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Abstract
The framework of well-structured transition systems has been highly successful in providing generic
algorithms to show the decidability of verification problems for infinite-state systems. In some of
these applications, the executions in the system at hand are actually trees, and need to be “lifted” to
executions over sets of configurations in order to fit in the framework. The downside of this approach
is that we might lose precision when analysing the computational complexity of the algorithms,
compared to reasoning over branching executions.
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1 Outline

In this talk, I intend to present a few ideas developed jointly with Ranko Lazić in [18]
and investigate how to adapt the framework of well-structured transition systems (WSTS),
due chiefly to Abdulla, Čerāns, Jonsson, and Tsay [1] and Finkel and Schnoebelen [10],
in order to handle tree computations. The WSTS framework supplies generic algorithms
for model-checking infinite-state systems, where the algorithms’ termination relies on a
well-quasi-ordering [16] of the configurations compatible with the transition relation.

Lifting Branching Systems. Well-structured transitions systems have found numerous
applications since their inception in the 1990’s, and these already encompass applications for
infinite-state systems with branching executions rather than linear ones. In relation to logic
in computer science, some of my favourite examples include provability in substructural logics
like the conjunctive-implicational fragment of relevance logic [20, 25] or propositional linear
logic with either contraction or weakening [17], and satisfiability for fragments of XPath over
data trees [14, 6, 9].

Indeed, one can lift a branching transition relation to reason instead over linear executions
over sets of configurations. Depending on the exact setup, the well-quasi-ordering on configur-
ations is similarly lifted using either the Smyth quasi-ordering – also known as the minoring
quasi-ordering – , or the Hoare quasi-ordering – also known as the majoring quasi-ordering.
In the applications to substructural or data logics mentioned above, the configurations are
essentially vectors of natural numbers in Nd for some d (ordered componentwise), and in
those cases the two quasi-orderings over sets of configurations are well [13, 19] and compatible
with the lifted transition relations, thereby defining a WSTS.
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3:2 Branching in Well-Structured Transition Systems

Algorithmic Complexity. While this lifting approach is successful for establishing decidability
results, it is less so when trying to prove complexity upper bounds. In most algorithmic
uses of well-quasi-orderings, one can rely on generic combinatorial analyses to extract upper
bounds [7, 24, 21, 23, etc.]. The obtained bounds are typically non primitive-recursive, and
depend primarily on the quasi-ordering. This approach has been applied to several classes of
WSTS, and in many cases these gigantic worst-case complexity upper bounds are really a
testament to the expressiveness of the corresponding classes of WSTS, as they are matched
with tight lower bounds [12, 15, 11, 4, 21, 22, etc.].

In the case of the Smyth and Hoare quasi-orderings over subsets of Nd however, the
complexity bounds on the lifted WSTS typically do not match the lower bounds. In that
respect, Balasubramanian [3] recently improved the upper bounds of Abriola, Figueira, and
Senno [2] and his hyper-Ackermannian bounds for the Hoare quasi-ordering over finite subsets
of Nd are tight. But those lower bounds might not be realisable through the lifting of a
branching transition system, and so far the known complexity lower bounds for all the
mentioned applications [25, 5, 8, 17] are Ackermannian or lower.
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