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Abstract
This work presents Information Theoretic HotStuff (IT-HS), a new optimally resilient protocol for
solving Byzantine Agreement in partial synchrony with information theoretic security guarantees.
In particular, IT-HS does not depend on any PKI or common setup assumptions and is resilient
to computationally unbounded adversaries. IT-HS is based on the Primary-Backup view-based
paradigm. In IT-HS, in each view, and in each view change, each party sends only a constant
number of words to every other party. This yields an O(n2) word and message complexity in each
view. In addition, IT-HS requires just O(1) persistent local storage and O(n) transient local storage.
Finally, like all Primary-Backup view-based protocols in partial synchrony, after the system becomes
synchronous, all nonfaulty parties decide on a value in the first view a nonfaulty leader is chosen.
Moreover, like PBFT and HotStuff, IT-HS is optimistically responsive: with a nonfaulty leader,
parties decide as quickly as the network allows them to do so, without regard for the known upper
bound on network delay. Our work improves in multiple dimensions upon the information theoretic
version of PBFT presented by Miguel Castro, and can be seen as an information theoretic variant of
the HotStuff paradigm.
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1 Introduction

This work assumes the model of Castro and Liskov’s PBFT protocol [7, 9, 11]. In particular
we deal with the task of Byzantine Agreement in a partially synchronous network. The
setting of partial synchrony was proposed by Dwork, Lynch, and Stockmeyer [12] and studied
extensively since. In this model, the network starts off as an asynchronous network and at
some unknown time becomes synchronous with a known delay ∆ on message arrival. This
time is known as the Global Stabilization Time, or GST in short. This model turns out
to be a useful one, managing to capture some of the behaviour of real-world networks. As
in PBFT, our goal in this work is to reduce the use of cryptographic tools that require a
computationally bounded adversary as much as possible. Much like PBFT, our algorithm
is information theoretically secure. Formally, as in PBFT [7, 9, 11], our protocol is secure
against adversaries that are not computationally bounded under the assumption that there
exist authenticated channels that can be made secure against such adversaries. For example,
authenticated channels can be obtained via a setup of one time pads or via Quantum key
exchange [2].

© Ittai Abraham and Gilad Stern;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2020.11
https://arxiv.org/abs/2009.12828
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Information Theoretic HotStuff

There are several good reasons to design protocols in the information theoretic security
setting. First, from a theoretical perspective we are interested in minimizing the assumptions.
Fewer assumptions often tend to add clarity and conceptual simplicity. Secondly, adding
public-key cryptography primitives adds a performance overhead and increases the code-base
attack surface, whereas computations in the information-theoretic setting are quick and
often amount to simple memory management and counting. Finally, protocols in this setting
are more “future-proof”. Such protocol are more resilient to breaking certain cryptographic
assumptions and to major technological disruptions in the field.

The PBFT variants that use a PKI and digital signatures can easily use bounded storage
at each party (per active slot). One of the challenges of the PBFT protocol when only
authenticated channels (no signatures) are used is that obtaining bounded storage is not
immediate. Indeed all the peer reviewed papers that we are aware of obtain unbounded
solutions [7, 10]. Castro’s thesis [9] does include a bounded storage solution, however to
the best of our knowledge this result was not published in a peer reviewed venue, and its
complexity does rely on cryptographic hash functions.

1.1 Main result
Our main result is Information Theoretic HotStuff (IT-HS), a protocol solving the task of
Byzantine Agreement in partial synchrony with information theoretic security using bounded
storage that sends messages whose maximal size is O(1) words (both during a view and
during a view change). The protocol is resilient to any number of Byzantine parties f such
that n > 3f , making it optimally resilient. In the protocol, there are several virtual rounds
called views, and each one has a leader, called a primary. This is a common paradigm for
solving Byzantine agreement, famously used in the Paxos protocol [16] and in later iterations
on those ideas such as PBFT [7, 9, 15] and more recent protocols in the Blockchain era
[4, 5, 6, 14, 18]. We use a standard measure of storage called a word and assume a word
can contain enough information to store any command, identifier, or counter. Formally, this
means that much like in all previous systems and protocols, our counters, identifiers, and
views are bounded (by say 256 bits). In IT-HS, in each view and in each view change, each
party sends just a constant number of words and messages to each other party, making the
total word and message complexity O(n2) in each view and in each view change. As far
as we know, this is the best known communication complexity and word complexity for
information theoretic protocols of this kind (see table below for comparison). In addition, all
parties require O(n) space throughout the protocol, out of which only O(1) space needs to
be persistent, crash-resistant memory. Clearly at least O(1) persistent memory is required,
because otherwise a decided upon value can be “forgotten” by all parties if they crash and
reboot. As far as we know, O(n) transient space complexity is the best known result. In the
shared memory model, a lower bound of Ω(n) registers exists [13], suggesting that the total
amount of persistent memory in the system is optimal.

In IT-HS, all nonfaulty parties are guaranteed to decide on a value and terminate during
the first view a nonfaulty party is chosen as primary after GST, if they haven’t done so
earlier. This is the asymptotically optimal convergence for such protocols: For deterministic
leader rotation this implies O(f) rounds after GST. If we assume that parties have access
to a randomized leader-election beacon, then this implies O(1) expected rounds after GST.
Furthermore, like PBFT and HotStuff, IT-HS is optimistically responsive. If the network
delay is actually δ = o (∆), all nonfaulty parties terminate in O (δ) time instead of in O (∆)
time. IT-HS uses an asymptotically optimal (constant) number of rounds given a nonfaulty
primary and after the network becomes synchronous.
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The most relevant related works for IT-HS are the PBFT protocol variants [7, 9, 10, 11]
and the HotStuff protocol variants [18]. The following table provides a comparison between
them.

Assumptions Persistent storage Maximum size of
message (in words)

PBFT (OSDI) [11] PKI Ω(n) O(n)

PBFT (TOCS) [10] Authenticated Channels,
Cryptographic Hash

Ω(n) per view
(unbounded)

Ω(n) per view
(unbounded)

PBFT (Thesis) [9] Authenticated Channels,
Cryptographic Hash O(1) O(n)

YAVP (Cachin) [7] Authenticated Channels,
Cryptographic Hash

Ω(n) per view
(unbounded)

Ω(n) per view
(unbounded)

HotStuff
(authenticators) [18] PKI O(n) O(n)

HotStuff
(threshold sig) [18]

DKG: Threshold
signature setup O(1) O(1)

(threshold sig)
IT-HS (this work) Authenticated Channels O(1) O(1)

As mentioned earlier, all previous peer-reviewed works in the information theoretic setting
require at least Ω(n · v) words of storage, where v is the view number. Since the view number
can grow arbitrarily large, the persistent storage requirement is unbounded. The only work
we know of that achieves comparable asymptotic performance relies on the relatively strong
cryptographic assumption of threshold signatures.

We note that IT-HS does not only use fewer assumptions (does not use any cryptographic
hash function), it also obtains the asymptotically optimal O(1) word bound on the maximal
message size. All other protocols require at least Ω(n) size messages to be sent during view
change by the primary (except for Hotstuff when using a Distributed Key Generation setup
and threshold signatures).

Compared to PBFT, our work can be seen as addressing the open problem left in the
PBFT journal version (which uses unbounded space and cryptographic hash functions) and is
an improvement of the non peer-reviewed PBFT thesis work (which still uses cryptographic
hash functions). IT-HS obtains the same O(1) persistent space, and manages to reduce the
maximum message size from O(n) (in the PBFT view change) to the asymptotically optimal
O(1) maximum message size and requires no cryptographic hash functions.

Relative to HotStuff, our work shows that without any PKI (public key infrastructure)
or DKG (distributed key generation) assumptions and without any cryptographic setup
ceremony, constant size messages and constant size persistent storage are possible! We do
note that IT-HS requires O(n2) messages and words per view, while the Hostuff version with
a DKG setup that uses threshold signatures requires just O(n) messages and words per view.
On the other hand, HS-IT requires no cryptographic setup ceremony and no computational
assumptions other than pairwise authenticated channels. Like HS-IT, all other protocols that
do not use threshold signatures (even those that require a PKI) use Ω(n2) words per view.

Our contributions
1. Unlike previous solutions which used cryptographic hash functions and required O(n)

sized messages, We provide the first information theoretic primary backup protocol where
all messages have size O(1) and storage is bounded to size O(1).

2. We manage to reduce the size of the view change messages to a constant by adapting
the HosStuff paradigm without using any cryptographic primitives. We introduce an
information theoretic technique for one-transferable signatures to maintain bounded space
and adopt the view change protocol accordingly.

OPODIS 2020
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3. Without using any cryptographic primitives, we obtain a protocol that requires just a
constant amount of persistent storage. We use information theoretic techniques that
require storing just the last two events from each message type.

1.2 Main Techniques

As the name might suggest, IT-HS is inspired by the Tendermint, Casper, and HotStuff
protocols [4, 5, 6, 18] and adapts them to the information theoretic setting. We show how to
adapt the lock and key mechanism which was suggested in HotStuff [18] and made explicit in
[1], to the information theoretic setting while maintaining just O(1) persistent storage. In a
basic locking mechanism [4, 12], before nonfaulty parties decide on a value, they set a “lock”
that doesn’t allow them to respond to primaries suggesting values from older views. Then,
before deciding on a value, nonfaulty parties require a proof that enough parties are locked
on the current view. This ensures that if some value is decided upon, there will be a large
number of nonfaulty parties that won’t be willing to receive messages from older views, and
thus this will remain the only viable value in the system.

The challenge with the locking mechanism is that the adversary can cause nonfaulty
locked parties to block nonfaulty primaries, unless the primary waits for all nonfaulty parties
to respond. To overcome this, an additional round is added so that a nonfaulty locked party
guarantees that there is a sufficient number of nonfaulty parties with a key. When a new
primary is chosen, it waits for just n − f parties to send their highest keys, and uses the
highest one it receives.

The challenge with using a key is verifying its authenticity. In the cryptographic setting,
this is easily done using signatures. In the information theoretic setting, verification is more
challenging. One approach is using Bracha’s Broadcast [3] in order to prove that the key
received by the primary will also be accepted by the other parties. Since there is no indication
of termination in Bracha’s Broadcast, there is a need to maintain an unbounded number
of broadcast instances (one for each view). Using such techniques requires an unbounded
amount of space.

To overcome this challenge with bounded space, we propose a novel approach of using
one-hop transferable proofs. If before moving to the next round, a nonfaulty party hears
from n− f parties, then it knows it heard from at least f + 1 nonfaulty parties. This means
that once the system becomes synchronous, every party will hear from those f + 1 parties
and know that at least one of them is nonfaulty. We use this type of “one-hop transferable
proof” twice so we have 3 key messages instead of one, each proving that the next key (or
lock) is correct, and that this fact can be proven to other parties, thereby ensuring liveness.

In order to send just a constant number of words, we send just the last two times that
the value of the key was updated. If the final update to key happened after a lock was set,
and its value is different than the lock’s value, then the lock is safe to open. Otherwise, if
the older of the two updates was after the lock’s view then at least in one of those times it
was updated to a value other than the lock’s value, and thus the lock is also safe to open.
Using this idea, parties can also prove to a primary that a key3 suggestion is safe. In this
case, the parties either show a later view in which the same value was set for key2, or two
later views in which the value of key2 was updated. This proof shows that any previous lock
either has the same value as key3, or can be opened safely regardless of its value. The idea
of storing just two lock values appears in Castro’s Thesis [9], we significantly extend this
technique to use our novel one-hop transferable information theoretic “signatures” combined
with the HotStuff keys-lock approach.
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1.3 Protocol Overview
Much like all primary backup protocols, each view of IT-HS consists of a constant number of
rounds. Each party waits to receive n − f round i messages before it sends a round i + 1
message (in some rounds there are additional checks). Much like PBFT, each round involves
an all-to-all message sending format. Throughout the protocol, parties may set a lock for a
given view and value. This lock indicates that any proposal for a different view, value pair
should not be accepted without ample proof that another value reached advanced stages in
a later view. In order to provide that proof, the parties send a proof message that helps
convince parties with locks to accept messages about a different value if appropriate.

The rounds of IT-HS for a given view can be partitioned into 4 parts:
1. View Change: parties first send a request message, indicating that they started the view.

Once parties hear the request message sent by the primary, they respond with their
current suggestion for a value to propose, as well as the view in which this suggestion
originated, and additional data which will help validate all nonfaulty parties’ suggestions
(proofs). After receiving those suggestions, the primary checks whether each suggestion is
valid, and once it sees n − f valid suggestions, it sends a propose message for the one
that originated in the most recent view.

2. Propose message round: this is where a party checks a proposal relative to its lock. Each
party checks if it’s locked on the same value as the one proposed, or convinced to override
its lock by f + 1 proof messages. If that is the case, it responds by sending an echo

message.
3. Key message rounds: this is where a key is created that can be later used to unlock

parties. After receiving n − f echo messages with the same value, parties send a key1
message with that value. After receiving n− f key1 messages with the same value they
send a key2 message. After receiving n− f key2 messages with the same value they send
a key3 message. We use these three rounds in order to obtain transferable information
theoretic signatures on the key message.

4. Lock and commit rounds: After receiving n− f key3 messages with the same value they
lock on it and send a lock message. After receiving n− f lock messages with the same
value they commit and send a done message.

Before sending a key1 message, the local key1, key1_val and prev_key1 fields are
updated. These fields contain the last view in which a key1 message was sent, its value, and
the last view a key1 message was sent with a different value. Similar updates take place for
the other key fields and the lock fields. The echo, lock and various key messages are tagged
with the current view, while the done message is a protocol-wide message and isn’t related
to a specific view. Similarly to the mechanism in Bracha Broadcast [3], after receiving f + 1
done messages, the message is echoed, and after receiving n− f messages it is accepted and
the parties decide and terminate. If a party sees that this view takes more than the expected
time, it sends an abort message for the view. The same f + 1 threshold for echoing the
abort message and n− f threshold for moving to the next view are implemented in order to
achieve the same properties. In order to avoid buffering request and abort messages, only
the messages with the highest view v are actually stored and are understood as a request or
abort message for any view up to v.

2 Byzantine Agreement in Partial Synchrony

This section deals with the task of Byzantine Agreement in a partially synchronous system.
In this model, there exist n parties who have local clocks and authenticated point-to-point
channels to every other party. The system starts off fully asynchronous: the clocks are not
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Algorithm 1 IT-HS.
Code for party i with input xi:
1: lock ← 0, lock_val← xi
2: key3← 0, key3_val← xi
3: key2← 0, key2_val← xi, prev_key2← −1
4: key1← 0, key1_val← xi, prev_key1← −1
5: view ← 0
6: ∀j ∈ [n] highest_request [j]← 0
7: continually run check_progress() in the background
8: while true do . memory from last process_messages and view_change calls is freed
9: cur_view ← view

10: as long as cur_view = view, run
11: at time cur_time() + 11∆ do
12: send an 〈abort, view〉 message to all parties
13: ignore messages from other views, other than abort, done and request messages
14: primary ← (view mod n) + 1
15: continually run process_messages(view) in the background
16: view_change(view, primary)

synchronized, and every message can be delayed any finite amount of time before reaching its
recipient. At some point in time, the system becomes fully synchronous: the clocks become
synchronized, and every message (including the ones previously sent) arrives in ∆ time at
most, for some commonly known ∆. It is important to note that even though it is guaranteed
that the system eventually becomes synchronous, the parties do not know when it is going to
happen, or even if it has already happened. The point in time in which the system becomes
synchronous is called the Global Stabilization Time, or GST in short. In the setting of a
Byzantine adversary, the adversary can control up to f parties, making them arbitrarily
deviate from the protocol. In general, throughout this work assume that f < n

3 .

I Definition 1. A Byzantine Agreement protocol in partial synchrony has the following
properties:

Termination. If all nonfaulty parties participate in the protocol, they all eventually
decide on a value and terminate.
Correctness. If two nonfaulty parties decide on values val, val′, then val = val′.
Validity. If all parties are nonfaulty and they all have the same input val, then every
nonfaulty party that decides on a value does so with the value val.

We note that if we assume the parties have access to an external validity function, as
described in [8], this protocol can be easily adjusted to have external validity. In this setting,
the external validity function defines which values are “valid”, and all nonfaulty parties are
required to output a valid value. The only adjustment needed is for parties to also check if a
value is valid before sending an echo message.

The main goal of this section is to show that Algorithm 1 is a Byzantine Agreement
protocol in partial synchrony resilient to f < n

3 Byzantine parties. For ease of discussion,
a party is said to perform an action “in view v” if when it performed the action its local
view variable equaled v. In addition, we define the notion of messages “supporting” a key or
opening a lock:
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Algorithm 2 view_change(view,primary).
Code for party i:
1: send 〈request, view〉 to all parties j ∈ [n]
2: upon highet_request [primary] = view, do
3: send 〈suggest, key3, key3_val, key2, key2_val, prev_key2, view〉 to primary
4: send_all_upon_join(〈proof, key1, key1_val, prev_key1, view〉)
5: if primary = i then
6: suggestions← ∅
7: key2_proofs← ∅
8: upon receiving the first 〈suggest, k3, v3, k2, v2, pk2, view〉 message from j, do
9: if pk2 < k2 < view then
10: add (k2, v2, pk2) to key2_proofs
11: if k3 = 0 then
12: add (k3, v3) to suggestions
13: else if k3 < view then
14: upon accept_key (k3, v3, key2_proofs) = true, do
15: add (k3, v3) to suggestions
16: wait until |suggestions| ≥ n− f , then do
17: let (k, v) ∈ suggestions be some tuple such that ∀ (k′, v′) ∈ suggestions k′ ≤ k
18: send_all_upon_join(〈propose, k, v, view〉)

I Definition 2. A suggest message is said to support the pair key3, key3_val, if its key2,
key2_val, and prev_key2 fields are ones for which at least one of the conditions in the loop
of Algorithm 3 is true.

A proof message is said to support opening the pair lock, lock_val if its key1, key1_val,
and prev_key1 fields are ones for which at least one of the conditions in the loop of Al-
gorithm 7 is true.

Before proving that Algorithm 1 is a Byzantine Agreement protocol in partial synchrony,
we prove several lemmas. The lemmas can be classified into two types: safety lemmas and
liveness lemmas. The safety lemmas show that if a nonfaulty party decides on some value,
no nonfaulty party decides on a different value. This is achieved by the locking mechanism.
Roughly speaking, if some nonfaulty party decides on some value, there exist f + 1 nonfaulty
parties that are locked on that value and will stop any other value from progressing past the
propose message. The liveness lemmas show two crucial properties for liveness. First of all, if
some nonfaulty party sets key3 to be some value, then there are f+1 parties that will support
that key. This means that if a nonfaulty party hears key suggestions from all nonfaulty
parties, it accepts them and picks some key. Secondly, if some nonfaulty primary picks a key
to propose, the suggest messages it receives guarantee that any nonfaulty party will receive
enough supporting proof messages. This means that all nonfaulty parties eventually accept
the primary’s proposal, even if they are locked on some other value. In the following lemmas
assume that the number of faulty parties is f < n

3 .

2.1 Safety Lemmas
The following lemma and corollary show that a primary cannot equivocate in a given view.
More precisely, in a given view all nonfaulty parties send messages that report the same
value, other than echo messages which might have more than one value. The proofs of the
lemma and corollary consist of simple counting arguments and are omitted.
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Algorithm 3 accept_key(key,value,proofs).

1: supporting ← 0
2: for all (k, v, pk) ∈ proofs do
3: if key ≤ pk then
4: supporting ← supporting + 1
5: else if key ≤ k ∧ value = v then
6: supporting ← supporting + 1
7: if supporting ≥ f + 1 then
8: return true
9: else
10: return false

Algorithm 4 send_all_upon_join(message).
Code for party i:
1: for all parties j ∈ [n] do
2: upon highest_request [j] = view, do
3: send message to party j

I Lemma 3. If two nonfaulty parties send the messages 〈key1, val, v〉 and 〈key1, val′, v〉,
then val = val′.

I Corollary 4. If two nonfaulty parties i and j send a 〈tag, val, v〉 and 〈tag′, val′, v〉 message
such that tag, tag′ ∈ {key1, key2, key3, lock} then val = val′.

The following lemma and corollary now show that all done messages that nonfaulty
parties send have the same value. There are two ways nonfaulty party might send a done
message: in the end of a view, or after receiving enough done messages from other parties.
In the first view a nonfaulty party sends a done message in line 29, no nonfaulty party sends
a done message with another value because of the previous non-equivocation claims. Then,
once such a done message is sent, there are f + 1 nonfaulty parties that are locked on that
value, and won’t allow any other value to be proposed by a primary. Since all nonfaulty
parties send done messages with the same value at the end of views, they never receive
enough done messages with another value for them to echo that done message.

I Lemma 5. If two nonfaulty parties send the messages 〈done, val〉 and 〈done, val′〉 in
line 29, then val = val′.

I Corollary 6. If two nonfaulty parties send the messages 〈done, val〉 and 〈done, val′〉, then
val = val′.

The proofs of Lemma 5 and Corollary 6 closely follow the above description and are
omitted.

2.2 Liveness Lemmas
The first two lemmas show that no nonfaulty party gets “stuck” in a view. If some nonfaulty
party terminates, then every nonfaulty party eventually terminates as well. In addition, after
GST, all nonfaulty parties start participating in consecutive views until terminating.
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Algorithm 5 check_progress().
Code for party i:
1: ∀j ∈ [n] highest_abort [j]← 0
2: upon receiving a 〈request, v〉 message from party j, do
3: if highest_request [j] < v then
4: highest_request[j]← v

5: upon receiving a 〈done, val〉 message from f + 1 parties with the same val, do
6: if no done message has been previously sent then
7: send 〈done, val〉 to every party j ∈ [n]
8: upon receiving a 〈done, val〉 message from n− f parties with the same val, do
9: decide val and terminate
10: upon receiving an 〈abort, v〉 message from party j, do
11: if highest_abort [j] < v then
12: highest_abort [j]← v

13: let u be the f + 1’th largest value in highest_abort
14: if u > highest_abort [i] then
15: send 〈abort, u〉 to every party j ∈ [n]
16: highest_abort [i]← u

17: let w be the n− f ’th largest value in highest_abort
18: if w ≥ view then
19: view ← w + 1

I Lemma 7. Observe some nonfaulty party i that terminates. All nonfaulty parties terminate
no later than 2∆ time after both GST occurs, and i terminates.

I Lemma 8. Let v be the highest view that some nonfaulty party is in at GST. For every
view v′ > v, all nonfaulty parties either start view v′, or terminate in some earlier view.

Furthermore, if some nonfaulty party starts view v′ after GST, all nonfaulty parties either
terminate or start view v′ no later than 2∆ time afterwards.

The proofs are straightforward and are omitted. Eventually, all nonfaulty parties particip-
ate in some view with a nonfaulty primary, if they haven’t terminated previously. The next
lemmas show that once that happens, all nonfaulty parties terminate. First of all, in order for
that to happen, a primary needs to receive enough suggestions for a key3 that it will accept.
The following lemma shows that every nonfaulty party’s key3 field has enough support from
nonfaulty parties for the primary to accept the key. Intuitively, since a nonfaulty party set
its key3 field to some value, there exist f + 1 nonfaulty parties that sent a key2 message
with that value. The lemma shows that those f + 1 nonfaulty parties have key2, key2_val
and prev_key2 fields that continue to support the key.

I Lemma 9. If some nonfaulty party sets key3 = v, key3_val = val in view v, then there
exist f + 1 nonfaulty parties whose suggest messages in every view v′ > v support key3 and
key3_val.

Proof. We will prove by induction that there exist f + 1 nonfaulty parties for whom in every
v′ > v either prev_key2 ≥ key3, or key2 ≥ key and key2_value = val. Since those are the
fields that nonfaulty parties send in suggest messages, that proves the lemma. First, observe
view v. In that view, some nonfaulty party set key3 = v and key3_val = val. This means

OPODIS 2020
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Algorithm 6 process_messages(view).
Code for party i:
1: proofs← ∅
2: upon receiving the first 〈proof, k1, v1, pk1, view〉 message from j, do
3: if view > k1 > pk1 then
4: add (k1, v1, pk1) to proofs
5: upon receiving the first 〈propose, key, val, view〉 message from primary, do
6: if lock = 0 ∨ val = lock_val then
7: send_all_upon_join(〈echo, val, view〉)
8: else if view > key ≥ lock then
9: upon open_lock (proofs) = true, do

10: send_all_upon_join(〈echo, val, view〉)
11: upon receiving an 〈echo, val, view〉 message from n− f parties with the same val, do
12: send_all_upon_join(〈key1, val, view〉)
13: if key1_val 6= val then
14: prev_key1← key1, key1_val← val

15: key1← view

16: upon receiving a 〈key1, val, view〉 message from n− f parties with the same val, do
17: send_all_upon_join(〈key2, val, view〉)
18: if key2_val 6= val then
19: prev_key2← key2, key2_val← val

20: key2← view

21: upon receiving a 〈key2, val, view〉 message from n− f parties with the same val, do
22: send_all_upon_join(〈key3, val, view〉)
23: key3← view, key3_val← val

24: upon receiving a 〈key3, val, view〉 message from n− f parties with the same val, do
25: send_all_upon_join(〈lock, val, view〉) to every party j ∈ [n]
26: lock ← view, lock_val← val

27: upon receiving a 〈lock, val, view〉 message from n− f parties with the same val, do
28: if no done message has been previously sent then
29: send 〈done, val〉 to every party j ∈ [n]

that it received a 〈key2, val, v〉 message from n − f parties, f + 1 of whom are nonfaulty.
In addition to other possible updates, every one of those parties updates key2 = view, and
key2_val = val if that isn’t true already. Those f + 1 parties prove the claim for view v.

Now assume the claim holds for every v′′ < v′. Observe party j, which is one of the
f + 1 parties described in the induction claim. If j doesn’t update any of its key2 fields
in view v′, those conditions continue to hold in the end of view v′ and in the beginning
of the next view. If j only updates key2 to be v′, then if prev_key2 ≥ key3, it remains
that way, and if key2 ≥ key3 as well as key2_val = key3_val, after updating key2 to be
v′ > key2 ≥ key3, it also remains that way. Otherwise j updates prev_key2 = key2 too.
Note that key2 > prev_key2 at all times. Therefore, before updating prev_key2, regardless
of which part of the induction claim holds, key2 ≥ key3. After updating prev_key2 to be
key2, prev_key2 ≥ key3, completing the proof. J

The following lemma is used to show that if a nonfaulty primary chose some key, and some
nonfaulty party has a lock, it is either the case that the key’s value equals the lock’s value, or
there are enough nonfaulty parties that support opening the lock. Note that the conditions of
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Algorithm 7 open_lock(proofs).
Code for party i:
1: supporting ← 0
2: for all (k, v, pk) ∈ proofs do
3: if lock ≤ pk then
4: supporting ← supporting + 1
5: else if lock ≤ k ∧ v 6= lock_val then
6: supporting ← supporting + 1
7: if supporting ≥ f + 1 then
8: return true
9: else
10: return false

the lemma are nearly identical to the conditions the primary checks before accepting a proof
as supporting some key. This means that before accepting a key, the primary essentially
checks if there is enough support to open any other lock. Similarly to the previous lemma,
this lemma shows that if some nonfaulty party sets key2 to some value, there are f + 1
parties that sent a key1 message with that value. Those f + 1 parties’ key1, key1_val and
prev_key1 fields then continue to support any lock set previously with another value.

I Lemma 10. Let lock > 0 be some nonfaulty party’s lock and lock_val be its value. If some
nonfaulty party either has prev_key2 ≥ lock or key2 ≥ lock and key2_val 6= lock_val,
then there exist f + 1 nonfaulty parties whose key1, key1_val and prev_key1 fields support
opening the lock.

Proof. Let i be a nonfaulty party such that either prev_key2 ≥ lock or key2 ≥ lock

and key2_val 6= lock_val. If key2 ≥ lock > 0 and key2_val 6= lock_val, i received a
〈key1, key1_val, key2〉 message from n− f parties in view key2. Out of those n− f parties,
at least f + 1 are nonfaulty. On the other hand, if prev_key2 ≥ lock > 0, then for some
pair of values val, val′ such that val 6= val′, i received a 〈key1, val, prev_key2〉 message
from f + 1 nonfaulty parties in view prev_key2 and a 〈key1, val′, key2〉 message from f + 1
nonfaulty parties in view key2 > prev_key2 ≥ lock. At least one of the values val, val′
must not equal lock_val because val 6= val′. In other words, in both cases there exist f + 1
nonfaulty parties that sent a 〈key1, val, v〉 in view v such that val 6= lock_val and v ≥ lock.
Let I be the set of those nonfaulty parties.

We now prove by induction that for every v′ ≥ v, all of the parties in I either have
prev_key1 ≥ lock or key1 ≥ lock and key1_val 6= lock_val. First, observe view v. As
stated above, in view v all of the parties in I sent a 〈key1, val, v〉 and thus set key1 = v ≥ lock
and key1_val = val 6= lock_val, if it wasn’t already so. Now, assume the claim holds for all
views v′′ < v′. Note that the values of key1 and prev_key1 only grow throughout the run.
This means that if prev_key1 ≥ lock in the beginning of view v′, this will also be true at
the end of view v′. On the other hand, if that is not the case, then in the beginning of view
v′, key1 ≥ lock and key1_val 6= lock_val. If the value of key1_val isn’t updated in view
v′, then key1 can only grow and thus the claim continues to hold. On the other, if the value
of key1_val is updated in view v′, then for some val′ 6= val the following updates take place:
key1← v′, key1_val ← val′, prev_key1← key1. By assumption, in the beginning of view
v′, key1 ≥ lock, and thus after the update prev_key1 ≥ lock, completing the proof. J
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This final lemma ties the two previous lemmas together. Once a nonfaulty party is chosen
as primary after GST, the primary receives enough keys, and each one of them has enough
support to be accepted. Then, after the key is sent, every nonfaulty party either has a lock
with the same value, or there is enough support to open its lock. From this point on, the
view progresses easily and all nonfaulty parties terminate.

I Lemma 11. Let v be the first view with a nonfaulty primary that starts after GST1. All
nonfaulty parties decide on a value and terminate in view v, if they haven’t done so earlier.

Furthermore, if all messages between nonfaulty parties are actually delayed only δ time
until being received, they decide on a value and terminate in O (δ) time.

The proof of the lemma follows naturally from the previous lemmas and is omitted.

2.3 Main Theorem
Using the previous lemmas, it is now possible to prove the main theorem:

I Theorem 12. Algorithm 1 is a Byzantine Agreement protocol in partial synchrony resilient
to f < n

3 Byzantine parties.

Proof. We prove each property individually.
Correctness. Observe two nonfaulty parties i, j that decide on the values val, val′ respectively.

Party i first received a 〈done, val〉 message from n−f parties, and j received a 〈done, val′〉
message from n−f parties. Since n−f > f , i and j receive at least one of their respective
messages from some nonfaulty party. From Corollary 6, all nonfaulty parties that send a
done message do so with the same value. Therefore, val = val′.

Validity. Assume that all parties are nonfaulty and that they have the same input val. We
will prove by induction that for every view v, every nonfaulty party has key3_val = val.
Furthermore, if some nonfaulty party sends a 〈key1, val′, v〉 message, then val′ = val.
First, all parties set key3_val to be val in the beginning of the protocol. Assume the claim
holds for every v′ < v. In the beginning of view v, the primary calls the view_change
protocol. Before completing view_change, the primary receives suggest messages from
n− f parties with their key3_val field. Since all parties are nonfaulty, they all send the
key3_val they have at that point, and from the induction hypothesis key3_val = val.
This means that if the primary completes the view_change protocol, it sees that for every
(key, key_val) ∈ suggestions, key_val = val and thus if the primary sends a propose
message it sends the message 〈propose, val, key, v〉 to all parties. Now, every nonfaulty
party that sends a key1 message sends the message 〈key1, val, v〉. From Corollary 4,
every nonfaulty party that sends a 〈key3, val′, v〉 message, does so with val′ = val. If
a nonfaulty party updates key3_val to a new value val′, it also sends a 〈key3, val′, v〉
message. However, as shown above the only value sent in such a message is val so no
nonfaulty party updates its key3_val field to any other value. Using Corollary 4, every
nonfaulty party that sends a lock message does so with the value val. This means that
any party that sends a done message in line 29, does so with the value val. Clearly any
party that sends a done message in line 7 does so with the value val as well, because
it never receives done messages with any other value. Finally, this means that every
nonfaulty party that decides on a value decides on val.

1 More precisely, by “starting after GST”, we mean that the first time some nonfaulty party has view ≥ v
is after GST.
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Termination. Observe the system after GST, and let v be the highest view that some
nonfaulty party is in at that time. From Lemma 8, all nonfaulty parties either terminate
or participate in every view v′ > v. Since the primaries are chosen in a round-robin
fashion, after no more than f + 1 views, some nonfaulty party starts a view with a
nonfaulty primary. From Lemma 11, all nonfaulty parties either terminate in that view
or earlier. J

2.4 Complexity Measures
The main complexity measures of interest are round complexity, word complexity, and space
complexity.

Word complexity. In IT-HS in every round, every party sends at most O(1) words to every
other party. We assume that a word is large enough to contain any counter or identifier.
This implies that just O(n2) words are sent in each round.

Round complexity. As IT-HS is a primary-backup view-based protocol (like Paxos and
PBFT), there are no bounds on the number of rounds while the system is still asynchronous.
Therefore, we use the standard measure of counting the number of rounds and number of
words sent after GST. Furthermore, in order to be useful in the task of agreeing on many
values, a desirable property is optimistic responsiveness: when the primary is nonfaulty and
the network delay is low, all nonfaulty parties complete the protocol at network speed. This
desire is captured in the next definition:

I Definition 13 (Optimistic Responsivness). Assume all messages between nonfaulty parties
are actually delivered in δ < ∆ time. The protocol is said to be optimistically responsive if
all nonfaulty parties complete the protocol in O (δ) time after a nonfaulty primary is chosen
after GST.

Space complexity. We separate the local space complexity into two types: persistent
memory and transient memory. In this setting, parties can crash and be rebooted. Persistent
memory is never erased, even in the event of a crash, while transient memory can be erased
by a reboot event. IT-HS requires asymptotically optimal O(1) persistent storage (measured
in words) and just O(1) transient memory per communication channel (so a total of O(n)
transient memory).

After a reboot, nonfaulty parties can ask other parties to send messages that help recover
information needed in their transient memory. In this setting we assume that all nonfaulty
parties that terminate still reply to messages asking for previously sent information.

I Theorem 14. During Algorithm 1, each nonfaulty party sends a constant number of words
to each other party in each view and requires O (n) memory overall, out of which O(1) is
persistent memory. Furthermore, the protocol is optimistically responsive.

Proof. First note that each view consists of one message sent from all parties to the primary,
one message sent from the primary to all parties, and a constant number of all-to-all
communication rounds. In addition, each message consists of no more than 7 words. Overall,
each party only sends a constant number of messages to every party, each with a constant
number of words. In each view, every nonfaulty party needs to remember which messages
were sent to it by other parties, as well as a constant amount of information about every
suggest and proof message. Since a constant number of words and messages is sent from each
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party to every other party, this requires O(n) memory. Note that once a new view is started,
all of the information stored in the previous call to view_change and process_messages
is freed. Other than that, every nonfaulty party allocates two arrays of size n, a constant
number of other fields, and needs to remember the first done messages received from every
other party. This also requires O(n) memory. Overall, the only fields that need to be stored
in persistent memory are the view, lock, lock_val, and various key, key_val and prev_key
fields, as well as the messages it sent in the current view, and the last done, request and
abort messages it sent. This is a constant number of fields, in addition to a constant number
of messages. After being rebooted, a nonfaulty party i can ask to receive the last done,
request, and abort messages sent by all nonfaulty parties to restore the information it lost
that doesn’t pertain to any specific view, and any message sent in the current view. In
addition, it sends a request message for its current view. Upon receiving such a message, a
nonfaulty party j replies with the last done, request and abort messages it sent. In addition,
if j is in the view that party i asked about, it also re-sends the messages it sent in the current
view. Note that this is essentially the same as i receiving messages late and starting its view
after being rebooted, and thus all of the properties still hold. The fact that the protocol is
optimistically responsive is proven in Lemma 11. J

3 Multi-Shot Byzantine Agreement and State Machine Replication

This section describes taking a Byzantine Agreement protocol and using it to solve two
tasks that are natural extensions of a single shot agreement. Both tasks deal with different
formulations for the idea of agreeing on many values, instead of just one.

3.1 State Machine Replication with Stable Leader (a la PBFT)
In the task of State Machine Replication [17], all parties (called replicas) have knowledge of
the same state machine. Each party receives a (possibly infinite) series of instructions to
perform on the state machine as input. The goal of the parties is to all perform the same
actions on the state machine in the same order. More precisely, the parties are actually
only interested in the state of the state machine, and aren’t required to see all of the
intermediary states throughout computation. In order to avoid trivial solutions, if all parties
are nonfaulty and they have the same s’th instruction as input, then they all execute it as
the s’th instruction for the state machine. This task can be achieved utilizing any Byzantine
Agreement protocol, using ideas from the PBFT protocol.

In addition to the inputs, the protocol is parameterized by a window size α. All parties
participate in α instances of the Byzantine Agreement protocol, each one tagged with the
current decision number. After each decision, every party saves a log of their current decision,
and updates the state machine according to the decided upon instruction. Then, after every
α
2 decisions, each party saves a “checkpoint” with the current state of the state machine, and
deletes the log of the α

2 oldest decisions. Then, before starting the next α
2 decisions, every

party sends its current checkpoint and makes sure it receives the same state from n − f
parties using techniques similar to Bracha broadcast. Furthermore, as long as no view fails,
the primary isn’t replaced. This means that eventually at some point, either there exists a
faulty primary that always acts like a nonfaulty primary, or a nonfaulty primary is chosen
and is never replaced. Both sending the checkpoints and replacing faulty leaders require
more implementation details which can be found in [9].

Using these techniques, all parties can decide on O (α) instructions at a time, improving
the throughput of the algorithm. The communication complexity per view remains similar
to the communication complexity of the IT-HS algorithm, but once a nonfaulty primary
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is reached after GST, all invocations of the protocol require only one view to terminate.
Alternatively, if a nonfaulty primary is never reached after GST, a faulty party acts like a
nonfaulty primary indefinitely, which yields the same round complexity. Finally, if we assume
that a description of the state machine requires O (S) space, the protocol now requires
O(S + α) persistent space in order to store the checkpoints and store the O(1) state for each
slot in the window. In addition, the protocol requires O (α · n+ S) transient space in order
to store the information about all active calls to IT-HS, the α decisions in the log, and a
description of the current state of the state machine.

3.2 Multi-Shot Agreement with Pipelining (a la HotStuff)
In contrast, we can take the approach of HotStuff [18] and solve the task of multi-shot
agreement. In this task, party i has an infinite series of inputs x1

i , x
2
i , . . ., and the goal of the

parties is to agree on an infinite number of values. Each decision is associated with a slot
which is the number s ∈ N of the decision made. Each one of these decisions is required to
have the agreement properties, i.e.: eventually all nonfaulty parties decide on a value for slot
s, they all decide on the same value, and if all parties are nonfaulty and have the same input
val for slot s, the decision for the slot is val.

A naive implementation for this task is to sequentially call separate instances of IT-HS
for every slot s ∈ N, each with the input (s, xsi ). In order to improve the throughput of
the protocol, after completing an instance of the IT-HS protocol, the parties can continue
with the next view and the next primary in the round-robin. This slight adjustment ensures
that after GST, n− f out of every n views have a decision made, and if messages between
nonfaulty parties are only delayed δ time, each one of those views requires only O(δ) time to
reach a decision. Slight adjustments need to be made in that case so that abort messages
are sent about views regardless of the slot, so that all parties continue participating in the
same views throughout the protocol. In addition, messages about different slots need to be
ignored.

In the case of the optimistic assumption that most parties are nonfaulty, a significantly
more efficient alternative can be gleaned from the HotStuff protocol. This alternative uses a
technique called pipelining (or chaining). Roughly speaking, in this technique, all parties
start slot s by appending messages, starting on the second round (round, not view) of slot
s− 1. In the case of HT-IS, the protocol can be changed so that suggest messages are sent
to all parties, and then each party starts slot s after receiving n − f suggest messages in
slot s. Note that the exact length of timeouts needs to be slightly adjusted, and the details
can be found in [18]. In slot s, a nonfaulty primary appends its current proposal to the
proposal it heard in slot s − 1. Then, before deciding on a value in slot s, parties check
that the decision values in the previous slots agree with the proposal in slot s. If they do,
then the parties agree on the value in this slot as well. In this protocol, each view lasts for
11∆ time, so if at some point a primary sees that a proposal from 11 views ago failed, it
appends its proposal to the first one that it accepted from a previous view. After GST, if
there are m+ 11 nonfaulty primaries in a row, then the last m primaries are guaranteed to
complete the protocol, and thus add m decisions in (m+ 11)∆ time instead of in m · 11∆
time. This means that in the optimistic case that a vast majority of parties are nonfaulty,
the throughput of this protocol is greatly improved as compared to the naive implementation.
In this protocol the communication complexity per view is still O(n2) messages, but a larger
number of words. However, note that it is not always the case that if a nonfaulty primary is
chosen, its proposal is accepted. To obtain bounded memory requirement one needs to add
a checkpointing mechanism, similar to PBFT. As in PBFT, only O(n) transient space and
O(1) persistent space are required per decision in addition to the log of the decisions.
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