
Categorifying Non-Idempotent Intersection Types
Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, UK

Federico Olimpieri
Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, Marseille, France

Abstract
Non-idempotent intersection types can be seen as a syntactic presentation of a well-known denota-
tional semantics for the lambda-calculus, the category of sets and relations. Building on previous
work, we present a categorification of this line of thought in the framework of the bang calculus,
an untyped version of Levy’s call-by-push-value. We define a bicategorical model for the bang
calculus, whose syntactic counterpart is a suitable category of types. In the framework of distributors,
we introduce intersection type distributors, a bicategorical proof relevant refinement of relational
semantics. Finally, we prove that intersection type distributors characterize normalization at depth 0.

2012 ACM Subject Classification Theory of computation→ Lambda calculus; Theory of computation
→ Linear logic; Theory of computation → Categorical semantics

Keywords and phrases Linear logic, bang calculus, non-idempotent intersection types, distributors,
relational semantics, combinatorial species, symmetric sequences, bicategory, categorification

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.25

Funding This work is partially supported by EPSRC Project EP/R029121/1 Typed lambda-calculi
with sharing and unsharing.

Acknowledgements The authors thank Lionel Vaux Auclair for insightful discussions and comments.

1 Introduction

Since Girard’s introduction of linear logic [32], the notion of linearity has played a central
role in the Logic-in-Computer-Science community. A program is linear when it uses its
inputs only once during computation (inputs cannot be copied or deleted); while a non-linear
program may call its inputs at will. Via the exponential modalities ! and ?, linear logic gives
a logical status to the operations of erasing and copying data.

Another way to study linearity is provided by some type systems. Intersection types were
introduced by Coppo and Dezani [14, 15] as an extension of simple types by means of the
(associative, commutative and idempotent) intersection connective a ∩ b: a term of type
a ∩ b can be seen as a program of both type a and type b. This kind of type systems have
proven to be very useful to characterize various notion of normalization in the λ-calculus
[37]. If we impose non-idempotency to the intersection [31, 16] (i.e. a ∩ a 6= a), we get a
“resource-sensitive” intersection type system, in the sense that the arrow type encodes the
exact number of times that a term needs its input during computation: intuitively, a term
typed a ∩ a ∩ b can be used twice as a program of type a and once as a program of type
b. Non-idempotent intersection types allow combinatorial characterization of normalization
properties and of the execution time of programs [9, 16, 4] and proof-nets [19, 20]. Also,
De Carvalho’s non-idempotent intersection type system R is a syntactic presentation of the
categorical semantics of λ-calculus given in the category of sets and relations [16, 17]. There
is a strong connection between linear logic and non-idempotent intersection types [18].

Inspired by [34, 41, 48, 43], we propose here a categorification of this kind of semantics.
Roughly, categorification consists in replacing set-theoretic notions with category-theoretic
ones. In general, this process gives both more fine-grained structures and general points of

© Giulio Guerrieri and Federico Olimpieri;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CSL.2021.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Categorifying Non-Idempotent Intersection Types

view. Melliès and Zeilberger [42] followed this approach to present a categorical definition of
what a type system is: a type system is a functor between a category of type derivations and
a category of terms. Since we are interested in categorical semantics with an intersection type
presentation, the first natural thing to do is replacing the category of sets and relations with the
bicategory of distributors [6, 10]. Distributor-induced semantics of programming languages
were already presented in [12, 27]. In particular, Fiore, Gambino, Hyland and Winskel
introduced the bicategory of generalized species of structure [27], a very rich framework that
generalizes both relational semantics and Joyal’s combinatorial species [35, 27, 30, 48]. As
shown in [12, 29], distributors can also lead to a generalization of Scott’s semantics.

Mazza, Pellissier and Vial [41], inspired by [42] and Hyland’s project of categorification
of the theory of the λ-calculus [34], presented a general approach to intersection types rooted
in the notion of multicategory. In their framework, the λ-calculus is seen as a 2-operad,
where 2-cells consist of reduction paths. Intersection type systems are seen as a special
kind of fibrations. Via a Grothendieck construction, with these fibrations they associate
an approximation presheaf that interprets terms as discrete distributors. Thanks to this
categorical approach, they are able to prove a parametric normalization theorem for a class
of intersection type systems in a modular and elegant way. Their method relies on a Curry-
Howard style correspondence between intersection type derivations and a kind of λ-terms
approximants, the polyadic terms. However, their approach does not provide a denotational
model and it does not support subtyping for intersection types. This latter feature is strictly
linked to the fact that approximation presheaves action on types is restricted to discrete
categories [41]. It is then natural to ask what happens when we take the standpoint of
denotational semantics and we take into account categories with non-trivial morphisms.

Recently, Tsukada, Asada and Ong [48, 49] presented the rigid Taylor expansion1 se-
mantics for an η-expanded fragment of non-deterministic simply-typed λ-calculus with fixed
point combinator, then extended to probabilistic and quantum computation: the linear ap-
proximants are still polyadic terms. They proved that this semantics is naturally isomorphic
to the generalized species semantics. This time, the standpoint is the one of denotational
semantics and distributors ranges over groupoids, but subtyping is not taken into account.
The groupoid structure of the model gives the possibility to define an action of type iso-
morphisms on polyadic terms. A quotient induced by this action guarantees the preservation,
up to isomorphism, of the semantics under reduction. Concretely one has that JMK ∼= JNK
whenever M → N and the natural isomorphism is given by reduction of polyadic terms.

Inspired by these lines of thought, Olimpieri [43] introduced intersection type distributors,
a categorified version of intersection type disciplines, where subtyping and denotational
semantics are both taken into account. Intersection type distributors are a syntactic present-
ation of bicategorical denotational semantics for the λ-calculus given by Kleisli bicategories
of distributors for suitable pseudomonads. Each pseudomonad taken into account gives
rise to a notion of intersection type, with specific resource behavior2. The semantics
obtained by this method is proof relevant: given a term M , a type context ∆ and a type

a, we set TU (M)(∆, a) =
{

π̃...
∆ `M : a

∣∣ π is a type derivation for M
}

where TU (M) is the

intersection type distributor that interprets M in an appropriate category U of types, and

1 The rigid Taylor expansion is a deterministic variant of Ehrhard and Regnier’s Taylor expansion [25, 26].
2 It is worth noting that this new semantic setting is not a special case of [41], as standard polyadic terms

fail dramatically subject reduction for intersection type distributors. The failure of subject reduction
happens because standard polyadic terms [48, 41] cannot encode all the qualitative information produced
by the subtyping feature of intersection type distributors. A counterexample is in Appendix A.

G. Guerrieri and F. Olimpieri 25:3

π̃ is an equivalence class of derivations. The equivalence relation on derivations is induced
by the composition of distributors, which generalizes the quotient of [48]. We have that, if
M → N, then TU (M) ∼= TU (N). Categorification then allows us to pass from a semantics of
types to a semantics of derivations. Note that, in our setting, the semantics of a term M

associates with every type context ∆ and type a the set of derivations for M with conclusion
∆ ` M : a; while more coarse-grained models such as relational semantics can only say if
there is a type derivation for M with conclusion ∆ `M : a.

In the present paper, we introduce non-idempotent intersection type distributors in an
untyped call-by-push-value setting [33, 24, 39, 47], the bang calculus. Levy’s call-by-push-value
paradigm subsumes call-by-name (CbN) and call-by-value (CbV), from both the operational
and denotational semantics standpoints [39, 33]. In this respect, our work is more general
than [43] (which considers only the CbN λ-calculus). Moreover, inspired by linear logic, the
bang calculus internalizes in the syntax the !-operator, which semantically corresponds to
the monadic operator to handle resources. In this way, it is more natural to link syntax
and semantics and to disentangle our investigation from the evaluation mechanism. Here we
focus on a particular monadic construction (the symmetric strict monoidal completion, see
Section 2) and we do not extend the more general and abstract method of [43] to the bang
calculus because in this way we can avoid introducing too much categorical background.

Our categorical approach allows the introduction of a suitable category of types, where
morphisms between types are a generalization of subtyping. Given a type morphism a′ → a,
the intuition is that the type a′ somehow refines the type a. We prove that non-idempotent
intersection type distributors characterize normalization at depth 0 in the bang calculus.
Normalization at depth 0 in the bang calculus is a notion that encompasses both CbN
solvability [2, 37] and CbV potential valuability [45, 11]. The argument to prove this result is
combinatorial and standard (similar results for the bang calculus are proved in [24, 8] using
relational semantics), but thanks to the categorified setting we gain a much more fine-grained
understanding of the dynamics of type derivations under reduction. Indeed, in our setting,
subject reduction and expansion (Theorem 12) clearly open the possibility to define an
explicit deterministic reduction relation on (equivalent classes) of type derivations, but the
investigation of this line of thought is left to future work. We just notice that the substitution
operation on type derivations is strictly linked to morphism composition, respecting the basic
intuition of categorical semantics: substitution corresponds to composition.

Outline. Some preliminaries are in Section 2. Section 3 shows how the category of distrib-
utors Dist can be seen as a generalization of the categories Rel of sets and relations and
Polr of preorders. In Section 4 we define a proof-relevant denotational model of the bang
calculus in Dist as a generalization of non-idempotent intersection type systems and we
prove a semantic characterization of depth 0 normalization in the bang calculus. Section 5
concludes. In Appendix A we recall some basic notions for bicategories and coends, we prove
Lemma 11 and we show the failure of subject reduction with subtyping for polyadic terms.

2 Preliminaries

The bang calculus. The syntax and operational semantics of the bang calculus [33] are
defined in Figure 1.3 Terms are built up from a countably infinite set of variables (denoted
by x, y, z, . . .). Terms of the form S! (resp. λx.S; ST) are called boxes (resp. abstractions;

3 Syntax and reduction rule of the bang calculus are presented as in [33], which are slightly different from
[24]. But unlike [33] (and akin to [46]), here we do not use der as a primitive, since der and its associated
rule der(S!) 7→d S can be simulated in our setting by defining der = λx.x, because (λx.x)S! 7→b S.

CSL 2021

25:4 Categorifying Non-Idempotent Intersection Types

Terms: S, T, U ::= x | λx.S | ST | S! (set: !Λ)
Contexts: C ::= [·] | λx.C | CS | SC | C! (set: !ΛC)

Ground Contexts: G ::= [·] | λx.G | GS | SG (set: !ΛG)
Root-step: (λx.S)T ! 7→b S{T/x}

→b -reduction: S →b T ⇔ ∃ C ∈ !ΛC, ∃S′, T ′∈ !Λ : S = C[S′], T = C[T ′], S′ 7→` T
′

→bg -reduction: S →bg T ⇔ ∃ G ∈ !ΛG, ∃S′, T ′∈ !Λ : S = G[S′], T = G[T ′], S′ 7→` T
′

Figure 1 The bang calculus: its syntax and reduction rules.

(linear) applications). The set of boxes is denoted by !Λ!. The set of free variables of a term
S, denoted by fv(S), is defined as expected, λ being the only binding construct. All terms
are considered up to α-conversion. Given S, T ∈ !Λ and a variable x, S{T/x} denotes the
term obtained by the capture-avoiding substitution of T for each free occurrence of x in S.

Contexts C and (with exactly one hole [·]) are defined in Figure 1. We write C[S] for the
term obtained by capture-allowing substitution of the term S for the hole [·] in the context
C. Ground contexts G are the restriction to contexts where the hole is not inside any !.

The bang calculus is the set !Λ endowed with reduction →b (Figure 1), which is confluent
[33]. Intuitively in the root-step 7→b the box-construct ! marks the only terms that can be
erased and duplicated: a β-like redex (λx.S)T can be fired only when its argument is a box,
i.e. T = U !: if it is so, the content U of the box T replaces any free occurrence of x in S.

Reduction →bg ⊆→b is said at depth 0 and defined as the closure of 7→b under ground
contexts (see Figure 1): it does not reduce inside boxes. It has the diamond-property [33].

I Example 1. Let ∆ = λx.xx!. Then ∆∆! →bg ∆∆! →bg . . . (and so ∆∆! →b ∆∆! →b . . .).

I Definition 2 (Clash). A clash is a term of the form S!T or T (λx.S).
Let S ∈ !Λ: S is clash-free if and only if it contains no clash; S is clash-free at depth 0

if and only if each clash occurring in S is under the scope of a !.

For instance, (λz.x)(x!y)! is clash-free at depth 0 but not clash-free. Roughly, a clash is
a “meaningless” term that cannot inherently be typed (see [24, 8]): boxes cannot be applied,
abstractions cannot be the argument of an application.

The bang calculus can be extended (see [24]) with the reduction →σ=→σ1 ∪ →σ2 ∪ →σ3

where →σ1 , →σ2 and →σ3 are the contextual closure of the following rules, respectively:

(λx.S)TU 7→σ1 (λx.SU)T (λy.λx.S)T 7→σ2 λx.(λy.S)T U((λx.S)T) 7→σ3 (λx.US)T

with x /∈ fv(U) in 7→σ1 and 7→σ3 , while x /∈ fv(T)∪{y} in 7→σ2 . We set →bσ =→b ∪ →σ and
→bσg =→bg ∪ →σg , where →σg =→σ1g ∪ →σ2g ∪ →σ3g and →σig is the closure under ground
contexts of 7→σi , for i ∈ {1, 2, 3}. Reductions →σ and →σg are strongly normalizing [24] and
can “unveil” hidden b-redexes and hidden clashes. For instance,

((λx.∆)x)∆! →σ1g (λx.∆∆!)x x((λy.λx.z)y)→σ2g x(λx.(λy.z)y)

where ((λx.∆)x)∆! is b-normal but (λx.∆∆!)x is not (→bg can fire the b-redex ∆∆!), and
x((λy.λx.z)y) is clash-free but x(λx.(λy.z)y) is not (not even at depth 0).

G. Guerrieri and F. Olimpieri 25:5

Integers and Permutations. For n ∈ N, we set [n] = {1, . . . , n}, so [0] = ∅. The set of
permutations over [n] is denoted by Sn. We define the category P of integers and permutations:

the objects of P are ob(P) = {[n] | n ∈ N}; the identity on [n] is denoted by 1n;

the homset from [n] to [m] is P[[n], [m]] =
{
Sn if n = m

∅ otherwise;
the category P is symmetric strict monoidal, with tensor product given by addition:
[n]⊕ [m] = [n+m]. Given σ ∈ Sk1 and τ ∈ Sk2 , we define σ ⊕ τ ∈ Sk1+k2 as

(σ ⊕ τ)(i) =
{
σ(i) if 1 ≤ i ≤ k1

τ(i− k1) + k1 otherwise.

Given k1, . . . , kn ∈ N and σ ∈ Sn, we define σ̄ : [
∑
i∈[n] ki]→ [

∑
i∈[n] kσ(i)] as σ̄(

∑l−1
r=1 kr+

p) =
∑l−1
r=1 kσ(r) + p, where l ∈ [n] and 1 ≤ p ≤ kσ(l).

Symmetric strict monoidal completion. For a list ~a = 〈a1, . . . , ak〉, we set len(~a) = k. Lists
are denoted by ~a,~b,~c . . . , concatenation of two lists ~a and ~b is denoted by ~a⊕~b.

Let A be a small category. For each object a ∈ ob(A), the identity morphism on a is
denoted by 1a. The symmetric strict monoidal completion !A of A is the category where:

ob(!A) = {〈a1, . . . , an〉 | ai ∈ A and n ∈ N};

!A[〈a1, . . . , an〉, 〈a′1, . . . , a′n′〉] =
{
{〈σ, f1, . . . , fn〉 | fi : ai → a′σ(i) , σ ∈ Sn} if n = n′;
∅ otherwise;

for ~a = 〈a1, . . . , an〉 ∈ ob(!A), the identity on ~a is 1~a = 〈1n, 1a1 , . . . , 1an〉;
for f = 〈σ, f1, . . . , fn〉 : ~a→ ~b and g = 〈τ, g1, . . . , gn〉 : ~b→ ~c, the composition is g ◦ f =
〈τσ, gσ(1) ◦ f1, . . . , gσ(n) ◦ fn〉;
the monoidal structure is given by list concatenation. The tensor product is symmetric,
with symmetries given by the morphisms of the shape (where σ : [n]→ [n] is a permutation)

〈σ,~1〉 : 〈a1, . . . , an〉 → 〈aσ(1), . . . , aσ(n)〉

Given a permutation σ : [n] → [n] and ~a1, . . . ,~an ∈ ob(!A) with len(~ai) = ki we define
σ? :

⊕n
i=1 ~ai →

⊕n
i=1 ~aσ(i) as 〈σ̄, 1a1 , . . . , 1ak

〉, where k =
∑
i∈[n] ki.

We use the following shortenings: !An = (!A)n and !Aop = (!A)op.

Bicategory. We assume the reader to be familiar with bicategories [3, 6] and two-dimensional
monads [5]. Some basic notions are briefly recalled in Appendix A. For a diagram F : C → D,
its colimit is denoted by lim−→

c∈C
F (c). Given a bicategory C, Cop is the bicategory obtained by

reversing the 1-cells of C, but not the 2-cells.

3 Rel, Polr, Dist

We sketch the structure of some categories providing denotational models of linear logic. We
use linear logic notations for cartesian products, comonads modelling exponentials, etc.

Rel. A simple model of linear logic is the category Rel of sets and relations. It is a
prototype of quantitative semantics: the interpretation of a program gives information about
its resource consumption during computation. Intuitively, linear logic formulas are interpreted
by sets, linear logic proofs by relations, and an element in a set represents a non-idempotent
intersection type. For the bang calculus, this model has been studied in [24, 33].

CSL 2021

25:6 Categorifying Non-Idempotent Intersection Types

Objects of Rel are sets, and morphisms of Rel are binary relations. Identities are diagonal
relations. Composition of morphisms in Rel is the usual composition of relations

g ◦ f = {〈x, z〉 | ∃ y ∈ Y : 〈x, y〉 ∈ f , 〈y, z〉 ∈ g} for f ⊆ X × Y and g ⊆ Y × Z.

For X1, X2 ∈ ob(Rel), the cartesian product X1 &X2 in Rel is the disjoint union of sets
X1 tX2 = ({1}×X1)∪ ({2}×X2), where projections πi : X1 &X2 → Xi (for i ∈ {1, 2}) are
injections {〈〈i, x〉, x〉 | x ∈ Xi}, and the terminal (and initial) object > is the empty set ∅.

Rel is a symmetric monoidal category, where the tensor X ⊗ Y is the cartesian product
of sets X × Y and its unit 1 is an arbitrary singleton set. It is closed, with X (Y = X × Y
and evaluation evX,Y : (X (Y)×X → Y defined by {〈〈〈x, y〉, x〉, y〉 | x ∈ X, y ∈ Y }.

Rel comes with an exponential comonad 〈!,der,dig〉. The functor ! is given by !X =Mf(X)
(finite multisets over X) and, for a morphism f ∈ Rel[X,Y], !f = {〈[x1, . . . , xn], [y1, . . . , yn]〉 |
n ∈ N, 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ f}. Dereliction derX ∈ Rel[!X,X] is {〈[x], x〉 | x ∈ X}, and
digging digX ∈ Rel[!X, !!X] is {〈m1 + · · · + mk, [m1, . . . ,mk]〉 | m1, . . . ,mk ∈ !X} (for two
finite multisets ā = [a1, . . . , ak] and b̄ = [b1, . . . , bn], we set ā+ b̄ = [a1, . . . , ak, b1, . . . , bn]).

Polr. To work within a more informative setting, providing not only quantitative, but also
qualitative information, consider the category Polr of preordered sets and monotonic relations
[21, 23]. Intuitively, given two types a and b, if a ≤ b then a is an approximant of b. All the
constructions in Polr are a refinement and generalization of the ones for Rel.

In Polr, objects are preordered sets; a morphism f from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉
is a monotonic relation4 from |X | to |Y|, i.e., if 〈x, y〉 ∈ f with x′ ≤X x and y ≤Y y′ then
〈x′, y′〉 ∈ f . The identity at X is {〈x, x′〉 | x ≤X x′}. Composition preserves monotonicity.

In Polr the cartesian product X1 & X2 is the disjoint union of sets |X1| t |X2| with the
preorder ≤X1 t ≤X2 defined as 〈i, x〉 ≤X1&X2 〈j, y〉 if i = j and x ≤Xi y. The terminal object
> is ∅ with the empty order. Projections πi : X1 & X2 → Xi are πi = {〈〈i, x〉, x′〉 | x ≤Xi

x′}.
Polr has a symmetric monoidal structure. The tensor X1 ⊗X2 is the cartesian product of

sets with the product order. The endofunctor X ⊗_ admits a right adjoint _(Y defined
as follows: |X (Y| = |X | × |Y| and 〈x, y〉 ≤X(Y 〈x′, y′〉 if x′ ≤X x and y ≤Y y′. The
evaluation morphism evX1,X2 : (X1 (X2) & X1 → X2 is {〈〈〈x, y〉, x′〉, y′〉 | x′ ≤ x, y ≤ y′}.

Polr has exponential comonad 〈!,der,dig〉.5 The endofunctor ! : Polr→ Polr is given by
!X = 〈Mf(|X |),≤X 〉 with [x1, . . . , xn] ≤!X [x′1, . . . , x′n′] if n = n′ and there is σ ∈ Sn such
that xi ≤ x′σ(i) for all 1 ≤ i ≤ n; for f ∈ Polr[X ,Y], we set !f = {〈[x1, . . . , xn], [y1, . . . , yk]〉 |
〈xi, yi〉 ∈ f , k ∈ N}. Dereliction derX : !X → X is {〈[x], x′〉 | x ≤X x′}, and digging
digX : !X → !!X is {〈m, [m1, . . . ,mk]〉 | m ≤!X m1 + · · ·+mk}.

Rel is the full subcategory of Polr where objects are sets equipped with the discrete order.

Polr as a model of the bang calculus. A categorical model of the bang calculus [23, 24]
consists of a ?-autonomous category (A,⊗, I,(, (−)⊥), cartesian with product & and
terminal object > (and, by ?-autonomy, cocartesian with coproduct ⊕ and initial object 0),
endowed with a comonad (!,der,dig) with suitable Seely isomorphisms [23, 33]. Also, we

4 In [21, 23], monotonicity is slightly different, so that the type system generated by the model is covariant
on the left of ` and contravariant on the right of `. With our definition, the type system generated by
the model is contravariant on the left of ` and covariant on the right of `, in accordance with [1].

5 Akin to [21] and unlike [23], our exponential comonad is based on finite multiset construction. But our
preorder on !X is different from [21]: there [a] ≤!X [a, a] (idempotency is a sort of approximation), here
[a] and [a, a] are incomparable, so that approximation is completely independent from idempotence.

G. Guerrieri and F. Olimpieri 25:7

Types:

a := x ∈ X | [a1, . . . , ak](a | [a1, . . . , ak]

Preorder ≤U in U :

x ≤X x′

x ≤U x′

m′ ≤U m a ≤U a′

(m(a) ≤U (m′ (a′)

σ ∈ Sk a1 ≤U a′σ(1)
k∈N. . . ak ≤U a′σ(k)

[a1, . . . , ak] ≤U [a′1, . . . , a′k]

Derivation rules:
a′ ≤U a

x1 : [], . . . , xi : [a′], . . . xn : [] ` xi : a
Γ ` S : m(a Γ′ ` T : m ∆ ≤Un Γ⊗ Γ′

∆ ` ST : a
Γ1 ` S : a1 k∈N. . . Γk ` S : ak ∆ ≤Un

⊗k

i=1 Γi⊗k

i=1 Γi ` S! : [a1, . . . , ak]
∆, x : m ` S : a

∆ ` λx.S : m(a

Figure 2 Non-idempotent intersection type system R≤ associated with the preorder U in Polr.

require that 0 ∼= >. An extensional model of the bang calculus is then an object U ∈ ob(A)
such that U ∼= !U & (!U (U). To have a non-extensional model for the bang calculus a
retraction !U & (!U (U)C U is enough.

We build a retraction in the category Polr. We define a family of preoders as follows:

U0 = X (any preorder) Un+1 = !Un t ((!Un(Un) t X) (1)

We define a family of canonical inclusions (ιn : Un ↪→ Un+1)n∈N as ι0 = ιX (the inclusion
X ↪→ !X t ((!X (X) t X)) and ιn+1 = !ιn t ((!ιn (ιn) t 1X), so the preorder Un is
just the restriction to the elements of Un of the preorder Un+1. We set U = lim−→

n∈N
Un, that

is a directed colimit of the directed diagram 〈ιi〉i∈N. It is easy to check that there exists a
canonical inclusion ι : !U t (!U (U) ↪→ U and that we have a retraction !U & (!U (U)CU .

We can define the interpretation of the terms of the bang calculus in Polr. Let S ∈ !Λ
and fv(S) ⊆ ~x = 〈x1, . . . , xn〉 with the xi’s pairwise distinct. The semantics (or denotation)
of S is a monotonic relation JSK~x : !U⊗n → U defined by induction as follows:

JxiK~x = {〈〈[], . . . , [a′], . . . , []〉, a〉 | a′ ≤ a} ([a′] is in the ith position in 〈[], . . . , [a′], . . . , []〉);
Jλy.T K~x = {〈∆, ι(〈m, a〉)〉 | 〈∆⊕ 〈m〉, a〉 ∈ JT K~x⊕〈y〉}, where y /∈ ~x;
JST K~x =

⋃
m∈!U

⋃
Γ,Γ′∈Un{〈∆, a〉 | 〈Γ, ι(〈m, a〉)〉 ∈ JSK~x , 〈Γ′, ι(m)〉 ∈ JT K~x and ∆ ≤Un

Γ⊗ Γ′};
JT !K~x =

⋃
k∈N

⋃
Γ1,...,Γk∈Un{〈∆, [a1, . . . , ak]〉 | 〈Γi, ai〉 ∈ JT K~x and ∆ ≤Un

⊗k
i=1 Γi}

where if Γ = 〈m1, . . . ,mn〉 and Γ′ = 〈m′1, . . . ,m′n〉 then Γ⊗Γ′ = 〈m1 +m′1, . . . ,mn+m′n〉.

Ehrhard [23] showed this is a denotational semantics. By settingm(a = 〈m, a〉 ∈ !U×U ,
we can give a type-theoretic description of the preorder U as in Figure 2. Such a type system
R≤ is similar to de Carvalho’s non-idempotent intersection type system R [16, 17]. The
main difference is that in R≤ types are elements of a preorder U (an object of Polr), while in
R types are elements of a set U (an object of Rel). The additional information provided by
the preorder accounts for approximation: if a ≤U b then the type a approximates the type b.
This is evident in the rule for the variable in Figure 2: a′ can be seen as a subtype of a.

By easy inspection of the definition, 〈∆, a〉 ∈ JSK~x if and only if ∆ ` S : a. In other
words, the semantics of a term S is the set of conclusions of the type derivations for S. The
semantics is then a semantics of types in the non-idempotent intersection type system R≤.

We now try to shift our standpoint. In system R≤, let us try to define a semantics of

proofs. Given a term S, a context ∆ and type a, we set JSK~x(∆, a) =
{ π...

∆ ` S : a

∣∣π ∈ R≤}.

CSL 2021

25:8 Categorifying Non-Idempotent Intersection Types

It is easy to see that this proof-relevant structure is not a denotational semantics (not
even up to isomorphism). Indeed, reduction over type derivations in system R≤ is non-
deterministic, since it deals with multisets. Take (λz.(yz!)z!)S! →bg (yS!)S! and the following
type derivation:

y : [[a]([a](c] ` y : [a]([a](c

z1
z : [a] ` z : a

z : [a] ` z! : [a]

y : [[a]([a](c], z : [a] ` yz! : [a](c

z2
z : [a] ` z : a

z : [a] ` z! : [a]

y : [[a]([a](c], z : [a, a] ` (yz!)z! : c

y : [[a]([a](c] ` λz.(yz!)z! : [a, a](c

π1...
Γ1 ` S : a

π2...
Γ2 ` S : a

Γ1 ⊗ Γ2 ` S! : [a, a]

Γ1 ⊗ Γ2, y : [[a]([a](c] ` (λz.(yz!)z!)S! : c

Suppose y is not free in S and π1 6= π2 (e.g. take S = wx!). Then if we consider the reduct
(yS!)S! we have two possible choices for the typing, π{π1/z1, π2/z2} or π{π2/z1, π1/z2}. This
non-determinism stems from the multiset structure, but we shall see that simply passing to
a list-oriented framework does not solve the problem. A natural way to make this kind of
structure a denotational semantics is the lifting to Set enriched distributors.

From Rel and Polr to Dist. We recall a basic but pivotal fact: a relation f ⊆ X×Y can be
identified with its characteristic function χf : X ×Y → 2 where 2 = {0, 1} is the two-element
boolean algebra with sum (join) and product (meet). Composition is then defined as

χg◦f (x, z) =
∑
y∈Y

χg(y, z) · χf (x, y) where χf : X × Y → 2 and χg : Y × Z → 2 . (2)

All the constructions in Rel and Polr can be reformulated in this characteristic function
perspective. For instance, in Rel, the identity at X becomes the characteristic function of X.

In Polr, a monotonic relation f from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉 can be seen as
a monotonic characteristic function χf : X op × Y → 2, where X op = 〈|X |,≥X 〉 and 2 is
endowed with the boolean order. Any preorder X = 〈|X |,≤X 〉 forms a category where
ob(X) = |X | and X [x, x′] is a singleton (if x ≤X x′) or the empty set (otherwise), so X op is
the opposite category of X . Thus, χf : X op × Y → 2 is a bifunctor, contravariant in X and
covariant in Y . The semantics of a term S is then a Polr morphism JSK~x : (!U⊗n)op×U → 2.

It is then natural to generalize the characteristic function viewpoint to generic categories,
which gives rise to the notion of distributor (also known as profunctors).

Dist. For two small categories A,B, a distributor F : A9 B is a functor F : Aop×B → Set.
Composition of distributors relies on the notion of coend, a kind of colimit (a coequalizer).

I Definition 3 (Coend, [40]). Let F : Cop×C → D be a functor. A cowedge for F is an object
T ∈ D together with a family of morphisms wc : F (c, c) → T such that diagram (3) below
commutes, for f : c→ c′. A coend for F , denoted by

∫ c∈C
F (c, c), is a universal cowedge.

F (c′, c) F (c, c)

F (c′, c′) T

F (f,1)

F (1,f) wc

wc′

(3)

We now define the bicategory Dist of distributors. For a proper presentation of the
structure of this bicategory we refer to [10, 12, 27, 30].

G. Guerrieri and F. Olimpieri 25:9

0-cells are small categories A,B,C . . . ; 1-cells F : A9 B are distributors, i.e. functors
F : Aop ×B → Set; 2-cells α : F ⇒ G are natural transformations.
Given any 0-cells A and B, 1-cells and 2-cells are organized as a category Dist(A,B).
Composition α ? β in Dist(A,B) is called vertical composition. We define the zero
distributor ∅A,B ∈ ob(Dist(A,B)) as ∅A,B(a, b) = ∅ for all a ∈ ob(A) and b ∈ ob(B).
For A ∈ Dist, the identity 1A : A9 A is Yoneda’s embedding 1A(a′, a) = A[a′, a].
For 1-cells F : A9 B and G : B 9 C, their composition is given by

(G ◦ F)(a, c) =
∫ b∈B

G(b, c)× F (a, b)

Note the analogy with (2). Composition is only associative up to canonical isomorphisms.
For this reason Dist is a bicategory [6].
The cartesian product A & B is the disjoint union A t B of categories. The terminal
object > is given by the empty category. The bicategory Dist admits also coproducts,
with A⊕B = A tB (the canonical inclusions are denoted by ιA and ιB) and 0 = >.
There is a symmetric monoidal structure on Dist given by the cartesian product of
categories: A⊗B = A×B, with any one-object category as a unit. The bicategory of
distributors is monoidal closed, with linear exponential object A(B = Aop ×B.

The symmetric strict monoidal completion of a small category A (Section 2) lifts to
an endofunctor in Cat, by setting !F (〈a1, . . . , an〉) = 〈F (a1), . . . , F (an)〉 for any functor
F : A → B. The endofunctor ! can be extended to Dist, determining a pseudocomonad
(!,digA,derA) on Dist [27, 30]. The two components of the pseudocomonad are defined
as follows: digA(~a, 〈 ~a1, . . . , ~an〉) = !A[~a,

⊕n
i=1 ~ai] and derA(~a, a) = !A[~a, 〈a〉]. The Kleisli

bicategory Kl(!)(Dist) is the bicategory of categorical symmetric sequences [30], biequivalent
to the bicategory of generalized species of structure [27, 28]. There are Seely equivalences
!(A&B) ' !A× !B and !> ' 1, pseudonatural in both A and B [27].

4 A Type-Theoretic Non-Extensional Model for the Bang Calculus

Distributors-Induced Model for the Bang Calculus. The bicategory of distributors fulfills
a bicategorical generalization of the categorical model of the bang calculus shown in Section
3.6 However, we leave the proper development of a general notion of bicategorical model for
the bang calculus to future work, since the notion of symmetric monoidal bicategory is highly
non-trivial. For our purpose, it is enough to present a denotational model inside a particular
bicategory, i.e., the bicategory of distributors. A denotational model in this setting will be
an interpretation of bang terms as suitable 1-cells, such that JSK~x ∼= JT K~x if S →` T . In
particular, we want JSK~x : (!U⊗n)op × U → Set (for len(~x) = n), with !U & (!U (U) C U .
The intuition is that, in Dist, 0-cells represent types (and in our untyped setting, they satisfy
a retraction), 1-cells represent type derivations and 2-cells represent reduction on derivations.

We build the retraction in Dist, in analogy with the construction (1) in Polr. Indeed, they
are both special cases of the free-algebra construction for an (unpointed) endofunctor [36]. We
recall that, in Dist, A&B = AtB, A⊗B = A×B (so A⊗n = An) and A(B = Aop ×B.

6 The only delicate point is the ?-autonomy of the bicategory, since it does not exist in the literature
a notion of ?-autonomous bicategory. However it is possible to equip distributors with a dualizing
pseudo-endofunctor, as shown for example in [12, 27].

CSL 2021

25:10 Categorifying Non-Idempotent Intersection Types

Types:

a := x ∈ A | 〈a1, . . . , ak〉 ⇒ a | 〈a1, . . . , ak〉

Morphisms in U :

f ∈A[x, x′]

f ∈U [x, x′]

〈σ, ~f〉 : ~a′ → ~a f : a→ a′

〈σ, ~f〉 ⇒ f : (~a⇒ a)→ (~a′ ⇒ a′)

σ∈Sn f1 : a1 → a′σ(1) · · · fn : an → a′σ(n)

〈σ, f1, . . . , fn〉 : 〈a1, . . . , an〉 → 〈a′1, . . . , a′n〉

Derivation rules:
f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . xn : 〈〉 ` xi : a
Γ ` S : ~a⇒ a Γ′ ` T : ~a η : ∆→ Γ⊗ Γ′

∆ ` ST : a
Γ1 ` S : a1 k∈N. . . Γk ` S : ak η : ∆→

⊗k

i=1Γi

∆ ` S! : 〈a1, . . . , ak〉
∆, x : ~a ` S : a

∆ ` λx.S : ~a⇒ a

Figure 3 Non-idempotent intersection type system R→ associated with the 0-cell U in Dist.

I Definition 4. Let A be a small category. We define a family of small categories (Un)n∈N by:

U0 = A Un+1 = !Un t ((!Uop
n × Un) tA)

We define a family of inclusions (ιn : Un ↪→ Un+1)n∈N in the canonical way:

ι0 = ιA ιn+1 = !(ιn) t ((!(ιn)op × ιn) t 1A)

Then we set UA = lim−→
n∈N

Un. From now on, the 0-cell UA will be simply denoted by U , keeping

the parameter A implicit. We denote by ξn : !Unt (!Uop
n ×Un) ↪→ Un the canonical inclusions.

I Lemma 5 (Inclusion). There exists a canonical inclusion ι : !U t (!Uop × U) ↪→ U.

Proof. Since U is a filtered colimit, we have !U t (!Uop×U) ∼= lim−→
n∈N

!Unt (lim−→
n∈N

!Uop
n × lim−→

n∈N
Un),

and so we can explicitly define the inclusion functor as ι(a) = yj+1(ξj(a)) where j = min{n ∈
N | a ∈ Un t (!Uop

n × Un)} and yj+1 : Uj+1 → U is the canonical injection of Uj+1. J

I Theorem 6 (Retraction). We have that !U & (!U (U)C U in Dist.

So, the 0-cell U is a (non-extensional) denotational model of the bang calculus. By seeing
the objects of A (resp. U) as the atomic types (resp. types) and setting ~a⇒ a = 〈~a, a〉 ∈ !U×U ,
we give in Figure 3 a type-theoretic description of the 0-cell U . This non-idempotent
intersection type system, called R→, is the generalization in Dist of the system R≤ in
Figure 2 associated with Polr. A morphism f : a→ b in Figure 3 can be seen as a witness in
Dist of the subtyping relation between a and b, generalizing a ≤U b of Polr.

Semantics of Bang Terms. We now present the semantics (or denotation) of bang terms
as distributors in the bicategory Dist. We recall that ι : !U & (!Uop × U) ↪→ U . Let
Γ = 〈~b1, . . . , ~bn〉, ∆ = 〈~b′1, . . . , ~b′n〉 ∈ !Un. A morphism η : Γ→ ∆ is a list of morphisms η =
〈〈σ1, ~f1〉, . . . , 〈σn, ~fn〉〉 : Γ→ ∆ where 〈σi, ~fi〉 : ~bi → ~b′i. We set Γ⊗∆ = 〈~b1⊕~b′1, . . . ,~bn⊕~b′n〉.
This tensor product inherits the relevant structure from ⊕. In particular, the symmetries
~σ :
⊗k

i=1 Γi →
⊗k

i=1 Γσ(i) are built from the σ? construction presented in Section 2.

I Definition 7 (Semantics). Let S ∈ !Λ and fv(S) ⊆ ~x = 〈x1, . . . , xn〉, with the xi’s pairwise
distinct. The semantics JSK~x : !U⊗n 9 U of S with respect to ~x is defined by induction on S:

JxiK~x(∆, a) = !Un[∆, 〈〈〉, . . . , 〈a〉, . . . 〈〉〉] (〈a〉 is in the ith position in 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉);

G. Guerrieri and F. Olimpieri 25:11

[g : a→ b]
(

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

)
=

g ◦ f : a′ → b

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : b

[〈σ,~g〉 ⇒ g : (~a⇒ a)→ (~b⇒ b)]

.... π

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 =

..... [g]π{〈1, 〈σ,~g〉〉}

∆, x : ~b ` S : b

∆ ` λx.S : ~b⇒ b

[g : a→ b]

.... π1

Γ1 ` S : ~a⇒ a

.... π2

Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 =

..... [1⇒ g]π1

Γ1 ` S : ~a⇒ b

.... π2

Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : b

[(σ,~g) : ~a→ ~b]

(.... πi

Γi ` S : ai

)k
i=1 η : ∆→

⊗k
i=1 Γi

∆ ` S! : ~a = 〈a1, . . . , ak〉

 =

 π
′
i

Γσ−1(i) ` S : aσ−1(i)

k

i=1 ~σ−1 ◦ η : ∆→
⊗k

i=1 Γσ−1(i)

∆ ` S! : ~b = 〈b1, . . . , bk〉

Figure 4 Left action on derivations. In the last identity, on the right, π′i = [gσ−1(i)]πσ−1(i).

Jλy.SK~x(∆, a) =
{

JSK~x⊕〈y〉(∆⊕ 〈~a〉, a′) if a = ι(〈~a, a′〉)
∅ otherwise.

, where y /∈ ~x;

JST K~x(∆, a) =
∫ ~a∈!U ∫ Γ1,Γ2∈!Un

JSK~x(Γ1, ι(〈~a, a〉))× JT K~x(Γ2, ι(~a))× (!Un)(∆,Γ1 ⊗ Γ2);

JS!K~x(∆, a) =

∫ Γ1,...,Γk∈!Un k∏

i=1
JSK~x(Γi, ai)× (!Un)(∆,

k⊗
i=1

Γi) if a = ι(〈a1, . . . , ak〉)

∅ otherwise.

Given 〈∆, a〉 ∈ !Un×U we call points the elements of JSK~x(∆, a). From now on, when we
write JSK~x we always assume that fv(S) ⊆ ~x = 〈x1, . . . , xn〉 and the xi’s are pairwise distinct.

The semantics of a term S is a functor JSK~x : (!Un)op × U → Set. As such, it must be
defined on the objects of the category (!Un)op × U (as done in Definition 7) and on the
morphisms of the category (!Un)op×U . The action on morphisms (omitted in Definition 7) is
given by induction on S and, in the application and bang cases, also by the universal property
of the coend construction. The variable case is just the hom-functor. An explicit definition
of the application and bang cases can be given by considering coends as coequalizers [44].

Non-idempotent Intersection Type Distributors. We aim to define the non-idempotent
intersection type distributor TU (S)~x for any term S. Let π be a type derivation in system
R→, as defined in Figure 3. The left and right actions of morphisms on π are defined in
Figures 4 and 5, respectively (by induction on π). Given f : a→ a′ and θ : ∆′ → ∆, the left
and right actions may change the conclusion of a type derivation:

left: [f]
(π...

∆ ` S : a

)

[f]π
...

∆ ` S : a′
right:

(π...
∆ ` S : a

)
{θ}

π{θ}
...

∆′ ` S : a

Notice the contravariance of the right action, and that [f](π{θ}) = ([f]π){θ}.
We define ∼ as the smallest congruence on type derivations generated by the rules in

Figure 6. We denote by π̃ the equivalence class of π modulo ∼. Note that [f]π̃{θ} = ˜[f]π{θ}.

I Example 8. We give a couple of examples of the equivalence ∼ between type derivations
in system R→. The intuition is that ∼ equalizes type derivations for the same term and with
the same conclusion, where the “same” permutations are performed at different moments.

CSL 2021

25:12 Categorifying Non-Idempotent Intersection Types

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
{〈g : b→ a′〉} =

f ◦ g : b→ a

x1 : 〈〉, . . . , xi : 〈b〉, . . . , xn : 〈〉 ` xi : a
π...

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 {θ} =

π{θ ⊕ 〈1〉}
...

∆′, x : ~a ` S : a
∆′ ` λx.S : ~a⇒ a

π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 {θ} =

π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η ◦ θ : ∆′ → Γ1 ⊗ Γ2

∆′ ` ST : a
(πi...

Γi ` S : ai

)k
i=1 η : ∆→

⊗k
i=1 Γi

∆ ` S! : 〈a1, . . . , ak〉

 {θ} =

(πi...
Γi ` S : ai

)k
i=1 η ◦ θ : ∆′ →

⊗k
i=1 Γi

∆′ ` S! : 〈a1, . . . , ak〉

Figure 5 Right action on derivations, where θ : ∆′ → ∆.

Let f : a′ → a be a morphism between types a′ and a. One can think of them as, e.g.
a = 〈∗, 〈∗〉 ⇒ ∗〉 and a′ = 〈〈∗〉 ⇒ ∗, ∗〉 with f = σ ⇒ 1 being the obvious permutation.
1. Let us type the term xx! with the following type derivation π (where A = 〈〈a〉 ⇒ a, a〉,

A′ = 〈a′, 〈a〉 ⇒ a〉 and (1 2) ∈ S2 is the swap permutation on {1, 2}):

1〈a〉⇒a : (〈a〉 ⇒ a)→ (〈a〉 ⇒ a)

x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

1a : a→ a

x : 〈a〉 ` x : a 1〈a〉 : 〈a〉 → 〈a〉

x : 〈a〉 ` x! : 〈a〉 〈(1 2), f, 1〈a〉⇒a〉 : A′→ A

x : 〈a′, 〈a〉 ⇒ a〉 ` xx! : a

Now consider the following type derivation π′ (with A′′ = 〈〈a〉 ⇒ a, a′〉)

1〈a〉⇒a : (〈a〉 ⇒ a)→ (〈a〉 ⇒ a)

x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

f : a′ → a

x : 〈a′〉 ` x : a 1〈a′〉 : 〈a′〉 → 〈a′〉

x : 〈a′〉 ` x! : 〈a〉 〈(1 2), 1a′ , 1〈a〉⇒a〉 : A′ → A′′

x : 〈a′, 〈a〉 ⇒ a〉 ` xx! : a

Compared to π, π′ brings forward the morphism f . By the second rule in Figure 6, π ∼ π′.
2. Let us type the term (λx.x)z! (we omit the index on the identity morphisms 1):

π =

f : a′ → a

x : 〈a′〉 ` x : a

` λx.x : 〈a′〉 ⇒ a

1: a′ → a′

z : 〈a′〉 ` z : a′ 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` z! : 〈a′〉 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` (λx.x)z! : a

Now consider the following derivation (note the different position of f with respect to π)

π′ =

1: a→ a

x : 〈a〉 ` x : a
` λx.x : 〈a〉 ⇒ a

f : a′ → a

z : 〈a′〉 ` z : a 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` z! : 〈a〉 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` (λx.x)z! : a

According to the first rule in Figure 6, π ∼ π′.

G. Guerrieri and F. Olimpieri 25:13

π1...
Γ1 ` S : ~b⇒ a

[〈σ, ~f〉]π2...
Γ2 ` T : ~b η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

∼

[〈σ, ~f〉 ⇒ 1]π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a
π1{θ1}...

Γ1 ` S : ~a⇒ a

π2{θ2}...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

∼

π1...
Γ′1 ` S : ~a⇒ a

π2...
Γ′2 ` T : ~a θ ◦ η : ∆→ Γ′1 ⊗ Γ′2

∆ ` ST : a πi{θi}...
Γi ` S : ai

k

i=1 η : ∆→
⊗k

i=1 Γi
∆ ` S! : 〈a1, . . . , ak〉

∼

(πi...
Γ′i ` S : ai

)k
i=1

⊗k
i=1 θi ◦ η : ∆→

⊗k
i=1 Γ′i

∆ ` S! : 〈a1, . . . , ak〉

Figure 6 Congruence on type derivations, where 〈σ, ~f〉 : ~a→ ~b and θ = θ1 ⊗ θ2 with θi : Γi → Γ′i.

Let S be a term and fv(S) ⊆ ~x = {x1, . . . , xn} with the xi’s pairwise distinct. With any
〈∆, a〉 ∈ ob((!Un)op×U), the distributor TU (S)~x : !Un 9 U associates the set of (equivalence
classes of) type derivations for S with conclusion ∆ ` S : a. Formally, TU (S)~x is defined by:

1. for 〈∆, a〉 ∈ ob((!Un)op×U), TU (S)~x(∆, a) =
{

π̃...
∆ ` S : a

∣∣ π is a type derivation for S
}
;

2. for f : a→ a′ and η : ∆′ → ∆, TU (S)~x(η, f) : TU (S)~x(∆, a)→ TU (S)~x(∆′, a′) such that
TU (S)~x(η, f)(π̃) = ˜[f]π{η} ∈ TU (S)~x(∆′, a′) for any π̃ ∈ TU (S)~x(∆, a).

I Lemma 9 (Functoriality). For any S ∈ !Λ, TU (S)~x is a functor from (!Un)op × U to Set.

The following theorem states that the distributor semantics induced by our category
of types U can be seen in a completely type-theoretic way. The semantics JSK~x(∆, a) of a
term S is equal to the set of (equivalence classes of) type derivations whose conclusion is the
sequent ∆ ` S : a. For this reason we have a bicategorical proof relevant semantics. This is a
major improvement over relational semantics, where the elements of the denotation of a term
are only witnesses of typability. Said differently, the relational semantics of S is just the set
of conclusions of the type derivations for S, while the distributor semantics of S provides,
for any conclusion, the set of type derivations for S with such a conclusion.

I Theorem 10 (Proof-relevance). Let S ∈ !Λ. There is an isomorphism of functors

ψ : JSK~x ∼= TU (S)~x which is natural in 〈∆, a〉 ∈ ob((!Un)op × U).

Proof. By induction on the structure of S. The core of the proof is the remark that we can
write the equivalence relation induced by the coend in the application and box cases with
the rules in Figure 6. J

For any type derivation π in systemR→ we define its size s (π) in Figure 7 (by induction on
π). It counts the number of rules for application in π. Note that if π ∼ π′ then s (π) = s (π′).
We also have that size is invariant under morphisms action: s ([f]π) = s (π{η}) = s (π).

Let ψ : JSK~x ∼= TU (S)~x be the natural isomorphism of Theorem 10. For α ∈ JSK~x(∆, a)
we set s (α) = s (ψ∆,a(α)), i.e. the size of a point α is the size of its derivation ψ∆,a(α).

Substitution and Reduction. We prove both subject reduction and expansion for non-
idempotent intersection type distributors. We enrich this result with a quantitative flavor,

CSL 2021

25:14 Categorifying Non-Idempotent Intersection Types

s
(

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

)
= 0 s

(πi...

Γi ` S : ai

)k
i=1 θ : ∆→

⊗k
i=1 Γi

∆ ` !S : 〈a1, . . . , ak〉

 =
∑
i∈[k]

s (πi)

s

π′...

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 = s (π′) s

π1...

Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a θ : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 = s (π1) + s (π2) + 1

Figure 7 Size of type derivations in system R→.

accounting for how the size of points is affected by a reduction step. In this way, we can give
a combinatorial proof for the characterization of terms that are normalizable at depth 0.

The key ingredient is the substitution lemma below. We set:

SubS,x,T (∆, a) =
∫ ~a∈!U∫ Γ0,Γ1∈!Un

JSK~x⊕〈x〉(Γ0⊕〈~a〉, a)× JT !K~x(Γ1,~a)× !Un(∆,Γ0⊗Γ1).

I Lemma 11 (Substitution). Let S and T be terms. There is an isomorphism of functors

ϕ : SubS,x,T ∼= JS{T/x}K~x

natural in 〈∆, a〉 ∈ ob((!Un)op × U) and such that s
(
ϕ∆,a(˜〈α1, α2, η〉)

)
= s (α1) + s (α2) .

Proof. By induction on the structure of S, via lengthy coend manipulations. The proof of
the application and list cases strongly relies on the fact that the tensor product of !U is
symmetric. The proof of the preservation of sizes relies on the fact that size is invariant
under morphism actions and equivalence. Details are in Appendix A. J

I Theorem 12 (Subject reduction and expansion). Let S, T be two terms.
1. If S →b T then there is a natural isomorphism JSK~x(∆, a) ∼= JT K~x(∆, a).
2. If S →bg T then JSK~x(∆, a) ∼= JT K~x(∆, a) via a natural isomorphism ϕ∆,a such that

s (ϕ∆,a(α)) = s (α)− 1 for any α ∈ JSK~x(∆, a).
3. If S →σ T then JSK~x(∆, a) ∼= JT K~x(∆, a) via a natural isomorphism ϕ∆,a such that

s (ϕ∆,a(α)) = s (α) for any α ∈ JSK~x(∆, a).

Proof. We prove the base case of Item 2, which follows from the substitution lemma
(Lemma 11). Let S = (λx.S1)S!

2 7→b S1{S2/x} = T . By definition, we have

JSK~x(∆, a) =
∫ ~a∈!U ∫ Γ1,Γ2∈!Un

Jλx.S1K~x(Γ1, ι(〈~a, a〉))× JS!
2K~x(Γ2,~a)× !Un(∆,Γ1 ⊗ Γ2).

By definition of an abstraction’s denotation we have Jλx.S1K~x(Γ1, ι(〈~a, a〉)) = JS1K~x⊕〈x〉(Γ1⊕
〈~a〉, a). Then, JSK~x(∆, a) = SubS1,x,S2(∆, a). By Lemma 11, ϕ∆,a : J(λx.S1)S2K~x(∆, a) ∼=
JS1{S2/x}K~x(∆, a). Again by Lemma 11, s (ϕ∆,a(β)) = s (α1) + s (α2) for β = ˜〈α1, α2, η〉 ∈
JSK~x(∆, a). By definition, we have that s (β) = s (α1) + s (α2) + 1. So, we can conclude.

For Item 3, a step →σ just requires to rearrange the rule order in a type derivation. J

Roughly, Theorem 12.2 states that if S →bg T then for every type derivation for S there is
a type derivation for T , with the same conclusion, whose size decreases by 1. In Theorem 12.1
such a quantitative account does not hold. Indeed, consider ((λx.x)y!)! →b y

!: each of the
two terms can be typed with a derivation of size 0 (take the rule for boxes with 0 premises).

G. Guerrieri and F. Olimpieri 25:15

I Example 13. We provide a simple example of reduction of type derivations to ease the
understanding of the congruence’s role in establishing the natural isomorphisms. Consider
S = (λx.x)y!. We type it with the following type derivations:

π1 =

h ◦ f : a→ b

x : 〈a〉 ` x : b
` λx.x : 〈a〉 ⇒ b

g : c→ a

y : 〈c〉 ` y : a 1

y : 〈c〉 ` y! : 〈a〉 1

y : 〈c〉 ` (λx.x)y! : b

π2 =

h ◦ f ′ : a′ → b

x : 〈a〉 ` x : b
` λx.x : 〈d〉 ⇒ b

g′ : c→ a′

y : 〈c〉 ` y : a′ 1

y : 〈c〉 ` y! : 〈a′〉 1

y : 〈c〉 ` (λx.x)y! : b

Suppose that f ◦ g = f ′ ◦ g′ and h : b → b, f : a → b, f ′ : a′ → b. We have that π1 ∼ π2.
Indeed, by the first rule of Figure 6:

π1 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ◦ g : c→ b

y : 〈c〉 ` y : b 1

y : 〈c〉 ` y! : 〈b〉 1

y : 〈c〉 ` (λx.x)y! : b

π2 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ′ ◦ g′ : c→ b

y : 〈c〉 ` y : b 1

y : 〈c〉 ` y! : 〈b〉 1

y : 〈c〉 ` (λx.x)y! : b

and, by the hypothesis f ◦ g = f ′ ◦ g′, we conclude that π1 ∼ π2 by transitivity. In particular,
this means that the quotient identify all couple of morphisms leading to the same composition.

Now, we have that S →bg y. Consider the following type derivation of y:

π3 =
h ◦ (f ◦ g) : c→ b

y : 〈c〉 ` y : b
(note that s (π1) = s (π2) = 1 and s (π3) = 0).

By an easy inspection of the definitions we have that for ϕ〈c〉,b : JSK〈y〉(〈c〉, b) ∼= JyK〈y〉(〈c〉, b),
ϕ〈c〉,b(π̃1) = π3, where we keep implicit the isomorphism given by Theorem 10. There is
then a nice correspondence between substitution on the term side and composition on the
morphism side, that validates the basic intuition of categorical semantics7.

We prove that non-idempotent intersection type distributors characterize normalization
at depth 0, when normal forms are clash-free at depth 0. First, we characterize syntactically
the normal forms for →bσg that are clash-free at depth 0. Consider the subsets !Λd, !Λn, !Λ`
(whose elements are denoted by D, N , L, respectively) of !Λ:

(!Λd) D ::= x | DS! | DD′ (!Λn) N ::= S! | D | (λx.N)D (!Λ`) L ::= N | λx.L

All terms in !Λd are not closed (they have a free “head variable”) and are neither a box nor
a β-like redex nor an abstraction. Clearly, !Λd (!Λn and !Λ! (!Λn (!Λ` with !Λd ∩ !Λ! = ∅.

I Proposition 14 (Syntactic characterization of clash-free at depth 0 normal forms for →bσg).
1. A term S is normal for →bσg , clash-free at depth 0 and is neither a box nor a β-like redex

(i.e. nor of the form (λx.S)T) nor an abstraction iff S ∈ !Λd.
2. A term S is normal for →bσg , clash-free at depth 0 and is not an abstraction iff S ∈ !Λn.
3. A term S is normal for →bσg and clash-free at depth 0 iff S ∈ !Λ`.

I Lemma 15 (Semantics vs. clash-free at depth 0). Let S be a term.
1. If JSK~x 6= ∅!Un,U then S is clash-free at depth 0.
2. If S is normal for →bσg and clash-free at depth 0, then JSK~x 6= ∅!Un,U .

Proof. 1. By induction on S ∈ !Λ.

7 The natural isomorphism ϕ〈c〉,b : JSK〈y〉(〈c〉, b) ∼= JyK〈y〉(〈c〉, b) is a particular instance of Yoneda’s lemma
for coends (see Lemma 20 in Appendix A), also known as the density formula for coends [40].

CSL 2021

25:16 Categorifying Non-Idempotent Intersection Types

2. According to Proposition 14, we can proceed by induction on S ∈ !Λ`. J

I Theorem 16 (Normalization at depth 0). Let S be a term. The following are equivalent:
1. S is typable in system R→;
2. JSK~x 6= ∅!Un,U ;
3. S is strongly →bσg-normalizable with a normal form for →bσg that is clash-free at depth 0;
4. S is weakly →bσg-normalizable with a normal form for →bσg that is clash-free at depth 0;
5. S →∗bσ T for some term T that is normal for →bσg and clash free at depth 0.

Proof. The equivalence (1)⇔ (2) is given by Theorem 10. The implication (5)⇒ (2) follows
from Lemma 15.2 and Theorem 12. The implication (4)⇒ (5) holds because →bσg ⊆→bσ.
The implication (3)⇒ (4) is trivial.

For the implication (2)⇒ (3), as JSK~x 6= ∅!Un,U , there is a point α ∈ JSK~x(∆, a) for some
〈∆, a〉 ∈ ob(!Un× U). Let kS be the sum of the lengths of all →σg -reduction sequences from
S to a normal form for →σg (such a kS exists because →σg is strongly normalizing [24]). We
prove (3) by induction on (s (α) , kS) ordered lexicographically. If S is normal for →bσg , we
are done by Lemma 15.1, as α ∈ JSK~x(∆, a) implies JSK~x 6= ∅!Un,U . Suppose S →bσg S

′.
1. If S →σg S

′, let ϕ : JSK~x ∼= JS′K~x be the natural isomorphism of Theorem 12.3. Thus,
ϕ∆,a(α) ∈ JS′K~x(∆, a) and s (α) = s (ϕ∆,a(α)) but kS′ = kS − 1.

2. If S →bg S
′, let ϕ : JSK~x ∼= JS′K~x be the natural isomorphism of Theorem 12.2. Thus,

ϕ∆,a(α) ∈ JS′K~x(∆, a) and s (ϕ∆,a(α)) = s (α)− 1.
In both cases, by i.h., (3) holds for S′. Therefore, (3) holds for S. J

5 Conclusions

In this paper, we recalled some well-known and linear-logic based categorical semantics
with an intersection type presentation. We showed that they can be generalized in the
bicategory of distributors. We defined non-idempotent intersection type distributors in
the bang calculus and provided a syntactic presentation of them as a non-idempotent
intersection type system generalizing De Carvalho’s system R [16, 17]. We proved that non-
idempotent intersection type distributors determine a proof-relevant denotational semantics,
and characterize normalization at depth 0 in the bang calculus via a combinatorial proof.

Perspectives. Reconciling the different methods used here and in [43, 41, 48] to categorify
– non-idempotent or possibly idempotent – intersection types is the first and natural open
question. The (non-trivial) answer should rely on a subtyping-aware polyadic calculus to be
defined. This would allow [41, 48] to have a denotational semantics that supports subtyping.

Another line of research is the study of the extensional collapse [22] in the bicategorical
setting of distributors, which should shed new light on the link between non-idempotent and
idempotent intersection types. Relating the methods of [29, 43] should be a first step.

A relevant question immediately arises also for what concerns typed call-by-push-value
[23, 39]. The extension of our work to that framework is tricky, since the semantics of types
adds technical machinery. Moreover, we believe that difficulties similar to the ones found in
[13] in order to define the Taylor expansion could arise also in our perspective.

Other interesting perspectives are the investigation of the relationship between our
categorified rigid framework and rigid intersection types [50], and an extension of our
approach to probabilistic computation. This extension is far from trivial, but the results
of Tsukada, Asada and Ong [49] are encouraging, and the study of probabilistic Taylor
expansion [38] and probabilistic intersection types [7] might be a starting point.

G. Guerrieri and F. Olimpieri 25:17

References
1 Fabio Alessi, Franco Barbanera, and Mariangiola Dezani-Ciancaglini. Intersection types

and lambda models. Theoretical Computer Science, 355(2):108–126, 2006. Logic, Language,
Information and Computation. doi:10.1016/j.tcs.2006.01.004.

2 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

3 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin Heidelberg.

4 Alexis Bernadet and Stéphane Jean Lengrand. Non-idempotent intersection types and strong
normalisation. Logical Methods in Computer Science, Volume 9, Issue 4, 2013. doi:10.2168/
LMCS-9(4:3)2013.

5 Robert Blackwell, Gregory Maxwell Kelly, and John Power. Two-dimensional monad theory.
Journal of Pure and Applied Algebra, 59(1):1–41, 1989. doi:10.1016/0022-4049(89)90160-6.

6 Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1994. doi:10.1017/CBO9780511525858.

7 Flavien Breuvart and Ugo Dal Lago. On Intersection Types and Probabilistic Lambda Calculi.
In Proceedings of the 20th International Symposium on Principles and Practice of Declarative
Programming, PPDP 2018, Frankfurt am Main, Germany, September 03-05, 2018, pages
8:1–8:13, 2018. doi:10.1145/3236950.3236968.

8 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. In Functional and Logic Programming - 15th International Symposium, FLOPS
2020, volume 12073 of Lecture Notes in Computer Science, pages 13–32. Springer, 2020.
doi:10.1007/978-3-030-59025-3_2.

9 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017. doi:10.1093/jigpal/
jzx018.

10 Jean Bénabou. Distributors at work. Lecture notes of a course given at TU Darmstadt, 2000.
URL: http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.

11 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-Value
Solvability. In Foundations of Software Science and Computation Structures, FOSSACS 2014,
volume 8412 of Lecture Notes in Computer Science, pages 103–118, Berlin, Heidelberg, 2014.
Springer. doi:10.1007/978-3-642-54830-7_7.

12 Gian Luca Cattani and Glynn Winskel. Profunctors, open maps and bisimulation. Mathematical
Structures in Computer Science, 15(3):553–614, 2005. doi:10.1017/S0960129505004718.

13 Jules Chouquet and Christine Tasson. Taylor expansion for Call-by-Push-Value. In 28th
EACSL Annual Conference on Computer Science Logic, CSL 2020, volume 152 of LIPIcs,
pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.CSL.2020.16.

14 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type-assignment for lambda terms.
Arch. Math. Log., 19(1):139–156, 1978. doi:10.1007/BF02011875.

15 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980. doi:
10.1305/ndjfl/1093883253.

16 Daniel de Carvalho. Semantique de la logique lineaire et temps de calcul. PhD thesis, Aix-
Marseille Université, 2007.

17 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

18 Daniel de Carvalho. Taylor expansion in linear logic is invertible. Log. Methods Comput. Sci.,
14(4), 2018. doi:10.23638/LMCS-14(4:21)2018.

19 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of
the execution time in linear logic. Theoretical Computer Science, 412(20):1884–1902, 2011.
doi:10.1016/j.tcs.2010.12.017.

CSL 2021

https://doi.org/10.1016/j.tcs.2006.01.004
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129505004718
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.23638/LMCS-14(4:21)2018
https://doi.org/10.1016/j.tcs.2010.12.017

25:18 Categorifying Non-Idempotent Intersection Types

20 Daniel de Carvalho and Lorenzo Tortora de Falco. A semantic account of strong normalization
in linear logic. Inf. Comput., 248:104–129, 2016. doi:10.1016/j.ic.2015.12.010.

21 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Computer Science Logic
(CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012,
volume 16 of LIPIcs, pages 259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.CSL.2012.259.

22 Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational
model. Theoretical Computer Science, 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

23 Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Programming
Languages and Systems - 25th European Symposium on Programming, ESOP 2016, volume
9632 of Lecture Notes in Computer Science, pages 202–228. Springer, 2016. doi:10.1007/
978-3-662-49498-1_9.

24 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: An untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2016, pages 174–187. Association
for Computing Machinery, 2016. doi:10.1145/2967973.2968608.

25 Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor expansion
of lambda-terms. In Logical Approaches to Computational Barriers, Second Conference on
Computability in Europe, CiE 2006, volume 3988 of Lecture Notes in Computer Science, pages
186–197. Springer, 2006. doi:10.1007/11780342_20.

26 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
λ-terms. Theoretical Computer Science, 403(2-3), 2008. doi:10.1016/j.tcs.2008.06.001.

27 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. The cartesian closed
bicategory of generalised species of structures. J. of the London Mathematical Society, 77(1):203–
220, 2008. doi:10.1112/jlms/jdm096.

28 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudo-
monads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica,
24(3):2791–2830, November 2017. doi:10.1007/s00029-017-0361-3.

29 Zeinab Galal. A Profunctorial Scott Semantics. In 5th International Conference on Formal
Structures for Computation and Deduction (FSCD 2020), volume 167 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2020.16.

30 Nicola Gambino and André Joyal. On operads, bimodules and analytic functors. Memoirs of
the American Mathematical Society, 249(1184):0–0, September 2017. doi:10.1090/memo/1184.

31 Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects
of Computer Software, International Conference TACS ’94, volume 789 of Lecture Notes in
Computer Science, pages 555–574. Springer, 1994. doi:10.1007/3-540-57887-0_115.

32 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

33 Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two Girard’s translations.
In Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, volume 292 of EPTCS, pages 15–30, 2018. doi:
10.4204/EPTCS.292.2.

34 Martin Hyland. Classical lambda calculus in modern dress. Mathematical Structures in
Computer Science, 27(5):762–781, 2017. doi:10.1017/S0960129515000377.

35 André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative,
pages 126–159, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

36 Gregory Maxwell Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical
Society, 22(1):1–83, 1980. doi:10.1017/S0004972700006353.

37 Jean-Louis Krivine. Lambda-calculus, types and models. In Ellis Horwood series in computers
and their applications, 1993.

https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1007/11780342_20
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1090/memo/1184
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1017/S0004972700006353

G. Guerrieri and F. Olimpieri 25:19

38 Ugo Dal Lago and Thomas Leventis. On the Taylor expansion of probabilistic lambda-
terms. In Herman Geuvers, editor, 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume
131 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.FSCD.2019.13.

39 Paul Blain Levy. Call-by-Push-Value: A Subsuming Paradigm. In Typed Lambda Calculi
and Applications, 4th International Conference, TLCA’99, volume 1581 of Lecture Notes in
Computer Science, page 228–242. Springer, 1999. doi:10.1007/3-540-48959-2_17.

40 Fosco Loregian. This is the (co)end, my only (co)friend, 2015. arXiv:1501.02503.

41 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proc. ACM Program. Lang., 2(POPL):6:1–6:28, 2018. doi:10.1145/
3158094.

42 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. SIGPLAN
Not., 50(1):3–16, January 2015. doi:10.1145/2775051.2676970.

43 Federico Olimpieri. Intersection Type Distributors, 2020. arXiv:2002.01287.

44 Federico Olimpieri. Intersection Types and Resource Calculi in the Denotational Semantics of
Lambda-Calculus. PhD thesis, Aix-Marseille Université, 2020.

45 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO Theor.
Informatics Appl., 33(6):507–534, 1999. doi:10.1051/ita:1999130.

46 José Espírito Santo, Luís Pinto, and Tarmo Uustalu. Modal embeddings and calling paradigms.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, volume 131 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Inform-
atik, 2019. doi:10.4230/LIPIcs.FSCD.2019.18.

47 Alex K. Simpson. Reduction in a linear lambda-calculus with applications to operational
semantics. In Term Rewriting and Applications, 16th International Conference, RTA 2005,
volume 3467 of Lecture Notes in Computer Science, pages 219–234. Springer, 2005. doi:
10.1007/978-3-540-32033-3_17.

48 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised Species of Rigid Resource
Terms. In Proceedings of the 32rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005093.

49 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Species, profunctors and Taylor
expansion weighted by SMCC: A unified framework for modelling nondeterministic, probab-
ilistic and quantum programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’18, pages 889–898. IEEE Computer Society, 2018.
doi:10.1145/3209108.3209157.

50 Pierre Vial. Infinitary intersection types as sequences: A new answer to Klop’s problem. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–12.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005103.

CSL 2021

https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.1007/3-540-48959-2_17
http://arxiv.org/abs/1501.02503
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3158094
https://doi.org/10.1145/2775051.2676970
http://arxiv.org/abs/2002.01287
https://doi.org/10.1051/ita:1999130
https://doi.org/10.4230/LIPIcs.FSCD.2019.18
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1145/3209108.3209157
https://doi.org/10.1109/LICS.2017.8005103

25:20 Categorifying Non-Idempotent Intersection Types

A Appendix

Bicategories in a Nutshell [3, 6]. Intuitively, a bicategory is a category with “morphisms
between morphisms”, that is, where each hom-set itself carries the structure of a category,
but the composition of morphisms is only associative up to an isomorphism, and similarly
for the identities laws. Formally, a bicategory C consists of:

a set ob(C) of objects, also called 0-cells and denoted by A,B,C, . . . ;
for all A,B ∈ ob(C), a category C(A,B); objects in C(A,B) are called 1-cells or morphisms
from A to B; while arrows in C(A,B) (between 1-cells from A to B) are called 2-cells or
2-morphisms; composition of 2-cells is generally called vertical composition;
for every A,B,C ∈ ob(C), a bifunctor

◦A,B,C : C(B,C)× C(A,B)→ C(A,C)

called horizontal composition (often the indices A,B,C in ◦A,B,C are omitted); hence,
for all 1-cells F : A → B, F ′ : A → B and G : B → C, G′ : B → C, and for all 2-cells
α : F ⇒ F ′ and β : G⇒ G′, we have

a 1-cell G ◦A,B,C F : A→ C a 2-cell β ◦A,B,C α : (G ◦A,B,C F)⇒ (G′ ◦A,B,C F ′);

for every A ∈ ob(C) a functor 1A : 1 → C(A,A); with an abuse of notation we identify
1A(?) with 1A and we call it the identity of A;
for all 1-cells F : A→ B, G : B → C and H : C → D, a family of invertible 2-cells

αH,G,F : H ◦ (G ◦ F) ∼= (H ◦G) ◦ F

expressing the associativity laws;
for every 1-cell F : A→ B, two families of invertible 2-cells

λF : 1B ◦ F ∼= F ρF : F ∼= F ◦ 1A

expressing the identity laws.
This data is subject to additional coherence axioms. A 2-category is a bicategory where the
associativity and identities are strict equalities, not only isomorphisms.

I Definition 17 (Retraction). Let D,E be 0-cells in a bicategory C. A retraction of D to E
is a couple of 1-cells i : E → D, j : D → E together with an invertible 2-cell β such that the
diagram below commute. We write E CD is there is a retraction of D to E.

E D

E

i

1E

j
β

Coends. Given a functor F : Cop × C → Set we recall that the coend is the coequalizer of
the following diagram∑

c,c′∈C
C(c′, c)× F (c, c′)⇒

∑
c∈C

F (c, c)→
∫ c∈C

F (c, c)

where the parallel arrows are given by left and right actions of F on morphisms f ∈ C(c′, c).
Since we work with coends in the category of set, we have that this coequalizer is actually
given by the quotient

∑
c∈C F (c, c)/ ∼ where the equivalence relation is generated by the

rule x ∼ y iff F (f, c′)(x) = y, F (c, f)(y) = x, for f : c′ → c.

We list the three fundamental lemmas of coend calculus [40].

G. Guerrieri and F. Olimpieri 25:21

I Lemma 18. Every cocontinuous functor preserves coends.

I Lemma 19 (Fubini [40]). Let F : Cop × C ×Dop ×D → Set be a functor. We have∫ 〈c,d〉∈C×D
F (c, c, d, d) ∼=

∫ c∈C ∫ d

F (c, c, d, d) ∼=
∫ d∈D ∫ c∈C

F (c, c, d, d).

I Lemma 20 (Yoneda Ninja [40]). Let K,H : C → Set be, respectively, a contravariant and
a covariant functor. We have the following natural isomorphisms

K(−) ∼=
∫ c∈C

K(c)× C(−, c) H(−) ∼=
∫ c∈C

H(c)× C(c,−).

Denotation under Reduction. In what follows we do not explicitly state, for readability
reasons, when we apply Lemmas 18 and 19. For ~Γ = 〈Γ1, . . . ,Γn〉 we set

⊗ ~Γ =
⊗n

i=1 Γi.

I Lemma 11 (Substitution). Let S and T be terms. There is an isomorphism of functors

ϕ : SubS,x,T ∼= JS{T/x}K~x

natural in 〈∆, a〉 ∈ ob((!Un)op × U) and such that s
(
ϕ∆,a(˜〈α1, α2, η〉)

)
= s (α1) + s (α2) .

Proof. By induction on the structure of S ∈ !Λ, via lengthy coend manipulations.
If S = x then

SubS,x,T (∆, a) =
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

JxK~x(Γ0 ⊕ 〈~a〉, a)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

By definition we have

∼=
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

!Un(Γ0 ⊕ 〈~a〉, 〈〈〉, . . . , 〈〉, 〈a〉〉)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

Then, by the structure of the product category

∼=
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

!Un(Γ0, 〈〈〉, . . . , 〈〉〉)× !U(~a, 〈a〉)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

Then, by Yoneda (Lemma 20) we have

∼=
∫ Γ1∈!Un ∫ ~a∈!U

!U(~a, 〈a〉)× JT !K~x(Γ1,~a)× !U(∆,Γ1).

Again, by Yoneda (Lemma 20),

∼=
∫ Γ1∈!Un

JT !K~x(Γ1, 〈a〉)× !U(∆,Γ1).

Then, by applying Yoneda one more time on the context Γ and by definition of the denotation
of a box we can conclude. For what concerns the size, simply notice that s (π̃) = s ([f]π̃) .

The abstraction case follows from the i.h. immediately.
We do the application, the box case being similar to it. If S = QR then

SubS,x,T (∆, a) =
∫ Γ1,Γ2

∫ ~a

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a)× JT !K~x(Γ2,~a)× !Un(∆,Γ1 ⊗ Γ2).

CSL 2021

25:22 Categorifying Non-Idempotent Intersection Types

We develop JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) :

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) =
∫ Γ′1⊕〈~a1〉,Γ′2⊕〈~a2〉∫ ~b

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))

× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× !Un(Γ1 ⊕ 〈~a〉,Γ′1 ⊕ 〈~a1〉 ⊗ Γ′2 ⊕ 〈~a2〉).

By the structure of the product category, we have

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) =
∫ Γ′1Γ′2 ∫ ~a1,~a2

∫ ~b

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))

× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× !Un(Γ1,Γ′1 ⊗ Γ′2)× !U(~a,~a1 ⊕ ~a2).

We apply Yoneda (Lemma 20) on Γ1 and on ~a and we get

SubS,x,T (∆, a) ∼=
∫ Γ′1Γ′2,Γ2

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)

×JT !K~x(Γ2,~a1 ⊕ ~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ Γ2).

By a simple inspection of the definition of the denotation of a box, we can rewrite it as

∼=
∫ Γ′i,Γ~ai

,Γ2
∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(,Γ2,
⊗

Γ~a1 ⊗
⊗

Γ~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ Γ2).

Where, if we set ~ai = 〈ai,1, . . . , ai,ki
〉, JT K~x(Γ~ai

,~ai) =
∏
j∈ki

JT K~x(Γi,j , ai,j) and
⊗

Γ~ai
=⊗

j∈ki
Γi,j with i ∈ {1, 2}. We apply Yoneda on Γ2

∼=
∫ Γ′i,Γ~ai

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ (
⊗

Γ~a1 ⊗
⊗

Γ~a2)).

Now, by the symmetry of the tensor product ⊗ and by the fact that functors preserves
isomorphisms, we get

∼=
∫ Γ′i,Γ~ai

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(,Γ2,
⊗

Γ~a1 ⊗
⊗

Γ~a2)× !Un(∆, ((Γ′1 ⊗ Γ~a1)⊗ (Γ′2 ⊗ Γ~a2)).

Now, if we apply Yoneda twice to Γ′i ⊗ Γ~ai
, we get

∼=
∫ Γ′i,Γ~ai

,∆i
∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ′~a1
,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(∆,∆1 ⊗∆2)⊗ !Un(∆1,Γ′1 ⊗
⊗

Γ~a1)⊗ !Un(∆2,Γ′2 ⊗
⊗

Γ~a2).

By co-continuity and commutativity, and by applying Yoneda (Lemma 20) twice, we have

∼=
∫ ~b ∫ Γ′1,Γ~a1 ,∆1,Φ1

∫ ~a1

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JT !K~x(Φ1,~a1)

×!Un(Φ1,
⊗

Γ′~a1
)× Un(∆1,Γ′1 ⊗ Φ1)

×
∫ Γ′2,Γ~a2 ,∆2,Φ2

∫ ~a2

JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Φ2,~a2)

×!Un(Φ2,
⊗

Γ′~a2
)× Un(∆2,Γ′2 ⊗ Φ2)× !Un(∆,∆1 ⊗∆2).

G. Guerrieri and F. Olimpieri 25:23

By definition, the former coend is just∫ ~b ∫ ∆1,∆2

SubQ,x,T (∆1, ι(~b, a))× SubR,x,T (∆2,~b)× !Un(∆,∆1 ⊗∆2).

We remark that, forgetting the equivalence relation, the built isomorphism

SubS,x,T (∆, a) ∼=
∫ ~b

SubQ,x,T (∆1, ι(~b, a))× SubR,x,T (∆2,~b)× !Un(∆,∆1 ⊗∆2)

consists of the following map
〈~a, 〈~b, 〈Γ1,Γ2, 〈〈Γ′1⊕〈~a1〉,Γ′2⊕〈~a2〉, 〈α1, α2, η1〉〉, 〈〈~Γ = 〈Γ2,1, . . . ,Γ2,len(~a)〉, ~β = 〈β1, . . . , βlen(~a)〉, η2〉〉〉, θ〉〉〉 7→

〈~b, 〈Γ′1 ⊗
⊗

Γ~a1 , α1, 〈~β~a1 , 1⊗Γ~a1
〉, 1Γ

Γ′1⊗
⊗

Γ~a1

〉, 〈Γ′2 ⊗
⊗

Γ~a2 , α2, 〈~β~a2 , 1⊗Γ~a2
〉, 1Γ′2⊗

⊗
Γ~a2
〉,

((η1 ⊗ (σ? ◦ η2)) ◦ θ) ◦ τ〉

where
θ : ∆→ Γ1 ⊗ Γ2, α1 ∈ JQK~x(Γ′1 ⊕ 〈~a1〉, ι(~b, a)) and α2 ∈ JRK~x(Γ′2 ⊕ 〈~a2〉,~b);
〈η1, f = 〈σ, ~f〉〉 : Γ1 ⊕ 〈~a〉 → Γ′1 ⊕ 〈~a1〉 ⊗ Γ′2 ⊕ 〈~a2〉 and η2 : Γ2 →

⊗ ~Γ, ~β ∈ JT K~x(Γ2,~a);
[f]~Γ = Γ~a1 ⊗ Γ~a2 and [f]~β = ~β~α1 ⊕ ~β~α2 ;
τ : (Γ′1⊗Γ′2)⊗ (

⊗
Γ~a1 ⊗

⊗
Γ~a2)→ (Γ′1⊗

⊗
Γ~a1)⊗ (Γ′2⊗

⊗
Γ~a2) is the obvious symmetry.

By definition, we have (for S = QR)

JS{T/x}K~x(∆, a) =
∫ ~b∫ ∆1,∆2

JQ{T/x}K~x(∆1, ι(~b, a))×JR{T/x}K~x(∆2,~b)×!Un(∆,∆1⊗∆2).

By i.h., we get two isomorphisms JQ{T/x}K~x(∆1, ι(~b, a)) ∼= SubQ,x,T (∆1, ι(~b, a)) and
JR{T/x}K~x(∆2,~b) ∼= SubR,x,T (∆2,~b). We have our isomorphism, since isomorphisms are
preserved by products and coends. Then we can conclude, since morphism actions do not
change size of points and we have s

(
~β
)

= s
(
~β~a1

)
+ s
(
~β~a2

)
. J

Failure of Subject Reduction with Subtyping for Polyadic Terms. In Section 1 (see
Footnote 2), we mentioned that polyadic terms [41, 48] fail dramatically subject reduction
for intersection type distributors. Here we show a counterexample. We recall the definition
of linear polyadic calculus [41] in the framework of bang calculus.

p, q ::= x | λ〈x1, . . . , xk〉.p | pq | 〈p1, . . . , pk〉 | ⊥

Terms are taken up to α-equivalence and up to linearity with respect to ⊥ (i.e., λ~x.⊥ =
p〈⊥〉 = ⊥, etc.8). The reduction →p is the contextual closure of the following base case:

(λ~x.p)~q 7→p

{
p{~q/~x} if len(~q) = len(~x)
⊥ otherwise.

Since we want to link a calculus of approximants to intersection type distributors, the first
thing to check is that the calculus satisfies subject reduction and expansion within our system

8 This is slightly different from the original definition of [41], but being up to linearity simplify calculations.

CSL 2021

25:24 Categorifying Non-Idempotent Intersection Types

R→. Let ζ = 〈~x1, . . . , ~xn〉 and ∆ = 〈~a1, . . . ,~an〉. We write ζ : ∆ for ~x1 : ~a1, . . . , ~xn : ~an. We
give the following naive type assignment:

f : a′ → a

〈〉 : 〈〉, . . . , 〈x〉 : 〈a′〉, . . . , 〈〉 : 〈〉 ` x : a
(ζi : Γi ` qi)ki=1 η : ∆→

⊗k
i=1 Γi

[η](
⊗k

i=1 ζi) : ∆ ` 〈q1, . . . , qk〉 : 〈a1, . . . , ak〉
ζ ⊕ 〈~x〉 : ∆⊕ 〈~a〉 ` p : a
ζ : ∆ ` λ~x.p : ~a⇒ a

ζ0 : Γ0 ` p : ~a⇒ a ζ1 : Γ1 ` q η : ∆→ Γ0 ⊗ Γ1

[η](ζ0 ⊗ ζ1) : ∆ ` pq : a

where in the application case the left action [η]ζ means only that the positions of variables
in ζ are rearranged in accordance with the permutation induced by the morphism η. This
is reasonable and necessary, since the morphism η can in general rearrange the position
of types. This means that if ζ = 〈~x1, . . . , ~xn〉 and η = 〈〈σ1, ~f1〉, . . . , 〈σn, ~fn〉〉 then [η]ζ =
〈[σ1]~x1, . . . , [σn]~xn〉 where [σ]〈x1, . . . , xk〉 = 〈xσ(1), . . . , xσ(k)〉 is just the left action of the
symmetry group. It is easy to see that ⊥ is not typable in the type system above.

I Example 21. We present a counter-example for the subject reduction of the former system.
Take the polyadic term p = (λx.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉)〈λ〈z1, z2〉.z1〈z2〉〉. This term clearly
reduces to ⊥, but it is typable in the former type system. Let π =

g : b′ → b

〈x〉 : 〈b′〉, 〈〉 ` x : b 〈〉 : 〈〉, 〈y1〉 : 〈〈〉 ⇒ a〉 ` λ〈〉.y1〈〉 : 〈〉 ⇒ a 〈〉 : 〈〉, 〈y1〉 : 〈〈c〉 ⇒ a〉 ` λ〈f〉.y1〈f〉 : 〈c〉 ⇒ a

〈x〉 : 〈b′〉, 〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : a
〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

Where c = 〈〉 ⇒ a and b′ = 〈〈c〉 ⇒ a, 〈〉 ⇒ a〉 ⇒ a and b = 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ⇒ a

the morphism g being of the shape 〈σ, 1〈〉⇒a, 1〈a〉⇒a〉 ⇒ 1 with sigma being the obvious
permutation. Consider ρ =

〈z1〉 : 〈〈c〉 ⇒ a〉 ` z1 : 〈c〉 ⇒ a 〈z2〉 : 〈c〉 ` z2 : c
〈z1, z2〉 : 〈〈c〉 ⇒ a, c〉 ` z1〈z2〉 : a
` λ〈z1, z2〉.z1〈z2〉 : 〈〈c〉 ⇒ a, c〉 ⇒ a

Now take π′ =

π...
〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

ρ
...

` λ〈z1, z2〉.z1〈z2〉 : b′

〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` p : a

The term p reduces to ⊥. Indeed,

p = (λx.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉)〈λ〈z1, z2〉.z1〈z2〉〉
→p (λ〈z1, z2〉.z1〈z2〉)〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉
→p (λ〈〉.y1〈〉)〈λ〈f〉.y2〈f〉〉 →p ⊥

Therefore, p→∗p ⊥ and p is typable, while ⊥ it is not. The problem relies completely in
the variable rule: the subtyping feature of the system is not detected by the syntax of the
standard polyadic calculus. If we want to find an appropriate term language for our system,
whose elements are also approximants of ordinary bang terms, we need to take seriously the
qualitative information produced by the subtyping.

	Introduction
	Preliminaries
	Rel, Polr, Dist
	A Type-Theoretic Non-Extensional Model for the Bang Calculus
	Conclusions
	References
	Appendix

