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Abstract
In this talk, we discuss the role and the implementation of mathematical structures in libraries of
formalised mathematics in dependent type theory.
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1 Summary

Since the early writings of the Nicolas Bourbaki group [3], mathematical structures are used
in all fields of mathematics to structure the mathematical language, its vocabulary and its
notational apparatus. An instance of a given structure is a carrier set equipped with some
identified elements, with some operations on the carrier, and with some properties – called
the axioms of the structure. Put in good use, these abstractions clarify the mathematical
discourse for a knowledgeable audience, while emphasising correspondences between seemingly
unrelated mathematical objects. Classical model theory provides a mathematical formalisation
of the notion of structure [12], of which algebraic structures are an instance.

The past decade has seen the advent of several large-scale libraries of formalised mathemat-
ics [6, 2, 9, 17], most of which framed by a hierarchy of formal algebraic structures [10, 13, 8, 17].
The latter hierarchies can be seen as a formal-proof-engineering device, which organises
inheritance and sharing in a similar way as the design patterns of object-oriented program-
ming [7, 4]. The implementation and the features of these hierarchies depend both on the
flavour of foundations the proof assistant is based on, and on the implementation in the
prover of enhanced type inference procedures [15, 11, 16, 1, 14]. The central idea is to
take benefit of some form of type inference in order to compute automatically the missing
information in the user input, so as to achieve concision in the statement of formal sentences,
while still providing a well-formed term to the prover’s checker.

This talk will focus more specifically on the case of formalisations, and proof assistants,
based on variants of dependent type theory. This setting allows in particular a first-class
representation of structures using dependent tuples (also called telescopes [5]). It will discuss
the recent techniques proposed to design these hierarchies, their pitfalls, the corresponding
achievements, and their limitations.
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