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Abstract
In the quest for a logic capturing Ptime the next natural classes of structures to consider are those
with bounded color class size. We present a canonization procedure for graphs with dihedral color
classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures
Ptime on this class of structures. This is the first result of this form for non-abelian color classes.

The first step proposes a normal form which comprises a “rigid assemblage”. This roughly means
that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with
color classes of bounded size can be reduced canonization preservingly to normal form in CPT.

In the second step, we show that for graphs in normal form with dihedral color classes of bounded
size, the canonization problem can be solved in CPT. We also show the same statement for general
ternary structures in normal form if the dihedral groups are defined over odd domains.
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1 Introduction

One of the central open questions in the field of descriptive complexity theory asks about the
existence of a logic that captures polynomial time (Ptime) [11]. This question goes back to
Chandra and Harel [5]. They ask whether there is a logic within which we can define exactly
the polynomial-time computable properties of relational structures. For the complexity class
NP such a logic is known, namely existential second order logic. This was shown by Fagin in
his famous theorem [7]. However, for the class Ptime, the question has been open now for
more than 35 years. A fundamental difficulty at its heart is a mismatch between logics and
Turing machines. An input has to be written onto a tape to provide it to a Turing machine.
So all inputs are necessarily ordered by the position of each character on the tape. This is
the case even when there is no natural order to begin with, which for example happens with
the vertices of a graph that is encoded. In contrast to this, such an order is typically not
given for a logic. In fact, if an order is given a priori then there is a logic capturing Ptime,
for example on totally ordered structures. Indeed, IFP (first order logic enriched with a
fixed-point operator) is such a logic as shown by the Immerman-Vardi Theorem [18].
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31:2 Canonization for Dihedral Color Classes

In the ongoing search for a logic for unordered structures, one of the most promising
candidates is the logic Choiceless Polynomial Time (CPT). It manages to capture an important
aspect demanded from a “reasonable logic” in the sense of Gurevich [17], namely that such a
logic cannot make arbitrary choices. Whenever there are multiple indistinguishable elements,
a logic can either process all or none of them. It is impossible to pick one element arbitrarily
and process just that. This is common for many algorithms executed on Turing machines
exploiting the order given by the tape. In the form originally defined by Blass, Gurevich, and
Shelah [3], CPT has a pseudocode-like syntax for processing hereditarily finite sets. Most
importantly there is a construct to process all elements of a set in parallel, because we cannot
choose one to process first. Subsequently, there were definitions by Rossman [27] and Grädel
and Grohe [9] in a more “logical” way using iteration terms or fixed points.

The question of whether a logic capturing Ptime on a class of structures exists is closely
linked to the problem of canonization. Suppose it is possible to canonize input structures
from a particular class in a logic (i.e., to define an isomorphic copy enriched by a total order).
Then the logic (extended by IFP) captures Ptime on this class by the already mentioned
Immerman-Vardi Theorem. This yields a general approach to show that some logic captures
Ptime on a class of structures: proving that canonization of the structures is definable in
this logic. This approach has been the method of choice for numerous results in descriptive
complexity theory. To this end, it was shown that canonization is IFP+C (IFP with counting)
definable on interval graphs [20], graphs with excluded minors [10, 12, 13, 14], and graphs
with bounded rank width [15]. Thus IFP+C captures Ptime on these classes. Regarding
CPT, all CPT-definable properties and transformations (e.g., canonization) are in particular
polynomial-time computable. If canonization is CPT-definable for a graph class then CPT
captures Ptime on this class because CPT subsumes IFP+C.

Closely linked to the problem of canonization is the problem of isomorphism testing. A
polynomial-time canonization algorithm implies a polynomial-time isomorphism test. While
we do not know of a formal reduction the other way around, we usually have efficient
canonization algorithms for all classes for which an efficient isomorphism test is known
(see [28] for an overview). This statement can even be proven unconditionally for classes of
vertex-colored structures with a CPT-definable isomorphism problem [16]. Accepting for
the moment that canonization and isomorphism testing are algorithmically very related, we
arrive at the following observation: if isomorphism testing is polynomial-time solvable on a
class of structures then, to capture Ptime, we must “solve” the isomorphism problem in the
logic anyway. If we do so in CPT we (almost) immediately obtain a logic capturing Ptime.
In summary, it appears the question of a logic for Ptime boils down to isomorphism testing
within a logic.

There is a notable class for which we have polynomial-time isomorphism testing and
canonization algorithms, but for which we do not know how to canonize them in CPT. This is
the class of structures with bounded color class size. Specifically, for an integer q, a q-bounded
structure is a vertex-colored structure, where at most q vertices have the same color and a
total order on the colors is given. Structures with bounded color class size can be canonized
in polynomial time with group-theoretic techniques (see [8, 1, 2]). The introduction of
group-theoretic techniques marks an important step for the design of canonization algorithms.
The use of algorithmic group theory turned out to be very fruitful and subsequently lead to
Luks’s famous polynomial-time isomorphism test for graphs of bounded degree [22]. It uses
a more general and more complicated machinery than needed for bounded color classes.

For the purpose of isomorphism testing, these group-theoretic techniques inherently rely
on choosing generating sets, and it is not clear how this can be done in a choiceless logic.
A well-known construction of Cai, Fürer, and Immerman [4] shows that IFP+C does not
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provide us with a Ptime logic for 2-bounded structures. Finding a natural, alternative logic
for q-bounded structures is still an open problem. Studying structures with bounded color
class size is a reasonable a next step, because the canonization algorithm for them makes use
of comparatively easy group theory but we still do not know how to transfer these techniques
into logics.

A first result towards the canonization of structures with bounded color class size in CPT
was the canonization of structures with abelian colors, that is the automorphism group of
every color class is abelian, due to Abu Zaid, Grädel, Grohe, and Pakusa [29]. They use a
certain class of linear equation systems to encode the group-theoretic structure of abelian
color classes and solve these systems in CPT. In particular, they show that CPT captures
Ptime on 2-bounded structures. Considering dihedral groups is a next natural step because
dihedral groups are extensions of abelian groups by abelian groups.

Contribution. This paper presents a canonization procedure in CPT for finite q-bounded
structures with dihedral colors. A color class is dihedral (resp. cyclic) if it induces a
substructure whose automorphism group is dihedral (resp. cyclic). A dihedral group is the
automorphism group of a regular n-gon consisting of rotations and reflections and we call it
odd if n is odd. Dihedral groups are non-abelian for n > 2. We thereby provide the first
canonization procedure for a class of q-bounded structures with non-abelian color classes and
in particular show that CPT captures Ptime on it. Overall, we prove the following theorem:

I Theorem 1. The following structures can be canonized in CPT:
1. q-bounded relational structures of arity at most 3 with odd dihedral or cyclic colors
2. q-bounded graphs with dihedral or cyclic colors.

Our approach consists of two steps. As a first step, we propose a normal form for arbitrary
finite q-bounded structures. Then, in a second step, we use group-theoretic arguments to
canonize structures with dihedral colors given in the aforementioned normal form.

Concretely, the first step is a reduction transforming the input structure into a normal
form, which ensures that a color class and its adjacent color classes form a “rigid assemblage”.
That is, locally the automorphism groups form 2-injective 3-factor subdirect products or
are quotient groups of other color classes. In the the case of 2-injective 3-factor subdirect
products, the automorphisms of three adjacent color classes are not independent of each
other. This means that every nontrivial automorphism of the substructure induced by these
three color classes is never constant on two of them. More precisely, we prove the following
theorem (formal definitions and proofs are given later in the paper).

I Theorem 2. For every q and signature τ there is a q′ and another signature τ ′, such that
relational q-bounded τ -structures of arity r can be reduced canonization preservingly in CPT
to q′-bounded 2-injective quotient τ ′-structures.

It was not necessary to consider 2-injective groups for abelian colors yet, but it is for
non-abelian colors. Towards a reduction step, a purely group-theoretic analysis of 2-injective
groups is given in [23]. The main insight is basically that such groups decompose naturally
into structurally simpler parts which are related via a common abelian normal subgroup. We
extend the techniques to canonize abelian color classes and show how they can be combined
with the analysis of 2-injective groups to obtain a canonization procedure for said structures
with dihedral colors in CPT. That is, we provide new methods to integrate group-theoretic
reasoning, which is at the core of canonizing q-bounded structures algorithmically, into logics.
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Our Technique. The strategy of our canonization procedure is to reduce the dihedral groups
in some way to abelian groups and then exploit the canonization procedure of [29].

Since the automorphism groups of the color classes are restricted to be dihedral or
cyclic, we can characterize all occurring 2-injective 3-factor subdirect products. Using this
characterization we show that we can partition the input structure into parts we call reflection
components. These reflection components have the property that automorphisms either
simultaneously reflect the points in all color classes of the component or in none. In the
latter case they rotate the points in all color classes. We use this property to force all groups
in a reflection component to become abelian: we prohibit reflections in one color class of
the reflection component and this automatically prohibits reflections in all other classes of
the component, too. Once all reflections are removed, the remaining groups are abelian.
Then we apply the canonization procedure for structures with bounded abelian color classes
from [29] to the entire reflection component.

Not limiting ourselves to dihedral groups but also allowing cyclic groups has the benefit
that the class of occurring groups is closed under quotients and subgroups. Quotient and
subgroups of the input color classes occur naturally in our reduction process to the normal
form. For dihedral groups it turns out that odd dihedral groups are easier to handle than the
other ones. In fact, reflection components are not really independent but can have “global”
dependencies. We show that for “odd” dihedral groups, reflection components can only be
related via color classes with abelian automorphism groups, that is their global dependencies
are abelian. For “even” dihedral groups, there is a single non-abelian exception that can
connect reflection components, which complicates matters. For even dihedral color classes
this restricts us to the treatment of graphs (see Theorem 1 above).

Towards generalization, it unfortunately becomes cumbersome to exploit the group
structure theory in CPT, which is heavily required to execute the approach. Extending
the treatment of linear equation systems, which is a subroutine in [29], to dihedral groups
requires significant work already. We still follow the strategy of [29] and use a certain class
of equation systems to encode the global dependencies. However, we need to generalize the
equation systems. Consequently, we have to adapt all operations used on these equations
systems to work in the more general setting (e.g. the check for consistency). This becomes
technically even more involved than the techniques of [29] already are.

Related Work. There already exist various results for CPT regarding structures with
bounded color class size in addition to the ones mentioned above: Cai, Fürer, and Immerman
introduced the so-called CFI graphs. From every base graph, a pair of two non-isomorphic
CFI graphs is derived. The isomorphism problem on these pairs of graphs is used to separate
IFP+C from Ptime [4]. Dawar, Richerby, and Rossman showed in [6] that the isomorphism
problem for the CFI graphs can be solved in CPT for base graphs of color class size 1.

This result was strengthened by Pakusa, Schalthöfer, and Selman to base graphs with
logarithmic color class size [26]. The techniques of [6] and [26] are used in [29] to solve the
mentioned equation systems.

The logic IFP+C has a strong connection to the higher dimensional Weisfeiler-Leman
algorithm and to an Ehrenfeucht–Fraïssé-like game, the so-called bijective pebble game. They
are often used to show that IFP+C identifies graphs in a given graph class, i.e., that for any
two non-isomorphic graphs of the class there is an IFP+C formula distinguishing them. It
was shown by Otto [24] that if IFP+C captures Ptime on a graph class then IFP+C also
identifies all graphs in this class. The converse direction is open [12]. The capabilities of
IFP+C to detect graph decompositions were recently investigated in [19].
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Structure of this Paper. We begin with the characterization of 2-injective 3-factor subdirect
products of dihedral and cyclic groups in Section 3. Then we turn to structures and to
permutation groups. We begin with the reduction to the above mentioned normal form in
Section 4 and then preprocess structures with dihedral colors in Section 5. In Section 6 we
introduce tree-like cyclic linear equation systems (TCES) and show that a certain subclass of
them can be solved in CPT. Finally, we define and analyze reflection components in Section 7
and give the CPT-definable canonization procedure for dihedral colors. Full formal proofs
can be found in [21].

2 Preliminaries

Bounded Relational Structures. A (relational) signature τ = {R1, . . . , Rk} is a set of rela-
tion symbols with associated arities ri ∈ N for all i ∈ [k] := {1, . . . , k}. We consider signatures
containing a binary relation symbol �. A τ -structure H is a tuple H = (H,RH1 , . . . , RHk ,�)
where RHi ⊆ Hri for all i ∈ [k] and �⊆ H2 is a total preorder. Unless said otherwise,
all structures considered in this paper will be finite. The preorder � partitions H into
equivalence classes, which we call color classes, and induces a total order on them. We denote
the set of H-color classes by CH. For a set I ⊆ H we denote with H[I] the substructure
induced by I. If I = C is a color class, we just write C for H[C], if the structure H is clear
from the context. If I ⊆ CH we also write H[I] for H[

⋃
I]. Two colors classes C,C ′ ∈ CH

are related, if there is some tuple containing a vertex from C and C ′ in some RHi .
A relation RHi is homogeneous if RHi ⊆ Ck for some C ∈ CH and k ∈ N, otherwise it is

heterogeneous. A structure H is of arity r if the largest arity of a heterogeneous relation
is r. A structure is q-bounded, if |C| ≤ q for all C ∈ CH and the arity of every homogeneous
relation is bounded by q. We write Aut(H) for the automorphism group of H. For two
structures H1 and H2 we write Iso(H1,H2) for the set of isomorphisms between H1 and H2.

An ordered copy of H is a pair (H′, <), such that H′ = (H ′, RH′

1 , . . . , RH
′

k ,�′), H′ ∼= H,
and < is a total order that refines �′. A canonical copy can(H) is an ordered copy of H
obtained in a canonical way, i.e., defined in CPT in the following. For a canonical copy
can(H) we call the set Iso(H, can(H)) the canonical labellings.

Choiceless Polynomial Time. To give a concise definition of CPT, we follow the definition
of [9] and use the same idea of e.g. [25] to enforce polynomial bounds.

For a set of atoms A we denote with HF(A) the hereditarily finite sets over A. This is
the inclusion-wise smallest set with A ⊆ HF(A) and a ∈ HF(A) for every a ⊆ HF(A). A set
a ∈ HF(A) is called transitive, if c ∈ a whenever there is some b with c ∈ b ∈ a. We denote
with TC(a) the transitive closure of a, that is the least transitive set b with a ⊆ b.

Let τ be a signature. We extend τ by adding set-theoretic function symbols to obtain
τHF := τ ] {∅,Atoms,Pair,Union,Unique,Card}. For a τ -structure H, the hereditarily finite
expansion HF(H) is a τHF-structure over the universe HF(H) defined as follows: all relations
in τ are interpreted as in H. The other function symbols have the expected interpretation:
∅HF(H) = ∅ and AtomsHF(H) = H,
PairHF(H)(a, b) = {a, b} and UnionHF(H)(a) = {b | ∃c ∈ a. b ∈ c},

UniqueHF(H)(a) =
{
b if a = {b}
∅ otherwise

and CardHF(H)(a) =
{
|a| if a /∈ H
∅ otherwise

,

where the number |a| is encoded as a von Neuman ordinal.
A BGS term is composed as usual from variables and function symbols from τHF. There
are two additional constructs: if s(x̄, y) and t(x̄) are terms and ϕ(x̄, y) is a formula then

CSL 2021



31:6 Canonization for Dihedral Color Classes

Figure 1 Two vertex-colored graphs whose automorphism groups are the CFI group (left) and
the double CFI group (right).

r(x̄) = {s(x̄, y) | y ∈ t(x̄), ϕ(x̄, y)} is a comprehension term. If s(x) is a term with a single
free variable x, then s∗ is an iteration term. BGS formulas are composed of terms t1, . . . , tk
as R(t1, . . . , tk) (for R ∈ τ of arity k), t1 = t2, and the usual boolean connectives.

Let H be a τ structure. BGS terms and formulas are interpreted over HF(H). We
define the denotation JtKH : HF(H)k → HF(H) that for a term t(x̄) with free variables
x̄ = (x1, . . . , xk) maps ā = (a1, . . . , ak) ∈ HF(H)k to the value of t if we replace xi with ai.
For a formula ϕ(x̄) we define JϕKH to be the set of all ā = (a1, . . . , ak) ∈ HF(H)k satisfying ϕ.

For the comprehension term r as above, the denotation is defined as follows: JrKH(ā) ={
JsKH(āb) | b ∈ JtKH(ā), (āb) ∈ JϕKH

}
, where āb = (a1, . . . , ak, b). For an iteration term s∗

we define a sequence of sets via a0 := ∅ and ai+1 := JsKH(ai). Let ` := `(s∗,H) be the least
number with ai+1 = ai. We set Js∗KH := ai if such an ` exists and Js∗KH := ∅ otherwise.

A CPT term (or formula respectively) is a tuple (t, p) (or (ϕ, p) respectively) of a BGS
term (or formula) and a polynomial p(n). CPT has the same semantics as BGS by replacing t
with (t, p) everywhere (or ϕ with (ϕ, p)) with an exception for iteration terms: We set
J(s∗, p)KH := Js∗KH if `(s∗,H) ≤ p(|H|) and |TC(ai)| ≤ p(|H|) for all i, where the ai are
defined as above. Otherwise, we set J(s∗, p)KH := ∅. We use |TC(ai)| as a measure of the size
of ai, because by transitivity of TC(ai), whenever there is a set bk ∈ · · · ∈ b1 ∈ ai, then also
bk ∈ TC(ai) and thus TC(ai) counts all sets occurring somewhere in the structure of ai.

3 Classification of 2-Injective Subdirect Products of Dihedral Groups

We begin with the classification of 2-injective subdirect products of dihedral groups. A group
Γ ≤ G1 ×G2 ×G3 is called a (3-factor) subdirect product if the projection to each factor is
surjective. It is called 2-injective if ker(πi(Γ)) = {1} for all i ∈ [3], where πi is the projection
on the two factors apart the i-th. Another way of looking at this is that two components of
an element of Γ determine the third one uniquely.

For n ≥ 3, the dihedral group Dn of order 2n is the automorphism group of a regular n-gon
in the plane. It consists of n rotations and n reflections and acts naturally on the set of n
vertices of the polygon. We regard the identity 1 as rotation and write Rot(Dn) for the
rotation subgroup consisting only of rotations. It is isomorphic to the cyclic group Cn of
order n. Only in the degenerate cases D1 and D2 the dihedral group is abelian. It holds
that D1 ∼= C2 and D2 ∼= C2

2. Elements in the direct product Dn1 × · · · × Dnk
are rotations

(resp. reflections) if all components are rotations (resp. reflections). For ni ≥ 2 it contains
mixed elements that are neither a reflection nor a rotation. Subgroups of such a group may
or may not contain mixed elements: A group Γ ≤ Dn1 × · · · × Dnk

with ni > 2 for all i ∈ [k]
is called a rotate-or-reflect group if every g ∈ Γ is a rotation or a reflection. Our classification
involved many technical proofs and we only state its result here (proofs can be found in [21]).
Roughly speaking, almost all 2-injective subdirect products of cyclic and dihedral groups are
abelian or rotate-or-reflect groups. There are precisely two exceptions involving the double
CFI group:
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I Definition 3 (CFI Groups). We call the group ΓCFI :=
{

(g1, g2, g3) ∈ D3
1 | g1g2g3 = 1

}
< D3

1
the CFI group and the wreath product Γ2CFI := ΓCFI o C2 the double CFI group (cf. Figure 1).

I Theorem 4. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product. Then exactly
one of following holds:
1. ni > 2 for all i ∈ [3] and Γ is a rotate-or-reflect group.
2. ni = 4 for all i ∈ [3] and Γ is isomorphic to the double CFI group Γ2CFI.
3. ni ≤ 2, nj = nk > 2 for {i, j, k} = [3], and πi(Γ) is a rotate-or-reflect group.
4. ni ≤ 2 for all i ∈ [3] and Γ is abelian.

I Theorem 5. Let Γ ≤ Cn1 ×Dn2 ×Dn3 be a 2-injective subdirect product. Then exactly one
of the following holds:
1. n1 ≤ 2, n2, n3 > 2, and π1(Γ) is a rotate-or-reflect group.
2. n1 = n2 = n3 = 4 and Γ ∼= Γ2CFI ∩ (Rot(D4)× D4 × D4).
3. n1, n2, n3 ≤ 2 and Γ is abelian.
Furthermore, there are no 2-injective subdirect products of Dn × G2 × G3 for n > 2 if G2
and G3 are abelian groups.

The classification is later used in the canonization of structures with bounded dihedral
colors to analyze how color classes can be connected to others. But first, we make the local
automorphism groups, which form 2-injective 3-factor subdirect products, explicit.

4 Normal Forms for Structures

In this section we describe a normal form for relational structures. We sketch how it can
be obtained in CPT. It is also important that we have means within CPT to translate a
canonical form of the normal form back into a canonical form of the original structure. A
structure H can be reduced to another structure H′ canonization preservingly in CPT, if we
can define the reduction in CPT from H to H′ and if we can define a canonical copy of H
whenever we are given H and a canonical copy of H′. Formally, the reduction is between
classes of structures:

I Definition 6. A canonization-preserving CPT-reduction from a class of structures A to a
class of structures B is a pair of CPT-interpretations (Φ,Ψ) with the following properties:

Φ is a CPT-interpretation from A-structures to B-structures.
Ψ is a CPT-interpretation from pairs of an A-structure and an ordered B-structure to
ordered A-structures.
Given a CPT-interpretation Θ from B-structures to ordered B structures, i.e., a CPT-
definable canonization procedure, then Ψ((H,Θ(Φ(H)))) is an ordered copy of H for every
A-structure H.

We also say that A can be reduced canonization preservingly in CPT to B if there is a
canonization-preserving CPT-reduction from A to B.

As a first step, we are interested in structures those color classes cannot be refined by “local”
properties:

We call a relational structure H transitive on s color classes if for every I ⊆ CH satisfying
|I| ≤ s the group Aut(H[I])|C is transitive for every C ∈ I.
Let H = (H,RH1 , . . . , RHk ,�) be a structure of arity r. We call (C1, . . . , C`) the type
of RHi if RHi ⊆ C1 × · · · × C` and Ci 6= Cj for all i 6= j. We denote with TH the set of
types of all relations that have a type. We say that H has typed relations if every relation
is either homogeneous or has a type.

CSL 2021



31:8 Canonization for Dihedral Color Classes

We can define a CPT reduction from q-bounded structures to q-bounded typed structures
transitive on s color classes, because the additional properties can be checked on substructures
of constant size. If they are violated, we split the affected color classes and relations.
Additionally, we ensure that all color classes are regular, i.e., their automorphism groups are
regular (a color class C is regular if |Aut(C)| = |C| and Aut(C) is transitive, so has only one
C-orbit). This is archived by replacing a color class C by a certain `-orbit of Aut(C) (for
a sufficiently large `). Then we modify the relations to preserve the automorphism groups
of the color classes and the connections between them. The said properties simplify the
following constructions designed to gain more control on local automorphism groups.

We want to reduce certain local automorphism groups to 2-injective subdirect products.
Recall from Section 3 the condition ker(πi(Γ)) = {1} for 2-injective products: If the condition
is violated, we want to factor out a normal subgroup N /Aut(C) (the kernel above) of a color
class C. By factoring N out of C, we obtain a quotient color class:

I Definition 7 (Quotient Color Class). Let H = (H,RH1 , . . . , RHk ,�) be a structure and the
automorphism group of C ∈ CH be regular. Let N / Aut(C). We say that another color
class C ′ is an N -quotient of C if Aut(C′) ∼= Aut(C)/N and there is a function RHj ⊆ C × C ′
determining the orbit partition of N acting on C, i.e., a vertex in C ′ corresponds to an N
orbit and the vertices of C are adjacent to its orbit vertices via RHj . The relation RHj is
called the orbit-map (of C).

Quotient color classes can always be defined: the N -orbits on C become the vertices of the
quotient color class and the orbit-map is given by containment of a C-vertex in an N -orbit.

Now we turn to structures with 2-injective subdirect products as local automorphism
groups. The structures we are aiming for consist of two different kinds of color classes. The
group color classes form 2-injective subdirect products. They are quotient color classes
of extension color classes, which connect different group color classes via the orbit-maps
(cf. Figure 4). Formally:

I Definition 8. Let H = (Hgr ]Hex, R
H
1 , . . . , R

H
k ,�) be a structure, where Hgr and Hex are

unions of color classes. We call a color class C ⊆ Hgr (respectively C ⊆ Hex) a group color
class (respectively an extension color class). We define the group types THgr ⊆ TH to be the
set of all types only consisting of group color classes. Let T = (C1, . . . , Cj) ∈ THgr . We set
ΓHT := Aut(H[

⋃
i∈[j] Ci]) ≤

⊗
i∈[j] Aut(Ci). Finally, we call H an (r − 1)-injective quotient

structure if it satisfies the following (cf. Figure 4):
a) H is of arity r, has typed relations, and all color classes are regular.
b) Every group color class C ⊆ Hgr is an N-quotient of exactly one extension color class

C ′ ⊆ Hex, where N / Aut(C′), and not related to any other extension color class apart
from C ′. Moreover, C is only related by the orbit-map to C ′.

c) All relations only between group color classes are of arity exactly r and every group color
class occurs in only one group type.

d) For every T ∈ THgr the group ΓHT is an (r − 1)-injective r-factor subdirect product (for a
straightforward generalization of 2-injective 3-factor subdirect products).

Proof sketch of Theorem 2. We now consider a structure H of arity 3. First, apply the
previous reductions to obtain typed structures that are transitive on 3 color classes and
which have regular color classes. Then consider a type T = (C1, C2, C3) ∈ TH. Let ΓT :=
Aut(H[C1 ∪ C2 ∪ C3]) and NT

i := ker(πΓT
1 ) for all i ∈ [3]. Then the group ΓT /NT

1 /N
T
2 /N

T
3

is a 2-factor subdirect product. We realize this product in the structure by constructing
the NT

i -quotient color class of Ci and adjusting the relations as required. We perform this
operation for all types T . The constructed quotient color classes form the group color classes
of the output structure and the original ones the extension color classes (cf. Figure 2). J
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Figure 2 The situation in Theorem 2: On the left the input structure. Each circle represents one
color class with drawn tuples of two relations (red and blue) between two ΓT /NT

1 /NT
2 /NT

3 -orbits
of each color class (where T is different for the red and blue relation). On the right the altered
structure: For the types of the red and blue relations there are new group color classes (on the top
for red and on the bottom for blue), where the orbits are contracted to a single vertex. The “old”
color classes became extension color classes.

For structures of arity r > 3, we also need to reduce the arity. For this, we insert color classes
dividing a relation into two new relations of lower arity. In particular, if the input structure
is of arity 3, the automorphism group of an output color class is a section (a subgroup of a
quotient) of the automorphism group of some input color class (cf. Theorem 38 in [21]). We
reduce to arity 3, because arity 2 does not simplify the problem further.

5 Structures with Dihedral Colors

A structure H = (H,RH1 , . . . , RHk ,�) has dihedral colors if for every H-color class C the
group Aut(C) is a dihedral or cyclic group. We allow cyclic groups to ensure closure under
taking subgroups and quotients. We want to make the dihedral groups explicit as follows: For
cyclic groups we require two relations only to avoid case distinctions. Regular and dihedral
color classes can always be brought in standard form. In fact, it is always possible to pick
two 2-orbits of the color class, that serve as the two required relations. The standard form
cycles will help us later to prohibit the reflections in a color class.

6 Cyclic Linear Equation Systems in CPT

Before we begin to canonize structures with dihedral colors, we need to discuss a special
class of linear equation systems. These systems are later used in the canonization procedure
to encode the canonical labellings. Let V be a set of variables and � be a preorder on V .
The variable classes are the �-equivalence classes and are totally ordered by �. A cyclic
constraint on W ⊆ V is a consistent set of linear equations over Zq containing for each pair
u, v ∈W an equation of the form u− v = d for d ∈ Zq.

I Definition 9 (TCES). A tree-like cyclic linear equation system (TCES) over Zq (q a prime
power) is a tuple (V, S,�) with the following properties:

The variable classes form a rooted tree with respect to being a direct successor in �.
S is a linear equation system on V containing for every variable class a cyclic constraint.
For every constraint

∑
i aiui = d with ui ∈ V and ai, d ∈ Zq in S every pair of variables

ui, uj is �-comparable.
In CPT, a system of linear equations S is represented by a set of constraints, which itself are
encoded as sets. TCESs generalize cyclic linear equations systems (CES) from [29], where �
must be total.
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Figure 3 The variable tree (a vertex represents a variable class) of a TCES with all local
components. Reordering variable classes inside a local component does not affect the tree structure.

An important operation on CES is the check for consistency. We sketch the check from [29]
and its extension to TCES only very roughly, since it requires many technical details (see
Section 6 in [21]). In principle, one would like to choose one variable per variable class
and eliminate the others using the u− v = d equations. If this was done, we would be left
with a totally ordered system (in case of CESs). Of course, choosing the variables is not
possible, but the system can be encoded in an equation system of hyperterms, which in some
way encode all possible choices of variables and allow arithmetic manipulation. In these
hyperterms, the variable classes “became the variables” for which we can apply a variant of
Gaussian elimination using a certain kind of hermite normal form. This variant takes care of
the issue that we are working over rings and not over fields: it reorders the variable classes
based on their coefficients in the equations. Only if they have the same, the variable classes
are ordered by the original order.

The translation to hyperterms can be done with TCES exactly as for CES. But the
Gaussian elimination does not work anymore: Reordering a tree by the order of the coefficients
does not necessarily result in a tree anymore (which causes further difficulties). To overcome
this problem, we restrict to TCES, where the reordering does not harm the tree structure but
only happens inside so-called local components (cf. Figure 3). Now, we can apply another
variant of Gaussian elimination, which does not require a total order on the variable classes.
It processes local components from leafs to the root and handles local and global variables
differently. We now define local components and these two kinds of variables.

A local component is a maximal and (in the variable tree) connected set of variable classes,
in which the tree does not branch (see Figure 3). On the local components the preorder �
induces a tree in which every local component has degree > 1 or is a leaf. A variable is local
if in every equation in which it occurs, i.e. it has non-zero coefficient, only variables of the
same local component occur, too. Other variables are called global. An equation is local if it
contains at least one local variable and global otherwise. For the subsequent canonization
the rings Z2` will be of special interest and thus treated differently.

I Definition 10. A TCES T = (V, S,�) over Zq is called weakly global, if
q is a power of an odd prime and every equation (equivalently every variable) is local or
q = 2` is a power of 2 and for every global variable u ∈ V there is an equation 2u = 0 ∈ S.

The definition states that only values of order at most 2 are candidates for solutions of
global variables. The adaption of Gaussian elimination strongly depends on this property, in
particular this restriction guarantees that reordering is only required inside local components.

I Theorem 11. Solvability of weakly global TCESs over Zq is CPT-definable.

The proof follows the same strategy as [25, 29] to solve CESs, but significant adaptations
were required throughout the whole procedure.
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Finally, we need to form the union of two TCESs. In general, a naive union is not a
TCES anymore if the variable structures of the two systems are incompatible. For a working
solution, we need the following notion: Let T = (V, S,�) be a TCES. We say that V ′ are
the topmost variables of T if V ′ is the set of all variables of the local component containing
the root class of the variable tree Lr (formally V ′ =

⋃
Lr). Let T1 and T2 be two TCESs

over Zq which are CPT distinguishable. That is, there is a CPT term defining the ordered
tuple (T1, T2) or equivalently an order T1 < T2 (e.g. the two TCESs are defined by different
CPT terms or can be ordered by their structure). If their common variables are topmost
in both TCESs and whose order is compatible in them, we can define a TCES T1 <∪ T2 by
joining them together at the topmost variables (cf. Definition 60 in[21]):

I Lemma 12. If T1 and T2 (with variables Vi and topmost variables V ′i ) are compatible,
then T1 <∪ T2 is again a TCES with topmost variables V ′1 ∪ V ′2 and it satisfies L(T1 <∪ T2) =⋂
i∈[2] extV1∪V2(L(Ti)). If both T1 and T2 are weakly global then T1 <∪ T2 is weakly global, too.

Here, extV1∪V2(L(Ti)) denotes the set N ⊆ ZV1∪V2
q whose projection to ZVi

q is equal to L(Ti).
We write T = (Tp1 , . . . , Tpk

) for a sequence of TCESs over pairwise coprime prime powers pi
and L(T ) for the solution space of T . Lemma 12 generalizes to series of TCESs by making
the assumptions of the lemma for TCESs Tpi , T ′qj

with pi and qi powers of the same prime.

7 Canonization of Structures with Dihedral Color Classes

Recall that for our canonization problem the reduction to normal forms (Theorem 2) shows
that we can assume the input structure to be a dihedral 2-injective quotient structure. Our
further strategy is as follows. We want to reduce canonization of dihedral 2-injective quotient
structures to that of structures with abelian color classes and then apply the canonization
procedure for abelian color classes. The main idea is to artificially prohibit reflections in one
color class and then hope that this prohibits reflections in other color classes as well. For
this, we want to exploit the classification of 2-injective subdirect products of dihedral groups
(Theorems 4 and 5) saying that most 2-injective subdirect products are rotate-or-reflect
groups. In particular, if we prohibit reflections in one color class of a rotate-or-reflect group
then reflections in the other color classes are prohibited, too. This effect of prohibiting
reflections continues through most 2-injective subdirect products and quotient color classes.
However, it does not have to reach all color classes since some 2-injective subdirect product
are not rotate-or-reflect groups (for example if one factor is abelian). We call the parts of
the structure in which reflections are linked in this way and can only occur simultaneously
reflection components. We analyze how reflection components can depend on each other. It
will turn out, that different reflection components can indeed only be connected through
abelian color classes. We call these color classes border color classes. Overall, we will follow
a two-leveled approach: on the top level, we deal with the dependencies between the border
(and all other abelian) color classes, and on the second level we consider each reflection
component on its own and how it is embedded in its border color classes.

To ensure that the border color classes are indeed all abelian we have to forbid the single
exception in Theorem 4, which is not a rotate-or-reflect group, namely the double CFI group.

I Definition 13 (Double-CFI-Free Structure). We call a 2-injective dihedral quotient structure
double-CFI-free, if for every T ∈ Tgr the group ΓT is neither isomorphic to the double CFI
group Γ2CFI nor to Γ2CFI ∩ (Rot(D4)× D4 × D4).
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There are two natural classes of structures that are double-CFI-free after applying the
preprocessing: graphs with dihedral colors and structures of arity 3 which are odd dihedral,
that is, for every non-abelian C ∈ CH there is an odd k such that Aut(C) ∼= Dk.

7.1 Reflection Components
Let H = (Hgr ] Hex, R

H
1 , . . . , R

H
k ,�) be an arbitrary dihedral 2-injective double-CFI-free

quotient structure. Whenever we construct a CPT term in the following, it does not depend
on H but gets H as input and in particular satisfies the claimed properties for all dihedral
2-injective double-CFI-free quotient structures. We use the set O := {�, �} to denote
orientations. For an orientation o ∈ O we set o := o′ as the reverse orientation, so that
O = {o, o′}.

I Definition 14 (Orientation). We say that a structure H′ = (Hgr ]Hex, R
H
1 , . . . , R

H
k ,�′) is

an orientation of H if �′ refines � with the following property: Let C ∈ CH be a color class
that is split by �′, then Aut(H[C]) is a non-abelian dihedral group and C is split into two
color classes C�and C�, such that each of the two classes contains one of the two oriented
cycles inducing the standard form in C. We say that H′ orients C.

By splitting the color class C in the above manner, we precisely prohibit the reflections in C.
Because an orientation modifies only the preorder of the structure, defining an orientation
of H is always canonization preserving. For a color class C with dihedral automorphism
group we can define in CPT two orientations HoC for o ∈ O that only orient C (by the two
possible orders Co ≺′ Co). Of course, we cannot choose one orientation canonically. But the
orientation of C can canonically be propagated to other color classes in the following cases:
a) Whenever C is part of a rotate-or-reflect group (because once we cannot reflect in one

component, we cannot do so in the others), and
b) whenever C ′ is a quotient of C (because once we remove reflections from C we can also

remove remaining reflections from quotient groups).
To prove Case a) we use the classification of 2-injective subdirect products of dihedral groups
(Theorems 4 and 5). We obtain an equivalence relation on the color classes: two classes are
equivalent if an orientation of one color class can be propagated to the other. We define
reflection components as the equivalence classes of said relation, which consists of color classes
with dihedral automorphism group (cf. Definitions 65 and 70 in the full version).

Because all color classes of a reflection component D can be oriented by orienting only a
single color class, we can speak of the two orientations of a reflection component D. We now
analyze how a reflection components can be connected to another one:

I Definition 15 (Color Class in Standard Form). Let H be a structure and C ∈ CH. We say
that a color class C ∈ CH is in standard form if the following holds:

If Aut(C) ∼= C|C| then there are relations RHi , RHj ⊆ C2 of arity 2 each forming a directed
cycle of length |C| on C.
Otherwise Aut(C) ∼= D|C|/2 and there are two relations RHi , RHj ⊆ C2 such that RHj
defines two directed and disjoint cycles of length |C|/2 and RHi connects them by a perfect
matching such that the two cycles are directed into opposite directions (cf. Figure 4).

We say that the relations RHi and RHj induce the standard form of C. The color classes of H
are in standard form, if every color class is in standard form.

I Definition 16 (Border Color Class). Let D ⊆ CH be a reflection component. We call a color
class C ∈ CH a border color class of D if C /∈ D and C is related to a color class contained
in D. We denote with B(D) the set of all border color classes of D.
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Figure 4 A 2-injective quotient structure with dihedral colors: an abelian color class is drawn as
circle, a non-abelian one as hexagon. The group color classes are at the top, the extension classes
at the bottom. An edge between a group class C and an extension class C′ denotes an orbit-map
and C is a quotient of C′. Edges between group color classes indicate relations of arity 3. The
reflection components are encircled and border color classes are gray. On the left a dihedral color
class in standard form with automorphism group D6.

I Lemma 17. Let D ⊆ CH be a reflection component and C ∈ B(D) a border color class
of D. Then Aut(C) is isomorphic to one of {C1,C2,D2} and C is a group color class.

This lemma is also proven using Theorems 4 and 5. So the border color classes of a reflection
component D are all abelian group color classes. That is, the reflection components are
embedded in a global abelian part of the structure (an example is shown in Figure 4). We
define HD := H[B(D)∪

⋃
D] and denote the two CPT-definable (abelian) orientations of HD

with HoD, o ∈ O. Let can(HoD) be canonizations for all o ∈ O. We denote with can(HoD) the
structure obtained from can(HoD) by undoing the orientation. Then HD ∼= can(HoD). Let <
be the lexicographical order on canonizations. We define the canonization can(HD) to be
the <-minimal canonization can(HoD) with o ∈ O. We analyze the canonical labellings of D.

I Lemma 18. If can(HoD) < can(HoD), then Iso(HD, can(HD)) = Iso(HoD, can(HoD)).

I Lemma 19. If can(H�
D) = can(H�

D), then Iso(HD, can(HD)) =
⋃
o∈O Iso(HoD, can(HoD)).

7.2 Canonizing Abelian Structures
Our canonization procedure strongly depends on the canonization procedure for q-bounded
structured with abelian color classes. This procedure not only outputs a canonization, but
also a CES encoding the canonical labellings. The automorphism group of a color class is
decomposed into a direct sum of cyclic groups, which are used to define variables and cyclic
constraints for this color class. In particular, if the automorphism group of a color class is
the direct product of cyclic groups of prime power order q, then all variables for this color
class range over Zq. A formal statement of the canonization procedure and the notion of
encoding isomorphisms can be found in [29] and in Theorem 81 in the full version of this
paper. It is also possible to start the canonization procedure for abelian color classes with a
TCES that encodes an initial set of allowed labellings (Lemma 83 in [21]).

7.3 Canonization Procedure
For dihedral colors we want to maintain an equation system encoding all canonical labellings
of all abelian color classes (and hence including all border color classes) that extend to
canonical labellings of the input structure. This suffices to encode the dependencies between
different reflection components because – as we have seen in the previous section – they can
only be connected via abelian color classes. As initialization step, we apply the canonization
procedure for abelian colors to all abelian color classes. Then we want to inductively add one
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1 Compute the set A ⊆ CH of abelian color classes;
2 Compute all reflection components D1 < · · · < Dm of H;
3 Compute can(H0) := can(H[A]) and Φ0 := Iso(H[A], can(H[A])) using the

canonization procedure for abelian colors;
4 for i ∈ [m] do
5 Set D := Di and define the two orientations HoD;
6 Compute can(HoD) and Φo := Iso(HoD, can(HoD)) such that Φi−1 ∩ extA(Φo) 6= ∅

with the canonization procedure for abelian colors;
7 if can(HoD) < can(HoD) for some o ∈ O then
8 can(Hi) := can(Hi−1) ∪ can(HoD);
9 Φi := Φi−1 ∩ extA(Φo|A);

10 else
11 can(Hi) := can(Hi−1) ∪ can(H�

D) ∪ can(H�
D);

12 Φi := Φi−1 ∩ extA((Φ� ∪ Φ�)|A);
13 can(H) := can(Hm);

Figure 5 Canonizing a 2-injective double-CFI-free structure H with dihedral colors in CPT.

reflection component in each step (possibly restricting the canonical labellings of the border
color classes). To do so, we want to define a canonical copy of the reflection component D
by taking the existing partial canonization into account. That is, given an equation system
encoding all canonical labellings of the partial canonization computed so far, we want to
increase both, the equation system and the canonization, by D in one step.

From now, we assume that the abelian color classes of a structure H are smaller than the
non-abelian ones (according to �). The canonization procedure is given in Figure 5, where we
use extA(Φ) as shorthand for ext⋃A(Φ). We fix the input structure H = (H,RH1 , . . . RHk ,�)
in the following (again, our CPT terms will not depend on H). The algorithm maintains
canonizations can(Hi) of Hi := H[A ∪

⋃
j∈[i]Dj ] and sets Φi of canonical labellings.

I Lemma 20. For i ≤ m the following holds: Hi ∼= can(Hi) and Φi = Iso(Hi, can(Hi))|A.

Proof Sketch. The canonization procedure for abelian color classes yields the desired set
of canonical labellings. By Lemmas 18 and 19 the canonical labellings of the (unoriented)
reflection component are computed correctly. J

We cannot compute with the sets Φi directly in CPT because they can be exponentially
large. So we encode them with sequences of weakly global TCESs Ti. We maintain that the
variables VA of the abelian color classes A ⊆ CH are contained in the topmost variables of
the Ti and thus the occurring TCESs will all be compatible. With what we have seen so far,
the canonization procedure can be expressed in CPT apart one exception in Line 12: We have
to show how to define a TCES encoding extA((Φ� ∪ Φ�)|A) = extA(Iso(HD, can(HD))|B(D)).

7.4 Equation Systems for Reflection Components
Let T := Ti−1 for some 1 < i ≤ m be in the series of weakly global TCESs for the canonization
constructed so far, D := Di be the next reflection component to canonize (cf. Figure 5), and
can(H�

D) = can(H�
D). Let So be the series of CESs encoding the sets Φo = Iso(HoD, can(HoD))

and the variables of the (abelian) border color classes of D be B = B1 < · · · < Bk. These
variables are equal for S� and S� and are contained in the topmost variables VA of T .
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We cannot fix an isomorphism in Iso(H�
D,H

�
D) = Iso(H�

D,H
�
D) canonically, but one

isomorphism contained in Iso(H�
D,H

�
D)|B(D): Note that by Lemma 17 the border color

classes have automorphism groups C`2 for ` ∈ {0, 1, 2}. Hence, all variables for the border
color classes range over Z2. We rename the variables of the two series of CESs, such that
both use different variables, but we still can identify a variable of a border color class of So
with a variable of a border color class of So. Hence, for two vectors xo ∈ ZB

o
i

2 we still can
write x� = x�. We denote with V o (and Bo respectively) the changed variables for o ∈ O.

I Lemma 21. There is a CPT term defining two vectors xo = (xo1, . . . , xok) ∈ ZB
o
1

2 ×· · ·×ZB
o
k

2
for both o ∈ O such that if yo ∈ L(So), then there is a yo ∈ L(So) such that yo|Bo +xo = yo|Bo .

Proof Sketch. Assume we have defined xo for the first i border color classes. We define a
TCES that is consistent if and only if there are yo ∈ L(So) for both o ∈ O that have different
values for exactly the Bj (j ∈ [i+ 1]) with j = i+ 1 or j ≤ i and xo(u) = 1 for all u ∈ Bj . If
the TCES is consistent, we set all entries for Bi+1 in xo to 1 and otherwise to 0. J

We now use the vectors xo to represent the canonical labellings of the border color classes,
which additionally extend to canonical labellings of the reflection component, as a TCES.

I Lemma 22. There is a CPT term defining a series of weakly global TCESs TD with the
following properties: B is contained in the topmost variables of TD, TD encodes the set
Iso(HD, can(HD))|B(D), and the size of TD is polynomial in |D|.

Proof Sketch. Let xo be the two vectors given by Lemma 21. We define a set of two variables
Bα := {α�, α�} (and set αo := HoD), VD := B ∪Bα ∪ V � ∪ V �, and �D such that it respects
the orders on B and V o and B ≺ Bα ≺ V o for all o ∈ O. The variable sets V � and V � are
incomparable. We want to define a TCES TD enforcing that if z ∈ L(TD), then there is an
o ∈ O and a yo ∈ L(So) such that z = yo|B. To do so, we guess two solutions yo ∈ L(So)
(one for each o ∈ O) with the property that yo|B + xo = yo|B (Lemma 21). Then we want
to ensure that z = y�|B or z = y�|B. To allow that one equality does not hold, we use the
additional variables α� to express the constraints z = yo|B + αo · xo. By enforcing that
exactly one of α� and α� is 1, we obtain the desired system. Finally, to make the system
linear, we encode the multiplication αo · xo. This is possible, because xo does not depend
on yo and can be defined before defining the following TCES:

y� ∈ L(S�), y� ∈ L(S�), 1 = α� + α�

z(u) = y�(u) = y�(u) if x�(u) = x�(u) = 0, u ∈ B
z(u) = y�(u) + α� = y�(u) + α� if x�(u) = x�(u) = 1, u ∈ B

where yo is indexed by V o and z is indexed by B and ranges over Z2. If the variable αo is
assigned to 1, then z = yo|Bo + xo and z = yo|Bo otherwise. Because of the cyclic constraint
1 = α� + α�, we add the vector xo to a solution yo of So for exactly one orientation o ∈ O.
One verifies the construction with Lemmas 19 and 21. J

Now, we defined all operation on TCESs needed and conclude:

I Theorem 23. Canonization of 2-injective double-CFI-free q-bounded gadget quotient
structures is CPT-definable.

This proves Theorem 1, because the involved classes of structures are double-CFI-free
after applying Theorem 2. In particular CPT captures Ptime on these classes.
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8 Conclusion

We separated a relational structure into 2-injective subdirect products and quotients, gave a
classification of all 2-injective subdirect products of dihedral and cyclic groups, and used
this classification to canonize relational structures with bounded dihedral colors of arity
at most 3. We showed that the structure decomposes into reflection components and that
in these components either all color classes have to be reflected or none. If we exclude a
single 2-injective subdirect product, namely the double CFI group, the reflection components
can only have abelian dependencies. This is always true for graphs, because the said group
cannot be realized by graphs with dihedral colors. In fact, we demonstrated the increase
of complexity when considering structures of arity 3 instead of 2. Apart from the fact
that the double CFI group does not appear, a classification of 1-injective 2-factor subdirect
products of dihedral groups is much easier. Considering higher arity, already 3-injective
4-factor subdirect products of dihedral groups cannot be classified to be (almost) abelian or
reflect-or-rotate groups. If one instead tries to reduce the arity of the structures, one needs
not only to work with a class of groups closed under taking quotients and subgroups (which
is the case for dihedral and cyclic groups), but also closed under taking direct products.

One natural way to exclude the double CFI group is a restriction to odd dihedral colors.
The difficulty with even dihedral groups might indicate that looking at odd (non-dihedral)
groups could be a reasonable next step. A natural graph class with odd automorphism groups
are tournaments. Since such groups are solvable there is hope for an inductive approach
exploiting the abelian case. It could be possible that the techniques developed in this paper
transfer to this case. Just like dihedral groups, odd groups are closed under taking quotients
and subgroups. However, they are also closed under direct products (and are solvable),
which would allow a reduction of the arity. Thus, it is possible to apply our reduction to
quotients and 2-injective groups. As a next step, one could try to follow a similar strategy as
for dihedral colors: identify components of the graph, in which the complexity of all color
classes decreases simultaneously, when a single color class is made easier (similar to reflection
components). This might not immediately result in abelian groups, but recursion on the
complexity of the groups could be a reasonable option, e.g. on the length of the composition
series or on the nilpotency class. All the mentioned avenues remain as future work.
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