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—— Abstract

Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS
extended with the binary left and communication merge operators. Moller proved that auxiliary
operators are necessary to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al.
showed that this remains true when Hennessy’s merge is added to that language. These results raise
the question of whether there is one auxiliary binary operator whose addition to CCS leads to a
finite axiomatisation of bisimilarity. This study provides a negative answer to that question based
on three reasonable assumptions.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting; Theory
of computation — Process calculi; Theory of computation — Operational semantics

Keywords and phrases Equational logic, CCS, bisimulation, parallel composition, non-finitely based
algebras

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.8

Related Version An extended version of the paper, with all technical proofs, is available at https:
//arxiv.org/abs/2010.01943.

Funding This work has been supported by the project ‘Open Problems in the Equational Logic of
Processes’ (OPEL) of the Icelandic Research Fund (grant No. 196050-051).

Acknowledgements We thank the anonymous reviewers for their valuable comments.

1 Introduction

The purpose of this paper is to provide an answer to the following problem (see [1, Problem

8]): Are the left merge and the communication merge operators necessary to obtain a finite

equational axiomatisation of bisimilarity over the language CCS? The interest in this problem

is threefold, as an answer to it would:

1. provide the first study on the finite axiomatisability of operators whose operational
semantics is not determined a priori,

2. clarify the status of the auxiliary operators left merge and communication merge, proposed
in [10], in the finite axiomatisation of parallel composition, and

3. give further insight into properties that auxiliary operators used in the finite equational
characterisation of parallel composition ought to afford.
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We prove that, under some reasonable simplifying assumptions, whose role in our technical
developments we discuss below, there is no auxiliary binary operator that can be added
to CCS to yield a finite equational axiomatisation of bisimilarity. Despite falling short of
solving the above-mentioned problem in full generality, our negative result is a substantial
generalisation of previous non-finite-axiomatisability theorems by Moller [19, 20] and Aceto
et al. [4].

In order to put our contribution in context, we first describe the history of the problem
we tackle and then give a bird’s eye view of our results.

The story so far. In the late 1970s, Milner developed the Calculus of Communicating
Systems (CCS) [17], a formal language based on a message-passing paradigm and aimed at
describing communicating processes from an operational point of view. In detail, a labelled
transition system (LTS) [16] was used to equip language expressions with an operational
semantics [23] and was defined using a collection of syntax-driven rules. The analysis of
process behaviour was carried out via an observational bisimulation-based theory [22] that
defines when two states in an LTS describe the same behaviour. In particular, CCS included a
parallel composition operator || to model the interactions among processes. Such an operator,
also known as merge [10, 11], allows one both to interleave the behaviours of its argument
processes (modelling concurrent computations) and to enable some form of synchronisation
between them (modelling interactions). Later on, in collaboration with Hennessy, Milner
studied the equational theory of (recursion free) CCS and proposed a ground-complete
axiomatisation for it modulo bisimilarity [15]. More precisely, Hennessy and Milner presented
a set € of equational axioms from which all equations over closed CCS terms (namely those
with no occurrences of variables) that are valid modulo bisimilarity can be derived using
the rules of equational logic [24]. Notably, the set £ included infinitely many axioms, which
were instances of the expansion law that was used to “simulate equationally” the operational
semantics of the parallel composition operator.

The ground-completeness result by Hennessy and Milner started the quest for a finite
axiomatisation of CCS’s parallel composition operator modulo bisimilarity.

Bergstra and Klop showed in [10] that a finite ground-complete axiomatisation modulo
bisimilarity can be obtained by enriching CCS with two auxiliary operators, namely the left
merge |l and the communication merge |, expressing respectively one step in the asymmetric
pure interleaving and the synchronous behaviour of ||. Their result was then strengthened
by Aceto et al. in [6], where it is proved that, over the fragment of CCS without recursion,
restriction and relabelling, the auxiliary operators Il and | allow for finitely axiomatising
|| modulo bisimilarity also when CCS terms with variables are considered. Moreover,
in [8] that result is extended to the fragment of CCS with relabelling and restriction,
but without communication. From those studies, we can infer that the left merge and
communication merge operators are sufficient to finitely axiomatise parallel composition
modulo bisimilarity. But is the addition of auxiliary operators necessary to obtain a finite
equational axiomatisation, or can the use of the expansion law in the original axiomatisation
of bisimilarity by Hennessy and Milner be replaced by a finite set of sound CCS equations?

To address that question, in [19, 20] Moller considered a minimal fragment of CCS,
including only action prefixing, nondeterministic choice and interleaving, and proved that,
even in the presence of a single action, bisimilarity does not afford a finite ground-complete
axiomatisation over the closed terms in that language. This showed that auxiliary operators
are indeed necessary to obtain a finite equational axiomatisation of bisimilarity. Adapting
Moller’s proof technique, Aceto et al. proved, in [4], that if we replacell and | with the so called
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Hennessy’s merge |/ [14], which denotes an asymmetric interleaving with communication,
then the collection of equations that hold modulo bisimilarity over the recursion, restriction
and relabelling free fragment of CCS enriched with | is not finitely based (in the presence of
at least two distinct complementary actions).

A natural question that arises from those negative results is the following:

Can one obtain a finite axiomatisation of the parallel composition operator in
bisimulation semantics by adding only one binary operator to the signature of (P)
(recursion, restriction, and relabelling free) CCS?

In this paper, we provide a partial negative answer to that question. (Note that, in (P),
we focus on binary operators, like all the variations on parallel composition mentioned above,
since using a ternary operator one can express the left and communication merge operators
and, in fact, an arbitrary number of binary operators.)

Our contribution. We analyse the axiomatisability of parallel composition over the language
CCSy, namely CCS enriched with a binary operator f that we use to express || as a derived
operator. We prove that, under three reasonable assumptions, an auxiliary operator f
alone does not allow us to obtain a finite ground-complete axiomatisation of CCS; modulo
bisimilarity.

To this end, the only knowledge we assume on the operational semantics of f is that
it is formally defined by rules in the de Simone format [13] (Assumption 1) and that the
behaviour of the parallel composition operator is expressed equationally by a law that is akin
to the one used by Bergstra and Klop to define || in terms of L and | (Assumption 2). We
then argue that the latter assumption yields that the equation

zlly = f(z,y) + f(y, ) (A)

is valid modulo bisimilarity. Next we proceed by a case analysis over the possible sets of de
Simone rules defining the behaviour of f, in such a way that the validity of Equation (A)
modulo bisimilarity is guaranteed. To fully characterise the sets of rules that may define f,
we introduce a third simplifying assumption: the target of each rule for f is either a variable
or a term obtained by applying a single CCSy operator to the variables of the rule, according
to the constraints of the de Simone format (Assumption 3). Then, for each of the resulting
cases, we show the desired negative result using proof-theoretic techniques that have their
roots in Moller’s classic results in [19, 20]. This means that we identify a (case-specific)
property of terms denoted by W, for n > 0. The idea is that, when n is large enough, W, is
preserved by provability from finite, sound axiom systems. Hence, whenever £ is a finite,
sound axiom system and an equation p = ¢ is derivable from &, then either both terms p
and ¢ satisfy W,,, or none of them does. The negative result is then obtained by exhibiting a
(case-specific) infinite family of valid equations {e, | n > 0} in which W), is not preserved,
that is, for each n > 0, W, is satisfied only by one side of e,,. Due to the choice of W,,, this
means that the equations in the family cannot all be derived from a finite set of valid axioms
and therefore no finite, sound axiom system can be complete.

To the best of our knowledge, in this paper we propose the first non-finite axiomatisability
result for a process algebra in which one of the operators, namely the auxiliary operator
f, does not have a fixed semantics. However, for our technical developments, it has been
necessary to restrict the search space for f by means of the aforementioned simplifying
assumptions. To our mind, those assumptions are “reasonable” because they allow us
to simplify the combinatorial complexity of our analysis without excessively narrowing
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down the set of operators captured by our approach. There are three main reasons behind
Assumption 1:

The de Simone format is the simplest congruence format for bisimilarity. Hence we must

be able to deal with this case before proceeding to any generalisation.

The specification of parallel composition, left merge and communication merge operators

(and of the vast majority of process algebraic operators) is in de Simone format. Hence,

that format was a natural choice also for operator f.

The simplicity of the de Simone rules allows us to reduce considerably the complexity of

our case analysis over the sets of available rules for the operator f. However, as witnessed

by the developments in this article, even with this simplification, the proof of the desired

negative result requires a large amount of delicate, technical work.
Assumptions 2 and 3 still allow us to obtain a significant generalisation of related works,
such as [4], as we can see them as an attempt to identify the requirements needed to apply
Moller’s proof technique to Hennessy’s merge like operators. We stress that the reason for
adding Assumption 3 is purely technical: it plays a role in the proof of one of the claims
in our combinatorial analysis of the rules that f may have (see Lemma 11). Although we
conjecture that the assumption is not actually necessary to obtain that claim, we were unable
to prove it without the assumption.

Even though the vast literature on process algebras offers a plethora of non-finite axio-
matisability results for a variety of languages and semantics (see, for instance, the survey [5]
from 2005), we are not aware of any previous attempt at proving a result akin to the one we
present here. We have already addressed at length how our contribution fits within the study
of the equational logic of processes and how it generalises previous results in that field. The
proof-theoretic tools and the approach we adopt in proving our main theorem, which links
equational logic with structural operational semantics and builds on a number of previous
achievements (such as those in [2]), may have independent interest for researchers in logic
in computer science. To our mind, achieving an answer to question (P) in full generality
would be very pleasing for the concurrency-theory community, as it would finally clarify
the canonical role of Bergstra and Klop’s auxiliary operators in the finite axiomatisation of
parallel composition modulo bisimilarity.

Organisation of contents. After a brief review, in Section 2, of basic notions on process
semantics, CCS and equational logic, in Section 3 we present the simplifying assumptions
under which we tackle the problem (P). In Section 4 we study the operational semantics of
auxiliary operators f meeting our assumptions. In Section 5 we give a detailed presentation
of the proof strategy we will follow to address (P). Sections 6-9 are then devoted to the
technical development of our negative results. We conclude by discussing future work in
Section 10.

Due to space limitations, all proofs have been omitted, and they can be found in the
technical report [3].

2 Background

In this section we introduce the basic definitions and results on which the technical develop-
ments to follow are based.

Labelled Transition Systems and Bisimilarity. As semantic model we consider classic
labelled transition systems [16].
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» Definition 1. A labelled transition system (LTS) is a triple (S, A, —), where S is a set of
states (or processes), A is a set of actions, and — C S x A x S is a (labelled) transition
relation.

As usual, we use p £ p/ in lieu of (p,p,p") € —. For each p € S and p € A, we write
p 5 if p 25 9 holds for some p/, and p -4 otherwise.

In this paper, we shall consider the states in a labelled transition system modulo bisimil-
arity [18, 22], allowing us to establish whether two processes have the same behaviour.

» Definition 2. Let (S, A, —) be a labelled transition system. Bisimilarity, denoted by <>, is
the largest binary symmetric relation over S such that whenever p < q and p Ly, then
there is a transition ¢ — ¢’ with p’ < ¢'. If p < q, then we say that p and q are bisimilar.

It is well-known that bisimilarity is an equivalence relation (see, e.g., [18, 22]).

The Language CCS;. The language we consider in this paper is obtained by adding a
single binary operator f to the recursion, restriction and relabelling free subset of Milner’s
CCS [18], henceforth referred to as CCSy, and is given by the following grammar:

to= 0| x| at|at]|rt|t+t|t]t] flt,t),

where x is a variable drawn from a countably infinite set V), a is an action, and a is its
complement. We assume that the actions a and @ are distinct. Following [18], the action
symbol 7 will result from the synchronised occurrence of the complementary actions a and a.

In order to obtain the desired negative results, it will be sufficient to consider the
above language with three unary prefixing operators; so there is only one action a with its
corresponding complementary action a. Our results carry over unchanged to a setting with
an arbitrary number of actions, and corresponding unary prefixing operators. Henceforth,
we let p € {a,a,7} and « € {a,a}. As usual, we postulate that @ = a. We shall use the
meta-variables ¢, u, v, w to range over process terms, and write var(t) for the collection of
variables occurring in the term ¢. The size of a term is the number of operator symbols in it.
A process term is closed if it does not contain any variables. Closed terms, or processes, will
be typically denoted by p, g, r. Moreover, trailing 0’s will often be omitted from terms.

A (closed) substitution is a mapping from process variables to (closed) CCSy terms. For
every term ¢ and substitution o, the term obtained by replacing every occurrence of a variable
x in ¢ with the term o(z) will be written o(t). Note that o(t) is closed, if so is 0. We shall
sometimes write o[z — p] to denote the substitution that maps the variable x into process p
and behaves like o on all other variables.

In the remainder of this paper, we exploit the associativity and commutativity of + modulo
bisimilarity and we consider process terms modulo them, namely we do not distinguish ¢ + u
and u+t, nor (¢t +u) +v and ¢t 4+ (v + v). In what follows, the symbol = will denote equality
modulo the above identifications. We use a summation Zie{l,...,k} t; to denote the term
t =ty + -+ + tr, where the empty sum represents 0. We can also assume that the terms t;,
for i € {1,...,k}, do not have + as head operator, and refer to them as the summands of t.

Henceforth, for each action y and m > 0, we let u° denote 0 and p™*! denote u(u™).
For each action p and positive integer i > 0, we also define

pE =t
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Table 1 The rules of equational logic.

t~u t=u uxv t~u
t~t _
(61) (62) P (63) t~ v (64) U(t) O'(U)
t~u t~u t'~u t~u t'~u t~u t' ~u

(es) ————

wt = pau ) t+t' ~u+u (er)

RIS

[t t) ~ fu, )

Equational Logic. An axiom system & is a collection of (process) equations t ~ u over
CCSy. An equation ¢ =~ v is derivable from an axiom system &, notation € ¢ = wu, if there
is an equational proof for it from &£, namely if ¢ ~ u can be inferred from the axioms in &
using the rules of equational logic, which are reflexivity, symmetry, transitivity, substitution
and closure under CCS; contexts. In Table 1 we report the rules of equational logic over
CCSy.

Without loss of generality one may assume that substitutions happen first in equational
proofs, i.e., that the rule

t~u
o(t) = o(u)
may only be used when (£ ~ u) € £. In this case o(t) = o(u) is called a substitution instance
of an axiom in £. Moreover, by postulating that for each axiom in £ also its symmetric

counterpart is present in £, one may assume that applications of symmetry happen first in
equational proofs, i.e., that the rule

t~u

u~t

is never used in equational proofs. In the remainder of the paper, we shall always tacitly
assume that equational axiom systems are closed with respect to symmetry.

We are interested in equations that are valid modulo some congruence relation R over
closed terms. The equation ¢ = w is said to be sound modulo R if o(t) R o(u) for all closed
substitutions o. For simplicity, if ¢ & u is sound, then we write ¢t R u. An axiom system is
sound modulo R if, and only if, all of its equations are sound modulo R. Conversely, we say
that & is ground-complete modulo R if pR q implies € - p =~ ¢ for all closed terms p,q. We
say that R has a finite, ground-complete, axiomatisation, if there is a finite axiom system &
that is sound and ground-complete for R.

3 The simplifying assumptions

The aim of this paper is to investigate whether bisimilarity admits a finite equational
axiomatisation over CCSy, for some binary operator f. Of course, this question only makes
sense if f is an operator that preserves bisimilarity. In this section we discuss two assumptions
we shall make on the auxiliary operator f in order to meet such requirement and to tackle
problem (P) in a simplified technical setting.

3.1 The de Simone format

One way to guarantee that f preserves bisimilarity is to postulate that the behaviour of f is
described using Plotkin-style rules that fit a rule format that is known to preserve bisimilarity,
see, e.g., [7] for a survey of such rule formats. The simplest format satisfying this criterion is
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the format proposed by de Simone in [13]. We believe that if we can’t deal with operations
specified in that format, then there is little hope to generalise our results. Therefore, we
make the following

» Assumption 1. The behaviour of f is described by rules in de Simone format.

» Definition 3. An SOS rule p for f is in de Simone format if it has the form

(1)

f($1,$2> L) t

where I C {1,2}, u, p; € {a,a,7} (i € 1), and moreover
the variables x1, xo and y; (i € I) are all different and are called the variables of the rule,
t is a CCSy term over variables {x1,22,y; | i € I}, called the target of the rule, such that
each variable occurs at most once in t, and
if i € I, then x; does not occur in t.

Henceforth, we shall assume, without loss of generality, that the variables x1, x2, y1 and
yo are the only ones used in operational rules. Moreover, if u is the label of the transition in
the conclusion of a de Simone rule p, we shall say that p has p as label.

The SOS rules for all of the classic CCS operators, reported below, are in de Simone
format, and so are those for Hennessy’s | operator from [14] and for Bergstra and Klop’s
left and communication merge operators [9], at least if we disregard issues related to the
treatment of successful termination. Thus restricting ourselves to operators whose operational
behaviour is described by de Simone rules leaves us with a good degree of generality.

P y 5y
w2z Tty t+y -y
x Lo y Ly $i>$/,yi>y/
vy oy  zlly S|y x|y = al |y

The transition rules for the classic CCS operators above and those for the operator f
give rise to transitions between CCSy terms. The operational semantics for CCSy is thus
given by the LTS whose states are CCSy terms, and whose transitions are those that are
provable using the rules.

In what follows, we shall consider the collection of closed CCSy terms modulo bisimilarity.
Since the SOS rules defining the operational semantics of CCSy are in de Simone’s format,
we have that bisimilarity is a congruence with respect to CCS; operators, that is, up < pug,
p+p o q+d,pllp’ £ dld and f(p,p') & f(q,¢') hold whenever p & ¢, p’ < ¢’ and
p.7',q,q are closed CCSy terms.

Bisimilarity is extended to arbitrary CCS; terms thus:

» Definition 4. Let t,u be CCS; terms. We write t & w if and only if o(t) & o(u) for
every closed substitution o.

3.2 Axiomatising || with f

Our second simplifying assumption concerns how the operator f can be used to axiomatise
parallel composition. To this end, a fairly natural assumption on an axiom system over
CCSy is that it includes an equation of the form

x|y ~ t(z,y) (2)

8:7
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where ¢ is a CCSy term that does not contain occurrences of || with var(t) C {z,y}. More
precisely, the term will be in the general form t(x,y) = >, ti(x,y), where I is a finite index
set and, for each i € I, ¢;(z,y) does not have + as head operator. Equation (2) essentially
states that || is a derived operator in CCSy modulo bisimilarity. To our mind, this is a
natural, initial assumption to make in studying the problem we tackle in the paper.

We now proceed to refine the form of the term ¢(x, y), in order to guarantee the soundness,
modulo bisimilarity, of Equation (2). Intuitively, no term ¢;(x,y) can have prefixing as head
operator. In fact, if ¢(z,y) had a summand u.t'(z,y), for some p € {a,a, 7}, then one
could easily show that 0]|0 <4 t(0,0), since ¢(0,0) could perform a p-transition, unlike
0/|0. Similarly, ¢(x,y) cannot have a variable as a summand, for otherwise we would have
al|t <4 t(a,7). Indeed, assume, without loss of generality, that ¢(z,y) has a summand z.
Then, t(a,7) - 0, whereas a||7 cannot terminate in one step. We can therefore assume that,
for each i € I, t;(x,y) = f(t}(z,y),t?(z,y)) for some CCSy terms tg(x,y), with j € {1,2}.
To further narrow down the options on the form that the subterms t{ (z,y) might have, we
would need to make some assumptions on the behaviour of the operator f. For the sake
of generality, we assume that the terms t{ (z,y) are in the simplest form, namely they are
variables in {z,y}. Such an assumption is reasonable because to allow prefixing and/or
nested occurrences of f-terms in the scope of the terms t;(z,y) we would need to define
(at least partially) the operational semantics of f, thus making our results less general as,
roughly speaking, we would need to study one possible auxiliary operator at a time (the one
identified by the considered set of de Simone rules). Moreover, if we look at how parallel
composition is expressed equationally as a derived operator in terms of Hennessy’s merge or
Bergstra and Klop’s left and communication merge or as in [2], viz. via the equations

zlly~@fy)+ @l )
vlly=(@ly)+@ylz)+(@|y) zly=@ly)+@ly)+@]y),

we see the emergence of a pattern: the parallel composition operator is always expressed in
terms of sums of terms built from the auxiliary operators and variables.
Therefore, from now on we will make the following:

» Assumption 2. For some J C {x,y}?, the equation

zlly~> {f(z1,2) | (21,22) € J} (3)

holds modulo bisimilarity. We shall use t; to denote the right-hand side of the above equation
and use t7(p, q) to stand for the process o[z — p,y — ¢](ts), for any closed substitution o.

Using our assumptions, we further investigate the relation between operator f and parallel
composition, obtaining a refined form for Equation (3) (Proposition 7 below).

» Lemma 5. Assume that Assumptions 1 and 2 hold. Then:
1. The index set J on the right-hand side of (3) is non-empty.
2. The set of transition rules for f is non-empty.

3. Each transition rule for f has some premise.

4. The terms f(x,z) and f(y,y) are not summands of t;.

As a consequence, we may infer that the index set J in the term t; is either one of the
singletons {(x,y)} or {(y,z)}, or it is the set {(z,y), (y,z)}. Due to Moller’s results to the
effect that bisimilarity has no finite ground-complete axiomatisation over CCS [19, 21], the
former option can be discarded, as shown in the following:
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» Proposition 6. If J is a singleton, then CCSy admits no finite equational axiomatisation
modulo bisimilarity.
As a consequence, we can restate our Assumption 2 in the following simplified form:

» Proposition 7. Equation (3) can be refined to the form:

vy~ flz,y)+ fly,z) . (4)

Moreover, in the light of Moller’s results in [19, 21], we can restrict ourselves to considering
only operators f such that z || y &~ f(x,y) does not hold modulo bisimilarity.

For later use, we note a useful consequence of the soundness of Equation (4) modulo
bisimilarity.

» Lemma 8. Assume that Equation (4) holds modulo <. Then depth(p) is finite for each
closed CCSy term p.

4  The operational semantics of f

In order to obtain the desired results, we shall, first of all, understand what rules f may and
must have in order for Equation (4) to hold modulo bisimilarity (Proposition 12 below). We
begin this analysis by restricting the possible forms the SOS rules for f may take.

» Lemma 9. Suppose that f meets Assumption 1, and that Equation (4) is sound modulo
bisimilarity. Let p be a de Simone rule for f with u as label. Then:
1. If u = 7 then the set of premises {x; “> y; | i € I} of p can only have one of the
following possible forms:
{z; = y;} for somei € {1,2}, or
{1 2 y1, 20 = yo} for some o € {a,a}.
2. If p = o for some a € {a,a}, then the set of premises {x; ~ y; | i € I} can only have
the form {x; = y;} for some i € {1,2}.

The previous lemma limits the form of the premises that rules for f may have in order
for Equation (4) to hold modulo bisimilarity. We now characterise the rules that f must
have in order for it to satisfy that equation.

Firstly, we deal with synchronisation.

» Lemma 10. Assume that Equation (4) holds modulo bisimilarity. Then the operator f
must have a rule of the form

X1 = Y1 T2 i> Y2
fl1,22) = t(y1, y2)

()

for some « € {a,a} and term t. Moreover, for each rule for f of the above form the term
t(x,y) is bisimilar to x || y.

Henceforth we assume, without loss of generality that the target of a rule of the form (5)
is y1]|y2. We introduce the unary predicates Sg,a and ng,a to identify which rules of type (5)
are available for f. In detail, S({@ holds if f has a rule of type (5) with premises z; = 3

and Ty — Yo. Sg;a holds in the symmetric case.

We consider now the interleaving behaviour in the rules for f. In order to properly
characterise the rules for f as done in the previous Lemma 10, we consider an additional
simplifying assumption on the form that the targets of the rules for f might have.
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» Assumption 3. If ¢ is the target of a rule for f, then ¢ is either a variable or a term
obtained by applying a single CCS; operator to the variables of the rule, according to the
constraints of the de Simone format.

» Lemma 11. Let p € {a,a,7}. Then the operator f must have a rule of the form

X1 L) Y1
fa1,m2) 5 t(y1, 22)

or a rule of the form

"
T2 — Y2

f@1,m2) = (w1, 92)

(7)

for some term t. Moreover, under Assumption 3, for each rule for f of the above forms the
term t(x,y) is bisimilar to x || y.

Henceforth we assume, without loss of generality, that the target of a rule of the form (6)
is y1]|z2 and the target of a rule of the form (7) is z1]|y2.

For each p € {a,a, 7}, we introduce two unary predicates, L;Ji and Rl{, that allow us to
identify which rules with label p are available for f. In detail,

Lii holds if f has a rule of the form (6) with label y;

R/ holds if f has a rule of the form (7) with label .
We write LIJ: /\Rfi to denote that f has both a rule of the form (6) and one of the form (7) with
label p. We stress that, for each action pu, the validity of predicate Llfi does not prevent Rfj
from holding, and vice versa. Throughout the paper, in case only one of the two predicates
holds, we will clearly state it.

Summing up, we have obtained that:

» Proposition 12. If f meets Assumptions 1 and 8 and Equation (4) is sound modulo
bisimilarity, then f must satisfy Sﬁﬁa for at least one o € {a,a}, and, for each p € {a,a, u},
at least one of Lﬁ and R/J:.

The next proposition states that this is enough to obtain the soundness of Equation (4).

» Proposition 13. Assume that all of the rules for f have the form (5), (6), or (7). If S(J:V&
holds for at least one « € {a,a}, and, for each u € {a,a,7}, at least one of L{: and Rﬁ holds,
then Equation (4) is sound modulo bisimilarity.

When the set of actions is {a, a, 7}, there are 81 operators that satisfy the constraints in
Propositions 12 and 13, including parallel composition and Hennessy’s merge. In general,
when the set of actions has 2n + 1 elements, there are 33”1 possible operators meeting those
constraints.

5 The main theorem and its proof strategy

Our order of business will now be to use the information collected so far to prove our main
result, namely the following theorem:

» Theorem 14. Assume that [ satisfies Assumptions 1 and 3, and that Equation (4) holds
modulo bisimilarity. Then bisimilarity admits no finite equational axiomatisation over CCSy.
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In this section, we discuss the general reasoning behind the proof of Theorem 14. In
light of Propositions 12 and 13, to prove Theorem 14 we will proceed by a case analysis over
the possible sets of allowed SOS rules for operator f. In each case, our proof method will
follow the same general schema, which has its roots in Moller’s arguments to the effect that
bisimilarity is not finitely based over CCS (see, e.g., [4, 19, 20, 21]), and that we present here
at an informal level.

The main idea is to identify a witness property of the negative result. This is a specific
property of CCSy terms, say W, for n > 0, that, when n is large enough, is preserved by
provability from finite axiom systems. Roughly, this means that if £ is a finite set of axioms
that are sound modulo bisimilarity, the equation p ~ ¢ is provable from &, and n is greater
than the size of all the terms in the equations in £, then either both p and ¢ satisfy W,,,
or none of them does. Then, we exhibit an infinite family of valid equations, say e, called
accordingly witness family of equations for the negative result, in which W,, is not preserved,
namely it is satisfied only by one side of each equation. Thus, Theorem 14 specialises to:

» Theorem 15. Suppose that Assumptions 1-3 are met. Let € be a finite axiom system over
CCSy that is sound modulo bisimilarity. Then there is an infinite family e,, n > 0, of sound
equations such that £ does not prove the equation ey, for each n that is larger than the size
of each term in the equations in £.

In this paper, the property W,, corresponds to having a summand that is bisimilar to a
specific process. In detail:

1. We identify, for each case, a family of processes f(u, pn), for n > 0, and the choices of u
and p, are tailored to the particular set of SOS rules allowed for f. Moreover, process
pn will have size at least n, for each n > 0. Sometimes, we shall refer to the processes
f (,u, pn) as the witness processes.

2. We prove that by choosing n large enough, given a finite set of valid equations £ and
processes p,q < f(u,pn), if EF p~ ¢ and p has a summand bisimilar to f(u,py), then
also ¢ has a summand bisimilar to f(u,p,). Informally, we will choose n greater than the
size of all the terms in the equations in &£, so that we are guaranteed that the behaviour of
the summand bisimilar to f(u,py) is due to a closed substitution instance of a variable.

3. We provide an infinite family of valid equations e,, in which one side has a summand
bisimilar to f(u,p,), but the other side does not. In light of item 2, this implies that
such a family of equations cannot be derived from any finite collection of valid equations
over CCSy, modulo bisimilarity, thus proving Theorem 15.

To narrow down the combinatorial analysis over the allowed sets of SOS rules for f we
examine first the distributivity properties, modulo <, of the operator f over summation.

First of all, we notice that f cannot distribute over summation in both arguments. This
is a consequence of our previous analysis of the operational rules that such an operator f
may and must have in order for Equation (4) to hold. However, it can also be shown in a
purely algebraic manner.

» Lemma 16. A binary operator satisfying Equation (4) cannot distribute over + in both
arguments.

Hence, we can limit ourselves to considering binary operators satisfying our constraints
that, modulo bisimilarity, distribute over + in one argument or in none.
We consider these two possibilities in turn.
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Distributivity in one argument. Due to our Assumptions 1-3, we can exploit a result from
[2] to characterise the rules for an operator f that distributes over summation in one of its
arguments. More specifically, [2, Lemma 4.3] gives a condition on the rules for a smooth
operator g in a GSOS system that includes the 4+ operator in its signature, which guarantees
that ¢ distributes over summation in one of its arguments. (The rules defining the semantics
of smooth operators are a generalisation of those in de Simone format.) Here we show
that, for operator f, the condition in [2, Lemma 4.3] is both necessary and sufficient for
distributivity of f in one of its two arguments.

» Lemma 17. Leti € {1,2}. Modulo bisimilarity, operator f distributes over summation in
its i-th argument if and only if each rule for f has a premise x; — y;, for some ;.

By Proposition 12, Lemma 17 implies that, when f is distributive in one argument, either
L/J; holds for all u € {a,a,7} or lei holds for all u € {a,a, 7}, and S,,5 holds for at least
one o € {a,a}. Notice that if L/ holds for each action y and both Sf;a and S};a hold, then
f behaves as Hennessy’s merge | [14], and our Theorem 15 specialises to [4, Theorem 22].
Hence we assume, without loss of generality, that S? _ holds for only one o € {a,a}. A
similar reasoning applies if Rfi holds for each action u./

In Section 6 we will present the proof of Theorem 15 in the case of an operator f that
distributes over summation in its first argument (see Theorem 18).

Distributivity in neither argument. We now consider the case in which f does not distribute
over summation in either argument.

Also in this case, we can exploit Lemma 17 to obtain a characterisation of the set of rules
allowed for an operator f satisfying the desired constraints. In detail, we infer that there
must be u, v € {a,a, 7}, not necessarily distinct, such that LIJ; and R} hold. Otherwise, as f
must have at least one rule for each action (see Proposition 12), at least one argument would
be involved in the premises of each rule, and this would entail distributivity over summation
in that argument.

We will split the proof of Theorem 15 for an operator f that, modulo bisimilarity, does
not distribute over summation in either argument into three main cases:

1. In Section 7, we consider the case of L{ A R/ holding, for some o € {a,a} (Theorem 19).
2. In Section 8, we deal with the case of f having only one rule for «, only one rule for

@, and such rules are of different forms. As we will see, we will need to distinguish two

subcases, according to which predicate S(J;ﬁ holds (Theorem 20 and Theorem 21).

3. Finally, in Section 9, we study the case of f having only one rule with label «, only one

rule with label @, and such rules are of the same type (Theorem 22).

6 Negative result: the case L/, L, LS

In this section we discuss the nonexistence of a finite axiomatisation of CCSy in the case of
an operator f that, modulo bisimilarity, distributes over summation in one of its arguments.
We expand only the case of f distributing in the first argument. (The case of distributivity in
the second argument follows by a straightforward adaptation of the arguments we use in this
section.) Hence, in the current setting, we can assume the following set of SOS rules for f:

«a a
T — Y1 T2 —> Y2

flz1,22) = yilly2

n
Ty — Y1

f($17952) £ 2/1||332

Vue{a,a,T}

namely, only L;{ holds for each action p, and only S, 5 holds for some a € {a,a}.
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According to the proof strategy sketched in Section 5, we now introduce a particular
family of equations on which we will build our negative result. We define

P =D aa™ (n>0)
=0
€n: f(avpn) R apn + ZTagi (n > 0) .
=0

It is not difficult to check that the infinite family of equations e,, is sound modulo bisimilarity.
Our order of business is now to prove the instance of Theorem 15 considering the family
of equations e;,, above, showing that no finite collection of equations over CCSy that are
sound modulo bisimilarity can prove all of the equations e,, (n > 0).
Formally, we prove the following theorem:

» Theorem 18. Assume an operator f such that only Li holds for each action p and
only S&i,a holds. Let £ be a finite aziom system over CCSy that is sound modulo <, n be
larger than the size of each term in the equations in £, and p,q be closed terms such that
p,q < fla,pn). If EF p = q and p has a summand bisimilar to f(a,py,), then so does q.

Then, since the left-hand side of equation e,, viz. the term f(«,p,), has a summand
bisimilar to f(«,p;,), whilst the right-hand side, viz. the term ap, + > ., 7a=*, does not,
we can conclude that the infinite collection of equations {e,, | n > 0} is the desired witness
family. Theorem 15 is then proved for the considered class of auxiliary binary operators.

7 Negative result: the case LY A R

In this section we investigate the first case, out of three, related to an operator f that does
not distribute, modulo bisimilarity, over summation in either of its arguments.
We choose a € {a,a} and we assume that the set of rules for f includes

« «
T1 —> Y1 T2 — Y2

f(@1,22) =5 y1||@2 flar,20) 2 xllys

namely, predicate L] A RS holds for f.

We stress that the validity of the negative result we prove in this section does not depend
on which types of rules with labels a and 7 are available for f. Moreover, the case of an
operator for which L(’; A Ré holds can be easily obtained from the one we are considering,
and it is therefore omitted.

We now introduce the infinite family of valid equations, modulo bisimilarity, that will
allow us to obtain the negative result in the case at hand. We define

n
=0
ent flayan) = age + Y alafa™) (n>0) .
=0

Following the proof strategy from Section 5, we aim to show that, when n is large enough,
the witness property of having a summand bisimilar to f(«, ¢,) is preserved by derivations
from a finite, sound axiom system &, as stated in the following theorem:
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» Theorem 19. Assume an operator f such that L{ A RS holds. Let £ be a finite axiom
system over CCSy that is sound modulo <, n be larger than the size of each term in the
equations in €, and p,q be closed terms such that p,q < f(a,qn). If EFp~q and p has a
summand bisimilar to f(a,qn), then so does q.

Then, we can conclude that the infinite collection of equations {e, | n > 0} is the
desired witness family. In fact, the left-hand side of equation e,,, viz. the term f(«, g,), has a
summand bisimilar to f(«, g,), whilst the right-hand side, viz. the term ag,+> ., a(al|a<?),
does not. This concludes the proof of Theorem 15 in this case.

8 Negative result: the case L/, R,

In this section we deal with the second case related to an operator f that does not distribute
over summation in either argument. This time, given o € {a, a}, we assume that operator f
has only one rule with label « and only one rule with label &, and moreover we assume such
rules to be of different types. In detail, we expand the case in which for action « only the
predicate L{ holds, and for action @ only R{; holds, namely f has rules:

«a @
T1 —> Y1 T2 — Y2

f(@1,22) =5 y1||@2 f(x1,22) = 71 |ye

Once again, the proof for the symmetric case with Lé and RS holding is omitted.

To obtain the proof of the negative result, we consider the same family of witness processes
f(a,pp) from Section 6. However, differently from the previous case, the definition of the
witness family of equations depends on which rules of type (5) are available for f. More
precisely, we need to split the proof of the negative result into two cases, according to whether
the rules for f allow « and p,, to synchronise or not.

Case 1: Possibility of synchronisation. Assume first that Si,a holds, so that the rule

« a
T — Y1 T2 — Y2

f(xl,ﬂﬁz) - ylHyQ

allows for synchronisation between « and p,,. In this setting, the infinite family of equations
n n
€n: f(aapn) %ogpn—l-Zo_z(aHaSl) +ZTO‘SZ (n > O)
i=0 i=0

is sound modulo bisimilarity and it constitutes a family of witness equations.

» Theorem 20. Assume an operator f such that only LI holds for o, only Ré holds for a,
and Sf;a holds. Let £ be a finite axiom system over CCSy that is sound modulo <, n be
larger than the size of each term in the equations in £, and p,q be closed terms such that
p,q & f(a,pn). If EFp = q and p has a summand bisimilar to f(a,py), then so does q.

This proves Theorem 15 in the considered setting, as the left-hand side of equation e,
viz. the term f(«,py,), has a summand bisimilar to f(«,p,), whilst the right-hand side,
viz. the term ap, + > i, a(al|as?) + Y, 7a=%, does not.
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Case 2: No synchronisation. Assume now that the synchronisation between « and p,, is
prevented, namely only ngy’a holds. Then, the witness family of equations changes as follows:

en:  fla,pn) ®apy+ Y _alalla™)  (n>0) .
1=0

Our order of business is then to prove the following:

» Theorem 21. Assume an operator f such that only LI, holds for a, only Rf; holds for a,
and only S(é’a holds. Let € be a finite axiom system over CCS¢ that is sound modulo <, n
be larger than the size of each term in the equations in £, and p,q be closed terms such that
p,q < fla,pn). If EF p = q and p has a summand bisimilar to f(a,py,), then so does q.

Once again, the validity of Theorem 15 follows by noticing that the left-hand side of
equation ey, viz. the term f(«, p,,), has a summand bisimilar to f(«, p, ), whilst the right-hand
side, viz. the term ap, + > ., a@(al[a="), does not.

9 Negative result: the case Lf

This section considers the last case in our analysis, namely that of an operator f that does
not distribute, modulo bisimilarity, over summation in either argument and that has the
same rule type for actions , @. Here, we present solely the case in which L/ holds, and only
R{i,Ré hold for «, &, namely f has rules:

T @ [e%
T1 — U1 T2 — Y2 T2 —7 Y2

f(@1,22) = y1 |2 flar,m2) = 21|ys fl@1,29) % a1 |lys

The symmetric case can be obtained from this one in a straightforward manner.
Interestingly, the validity of the negative result we consider in this section is independent

of which rules of type (5) are available for f, and of the validity of the predicate RY.
Consider the family of equations defined by:

ent  f(Tqn) = Tqn + Za(TlldSi) (n=0)

where the processes ¢, are the same used in Section 7. Theorem 22 below proves that the
collection of equations e,, n > 0, is a witness family of equations for our negative result.

» Theorem 22. Assume an operator f such that LI holds and only R! and R;’; hold for
actions o and &. Let € be a finite aziom system over CCSy that is sound modulo <, n be
larger than the size of each term in the equations in £, and p,q be closed terms such that
p,q < f(1,q). If EF p =~ q and p has a summand bisimilar to f(7,q,), then so does q.

As the left-hand side of equation e,, viz. the term f(7,¢,), has a summand bisimilar to
f(7,¢n), whilst the right-hand side, viz. the term ¢, + Y., a(7]|a>"), does not, we can
conclude that the collection of infinitely many equations e,, (n > 0) is the desired witness
family. This concludes the proof of Theorem 15 for this case and our proof of Theorem 14.

10 Conclusions

In this paper, we have shown that, under a number of reasonable assumptions, we cannot
use a single binary auxiliary operator f, whose semantics is defined via inference rules in
the de Simone format, to obtain a finite axiomatisation of bisimilarity over the recursion,
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restriction and relabelling free fragment of CCS. Our result constitutes a first step towards
a definitive justification of the canonical standing of the left and communication merge
operators by Bergstra and Klop. We envisage the following ways in which we might generalise
the contribution presented in this study. Firstly, we will try to get rid of Assumptions 2 and 3.
Next, it is natural to relax Assumption 1 by considering the GSOS format [12] in place of the
de Simone format. However, as shown by the heavy amount of technical results necessary
to prove our main result even in our simplified setting, we believe that this generalisation
cannot be obtained in a straightforward manner and that it will require the introduction of
new techniques. It would also be very interesting to explore whether some version of problem
(P) can be solved using existing results from equational logic and universal algebra.
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