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Abstract
Contextuality is a key signature of quantum non-classicality, which has been shown to play a central
role in enabling quantum advantage for a wide range of information-processing and computational
tasks. We study the logic of contextuality from a structural point of view, in the setting of partial
Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with
traditional quantum logic à la Birkhoff and von Neumann in that operations such as conjunction
and disjunction are partial, only being defined in the domain where they are physically meaningful.

We study how this setting relates to current work on contextuality such as the sheaf-theoretic and
graph-theoretic approaches. We introduce a general free construction extending the commeasurability
relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations.
This construction has a surprisingly broad range of uses. We apply it in the study of a number of
issues, including:

establishing the connection between the abstract measurement scenarios studied in the contextu-
ality literature and the setting of partial Boolean algebras;
formulating various contextuality properties in this setting, including probabilistic contextuality
as well as the strong, state-independent notion of contextuality given by Kochen–Specker
paradoxes, which are logically contradictory statements validated by partial Boolean algebras,
specifically those arising from quantum mechanics;
investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity
Principle widely studied in recent work on contextuality as a step towards closing in on the set
of quantum-realisable correlations;
developing some work towards a logical presentation of the Hilbert space tensor product, using
logical exclusivity to capture some of its salient quantum features.
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5:2 The Logic of Contextuality

1 Introduction

Kochen and Specker’s seminal work on quantum contextuality used the formalism of partial
Boolean algebras [21]. In contrast to quantum logic in the sense of Birkhoff and von Neumann
[7], partial Boolean algebras only admit physically meaningful operations. In the key example
of P(H), the projectors on a Hilbert space H, the operation of conjunction, i.e. product of
projectors, becomes a partial one, only defined on commuting projectors.

In more recent work [20], Kochen developed a large part of the foundations of quantum
theory in terms of partial Boolean algebras. Heunen and van den Berg [25] showed that
every partial Boolean algebra is the colimit of its (total) Boolean subalgebras. Thus the
topos approach to quantum theory [17] can be seen as a refinement, in explicitly categorical
language, of the partial Boolean algebra approach. In this paper, we relate partial Boolean
algebras to current frameworks for contextuality, in particular the sheaf-theoretic [5] and
graph-theoretic [9] approaches.

A major role in our technical development is played by a general universal construction
for partial Boolean algebras, which freely generates a new partial Boolean algebra from a
given one and extra commeasurability constraints (Section 2.2, Theorem 1). This result
is proved constructively, using an inductive presentation by generators and relations. It
is used throughout the paper as it provides a flexible tool, subsuming a number of other
constructions: some previously known, and some new.

We describe a construction of partial Boolean algebras from graphical measurement
scenarios, i.e. scenarios whose measurement compatibility structure is given by a binary
compatibility relation, or graph. Empirical models, i.e. correlations satisfying the no-signalling
or no-disturbance principle, on these scenarios correspond bijectively to probability valuations,
or states, on the corresponding partial Boolean algebras (Section 3.3).

We then turn our attention to contextuality properties. We discuss how probabilistic
contextuality is formulated in the setting of partial Boolean algebras (Section 4.2), and
show that the strong, state-independent form of contextuality considered by Kochen and
Specker can be neatly captured using the universal construction mentioned above (Section 4.1,
Theorem 16).

We also consider questions of quantum realisability, i.e. aiming to characterise the logical
structure of partial Boolean algebras of projectors on a Hilbert space, and probability models
that admit a Hilbert space realisation. This motivates us to propose a Logical Exclusivity
Principle (LEP), which is always satisfied by partial Boolean algebras of the form P(H)
(Section 5.1). We use a variant of our universal construction to show that there is a reflection
between partial Boolean algebras and those satisfying LEP (Section 5.4, Theorem 26). We
relate this Logical Exclusivity Principle to Specker’s Exclusivity Principle for probabilistic
models [8]. We show that if a partial Boolean algebra satisfies LEP, then all its states satisfy
the Probabilistic Exclusivity Principle (PEP) (Section 5.3, Proposition 24). Moreover, we
show that a state on a partial Boolean algebra satisfies PEP if it extends to one on its
logically exclusive reflection, i.e. the freely generated partial Boolean algebra satisfying LEP
(Section 5.3, Theorem 25).

In a similar vein, we consider the extent to which the tensor product operation on Hilbert
spaces can be “tracked” by a corresponding operation on partial Boolean algebras. We first
consider the tensor product described in [25, 20], which can be put in generator and relations
form using our free construction (Section 6.1). It is easily seen that it fails to capture all the
relations holding in the partial Boolean algebra of projectors on the Hilbert space tensor
product. We then show that there is a natural monoidal structure on partial Boolean algebras
satisfying LEP (Section 6.2). This contrasts with the situation for standard contextuality
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models satisfying Specker’s Exclusivity Principle, which are not closed under tensor product.
Both tensor product constructions above work by freely extending commeasurability starting
from the coproduct of partial Boolean algebras. We show that such an operation never gives
rise to Kochen–Specker paradoxes (Section 6.3). This can be seen as a limitative result for
using such an approach to fully capture the Hilbert space tensor product in logical form, in
terms of partial Boolean algebras.

We conclude with a discussion of some natural questions that arise from our results (Sec-
tion 7).

2 Partial Boolean algebras

2.1 Basic definitions
A partial Boolean algebra A is given by a set (also written A), a reflexive, symmetric binary
relation � on A, read as “commeasurability” or “compatibility”, constants 0 and 1, a total
unary operation ¬, and partial binary operations ∧ and ∨ with domain �. These must satisfy
the following property: every set S of pairwise-commeasurable elements must be contained
in a set T of pairwise-commeasurable elements which forms a (total) Boolean algebra2 under
the restrictions of the given operations.

Morphisms of partial Boolean algebras are maps preserving commeasurability, and the
operations wherever defined. This gives a category pBA.

Heunen and van den Berg show in [25, Theorem 4] that every partial Boolean algebra
is the colimit, in pBA, of the diagram C(A) consisting of its Boolean subalgebras and the
inclusions between them.

2.2 Colimits and free extensions of commeasurability
In [25], the category pBA is shown to be cocomplete. Coproducts have a simple direct
description. The coproduct A⊕B of partial Boolean algebras A, B is their disjoint union
with 0A identified with 0B , and 1A identified with 1B . Other than these identifications, no
commeasurability holds between elements of A and elements of B. By contrast, coequalisers,
and general colimits, are shown to exist in [25] by an appeal to the Adjoint Functor Theorem.
One of our technical contributions is to give a direct construction of the needed colimits, by
an inductive presentation.3

More generally, we use this approach to prove the following result, which freely generates
from a given partial Boolean algebra a new one where prescribed additional commeasurability
relations are enforced between its elements.

I Theorem 1. Given a partial Boolean algebra A and a binary relation } on A, there is a
partial Boolean algebra A[}] such that:

there is a pBA-morphism η : A −→ A[}] satisfying a} b ⇒ η(a)�A[}] η(b);
for every partial Boolean algebra B and pBA-morphism h : A −→ B satisfying a} b ⇒
h(a) �B h(b), there is a unique pBA-morphism ĥ : A[}] −→ B such that h = ĥ ◦ η,
i.e. such that the following diagram commutes

A A[}]

B

h

η

ĥ

2 From now on, whenever we say just “Boolean algebra”, we mean total Boolean algebra.
3 For a well-known discussion of the advantages of an explicit construction over an appeal to the Adjoint

Functor Theorem, see [18, p. xvii].
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5:4 The Logic of Contextuality

Table 1 Rules for free partial Boolean algebra with extended compatibility relation.

a ∈ A
ı(a)↓

a�A b
ı(a)� ı(b)

a} b
ı(a)� ı(b)

0 ≡ ı(0A), 1 ≡ ı(1A)
a�A b

ı(a) ∧ ı(b) ≡ ı(a ∧A b), ı(a) ∨ ı(b) ≡ ı(a ∨A b) ¬ı(a) ≡ ı(¬Aa)

0↓, 1↓
t� u

t ∧ u↓, t ∨ u↓
t↓
¬t↓

t↓
t� t, t� 0, t� 1

t� u
u� t

t� u, t� v, u� v
t ∧ u� v, t ∨ u� v

t� u
¬t� u

t↓
t ≡ t

t ≡ u
u ≡ t

t ≡ u, u ≡ v
t ≡ v

t ≡ u, u� v
t� v

ϕ(~x) ≡Bool ψ(~x),
∧
i,j ui � uj

ϕ(~u) ≡ ψ(~u)
t ≡ t′, u ≡ u′, t� u

t ∧ u ≡ t′ ∧ u′, t ∨ u ≡ t′ ∨ u′
t ≡ u
¬t ≡ ¬u

We do not require that the relation } include the commeasurability relation �A already
defined on A. Of course, it is the case that A[}] ∼= A[�A ∪ }] for any }, but it will be
notationally convenient to allow an arbitrary relation } in this construction. In particular,
note that A[∅] ∼= A[�A] ∼= A.

As already mentioned, this result is proved constructively, by giving proof rules for
commeasurability and equivalence relations over a set of syntactic terms generated from A.
In fact, we start with a set of “pre-terms” and also give rules for definedness.

We define the set of pre-terms P inductively, to be the closure of the set of generators
G := {ı(a) | a ∈ A} under the Boolean operations and constants. The standard theory of
Boolean algebras gives us an equational theory ≡Bool for terms in the Boolean signature
{0, 1,∧,∨,¬} over variables x, y, . . . We have the usual notion of substitution of pre-terms for
variables: if ϕ(~x) is a Boolean term in the variables x1, . . . , xn, and if u1, . . . , un are pre-terms,
then ϕ(~u) is the pre-term which results from replacing xi by ui for all i ∈ {1, . . . , n}.

We now define a predicate ↓ (definedness or existence), and binary relations � and ≡ on
P , by the set of rules in Table 1. To illustrate the first rule on the last line, consider the
distributivity axiom: x ∧ (y ∨ z) ≡Bool (x ∧ y) ∨ (x ∧ z). Under the assumptions t� u, u� v,
t� v, we can infer t ∧ (u ∨ v) ≡ (t ∧ u) ∨ (t ∧ v). Note that in this rule ϕ(~x) and ψ(~x) are
pure Boolean terms, i.e. they do not contain generators.

One can show the following by structural induction on derivations, where ` means
derivability of an assertion from the rules.

I Lemma 2. For all pre-terms t and u,
1. ` t� u implies ` t↓ and ` u↓;
2. ` t ≡ u implies ` t↓ and ` u↓ and ` t� u.

We define the set of terms T := {t ∈ P | t↓}. The relation ≡ is an equivalence relation on
T , by the rules in the fifth line. We define a structure A[}] as follows. The carrier is T/≡.
The relation � is defined by: [t]� [u] :⇔ ` t�u. This is well defined due to the last rule on
the fifth line. The operations are defined by representatives: if [t]� [u], then [t]∧ [u] := [t∧u],
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etc. These are shown to be well defined using the congruence rules on the last line. The first
rule on the last line now suffices to show that any set of pairwise-commeasurable elements of
A[}] extends to a Boolean algebra, establishing the following proposition.

I Proposition 3. A[}] is a partial Boolean algebra.

There is a map η : A −→ A[}] sending a to [ı(a)]. By the rules on the first two lines, this
is a pBA-morphism which moreover satisfies a} b ⇒ η(a)� η(b).

Now, given a partial Boolean algebra B and a morphism h : A −→ B such that a} b ⇒
h(a) �B h(b), we shall show that there is a unique partial Boolean algebra morphism
ĥ : A[}] −→ B such that h = ĥ ◦ η.

We define a partial map γ : P −⇀ B by structural recursion on pre-terms:

γ(ı(a)) := h(a) γ(t ∧ u) := γ(t) ∧B γ(u)
γ(¬t) := ¬Bγ(t) γ(t ∨ u) := γ(t) ∨B γ(u)

Note that this map is partial because the operations ∧B and ∨B are.

I Proposition 4. For all pre-terms t and u, the following conditions hold:
1. ` t↓ implies γ(t) is defined;
2. ` t� u implies γ(t)�B γ(u);
3. ` t ≡ u implies γ(t) = γ(u).

Proof. The proof goes by structural induction on derivations from the rules. It suffices
to verify that each rule is a valid statement about the partial Boolean algebra B when
assertions about t, u are replaced by the corresponding assertions about γ(t), γ(u). Note
that γ(t)�B γ(u) and γ(t) = γ(u) are taken to imply, in particular, that γ(t) and γ(u) are
well-defined elements of B.

For example, the third rule on the fifth line (transitivity of ≡) gets translated to

γ(t) = γ(u), γ(u) = γ(v)
γ(t) = γ(v)

which simply expresses transitivity of equality. Most other cases are similar.
The first rule on the last line is the least straightforward. The induction hypothesis gives

γ(ui) �B γ(uj) for all i and j, i.e. {γ(u1), . . . , γ(un)} is a set of pairwise-commeasurable
elements in B. It can therefore be extended to a Boolean subalgebra of B. This implies that
for any pure Boolean term ϕ(~x), γ(ϕ(u1, . . . , un)) = ϕB(γ(u1), . . . , γ(un)) is well defined in
B, and moreover that γ(ϕ(~u)) = γ(ψ(~u)) whenever ϕ(~x) ≡Bool ψ(~x), as required. J

Proof of Theorem 1. We can now establish the required universal property. We define
ĥ([t]) := γ(t). It follows straightforwardly from the definition of γ together with the previous
proposition that this is well defined and has the required properties. J

This result will prove to be very useful in what follows.

Coequalisers and colimits
A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality. Given a partial Boolean algebra A and a relation } as before, we write
A[},≡] for the algebra generated by the above inductive construction, with one additional
rule:

a} a′

ı(a) ≡ ı(a′)

CSL 2021



5:6 The Logic of Contextuality

We can define a pBA-morphism η : A −→ A[},≡] by η(a) := [ı(a)]. Clearly this satisfies
a } a′ ⇒ η(a) = η(a′). A simple adaptation of the proof of Theorem 1 establishes the
following universal property of this construction.

I Theorem 5. Let h : A −→ B be a pBA-morphism such that a } a′ ⇒ h(a) = h(a′).
Then there is a unique pBA-morphism ĥ : A[},≡] −→ B such that h = ĥ ◦ η.

This result can be used to give an explicit construction of coequalisers, and hence general
colimits, in pBA. Given a diagram

A B
f

g

in pBA, we define a relation } on B by b } b′ := ∃a ∈ A. f(a) = b ∧ g(a) = b′. Then,
η : B −→ B[},≡] is the coequaliser of f and g.

2.3 States on partial Boolean algebras
I Definition 6. A state or probability valuation on a partial Boolean algebra A is a map
ν : A −→ [0, 1] such that:
1. ν(0) = 0;
2. ν(¬x) = 1− ν(x);
3. for all x, y ∈ A with x� y, ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y).

I Proposition 7. A map ν : A −→ [0, 1] is a state iff for every Boolean subalgebra B of A,
the restriction of ν to B is a finitely additive probability measure on B.

I Lemma 8. Let A be a partial Boolean algebra. There is a one-to-one correspondence
between:

states on A;
families (νS)S∈C(A) indexed by the Boolean subalgebras S of A, where νS is a finitely
additive probability measure on S and νS = νT ◦ ιS,T whenever S ⊆ T .

I Lemma 9. Let A be a finite Boolean algebra. There is a one-to-one correspondence between
states on A and probability distributions on its set of atoms.

Proof. Write X for the set of atoms of A. If ν : A −→ [0, 1] is a state on A, then∑
x∈X

ν(x) = ν
(∨

X
)

can be shown by induction on the size of X, using Definition 6–1 for the base case, and
using Definition 6–3,1 and the fact that x ∧ y = 0 when x and y are distinct atoms for the
induction step. Since

∨
X = 1, we conclude that

∑
x∈X ν(x) = 1 and so ν|X : X −→ [0, 1] is

a probability distribution on X.
Conversely, if d : X −→ [0, 1] is a probability distribution, we extend it to the whole

Boolean algebra using the fact that any element is uniquely written as the join of a set of
atoms, as follows: for any S ⊆ X,

ν
(∨

S
)

:=
∑
x∈S

d(x) . J
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3 Graphical measurement scenarios and partial Boolean algebras

3.1 Measurement scenarios and (no-signalling) empirical models
We consider the basic framework of the sheaf-theoretic approach introduced in [5] to provide a
unified perspective on non-locality and contextuality. Our focus here will not be solely on the
question of contextuality, but also on principles that approximate the set of quantum-realisable
behaviours.

Measurement scenarios provide an abstract notion of an experimental setup. They model
a situation where there is a set of measurements, or queries, one can perform on a system,
but not all of which may be performed simultaneously.

In this paper, we focus on what we term “graphical” scenarios, where a subset of measure-
ments is compatible (i.e. can be performed together) if its elements are pairwise compatible.
Hence, compatibility is specified simply by a binary relation. A paradigmatic example is
quantum theory, where compatibility is given by commutativity: a set of measurements
(observables) can be performed together if and only if its elements commute pairwise.

Note that, in contrast to [5], we do not require that the set of measurements be finite.
We do, however, consider only measurements with a finite set of outcomes. This allows us to
include within the scope of our discussion the scenario formed by all the quantum-mechanical
observables on a system described by a finite-dimensional Hilbert space.

I Definition 10. A graphical measurement scenario is a triple 〈X,_,O〉 consisting of:
a set X of measurements,
a reflexive, symmetric relation _ on X, indicating compatibility of measurements.
a family (Ox)x∈X assigning a finite set Ox of outcomes to each measurement x ∈ X.

A context is a subset of measurements σ ⊆ X that are pairwise compatible, i.e. a clique of
the relation _. We write Kl(_) for the set of contexts.

A particular case of interest is that of measurement scenarios where every measurement
is dichotomic, i.e. has two possible outcomes.

Given a measurement scenario, an empirical model specifies particular probabilistic
observable behaviour that may be displayed by a physical system.

I Definition 11. Let 〈X,_,O〉 be a measurement scenario. A (no-signalling) empirical
model is a family (eσ)σ∈Kl(_) where for each context σ ∈ Kl(_), eσ is a probability distri-
bution on the set E(σ) :=

∏
x∈σ Ox of joint assignments of outcomes to the measurements

in σ, and such that eσ = eτ |σ whenever σ and τ are contexts with σ ⊆ τ , where eτ |σ is
marginalisation of distributions given as follows: for any s ∈ E(σ),

eτ |σ(s) :=
∑

t∈E(τ),t|σ=s

eτ (t) .

Such an empirical model is said to be non-contextual if there is a (global) probability
distribution d on the set E(X) =

∏
x∈X Ox that marginalises to the empirical probabilities,

i.e. such that d|σ = eσ for all contexts σ ∈ Kl(_).

The marginalisation condition in the definition of empirical models (eσ = eτ |σ for contexts
σ ⊆ τ) ensures that the probabilistic outcome of a compatible subset of measurements
is independent of which other compatible measurements are performed alongside these.
This is sometimes referred to as the no-disturbance condition [24], or no-signalling
condition [23] in the special case of Bell scenarios. This is a local compatibility condition,

CSL 2021



5:8 The Logic of Contextuality

whereas non-contextuality can be seen as global compatibility: this justifies the slogan
that contextuality arises from empirical data which is locally consistent but globally
inconsistent [3, 2].

No-disturbance is satisfied by any empirical probabilities that can be realised in quantum
mechanics [5]. However, this condition is much weaker than quantum realisability. Empirical
models allow for behaviours that may be considered super-quantum, exemplified by the
Popescu–Rohrlich (PR) box [23]. A lot of effort has gone into trying to characterise the set
of quantum behaviours by imposing some additional, physically motivated conditions on
empirical models, leading to various approximations from above to this quantum set.

3.2 Exclusivity principle on empirical models
One candidate for a property that is distinctive for the quantum case has appeared in various
formulations as Local Orthogonality [11], Consistent Exclusivity [15], or Specker’s Exclusivity
Principle [8]. We shall refer to it as the Probabilistic Exclusivity Principle (PEP), since it is
expressed as a constraint on probability assignments.

Informally, it says that if we have a family of pairwise exclusive events, then their
probabilities must sum to at most 1. Of course, if all the events live on a single sample space,
this would just be a basic property of probability measures. What gives the condition its
force is that, in general, these events live on different, incompatible contexts. Thus, it
reaches beyond the usual view of contexts as different classical “windows” on a quantum
system, in which incompatible contexts are regarded as incommensurable.

We can give a precise formulation of PEP in terms of empirical models as follows. First,
we say that events s ∈ E(σ) and t ∈ E(τ) are exclusive if for some x ∈ σ ∩ τ , s(x) 6= t(x).
The principle holds for an empirical model (eσ)σ∈Kl(_) if for any family {si ∈ E(σi)}i∈I of
pairwise-exclusive events, then∑

i∈I
eσi(si) ≤ 1.

This principle is valid in quantum-realisable empirical models, in which measurements corres-
pond to observables, because incompatible (non-commuting) observables can share projectors,
and exclusivity of outcomes with respect to common projectors implies orthogonality.

Although we know that PEP does not fully characterise the quantum-realisable empirical
models, it stands as an important and fruitful principle [15, 6]. We wish to study this
principle from the perspective of partial Boolean algebras.

3.3 From graphical measurement scenarios to partial Boolean algebras
To any graphical measurement scenario, we can associate a partial Boolean algebra whose
states correspond to empirical models.

I Definition 12. Let X = 〈X,_,O〉 be a graphical measurement scenario. The partial
Boolean algebra AX is defined as follows:

For each measurement x ∈ X, take Bx to be the finite Boolean algebra with atoms
corresponding to the elements of Ox. We write [x = o] for the atom of Bx corresponding
to the outcome o ∈ Ox.
Consider the partial Boolean algebra A :=

⊕
x∈X Bx, the coproduct of all the Boolean

algebras Bx taken in the category pBA. Note that all its elements are of the form ıx(a)
for a unique x ∈ X and a ∈ Bx, except for the constants 0 and 1.
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Define the following relation } on the elements of A:

ıx(a)} ıy(b) iff x_y or a ∈ {0, 1} or b ∈ {0, 1} .

Take AX := A[}], the extension of A by the relation }, as given by Theorem 1.

We can give an alternative description using colimits.

I Definition 13. Let X = 〈X,_,O〉 be a graphical measurement scenario. The partial
Boolean algebra BX is defined as follows:

For each measurement x ∈ X, let Bx be as in Definition 12.
For each context σ ∈ Kl(_), let Bσ :=

∑
x∈σ Bx, the coproduct of all the Bx with x ∈ σ,

taken in the category BA of Boolean algebras.4
Given contexts σ, τ ∈ Kl(_) with σ ⊆ τ , there is a Boolean algebra homomorphism
ιτσ : Bσ −→ Bτ given by the obvious injection.
Take BX to be the colimit in the category pBA of the diagram consisting of the Boolean
algebras (Bσ)σ∈Kl(_) and the inclusions (ιτσ)σ⊆τ∈Kl(_).

Note that the colimit in this instance can be given explicitly in a closed form, as it is
that of a diagram of Boolean algebras and inclusions satisfying the conditions of Kalmbach’s
“bundle lemma” [19, 1.4.22]. The carrier set of BX is the union of all the Bσ modulo the
identifications along inclusions ιτσ. The Boolean subalgebras of BX are exactly those in the
family (Bσ)σ∈Kl(_).

I Proposition 14. The two descriptions coincide: for any X, AX ∼= BX.

I Proposition 15. For any graphical measurement scenario X, there is a one-to-one corres-
pondence between states on AX and empirical models on X.

Proof. This follows from the fact that the Boolean subalgebras of AX are the family
(Bσ)σ∈Kl(_), by applying Lemmas 8 and 9, and noting that the condition νS = νT ◦ ιS,T for
S ⊆ T on states on Boolean subalgebras translates under the correspondence in Lemma 9 to
marginalisation of probability distributions. J

4 Partial Boolean algebras and contextuality

We consider some aspects of contextuality formulated in the framework of partial Boolean
algebras, and relate them to the free construction from Theorem 1.

4.1 The Kochen–Specker property
The Kochen–Specker theorem, as originally stated [21], is that there are partial Boolean
algebras of Hilbert space projectors with no pBA-morphisms to 2, the two-element Boolean
algebra. Since every (non-trivial5) Boolean algebra has a homomorphism to 2, this implies
that such a partial Boolean algebra A has no morphism to any (non-trivial) Boolean algebra.

Now, BA is a full subcategory of pBA. We know from [25] that A is the colimit in pBA
of the diagram C(A) consisting of its Boolean subalgebras and inclusions between them. Let
B be the colimit in BA of the same diagram C(A). Then, the cone from C(A) to B is also a
cone in pBA, hence there is a mediating pBA-morphism from A to B.

4 Note that the set of atoms of such a coproduct Boolean algebra is the cartesian product of the sets of
atoms of each of the summands. Hence an atom of Bσ corresponds to an assignment of an outcome in
Ox to each measurement x ∈ σ.

5 See the following discussion.
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To resolve the apparent contradiction, note that BA is an equational variety of algebras
over Set. As such, it is complete and cocomplete, but it also admits the one-element
Boolean algebra 1, in which 0 = 1. Note that the trivial Boolean algebra 1 does not have a
homomorphism to 2.

We can conclude from the discussion above that a partial Boolean algebra satisfies the
Kochen–Specker property of not having a morphism to 2 if and only if the colimit in BA of
its diagram of Boolean subalgebras is 1. In fact, we could formulate this property directly for
diagrams of Boolean algebras, without referring to partial Boolean algebras at all: a diagram
in BA is K–S if its colimit in BA is 1. We could say that such a diagram is “implicitly
contradictory” since in trying to combine all the information in a colimit we obtain the
manifestly contradictory 1.

Finally, this property admits a neat formulation in terms of the free extension of partial
Boolean algebras by a relation, reminiscent of the definition of a perfect group.

I Theorem 16. Let A be a partial Boolean algebra. The following are equivalent:
1. A has the K–S property, i.e. it has no morphism to 2.
2. The diagram C(A) of Boolean subalgebras of A is K–S, i.e. its colimit in BA is 1.
3. A[A2] = 1.

Proof. The equivalence between the first two statements follows from the discussion above.
Now, all elements are commeasurable in A[A2], so it is a Boolean algebra. There is a
morphism A −→ 2 if and only if there is a morphism A[A2] −→ 2, by the universal property
of A[A2] (in the ⇒ direction) or composition with η : A −→ A[A2] (in the ⇐ direction).
Since A[A2] is a Boolean algebra, this is in turn equivalent to A[A2] being non-trivial. In
other words, there is no morphism A −→ 2 if and only if A[A2] = 1. J

4.2 Probabilistic contextuality
The notion of contextuality for states also admits a formulation in this setting.

I Definition 17. A state ν : A −→ [0, 1] on a partial Boolean algebra A is said to be
non-contextual if it extends to A[A2], i.e. if there is a state ν̂ : A[A2] −→ [0, 1] such that
ν = ν̂ ◦ η.

By the universal property of A[A2], this is equivalent to requiring that there be some
Boolean algebra B, a morphism h : A −→ B, and state ν̂ : B −→ [0, 1] such that ν = ν̂ ◦ η.

I Proposition 18. Let X be a graphical measurement scenario. A state on AX is contextual
in the sense of Definition 17 if and only if the corresponding empirical model under the
correspondence of Proposition 15 is contextual in the sense of Definition 11.

Note that if A has the Kochen–Specker property, then A[A2] = 1, and since there is
no state on 1, every state of A is necessarily contextual. An advantage of partial Boolean
algebras is that the K–S property provides an intrinsic, logical approach to defining state-
independent contextuality.

5 Exclusivity principles for partial Boolean algebras

We now consider exclusivity principles from the partial Boolean algebra perspective. This
will subsume the previous discussion on PEP for empirical models in graphical measurement
scenarios.
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We introduce two exclusivity principles: one acts at the “logical” level, i.e. the level of
events or elements of a partial Boolean algebra, whereas the other acts at the “probabilistic”
level, applying to states of a partial Boolean algebra.

5.1 Logical exclusivity principle (LEP)

The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra. Given a partial Boolean algebra A and elements a, b ∈ A, we write a ≤ b
to mean that a� b and a∧ b = a. Note that the restriction of this relation ≤ to any Boolean
subalgebra of A coincides with the partial order underlying that Boolean algebra.

I Definition 19. Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be
exclusive, written a ⊥ b, if there is an element c ∈ A such that a ≤ c and b ≤ ¬c.

Note that a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be
equivalent in a Boolean algebra. The point is that in a general partial Boolean algebra
one might have exclusive events that are not commeasurable (and for which, therefore, the
∧ operation is not even defined).

I Definition 20. A partial Boolean algebra is said to satisfy the logical exclusivity prin-
ciple (LEP) if any two elements that are exclusive are also commeasurable, i.e. if ⊥ ⊆ �.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

Logical exclusivity and transitivity

The logical exclusivity principle turns out to be equivalent to the following notion of
transitivity [22, 16].

I Definition 21. A partial Boolean algebra is said to be transitive if for all elements a, b, c,
a ≤ b and b ≤ c implies a ≤ c.

Transitivity can fail in general for a partial Boolean algebra, since one need not have
a� c under the stated hypotheses. Note that the relation ≤ on a partial Boolean algebra
is always reflexive and anti-symmetric, so this condition is equivalent to ≤ being a partial
order (globally) on A. A partial Boolean algebra of the form P(H) is always transitive.

I Proposition 22. Let A be a partial Boolean algebra. Then it satisfies LEP if and only if it
is transitive.

Proof. Suppose that A satisfies LEP, a ≤ b, and b ≤ c. Then ¬c ≤ ¬b. Hence, by LEP,
a� ¬c, and so a� ¬¬c = c. Now, a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a, showing that
a ≤ c.

Conversely, suppose that A is transitive, a ≤ c, and b ≤ ¬c. Then, c = ¬¬c ≤ ¬b, hence
a ≤ ¬b by transitivity. In particular, a� ¬b, and so a� ¬¬b = b. J

As an immediate consequence, any P(H) satisfies LEP.
It is shown in [14] that a partial Boolean algebra is transitive if and only if it is an

orthomodular poset.
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5.2 Probabilistic exclusivity principle (PEP)
We now consider an analogous principle applying at the probabilistic level, i.e. at the level
on states of a partial Boolean algebra.

I Definition 23. Let A be a partial Boolean algebra. A state ν : A −→ [0, 1] on A is said to
satisfy the probabilistic exclusivity principle (PEP) if for any set S ⊆ A of pairwise-
exclusive elements, i.e. such that a ⊥ b for any distinct a, b ∈ S, we have

∑
a∈S ν(a) ≤ 1.

A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

Note that the condition
∑
a∈S ν(a) ≤ 1 is true of any set S of elements in a Boolean

algebra satisfying a ∧ b = 0 for distinct a, b ∈ S.
Note that this subsumes the discussion of the PEP at the level of empirical models. If X

is a measurement scenario, the correspondence in Proposition 15 between empirical models
on X and states of AX restricts to a bijection between empirical models and states satisfying
the probabilistic exclusivity principle.

5.3 LEP vs PEP
The following result follows immediately from the definitions of partial Boolean algebras and
states.

I Proposition 24. Let A be a partial Boolean algebra satisfying the logical exclusivity principle.
Then, any state on A satisfies the probabilistic exclusivity principle.

In a general partial Boolean algebra A, however, not all states need satisfy the PEP. A
well-known example is the state on the partial Boolean algebra corresponding to a (4, 2, 2)
Bell scenario6 which corresponds to two (independent) copies of the PR box [11].

However, using the construction from Theorem 1, we can construct from A a new partial
Boolean algebra, namely A[⊥], whose states yield states of A that satisfy PEP.

I Theorem 25. Let A be a partial Boolean algebra. Then a state ν : A −→ [0, 1] satisfies
PEP if there is a state ν̂ of A[⊥] such that

A A[⊥]

[0, 1]
ν

η

ν̂

commutes.

Proof. Let ν : A −→ [0, 1] be a state, and suppose it factorises through a state ν̂ of A[⊥]. Let
S ⊆ A be a set of pairwise exclusive events in A. Then {η(a) | a ∈ S} is a commeasurable
subset of A[⊥], hence it is contained in a Boolean subalgebra B of A[⊥]. Since ν̂ must restrict
to a finitely-additive probability measure on B, and since η(a) ∧A[⊥] η(b) = 0 for all distinct
a, b ∈ S, we have that∑

a∈S
ν(a) =

∑
a∈S

ν̂(η(a)) ≤ 1 . J

6 This stands for a scenario in which there are 4 parties, each of which can choose to perform one of 2
measurements with 2 possible outcomes.



S. Abramsky and R. S. Barbosa 5:13

5.4 A reflective adjunction for logical exclusivity
It is not clear whether the partial Boolean algebra A[⊥] necessarily satisfies LEP. While the
principle holds for all its elements in the image of η : A −→ A[⊥], it may fail to hold for
other elements in A[⊥].

However, we can adapt the construction of Theorem 1 to show that one can freely generate,
from any given partial Boolean algebra, a new partial Boolean algebra satisfying LEP. This
LEP-isation is analogous to e.g. the way one can “abelianise” any group, or use Stone–Čech
compactification to form a compact Hausdorff space from any topological space.

I Theorem 26. The category epBA is a reflective subcategory of pBA, i.e. the inclusion
functor I : epBA −→ pBA has a left adjoint X : pBA −→ epBA. Concretely, for any
partial Boolean algebra A, there is a partial Boolean algebra X(A) = A[⊥]∗ which satisfies
LEP such that:

there is a pBA-morphism η : A −→ A[⊥]∗;
for any pBA-morphism h : A −→ B where B is a partial Boolean algebra B satisfying
LEP, there is a unique pBA-morphism ĥ : A[⊥]∗ −→ B such that h = ĥ ◦ η, i.e. such
that the following diagram commutes:

A A[⊥]∗

B

h

η

ĥ

The proof of this result follows from a simple adaptation of the proof of Theorem 1,
namely adding the following rule to the inductive system presented in Table 1:

u ∧ t ≡ u, v ∧ ¬t ≡ v
u� v

This rule will enforce the logical exclusivity principle, and the universal property is proved
in a manner similar to the proof of Theorem 1.

6 Tensor products of partial Boolean algebras

6.1 A (first) tensor product by generators and relations
In [25], it is shown that pBA has a monoidal structure, with A⊗B given by the colimit of
the family of Boolean algebras C +D, as C ranges over Boolean subalgebras of A, D ranges
over Boolean subalgebras of B, and + denotes the coproduct of Boolean algebras.

The tensor product in [25] is not constructed explicitly: it relies on the existence of
coequalisers in pBA, which is proved by an appeal to the Adjoint Functor Theorem.

Our Theorem 1 allows us to give an explicit description of this construction using
generators and relations.

I Proposition 27. Let A and B be partial Boolean algebras. Then

A⊗B ∼= (A⊕B)[:] ,

where : is the relation on the carrier set of A ⊕ B given by ı(a) : (b) for all a ∈ A and
b ∈ B.

This can be verified by comparing the universal property from Theorem 1 with [25,
Proposition 30].
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6.2 A more expressive tensor product
There is a lax monoidal functor P : Hilb −→ pBA, which takes a Hilbert space to its
projectors, viewed as constituting a partial Boolean algebra. The coherence morphisms
P(H)⊗ P(K) −→ P(H⊗K) are induced by the evident embeddings of P(H) and P(K) into
P(H⊗K), given by p 7−→ p⊗ 1, q 7−→ 1⊗ q.

It is easy to see that such morphisms are far from being isomorphisms. For example,
if H = K = C2, then there are (many) morphisms from A = P(C2) to 2, which lift to
morphisms from A ⊗ A to 2. However, by the Kochen–Specker theorem, there is no such
morphism from P(C4) = P(C2 ⊗ C2).

Interestingly, in [20] it is shown that the images of P(H) and P(K), for any finite-
dimensional H and K, generate P(H⊗K). This is used in [20] to justify the claim contradicted
by the previous paragraph. The gap in the argument is that more relations hold in P(H⊗K)
than in P(H) ⊗ P(K). Nevertheless, this result is very suggestive. In standard Boolean
algebra theory, these images would satisfy the criteria for P(H⊗K) being the “internal sum”
of P(H) and P(K) [12]. Evidently, for partial Boolean algebras, these criteria are no longer
sufficient. This poses the challenge of finding stronger criteria, and a stronger notion of
tensor product to match.

An important property satisfied by the rules in Table 1 as applied in constructing A⊗B
is that, if t↓ can be derived, then u↓ can be derived for every subterm u of t. This appears
to be too strong a constraint to capture the full logic of the Hilbert space tensor product.

To see why this is an issue, consider projectors p1 ⊗ p2 and q1 ⊗ q2. To ensure in general
that they commute, we need the conjunctive requirement that p1 commutes with q1 and
p2 commutes with q2. However, to show that they are orthogonal, we have a disjunctive
requirement: p1⊥q1 or p2⊥q2. If we establish orthogonality in this way, we are entitled
to conclude that p1 ⊗ p2 and q1 ⊗ q2 are commeasurable, even though (say) p2 and q2 are
not. Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasised in [20].

This leads us to define a stronger tensor product by forcing logical exclusivity to hold
in the tensor product from [25]. This amounts to composing with the reflection to epBA;
� := X ◦ ⊗. Explicitly, we define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product. It remains to be seen how close it gets us to the full
Hilbert space tensor product.

6.3 Commeasurability extensions, Kochen–Specker, and Hilbert space
tensor product

We can ask generally if extending commeasurability by some relation R can induce the
Kochen–Specker property in A[R] when it did not hold in A. In fact, it is easily seen that
this can never happen.

I Theorem 28 (K–S faithfulness of extensions). Let A be a partial Boolean algebra, and
R ⊆ A2 a relation on A. Then A has the K–S property if and only if A[R] does.

Proof. If A does not have the K–S property, it has a morphism to a non-trivial Boolean
algebra B. By the universal property of A[R], there is a morphism ĥ : A[R] −→ B. Thus,
A[R] does not have the K–S property. Conversely, if there is a morphism k : A[R] −→ B to a
non-trivial Boolean algebra B, then k◦η : A −→ B, so A does not have the K–S property. J
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We can apply this in particular to the tensor product.

I Corollary 29. If A and B do not have the K–S property, then neither does (A⊗B)[⊥]k.

Proof. If A and B do not have the K–S property, they have morphisms to 2, and hence so
does A⊕B. Applying Theorem 28 inductively k+ 1 times, one concludes that (A⊗B)[⊥]k =
(A⊕B)[:][⊥]k does not have the K–S property. J

Under the conjecture that A[⊥]∗ coincides with iterating A[⊥] to a fixpoint, this would
show that the logical exclusivity tensor product A � B never induces a Kochen–Specker
paradox if none was already present in A or B.

This can be seen as a limitative result, in the following sense. One of the key points at
which non-classicality emerges in quantum theory is the passage from P(C2), which does not
have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.7 By contrast, it would follow
from Corollary 29 that P(C2)�P(C2) does not have the K–S property. Therefore, we need a
stronger tensor product to track this emergent complexity in the quantum case.

7 Discussion

A number of questions arise from the ideas developed in this paper.

First, we have shown that LEP implies PEP; that is, if a partial Boolean algebra satisfies
Logical Exclusivity, then all its states satisfy Probabilistic Exclusivity. We conjecture
that the converse holds.
I Conjecture 30. PEP ⇒ LEP.
Similarly, we conjecture the converse to Theorem 25.
I Conjecture 31. If state ν of a partial Boolean algebra A satisfies PEP, then there is a
state ν̂ of A[⊥] such that ν = ν̂ ◦ η.
This would amount to generalising the universality of A[⊥] from pBA-morphisms to
states. It would yield a one-to-one correspondence between states of A satisfying PEP
and states of A[⊥].
Proving the conjecture above would involve extending a state on a partial Boolean algebra
A to a state on A[}]. A similar operation was achieved for partial Boolean algebras arising
from measurement scenarios in Proposition 15, because in that case Definition 13 provided
a simple description of the Boolean subalgebras of A[}]. Is an analogous description
possible for the general case considered in Theorem 1, or at least for the particular case
of A[⊥]?
A classic result by Greechie [13] constructs a class of orthomodular lattices which admit no
states. Since orthomodular lattices are transitive partial Boolean algebras (see e.g. [25]),
this means that there are examples of partial Boolean algebras satisfying LEP which
admit no states. Is there a partial Boolean algebra not satisfying LEP which admits no
states? This would provide a counter-example to Conjecture 30.
There are some technical questions relating to the A[⊥]∗ construction:

Is it a completion (i.e. is the reflector a faithful functor)?
Is it the same as iterating the A[⊥] construction to a fixpoint?

7 Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the
four-element Boolean algebra.
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Is the relation of A[⊥]∗ to A[⊥] an instance of a more general relationship between
iterating an inductive construction, and adding a rule to the inductive construction
itself?

Our discussion of tensor products led us to introduce a strong tensor product of partial
Boolean algebras, A�B. This brings us closer to an answer to the following particularly
interesting question:
I Question 32. Is there a monoidal structure ~ on the category pBA such that the
functor P : Hilb −→ pBA is strong monoidal with respect to this structure, i.e. such
that P(H)~ P(K) ∼= P(H⊗K)?
A positive answer to this question would offer a complete logical characterisation of
the Hilbert space tensor product, and provide an important step towards giving lo-
gical foundations for quantum theory in a form useful for quantum information and
computation.
We recall the following quotation from Ernst Specker given in [8]:

Do you know what, according to me, is the fundamental theorem of quantum
mechanics? . . . That is, if you have several questions and you can answer any
two of them, then you can also answer all three of them. This seems to me very
fundamental.

This refers to the binarity of compatibility in quantum mechanics. A set of observables
is compatible if they are pairwise so. This is built into the definition of partial Boolean
algebras, and it is why we only considered graphical measurement scenarios in this paper.
However, in the general theory of contextuality, as developed e.g. in [5], more general
forms of compatibility are considered, represented by simplicial complexes. The notion of
partial Boolean algebras in a broader sense introduced in [10] seems suitable to deal with
this more general format. How much of the theory carries over?
Partial Boolean algebras capture logical structure. We have seen how this logical structure
can be used to enforce strong constraints on the probabilistic behaviour of states. This is
somewhat analogous to the role of possibilistic empirical models in [5]. Can we lift the
concepts and results relating to possibilistic empirical models in [5, 4, 1] to the level of
partial Boolean algebras?
There is much more to be said regarding contextuality in this setting. In current work in
progress, we are considering the following topics:

A hierarchy of logical contextuality properties generalising those studied in [5].
A systematic treatment of “Kochen–Specker paradoxes”, i.e. contradictory statements
which can be validated in partial Boolean algebras.
Constructions that transform state-dependent to state-independent forms of contextu-
ality.
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