, v2, f(u1 · u | v1) = f(u1 · u | v2) iff f(π(u2) · u | v1) = f(π(u2) · u | v2).

As in the standard lambda calculus notation, λv.fz(u | v) denotes the function that maps
each input v to fz(u | v). It is routine to verify that for any data word u and permutation π,
π(u) ≡f u, since π itself satisfies all the conditions above. We denote by [u]f the equivalence
class of ≡f containing u.

I Lemma 8. If f is invariant under permutations, then ≡f is an equivalence relation.

Following is the main result of this extended abstract.

I Theorem 9. A transduction f is implemented by a SSRT iff f satisfies the following
properties: 1)f is invariant under permutations, 2) f is without data peeking, 3) f has linear
blow up and 4) ≡f has finite index.

4 Constructing a SSRT from a Transduction

In this section, we prove the reverse direction of Theorem 9, by showing how to construct
a SSRT that implements a transduction, if it satisfies the four conditions in the theorem.
SSRTs read their input from left to right. Our first task is to get SSRTs to identify influencing
data values as they are read one by one. Suppose a transducer that is intended to implement
a transduction f has read a data word u and has stored in its registers the data values that
are f -influencing in u. Suppose the transducer reads the next symbol (σ, e). To identify the
data values that are f -influencing in u · (σ, e), will the transducer need to read the whole
data word u · (σ, e) again? The answer turns out to be no, as the following result shows. The
only data values that can possibly be f -influencing in u · (σ, e) are e and the data values that
are f -influencing in u.

I Lemma 10. Let f be a transduction, u be a data word, σ ∈ Σ and d, e be distinct
data values. If d is not f-memorable (resp. f-vulnerable) in u, then d is not f-memorable
(resp. f -vulnerable) in u · (σ, e).

Next, suppose that d is f -influencing in u. How will we get the transducer to detect
whether d continues to be f -influencing in u · (σ, e)? The following result provides a partial
answer. If u1 ≡f u2 and the ith f -influencing value in u1 continues to be f -influencing in
u1 · (σ, e), then the ith f -influencing value in u2 continues to be f -influencing in u2 · (σ, e).
The following result combines many such similar results into a single one.

I Lemma 11. Suppose f is a transduction that is invariant under permutations and without
data peeking. Suppose u1, u2 are data words such that u1 ≡f u2, iflf (u1) = dm1 d

m−1
1 · · · d1

1

M. Praveen 55:9

and iflf (u2) = dm2 d
m−1
2 · · · d1

2. Suppose d0
1 ∈ D is not f-influencing in u1, d0

2 ∈ D is not
f -influencing in u2 and σ ∈ Σ. For all i, j ∈ [0,m], the following are true:
1. di1 is f-memorable (resp. f-vulnerable) in u1 · (σ, dj1) iff di2 is f-memorable (resp. f-

vulnerable) in u2 · (σ, dj2).
2. u1 · (σ, dj1) ≡f u2 · (σ, dj2).

If u1 ≡f u2, there exists a permutation π such that aiflf (u1) = aiflf (π(u2)). Hence, all
data words in the same equivalence class of ≡f have the same number of f -influencing values.
If ≡f has finite index, then there is a bound (say I) such that any data word has at most I
f -influencing data values. Consider a SSRT Sifl

f with the set of registers R = {r1, . . . , rI}.
The states are of the form ([u]f , ptr), where u is some data word and ptr : [1, |iflf (u)|]→ R

is a pointer function. Let ptr⊥ be the trivial function from ∅ to R. The transitions can be
designed to satisfy the following.

I Lemma 12. Suppose the SSRT Sifl
f starts in the configuration (([ε]f , ptr⊥), valε, 0) and

reads some data word u. It reaches the configuration (([u]f , ptr), val, |u|) such that val(ptr(i))
is the ith f -influencing value in u for all i ∈ [1, |iflf (u)|].

The details of constructing Sifl
f can be found in the full version. In short, the idea is that we

can hard code rules such as “if the data value just read is the ith f -influencing value in u, it
continues to be f -influencing in the new data word”. Lemma 11 implies that the validity of
such rules depend only on the equivalence class [u]f containing u and does not depend on u
itself. So the SSRT need not remember the entire word u; it just remembers the equivalence
class [u]f in its control state. The SSRT can check whether the new data value is the ith
f -influencing value in u, by comparing it with the register ptr(i).

Next we will extend the transducer to compute the output of a transduction. Suppose
the transducer has read the data word u so far. The transducer doesn’t know what is the
suffix that is going to come, so whatever computation it does has to cover all possibilities.
The idea is to compute {f(u | v) | v ∈ (Σ×D)∗} and store them in data word variables, so
that when it has to output f(u) at the end, it can output f(u | ε). However, this set can
be infinite. If ≡f has finite index, we can reduce it to a finite set. Recall the transduction
f from Example 2 and the infinite set of data words {(a, di) | i ≥ 1}. For any i 6= j,
f((a, di) | (a, di)) 6= f((a, dj) | (a, di)) for i 6= j. But for every i, there is a permutation πi
on data values mapping di to d1 so that f(πi(a, di) | v) = f((a, d1) | v) for any data word
v. We have revealed that all data words in {(a, di) | i ≥ 1} are equivalent by applying a
permutation to each data word, so that they all have the same f -influencing data values.
We formalize this idea below.

I Definition 13. Let f be a transduction and Π be the set of all permutations on the set of
data values D. An equalizing scheme for f is a function E : (Σ×D)∗ → Π such that there
exists a sequence δ1δ2 · · · of data values satisfying the following condition: for every data
word u and every i ∈ [1, |iflf (u)|], the ith f -influencing data value of E(u)(u) is δi.

Note that E(u)(u) denotes the application of the permutation E(u) to the data word u.
We will write E(u)(u) as uq for short (intended to be read as “equalized u”). Note that
E(u)−1(uq) = u. Left parts that have been equalized like this will not have arbitrary
influencing data values – they will be from the sequence δ1δ2 · · · . For the transduction in
Example 2, the first data value is the only influencing value in any data word. An equalizing
scheme will map the first data value of all data words to δ1.

The relation ≡f identifies two prefixes when they behave similarly. We now define a
relation that serves a similar propose, but for suffixes.

FSTTCS 2020

55:10 What You Must Remember When Transforming Datawords

I Definition 14. For a transduction f and equalizing scheme E, we define the relation ≡Ef
on data words as v1 ≡Ef v2 if for every data word u, f(uq | v1) = f(uq | v2).

It is routine to verify that ≡Ef is an equivalence relation. Saying that v1 and v2 are
similar suffixes if f(u | v1) = f(u | v2) for all u doesn’t work; this may result in infinitely
many pairwise unequivalent suffixes (just like ≡f may have infinite index if we don’t apply
permutations to prefixes). So we “equalize” the prefixes so that they have the same f -
influencing data values, before checking how suffixes influence them.

I Lemma 15. Suppose f is a transduction satisfying all the conditions of Theorem 9. If E
is an equalizing scheme for f , then ≡Ef has finite index.

Suppose we are trying to design a SSRT to implement a transduction f , which has the
property that ≡Ef has finite index. The SSRT can compute the set {f(uq | v) | v ∈ (Σ×D)∗},
which is finite (it is enough to consider one representative v from every equivalence class of
≡Ef). At the end when the SSRT has to output f(u), it can output E(u)−1(f(uq | ε)) = f(u).
The SSRT never knows what is the next suffix; at any point of time, the next suffix could
be ε. So the SSRT has to apply the permutation E(u)−1 at each step. Letting V be
a finite set of representatives from every equivalence class of ≡Ef , the SSRT computes
{f(u | E(u)−1(v)) | v ∈ V } at every step.

Now suppose the SSRT has computed {f(u | E(u)−1(v)) | v ∈ V }, stored them in data
word variables and it reads the next symbol (σ, d). The SSRT has to compute {f(u · (σ, d) |
E(u · (σ, d))−1(v)) | v ∈ V } from whatever it had computed for u.

To explain how the above computation is done, we use some terminology. In factored
outputs of the form f(u | v), f(u | v), f(u | v | w) or f(u | v | w), a triple is said to
come from u if it has origin in u or it is the triple (∗, ∗, left). A left block in such a
factored output is a maximal infix of triples, all coming from the left part u. Similarly,
a non-right block is a maximal infix of triples, none coming from the right part. Middle
blocks are defined similarly. For the transduction f in Example 2, f((a, d1)(b, d2)(c, d3))
is (c, d3, 3)(b, d2, 2)(a, d1, 1). In f((a, d1)(b, d2) | (c, d3)), (b, d2, 2)(a, d1, 1) is a left block.
In f((a, d1) | (b, d2) | (c, d3)), (b, d2, 2) is a middle block. In f((a, d1) | (b, d2) | (c, d3)),
(∗, ∗, middle)(∗, ∗, left) is a non-right block, consisting of one middle and one left block.

The concretization of the ith left block (resp. middle block) in f(u | v | w) is defined to be
the ith left block in f(u | vw) (resp. the ith middle block in f(u | v | w)). The concretization
of the ith non-right block in f(u | v | w) is obtained by concatenating the concretizations of
the left and middle blocks that occur in the ith non-right block. The following is a direct
consequence of the definitions.

I Proposition 16. The ith left block of f(u·(σ, d) | v) is the concretization of the ith non-right
block of f(u | (σ, d) | v).

For the transduction f from Example 2, the first left block of f((a, d1)(b, d2) | (c, d3)) is
(b, d2, 2)(a, d1, 1), which is the concretization of (∗, ∗, middle)(∗, ∗, left), the first non-right
block of f((a, d1) | (b, d2) | (c, d3)).

From Proposition 16, we deduce that the ith left block of f(u · (σ, d) | E(u · (σ, d))−1(v))
is the concretization of the ith non-right block of f(u | (σ, d) | E(u · (σ, d))−1(v)). The
concretizations come from the left blocks of f(u | (σ, d) · E(u · (σ, d))−1(v)) and the middle
blocks of f(u | (σ, d) | E(u · (σ, d))−1(v)). In the absence of data values, the above two
statements would be as follows: The ith left block of f(u ·σ | v) is the concretization of the ith
non-right block of f(u | σ | v). The concretizations come from the left blocks of f(u | σ · v)
and the middle blocks of f(u | σ | v). This technique of incrementally computing factored

M. Praveen 55:11

outputs was introduced in [5] for SSTs. In SSTs, f(u | σ · v) would have been computed as
f(u | v′) when u was read, where v′ is some word that influences prefixes in the same way as
σ · v. But in SSRTs, only f(u | E(u)−1(v′)) would have been computed for various v′; what
we need is f(u | (σ, d) · E(u · (σ, d))−1(v)). We work around this by proving that a v′ can be
computed such that f(u | (σ, d) · E(u · (σ, d))−1(v)) = f(u | E(u)−1(v′)). This needs some
technical work, which can be found in the full version. The end result is summarized below.

I Lemma 17. Suppose f is a transduction satisfying all the conditions in Theorem 9, E is
an equalizing scheme for f , u, v are data words and (σ, d) ∈ Σ×D. There are functions g1
and g2 such that f(u · (σ, d) | E(u · (σ, d))−1(v)) = g1([u]f , iflf (u), d, v, f(u | E(u)−1(v′))),
where v′ = g2([u]f , iflf (u), d, v).

The functions g1 and g2 need to be applied by the SSRT and that is possible. For g2, it only
needs [u]f (stored in the control state), iflf (u) (stored in the registers), d (this is the latest
data value that has been read) and v (which is from a finite set and can be hardcoded). For
g1, it additionally needs f(u | E(u)−1(v′)), which would have been be stored in one of the
data word variables when u was read.

Suppose v1, v2 ∈ V and v′ = g2([u]f , iflf (u), d, v1) = g2([u]f , iflf (u), d, v2). We
have f(u · (σ, d) | E(u · (σ, d))−1(v1)) = g1([u]f , iflf (u), d, v1, f(u | E(u)−1(v′))) and
f(u · (σ, d) | E(u · (σ, d))−1(v2)) is equal to g1([u]f , iflf (u), d, v2, f(u | E(u)−1(v′))). The
SSRT would have stored f(u | E(u)−1(v′)) in a data word variable and now it is needed for
two computations. But in SSRTs, the contents of one data word variable cannot be used in
two computations, since SSRTs are copyless. This problem is solved in [5] for SSTs using
a two way transducer model equivalent to SSTs. In this two way model, the suffix can be
read and there is no need to perform computations for multiple suffixes. We cannot use that
technique here, since there are no known two way models equivalent to SSRTs.

We solve this problem by not performing the two computations of g1 immediately. Instead,
we remember the fact that there is a multiple dependency on a single data word variable. The
actual computation is delayed until the SSRT reads more symbols from the input and gathers
enough information about the suffix to discard all but one of the dependencies. Suppose
we have delayed computing f(u · (σ, d) | E(u · (σ, d))−1(v1)) due to some dependency. After
reading the next symbol, f(u · (σ, d) | E(u · (σ, d))−1(v1)) itself might be needed for multiple
computations. We keep track of such nested dependencies in a tree data structure called
dependency tree. Dependency trees can grow unboundedly, but if ≡Ef has finite index, it can
be shown that some parts can be discarded from time to time to keep their size bounded. We
store such reduced dependency trees as part of the control states of the SSRT. The details of
this construction can be found in the full version and the end result is summarized below.

Proof sketch of reverse direction of Theorem 9. Let f be a transduction that satisfies all
the properties stated in Theorem 9. We extend the SSRT Sifl

f . The states will be of the
form ([u]f , ptr , T) where [u]f and ptr are as before and T is a reduced dependency tree. The
SSRT will have a finite set of data word variables X. After reading any data word u, the
SSRT will reach the configuration (([u]f , ptr , T), val, |u|) that satisfies the following property.
For any equivalence class [v]Ef of ≡Ef , there is a leaf node θ of T such that the path from the
root of T to θ will determine a sequence z in X∗ (z is a sequence of data word variables)
and val(z) = f(u | E(u)−1(v)) (val(z) is the concatenation of the contents of data word
variables according to the sequence z). After reading the entire input u, the SSRT outputs
f(u) = f(u | E(u)−1(ε)) using the leaf of T corresponding to [ε]Ef . J

FSTTCS 2020

55:12 What You Must Remember When Transforming Datawords

5 Properties of Transductions Implemented by SSRTs

In this section, we prove the forward direction of our main result (Theorem 9). We begin by
identifying data words after reading which, a SSRT reaches similar configurations

I Definition 18. For a SSRT S, we define a binary relation ≡S on data words as follows:
u1 ≡S u2 if they satisfy the following conditions. Suppose f is the transduction implemented
by S, which reaches the configuration (q1, val1, |u1|) after reading u1 and reaches (q2, val2, |u2|)
after reading u2.
1. q1 = q2,
2. for any two registers r1, r2, we have val1(r1) = val1(r2) iff val2(r1) = val2(r2),
3. for any register r, val1(r) is the ith f-memorable value (resp. f-vulnerable value) for

some i in u1 iff val2(r) is the ith f -memorable value (resp. f -vulnerable value) in u2,
4. for any data word variable x, we have val1(x) = ε iff val2(x) = ε and
5. for any two subsets X1, X2 ⊆ X and any arrangements χ1, χ2 of X1, X2 respectively,

val1(χ1) = val1(χ2) iff val2(χ1) = val2(χ2).
An arrangement of a finite set X1 is a sequence in X∗1 in which every element of X1 occurs
exactly once. It is routine to verify that ≡S is an equivalence relation of finite index.

Suppose a SSRT S reads a data word u, reaches the configuration (q, val, |u|) and from
there, continues to read a data word v. For some data word variable x ∈ X, if val(x) is some
data word z, then none of the transitions executed while reading v will split z – it might
be appended or prepended with other data words and may be moved to other variables
but never split. Suppose X = {x1, . . . , xm}. The transitions executed while reading v can
arrange val(x1), . . . , val(xm) in various ways, possibly inserting other data words (whose
origin is in v, so they will be replaced by (∗, ∗, right) in JSK(u | v)) in between. Hence,
any left block of JSK(u | v) is val(χ), where χ is some arrangement of some subset X ′ ⊆ X.
Recall that a left block of JSK(u | v) is a maximal infix that doesn’t contain (∗, ∗, right)).

Proof sketch of forward direction of Theorem 9. Suppose a SSRT S implements a trans-
duction f . It can be shown that ≡S refines ≡f , so ≡f has finite index. The most difficult
part of this proof is to prove that if u1 ≡S u2, then there exists a permutation π such that
for all data words u, v1, v2, f(u1 ·u | v1) = f(u1 ·u | v2) iff f(π(u2) ·u | v1) = f(π(u2) ·u | v2).
The idea is to show that if f(u1 ·u | v1) 6= f(u1 ·u | v2), then for some arrangements χ1, χ2 of
some subsets X1, X2 ⊆ X, val1(χ1) 6= val1(χ2) (val1 (resp. val2) is the valuation reached by
S after reading u1 (resp. u2)). Since u1 ≡S u2, this implies that val2(χ1) 6= val2(χ2), which
in turn implies that f(π(u2) · u | v1) 6= f(π(u2) · u | v2). J

6 Future Work

One direction to explore is whether there is a notion of minimal canonical SSRT and if a
given SSRT can be reduced to an equivalent minimal one. Adding a linear order on the data
domain, logical characterization of SSRTs and studying two way transducer models with
data are some more interesting studies.

Using nominal automata, techniques for finite alphabets can often be elegantly carried
over to infinite alphabets, as done in [19], for example. It would be interesting to see if the
same can be done for streaming transducers over infinite alphabets. Using concepts from the
theory of nominal automata, recent work [6] has shown that an atom extension of streaming
string transducers is equivalent to a certain class of two way transducers. This model of

M. Praveen 55:13

transducers is a restriction of SSRTs and is robust like regular languages over finite alphabets.
It would also be interesting to see how can techniques in this extended abstract be simplified
to work on the transducer model presented in [6].

References

1 R. Alur and P. Černý. Expressiveness of streaming string transducers. In FSTTCS 2010,
volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.
doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In POPL 2011, POPL, pages 1–12. ACM, 2011.

3 D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87–
106, 1987.

4 M. Benedikt, C. Ley, and G. Puppis. What you must remember when processing data words.
In Proceedings of the 4th Alberto Mendelzon International Workshop on Foundations of Data
Management, Argentina, volume 619 of CEUR Workshop Proceedings, 2010.

5 M. Bojańczyk. Transducers with origin information. In ICALP, volume 8573 of LNCS, pages
26–37, Berlin, Heidelberg, 2014. Springer.

6 M. Bojańczyk and R. Stefański. Single-Use Automata and Transducers for Infinite Alphabets.
In ICALP 2020, volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages
113:1–113:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2020.113.

7 Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-equivalence
of two-way word transducers is in PSPACE. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122
of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.22.

8 S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical register
automaton model. Journal of Logical and Algebraic Methods in Programming, 84(1):54–66,
2015. Special Issue: The 23rd Nordic Workshop on Programming Theory (NWPT 2011) Special
Issue: Domains X, International workshop on Domain Theory and applications, Swansea, 5-7
September, 2011.

9 S. Cassel, B. Jonsson, F. Howar, and B. Steffen. A succinct canonical register automaton
model for data domains with binary relations. In Automated Technology for Verification
and Analysis - 10th International Symposium, 2012, Proceedings, pages 57–71, 2012. doi:
10.1007/978-3-642-33386-6_6.

10 Y-F Chen, O. Lengál, T. Tan, and Z. Wu. Register automata with linear arithmetic. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

11 M. Chytil and V. Jákl. Serial composition of 2-way finite-state transducers and simple programs
on strings. In Automata, Languages and Programming, Fourth Colloquium, University of
Turku, Finland, July 18-22, 1977, Proceedings, pages 135–147. Springer Berlin Heidelberg,
1977.

12 A. Durand-Gasselin and P. Habermehl. Regular transformations of data words through origin
information. In B. Jacobs and C. Löding, editors, Foundations of Software Science and
Computation Structures, pages 285–300, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

13 Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of data word transducers. In
Wan J. Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of
LIPIcs, pages 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.CONCUR.2019.24.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.22
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.22
https://doi.org/10.1007/978-3-642-33386-6_6
https://doi.org/10.1007/978-3-642-33386-6_6
https://doi.org/10.4230/LIPIcs.CONCUR.2019.24
https://doi.org/10.4230/LIPIcs.CONCUR.2019.24

55:14 What You Must Remember When Transforming Datawords

14 Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. On computability of data word
functions defined by transducers. In Jean Goubault-Larrecq and Barbara König, edit-
ors, Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings, volume 12077 of Lecture Notes in Computer Science, pages 217–236. Springer, 2020.
doi:10.1007/978-3-030-45231-5_12.

15 N. Francez and M. Kaminski. An algebraic characterization of deterministic regular languages
over infinite alphabets. Theoretical Computer Science, 306:155–175, 2003.

16 F. Howar, M. Isberner, B. Steffen, O. Bauer, and B. Jonsson. Inferring semantic interfaces of
data structures. In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change, pages 554–571,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

17 F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata.
In V. Kuncak and A. Rybalchenko, editors, Verification, Model Checking, and Abstract
Interpretation, pages 251–266, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

18 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

19 J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning nominal
automata. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 613–625, 2017.

https://doi.org/10.1007/978-3-030-45231-5_12

Minimising Good-For-Games Automata Is
NP-Complete
Sven Schewe
University of Liverpool, UK
https://cgi.csc.liv.ac.uk/~sven/
sven.schewe@liverpool.ac.uk

Abstract
This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and
parity automata with state based acceptance. The problem appears to sit between finding small
deterministic and finding small nondeterministic automata, where minimality is NP-complete and
PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that
minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the
complexity of minimising GFG automata might be cheaper than minimising deterministic automata.

We show for the standard state based acceptance that the minimality of a GFG automaton
is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly
straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar
reductions, and the same hard class of languages.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Good-for-Games Automata, Automata Minimisation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.56

Related Version An earlier version is available on arXiv [9], https://arxiv.org/abs/2003.11979.

Funding This work was partly supported by the EPSRC through grant EP/P020909/1.

Acknowledgements Many thanks to Patrick Totzke and Karoliina Lehtinen for valuable feedback
and pointers to beautiful related works, as well as the constructive feedback of the reviewers.

1 Introduction

Good-for-games (GFG) automata form a useful class of automata that can be used to replace
deterministic automata to recognise languages in several settings, like reactive synthesis [4]. As
good-for-games automata sit between deterministic and general nondeterministic automata,
it stands to be expected that the complexity of their minimality also sits between the
minimality of deterministic automata (NP-complete [8]) and nondeterministic automata
(which is PSPACE-complete like for nondeterministic finite automata [5]). It thus came
as a surprise when Radi and Kupferman showed that minimising Co-Büchi automata with
transition based acceptance is tractable [7].

This raises the question whether the difference is that good-for-games automata are
inherently simpler to minimise, or if it is a consequence of choosing the less common transition
based acceptance. We show that the answer for the more common state based acceptance is
that minimising GFG automata is as hard as minimising deterministic automata.

While extending our “inclusion in NP” argument to transition based acceptance is straight
forward, our hardness proof generalises the NP-hardness proof from [8], and we will close
this paper with discussing why this hardness argument does not extend to automata with
transition based acceptance. This leaves the complexity of minimising transition based GFG
automata (except for Co-Büchi GFG automata [7]) and deterministic automata open.

© Sven Schewe;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 56; pp. 56:1–56:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9093-9518
https://cgi.csc.liv.ac.uk/~sven/
mailto:sven.schewe@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://arxiv.org/abs/2003.11979
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Minimising Good-For-Games Automata Is NP-Complete

2 Automata

2.1 Nondeterministic Parity Automata
Parity automata are word automata that recognise ω-regular languages over a finite set of
symbols. A nondeterministic parity automaton (NPA) is a tuple P = (Σ, Q, q0, δ, π), where

Σ denotes a finite set of symbols,
Q denotes a finite set of states,
q0 ∈ Q+ with Q+ = Q ∪ {⊥,>} denotes a designated initial state,
δ : Q+ × Σ → 2Q

+ (with 2Q
+ = 2Q ∪ {{⊥}, {>}} \ {∅} is a function that maps pairs of

states and input letters to either a non-empty set of states, or to ⊥ (false, immediate
rejection, blocking) or > (true, immediate acceptance)1, such that δ(>, σ) = {>} and
δ(⊥, σ) = {⊥} hold for all σ ∈ Σ, and
π : Q+ → P ⊂ N is a priority function that maps states to natural numbers (mapping ⊥
and > to an odd and even number, respectively), called their priority.

Parity automata read infinite input words α = a0a1a2 . . . ∈ Σω. (As usual, ω = N0
denotes the non-negative integers.) Their acceptance mechanism is defined in terms of runs:
a run ρ = r0r1r2 . . . ∈ Q+

ω of P on α is an ω-word that satisfies r0 = q0 and, for all i ∈ ω,
ri+1 ∈ δ(ri, ai). A run is called accepting if the highest number occurring infinitely often
in the infinite sequence π(r0)π(r1)π(r2) . . . is even, and rejecting if it is odd. An ω-word is
accepted by P if it has an accepting run. The set of ω-words accepted by P is called its
language, denoted L(P). Two automata that recognise the same language are called language
equivalent.

We assume without loss of generality that max{P} ≤ |Q|+ 1. (If a priority p ≥ 2 does
not exist, we can reduce the priority of all states whose priority is strictly greater than p by
2 without affecting acceptance.)

2.2 Büchi and Co-Büchi Automata
Büchi and Co-Büchi automata – abbreviated NBAs and NCAs – are NPAs where the image
of the priority function π is contained in {1, 2} and {2, 3}, respectively. In both cases, the
automaton is often denoted A = (Σ, Q, q0, δ, F), where F ⊆ Q+ is called (the set of) final
states and denotes those states with the higher priority (2 for Büchi, 3 for Co-Büchi). The
remaining states Q+ \ F are called non-final states.

2.3 Deterministic and Good-for-Games Automata
An automaton is called deterministic if the image of the transition function δ consists only
of singletons (i.e. is included in

{
{q} | q ∈ Q+

}
. For convenience, δ is therefore often viewed

as a function δ̄ : Q+ × Σ→ Q+ (with δ(q, σ) 7→ {δ̄(q, σ)}).
A nondeterministic automaton is called good-for-games (GFG) if it only relies on a

limited form of nondeterminism: GFG automata can make their decision of how to resolve
their nondeterministic choices on the history at any point of a run – rather than using the
knowledge of the complete word as a nondeterministic automaton normally would – without
changing their language. They can be characterised in many ways, including as automata
that simulate deterministic automata.

1 The question whether or not an automaton can immediately accept or reject is a matter of taste. Often,
immediate rejection is covered by allowing δ to be partial while there is no immediate acceptance. We
allow both – so > and ⊥ are not counted as states – but treat them as accepting and rejecting sink
states, respectively, for technical convenience.

S. Schewe 56:3

We use the following formalisation: a nondeterministic automaton P = (Σ, Q, q0, δ, π)
is good-for-games if there is function ν : q0Q+

∗Σ→ Q+ such that, for every infinite word
α = a0a1a2 . . . ∈ Σω, P has an accepting run ρ′ if, and only if, it has an accepting run
ρ = r0r1r2 . . . ∈ Q+

ω with r0 = q0 and, for all i ∈ N0, ri+1 = ν(r0, . . . , ri; ai).
Broadly speaking, a good-for-games automaton sits in the middle between a nondetermin-

istic and a deterministic automaton: P and ν together define a deterministic automaton
(if such a ν exists, there is a finite state one), but as the ν does not have to be explicitly
provided, P can be more succinct than a deterministic automaton.

2.4 Automata Transformations & Conventions
For an NPA B = (Σ, Q, q0, δ, π) and a state q ∈ Q+, we denote with Bq = (Σ, Q, q, δ, π) the
automaton resulting from B by changing the initial state to q.

There are two standard measures for the size of an automaton P = (Σ, Q, q0, δ, π): the
number |Q| of its states, and the size

∑
q∈Q,a∈Σ

|δ(q, a)| of its transition table.

3 Main Result

We show the following theorem.

I Theorem 1. The following problems are NP-complete (all 20 combinations).
1. Given a good-for-games / deterministic parity / Büchi / Co-Büchi automaton and a

bound k, is there a language equivalent good-for-games parity automaton with at most k
states / entries in its transition table?

2. Given a good-for-games / deterministic Büchi automaton and a bound k, is there a
language equivalent good-for-games Büchi automaton with at most k states / entries in
its transition table?

3. Given a good-for-games / deterministic Co-Büchi automaton and a bound k, is there a
language equivalent good-for-games Co-Büchi automaton with at most k states / entries
in its transition table?

The 20 individual questions are, of course, all very similar. Note, however, that in the ten
cases where a good-for-games automaton is given, its good-for-games property is not checked;
instead we simply do not require the result to be correct where the given automaton is not
good-for games. In particular, the complexity of determining GFG-ness remains an open
research question (except for Büchi [1] and Co-Büchi [6] automata, where it is known to be
tractable).

For inclusion in NP (Section 4), the small good-for-games automaton can be guessed, and
the guess can be validated with standard simulation games (Corollary 5).

NP hardness is established in Section 5 (Theorem 15), it turns out that the known hardness
proof for deterministic Büchi and Co-Büchi automata can be adjusted to good-for-games
automata, providing hardness for all combinations of our main theorem.

4 Inclusion in NP

We start with re-visiting a standard simulation game between a verifier, who wants to establish
language inclusion through simulation, and a spoiler, who wants to destroy the proof. Note
that the spoiler does not try to disprove language inclusion, but merely wants to show that
it cannot be established through simulation.

FSTTCS 2020

56:4 Minimising Good-For-Games Automata Is NP-Complete

4.1 Simulation Game
For two NPAs P1 = (Σ, Q1, q

1
0 , δ1, π1) and P2 = (Σ, Q2, q

2
0 , δ2, π2), we define the

“P2 simulates P1” game, where a spoiler intuitively tries to show that P1 accepts a word not
in the language of P2, as follows.

The game is played on Q1 × Q2 ∪ Q1 × Σ × Q2 and starts in (q1
0 , q

2
0). In a state

(q1, q2) ∈ Q1 × Q2, the spoiler selects a letter σ ∈ Σ and a σ successor q′1 ∈ δ(q1, σ) of q1
for P1 and moves to (q′1, σ, q2). In a state (q′1, σ, q2) ∈ Q1 × Σ×Q2, the verifier selects a σ
successor q′2 ∈ δ(q2, σ) of q2 for P2 and moves to (q′1, q′2).

Verifier and spoiler will together produce a play (q1
0 , q

2
0)(q1

1 , a0, q
2
0)(q1

1 , q
2
1)(q1

2 , a1, q
2
1)

(q1
2 , q

2
2)(q1

3 , a2, q
2
2)(q1

3 , q
2
3)(q1

4 , a3, q
2
3) The verifier wins if, and only if, the run q1

0q
1
1q

1
2q

1
3 . . .

of P1 is rejecting or the run q2
0q

2
1q

2
2q

2
3 . . . of P2 is accepting.

Simulation games have been used to validate GFG-ness right from their introduction [4].

I Lemma 2. If the verifier wins the P2 simulates P1 game, then she wins positionally, and
checking if she wins is in NP.

This is a standard inclusion game, and similar games have e.g. been used in [6].

Proof. The verifier plays a game with two disjunctive (from verifier’s perspective) parity
conditions (as the complement of a parity condition is a parity condition). A parity condition
is in particular a Rabin condition, and the disjunction of Rabin conditions is still a Rabin
condition. Thus, if the verifier can meet her parity objective, she can do so positionally2 [3].
Thus, it suffices to guess the winning strategy of the verifier, and then check (in P)3 if the
spoiler wins his resulting one player game with two conjunctive parity conditions. J

I Lemma 3. Given an NPA P1 and a good-for-games NPA P2, checking L(P1) ⊆ L(P2) is
in NP.

Proof. Consider the “P2 simulates P1” game played on an NPA P1 = (Σ, Q1, q
1
0 , δ1, π1) and

a good-for-games NPA P2 = (Σ, Q2, q
2
0 , δ2, π2).

We first show that spoiler wins this if there is a word α ∈ L(P1) \ L(P2): in this case,
spoiler can guess such a word alongside an accepting run for P1 for α – note that there is no
accepting run of P2 for α, as α /∈ L(P2).

We finally show that verifier wins this game if L(P2) ⊇ L(P1). In this case, verifier can
construct the run q2

0q
2
1q

2
2q

2
3 . . . on the word α the spoiler successively produces. Moreover,

as P2 is good-for-games, the verifier can do this independent of the transitions the spoiler
selects, basing her choices instead on her good-for-games strategy ν2. If α is in L(P2), then
q2
0q

2
1q

2
2q

2
3 . . . is accepting and verifier wins. If α is not in L(P2), then α is not in L(P1) ⊆ L(P2)

either; thus q1
0q

1
1q

1
2q

1
3 . . . is rejecting and verifier wins. J

I Theorem 4. Given an NPA P1 and a good-for-games NPA P2, checking if P1 is good-
for-games and satisfies L(P1) = L(P2) is in NP.

2 A strategy is called positional if it only depends on the current state, not on the history of how one got
there.

3 This problem is actually in NL, as the spoiler can guess the pair of winning priorities and guess a
lasso-like path with an initial part, and a repeating part that starts and ends in the same state and
has the correct dominating priorities for both parity conditions. (This does not have to be a cycle, as
it might be necessary to visit a state once for establishing the dominating priority for either parity
condition.)

S. Schewe 56:5

A similar game is used in [6] to establish that GFG-ness can be decided in EXPTIME.
The new observation here is the inclusions in NP, assuming a GFG automaton is provided.

Proof. We first use the previous lemma to check L(P1) ⊆ L(P2) in NP. For the rest of the
proof, we assume that this test has been passed, such that L(P1) ⊆ L(P2) was established.

We then play the same game with inverse roles, i.e. the “P1 simulates P2” game. The
question if verifier wins is again in NP.

If L(P1) 6= L(P2) holds, then the already established L(P1) ⊆ L(P2) entails that
there is a word α ∈ L(P2) \ L(P1). In this case spoiler can win by guessing such a word
α ∈ L(P2) \ L(P1) alongside an accepting run for P2 for α – note that there is no accepting
run of P1 for α in this case, regardless of whether or not P1 is good-for games.

If P1 is good-for-games and L(P1) = L(P2) holds, then verifier wins (because L(P2) ⊆
L(P1) can be verified in NP using Lemma 3).

Finally, if L(P1) = L(P2) holds and verifier wins, then P1 is good-for-games: this is
because a winning strategy – like the positional strategy that exists (Lemma 2) – for verifier
in the “P1 simulates P2” game transforms a good-for-games strategy ν2 for P2 into a good-
for-games strategy ν1 for P1, and P1 can simply emulate the behaviour of P2 using the
(positional) winning strategy from of the verifier. J

This provides all upper bounds of Theorem 1 when taking into account that k should be
smaller than the provided automaton. (If it is not, then the answer is always “yes”, as the
automaton itself can be used.).

I Corollary 5. All problems from Theorem 1 can be solved in NP.

Note that this does not result in a test whether or not a given automaton is good-for-
games, it merely allows, given a good-for-games automaton, to validate that a second NPA
is both: good-for-games and language equivalent.

For Büchi [1] and Co-Büchi automata [6], it is tractable to check whether or not an
automaton is good-for-games.

5 NP Hardness

In this section we generalise the hardness argument for the minimality of deterministic Büchi
and Co-Büchi automata from [8]. It lifts the reduction from the problem of finding a minimal
vertex cover of a graph to the minimisation of deterministic Büchi automata to a reduction
to the minimisation of good-for-games automata. (A vertex cover is a set of vertices that
covers at least one end point of every edge.) In the graph from Figure 1, the vertices in red
and the vertices in white are both vertex covers, and the red vertices are the only minimal
vertex cover. The reduction first defines the characteristic language of a simple connected
graph; for technical convenience it assumes a distinguished initial vertex.

We show that the states of a good-for-games Büchi (or parity) automaton that recognises
this characteristic language must satisfy side-constraints, which imply that it has at least
2n+ k states, where n is the number of vertices of the graph, and k is the size of its minimal
vertex cover. Moreover, from a good-for-games automaton with s states, we can infer a
vertex cover with size at most s− 2n.

At the same time, it is simple to construct, for a given vertex cover of size k, a deterministic
Büchi automaton of size 2n + k that recognises the characteristic language of this graph.
(Figure 3 shows such a DBA for the example from Figure 1.) This holds in particular for
the trivial vertex cover (which contains all vertices) that results in a DBA with 3n states.

FSTTCS 2020

56:6 Minimising Good-For-Games Automata Is NP-Complete

Figure 1 A nice graph (a connected graph with a dedicated initial vertex) with a 2 vertex cover
(in red). Is a nice graph k coverable? is an NP-complete problem.

Minimising the automaton defined by this trivial vertex cover can therefore be used to
determine a minimal vertex cover for a given simple connected graph, which concludes the
NP hardness argument.

Finally we show how to adjust the argument for minimal Co-Büchi automata, which –
different to deterministic automata, where one can simply use the dual automaton – requires a
small adjustment in the definition of the characteristic language for good-for-games automata.

Returning to the reduction known from deterministic automata, we call a non-trivial
(|V | > 1) simple undirected connected graph Gv0 = (V,E) with a distinguished initial vertex
v0 ∈ V nice. The restriction to nice graphs leaves the problem of finding a minimal vertex
cover NP-complete.

I Lemma 6 ([8]). The problem of checking whether a nice graph Gv0 has a vertex cover of
size k is NP-complete.

Following [8], we define the characteristic language L(Gv0) of a nice graph Gv0 as the
ω-language over V\ = V ∪ {\} (where \ indicates a stop of the evaluation in the next step – it
can be read “stop”) consisting of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . ∈ V ω with {vi−1, vi} ∈ E for all i ∈ N,
(words where v0, v1, v2, . . . form an infinite path in Gv0), and

2. all ω-words that start with4 v0
∗v1

+v2
+ . . . vn

+\vn ∈ V\
∗ with n ∈ N0 and {vi−1, vi} ∈ E

for all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite – and potentially trivial – path
in Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn, and
by v0 if \ was the first letter.)

We call the ω-words in (1) trace-words, and those in (2) \-words. The trace-words are in V ω,
while the \-words are in V\

ω \ V ω.
Figure 2 shows a deterministic Büchi automaton that recognises the \-words for the nice

graph from Figure 1. The five colours are used as names (or: identifiers) for the vertices

4 this includes words that start with \v0

S. Schewe 56:7

!

!

!

!

!

Figure 2 A deterministic Büchi automaton that recognises the \-words for the nice graph from
Figure 1. The five colours are used as names for the vertices of the nice graph. The colour of the full
(outer) vertices intuitively reflects the colour of the previous vertex seen while traversing an input
word that can still be completed to an accepted \ word. If the automaton reads a vertex (identified
by its colour), which identifies the current vertex or a vertex adjacent to it, it updates the stored
vertex to the one it has read; it blocks (moves to ⊥) when reading a different vertex.
When reading \, it moves to the light inner vertex while keeping the stored colour/vertex, shown by
the colour of its fringe. From a light (inner) vertex, it accepts (moves to >) if it sees the stored
vertex (indicated by the colour of the fringe) next, and blocks (moves to ⊥) otherwise.

of the nice graph. The colour of the full (outer) vertices intuitively reflects the colour of
the previous vertex seen while traversing an input word that can still be completed to an
accepted \ word (initialised to the colour of the dedicated initial vertex of the nice graph, in
this case, •.) If the automaton reads a vertex (here identified by its colour), which identifies
either the current vertex or a vertex adjacent to it, it updates the stored vertex to the one it
has read. If it reads a different vertex, which is not adjacent, it blocks (moves to ⊥).

When reading \, it moves to a light (inner) vertex while keeping the stored colour of the
last vertex seen vertex, shown by the colour of its fringe. From a light (inner) vertex, it
accepts (moves to >) if it sees the stored vertex (indicated by the colour of the fringe) next,
and blocks (moves to ⊥) otherwise.

A word that starts with ••••••••••••\•, for example, is accepted, while words
that start with ••••••••••••\• (wrong colour after \) or ••••••••••••\•
(• and • are not adjacent) are rejected.

Let B be a parity good-for-games automaton that recognises the characteristic language
of Gv0 = (V,E). We call a state of B

a v-state if it can be reached upon an input word v0
∗v1

+v2
+ . . . vn

+ ∈ V ∗, with n ∈ N0
and {vi−1, vi} ∈ E for all i ∈ N, that ends in v = vn (in particular, the initial state of B
is a v0-state), and
a v\-state if it can be reached from a v-state upon reading a \ sign.

We call the union over all v-states the set of vertex-states, and the union over all v\-states
the set of \-states.

FSTTCS 2020

56:8 Minimising Good-For-Games Automata Is NP-Complete

It is not hard to define, for a given nice graph Gv0 = (V,E) with vertex cover C, a
deterministic Büchi automaton BGv0

C = (V\, (V ×{n, \})∪(C×{f}), (v0, n), δ̄, (C×{f})∪{>})
with 2|V |+ |C| states that recognises the characteristic language of Gv0 [8]. (The n and f in
the state refer to non-final and final, respectively.) We simply choose

δ̄
(
(v, n), v′

)
= (v′, f) if {v, v′} ∈ E and v′ ∈ C,

δ̄
(
(v, n), v′

)
= (v′, n) if {v, v′} ∈ E and v′ /∈ C,

δ̄
(
(v, n), v′

)
= (v, n) if v = v′,

δ̄
(
(v, n), v′

)
= (v, \) if v′ = \, and

δ̄
(
(v, n), v′

)
= ⊥ otherwise;

δ̄
(
(v, f), v′

)
= δ̄
(
(v, n), v′

)
, and

δ̄
(
(v, \), v

)
= > and δ̄

(
(v, \), v′

)
= ⊥ for v′ 6= v.

BGv0
C simply has one v\-state for each vertex v ∈ V of Gv0 , one final v-state for each vertex

in the vertex cover C, and one non-final v-state for each vertex v ∈ V of Gv0 . It moves to
the final (accepting) copy (v, f) for a vertex v ∈ C of a v-state only upon taking an edge to
v, but not on a repetition of v.

Figure 3 shows a Büchi automaton that recognises the characteristic language of the nice
graph from Figure 1. Different from the automaton from Figure 2, it also has to consider the
trace-words, who stay in the 7 outer states (depicted as fully coloured in).

The accepting states define a cover, and a cover can be used to select final states – the
automaton from Figure 3 moves to a final state whenever it “enters a vertex” from the cover
shown in Figure 1. This way, every (after stuttering) infinite path sees infinitely many final
states, while every (after stuttering) finite path does not. If the defining set was not a cover,
then there were two adjacent states that are both not part of the cover, and the infinite path
that goes back and forth between them would not be accepted.

I Lemma 7 ([8]). For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C,
the Büchi automaton BGv0

C recognises the characteristic language of Gv0 .

Having seen how to get from a cover to an automaton that recognises the characteristic
language of a nice graph, we now study the other direction.

I Lemma 8. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B = (V\, Q, q0, δ, π)
be a good-for-games parity automaton that recognises the characteristic language of Gv0 . Then
the following holds:
1. for all v in V , there is a v-state from which all words that start with \v are accepted – we

call these states the core v-states;
2. for all v in V , there is a core v-state with an odd priority;
3. for all v ∈ V and w ∈ V\ with v 6= w and for every v-state qv, words that start with \w

are not in the language of Bqv
;

4. for all v in V , there is a v\-state from which all words that start with v are accepted – we
call these states the core v\-states;

5. for all v in V and w ∈ V\ with v 6= w and for every v\-state qv\, words that start with w
are not in the language of Bqv\

; and
6. for every edge {v, w} ∈ E, there is a v-state or a w-state with an even priority.

Proof. 1. Let v = vn and let v0, v1, v2, ..., vn be a path in Gv0 . As B recognises L(Gv0) and
is good-for-games, it must, after having read the first n+ 1 or more letters of an input
word v0, v1, v2, ..., vn

ω (using its good-for-games strategy ν), with {vi, vi+1} ∈ E for all
i < n, be in a core v-state, as words that start with this and continue with \v are in
L(Gv0).

S. Schewe 56:9

2. Furthermore, the run B produces (using ν) for v0, v1, v2, ..., vn
ω has a dominating priority

determined by its tail of core v-states, and the core v-state with the highest priority that
occurs infinitely many times must have an odd priority (as the word is not in L(Gv0)).
Consequently, there must be at least one core v-state with an odd priority.

3. If (3) does not hold, a witness would provide a word accepted by B but not in L(Gv0).
4. Let v = vn and let v0, v1, v2, ..., vn be a path in Gv0 . As B recognises L(Gv0) and is

GFG, it must, after having read the first n+ 2 letters of an input word that starts with
v0, v1, v2, ..., vn, \ (using its good-for-games strategy ν), with {vi, vi+1} ∈ E for all i < n,
be in a core v\-state, as words that start with this and continue with v are in L(Gv0).

5. If (5) does not hold, a witness would provide a word accepted by B but not in L(Gv0).
6. Let us consider an arbitrary edge {v, w} ∈ E, v = vn, and the run of B (following ν) on

v0, v1, v2, . . . , vn, (w, v)ω in L(Gv0) (i.e. for all i < n. {vi, vi+1} ∈ E).
The run must be accepting, and, as argued in (1), once the word alternates between v
and w, the run alternates between core v-states and core w-states. Thus, the core v-state
or the core w-state with the highest priority that occurs infinitely often must have an
even priority. J

The sixth claim implies that the set C of vertices with a core vertex-state with even
priority is a vertex cover of Gv0 = (V,E). Thus, B has at least |C| core vertex states with an
even priority. (1–3) provide that B has at least |V | vertex-states with odd priority, and it
follows with (4+5) that there are |V | core \-states that are disjoint from the core vertex-states:

I Corollary 9. For a good-for-games parity automaton B = (V\, Q, q0, δ, π) with s states that
recognises the characteristic language of a nice graph Gv0 = (V,E) with initial vertex v0, the
set C = {v ∈ V | there is a v-state with an even priority} is a vertex cover of Gv0 , and B has
at least 2|V |+ |C| states (s ≥ 2|V |+ |C|), such that |C| ≤ s− 2|V | holds. J

!

!

!

!

!

! !

Figure 3 A minimal GFG (and deterministic) Büchi automaton that recognises the characteristic
language of the nice graph from Figure 1. For a nice graph Gv0 = (V,E), a GFG parity automaton
that recognises its characteristic language needs |V | states reached after reading (the first) \ (the
light, inner states), |V | states with odd priority reachable prior to reading the first \, and, broadly
speaking, sufficiently many states with even priority, such that they identify a cover. The Büchi
automaton shown here is defined by the cover that contains the red states shown in Figure 1.

FSTTCS 2020

56:10 Minimising Good-For-Games Automata Is NP-Complete

Corollary 9 and Lemma 7 immediately imply:

I Corollary 10. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C is

a minimal deterministic Büchi automaton that recognises the characteristic language of Gv0 ,
and there is no good-for-games parity automaton with less states than BGv0

C that recognises
the same language. Moreover, every minimal good-for-games automaton identifies a cover C ′
with |C ′| = |C|. J

This suffices for most cases from Theorem 1, but not for the cases where the automaton
given is a Co-Büchi automaton. To also cover Co-Büchi automata, we change the characteristic
language to the adjusted language L′(Gv0) of a nice graph Gv0 as the ω-language over
V\ = V ∪ {\} that consists of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . vn
ω ∈ V ω with {vi, vi+1} ∈ E for all i < n,

(words where v0, v1, v2, . . . , vn form a finite (possibly trivial) path in Gv0), and
2. all ω-words that start with5 v0

∗v1
+v2

+ . . . vn
+\vn ∈ V\

∗ with n ∈ N0 and {vi−1, vi} ∈ E
for all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite – and potentially trivial – path
in Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn, and
by v0 if \ was the first letter.)

I Lemma 11. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B =
(V\, Q, q0, δ, π) be a good-for-games parity automaton that recognises the adjusted language
L′(Gv0) of Gv0 . Then the following holds:
1. for all v in V , there is a v-state from which all words that start with \v are accepted – we

call these states the core v-states;
2. for all v in V , there is a core v-state with an even priority;
3. for all v ∈ V and w ∈ V\ with v 6= w and for every v-state qv, words that start with \w

are not in the language of Bqv
;

4. for all v in V , there is a v\-state from which all words that start with v are accepted – we
call these states the core v\-states;

5. for all v in V and w ∈ V\ with v 6= w and for every v\-state qv\, words that start with w
are not in the language of Bqv\

; and
6. for every edge {v, w} ∈ E, there is a v-state or a w-state with an odd priority.

The changes in the proof compared to Lemma 8 are simply to replace even and odd
accordingly.

With the same argument as before we get the same corollary:

I Corollary 12. For a good-for-games parity automaton with s states that recognises the
adjusted characteristic language of a nice graph Gv0 = (V,E) with initial vertex v0, the set
C = {v ∈ V | there is a v-state with an even priority} is a vertex cover of Gv0 , and B has at
least 2|V |+ |C| states (s ≥ 2|V |+ |C|), such that |C| ≤ s− 2|V | holds.

I Lemma 13. For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C, the
Co-Büchi automaton6 BGv0

C recognises the adjusted language of Gv0 .

Proof. We argue separately that the trace-words and \-words accepted by BGv0
C are exactly

the trace-words and \-words, respectively, in L′(Gv0).

5 this includes words that start with \v0
6 The automaton is the same as before, but read as a Co-Büchi automaton.

S. Schewe 56:11

For a trace-word α = v1v2v3 . . . ∈ V ω, BGv0
C has the run (v0, n)(v1, x1)(v2, x2)(v3, x3) . . .

(with xi ∈ {n, f} for all i ∈ N) if, for all i ∈ N, either vi−1 = vi or {vi−1, vi} ∈ E holds;
otherwise the automaton blocks (has a tail of ⊥ states) at imin-th letter, where imin is the
minimal i such that vi−1 6= vi and {vi−1, vi} /∈ E. A trace-word where the automaton blocks
is rejected by BGv0

C and not in L′(Gv0).
We now consider those trace-words, for which BGv0

C does not block. For these words, we
call the set I = {i ∈ N | {vi−1, vi} ∈ E

}
transition indices. Now α ∈ L′(Gv0) holds if, and

only if, I is finite. If I is finite, we call its maximal element imax, and set imax to 0 if I is empty.
The run of BGv0

C on α is then (v0, n)(v1, x1) . . . (vimax−1, ximax−1)(vimax , ximax)(vimax , n)ω; it
has a tail of non-final states (vimax , n), and α is therefore accepted by BGv0

C .
If I is infinite, we use the infinite ascending chain i1 < i2 < i3 < . . . with I = {in | n ∈ N}.

Then, for all k ∈ N, vik−1 6= vik
= vik+1−1 6= vik+1 holds and {vik

, vik+1} ∈ E. {vik
, vik+1} ∈

E entails that the cover C must contain vik
or vik+1 , and it follows with vik−1 6= vik

and
vik+1−1 6= vik+1 that the respective position in the run is (vik

, f) or (vik+1 , f) (in other words:
xik

= f or xik+1 = f). Thus, the run contains infinitely many final states and is rejecting.
Thus, we have shown that BGv0

C accepts the right set of trace-words. We now continue
with the simpler proof that it accepts the right set of \-words.

First, words starting with \v0 are accepted and in L′(Gv0), while words starting with \v
and v 6= v0 are rejected and not in L′(Gv0).

A \-word that starts with α = v1v2v3 . . . vn\w ∈ V +\V\ is in L′(Gv0) if, and only if,
1. vi−1 = vi or {vi−1, vi} ∈ E holds for all i ≤ n, and
2. vn = w.
If they both hold, the (accepting) run of BGv0

C has the form
(v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vn, xn)(vn, \)>ω.

If (1) holds but (2) does not, the (rejecting) run of BGv0
C has the form

(v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vn, xn)(vn, \)⊥ω.
If (1) does not hold and k ≤ n is the smallest index with vi−1 6= vi and {vi−1, vi} /∈ E,

the (rejecting) run of BGv0
C has the form (v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vk−1, xk−1)⊥ω.

As this covers all cases, we get L(BGv0
C) = L′(Gv0). J

Corollary 12 and Lemma 13 immediately imply:

I Corollary 14. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C

is a minimal deterministic Co-Büchi automaton that recognises the adjusted characteristic
language of Gv0 , and there is no good-for-games parity automaton with less states than BGv0

C

that recognises the same language. Moreover, every minimal good-for-games automaton
identifies a cover C ′ with |C ′| = |C|. J

The Corollaries 10 and 14 provide us with the hardness result.

I Theorem 15. The following problems are NP hard.
Given a good-for-games / deterministic Büchi automaton and a bound k, is there a
language equivalent good-for-games Büchi automaton with at most k states / entries in
its transition table (all 4 combinations)?
Given a good-for-games / deterministic Co-Büchi automaton and a bound k, is there a
language equivalent good-for-games Co-Büchi automaton with at most k states / entries
in its transition table (all 4 combinations)?
Given a good-for-games / deterministic parity / Büchi / Co-Büchi automaton and a
bound k, is there a language equivalent good-for-games parity automaton with at most k
states / entries in its transition table (all 12 combinations)?

FSTTCS 2020

56:12 Minimising Good-For-Games Automata Is NP-Complete

6 Discussion

We have established that determining if a good-for-games automaton with Büchi, Co-Büchi,
or parity condition and state based acceptance is minimal, or that there is a GFG automaton
with size up to k, is NP-complete. Moreover, this holds regardless of whether the starting
automaton is given as a (Büchi, Co-Büchi, or parity) good-for-games automaton, or if it is
presented as a (Büchi, Co-Büchi, or parity) deterministic automaton.

This drags three open questions into the limelight. The first is the complexity of testing
whether or not a given nondeterministic automaton is good-for-games. Our results give no
answer to this question: it simply accepts that a given automaton is good-for-games, and
only guarantees a correct answer if the input is valid. GFG-ness is, however, known to be
tractable for Büchi [1] and Co-Büchi [6] automata, and the extension to the more expressive
class of parity good-for-games automata is active research.

It also raises the question if the difference is in good-for-games automata being inherently
simpler to minimise, or if it is a property of choosing the less common transition based
acceptance: the second open challenge is whether the tractability of minimising Co-Büchi
good-for-games automata forebears the tractability of minimising the general class of parity
good-for-games automata, while the third challenge is the question of whether NP hardness
extends to transition based deterministic Büchi, Co-Büchi, and parity automata: the hard
language used in this paper is not hard at all for transition based acceptance, as one can
simply use final transitions between different v-states (and non-final self loops), cf. Figure 4.
This could lend another argument for proliferating transition based acceptance.

In addition to the “transition vs. state based acceptance” question, another question is
whether or not nondeterminism is the right starting point for GFG-ness, or if alternation is
the better choice [2]. For such alternating automata, most of the succinctness and complexity
questions for membership and minimisation are wide open.

!

!

!

!

!

Figure 4 A minimal DBA with transition based acceptance for the running example.

S. Schewe 56:13

References
1 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recogniz-

able. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018,
December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.16.

2 Udi Boker and Karoliina Lehtinen. Good for Games Automata: From Nondeterminism to
Alternation. In Wan Fokkink and Rob van Glabbeek, editors, 30th International Conference
on Concurrency Theory (CONCUR 2019), volume 140 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 19:1–19:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.19.

3 E. Allen Emerson. Automata, tableaux and temporal logics. In Proceedings of the International
Conference on Logic of Programs (ICLP 1985), 17–19 June, Brooklyn, New York, USA, volume
193 of Lecture Notes in Computer Science, pages 79–88. Springer-Verlag, 1985.

4 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of
Lecture Notes in Computer Science, pages 395–410. Springer, 2006. doi:10.1007/11874683_26.

5 Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard. SIAM J. Comput.,
22(6):1117–1141, 1993. doi:10.1137/0222067.

6 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 299–310. Springer, 2015. doi:10.1007/978-3-662-47666-6_24.

7 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 100:1–100:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.100.

8 Sven Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In
Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 400–411. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.400.

9 Sven Schewe. Minimising good-for-games automata is NP complete. CoRR, abs/2003.11979,
2020. arXiv:2003.11979.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.1007/11874683_26
https://doi.org/10.1137/0222067
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
http://arxiv.org/abs/2003.11979

Static Race Detection for RTOS Applications
Rishi Tulsyan
Indian Institute of Science Bangalore, India
rishitulsyan@iisc.ac.in

Rekha Pai
Indian Institute of Science Bangalore, India
rekhapai@iisc.ac.in

Deepak D’Souza1

Indian Institute of Science Bangalore, India
deepakd@iisc.ac.in

Abstract
We present a static analysis technique for detecting data races in Real-Time Operating System
(RTOS) applications. These applications are often employed in safety-critical tasks and the presence
of races may lead to erroneous behaviour with serious consequences. Analyzing these applications is
challenging due to the variety of non-standard synchronization mechanisms they use. We propose a
technique based on the notion of an “occurs-in-between” relation between statements. This notion
enables us to capture the interplay of various synchronization mechanisms. We use a pre-analysis and
a small set of not-occurs-in-between patterns to detect whether two statements may race with each
other. Our experimental evaluation shows that the technique is efficient and effective in identifying
races with high precision.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Static analysis, concurrency, data-race detection, RTOS

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.57

Supplementary Material https://bitbucket.org/rishi2289/static_race_detect/

Acknowledgements The second author want to thank University Grants Commission (UGC) India
for the Dr. DS Kothari Post Doctoral Fellowship EN/17-18/0039.

1 Introduction

Real-Time Operating Systems (RTOSs) are small operating systems or microkernels that an
application programmer uses as a library to create and manage the execution of multiple
tasks or threads. The programs written by the application programmer are called RTOS
applications and are programs typically written in C or C++ that are compiled along with
the RTOS kernel library and run on bare metal processors. Much of embedded software
today, ranging from home appliances to safety-critical systems like industrial automation
systems and flight controller software, are implemented as such programs.

An RTOS application comprises multiple threads (even if these are typically run on a
single core) and hence they need to protect against concurrency issues like data races. Two
statements are involved in a data race if they are conflicting accesses to a shared memory
location and can happen “simultaneously” or one after another. Data races can lead to
unexpected and erroneous program behaviours, with serious consequence in safety-critical
applications.

1 corresponding author

© Rishi Tulsyan, Rekha Pai, and Deepak D’Souza;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 57; pp. 57:1–57:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rishitulsyan@iisc.ac.in
mailto:rekhapai@iisc.ac.in
mailto:deepakd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.57
https://bitbucket.org/rishi2289/static_race_detect/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Data-Race Detection

While detecting data races is important, doing this for RTOS applications is a challenging
problem. This is because these programs use a variety of non-standard synchronization
mechanisms like dynamically raising and lowering proirities, suspending other tasks and the
scheduler, flag-based synchronization, disabling and enabling interrupts, in addition to the
more standard locks and semaphores. A look at the ArduPilot flight control software [1]
which is written in C++ and runs on the ChibiOS RTOS shows several instances of each of
these synchronization mechanisms being used. Standard techniques for race detection like
lockset analysis [28] or for priority-ceiling based scheduling and flag-based synchronization
[23, 22], or the disjoint-block approach of [8] for disabling interrupts, would not be precise
enough as they do not handle the first two mechanisms mentioned above. Extending the
disjoint-block approach for these synchronization mechanisms seems difficult.

Instead, in this work we adapt the disjoint-block approach of [8] to focus on a weaker
notion of “not occuring in between”. Essentially, a statement s2 does not occur in between
a statement s1 if it is not possible for a thread running s2 to preempt a thread while it is
running s1. If s1 and s2 cannot occur in between each other they also cannot race. We identify
six patterns or rules that ensure that a statement cannot occur in between another. We
take the help of a pre-analysis to identify dynamic priority ranges as well as task suspension
information, for each statement in an application. Then for each pair of conflicting statements
we check if the rules tell us that they cannot occur in between each other.

We have implemented our analysis for FreeRTOS applications (FreeRTOS [5] is a popular
open source RTOS), and analyse several small benchmarks from the literature as well as
a fragment of the ArduPilot [1] code, which we translate as a FreeRTOS application. Our
analysis runs in fractions of a second with an overall precision rate of 73%.

2 Overview

We begin with an overview of our technique with an illustrative example adapted from
a FreeRTOS demo application. The application, shown in Fig. 1, begins by creating two
task threads t1 and t2 that run the task functions prod and cons respectively, both at

void main (...) { Prio Susp
1. item = count = 0;
2. xTaskCreate (prod ,... ,1 , t1);
3. xTaskCreate (cons ,... ,1 , t2);
4. vTaskStartScheduler ();
}

void prod (...) {
10. for(; ;) { 1,1 -
11. vTaskSuspend (t2); 1,1 -
12. item = 5; 1,1 cons
13. count = count +1; 1,1 cons
14. vTaskResume (t2); 1,1 cons
15. } 1,1 -
}

void cons (...) {
20. for(; ;) { 1,1 -
21. temp = item; 1,1 -
22. vTaskPrioritySet (NULL , 2); 1,1 -
23. count = count -1; 2,2 -
24. vTaskPrioritySet (NULL , 1); 2,2 -
25. } 1,1 -
}

Figure 1 A producer-consumer FreeRTOS app.

R. Tulsyan, R. Pai, and D. D’Souza 57:3

priority 1. Once the scheduler is started in line 4 of main, the two threads begin executing
in a round-robin manner, preempting each other whenever the time slice is over (unless one
thread is suspended, or the running thread has raised its priority above the other thread).
The prod thread protects its accesses to the shared variables item and count by suspending
the cons thread in line 11, and resuming it in line 14 after the access. Similarly, the cons
thread protects its access to count by temporarily raising its priority to 2 in line 22.

We are interested in statically detecting potential data races in this application. We
give a more precise definition of a race in Sec. 4, but for now we can take it to mean
that two statements access a shared variable with at least one writing to it (we call these
“conflicting” accesses), and these statements happen one after the other in some execution of
the application.

Our analysis begins by first performing a data-flow analysis to identify the minimum
and maximum dynamic priorities that each statement can run at. The computed values are
shown on the second column from the right in the figure, and represent the priorities just
before the statement. Thus at line 23 in cons the min and max priorities are both 2. We
also perform a “suspended” analysis to find out at each point, which are the tasks that are
guaranteed to be suspended. These values are shown in the rightmost column.

Next, for each conflicting pair of accesses s1 and s2, we check whether s2 can “occur in
between” s1. Essentially, s2 can occur in between s1 if there is an execution in which while
s1 is executing, a context-switch may happen and s2 eventually executes before the context
switches back to s1. If s2 cannot occur in between s1, and vice-versa, then one can rule
out s1 and s2 being involved in a race. To check the “occur in between” relation we use a
small set of rules (see Fig. 4 in Sec. 5) which tell us when s2 cannot occur in between s1.
Thus, by the “Suspend” rule (C1), we can conclude that statements in line 21 and 23 cannot
occur in between the statements in line 12 and 13 (since the cons task is suspended here).
Similarly, by the “Priority” rule (C2), it follows that line 13 cannot occur in between line 23
(since it runs at a higher priority). This allows us to conclude that the accesses to count
in lines 13 and 23 cannot race. However for the accesses to item in lines 12 and 21, we are
unable to show that line 12 cannot occur in between 21, and hence our analysis declares
them as potentially racy. Indeed, these two accesses are racy.

We note that analyses like [23, 8] do not handle these synchronization mechanisms and
would be unable to declare the accesses in line 13 and 23 to be non-racy.

3 Interrupt-Driven Applications

In this section, we describe the syntax and semantics of an Interrupt-Driven Application
(IDA). An IDA program is essentially a set of thread functions, which are run by dynamically
created threads during execution. The functions are of two types: task functions which will be
run by threads that are created dynamically at different priorities, and ISR functions which
are run as Interrupt Service Routines triggered by hardware interrupts, at fixed priorities
above that of task threads. There is a designated main function which is run by the main
thread which is the only thread running initially. The main thread may create other task
threads and then “start” the scheduler, at which point the created threads and ISR threads
are enabled. The scheduler runs the task threads according to a highest-priority-first basis
and time-slices within threads of the same priority. ISR threads can be triggered at any
point of time, preempting task threads or lower priority ISR threads.

The thread functions can use a variety of commands, listed in Tab. 1, to perform
computation or influence the way they are scheduled. Task threads are created using the
create command. The command creates a new thread, which runs the specified task

FSTTCS 2020

57:4 Data-Race Detection

main: prod: cons:
1. item:=0; 10. for(; ;) { 20. for(; ;) {
2. count:=0; 11. suspend(t2); 21. temp:=item;
3. create(prod,1,t1); 12. item:=5; 22. set_priority(t2,2);
4. create(cons,1,t2); 13. count:=count+1; 23. count:=count-1;
5. start; 14. resume(t2); 24. set_priority(t2,1);
6. 15. } 25. }

16. 26.

(a) Example IDA program.

assume(true)
10

prod

11

12

13

14

15 skip

resume(t2)

count:=count+1

item:=5

suspend(t2)

assume(false)

16

(b) CFG of prod.

Figure 2 Example program and the CFG representation of prod.

function at the specified priority. High priority threads share execution time with low priority
threads using the set_priority, suspend, and block commands. These commands can
lead to re-scheduling of the threads, thereby giving other threads a chance to execute. The
set_priority command sets the priority of a task thread, suspend suspends the execution
of a task thread, and block (representing blocking commands like “delay” or “receive
message”) blocks the execution of the current task thread. A suspended task thread can be
resumed with the resume command. A blocked task thread resumes after a non-deterministic
amount of time. Task threads can suspend and resume the scheduler with suspendsched
and resumesched, respectively. When the scheduler is suspended the currently running task
thread can be preempted only by an ISR thread, and not by other task threads. Threads
can also disable and enable interrupts with disableint and enableint, respectively. When
interrupts are disabled, no preemption can occur. Tasks can synchronize accesses to shared
variables by acquiring and releasing locks with lock and unlock commands, respectively.

More formally, an IDA program P is a triple 〈V,M,F〉 where V is a finite set of integer-
valued global variables, M is a finite set of locks, and F is a finite set of thread function
names, with a designated one called main. Each function A in F has an associated Control
Flow Graph (CFG) GA = (LA, entA, extA, instA), where LA is the set of locations, entA and
extA are respectively the entry and exit locations in LA, and instA ⊆ LA × cmd(V,M)×LA
is the set of instructions of the CFG. Here cmd(V,M) is the set of commands in Tab. 1 over
the variables V and locks M . Each function A in F also has an associated type, type(A),
which is one of task or ISR. While task threads are created during execution at priorities
specified in the create command, ISR threads run at a fixed static priority. We assume that
during execution task threads can have priorities upto a constant value m ∈ N (which we fix
for all IDA programs), while ISR threads have distinct priorities which are greater than m.
If {f1, . . . , fk} are the functions of type ISR, then without loss of generality we assume their
priorities to be m+ 1, . . . ,m+ k respectively. The IDA version of the FreeRTOS application
from Fig. 1 is shown in Fig. 2.

Some notation will be useful going forward. For a program P , the instructions of P ,
denoted instP , is the union of instructions in the thread functions of P , and locations in P ,
denoted LP , is the union of the locations in the thread functions of P . An IDA program
allows standard integer and Boolean expressions over V . For an integer expression e, Boolean
expression b, and an environment φ for V , [[e]]φ denotes the integer value that e evaluates to
in φ, and [[b]]φ denotes the Boolean value that b evaluates to in φ. For a map f : X → Y

and elements x, y which may or may not be in X or Y , we use the notation f [x 7→ y] to
denote the function f ′ : X ∪ {x} → Y ∪ {y} given by f ′(x) = y and for all z different from x,
f ′(z) = f(z).

R. Tulsyan, R. Pai, and D. D’Souza 57:5

Table 1 IDA Basic Commands.

Command Description
skip Do nothing.
x := e Assign the value of expression e to variable x.
assume(b) Enabled only if expression b evaluates to true; does nothing.
create(A, p, t) Create task thread with func A, prio p, and store thread id in variable t.
set_priority(t, p) Set priority of task thread t to p. When the first parameter is NULL,

set priority of current thread. Allowed only in task function.
suspend(t) Suspend task thread t. When the parameter is NULL, suspend

current thread. Allowed only in task function.
resume(t) Resume task thread t. Allowed only in task function.
suspendsched Suspend scheduler. Disables switching to other task threads.
resumesched Resume the scheduler. Enables switching to other task threads.
disableint Disable interrupts and suspend the scheduler.
enableint Enable interrupts and resume the scheduler.
lock(l) Acquire lock l. Blocks if l is not available.
unlock(l) Release lock l.
block Block the current task thread. Re-enable after non-deterministic delay.
start Start scheduler and enable interrupts. Called only by main.

We can now define the semantics of an IDA program P = 〈V,M,F〉 as a labeled transition
system 〈S,Σ,⇒, s0〉, whose components are defined as follows. Let f1, . . . , fk be the thread
functions of type ISR, with priorities m+ 1, . . . ,m+ k respectively.

The set of states S contains tuples of the form s = 〈B,S,R,P,A,F , pc, φ, r, i, ss, id〉,
where
B, S, andR are sets of thread ids (which we assume to be simply integers) representing the
set of blocked task threads, suspended task threads, and ready task threads, respectively.
The sets B, S, and R are pairwise disjoint. We denote the set of threads created so far
by T = B ∪ S ∪R.
P : T → N gives the current priority of each thread.
A : M ⇀ T is a partial map giving us the thread that has acquired a particular lock.
F : T → F gives the function associated with a thread.
pc : T → LP gives the current location of a thread t in the CFG of F(t).
φ ∈ V → Z is a valuation for the variables.
r ∈ R is the currently running thread, while i ∈ R is the interrupted task thread.
ss is a Boolean value indicating whether the scheduler is suspended (ss = true) or not,
while id is a Boolean value indicating whether interrupts are disabled (id = true) or not.

The initial state s0 is 〈∅, {1, . . . , k}, {0}, {0 7→ 0, 1 7→ m+ 1, . . . , k 7→ m+ k}, ∅,
{0 7→ main, 1 7→ f1, . . . , k 7→ fk}, λt ∈ T .entF(t), λx ∈ V.0, 0, 0, true, true〉. Thus initially,
no threads are blocked, ISR threads 1, . . . , k (with priorities k + 1, . . . , k + n respectively)
are disabled, and the main thread 0 with priority 0 is ready and also running. No locks are
acquired. The threads 0, 1, . . . , k are associated with their functions. All the threads are at
their entry locations and all variables are initialized to zero. The interrupted thread is taken
to be 0, the scheduler is suspended, and interrupts are disabled.

The transition relation ⇒ is given as follows. Consider a state s expressed as the tuple
s = 〈B,S,R,P,A,F , pc, φ, r, i, ss, id〉, a thread t ∈ T , and an instruction ι = (l, c, l′) in F(t).
Then we have s ⇒ι s

′ iff one of the following rules is satisfied. Each rule says that if the
conditions on command c and state s, specified in the antecedent of a rule (above the line),

FSTTCS 2020

57:6 Data-Race Detection

hold then s ⇒ι s
′, specified in the consequent of the rule (below the line), holds. We use

task(t) to indicate that t is a task thread (i.e. (type(t) = task) and ISR(t) to indicate that t
is an ISR thread.

In the interest of space, only few rules are shown here. The full semantics can be found
in Arxiv. The ASSIGN is a simple rule on assignment statement. The ASSIGN-INT rule
shows how interrupts are handled while CREATE-CS and CREATE-NS rules show how the
execution of a statement can lead to context switch and no switch, respectively, and the
START rule shows how the threads get running. For the ASSIGN-INT rule given below, the
condition pc(t) = l = entF(t) should hold while for others pc(t) = l needs to be true.

c = x := e t = r
ASSIGN

s⇒ι 〈B,S,R,P,A,F , pc[t 7→ l′], φ[x 7→ [[e]]φ], r, i, ss, id〉

c = x := e t ∈ R ISR(t) t 6= r P(t) > P(r) id = false
ASSIGN-INT

s⇒ι 〈B,S,R,P,A,F , pc[t 7→ l′], φ[x 7→ [[e]]φ], t, r, ss, id〉

c = create(A, p, v) t = r task(t) A ∈ F type(A) = task ts /∈ T (p ≤ P(r) ∨ (ss ∨ id) = true)
CREATE-NS

s⇒ι 〈B,S,R∪ {ts},P[ts 7→ p],A,F [ts 7→ A], pc[t 7→ l′, ts 7→ entA], φ[v 7→ ts], r, i, ss, id〉

c = create(A, p, v) t = r task(t) A ∈ F type(A) = task ts /∈ T p > P(r) (ss ∨ id) = false
CREATE-CS

s⇒ι 〈B,S,R∪ {ts},P[ts 7→ p],A,F [ts 7→ A], pc[t 7→ l′, ts 7→ entA], φ[v 7→ ts], ts, i, ss, id〉

c = start t = r = 0 (ss ∨ id) = false ∃ts ∈ (S ∪R).task(ts) ∧ P(ts) = max({P(u)|u ∈ S ∪R ∧ task(u)})
START

s⇒ι 〈B, ∅,S ∪R,P,A,F , pc[t 7→ l′], φ, ts, i, false, false〉

An execution σ of P is a finite sequence of transitions in the transition system defined.
σ = τ0, τ1, · · · , τn, where n ≥ 0 and there exists a finite sequence of states s0, s1, · · · , sn+1 in
S such that s0 is the initial state and τi = si ⇒ si+1 for each 0 ≤ i ≤ n.

4 Data Races and the Occur-in-Between Relation

We use the notion of data races introduced by Chopra et al [8], which is a general notion
that applies to programs with non-standard synchronization mechanisms. The definition
essentially says that two statements in a program race if (a) they are conflicting accesses
to a memory location and (b) they may happen in parallel, in that notional “skip blocks”
around these statements overlap with each other in some execution of the program. The
definition is meant to capture the fact that when these two statements are compiled down to

MOV count,A

MOV A,count

SUB A,1

MOV count,A

MOV A,count

ADD A,1

Compile

count=count+1 count=count−1

instructions of a processor, the interleaving of these instructions may lead to undesirable
behaviours of the program which don’t correspond to any sequential execution of the two
statements. For example in the figure alongside, the conflicting accesses to count may get
compiled to the instructions shown, and the interleaving of these two blocks of instructions
may lead to unexpected results like count getting decreased by 1 despite both blocks having
completed.

R. Tulsyan, R. Pai, and D. D’Souza 57:7

skip;

skip;

skip;

skip;

A: B:A: B:

skip;

skip;

A: B:

Ps1,s2

s1;
s2;s1;

P tA tB tA tBPs1

s1;

s2;s2;

s2

Figure 3 A program P ; its transformation Ps1,s2 ; an execution of Ps1,s2 in which the skip blocks
overlap and witnesses that s1 and s2 MHP in P ; the program Ps1 ; and an execution of Ps1 which
witnesses occurrence of s2 in between s1.

We now define these notions more formally in our setting. Let us fix an IDA program P .
Let s1 and s2 be two instructions in P , with associated commands c1 and c2 respectively.
We restrict ourselves to the case where c1 and c2 are assignment or assume statements. We
say s1 and s2 are conflicting accesses to a variable x if they both access x and at least one of
them writes x. Let Ps1 denote the program obtained from P by inserting skip statements
immediately before and after s1. Similarly, let Ps1,s2 denote the program obtained from P by
inserting skip statements immediately before and after both s1 and s2. We say s1 and s2 may
happen in parallel (MHP) in P if there is an execution of Ps1,s2 in which the two skip-blocks
interleave (i.e. one block begins in between the other). These terms are illustrated in Fig. 3.
We use the convention that A and B represent the static thread functions, while tA and tB
represent dynamic threads that run the functions A and B respectively, with an optional
subscript indicating the priority at which the thread was created. Finally we say s1 and s2
are involved in a data-race (or simply are racy) in P , if they are conflicting accesses that
may happen in parallel in P .

It will be convenient for us to use a stronger notion than MHP called “occurs-in-between”
while reasoning about IDA programs. Once again, if s1 and s2 are statements in P , we say
that s2 can occur-in-between s1 if there is an execution of Ps1 in which s2 occurs sometime
between the first skip and the second skip around s1. In this case we write s1/ s2, and
s1 6/ s2 otherwise. The definition of s1/ s2 is illustrated in the right side of Fig. 3. While it
is immediate that if s2 occurs in between s1 then they also MHP, a weaker version of the
converse is also true:

I Proposition 1. Let s1 and s2 be two statements in an IDA program P . Then s1 MHP s2
iff either s1 occurs in between s2 or s2 occurs in between s1. J

Thus to conclude that s1 and s2 cannot MHP (and hence not race) it is enough to show
that s1 and s2 cannot occur in between each other.

5 Occur-In-Between Rules

In this section we focus on statically computing a conservative (i.e. under-) approximation
of the cannot-occur-in-between relation for an IDA program, by giving rules for identifying
this relation. To illustrate the typical issues we need to keep in mind while framing these
rules, consider the example program alongside. Task threads A4, B2, and C4 are created at
priority 4,2, and 4 respectively. In the normal course statement s2 in B2 would not be able
to occur in between s1 in A4 as A4 runs at a higher priority than B2. However, (the thread
that runs) C4 may suspend A4 just before it executes s1, block itself, and allow B2 to run.
Thus s2 can occur in between s1.

FSTTCS 2020

57:8 Data-Race Detection

B2:A4: C4:

// t runs A4 at prio 4

suspend(t);

block;

resume(t);

s1; s2;

We will make use of the following terminology for an IDA program P . Let s be a statement
in thread function A in P . We say s may run at priority p if there is an execution of P in
which a thread t runs A and executes statement s at a priority of p. We say (p, q) is the
dynamic priority of s if p and q are respectively the minimum and maximum priorities that s
can run at. Similarly, we say that the dynamic priority of a thread function A (or a block of
code in A) is (p, q) if p and q are respectively the minimum and maximum priorities at which
any statement in A (or the block of A) can run. Finally, we say that a task function A may
suspend another task function B in P , if A contains a statement of the form suspend(t), and
there is an execution of P in which the statement is executed when the thread id t points
to task function B (that is t runs task B). We say the statement suspend(t) in P must
suspend (or simply suspends) a task B if t takes on a unique thread id at this point along
any execution of P , and this thread id is the only thread that runs B. In this case, we will
denote such a statement by suspend(B).

We now proceed to propose sufficient conditions under which one statement in an IDA
program cannot occur-in-between another statement in the program. Let us fix an IDA
program P . Let s1 and s2 be statements in thread functions A and B respectively (A and B
could be the same thread function). The following conditions (C1)–(C6) below are meant
to be sufficient conditions that ensure that s2 cannot occur in between s1. In the rules
below, by a statement s in a thread function A being enclosed in a suspend-resume block
we mean there is a path in the CFG of A which contains s, begins with a suspend, ends
with a resume, and has no intervening resume statement; and similarly for other kinds of
blocks. Each of these rules is illustrated in Fig. 4.

C1 (Suspend Task): Each of the following conditions must hold:
s1 is enclosed in a suspend(B)-resume(B) block with dynamic priority (p, q);
there is no task with maximum dynamic priority greater than or equal to p, that can
resume B;
Either no blocking statement in the suspend(B)-resume(B) block, or no other task
that can resume B.

C2 (Priority): Each of the conditions below must hold:
The dynamic priorities of s1 and s2 are (p1, q1) and (p2, q2) respectively, with p1 > q2.
There is no thread body with maximum dynamic priority greater than or equal to p1
that can suspend A.

C3 (Flag): Each of the conditions below must hold:
s1 is enclosed in a block F begining with setting the variable flag to 1 and ending
with resetting it to 0, with dynamic priority of the block being (p1, q1).
The block F is either in the scope of a suspendsched command or there is no thread
of priority ≥ p1 that resets flag.
Either there is no blocking command before s1 in F , or no thread that can reset flag.
s2 is in an if-then block which checks that flag is not set, with the block having
dynamic priority (p2, q2).
q1 < p2.

C4 (Lock): Each of s1 and s2 are within a lock(l)-unlock(l) block, for some common
lock l.

R. Tulsyan, R. Pai, and D. D’Souza 57:9

C5 (Disable Interrupts): s1 is within a disableint-enableint block.
C6 (Suspend Scheduler): s1 is within a suspendsched-resumesched block in a task
function, and s2 is in a task function.

I Theorem 2. Let P be an IDA program, and let s1 and s2 be statements in P that satisfy
one of the conditions (C1) to (C6) above. Then s1 6/ s2 in P .

Proof. We sketch here a proof of Thm. 2 on the soundness of the conditions C1–C6. Let P
be an IDA program with statements s1 and s2 satisfying one of the conditions C1–C6. We
need to argue that in each case s1 6/ s2. We focus on the first three rules C1–C3 since the
remaining are more standard and their soundness is easy to see.

C1: Suppose s1 and s2 satisfy the condition C1, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then s2 must happen some time after t2 was suspended by t1, and before s1 takes place.
The only way this can happen is if:

Some thread t3 with priority greater than or equal to p1 resumes t2. But this is not
possible since the condition says that there is no other task with dynamic priority greater
than or equal to p1 which can resume B.
t1 makes a blocking call and another task runs and resumes t2. However this is ruled
out by the requirement that [there is no block command before s1] OR [there is no task
other than A which can resume B].

C2: Suppose s1 and s2 satisfy the condition C2, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then thread t2 must preempt thread t1 during the execution of s1. The only way this
can happen is if:

t2 with priority greater than p1 was blocked. It runs and preempts t1. But this is not
possible since the condition says that p1 > maximum dynamic priority of t2.
t2 has a priority equal to p1 and t1’s time slice expires and it gets preempted by t2. Again,
this is not possible since the condition says that p1 > maximum dynamic priority of t2.
Some thread t3 with priority greater than or equal to p1 was blocked. It runs and suspends
t1. However this is ruled out by the requirement that there is no task other than t1 with
maximum dynamic priority ≥ p1, which can suspend t1.

C3: Suppose s1 and s2 satisfy the condition C3, and suppose there is an execution ρ of
P in which s2 occurs in between s1. Let us say s1 is executed by thread t1 and s2 by thread
t2. Then s2 must happen some time after flag1 is set to 1 by t1, and before s1 takes place.
The only way this can happen is if:

Some thread t3 with priority greater than or equal to p1 was blocked. It runs and resets
flag1 to 0. But this is not possible since the condition says that s1 is either in the scope
of a suspendsched command or there is no thread of priority ≥ p1 that resets flag1.
t1 makes a blocking call and another task runs and resets flag1 to 0. Again, this is not
possible because of the requirement that [there is no block command before s1] OR
[there is no task other than t1 which can reset flag1 to 0].
Both t1 and t2 run at the same priority. Before t1 sets flag1 to 1, t2 checks flag1 and
finds that it is 0, and enters the block containing s2. Before t2 executes s2, it’s time slice
expires. It gets preempted by t1 which sets flag1 to 1 and starts s1. However this is
ruled out by the requirement that p2 > p1.

This completes the argument. J

FSTTCS 2020

57:10 Data-Race Detection

(b) C2 (Priority)

thread A: thread B:

flag := 0;

thread A: thread B:

if(flag!=1){

}

flag := 1;

thread A: thread B:

(c) C3 (Flag) (d) C4 (Lock)

task A: task B:

(f) C6 (Scheduler Suspend)

thread A: thread B:

(e) C5 (Disable Interrupts)

(a) C1 (Task Suspend)

task A: task B:

s1; 6/ (p2, q2)

p1 > q2.

(p1, q1) s2;

No task with max prio ≥ p1 suspends A.

(p1, q1)

No task with max prio ≥ p1 resumes B.

Sched suspended or no task with prio ≥ p1 resets flag.

(p1, q1)

No block before s1 or no other task resets flag.

(p2, q2)s1; 6/

q1 < p2

s2;

unlock(l);

6/

lock(l);lock(l);

unlock(l);

s2;s1;

resumesched

suspendsched;

s1; 6/ s2;

enableint;

6/s1; s2;

disableint;

resume(B);

suspend(B);

s1;

No block before s1 or no other task resumes B.

6/ s2;

Figure 4 Rules that guarantee s2 cannot occur in between s1 (i.e. s1 6/ s2).

6 Implementation and Evaluation

We have implemented our analysis for FreeRTOS [5] applications in a tool called RAPR (for
“RTOS App Racer”). Our IDA language is closely modelled on the syntax and semantics of
FreeRTOS apps, and hence we continue to use the IDA commands in place of the FreeRTOS
commands in this section. Our analysis is implemented in the CIL static analysis framework
[20] using OCaml, and comprises a few pre-analyses followed by the main analysis for checking
the conditions. For convenience we assume that each create statement uses a different
thread identifier.

Priority Analysis. The priority analysis determines the min and max dynamic priority at
each statement in each thread function. This is done in 2 passes as follows. We first perform
an interval-based analysis for each function A, maintaining an interval [p, q] of possible priority
values at each statement. The initial interval is [p0, q0], given by the min and max priorities
among threads that run A. The transfer function for a set_priority(NULL, p) statement
returns the interval [p, p], and is identity for other statements. The join is the standard join
on the interval lattice. In the second pass, for each statement set_priority(t, p′) where t
may run A, we update the interval [p, q] at each statement in A to [min(p, p′),max(q, p′)].

Suspend/Resume Analysis. This analysis determines the set of tasks which can suspend
or resume a given task. We maintain a set of task functions susplist(A) and reslist(A) for
each task function A, containing the set of tasks that can suspend and resume A respectively.
For each task B with a suspend(A) or resume(A) statement, we add B to susplist(A) or
reslist(A) respectively.

R. Tulsyan, R. Pai, and D. D’Souza 57:11

Figure 5 Architecture of RAPR.

Lockset Analysis. A standard lockset analysis aims to compute the set of locks that are
must held at each program point. On a lock(l) statement, the transfer function adds l to
the set of locks held after this statement, while for an unlock(l) statement we remove l
from the set of locks held. The join operation is simply the intersection of the locksets at
the incoming points. In our setting, apart from the standard locks, we use notional locks
that correspond to the different kinds of code blocks used in the rules of Fig. 4. Thus, for
each suspend(A)-resume(A) block (rule C1) we use a notional lock SA that we “acquire” at
the suspend(A) statement and “release” at the resume(A) statement. The lockset analysis
would then let us identify a suspend(A)-resume(A) block by the fact that the lock SA is
held throughout these statements. In a similar way we use locks F set

flag and F chk
flag for each flag

variable flag, corresponding to the two blocks in rule C3; lock D for disableint-enableint
(rule C5); and lock S for suspendsched-resumesched (rule C6).

Main Analysis. The overall analysis computes conflicting accesses by scanning for global
variables having shared accesses in different threads with at least one access being a write
access. We use CIL’s inbuilt alias analysis to resolve pointers to shared global variables.
The information obtained from priority and lockset analysis is used to check for the cannot
occur-in-between relation between the pair of conflicting accesses, using rules C1–C6. If both
accesses in the pair cannot occur-in-between each other, they are declared to be non-racy;
else they are declared to be potentially racy. A schematic of our implementation is shown in
Fig 5.

Finally, the analysis allows a couple of command-line switches to handle some of the
configuration options of FreeRTOS. Certain locks (called “mutex” locks) have a priority
inheritance mechanism associated with them: when a higher priority thread is waiting
on a mutex already acquired by a lower priority thread, the lower priority thread has its
priority bumped up to the priority of the higher priority thread. Anticipating a need while
translating nxtOSEK applications, we also allow a ceiling priority mechanism for mutexes
which immediately increases the priority of the acquiring thread to the max priority of all
threads that might ever acquire the mutex. To handle this we adapt the transfer function of
our priority analysis for a lock(l) statement, when l is a mutex, to return [p,max(q, p′)] in
the case of priority inheritance, and [p′, p′] in the case of ceiling priority, where [p, q] is the
incoming priority interval and p′ is the max priority of any task that might acquire l. We also
provide a switch to disallow round-robin scheduling within threads of the same priority, and
handle it by modifying the cannot occur-in-between conditions for C1 and C2 by replacing
“>” by “≥” for the dynamic priorities.

FSTTCS 2020

57:12 Data-Race Detection

Table 2 Experimental results.

Program LoC Conf.
acc.

True
Races

RAPR Pot. Pot.
Time Pot. % % Races Races
(in s) Races Elim. Prec. [23] [8]

bipedrobot.c 338 3 0 1.39 2 33.33 0.00 2 10
pe_test.c 95 4 3 0.01 3 25.00 100.00 3 7
res_test.c 110 40 8 0.03 9 77.50 88.88 9 11
tt_test.c 105 5 3 0.01 3 40.00 100.00 3 6
usb_test.c 169 0 0 0.02 0 0.00 100.00 0 52
example.c 87 13 1 0.03 1 92.30 100.00 1 61
example_fun.c 102 13 1 0.05 4 69.23 25.00 1 61
pingpong.c 112 3 0 0.01 0 100.00 100.00 0 7
counter.c 96 6 6 0.01 6 0.00 100.00 6 9
dynamic.c 429 20 2 0.13 6 70.00 33.33 16* 23
IntQueue.c 747 42 5 0.97 16 61.90 31.25 10* 24
rangefinder.c 394 16 10 0.23 10 37.50 100.00 16* 18

Experimental Evaluation. We tested our analysis on 12 FreeRTOS applications, shown in
Tab. 2. The first 9 are nxtOSEK test programs [6] analysed in [23], which were converted
to FreeRTOS programs taking care to preserve the nxtOSEK semantics which these pro-
grams use. nxtOSEK uses a priority ceiling protocol for mutex locks and no round-robin
scheduling between same priority tasks. The next 2 are demo applications in FreeRTOS
and finally, rangefinder.c is the converted version of an ArduPilot subsystem [1] originally in
ChibiOS/C++.

The examples used by Schwarz et al. [23] consist of bipedrobot.c which is part of
the control software of a self-balancing robot, pe_test.c which tests preemptive scheduling,
res_test.c which tests resource based synchronization, tt_test.c where tasks are time-triggered,
usb_test.c which tests usb communication, pingpong.c where two tasks set a variable to
“ping” and “pong” using a mutex and counter.c where one task increments the fields of a
structure and the other task resets and prints these fields. The programs example.c and
example_fun.c are examples from [23]. The FreeRTOS demo dynamic.c consists of three
tasks which use different mechanisms to access a shared global counter. IntQueue.c is another
FreeRTOS demo where tasks share global arrays and counters. Finally rangefinder.c is an
ArduPilot subsystem with three task threads and one ISR thread which share access to a
state variable and ring and bounce buffers.

Table 2 shows the results of our analysis on these programs. We ran these experiments
on a Intel Core i5-8250U 1.60GHz Quad CPU machine under Ubuntu 18.04.4. Conf. acc.
denotes the total number of pairs of conflicting accesses to shared global variables in the
program. True races denotes the number of actual races existing in the program. RAPR
“Pot. Races” denotes the number of conflicting accesses flagged to be potentially racy by the
analysis. %Elim. denotes the fraction of conflicting accesses declared to be non-racy and
%Prec. denotes the fraction of potential races which are actual races. Pot. Races from [23]
and [8] denote the number of potential races flagged using their respective techniques.

In bipedrobot.c, the Task_Init only runs once and hence the potential races are false
positives. The decrement to digits in LowTask races with the read and write access in
HighTask in pe_test.c. In res_test.c, the read accesses to digits are unprotected due to which
it can be an actual race. The decrement of digits in LowTask is unprotected from HighTask
and hence it is racy in tt_test.c. In usb_test.c, there are no shared accesses between tasks
and hence it is trivially race-free. The races in example.c and example_fun.c are shown

R. Tulsyan, R. Pai, and D. D’Souza 57:13

in [23]. The ping and pong tasks use a mutex to access the shared variable in pingpong.c
and it is race-free. In counter.c, the fields of the global structure are accessed without any
protection and hence race with each other. The first initialization of the counter by the
controller task in dynamic.c is an actual race with the increment in the continuous increment
task because both are created at the same priority and the continuous increment task can
preempt the controller when it is initializing the counter. In Intqueue.c some accesses to
the shared arrays are real races. In rangefinder.c, the I2C bus thread’s access to the state
variable is not protected from the main thread and the main thread’s access to the ring
buffer is not protected from the UART thread which results in a high number of actual races.

The potential races from [23] value is obtained by manually estimating the working of
the idea in [23]. This is marked with a * for the last 3 programs as their technique does not
handle constructs like dynamically changing the priority of a task and hence is potentially
unsound for these programs. It also results in more false positives for the dynamic.c and
IntQueue.c examples as protection from synchronization mechanisms like suspending another
task, disabling interrupts and suspending the scheduler is not considered. The number of
potential races from [8] is obtained using their tool. The tool does not consider priorities for
synchronization. Moreover it considers each task function to be run by multiple threads even
if only one thread runs it in the application. These factors add to its imprecision.

In dynamic.c the conflicts in the continuous increment task and the limited increment task
seem to be racy because they occur at the same priority but the controller task actually ensures
that these two can never be in the ready state at the same time keeping one of these two
suspended at all times. But this is unknown to the analysis when it encounters the conflicts as
this dynamic information about the controller task cannot be made available at these points.
This is the reason behind the false positives. The analysis and the test programs with the
results can be found in the repository bitbucket.org/rishi2289/static_race_detect/.

7 Related Work

We discuss related work grouped according to the three categories below.
Static Race Detection. The most closely related work is that of Schwarz et al. [22, 23]

and Chopra et al. [8]. In [22, 23] Schwarz et al. provide a precise interprocedural data-flow
analysis for checking races in OSEK-like applications that use the priority ceiling semantics.
Chopra et al. [8] propose the notion of disjoint-blocks to detect data races and carry out
data-flow analysis for FreeRTOS-like interrupt-driven kernel APIs. In contrast to both these
works, our work handles a comprehensive variety of synchronization mechanisms, including
suspend-resume and setting priorities dynamically. In addition we handle dynamic thread
creation which both these works do not.

In other work in this category Chen et al. [7] develop a static analysis tool for race
detection in binaries of interrupt-driven programs with interrupt priorities of upto two levels.
The tool considers only disable-enable of interrupts as a synchronization mechanism and does
not consider interleavings of task threads. Regehr and Cooprider [21] describe a source-to-
source translation of an interrupt-driven program to a standard multi-threaded program, and
analyze the translated program for data races. However their translation is inadequate in our
setting and we refer the reader to [8] for the inherent problems with such an approach. Sung
et al. [26] propose a modular technique for static verification of interrupt-driven programs
with nesting and priorities. However, the algorithm does not consider interrupt-related
synchronization mechanisms nor does it consider interleavings of task threads or interaction
with the ISRs. Wang et al. [29] present SDRacer, an automated framework that detects and

FSTTCS 2020

bitbucket.org/rishi2289/static_race_detect/

57:14 Data-Race Detection

validates race conditions in interrupt-driven embedded software. The tool combines static
analysis, symbolic execution, and dynamic simulation. However, it is unsound as their static
analysis does not iterate to fixpoint. Mine et al. [18] extend Astree by employing a thread-
modular static analyzer to soundly report data races in embedded C programs with mutex
locks and dynamic priorities. However they do not consider interrupts and synchronization
mechanisms like flag-based and suspend-resume. Finally, several papers do lockset-based
static analysis for data races in classical concurrent programs [25, 11, 28, 2]. Flanagan et
al. [12, 13] uses type system to track the lockset at each program point. However none
of these techniques apply to interrupt-driven programs with non-standard synchronization
mechanisms and switching semantics.

Model-Checking. Several researchers have used model-checking tools like Slam, Blast,
and Spin to precisely model various kinds of synchronization mechanisms and detect errors
exhaustively [16, 10, 15, 14, 30, 3, 19]. These technique cannot handle dynamic thread
creation, and even with a small bound on the number of threads suffer from state-space
explosion. Liang et al. [17] present an effective method to verify interrupt-driven software
with nested interrupts, based on symbolic execution. The method translates a concurrent
program into atomic memory read/write events, and then describe the interleavings of these
events as a symbolic partial order expressed by a SAT/SMT formula. It is able to verify only
a bounded number of interrupts.

High-Level Race Detection. A “high-level” race occurs when two blocks of code representing
critical accesses overlap in an execution. Our definition of a data race between statements
s1 and s2 in program P can thus be phrased as a high-level race on the skip-blocks in the
augmented program Ps1,s2 . Artho et al. [4], von Praun and Gross [27], and Pessanha et al. [9]
study a “view”-based notion of high-level races and carry out lockset based static analysis to
detect high-level races. Singh et al. [24] use the disjoint-block notion of [8] to detect high-level
races in several RTOS kernels. They consider some non-standard synchronization mechanisms
and also the relative scheduling priorities of specialized threads like callbacks and software
interrupts. However none of these techniques handle the full gamut of synchronization
mechanisms we address, and hence would be very imprecise for our applications.

8 Conclusions and Future Work

We have presented an efficient and precise way to detect data-races in RTOS applications
that use a variety of non-standard synchronization constructs and idioms. Going forward we
would like to extend our tool to be able to handle large real-life applications like ArduPilot
which are written in C++ and run on the ChibiOS RTOS. We would also like to extend
our technique to identify disjoint-block patterns so that we can carry out efficient data-flow
analysis [8] for such applications.

References
1 ArduPilot: Open source drone software. versatile, trusted, open. https://ardupilot.org/,

2020.
2 Martin Abadi, Cormac Flanagan, and Stephen N Freund. Types for safe locking: Static race

detection for Java. ACM Transactions on Programming Languages and Systems (TOPLAS),
28(2):207–255, 2006.

3 Rajeev Alur, Ken McMillan, and Doron Peled. Model-checking of correctness conditions for
concurrent objects. Information and Computation, 160(1):167–188, 2000.

4 Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. Software Testing,
Verification and Reliability, 13(4):207–227, 2003.

https://ardupilot.org/

R. Tulsyan, R. Pai, and D. D’Souza 57:15

5 Richard Barry. The FreeRTOS kernel, v10.0.0. https://freertos.org, 2017.
6 Takashi C. The NxtOSEK project. https://sourceforge.net/projects/lejos-osek/, 2014.
7 Rui Chen, Xiangying Guo, Yonghao Duan, Bin Gu, and Mengfei Yang. Static data race

detection for interrupt-driven embedded software. In Proceedings of the 2011 Fifth International
Conference on Secure Software Integration and Reliability Improvement - Companion, SSIRI-C
’11, page 47–52, USA, 2011. IEEE Computer Society.

8 Nikita Chopra, Rekha Pai, and Deepak D’Souza. Data races and static analysis for interrupt-
driven kernels. In Proceedings of the 28th European Symposium on Programming, ESOP 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2019, volume 11423 of Lecture Notes in Computer Science, pages 697–723, Prague, Czech
Republic, 2019. Springer. doi:10.1007/978-3-030-17184-1_25.

9 Ricardo J. Dias, Vasco Pessanha, and João Lourenço. Precise detection of atomicity violations.
In Proceedings of the 8th International Haifa Verification Conference, HVC 2012. Revised
Selected Papers, volume 7857 of Lecture Notes in Computer Science, pages 8–23, Haifa, Israel,
2012. Springer. doi:10.1007/978-3-642-39611-3_8.

10 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Precise race detection and efficient model
checking using locksets. Technical Report MSR-TR-2005-118, Microsoft Research, 2005.

11 Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race conditions and
deadlocks. SIGOPS Operating Systems Review, 37(5):237–252, October 2003.

12 Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2000, pages 219–232, Vancouver, Britith Columbia, Canada, 2000. ACM. doi:
10.1145/349299.349328.

13 Cormac Flanagan and Stephen N. Freund. Detecting race conditions in large programs. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software
Tools and Engineering, PASTE, 2001, pages 90–96, Snowbird, Utah, USA, 2001. ACM.
doi:10.1145/379605.379687.

14 Klaus Havelund, Michael R. Lowry, and John Penix. Formal analysis of a space-craft controller
using SPIN. IEEE Transactions on Software Engineering, 27(8):749–765, 2001.

15 Klaus Havelund and Jens U. Skakkebæk. Applying model checking in java verification. In
Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking, page 216–231, Berlin, Heidelberg, 1999. Springer-Verlag.
doi:10.1007/3-540-48234-2_17.

16 Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by context inference.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, PLDI ’04, pages 1–13, New York, NY, USA, 2004. Association for Computing
Machinery.

17 Lihao Liang, Tom Melham, Daniel Kroening, Peter Schrammel, and Michael Tautschnig.
Effective verification for low-level software with competing interrupts. ACM Transactions on
Embedded Computing Systems, 17(2):36:1–36:26, December 2017.

18 Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot, Daniel
Kästner, Stephan Wilhelm, and Christian Ferdinand. Taking Static Analysis to the Next
Level: Proving the Absence of Run-Time Errors and Data Races with Astrée. In Proceedings
of the 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016),
Toulouse, France, 2016.

19 Suvam Mukherjee, Arun Kumar, and Deepak D’Souza. Detecting all high-level dataraces in an
RTOS kernel. In Proceedings of the 18th International Conference on VMCAI 2017, volume
10145 of Lecture Notes in Computer Science, pages 405–423, Paris, France, 2017. Springer.
doi:10.1007/978-3-319-52234-0_22.

20 George Necula. CIL – infrastructure for C Program Analysis and Transformation (v. 1.3.7).
http://people.eecs.berkeley.edu/~necula/cil/, 2002.

FSTTCS 2020

https://freertos.org
https://sourceforge.net/projects/lejos-osek/
https://doi.org/10.1007/978-3-030-17184-1_25
https://doi.org/10.1007/978-3-642-39611-3_8
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/379605.379687
https://doi.org/10.1007/3-540-48234-2_17
https://doi.org/10.1007/978-3-319-52234-0_22
http://people.eecs.berkeley.edu/~necula/cil/

57:16 Data-Race Detection

21 John Regehr and Nathan Cooprider. Interrupt verification via thread verification. Electronic
Notes in Theoretical Computer Science, 174(9):139–150, 2007.

22 Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, and Kalmer Apinis. Precise analysis of
value-dependent synchronization in priority scheduled programs. In Proceedings of the 15th
International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI
2014, volume 8318 of Lecture Notes in Computer Science, pages 21–38, San Diego, CA, USA,
2014. Springer. doi:10.1007/978-3-642-54013-4_2.

23 Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, Peter Lammich, and Markus Müller-Olm.
Static analysis of interrupt-driven programs synchronized via the priority ceiling protocol. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, pages 93–104, Austin, TX, USA, 2011. ACM. doi:10.1145/1926385.
1926398.

24 Abhishek Singh, Rekha Pai, Deepak D’Souza, and Meenakshi D’Souza. Static analysis for
detecting high-level races in RTOS kernels. In Proceedings of the Formal Methods - The Next 30
Years - Third World Congress, FM 2019, volume 11800 of Lecture Notes in Computer Science,
pages 337–353, Porto, Portugal, 2019. Springer. doi:10.1007/978-3-030-30942-8_21.

25 Nicholas Sterling. WARLOCK - A static data race analysis tool. In Proc. Usenix Winter
Technical Conference, pages 97–106, 1993.

26 Chungha Sung, Markus Kusano, and Chao Wang. Modular verification of interrupt-driven
software. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 206–216, Urbana, IL, USA, 2017. IEEE Computer
Society. doi:10.1109/ASE.2017.8115634.

27 Christoph von Praun and Thomas R. Gross. Static detection of atomicity violations in
object-oriented programs. Journal of Object Technology, 3(6):103–122, 2004.

28 Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: static race detection on millions of
lines of code. In Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, pages 205–214, Dubrovnik, Croatia, 2007. ACM. doi:10.1145/1287624.
1287654.

29 Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong Li. Automatic detection
and validation of race conditions in interrupt-driven embedded software. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2017, pages
113–124, Santa Barbara, CA, USA, 2017. ACM. doi:10.1145/3092703.3092724.

30 Reng Zeng, Zhuo Sun, Su Liu, and Xudong He. Mcpatom: A predictive analysis tool for
atomicity violation using model checking. In Proceedings of the 19th International Workshop
on Model Checking Software SPIN 2012, volume 7385 of Lecture Notes in Computer Science,
pages 191–207, Oxford, UK, 2012. Springer. doi:10.1007/978-3-642-31759-0_14.

A Semantics

https://doi.org/10.1007/978-3-642-54013-4_2
https://doi.org/10.1145/1926385.1926398
https://doi.org/10.1145/1926385.1926398
https://doi.org/10.1007/978-3-030-30942-8_21
https://doi.org/10.1109/ASE.2017.8115634
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/3092703.3092724
https://doi.org/10.1007/978-3-642-31759-0_14

R. Tulsyan, R. Pai, and D. D’Souza 57:17

c
=

sk
ip
t

=
rp

c(
t)

=
l

S
K

IP
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

sk
ip
t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

S
K

IP
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

x
:=

et
=
rp

c(
t)

=
l

A
S

S
IG

N
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ

[x
7→

[[e
]] φ

],
r,
i,

ss
,i

d〉

c
=

x
:=

et
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

A
S

S
IG

N
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ

[x
7→

[[e
]] φ

],
t,
r,

ss
,i

d〉

c
=

as
su

me
(b

)t
=
rp

c(
t)

=
l[[
b]]
φ

=
tr

ue
A

S
S

U
M

E
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

as
su

me
(b

)
t
∈
R

IS
R

(t
)
t
6=
r

pc
(t

)=
l

=
en

t F
(t

)
P

(t
)>
P

(r
)

[[b
]] φ

=
tr

ue
id

=
fa

lse
A

S
S

U
M

E
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

cr
ea

te
(A
,p
,v

)
t

=
r

ta
sk

(t
)
A
∈

F
ty

pe
(A

)=
ta

sk
ts
/∈
T

(p
≤
P

(r
)∨

(s
s∨

id
)=

tr
ue

)
C

R
E

A
T

E
-N

S
s
⇒
ι
〈B
,S
,R
∪
{t
s}
,P

[ts
7→
p
],
A
,F

[ts
7→
A

],
pc

[t
7→
l′
,t
s
7→

en
t A

],
φ

[v
7→
ts

],
r,
i,

ss
,i

d〉

c
=

cr
ea

te
(A
,p
,v

)
t

=
r

ta
sk

(t
)
A
∈

F
ty

pe
(A

)=
ta

sk
ts
/∈
T

p
>
P

(r
)

(s
s∨

id
)=

fa
lse

C
R

E
A

T
E

-C
S

s
⇒
ι
〈B
,S
,R
∪
{t
s}
,P

[ts
7→
p
],
A
,F

[ts
7→
A

],
pc

[t
7→
l′
,t
s
7→

en
t A

],
φ

[v
7→
ts

],
ts
,i
,s

s,
id
〉

c
=

se
t_

pr
io

ri
ty

(t
s,
p)

t
=
r

ta
sk

(t
)

pc
(t

)=
l
p
∈
N

ta
sk

(t
s)

ts
∈
T

(
(P

(r
)≥

p
)
∨

(P
(r

)<
p
∧
ts
∈

(B
∪
S)

)
∨

(s
s∨

id
)=

tr
ue

)
S

E
T

P
-N

S
s
⇒
ι
〈B
,S
,R
,P

[ts
7→
p
],
A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

se
t_

pr
io

ri
ty

(t
s,
p)

t
=
r

ta
sk

(t
)

pc
(t

)=
l
p
∈
N

ta
sk

(t
s)

ts
∈
R

p
>
P

(r
)

(s
s∨

id
)=

fa
lse

S
E

T
P

-C
S

s
⇒
ι
〈B
,S
,R
,P

[ts
7→
p
],
A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

FSTTCS 2020

57:18 Data-Race Detection

c
=

su
sp

en
d(
ts

)t
as
k(
t)
t

=
r
6=
ts
ts
∈
T

pc
(t

)=
l

S
U

S
-N

S
s
⇒
ι
〈B
−
{t
s}
,S
∪
{t
s}
,R
−
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

su
sp

en
d(
ts

)
ta
sk

(t
)
t

=
r

=
ts

pc
(t

)=
l

(s
s∨

id
)=

fa
lse
∃t
s′
∈
R
.ta

sk
(t
s′

)
∧
ts
′
6=
r
∧
P

(t
s′

)=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧

ta
sk

(u
)}

)
S

U
S

-C
S

s
⇒
ι
〈B
,S
∪
{r
},
R
−
{r
},
P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s′
,i
,s

s,
id
〉

c
=

re
su

me
(t
s)

ta
sk

(t
)
t

=
r
6=
ts

pc
(t

)=
l
ts
∈

(S
∪
R

)
((

ss
∨

id
)=

tr
ue
∨
P

(r
)≥
P

(t
s)

)
R

E
S

-N
S

s
⇒
ι
〈B
,S
−
{t
s}
,R
∪
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

re
su

me
(t
s)

ta
sk

(t
)
t

=
r
6=
ts

pc
(t

)=
l
ts
∈
S

(s
s
∨

id
)=

fa
lse
P

(t
s)
>
P

(r
)

R
E

S
-C

S
s
⇒
ι
〈B
,S
−
{t
s}
,R
∪
{t
s}
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

c
=

su
sp

en
ds

ch
ed
t

=
rt
as
k(
t)

pc
(t

)=
l

S
U

S
S

C
H

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,t

ru
e,

id
〉

c
=

re
su

me
sc

he
dt

=
rt
as
k(
t)

pc
(t

)=
l(
∀t
s
∈
R
.ta

sk
(t
s)
∧
P

(r
)≥
P

(t
s)
∨

id
=

tr
ue

)
R

E
S

S
C

H
-N

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,f

al
se
,i

d〉

c
=

re
su

me
sc

he
d
t

=
r

ta
sk

(t
)

pc
(t

)=
l
∃t
s
∈
R
.ta

sk
(t
s)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
∧

ta
sk

(u
)}

)
id

=
fa

lse
R

E
S

S
C

H
-C

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

fa
lse
,i

d〉

c
=

di
sa

bl
ei

nt
t

=
rp

c(
t)

=
l

D
IS

IN
T

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
tr

ue
〉

c
=

di
sa

bl
ei

nt
t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

D
IS

IN
T

-I
N

T
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
tr

ue
〉

c
=

en
ab

le
in

tt
=
rp

c(
t)

=
l(
∀t
s
∈
R
.ta

sk
(t
s)
∧
P

(r
)≥
P

(t
s)
∨

ss
=

tr
ue
∨

IS
R

(r
))

E
N

IN
T

-N
S

s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
fa

lse
〉

R. Tulsyan, R. Pai, and D. D’Souza 57:19

c
=

en
ab

le
in

t
t

=
r

ta
sk

(t
)

pc
(t

)=
l
∃t
s
∈
R
.ta

sk
(t
s)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
∧
ta
sk

(u
)}

)
ss

=
fa

lse
E

N
IN

T
-C

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,f

al
se
〉

c
=

en
ab

le
in

tt
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)i

d
=

fa
lse

E
N

IN
T

-I
N

T
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
fa

lse
〉

c
=

lo
ck

(m
)t

=
rp

c(
t)

=
l(
A

(m
)=

un
de

f
∨
A

(m
)=

r)
L

O
C

K
-A

Q
s
⇒
ι
〈B
,S
,R
,A

[m
7→
r]
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

lo
ck

(m
)
t

=
r

ta
sk

(t
)

pc
(t

)=
l
A

(m
)=

ts
6=
r

(s
s∨

id
)=

fa
lse
∃t
s′
∈
R
.t
s′
6=
r
∧

ta
sk

(t
s′

)
∧
P

(t
s′

)=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧
ta
sk

(u
)}

)
L

O
C

K
-C

S
s
⇒
ι
〈B
∪
{r
},
S,
R
−
{r
},
A
,F
,p

c,
φ
,t
s′
,i
,s

s,
id
〉

c
=

lo
ck

(m
)
t
∈
R

IS
R

(t
)
t
6=
r

pc
(t

)=
en

t F
(t

)
P

(t
)>
P

(r
)
A

(m
)=

un
de

f
id

=
fa

lse
L

O
C

K
-A

Q
-I

N
T

s
⇒
ι
〈B
,S
,R
,P
,A

[m
7→
t],
F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

un
lo

ck
(m

)t
=
rp

c(
t)

=
l(
A

(m
)=

r
∨
A

(m
)=

un
de

f)
U

N
L

O
C

K
s
⇒
ι
〈B
,S
,R
,A

[m
7→

un
de

f]
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

un
lo

ck
(m

)t
∈
R
IS
R

(t
)t
6=
rp

c(
t)

=
l

=
en

t F
(t

)P
(t

)>
P

(r
)A

(m
)6=

tid
=

fa
lse

U
N

L
O

C
K

-I
N

T
s
⇒
ι
〈B
,S
,R
,A
,F
,p

c[
t
7→
l′

],
φ
,t
,r
,s

s,
id
〉

c
=

bl
oc

kt
=
rt
as
k(
t)

pc
(t

)=
l(

ss
∨

id
)=

tr
ue

B
L

K
-N

S
s
⇒
ι
〈B
,S
,R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,r
,i
,s

s,
id
〉

c
=

bl
oc

k
t

=
r

ta
sk

(t
)

pc
(t

)=
l

(s
s∨

id
)=

fa
lse
∃t
s
∈
R
.ta

sk
(t
s)
∧
ts
6=
r
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
R
−
{r
}
∧

ta
sk

(u
)}

)
B

L
K

-C
S

s
⇒
ι
〈B
∪
{r
},
S,
R
−
{r
},
P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

ss
,i

d〉

FSTTCS 2020

57:20 Data-Race Detection

c
=

st
ar

t
t

=
r

=
0

(s
s∨

id
)=

fa
lse
∃t
s
∈

(S
∪
R

).t
as
k(
ts

)
∧
P

(t
s)

=
m
a
x

({
P

(u
)|u
∈
S
∪
R
∧

ta
sk

(u
)}

)
S

T
A

R
T

s
⇒
ι
〈B
,∅
,S
∪
R
,P
,A
,F
,p

c[
t
7→
l′

],
φ
,t
s,
i,

fa
lse
,f

al
se
〉

t
∈
B
ta
sk

(r
)(

(s
s∨

id
)=

tr
ue
∨
P

(t
)≤
P

(r
))

U
N

B
L

K
-N

S
s
⇒
∗
〈B
−
{t
},
S,
R
∪
{t
},
P
,A
,F
,p

c,
φ
,r
,i
,s

s,
id
〉

t
∈
B
ta
sk

(r
)(

ss
∨

id
)=

fa
lse
P

(t
)>
P

(r
)

U
N

B
L

K
-C

S
s
⇒
∗
〈B
−
{t
},
S,
R
∪
{t
},
P
,A
,F
,p

c,
φ
,t
,i
,s

s,
id
〉

t
∈
R
ta
sk

(t
)t
6=
r(

ss
∨

id
)=

fa
lse
P

(t
)=
P

(r
)

T
S

H
A

R
E

s
⇒
∗
〈B
,S
,R
,P
,A
,F
,p

c,
φ
,t
,i
,s

s,
id
〉

Fo
r
th
e
co
m
m
an

ds
sk

ip
,x

:=
e,

as
su

me
,d

is
ab

le
in

t,
en

ab
le

in
t,

lo
ck

,a
nd

un
lo

ck
pe

rm
itt

ed
in

an
IS
R

th
re
ad

,t
he

fo
llo

w
in
g
co
ns
tr
ai
nt
s
ne

ed
to

ho
ld

on
s′
.
If

th
e
cu

rr
en
t
IS
R

th
re
ad

is
ex
ec
ut
in
g
th
e
la
st

st
at
em

en
t
th
en

r′
is

th
e
hi
gh

es
t
pr
io
rit

y
IS
R

w
hi
ch

w
as

in
te
rr
up

te
d,

if
th
er
e
ex
ist

s
on

e,
an

d
i′

=
i.

If
no

IS
R
s
w
er
e
in
te
rr
up

te
d
th
en

r′
=
i,
th
e
in
te
rr
up

te
d
ta
sk

th
re
ad

an
d
i′

=
m

ai
n,

a
de

fa
ul
t
va
lu
e.

A
lso

,p
c′

(t
)=

en
t F

(t
).

Synchronization Under Dynamic Constraints
Petra Wolf
Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany
https://www.wolfp.net/
wolfp@informatik.uni-trier.de

Abstract
We introduce a new natural variant of the synchronization problem. Our aim is to model different
constraints on the order in which a potential synchronizing word might traverse through the states.
We discuss how a word can induce a state-order and examine the computational complexity of
different variants of the problem whether an automaton can be synchronized with a word of which
the induced order agrees with a given relation. While most of the problems are PSPACE-complete
we also observe NP-complete variants and variants solvable in polynomial time. One of them is the
careful synchronization problem for partial weakly acyclic automata (which are partial automata
whose states can be ordered such that no transition leads to a smaller state), which is shown to
be solvable in time O(k2n2) where n is the size of the state set and k is the alphabet-size. The
algorithm even computes a synchronizing word as a witness. This is quite surprising as the careful
synchronization problem uses to be a hard problem for most classes of automata. We will also
observe a drop in the complexity if we track the orders of states on several paths simultaneously
instead of tracking the set of active states. Further, we give upper bounds on the length of a
synchronizing word depending on the size of the input relation and show that (despite the partiality)
the bound of the Černý conjecture also holds for partial weakly acyclic automata.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Problems, reductions and completeness

Keywords and phrases Synchronizing automaton, Černý conjecture, Reset sequence, Dynamic
constraints, Computational complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.58

Related Version A full version is available at https://arxiv.org/abs/1910.01935.

Funding Petra Wolf : DFG project FE 560/9-1.

Acknowledgements I thank all colleges who commented on drafts of this work, esp. Henning Fernau.

1 Introduction

We call A = (Q,Σ, δ) a deterministic partial (semi-) automaton (DPA) if Q is a finite set
of states, Σ is a finite alphabet, and δ : Q × Σ → Q is a (potentially partial) transition
function. If δ is defined for every element in Q × Σ, we call A a deterministic complete
(semi-) automaton (DCA). Clearly, every DCA is also a DPA. We do not specify any start
and final states as we are only interested in the transition of states. A DCA A = (Q,Σ, δ) is
synchronizing if there exists a word w ∈ Σ∗ such that w takes every state to the same state.
In that case, we call w a synchronizing word for A. If we are only interested in synchronizing
a subset of states S ⊆ Q we refer to the problem as subset synchronization.

One of the oldest applications of the intensively studied topic of synchronizing automata
is the problem of designing parts orienters, which are robots or machines that get an object
in an (due to a lack of expensive sensors) unknown orientation and transform it into a
defined orientation [2]. In his pioneering work, Natarajan [17] modeled the parts orienters
as deterministic complete automata where a state corresponds to a possible orientation of
a part and a transition of some letter a from state q corresponds to applying the modifier

© Petra Wolf;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3097-3906
https://www.wolfp.net/
mailto:wolfp@informatik.uni-trier.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.58
https://arxiv.org/abs/1910.01935
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Synchronization Under Dynamic Constraints

corresponding to a to a part in orientation q. He proved that the synchronization problem is
solvable in polynomial time for – what is later called – the class of orientable automata [20]
if the cyclic order respected by the automaton is part of the input. Many different classes
of automata have since been studied regarding their synchronization behavior. We refer
to [27, 4, 1] for an overview. The original motivation of designing a parts orienter was
revisited in [26] where Türker and Yenigün modeled the design of an assembly line, which
again brings a part from an unknown orientation into a known orientation, where different
modifiers have different costs. What has not been considered so far is that different modifiers
can have different impact on the parts and as we do not know the current orientation we
might want to restrict the chronology of applied modifiers. For example, if the part is a box
with a fold-out lid, turning it upside-down will cause the lid to open. In order to close the
lid one might need another modifier such as a low bar which brushes the lid and closes it
again. To specify that a parts orienter should deliver the box facing upward with a closed
lid one needs to encode something like: “When the box is in the state facing down, it later
needs to be in the state lid closed”. But this does not stop us from opening the lid again,
so we need to be more precise and encode: “After the last time the box was in the state
facing down, it needs to visit the state lid closed at least once”. We will implement these
conditions in our model of a parts orienter by enhancing a given DCA with a relation R. We
will then consider different ways of how a synchronizing word implies an order on the states
and ask whether there exists a synchronizing word whose implied state-order agrees with
the input-relation R. The case-example above will be covered by the first two introduced
orders. The third considered order relates to the following scenario: Let us again picture
the box with the lid in mind, but this time the box initially contains some water. We would
like to have the box in a specific orientation with the lid open but the water should not be
shed during orientating. We have a modifier that opens the lid and a modifier which rotates
the box. Clearly we do not want the box to face downwards after the lid has been opened.
So, we encode: “As soon as the state lid open has been reached, the state facing downwards
should never be entered again”.

For every type of dynamic constraint (which we will also call order), we investigate the
computational complexity of the problem whether a given automaton admits a synchronizing
word that transitions the states of the automaton in an order that is conform with a given
relation. Thereby, we distinguish between tracking all active states simultaneously and track-
ing each state individually. We observe different complexities for different ordering concepts
and get a good understanding of which ordering constraints yield tractable synchronization
problems and which do not. The complexity of the problem also depends on how detailed we
describe the allowed sequence of states.

2 Related Work

The problem of checking whether a synchronizing word exists for a DCA A = (Q,Σ, δ) can
be solved in time O(|Q|2|Σ|), when no synchronizing word is computed, and in time O(|Q|3)
when a witnessing synchronizing word is demanded [11, 27]. In comparison, if we only ask
for a subset of states S ⊆ Q to be synchronized, the problem becomes PSPACE-complete for
general DCAs [22]. These two problems have been investigated for several smaller classes of
automata involving orders on states. Here, we want to mention the class of oriented automata
whose states can be arranged in a cyclic order which is preserved by all transitions, which
have been studied among others in [17, 11, 2, 21, 27]. If the order is linear instead of cyclic,
we get the class of monotone automata which has been studied in [2, 21]. An automaton is

P. Wolf 58:3

called aperiodic [4] if there is a non-negative integer k such that for any word w and any
state q it holds that δ(q, wk) = δ(q, wk+1). An automaton is called weakly acyclic [20] if
there exists an ordering of the states q1, q2, . . . , qn such that if δ(qi, a) = qj for some letter
a ∈ Σ, then i ≤ j. In other words, all cycles in a WAA are self-loops. In Section 3 we
will consider partial WAAs. The class of WAAs forms a proper subclass of the class of
aperiodic automata. Each synchronizing aperiodic automaton admits a synchronizing word
of length at most n(n− 1)/2 [25], whereas synchronizing WAAs admit synchronizing words
of linear lengths [20]. Asking whether an aperiodic automaton admits a synchronizing word
of length at most k is an NP-complete task [27] as it is for general DCAs [18, 11]. The subset
synchronization problem for WAAs, and hence for aperiodic automata, is NP-complete [20].

Going from complete automata to partial automata normally brings a jump in complexity.
For example, the so called careful synchronization problem for DPAs asks for synchronizing
a partial automata such that the synchronizing word w is defined on all states. The problem
is PSPACE-complete for DPAs with a binary alphabet [15]. It is even PSPACE-complete
for DPAs with a binary alphabet if δ is undefined for only one pair in Q × Σ [16]. The
length of a shortest carefully synchronizing word c(n), for a DPA with |Q| = n, differs
with Ω(3 n

3) ≤ c(n) ≤ O(4 n
3 · n2) [16] significantly from the cubic upper-bound for complete

automata. Also for the smaller class of monotone partial automata with an unbounded
alphabet size, an exponential lower bound on the length of a shortest carefully synchronizing
word is known, while for fixed alphabet sizes of 2 and 3 only a polynomial lower bound is
obtained [21]. The careful synchronization problem is NP-hard for partial monotone automata
over a four-letter alphabet [26, 21]. It is also NP-hard for aperiodic partial automata over a
three-letter alphabet [20]. In contrast we show in Section 3 that the careful synchronization
problem is decidable in polynomial time for partial WAAs.

In [20, 21] several hardness and inapproximability results are obtained for WAAs, which
can be transferred into our setting as depicted in Section 3. We will also observe W[1]-
hardness results from the reductions given in [20]. So far, only little is known (see for
example [13, 28, 5]) about the parameterized complexity of all the different synchronization
variants considered in the literature.

While synchronizing an automaton under a given order, the set of available (or allowed)
transitions per state may depend on the previously visited states on all paths. This dynamic
can also be observed in weighted and timed automata [10]. More static constraints given by
a second automaton have been discussed in [12]. Due to space limitations missing proofs can
be found in the long version of this work [29].

3 Problem Definitions

A deterministic semi-automaton A = (Q,Σ, δ) that might either be partial or complete is
called an automaton. The transition function δ is generalized to words in the usual way. It is
further generalized to sets of states S ⊆ Q as δ(S,w) := {δ(q, w) | q ∈ S}. We sometimes
refer to δ(S,w) as S.w. We call a state q active regarding a word w if q ∈ Q.w. If for some
w ∈ Σ∗, |Q.w| = 1 we call q ∈ Q.w a synchronizing state. We denote by |S| the size of the
set S. With [i..j] we refer to the set {k ∈ N | i ≤ k ≤ j}. For a word w over some alphabet
Σ, we denote by |w| the length of w, by w[i] the ith symbol of w (or the empty word ε if
i = 0) and by w[i..j] the factor of w from symbol i to symbol j. For each state q, we call
the sequence of active states q.w[i] for 0 ≤ i ≤ |w| the path induced by w starting at q. We
expect the reader to be familiar with basic concepts in complexity theory, approximation
theory and parameterized complexity theory [9, 24, 3].

FSTTCS 2020

58:4 Synchronization Under Dynamic Constraints

We are now presenting different orders lw which describe how a word traverses an
automaton. We describe how a word implies each of the three presented orders. The first
two orders relate the last visits of the states to each other, while the third type of order
relates the first visits. We will then combine the order with an automaton A and a relation
R ⊆ Q2 given in the input and ask whether there exists a synchronizing word for A such
that the implied order of the word agrees with the relation R. An order lw agrees with a
relation R ⊆ Q2 if and only if for all pairs (p, q) ∈ R it holds that plw q, i.e., R ⊆ lw.

For any of the below defined orders lw ⊆ Q×Q, we define the problem of synchronization
under order and subset synchronization under order as:

I Definition 1 (Sync-Under-lw). Given a DCA A = (Q,Σ, δ) and a relation R ⊆ Q2.
Does there exist a word w ∈ Σ∗ such that |Q.w| = 1 and R ⊆ lw?

I Definition 2 (Subset-Sync-Under-lw). Given a DCA A = (Q,Σ, δ), S ⊆ Q, and a
relation R ⊆ Q2. Is there a word w ∈ Σ∗ with |S.w| = 1 and R ⊆ lw?

It is reasonable to distinguish whether the order should include the initial configuration of
the automaton or if it should only describe the consequences of the chosen transitions. In the
former case, we refer to the problem as Sync-Under-0 -lw (starting at w[0]), in the latter
case as Sync-Under-1 -lw (starting at w[1]), and if the result holds for both variants, we
simply refer to is as Sync-Under-lw. Examples for positive and negative instances of the
problem synchronization under order for some discussed variants are illustrated in Figure 1.
Let first(q, w, S) be the function returning the minimum of positions at which the state q
appears as an active state over all paths induced by w starting at some state in S. Accordingly,
let last(q, w, S) return the maximum of those positions. Note that first(q, w, S) = 0 for all
states q ∈ S and > 0 for q ∈ Q\S. If q does not appear on a path induced by w on S, then
set first(q, w, S) := |w| + 1 and last(q, w, S) := −1. In the Sync-Under-1 -lw problem
variant, the occurrence of a state at position 0 is ignored (i.e., if q occurs only at position 0
while reading w on S, then last(q, w, S) = −1). In the following definitions let A = (Q,Σ, δ)
be a DCA and let p, q ∈ Q. The following relations lw are defined for every word w ∈ Σ∗.

I Definition 3 (Order l < l on sets). p ∝l<lw@s q :⇔ last(p, w,Q) < last(q, w,Q).

I Definition 4 (Order l ≤ l on sets). p ∝l≤lw@s q :⇔ last(p, w,Q) ≤ last(q, w,Q).

The second order differs from the first in the sense that q does not have to appear finally
without p, instead they can disappear simultaneously. Further, note that in comparison
with order ∝l<lw@s, for a pair (p, q) in order ∝l≤lw@s it is not demanded that q is active after
reading w up to some position i > 0. This will make a difference when we later consider the
orders on isolated paths rather than on the transition of the whole state set. It can easily
be verified that for any word w ∈ Σ∗ and any automaton A = (Q,Σ, δ) the order ∝l<lw@s is
a proper subset of ∝l≤lw@s. For the order ∝l≤lw@s, it makes no difference whether we take the
initial configuration into account since states can disappear simultaneously.

So far, we only introduced orders which consider the set of active states as a whole. It
did not matter which active state belongs to which path and a state on a path τ could stand
in a relation with a state on some other path ρ. But, in most scenarios the fact that we
start with the active state set Q only models the lack of knowledge about the actual current
state. In practice only one state q is active and hence any constraints on the ordering of
transitioned states should apply to the path starting at q. Therefore, we are introducing
variants of order 1 and 2 which are defined on paths rather than on series of state sets.

I Definition 5 (Order l < l on paths). p ∝l<lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) < last(q, w, {r}).

P. Wolf 58:5

I Definition 6 (Order l ≤ l on paths). p ∝l≤lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) ≤ last(q, w, {r}).

The orders ∝l<lw@p and ∝l≤lw@p significantly differ since the synchronization problem (starting
at position 1) for ∝l<lw@p is in NP while it is PSPACE-complete for ∝l≤lw@p.

While the previously defined orders are bringing “positive” constraints to the future
transitions of a word, in the sense that the visit of a state p will demand for a later visit of
the state q (as opening the lid demands closing the lid later in our introductory example),
we will now introduce an order which yields “negative” constraints. The third kind of order
demands for a pair of states (p, q) that the (first) visit of the state q forbids any future visits
of the state p (like do not turn the box after opening the lid). This stands in contrast to the
previous orders where we could made up for a “forbidden” visit of the state p by visiting q
again. The order l < f will only be considered on paths since when we consider the state
set Q, every pair in R would already be violated in position 0.

IDefinition 7 (Order l < f on paths). p ∝l<fw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) < first(q, w, {r}).

Note that ∝l<fw@p is not transitive; e.g., for R = {(1, 2), (2, 3)} we are allowed to go from 3
to 1 as long as we have not transitioned from 1 to 2 yet. For the order l < f , we will also
consider the special case of R being a strict total order (irreflexive, asymmetric, transitive,
and total).

I Definition 8 (Sync-Under-Total-∝l<fw@p). Given a DCA A = (Q,Σ, δ), a strict and
total order R ⊆ Q2. Is there a word w ∈ Σ∗ with |Q.w| = 1 and R ⊆∝l<fw@p?

The orders on path could also be stated as LTL formulas of some kind which need to be
satisfied on every path induced by a synchronizing word w and our hardness results transfer
to the more general problem whether a given DCA can be synchronized by a word such that
every path induced by w satisfies a given LTL formula. The orders on sets could be translated
into LTL formulas which need to be satisfied on the path in the power-set-automaton starting
in the state representing Q. Despite the similarity of the chosen orders and their translated
LTL formulas we need different constructions for the considered orders as the presented
attempts mostly do not transfer to the other problems. Therefore, it is not to be expected
that a general construction for restricted LTL formulas can be obtained. Our aim is to focus
on restricting the order in which states appear and disappear on a path in the automaton
or on a path in the power-set-automaton (remember the introductory example). Hence,
we have chosen the stated definitions in order to investigate the complexity of problems
where the LTL formula is always of the same type, i.e., comparing only the last or first
appearances of states on a path. We leave it to future research to investigate other types
of LTL formulas. In order to express synchronizability of Kripke structures, an extension
to CTL has been introduced in [8]. Note that synchronization of Kripke structures is more
similar to D3-directing words [14] for unary NFAs as in contrast to general DFAs the labels
of the transitions are omitted in Kripke structures.

I Definition 9 (Careful Sync (PSPACE-complete [15])). Given a DPA A = (Q,Σ, δ). Is
there a word w ∈ Σ∗, s.t. |Q.w| = 1 and w is defined on all q ∈ Q?

I Definition 10 (Vertex Cover (NP-complete [24])). Given a graph G = (V,E) and an
integer k ≤ |V |. Is there a vertex cover V ′ ⊆ V of size |V ′| ≤ k? A vertex cover is a set of
states that contains at least one vertex incident to every edge.

FSTTCS 2020

58:6 Synchronization Under Dynamic Constraints

1 2

345

a
b

ab

a

b

a

b

a

b

1 2 3 4 5
b 2 4 2 1 1
a 3 3 3 1 1
a 4 4 4 1 1
b 1 1 1 2 2
b 2 2 2 4 4
a 3 3 3 3 3

X 7

∝l<l
w@s (1, 2) (2, 4)
∝l≤l

w@s (2, 4) (2, 1)
∝l<l

w@p (1, 2) (5, 5)
∝l≤l

w@p (5, 5) (2, 4)
∝l<f

w@p (5, 2) (4, 3)

Figure 1 DCA A (left) with all paths induced by w = baabba (middle) and relations R consisting
of single pairs forming a positive, resp. negative, instance for versions of Sync-Under-lw (right).

Table 1 Overview of the complexity for synchronization (on the left), and subset synchronization
under order (on the right) for relations ∝l<l

w@s, ∝
l<l
w@p, ∝

l≤l
w@s, ∝

l≤l
w@p, and ∝

l<f
w@p (tot. is short for total).

Synchronization Subset Synchronization
Order l < l l ≤ l l < f l<f -tot l </≤ l l < f l<f -tot

Set 0 PSPACE-c PSPACE-c – – PSPACE-c – –
1 PSPACE-c PSPACE-c – – PSPACE-c – –

Path 0 in NP NP-hard PSPACE-c P PSPACE-c PSPACE-c NP-c
1 in NP PSPACE-c PSPACE-c NP-c PSPACE-c PSPACE-c NP-c

4 Main Results

We now investigate the complexity of the introduced problems. An overview on the obtained
results is given in Table 1.

I Theorem 11. For all orders l ∈ {∝l<lw@s,∝
l<l
w@p,∝

l≤l
w@s,∝

l≤l
w@p,∝

l<f
w@p}, the problem Sync-

Under-l is contained in PSPACE. Further, it is FPT with parameter p = |Q|.

Proof sketch. For a DCA A = (Q,Σ, δ) and R ⊆ Q2, we can enrich the powerset-automaton
P(A) of A with the information about the set of active pairs in R in every state. Here, a pair
in R is active during the transition of a word if it constrains which states might be, or need
to be visited in the future. For instance, in the example in Figure 1 concerning the order
∝l<lw@s, the pair (2, 4) is active while reading the prefix ba, since the state 2 has appeared as
an active state while the state 4 has not appeared without 2 as an active state yet. It is not
active after reading baa, since now 4 is active without 2 and hence the pair (2, 4) is satisfied
and does not demand for further state visits. The pair becomes active again after reading
baab since again 2 became active demanding for the state 4 to become active without 2 again.

To store the information of active pairs in R, we copy each state in P(A) 2|R| times
for the orders ∝l<lw@s, and ∝

l≤l
w@s, and |Q|2|R| times for the orders ∝l<lw@p,∝

l≤l
w@p, and ∝

l<f
w@p,

yielding an automaton P(A) of size at most 2|Q||Q|2|R| = 2O(|Q|2). As each state contains
only up to |Q|+ 1 bit-strings of length up to |Q|2 a state of P(A) can be stored in polynomial
space. Hence, reachability tests can be performed in P(A) in polynomial space and in time
2O(|Q|2). J

I Theorem 12. Sync-Under-∝l≤lw@s is PSPACE-complete, even for |R| = 1 and |Σ| = 2.

Proof. We reduce from the PSPACE-complete Careful Sync problem for DPAs [15]. Let
A = (Q,Σ, δ) be a DPA. We construct from A a DCA A′ = (Q′ = Q ∪ {q�, r},Σ, δ′) with
q�, r /∈ Q. For every pair q ∈ Q, σ ∈ Σ for which δ(q, σ) is undefined, we define the transition
δ′(q, σ) = q�. On all other pairs δ′ agrees with δ. Further, for some arbitrary state t ∈ Q and

P. Wolf 58:7

for all γ ∈ Σ we set δ′(q�, γ) = δ′(t, γ) (note that this can be q� itself) and δ′(r, γ) = δ′(t, γ).
We set the relation R to R := {(q�, r)}.

Assume there exists a word w ∈ Σ∗, |w| = n that synchronizes A without using an
undefined transition. Then, δ(q, w[1]) is defined for all states q ∈ Q. The letter w[1] acts on A′
in the following way: (1) δ′(r, w[1]) = δ′(q�, w[1]) = δ(t, w[1]) which is defined by assumption;
(2) δ′(Q,w[1]) ⊆ Q since δ(q, w[1]) is defined for all states q ∈ Q. The combination of (1)-(2)
yields δ′(Q′, w[1]) ⊆ Q. We further constructed δ′ such that δ′(Q′, w[1]) = δ(Q,w[1]). Since
δ(q, w[2..n]) is defined by assumption for every q ∈ δ(Q,w[1]), δ′ agrees with δ on w[2..n] for
every q ∈ δ(Q,w[1]). This means especially that while reading w[2..n] in A′ on the states
in δ′(Q′, w[1]) the state q� is not reached and that δ′(Q′, w) = δ(Q,w). Therefore, w also
synchronizes the automaton A′. The state q� is only active in the start configuration where
no letter of w is read yet and is not active anymore while reading w. The same holds for r,
hence R = {(q�, r)} ⊆ ∝l≤lw@s.

For the other direction, assume there exists a word w ∈ Σ∗, |w| = n that synchronizes A′
with (q�, r) ∈ ∝l≤lw@s. Then, w can be partitioned into w = uv with u, v ∈ Σ∗ where r is not
active while reading the factor v in w. The only position of w in which r is active due to
the definition of δ′ is before any letter of w is read. Hence, we can set u = ε and v = w. As
(q�, r) ∈ ∝l≤lw@s it holds for all i ∈ [1..n] that q� /∈ δ′(Q′, v[1..i]). Hence, δ′(q, v) is defined
for every state q ∈ Q. Since δ′ and δ agree on the definition range of δ it follows that v also
synchronizes the state set Q in A without using an undefined transition. J

I Remark 13. The construction works for both variants (with and without 0) of the problem.
It can further be adapted for the order ∝l<lw@s (both variants) by introducing a copy q̂ of
every state in Q ∪ {r} and setting δ′(q̂, σ) = q for every σ ∈ Σ, q ∈ Q ∪ {r}. For all other
transitions, we follow the above construction. We keep R := {(q�, r)}. Since r is left after
w[2] for any word w ∈ Σ∗ with |w| ≥ 2 in order to satisfy R the state q� needs to be left
with w[1] such that afterwards r is active without q�. Note that q� has not been copied.

I Corollary 14. Sync-Under-∝l<lw@s is PSPACE-complete even for |R| = 1 and |Σ| = 2.

I Remark 15. The reduction presented in the proof of Theorem 12 can also be applied to show
the PSPACE-completeness of Sync-Under-1 -∝l≤lw@p. Since the state r cannot be reached
from any other state, the state q� needs to be left with the first letter of any synchronizing
word and must not become active again on any path. The rest of the argument follows the
proof of Theorem 12. Note that the construction only works for Sync-Under-1 -∝l≤lw@p. If we
consider Sync-Under-0 -∝l≤lw@p the problem might become easier. But it is at least NP-hard.

I Theorem 16. The problem Sync-Under-0 -∝l≤lw@p is NP-hard.

Proof. We give a reduction from Vertex Cover. We refer to Figure 2 for a schematic
illustration. Let G(V,E) be a graph and let k ∈ N. We construct from G a DCA A = (Q,Σ, δ)
in the following way. We set Σ = V ∪{p} for some p /∈ V . We start with Q = {f, r, s} where s
is a sink state, meaning δ(s, σ) = s for all σ ∈ Σ, f will be the “false way” and r will be the
“right way”. We set δ(r, p) = δ(f, p) = s and δ(r, v) = r, δ(f, v) = f for all other v ∈ Σ. For
every edge eij ∈ E connecting some vertices vi, vj ∈ V , we create two states eij and êij and
set δ(eij , vi) = δ(eij , vj) = êij , δ(eij , p) = f . For all other letters, we stay in eij . For the
state êij , we stay in êij for all letters except p. For p, we set δ(êij , p) = s. We further create
for 1 ≤ i ≤ k + 2 the states qi with the transitions δ(qi, v) = qi+1 for i ≤ k + 1 and v ∈ V ,
δ(qi, p) = qi for i ≤ k, and δ(qk+1, p) = r, δ(qk+2, p) = s, δ(qk+2, v) = qk+2 for v ∈ V . We
set R := (q1, r) ∪ {(eij , êij) | eij ∈ E}.

FSTTCS 2020

58:8 Synchronization Under Dynamic Constraints

eij êij

...
...f s qk+2 qk+1 qk · · · q1

r
vi, vj

p p

p

pp

p

p

p

Figure 2 Schematic illustration of the reduction from Vertex cover (see Theorem 16). For
each state, the transition without a label represents all letters which are not explicitly listed as an
outgoing transition from that state.

If there exists a vertex cover of size k′ < k for G, then there also exists a vertex cover
of size k for G. Therefore, assume V ′ is a vertex cover for G of size k. Then, the word
wpp where w is any non-repeating listing of the vertices in V ′ is a synchronizing word for A
with R ⊆∝l≤lwpp@p. Since q1 cannot be reached from any other state, the pair (q1, r) ∈ R is
trivially satisfied for each path starting in any state other than q1. Hence, we only have
to track the appearances of q1 and r on the path starting in q1. Since w lists the states in
the vertex cover V ′ it holds that |w| = k and hence q1.w = qk+1. Further, q1.wp = r and
q1.wpp = s. Hence, the pair (q1, r) is satisfied on the path starting in q1 as well as on all
paths. It remains to show that wpp is indeed a synchronizing word and that all pairs in R
of the form (eij , êij) are satisfied. For every state eij representing an edge eij , the state êij
is reached if we read a letter corresponding to a vertex incident to it. Since V ′ is a vertex
cover, the word w contains for each edge eij at least one vertex incident to it. Hence, for
each edge eij .w = êij and eij .wpp = s. Since each state eij is not reachable from any other
state it follows that all pairs (eij , êij) are satisfied by wpp on all paths. It is easy to see that
for all other states q ∈ Q it holds that q.wpp = s.

For the other direction, assume there exists a synchronizing word w for A with R ⊆∝l≤lw@p.
By the construction of A the word w must contain some letters p. Partition w into w = upv

where p does not appear in u. Since R ⊆∝l≤lw@p the pair (q1, r) in R enforces |u| ≤ k since
otherwise the only path on which q1 appears (namely the one starting in q1) will not contain
the state r as for any longer prefix u it holds that q1.u = qk+2 and r is not reachable
from qk+2. The other pairs of the form (eij , êij) ∈ R enforces that u encodes a vertex cover
for G. Assume this is not the case, then there is some state eij for which eij .u = eij . But
then, eij .up = f and from f the state êij is not reachable, hence the pair (eij , êij) is not
satisfied on the path starting in eij . Therefore, u encodes a vertex cover of size at most k. J

If we consider ∝l<lw@p, the two variants of the order (with and without position i = 0)
do not differ since for a pair (p, q), regardless of whether p is reached, the state q must be
reached on every path. Hence, whenever we leave q we must be able to return to it, so it does
not matter if we consider starting in q or not. In comparison with Sync-Under-1 -∝l≤lw@p,
the problem Sync-Under-∝l<lw@p is solvable in polynomial time using non-determinism.

I Theorem 17. The problem Sync-Under-∝l<lw@p is in NP.

Proof. Recall that in the problem Sync-Under-∝l<lw@p, for every pair of states (p, q) ∈ R
and every state r ∈ Q, it is demanded that q appears somewhere on a path induced by the
sought synchronizing word w, starting in r. Hence, a precondition for the existence of w is
that for every pair (pi, qi) ∈ R the states qi must be reachable from any state in Q. More

P. Wolf 58:9

precisely, under the order ∝l<lw@p only the last appearance of each state on a path is taken
into account. Hence, a prohibited visit of a state can later be compensated by revisiting all
related states in the correct order. Thus, it is sufficient to first synchronize all pairs of states
and then transition the remaining state through all related states in the demanded order. J

I Remark 18. The NP-hardness proof for Sync-Under-0 -∝l≤lw@p in Theorem 16 and the
NP-membership proof for Sync-Under-∝l<lw@p in Theorem 17 do not work for the respectively
other problem since concerning ∝l<lw@p the larger states need to be reached on every path and
not only on a path containing the corresponding smaller state as it is the case concerning ∝l≤lw@p.

I Theorem 19. The problem Sync-Under-0 -∝l<fw@p is PSPACE-complete.

Proof sketch. We reduce from Careful Sync. As in the proof of Theorem 12 we take every
undefined transition δ(q, σ) to the new state q�. We further enrich the alphabet by a letter c
and use c to take q� into Q. We use the relation R and extra states r, s to enforce that c is
the first letter of any synchronizing word, and that afterwards q� is not reached again. J

I Remark 20. In the presented way, the reduction relies on taking the initial configuration at
position i = 0 into account but we can adapt the construction to prove PSPACE-completeness
of Sync-Under-1 -∝l<fw@p by copying every state in Q and the state r. Denote a copy of a
state q with q′. Then, we set δ′(q′, σ) = q for any copied state including r′. Note that the
copied states are not reachable from any state. Now, after the first transition w[1] (which
can be arbitrary), we have a similar situation as previously considered for w[0]. The state r
is active and forces the next letter to be the letter c; all states in Q are active; reading the
letter c will cause all states qσ to be left and never be reached again.
In the above reduction from Careful Sync the size of R depends on |Q|. Hence, the
question whether Sync-Under-∝l<fw@p is PSPACE-hard for |R| = 1 is an interesting topic for
further research. We will now see that when R is a strict and total order on Q, the problem
of synchronizing under ∝l<fw@p (a.k.a. Sync-Under-Total-∝l<fw@p) becomes tractable.

I Theorem 21. Let A = (Q,Σ, δ), R be an instance of Sync-Under-Total-∝l<fw@p. A
shortest synchronizing word w for A with R ⊆∝l<fw@p has length |w| ≤ |Q|(|Q|−1)

2 + 1.

Note that this length bound is smaller than the bound of the Černý conjecture [6, 7] for
|Q| > 3. The same bound can be obtained for Subset-Sync-Under-Total-∝l<fw@p. We
will now prove that the problem Sync-Under-Total-0 -∝l<fw@p is equivalent – concerning
polynomial time many-one-reductions (depicted by ≡p) – to the problem of carefully syn-
chronizing a partial weakly acyclic automaton (PWAA) (a PWAA is a WAA where δ might
be only partially defined). The obtained length bound also holds for PWAAs, which is only
a quadratic increase w.r.t. the linear length bound in the complete case [20]. This is quite
surprising as in general shortest carefully synchronizing words have an exponential lower
bound [16]. Further, we show that careful synchronization for PWAAs is in P while the
problem is PSPACE-complete for general DPAs even if only one transition is undefined [16].

I Theorem 22. Sync-Under-Total-0 -∝l<fw@p ≡p Careful Sync of PWAAs.

Proof. We prove this statement by reducing the two problems to each other. Let A =
(Q,Σ, δ), R ⊆ Q2 be an instance of Sync-Under-Total-0 -∝l<fw@p. Since R is a strict total
order on Q, we can order the states according to R. We construct from A the PWAA
A′ = (Q,Σ, δ′) by removing all transitions in δ which are leading backwards in the order.
Clearly, A′ is carefully synchronizable if and only if A is synchronizable with respect to R.

FSTTCS 2020

58:10 Synchronization Under Dynamic Constraints

For the other reduction, assume A = (Q,Σ, δ) is a PWAA. Then, we can order the
states in Q such that no transition leads to a smaller state. We are constructing from A

the DCA A′ = (Q ∪ {q<},Σ, δ′) and insert q< as the smallest state in the state ordering.
Then, we define in δ′ all transitions (q, σ) for q ∈ Q, σ ∈ Σ which are undefined in δ

as δ′(q, σ) = q<. We take the state q< with every symbol to the maximal state in the
order. Note that the maximal state needs to be the synchronizing state if one exists. We
set R = {(p, q) | p < q in the state ordering of Q in A} ∪ {(q<, q) | q ∈ Q}. Every undefined
transition (p, σ) in A is not allowed in A′ at any time, since otherwise the pair (q<, p) ∈ R
would be violated. The state q< itself can reach the synchronizing state with any transition.
Hence, A′ is synchronizable with respect to R if and only if A is carefully synchronizable. J

I Theorem 23. Let A = (Q,Σ, δ), R ⊆ Q2 with n := |Q|. Let Q1 ⊆ Q be such that R
restricted to Q1×Q1 is a strict and total order. Let p = |Q|− |Q1|. For Sync-Under-∝l<fw@p:
If A is synchronizable by a shortest word w with R ⊆∝l<fw@p, then: |w| ≤ (n(n−1)

2 + 1) · 2p.

We now present an O(|Σ|2|Q|2) algorithm for Sync-Under-Total-0 -∝l<fw@p. The idea
is the following: We start on all states as the set of active states and pick a letter, which is
defined on all active states and maps at least one active state to a larger state in the order R.
We collect the sequence u of applied letters and after each step, we apply the whole sequence
u on the set of active states. This is possible as we already know that u is defined on Q. We
thereby ensure that a state which has become inactive after some iteration never becomes
active again after an iteration step and hence Σdef grows in each step and never shrinks.
While a greedy algorithm which does not store u runs in O(|Σ||Q|3), with this trick we get
a running time of O(|Σ|2|Q|2). As in practice |Q| � |Σ| this is a remarkable improvement.
Note that we can store u compactly by only keeping the map induced by the current u and
storing the sequence of letters σ from which we can restore the value of u in each iteration.

I Theorem 24. Sync-Under-Total-0 -∝l<fw@p is solvable in quadratic time.

Proof. Let A = (Q,Σ, δ) be a DCA, and let R ⊆ Q2 be a strict and total order on Q. Figure 3
describes an algorithm that decides in time O(|Σ|2|Q|2) whether A is synchronizable with
respect to R under the order ∝l<fw@p (including position i = 0) on paths. Despite the simplicity
of the algorithm its correctness is not trivial and is proven in the following lemmas. J

I Lemma 25. The algorithm in Figure 3 terminates on every input A = (Q,Σ, δ) with
m := |Σ|, n := Q, strict and total order R ⊆ |Q|2 in time O(m2n2).

Proof. Step 1 can be performed in time O(n logn) using the Quicksort-algorithm. Step 2
to Step 5 take time O(mn) each. The procedure explore takes time O(mn2). The number
of iterations in Step 6 is bounded by |Σpart| as Σdef is applied exhaustively on Qact and by
invariant (2) of Lemma 26 we have Q′act ⊆ Qact, This yields a total run-time of O(m2n2). J

I Lemma 26. If the algorithm in Figure 3 returns true on the input A = (Q,Σ, δ), strict
and total order R ⊆ |Q|2, then A, R is a yes instance of Sync-Under-Total-0 -∝l<fw@p.

Proof. For the procedure explore, the following invariant holds: Let uold be the word u
before the execution of explore and let unew be the one after the execution of explore.
Then, it holds for all executions of explore that (1) Q.unew is defined, (2) Q.unew ⊆ Q.uold,
and (3) Q.unewunew = Q.unew. We prove the invariant by induction. First, note that the
word u computed by explore in Step 5 is defined on all states in Q since it only consists of
letters which are defined on all states. Since we go through the states in order during the

P. Wolf 58:11

Step 1: Order all states in Q according to the order R. Since R is strict and total the
states can be ordered in an array {q1, q2, . . . , qn}.
Step 2: Delete in the automaton A all transitions which are leading backwards in the
state-ordering. If this produces a state with no outgoing arc, abort; return false.
Step 3: Let qn be the maximal state according to the order R. Delete all transitions in A
which are labeled with letters σ ∈ Σ for which qn.σ is undefined. If this produces a state
with no outgoing transition, abort and return false.
Step 4: Partition the alphabet Σ into Σdef, consisting of all letters σ ∈ Σ for which q.σ is
defined for all states q ∈ Q, and Σpar := Σ\Σdef. If Σdef = ∅ abort; return false.
Step 5: Compute explore(Q,Q,Σdef, ε) which returns Qact and u ∈ Σ∗def. The returned
set of active states will equate Qtrap = {q ∈ Q | q.Σdef = q}.
Step 6: Set Σdef := Σdef ∪ {σ ∈ Σpar | q.σ is defined for all q ∈ Qact}.
Compute explore(Q,Qact,Σdef, u) which returns Q′act and u′ ∈ Σ∗def.
Set Qact := Q′act, u := u′, Σpar := Σ\Σdef.
Repeat this step until Qact does not change anymore (≡ to Σdef does not change anymore).
Then, if Qact = {qn} return true, otherwise return false.
Procedure explore: Input: Ordered state set Q, set of active states Qact, alphabet Σexp
to be explored, word u with Q.u = Qact.
Initialize a new word u′ := u.
Go through the active states in order. For the current state q, test if any σ ∈ Σdef leads
to a larger state, if so, perform the transition σu on all active states and update the set
of active states Qact. Concatenate u′ with σu. Continue with the next larger active state
(note that this can be q.σu). If qn is reached, return u′, and the current set of active states
Qact.

Figure 3 Poly-time algorithm for Sync-Under-Total-0 -∝l<f
w@p on A = (Q,Σ, δ), R ⊆ Q2.

execution of explore and we only proceed with the next larger state if (1) we where able to
leave the current one towards a larger state or if (2) the current state cannot be left with
any of the letters in Σdef, it holds that Q.uu = Q.u. Also, trivially Q.u ⊆ Q.

Next, consider some later execution of explore. The new word computed by explore
is of the form unew := uoldσ1uoldσ2uold . . . σiuold for some 0 ≤ i ≤ |Q|. The induction
hypothesis tells us that (1) Q.uold is defined. Since Q.uoldσ1 is defined (since σ1 ∈ Σdef) and
Q.uoldσ1 ⊆ Q it holds that Q.uoldσ1uold is defined. Further, since uold brings all states to the
set Q.uold it also brings a subset of Q to a subset of Q.uold. Using the induction hypothesis
(3) we get by an induction on i that Q.unew is defined and Q.unew ⊆ Q.uold. Since in the
execution of explore we only proceed with the next larger state if we exhaustively checked
all possible transitions for the current state and since Q.uolduold = Q.uold it follows that
Q.unewunew = Q.unew.

If the algorithm in the proof of Theorem 24 terminates and returns yes, it also returns a
synchronizing word u. By the invariant proven above, we know that Q.u is defined. This
means that u never causes a transition of a larger state to a smaller state and hence ∝l<fu@p
agrees with R. During the execution of the algorithm we track the set of active states Qact
(starting with Q) and only return true if Qact contains only the in R largest state qn. Since
R is a total order, every q ∈ Q is smaller than qn and hence qn cannot be left. Therefore, qn
needs to be the single synchronizing state of A and u is a synchronizing word for A. J

I Lemma 27. If the algorithm in Figure 3 returns false on input A = (Q,Σ, δ), strict and
total order R ⊆ |Q|2, then A is not synchronizable with respect to R under the order ∝l<fw@p.

FSTTCS 2020

58:12 Synchronization Under Dynamic Constraints

Proof. The algorithm returns false in the following cases.
(1) All outgoing transitions of some state q are deleted in Step 2. In that case, every

transition of q leads to a smaller state. As this would violate the order R, we cannot perform
any of those transitions. Hence, q cannot be left. (The case that q = qn is treated in (2).)

(2) Since qn is the largest state, it cannot be left. Hence, qn will be active the whole time.
Therefore, any transition which is not defined for qn cannot be taken at all since qn is active
during the whole synchronizing process. Hence, we can delete these transitions globally. If
this creates a state which cannot be left anymore, this state cannot be synchronized.

(3) The execution of explore returns two identical sets of active states Qact in a row.
Let Σdef be the explored alphabet of the last execution of explore. Then, Σdef contains
all letters σ from Σ for which q.σ is defined on all states q ∈ Qact and none of them leads
some state in Qact to a larger state. Since the relation R forbids cycles, for all σ ∈ Σdef and
all q ∈ Qact q.σ = q and hence this set cannot be left when all states of the set are active
simultaneously. Since all states are active at the beginning of the algorithm, also all states in
Qact are active and since this set cannot be left with any transition which does not cause an
undefined transition for all states in the set, the state set cannot be synchronized at all. J

I Corollary 28. The careful synchronization problem for PWAA is in P.

If we allow one unrestricted transition first (Sync-Under-Total-1 -∝l<fw@p) the problem is
related to the subset synchronization problem of complete WAAs which is NP-complete [20].
Together with the quadratic length bound of a synchronizing word of Sync-Under-Total-
1 -∝l<fw@p (which implies membership of Sync-Under-Total-1 -∝l<fw@p in NP), we get:

I Theorem 29. The problem Sync-Under-Total-1 -∝l<fw@p is NP-complete.

Proof sketch. We reduce from the NP-complete problem: Given a complete weakly acyclic
automaton A = (Q,Σ, δ) and a subset S ⊆ Q, does there exist word w ∈ Σ∗ such that
|S.w| = 1? We construct from A an automaton A′ = (Q′,Σ ∪ {c}, δ′) with c /∈ Σ in the
following way. We start with Q′ = Q. W.l.o.g., assume |S| ≥ 2. For each state q ∈ S, we
add a copy q̂ to Q′. Further, we add the states q< and q>. Let q1, q2, . . . , qn be an ordering
of the states in Q such that δ follows this ordering. The transition function δ′ agrees with δ
on all states in Q and letters in Σ. For a copied state q̂, we set δ′(q̂, σ) = q̂ for all σ ∈ Σ and
δ′(q̂, c) = q. For every state q ∈ Q, we set δ′(q, c) = q<. Let qs be some state in S. Then for
all σ ∈ Σ we set δ′(q<, σ) = δ(qs, σ), δ′(q<, c) = qs and δ′(q>, σ) = q>, δ′(q>, c) = qs. Then,
we set R = {(qi, qj) | i < j} for all states in Q. Further, for every copied state q̂k we extend
R by the sets: {(q̂k, qk)}, {(qi, q̂k), (q̂k, qj) | i < k, k < j}, and {(q̂i, q̂k), (q̂k, q̂j) | i < k < j}
for all copied states q̂i, q̂j . For the states q<, q>, we add {(q<, q) | q 6= q< ∈ Q′} and
{(q, q>) | q 6= q> ∈ Q′} to R. J

I Theorem 30. Subset-Sync-Under-Total-∝l<fw@p is NP-complete.

I Theorem 31. The following subset synchronization problems are PSPACE-complete for
both -0 - and -1 -: Subset-Sync-Under-∝l<lw@s, -∝

l<l
w@p, -∝

l≤l
w@s, -∝

l≤l
w@p, -∝

l<f
w@p.

Several other results can be transferred from [20] to the corresponding version of the
Sync-Under-Total-0 -∝l<fw@p problem, such as inapproximability of the problems of finding
a shortest synchronizing word; a synchronizing set of maximal size (here also W[1]-hardness
can be observed); or determining the rank of a given set. Further, by the observation (in [20])
that, in the construction given in [18, 11] the automata are WAAs, we immediately get
NP-hardness for finding a shortest synchronizing word for all of our orders (for order l < l

and l ≤ l set R = ∅).

P. Wolf 58:13

5 Conclusion

We discussed ideas how constraints for the design of assembly lines caused by the physical
deformation of a part can be described in terms of synchronization problems. For that, we
considered several ways how a word can imply an order of states in Q. We considered the
complexity of synchronizing an automaton under different variants of orders and observed that
the complexity of considering an order on the set of active states may differ from considering
the order on each single path. Although we were able to get a good understanding of
the complexity of synchronization under the considered orders, some questions remained
open: We only know that Sync-Under-∝l<lw@p is contained in NP but it is open whether
the problem is NP-complete or if it can be solved in polynomial time. Conversely, for
Sync-Under-0 -∝l≤lw@p the problem is NP-hard but its precise complexity is unknown. It
would be quite surprising to observe membership in NP here since it would separate the
complexity of this problem from the closely related problem Sync-Under-1 -∝l≤lw@p. Further,
it remains open whether for the other orders a drop in the complexity can be observed, when
R is strict and total, as it is the case for ∝l<fw@p.

References

1 Journal of Automata, Languages and Combinatorics – Essays on the Černý Conjecture.
https://www.jalc.de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

2 Dimitry S. Ananichev and Mikhail V. Volkov. Synchronizing monotonic automata. Theor.
Comput. Sci., 327(3):225–239, 2004.

3 Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1999.

4 Marie-Pierre Béal and Dominique Perrin. Synchronised Automata, page 213–240. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2016.

5 Jens Bruchertseifer and Henning Fernau. Synchronizing series-parallel automata with loops.
In Rudolf Freund, Markus Holzer, and José M. Sempere, editors, Eleventh Workshop on
Non-Classical Models of Automata and Applications, NCMA 2019, Valencia, Spain, July 2-3,
2019., pages 63–78. Österreichische Computer Gesellschaft, 2019.

6 Ján Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-
fyzikalny Časopis Slovensk, 14(3):208–215, 1964.

7 Ján Cerný. A note on homogeneous experiments with finite automata. Journal of Automata,
Languages and Combinatorics, 24(2-4):123–132, 2019.

8 Krishnendu Chatterjee and Laurent Doyen. Computation tree logic for synchronization
properties. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 98:1–98:14, 2016.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey, and Mahsa Shirmoham-
madi. Synchronizing words for weighted and timed automata. In Venkatesh Raman and
S. P. Suresh, editors, 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2014.

11 David Eppstein. Reset sequences for monotonic automata. SIAM J. Comput., 19(3):500–510,
1990.

12 Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V. Volkov, and
Petra Wolf. Computational complexity of synchronization under regular constraints. In Peter

FSTTCS 2020

https://www.jalc.de/issues/2019/issue_24_2-4/content.html

58:14 Synchronization Under Dynamic Constraints

Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany, volume 138 of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

13 Henning Fernau, Pinar Heggernes, and Yngve Villanger. A multi-parameter analysis of hard
problems on deterministic finite automata. J. Comput. Syst. Sci., 81(4):747–765, 2015.

14 Balázs Imreh and Magnus Steinby. Directable nondeterministic automata. Acta Cybern.,
14(1):105–115, 1999.

15 Pavel Martyugin. Computational complexity of certain problems related to carefully synchron-
izing words for partial automata and directing words for nondeterministic automata. Theory
Comput. Syst., 54(2):293–304, 2014.

16 Pavel V. Martyugin. Synchronization of automata with one undefined or ambiguous transition.
In Nelma Moreira and Rogério Reis, editors, Implementation and Application of Automata -
17th International Conference, CIAA 2012, Porto, Portugal, July 17-20, 2012. Proceedings,
volume 7381 of Lecture Notes in Computer Science, pages 278–288. Springer, 2012.

17 Balas K. Natarajan. An algorithmic approach to the automated design of parts orienters.
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 132–142. IEEE Computer Society, 1986.

18 I. K. Rystsov. On minimizing the length of synchronizing words for finite automata. In Theory
of Designing of Computing Systems, pages 75–82. Institute of Cybernetics of Ukrainian Acad.
Sci., 1980. (in Russian).

19 Igor K. Rystsov. Polynomial complete problems in automata theory. Inf. Process. Lett.,
16(3):147–151, 1983.

20 Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. Theor.
Comput. Sci., 787:77–88, 2019.

21 Andrew Ryzhikov and Anton Shemyakov. Subset synchronization in monotonic automata.
Fundam. Inform., 162(2-3):205–221, 2018.

22 Sven Sandberg. Homing and synchronizing sequences. In Manfred Broy, Bengt Jonsson,
Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing
of Reactive Systems, Advanced Lectures [The volume is the outcome of a research seminar that
was held in Schloss Dagstuhl in January 2004], volume 3472 of Lecture Notes in Computer
Science, pages 5–33. Springer, 2004.

23 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970.

24 Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
25 Avraham Trakhtman. The Černý conjecture for aperiodic automata. Discrete Mathematics &

Theoretical Computer Science, 9(2), 2007.
26 Uraz Cengiz Türker and Hüsnü Yenigün. Complexities of some problems related to synchron-

izing, non-synchronizing and monotonic automata. Int. J. Found. Comput. Sci., 26(1):99–122,
2015.

27 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008. Revised
Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

28 Vojtech Vorel and Adam Roman. Parameterized complexity of synchronization and road
coloring. Discrete Mathematics & Theoretical Computer Science, 17(1):283–306, 2015.

29 Petra Wolf. Synchronization under dynamic constraints. CoRR, abs/1910.01935, 2019.
arXiv:1910.01935.

http://arxiv.org/abs/1910.01935

	p000-Frontmatter
	Preface
	Program Committee
	List of Reviewers: Track-A
	List of Reviewers: Track-B

	p001-Arora
	p002-Atserias
	p003-Lee
	p004-Ouaknine
	Summary

	p005-Seshia
	Summary

	p006-Shpilka
	p007-Adler
	Introduction
	Preliminaries
	The Model
	Main Results
	Proofs of Section 3
	Proofs of Section 4

	p008-Agarwal
	Introduction
	Our Results
	Related Work

	Definitions and Preliminaries
	Efficient Dynamic Programming
	Fast Dynamic Programming
	Efficient Implementation

	k-Median: Single-Swap Local Search
	Efficient Implementation of Local Search
	Conclusion

	p009-Arrighi
	Introduction
	Preliminaries
	Completion of an Ordering (CO)
	CO, parameterized by pathwidth
	Further Algorithmic Consequences

	One-Sided Crossing Minimization (OSCM)
	The Kemeny Rank Aggregation Problem
	Reduction from KRA to PCO
	Pathwidth in Kemeny Rank Aggregation

	Grouping by Swapping (GbS)
	Discussing NP-completeness
	Reduction from GbS to OSCM
	Pathwidth in Grouping by Swapping

	Conclusion

	p010-Banerjee
	Introduction
	Our Results and Methods

	Preliminaries
	Global Min-Cut
	Upper Bound
	Lower Bound

	Min k-Cut
	Upper Bound
	Case of t = f+l
	Case of t = 2f+l+1-k

	Lower Bound

	p011-Bernstein
	Introduction
	Preliminaries
	Lower Bound on Expected Recourse in General Graphs
	The Graph
	Relating G_p and G^{p* m}
	Proving G_p has a Near-Perfect Matching
	Near Perfect Matching in Active Subgraph
	Lower Bound On Lengths of Augmenting Paths

	Conclusion and Open Problems

	p012-Beyersdorff
	Introduction
	Preliminaries
	The formulas
	The Merge Resolution proof system [5]

	Lifting branching program lower bounds
	A lower bound for Regular Merge Resolution
	A lower bound for Merge Resolution
	Conclusions and Future Work

	p013-Bhattacharya
	Introduction
	Clustering under stability/separation
	Parameterised reduction from outlier k-means to k-means
	Streaming algorithms for constrained versions of k-means
	Streaming algorithms for binary-k-means and low rank approximation
	Conclusion and open problems

	p014-Bille
	p015-Bilo
	Introduction
	Model, Definition, Notation
	Related Work
	Our Contribution

	Structure and Properties of Equilibrium Trees
	Existence of Equilibrium Trees
	Balanced Trees

	Quality of Equilibrium Trees
	Price of Anarchy
	Price of Stability
	Fairness measure

	Extensions for Future Work: The Path Version and Coalitions
	Conclusion

	p016-Block
	Introduction
	Overview of Techniques
	Related work
	Organization

	Preliminaries
	Insdel LDCs/LCCs from Hamming LDCs/LCCs
	Encoding and Decoding Algorithms

	Block Decomposition of Corrupted Codewords
	Outer Decoder
	Noisy Binary Search
	Block Decode Algorithm
	Buff-Find

	Parameter Setting and Proof of Theorem 6

	p017-Bonnet
	Introduction
	Preliminaries
	Max Interval Permutation Avoidance, unit disks and rectangles
	Homothets of a centrally symmetric convex set
	Translates of a convex set

	p018-Choudhary
	Introduction
	Preliminaries
	Feedback Vertex Sets on Linear Hypergraphs
	Conclusion and Open Problems

	p019-Cook
	Introduction
	Motivation
	Our Results
	Related Work

	Proof Ideas
	Monotone Depth-3 Circuit Lower Bounds
	General Depth-3 Circuit Lower Bounds
	Small Sized Circuits
	Terminology

	Monotone Depth-3 Circuit Size Lower Bounds
	Removing Small Clauses
	Covering Many Large Sets with Few Elements
	Monotone DNF Size
	Monotone Circuit Size Lower Bounds

	General Depth-3 Circuits
	Circuit Upper Bounds
	Closing Statements & Open Problems

	p020-Dvorak
	Introduction
	Semi-adaptive Multiphase Problem

	Preliminaries
	Rectangle Measures
	Information Theory

	The Proof of Theorem 5
	Applications

	p021-Gajulapalli
	Introduction
	Our model and its justification
	Type A and B settings

	Related work
	Overview of structural and algorithmic ideas

	Preliminaries
	The stable matching problem for school choice
	The Stable Matching Lattice

	Our Results for the Four Settings
	Type A and B Settings

	Mechanisms for Type A Settings
	Setting A1
	Setting A2
	Enumeration of Stable Extensions

	Mechanisms for Type B Settings
	Setting B1
	Setting B2

	Incentive Compatibility
	NP-Hardness Results

	p022-Ghosh
	Introduction
	Setup and Terminology
	Our Results and Techniques
	Related Work

	Preliminaries
	Computing Frequency-based Functions in Turnstile Streams
	Extension of Misra-Gries Algorithm for Turnstile Streams
	Schemes for Frequency-based Functions
	Perfectly Complete Scheme for O(n)-Length Streams
	Handling longer streams at the cost of imperfect completeness

	Special Instances and Applications

	Conclusions and Open Problems

	p023-Gupta
	Introduction
	Our Techniques
	Related Work
	Notation

	The Greedy Algorithm on Expander Graphs
	Setting Up The Proof
	One-Step Change in Potential
	The Coupling Argument
	Analyzing One-Step Delta Phi of the (1+beta)-process
	Putting It Together

	p024-Gupta
	Introduction
	Preliminaries
	W[1]-hardness of ASM
	FPT Algorithm for LS-ASM
	In Conclusion

	p025-Kavitha
	Introduction
	Background and Related Results
	Techniques

	Popular Matchings and Witnesses
	A fast exponential time algorithm for min-cost popular matching
	Semi-popular matchings

	p026-Khalil
	Introduction
	Preliminaries
	Lower Bound for Few Round Algorithms in Bipartite Graphs
	Structure Graphs
	Lower Bound for Two Rounds
	Lower Bound for Three Rounds

	(1-epsilon)-approximation in Bipartite Graphs Requires Omega(1/epsilon) Rounds
	Improving on 1/2 in General Graphs Requires Omega(n) Queries
	Conclusion

	p027-Khanna
	Introduction
	Our models and results
	Notation
	Related Work
	SDP formulation
	Proof Overview

	Analysis of DkSExp(n, k, d, delta, d', lambda)
	Edges between S and V S
	Edges in V S
	Putting things together

	p028-Kothapalli
	Introduction
	Main Results
	Technical Preliminaries

	The Sample-and-Gather Simulation
	Fast 2-Ruling Set Algorithms
	Simulating Sparsify in low-memory MPC
	Simulating Sparsified Graph Shattering in low-memory MPC
	Finishing off the 2-ruling set computation

	Fast beta-ruling Set Algorithms
	beta-ruling sets in O(polyloglog(n)) rounds

	p029-Mande
	Introduction
	Organization of this paper

	Notation and preliminaries
	Restriction to an affine subspace
	Folding properties of Boolean functions

	Our contributions
	Low bucket complexity implies shallow PDTs
	A random set of parities achieves low bucket complexity
	Good folding yields better PDTs
	Boolean functions have non-trivial folding properties

	Proof of Theorem 14
	Warm up: sampling O~(k^{3/4}) parities.
	Sampling O(k^{1/2}) parities

	Proof of Theorem 19
	Ruling out sufficiency of Proposition 5

	p030-Morawietz
	Introduction
	Basic Definitions and Colored-Cut-Equivalence
	Classic Complexity of Colored Cut Games
	Unbounded Number of Alternations
	Bounded Number of Alternations

	Restricted Instances and Parameterizations
	Restricted Instances
	Parameterization by the Full Budget and the Number of Colors
	Polynomial Kernels by Combining Budget with Structural Graph Parameters

	Conclusion

	p031-Moshkovitz
	Introduction
	Our Contribution
	Application to Randomness Efficient Noise
	Background and Related Work
	Overview of Techniques
	Paper Organization

	Preliminaries and Notation
	Construction
	Applications
	Eigenvalues
	Randomness Efficient Noise
	Small Set Expansion

	Lower Bounds and Discussion
	Omitted Proofs

	p032-Pai
	Introduction
	Our Contribution
	The BCC(b) Model
	Related Work

	Technical Preliminaries
	Lower Bounds in the KT-0 model
	A Lower Bound for Constant Error Probability

	Lower Bounds in the KT-1 Model
	A Special Case of the Partition Problem
	Reductions from Partition and TwoPartition
	Reductions from 2-party Connectivity and MultiCycle
	Information-theoretic Lower Bound for ConnectedComponents

	p033-Wasim
	Introduction
	Previous Work
	The Fully Dynamic Model
	Dynamic algorithms from static via lazy recomputation

	Our Contribution
	Our techniques
	Organization of the paper

	Preliminaries
	A crucial observation
	An D worst-case update time algorithm

	A fully dynamic distributed algorithm
	Achieving sublinear (in m) update time
	Achieving sublinear (in n) worst case update time
	Conclusion
	Appendix
	Proof of Observation 2
	Endpoints of an updated edge may not be switching
	On the sublinear (in m) update time algorithm
	Proof of correctness

	p034-Aiswarya
	Introduction
	Model
	Evaluation complexity: Arbitrary graphs
	(+, x)-semirings
	Boolean semiring
	Tropical semirings

	Efficient evaluation for bounded tree-width graphs
	Bounded path-width evaluation
	Bounded tree-width evaluation

	Discussions and conclusions

	p035-Almagor
	Introduction
	Preliminaries
	Symmetric Probabilistic Transducers
	Approximate Symmetry
	L_infinity Symmetry
	Parikh Symmetry

	Qualitative Symmetry
	Extensions and Research Directions

	p036-Baier
	1 Introduction
	2 Rounding functions
	3 Hyperbolic systems
	3.1 Membership in PSPACE
	3.2 PSPACE-hardness

	4 Special cases on non-hyperbolic systems
	4.1 Polar rounding with updates in Jordan normal form
	4.2 Argand truncation or expansion in Jordan normal form

	5 Discussion of open problems

	p037-Balasubramanian
	Introduction
	Preliminaries
	Threshold Automata
	Fixed-parameter tractability

	W[1]-hardness
	Acyclic threshold automata
	Threshold automata with constantly many fall guards
	NP-hardness of multiplicative threshold automata
	Experiments
	Conclusion

	p038-Bernemann
	Introduction
	Markov Chains and Probabilistic Condition/Event Nets
	Markov Chains
	Probabilistic Condition/Event Nets

	Uncertainty Reasoning for Condition/Event Nets
	Modular Bayesian Networks
	Causality Graphs
	(Sub-)Stochastic Matrices
	Modular Bayesian Networks

	Updating Bayesian Networks
	Variable Elimination and Tree Decompositions
	Motivation
	Variable elimination
	Comparison to Treewidth

	Implementation and Runtime Results
	Conclusion

	p039-Bertrand
	Introduction
	Game setting
	Solving the safety coalition problem
	Finite tree unfolding
	Existence of winning coalition strategy on the tree unfolding
	Synthesizing a winning coalition strategy
	Illustration of the construction
	PSPACE lower bound

	Future work

	p040-Bertrand
	Introduction
	Preliminaries
	Dynamic network congestion games
	Social optima and equilibria

	Socially-optimal strategy profiles
	Nash equilibria
	Existence and computation of (blind) Nash equilibria
	Computation of general Nash equilibria

	Subgame-perfect equilibria
	Conclusion and future works

	p041-Boker
	Introduction
	Preliminaries
	Good-For-Games Alternating Automata
	Alternating GFG vs. Nondeterministic and Universal Ones
	Deciding Half-GFGness

	Determinisation of Alternating GFG Parity Automata
	Alternation Removal in GFG Parity Automata
	Single-Exponential Determinisation

	Deciding GFGness of Alternating Automata
	Conclusions

	p042-Chini
	p043-Darwin
	Introduction
	Preliminaries
	Equivalence as Orthogonality
	Labelling Reductions
	Linearly Decomposable Profile Languages
	Example: Gaussian, Exponential, and Piecewise Polynomial Functions

	Proof of Theorem 12
	Conclusions

	p044-Droste
	Introduction
	Weight Structure and Simple omega-Pushdown Automata
	Closure Properties
	Logic for Weighted omega-Pushdown Automata
	Weighted Nested omega-Word Languages
	Equivalence of Logic and Automata
	Conclusion

	p045-Fernau
	Introduction
	Fixing Notations
	DVPDAs – Distinguishing the Stack Models
	Restricting the Number of Turns Makes Synchronization Harder
	(Non-)Tight Upper Bounds
	Sequential Transducers
	Discussion

	p046-Filiot
	Introduction
	Preliminaries
	Critical prefix games
	Synthesis problems
	Future work

	p047-Gastin
	Introduction
	Preliminaries
	A new static analysis with reduced propagation of constraints
	Applications of the reduced propagation
	Termination of the reduced propagation
	Experiments
	Conclusion

	p048-Haar
	Introduction
	The Active Prediction Problem
	Controller construction
	Bound analysis
	Conclusion and perspectives

	p049-Kiefer
	Introduction
	Preliminaries
	Trace Inequivalence
	Probabilistic Bisimulation Inequivalence
	The Distance One Problems
	Making Distances Small
	Conclusions

	p050-Konecny
	Introduction
	Computable analysis and the Incone library
	Specification of algorithms with multifunctions
	The Incone library

	Finite spaces and operations on multifunctions
	Operations on multifunctions and multivalued branching

	Representations for computation on the reals
	The interval reals and their arithmetic operations
	The efficient limit operator and name cleanup

	A verified parametric square root algorithm
	Square root approximation using Heron's method
	From Kleenean comparisons to soft comparison
	The magnitude function for scaling
	Defining the square root function

	Implementation
	Executability and code extraction

	Conclusion and Future work
	Experimental results

	p051-Kupferman
	Introduction
	Preliminaries
	Perspective games
	Automata

	Perspective Games with Notifications
	Deciding Perspective Games with Notifications
	Examples of Information Satellites
	Structural Information Satellites
	Behavioral Information Satellites

	Complexity for the Different Satellites

	p052-Meyer
	Introduction
	Multi-Pushdown Games
	Upper Bound for Ordered MPDG
	Summarization for Ordered MPDG
	The Finite Parity Game
	Pop Transitions and a Correction to a Mistake

	Upper Bound for Context-Bounded MPDG
	Lower Bounds
	Reduction
	First-Order Relations
	Stockmeyer's Nested Indexing
	Verification Mechanisms

	Details on Section 3
	Size of the sets of ordered summaries
	Size of the sets of context summaries

	Equivalence of the MPDG G and the finite game F
	Transforming a winning strategy from F to G
	Transforming a winning strategy from G to F

	Stack Elimination for Context-Bounded MPDG
	Construction of MPDG for the Lower Bound
	Construction of Gcompd
	Construction of Gindd
	Details on how the players push a valuation
	Adaptions for ordered multi-pushdown systems

	p053-Parys
	Introduction
	Preliminaries
	Transformation
	Complexity
	Correctness
	Conclusions

	p054-Perrin
	Introduction
	Automata
	Transducers
	Composition
	Monoids of relations
	Group and degree of a set
	Synchronization
	Groups and composition
	Decompositions of codes

	p055-Praveen
	Introduction
	Preliminaries
	How Prefixes and Suffixes Influence Each Other
	Constructing a SSRT from a Transduction
	Properties of Transductions Implemented by SSRTs
	Future Work

	p056-Schewe
	Introduction
	Automata
	Nondeterministic Parity Automata
	Büchi and Co-Büchi Automata
	Deterministic and Good-for-Games Automata
	Automata Transformations & Conventions

	Main Result
	Inclusion in NP
	Simulation Game

	NP Hardness
	Discussion

	p057-Tulsyan
	Introduction
	Overview
	Interrupt-Driven Applications
	Data Races and the Occur-in-Between Relation
	Occur-In-Between Rules
	Implementation and Evaluation
	Related Work
	Conclusions and Future Work
	Semantics

	p058-Wolf
	Introduction
	Related Work
	Problem Definitions
	Main Results
	Conclusion

