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Abstract
We investigate the minimal number of failures that can partition a system where processes commu-
nicate both through shared memory and by message passing. We prove that this number precisely
captures the resilience that can be achieved by algorithms that implement a variety of shared
objects, like registers and atomic snapshots, and solve common tasks, like randomized consensus,
approximate agreement and renaming. This has implications for the m&m-model of [5] and for the
hybrid, cluster-based model of [28, 31].
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1 Introduction

Some distributed systems combine more than one mode of communication among processes,
allowing them both to send messages among themselves and to access shared memory.
Examples include recent technologies such as remote direct memory access (RDMA) [2–4],
disaggregated memory [30], and Gen-Z [1]. In these technologies, the crash of a process does
not prevent access to its shared memory by other processes. Under these technologies, it
is infeasible to share memory among a large set of processes, so memories are shared by
smaller, strict subsets of processes.

Systems mixing shared memory and message passing offer a major opportunity since
information stored in shared variables remains available even after the failure of the process
who stored it. Mixed systems are expected to withstand more process failures than pure
message-passing systems, as captured by the resilience of a problem – the maximal number
of failures that an algorithm solving this problem can tolerate. This is particularly the
case in an asynchronous system. At one extreme, when all processes can access the same
shared memory, many problems can be solved even when all processes but one fail. Such
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16:2 Resilience of Systems That Mix Shared Memory and Message Passing

wait-free algorithms exist for implementing shared objects and solving tasks like randomized
consensus, approximate agreement and renaming. At the other extreme, when processes
only communicate by message passing, the same problems require that at least a majority of
processes do not fail [7,8,18]. Thus, typically, shared-memory systems are (n−1)-resilient, and
pure message-passing systems are b(n− 1)/2c-resilient, where n is the number of processes.

The resilience in systems that mix shared memory and message passing falls in the
intermediate range, between b(n− 1)/2c and n − 1. It is, however, challenging to solve
specific problems with the best-possible resilience in a particular system organization: the
algorithm has to coordinate between non-disjoint sets of processes that have access to different
regions of the shared memory. On the other hand, bounding the resilience requires to take
into account the fact that processes might be able to communicate indirectly through shared
memory accesses of third-party processes.

This paper explores the optimal resilience in systems that provide message-passing support
between all pairs of processes, and access to shared memory between subsets of processes. We
do this by studying the minimal number of failures that can partition the system, depending
on its structure, i.e., how processes share memory with each other. We show that the
partitioning number exactly characterizes the resilience, that is, a host of problems can be
solved in the presence of < f crash failures, if and only if f is the minimal number of failures
that partition the system.

A key step is to focus on the implementation of a single-writer multi-reader register
shared among all processes, in the presence of f crash failures. A read or a write operation
takes O(1) round-trips, and requires O(n) messages. Armed with this implementation, well-
known shared-memory algorithms can be employed to implement other shared objects, like
multi-writer multi-reader registers and atomic snapshots, or to solve fundamental problems,
such as randomized consensus, approximate agreement and renaming. Because the register
implementation is efficient, these algorithms inherit the good efficiency of the best-known
shared-memory algorithm for each of these problems.

Going through a register simulation, instead of solving consensus, approximate agreement
or renaming from scratch, does not deteriorate their resilience. One of our key contributions
is to show that the resilience achieved in this way is optimal, by proving that these problems
cannot be solved in the presence of f crash failures, if f failures can partition the system.

We consider memories with access restrictions and model mixed systems by stating which
processes can read from or write to each memory. (Note that every pair of processes can
communicate using messages.) Based on this concept, we define fopt to be the largest number
of failures that do not partition the system. We prove that f -resilient registers and snapshot
implementations, and f -resilient solutions to randomized consensus, approximate agreement
and renaming, exist if and only if f ≤ fopt.

One example of a mixed model is the message-and-memory model [5], in short, the m&m
model. In the general m&m model [5], the shared-memory connections are defined by (not
necessarily disjoint) subsets of processes, where each subset of processes share a memory. Most
of their results, however, are for the uniform m&m model, where shared-memory connections
can be induced by an undirected graph, whose vertices are the processes. Each process has
an associated shared memory that can be accessed by all its neighbors in the shared-memory
graph (see Section 5). They present bounds on the resilience for solving randomized consensus
in the uniform model. Their algorithm is based on Ben-Or’s exponential algorithm for the
pure message-passing model [15]. The algorithm terminates if the nonfaulty processes and
their neighbors (in the shared-memory graph) are a majority of the processes. They also
prove an upper bound on the number of failures a randomized consensus algorithm can
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tolerate in the uniform m&m model. We show that in the uniform m&m model, this bound
is equivalent to the partitioning bound (fopt) proved in our paper (Theorem 17 in Section 5).
We further show that this bound does not match the resilience of their algorithm, whose
resilience is strictly smaller than fopt, for some shared-memory graphs.

In the special case where the shared memory has no access restrictions, our model is dual
to the general m&m model, i.e., it captures the same systems as the general m&m model.
However, rather then listing which processes can access a memory, we consider the flipped
view: we consider for each process, the memories it can access. We believe this makes it
easier to obtain some extensions, for example, for memories with access restrictions.

Hadzilacos, Hu and Toueg [23] present an implementation of a SWMR register in the
general m&m model. The resilience of their algorithm is shown to match the maximum
resilience of an SWMR register implementation in the m&m model. Our results for register
implementations are adaptations of their results. For the general m&m model specified by
the set of process subsets L, they define a parameter fL and show that it is the maximum
number of failures tolerated by an algorithm implementing a SWMR register [23] or solving
randomized consensus [24]. For memories without access restrictions, fL is equal to fopt.
Their randomized consensus algorithm is based on the simple algorithm of [6] and inherits
its exponential expected step complexity.

Another example of a model that mixes shared memory and message passing is the hybrid
model of [28,31]. In this model, which we call cluster-based, processes are partitioned into
disjoint clusters, each with an associated shared memory; all processes in the cluster (and
only them) can read from and write to this shared memory. Two randomized consensus
algorithms are presented for the cluster-based model [31]. Their resilience is stated as an
operational property of executions: the algorithm terminates if the clusters of responsive
processes contain a majority of the processes. We prove (Lemma 19 in Section 6) that the
optimal resilience we state in a closed form for the cluster-based model is equal to their
operational property.

Our model is general and captures all these models within a single framework, by precisely
specifying the shared-memory layout. The tight bounds in this general model provide the
exact resilience of any system that mix shared memory and message passing.

2 Modelling Systems that Mix Shared Memory and Message Passing

We consider n asynchronous processes p1, . . . , pn, which communicate with each other by
sending and receiving messages, over a complete communication network of asynchronous
reliable links. In addition, there are m shared memories M = {µ1, ..., µm}, which can be
accessed by subsets of the processes. A memory µ ∈ M has access restrictions, where Rµ
denotes all the processes that can read from the memory and Wµ denotes all the processes
that can write to the memory. The set of memories a process p can read from is denoted
Rp, i.e., Rp = {µ ∈ M : p ∈ Rµ}. The set of memories p can write to is denoted Wp, i.e.,
Wp = {µ ∈M : p ∈Wµ}. We assume the network allows nodes to send the same message to
all nodes; message delivery is FIFO. A process p can crash, in which case it stops taking steps;
messages sent by a crashed process may not be delivered at their recipients. We assume that
the shared memory does not fail, as done in prior work [5,23,28,31].

A configuration C is a tuple with a state for each process, a value for each shared register,
and a set of messages in transit (sent but not received) between any pair of processes. A
schedule is a sequence of process identifiers. For a set of processes P , a schedule is P -free
if no process from P appears in the schedule; a schedule is P -only if only processes from
P appear in the schedule. An execution α is an alternating sequence of configurations and
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16:4 Resilience of Systems That Mix Shared Memory and Message Passing

events, where each event is a step by a single process that takes the system from the preceding
configuration to the following configuration. In a step, a process either accesses the shared
memory (read or write) or receives and sends messages. Additionally, a step may involve
the invocation of a higher-level operation. A schedule is associated with the execution in a
natural way; this induces notions of P -free and P -only executions.

If there is a shared memory µ ∈ M that p can read from and q can write to, then we
denote p → q. If p → q and q → p, then we denote p ↔ q. Since a process can read what
it writes to its local memory, this relation is reflexive, i.e., for every process p, p→ p. Let
P and Q be two sets of processes. Denote P → Q if some process p ∈ P can read what a
process q ∈ Q writes, i.e., p→ q. If P → Q and Q→ P , then we denote P ↔ Q.

I Definition 1. A system is f -partitionable if there are two sets of processes P and Q, both
of size n− f , such that P 6↔ Q. Namely, the failure of f processes can partition (disconnect)
two sets of n− f processes. Denote by fopt the largest integer f such that P ↔ Q, for every
pair of sets of processes P and Q, each of size n− f .

Clearly, a system is f -partitionable if and only if f > fopt. Note that fopt ≥ b(n− 1)/2c.
In the pure message-passing model, p→ q if and only if p = q; hence, fopt = b(n− 1)/2c.

The special case of shared memory without access restrictions is when for every memory
µ ∈M , Rµ = Wµ, and all processes that can read from a memory can also write to it. In
this case, the → relation is symmetric, i.e., for every pair of processes p and q, if p→ q then
q → p. Therefore, for every two processes p and q, p ↔ q. Later, we discuss two models
without access restrictions, the m&m model and the cluster-based model.

For a set of processes P ,
→
P are the processes that some process in P can read what

they write to the shared memory, i.e.,
→
P = {q : ∃p ∈ P , p→ q}. fmaj is the largest integer

f such that for every set P of n − f processes, |
→
P | > bn/2c. That is, fmaj is the largest

number of failures that still allows the remaining (nonfaulty) processes to communicate with
a majority of the processes. It is simple to see that fopt ≤ fmaj . The converse direction does
not necessarily hold, as discussed for the m&m model and the cluster-based model.

3 Necessary and Sufficient Condition for Implementing a Register

This section shows that a register can be implemented in the presence of f failures, if and
only if the system is not f -partitionable, that is, f ≤ fopt. This is an adaptation of the
register implementation of [23] in the m&m model. A single-writer multi-reader (SWMR)
register R can be written by a single writer process w, using a procedure Write, and can
be read by all processes p1, . . . , pn, using a procedure Read. A register is atomic [29] if any
execution of Read and Write operations can be linearized [27]. This means that there is a
total order of all completed operations and some incomplete operations, that respects the
real-time order of non-overlapping operations, in which each Read operation returns the
value of the last preceding Write operation (or the initial value of the register, if there is no
such Write).

The algorithm appears in Algorithm 1; for simplicity of presentation, a process sends
each message also to itself and responds with the appropriate response. All the message
communication between the processes is done in msg_exchange(), where we simply send a
message and wait for n− f acknowledgement. This modular approach allows us to replace
the communication pattern according to the specific shared-memory layout. For example,
Section 6 shows that in the cluster-based model this communication pattern can be changed
to wait for less than n− f processes.
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Algorithm 1 Atomic SWMR register implementation (w is the single writer).

Local Variables:
w-sqno: int, initially 0 . write sequence number
r-sqno: int, initially 0 . read sequence number
last-sqno: int, initially 0 . last write sequence number observed
counter : int, initially 0 . number of replies/acks received so far
Shared Variables: for every process p and every µ ∈Wp:
Rµ[p]: 〈int, int〉, initially 〈0, v0〉 . writable by p and readable by all processes that can
read from µ, i.e., all the processes in Rµ

Write(v) – Code for the writer w:
1: w-sqno = w-sqno + 1 . increment the write sequence number
2: acks = msg_exchange〈W, w-sqno, v〉
3: return

Code for any process p:
4: Upon receipt of a 〈W/WB, sqno, v〉 message from process w/q:
5: if (sqno > last-sqno) then
6: last-sqno = sqno
7: for each µ ∈Wp do . write value and sequence number to every register p can write

to
8: Rµ[p] = 〈sqno, v〉
9: send 〈Ack-W/Ack-WB, sqno〉 to process w/q

Read() – Code for the reader q:
10: r-sqno = r-sqno + 1 . increment the read sequence number
11: set_of_tuples = msg_exchange〈R, r-sqno, ⊥〉
12: 〈seq, val〉 = max(set_of_tuples) . maximum 〈seq, val〉
13: acks = msg_exchange〈WB, seq, val〉 . write back
14: return val

Code for any process p:
15: Upon receipt of a 〈R, r-sqno, -〉 message from process q:
16: 〈w-seq, w-val〉 = max{〈seq, val〉 : µ ∈ Rp ∩Wq and Rµ[q] = 〈seq, val〉} . find val with

maximum seq
17: send 〈Ack-R, r-sqno, 〈w-seq, w-val〉〉 to process q

msg_exchange〈m, seq, val〉: returns set of responses
18: send 〈m, seq, val〉 to all processes
19: responses = ∅
20: repeat
21: wait to receive a message m of the form 〈Ack-m, seq, -〉
22: counter = counter + 1
23: responses = responses ∪ {m}
24: until counter≥ n− f
25: return(responses)

For each process p and memory µ ∈Wp there is a shared SWMR register Rµ[p], writable by
p and readable by every process that can read from µ, i.e., every process in Rµ. In Write(v),
the writer w increments its local write sequence number w-sqno and calls msg_exchange().
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16:6 Resilience of Systems That Mix Shared Memory and Message Passing

This procedure sends a message of type W with value v and w-sqno to all processes. On
receiving a write message from w, p checks if the write value is more up-to-date than the
last value it has observed, by checking if w-sqno is larger than last-sqno. If so, p updates
last-sqno to be w-sqno and writes the value v and sequence number w-sqno to all the registers
it can write to. When done, the process sends an acknowledgment to the writer w. Once w
receives n− f acknowledgments, it returns successfully.

In Read, a reader process q increments its local read sequence number r-sqno and calls
msg_exchange(). This procedure sends a message of type R and r-sqno to all processes. On
receiving a read message from q, a process p reads all the registers it can read and finds
the maximum sequence number and value stored in them and sends this pair to the reader
q. Once q receives n− f acknowledgments, it finds the value val with maximum sequence
number seq among the responses (i.e., it selects the most up-to-date value). Then, q calls
msg_exchange(), with message type WB (write back) and value val and seq to update other
readers. On receiving a write back message from q, each process p handles WB like W
message, checking if w-sqno is larger than last-sqno and if so updating last-sqno and all the
registers it can write to. When done, the process sends an acknowledgment to q. Once q
receives n− f acknowledgments, it returns val successfully.

The communication complexities of read and write operations are dominated by the
cost of a msg_exchange(), invoked once in a write and twice in a read. This procedure
takes one round-trip and O(n) messages, like the algorithm for the pure message-passing
model [7]. The number of shared SWMR registers depends on the shared-memory topology
and is ρ =

∑
process p |Wp|, as every process has a single register in each memory it can write

to. The number of accesses to the shared memory is σ =
∑

process p
∑
µ∈Rp

|Wµ|, as every
process reads all the registers it can read from. Note that σ ≤ nρ.

The only statement that could prevent the completion of a Write or a Read is waiting
for n − f responses (Line 24). Since at most f processes may crash, the wait statement
eventually completes, implying that a Write or Read invoked by a process that does not
crash completes.

I Lemma 2. Let t2 be the largest sequence number returned in a read msg_exchange by reader
pj, and assume that the msg_exchange starts after the completion of a write msg_exchange,
either by the writer w or in a write back by reader pi, with sequence number t1, then, t1 ≤ t2.

We explicitly order all completed reads and all invoked writes (even if they are incomplete).
Note that values written by the writer w have distinct write sequence numbers, and are
different from the initial value of the register, denoted v0; the value of the kth write operation
is denoted vk, k ≥ 1. Writes are ordered by the order they are invoked by process w; if
the last write is incomplete, we place this write at the end. Since only one process invokes
write, this ordering is well-defined and furthermore, the values written appear in the order
v1, v2, . . ..

Next, we consider reads in the order they complete; note that this means that non-
overlapping operations are considered in their order in the execution. A read that returns
the value vk−1, k ≥ 0, is placed before the k-th write in the ordering, if this write exists, and
at the end of the ordering, otherwise. For k = 0, this means that the read is placed before
the first write, which may be at the end of the order, if there is no write.

Lemma 2 implies that this order respects the real-time order of non-overlapping operations.

I Theorem 3. If a system is not f-partitionable then Algorithm 1 implements an atomic
SWMR register, in the presence of f failures.
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The impossibility proof holds even if only regular register [29] is implemented. In a
regular register, a read should return the value of a Write operation that either overlaps it,
or immediately precedes it. The proof is similar to the one in [23], where they show that a
SWMR register cannot be implemented in the m&m model if more than fL processes may
fail.

I Theorem 4. If a system is f-partitionable then there is no implementation of a regular
SWMR register in the presence of f failures.

4 Solving Other Problems in Non-Partitionable Systems

4.1 Constructing Other Read/Write Registers
The atomic SWMR register presented in the previous section can be used as a basic building
block for implementing other shared-memory objects. Recall that if a system is not f -
partitionable (i.e., f ≤ fopt), a SWMR register can be implemented so that each operation
takes O(1) time, O(n) messages, O(ρ) SWMR shared-memory registers and O(σ) SWMR
shared-memory accesses. Given a shared-memory algorithm that uses O(r) SWMR registers
and has O(s) step complexity, it can be simulated with O(s) round-trips, O(ns) messages,
and O(σs) shared-memory accesses. The simulation requires O(ρr) SWMR shared-memory
registers. (Recall that ρ =

∑
process p |Wp| and σ =

∑
process p

∑
µ∈Rp

|Wµ|.)
An atomic multi-writer multi-reader (MWMR) register can be built from atomic SWMR

registers [33]; each read or write requires O(n) round-trips, O(n2) messages, O(ρn) SWMR
shared registers and O(αn) shared-memory accesses.

Atomic snapshots can also be implemented using SWMR registers [13]; each scan or
update takes O(n logn) round-trips, O(n2 logn) messages, O(ρn) SWMR shared registers
and O(σn logn) shared-memory accesses.

4.2 Batching
A simple optimization is batching of read requests, namely reading the registers of several
processes simultaneously. Batching is useful when each process replicates a register for
each other process – not for just one writer. A process p can send read requests for all
these registers together, instead of sending n separate read requests (for the registers of all
processes), one after the other. When a process q receives the batched request from p, it
replies with a vector containing the values of all registers in a single message, rather than
sending them separately. Process p waits for vectors from n− f processes, and picks from
them the latest value for each other process. Finally, the reader does a write-back of this
vector.

Batching reduces the number of round-trips and messages, and shared-memory registers
and accesses, but increases the size of messages and registers. With batching, an operation on
a MWMR register requires O(1) round-trips, O(n) messages, O(ρ) SWMR shared registers
and O(α) shared-memory accesses, when each process saves all the writers values in a single
SWMR register. Batching can also be applied to atomic snapshots, so that each scan or
update takes O(logn) round-trips, O(n logn) messages, O(ρ) SWMR shared registers and
O(σ logn) shared-memory accesses.

Batching provides a regular collect, as defined in [11]. Regular collects can be used in
the following building block, where a process repeatedly call collect, and returns a vector of
values if it has received it twice (in two consecutive collects). Two vectors are the same if they
contain the same sequence numbers in each component. Process p can write the value v using
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16:8 Resilience of Systems That Mix Shared Memory and Message Passing

procedure Writep(v), and repeatedly double collect all the processes current values using
the procedure BuildingBlock(). An invocation of BuildingBlock() returns a vector V
with n components, one for each process. Each component contains a pair of a value with a
sequence number. For every process pi, V [i] is the entry in the vector corresponding to pi’s
value. A vector V1 precedes a vector V2 if the sequence number of each component of V1 is
smaller than or equal to the corresponding component of V2. Although the writes are not
atomic, it can be shown that if V1 and V2 are vectors returned by two pairs of successful
double collects then either V1 precedes V2 or V2 precedes V1.

This building block may not terminate (even if the system is not f -partitionable), due to
continuous writes. However, if two consecutive collects are not equal then some sequence
number was incremented, i.e., a write by some process is in progress.

4.3 Consensus
In the consensus problem, a process starts with an input value and decides on an output
value, so that all processes decide on the same value (agreement), which is the input value
of some process (validity). With a standard termination requirement, it is well known that
consensus cannot be solved in an asynchronous system [21]. This result holds whether
processes communicate through shared memory or by message passing, and even if only
a single process fails. However, consensus can be solved if the termination condition is
weakened, either to be required only with high probability (randomized consensus), or to
hold when it is possible to eventually detect failures (using a failure detector), or to happen
only under fortunate situations.

There are numerous shared-memory randomized consensus algorithms, which rely on read
/ write registers, or objects constructed out of them. Using these algorithms together with
linearizable register implementations is not obvious since linearizability does not preserve
hyperproperties [9, 22]. It has been shown [24] that the ABD register implementation [7] is
not strongly linearizable [22]. This extends to the mixed-model register implementations, as
ABD is a special case of them.

Hadzilacos et al. [25] have proved that the simple randomized consensus algorithm of [6]
works correctly with regular registers, and used it to obtain consensus in m&m systems [24].
Their algorithm inherits exponential complexity from the simple algorithm of [6], which
employs independent coin flips by the processes.

Here, we explain how to use BuildingBlock() to emulate the weak shared coin of [6],
following [14]. This holds with f failures, if the system is not f -partitionable.

In Algorithm 2, a process flips a coin using a local function flip(), which returns the value
1 or -1, each with probably 1/2. Invoking flip() is a single atomic step. After each flip, a
process writes its outcome in an individual cumulative sum. Then it calls BuildingBlock()
to obtain a vector V with the individual cumulative sums of all processes. (We assume that
the initial value in each component is 0.) The process then checks the absolute value of the
total sum of the individual cumulative sums, denoted sum(V ). If it is at least c · n for some
constant c > 1, then the process returns its sign.

Intuitively, the only way the adversary can create disagreement on the outcome of the
shared coin is by preventing as many processors as possible to move the counter in the
unwanted direction. We will show that the adversary cannot “hide” more than n− 1 coin
flips. (This was originally proved when processes use atomic writes [6]; here, we show it holds
even when writes are not atomic.) Therefore, after the cumulative sum is big or small enough
the adversary can no longer affect the outcome of the shared coin, and cannot prevent the
processes from terminating.
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Algorithm 2 Weak shared coin [6].

Local Variables:
my-counter : int, initially 0
V : vector of size n, with all entries initially 0

Coin() – Code for process p:
1: while true do
2: my-counter = my-counter + flip()
3: Writep(my-counter)
4: V = BuildingBlock()
5: if sum(V )≥ c · n then return 1
6: else if sum(V )≤ −c · n then return -1

Let H and T be the number of 1 and -1 (respectively) flipped by all processes at some
point in the execution. These numbers are well-defined since the local coin flips are atomic.

I Lemma 5. If H − T < −(c+ 1) · n (respectively, H − T > (c+ 1) · n) at some point in
the execution, then a process that invokes BuildingBlock() after this point returns −1
(respectively, 1).

Proof. (Sketch) We consider the first case; the other case is symmetric. Consider the
set of processes that invoked BuildingBlock() after the point in the execution when
H − T < −(c+ 1) · n, in the order their BuildingBlock() returns. Let pji

, i ≥ 1, be the
ith process in this order, and let Vi be the vector returned by its BuildingBlock(). We
prove, by induction on i, that sum(Vi) ≤ −c · n, and hence, pji returns −1.

In the base case, i = 1. Since a process invokes BuildingBlock() after every write,
there can be at most n writes (either pending or finished) after the point H−T < −(c+1) ·n
and the return of BuildingBlock() by pj1 . Therefore, sum(V1) < −c · n, and pj1 decides -1
in Line 6.

Inductive step: Assume that for i > 1, processes pj1 , ..., pji−1 decide after their Build-
ingBlock() invocation returns. Therefore, there are no additional writes in the execution,
and pji

will observe at most n additional values from H − T and will return −1. J

I Lemma 6. If process p returns 1 (respectively, -1) from the shared coin, then H−T > (c−
1)·n (respectively, H−T < −(c−1)·n) at some point during its last call to BuildingBlock().

Proof. (Sketch) We consider the first case; the other case is symmetric. Consider the last
pair of collects in the last BuildingBlock() invocation before process p returns, and assume
they return a vector V . Assume p misses a write by some process q that overlaps the first
collect, i.e., the sequence number of this write is smaller than the corresponding sequence
number in V . Then q’s write overlaps p’s first collect, and it returns after the second collect
starts. (Otherwise, the regularity of collect implies that the second collect returns this write
by q, or a later one, contradicting the fact it is equal to the first collect.) Therefore, each
process has at most one write that overlaps the first collect and can be missed by the first
collect. So, the sum of V differs by at most n− 1 values from H − T at the point when the
first collect completes. Since p returns 1, sum(V ) ≥ c ·n, and it holds that H−T > (c−1) ·n
when the first collect completes. J

The next lemma can be proved along the lines of [6, Theorem 17], using the fact (see proof
of Lemma 5) that there are at most n additional writes after H − T drops below −(c+ 1) · n.
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I Lemma 7. The adversary can force the weak shared coin procedure of a process to return
1 (respectively, -1) with probability at most (c+ 1)/2c.

It follows that the adversary can force the processes to disagree with probability at most
(c− 1)/2c. The next theorem has the same proof as in [6].

I Theorem 8. For a constant c > 1, the expected number of coin flips in an execution of the
weak shared coin is O(n2).

Since the expected number of coin flips is O(n2), the expected number of write and
building block invocations is also O(n2). The total number of collect operations in these
building block invocations for all the processes is O(n3) in expectation, this is because a
double collect fails only when another coin is written. Therefore, the complexity of the weak
shared coin is O(n3) round-trips, O(n4) messages, O(ρ) registers and O(αn3) shared-memory
accesses. Plugging the weak shared coin in the overall algorithm of [6], proved to be correct
by [25], yields a randomized consensus algorithm with the same expected complexities as the
weak shared coin.

Next, we prove that randomized consensus cannot be solved in a partitionable system,
by considering the more general problem of non-deterministic f-terminating consensus, an
extension of nondeterministic solo termination [20]. This variant of consensus has the usual
validity and agreement properties, with the following termination property:
Non-deterministic f -termination: For every configuration C, process p and set F of at most

f processes, such that p /∈ F , there is an F -free execution in which process p terminates.

I Theorem 9. If a system is f -partitionable then non-deterministic f -terminating consensus
is unsolvable.

Proof. Assume, by way of contradiction, that there is an non-deterministic f -terminating
consensus algorithm. Since the system is f -partitionable, there are two disjoint sets of
processes P and P ′, each of size n − f , such that P ′ 6→ P . Therefore, there are no two
processes p ∈ P and p′ ∈ P ′ so that p′ can read from a memory and p can write to that
same memory. Let Q be the processes not in P ∪ P ′. Since |P |, |P ′| = n− f , it follows that
|P ∪Q| = |P ′ ∪Q| = f .

To prove the theorem, we construct three executions. Consider an initial configuration,
in which all processes in P have initial value 0. Since |P ′ ∪ Q| = f , non-deterministic
f -termination implies there is a (P ′ ∪ Q)-free execution, in which some process p ∈ P

terminates, say by time t1. Call this execution α1, and note that only processes in P take
steps in α1. By validity, p decides 0.

In a similar manner, we can get a (P ∪Q)-free execution, α2, in which initial values of
all the processes in P ′ are 1, and by non-deterministic f -termination, some process p′ ∈ P ′
decides on 1, say by time t2. Note that only processes in P ′ take steps in α2.

Finally, the third execution α3 combines α1 and α2. The initial value of processes in P is
0, and the initial value of processes in P ′ is 1. Processes in Q have arbitrary initial values,
and they take no steps in α3. The execution is identical to α1 from time 0 until time t1,
and to α2 from this time until time t1 + t2. All messages sent between processes in P and
processes in P ′ are delivered after time t1 + t2. Since processes in P ′ do not take steps in α3
until time t1, all processes in P decides 0, as in α1. Processes in P ′ cannot receive messages
from processes in P or read what processes in P write to the shared memory, therefore all
processes in P ′ decides 1, as in execution α2, violating the agreement property. J
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4.4 Approximate Agreement
In the approximate agreement problem with parameter ε > 0, all processes start with a
real-valued input and must decide on an output value, so any two decision values are in
distance at most ε from each other (agreement), and any decision value is in the range of all
initial values (validity).

There is a wait-free algorithm for the approximate agreement problem in the shared-
memory model, which uses only SWMR registers [12]. This algorithm can be simulated if
the system is not f -partitionable, and at most f processes fail. Similarly to randomized
consensus, it can be shown that this problem is unsolvable in partitionable systems.

I Theorem 10. If a system is f -partitionable then approximate agreement is unsolvable in
the presence of f failures.

4.5 Renaming
In the M-renaming problem, processes start with unique original names from a large
namespace {1, ..., N}, and the processes pick distinct new names from a smaller namespace
{1, ...,M} (M < N). To avoid a trivial solution, in which a process pi picks its index i as
the new name, we require anonymity: a process pi with original name m performs the same
as process pj with original name m.

Employing the SWMR register simulation in a (2n− 1)-renaming algorithm [10] yields an
algorithm that requires O(n logn) round-trips, O(n2 logn) messages, O(ρn4) shared registers
and O(σn logn) shared-memory accesses. The number of registers can reduces to O(ρ), at
the cost of increasing their size.

This algorithm assumes that the system is not f -partitionable and at most f processes
fail. The next theorem shows that this is a necessary condition.

I Theorem 11. If a system is f -partitionable then renaming is unsolvable in the presence of
f failures.

Proof. Assume, by way of contradiction, that there is a renaming algorithm. Since the
system is f -partitionable, there are two disjoint sets of processes P and P ′, each of size n− f ,
such that P ′ 6→ P . Denote P = {pi1 , ..., pin−f

} and P ′ = {p′i1 , ..., p
′
in−f
}. Let Q be the set of

processes not in P ∪ P ′. Since |P |, |P ′| = n− f , we have that |P ∪Q| = |P ′ ∪Q| = f .
Given a vector I of n − f original names, denote by α(I, P ) the P -only execution in

which processes in P have original names I: processes in (P ′ ∪Q) crash and take no step,
and processes in P are scheduled in round-robin. Since at most f processes fail in α(I, P ),
eventually all processes in P pick distinct new names, say by time t(I). Note that by
anonymity, the same names are picked in the execution α(I, P ′), in which p′ij starts with the
same original name as pij and takes analogous steps.

Consider α(Ii, P ), for any possible set of original names. The original name space can be
picked to be big enough to ensure that for two disjoint name assignments, I1 and I2, some
process pij ∈ P decides the same new name r in the executions α(I1, P ) and α(I2, P ).

Denote α1 = α(I1, P ) and α2 = α(I2, P
′), namely, the execution in which processes in P ′

replace the corresponding processes from P . The anonymity assumption ensures that p′ij
decides on r, just as pij decides on r in α(I1, P ) and α(I2, P ).

The execution α3 combines α1 and α2, as follows. Processes in Q take no steps in α3.
The original names of processes in P are I1, and original names of processes in P ′ are I2. The
execution is identical to α1 from time 0 until time t(I1), and to α2 from this time until time
t(I1) + t(I2). All messages sent from processes in P to processes in P ′ and from processes in
P ′ to processes in P are delivered after time t(I1) + t(I2).
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In α3, processes in P do not receive messages from processes in P ′ ∪ Q. Furthermore,
P ′ 6→ P ; i.e., processes in P ′ cannot read what processes in P wrote to the shared memory.
Hence, α3 is indistinguishable to pij from α1, and hence, it picks new name r. Similarly, α3
is indistinguishable to p′ij from α2, and hence, it also picks new name r, which contradicts
the uniqueness of new names. J

5 The M&M Model

In the m&m model [5, 23], the shared memory connections are defined by a shared-memory
domain L, which is a collection of sets of processes. For each set S ∈ L, all the processes in
the set may share any number of registers among them. Our model when the shared memory
has no access restrictions is a dual of the general m&m model, and they both capture the
same systems. We say that L is uniform if it is induced by an undirected shared-memory
graph G = (V,E), where each vertex in V represents a process p. For every process p,
Sp = {p} ∪ {q : (p, q) ∈ E}, then L = {Sp : p is a process}. In the uniform m&m model each
memory is associated with a process p, and all the processes in Sp may access it. That is, a
process can access its own memory and the memories of its neighbors.

In the m&m model, there are no access restrictions on the shared memory. Hence, for
every process p, |Rp| = |Wp| = |Sp|. Therefore, ρ =

∑
process p |Sp| =

∑
process p d(p) + 1 =

2|E| + n = O(n2) and σ = O(n3), where d(p) is the degree of process p in the graph.
Substituting into the algorithms presented in Section 4, we obtain polynomial complexity for
all of them, including a polynomial randomized consensus algorithm. In the general m&m
model, ρ and σ are unbounded.

I Definition 12 ( [23]). Given a shared-memory domain L , fL is the largest integer f such
that for all process subsets P and P ′ of size n− f each, either P ∩ P ′ 6= ∅ or there is a set
S ∈ L that contains both a process from P and a process from P ′.

Hadzilacos, Hu and Toueg [23] show that an SWMR register can be implemented in
the m&m model if and only if at most fL process may fail. Therefore in the m&m model,
fopt = fL. We can see the connection between the two definitions by observing that, in this
model, p↔ q if p = q or there is a set S ∈ L such that p, q ∈ S. We simply write ↔, since
the shared memory has no access restrictions.

The square of a graph G = (V,E) is the graph G2 = (V,E2), where E2 = E ∪ {(u, v) :
∃w ∈ E such that (u,w) ∈ E and (w, v) ∈ E}. I.e., there is an edge in G2 between every
two vertices that are in distance at most 2 in the graph G.

I Definition 13 ( [23]). Given an undirected graph G = (V,E), fG is the largest integer f
such that for all subsets P and P ′ of V of size n− f each, either P ∩ P ′ 6= ∅ or G2 has an
edge (u, v) such that u ∈ P and v ∈ P ′.

In the uniform m&m model, fL = fG = fopt [23], and p↔ q if p = q or (p, q) is an edge
in G2.

We have seen that fopt ≤ fmaj . Figure 1 shows a graph where fopt < fmaj . Thus, the
converse inequality does not hold in the (uniform or general) m&m model.

I Definition 14 ( [5]). A process p represents itself and all its neighbors, that is, {p} ∪ {q :
(p, q) ∈ E}. A set of processes P represents the union of all the processes represented by
processes in P .
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Figure 2 Counter example for n = 5.

Aguilera et al. [5] present a randomized consensus algorithm, called HBO, which is based
on Ben-Or’s algorithm [15]. Like Ben-Or’s algorithm, HBO has exponential time and message
complexities. HBO assumes that the nonfaulty processes represent a majority of the processes.
Below, we show that the resilience of the HBO algorithm is not optimal. We first capture
the condition required for the correctness of the HBO algorithm, with the next definition.

I Definition 15. fm&m is the largest integer f such that every set P of n − f processes
represents a majority of the processes.

It can be shown that fm&m ≤ fopt. On the other hand, for every n > 4, there is a
shared-memory graph, such that fm&m < fopt in the uniform m&m model. The graph is the
star graph over n vertices, and has edges {(p1, p2)} ∪ {(p2, pi) : 3 ≤ i ≤ n)}. (See Figure 2,
for n = 5.) Thus, requiring at least n − fm&m nonfaulty processes is strictly stronger
than requiring n− fopt nonfaulty processes. Therefore, the HBO algorithm does not have
optimal resilience. Intuitively this happens since HBO does not utilize all the shared-memory
connections that are embodied in G2. Thus, our algorithm (Section 4.3), has better resilience
than HBO, which we show is optimal, in addition to having polynomial complexity.

Aguilera et al. [5] also present a lower bound on the number of failures any consensus
algorithm can tolerate in the m&m model. To state their bound, consider a graph G = (V,E),
and let B, S and T be a partition of V . (B,S, T ) is an SM-cut in G if B can be partitioned
into two disjoint sets B1 and B2, such that for every b1 ∈ B1, b2 ∈ B2, s ∈ S and t ∈ T , we
have that (s, t), (b1, t), (b2, s) /∈ E.

I Theorem 16 ( [5]). Consensus cannot be solved in the uniform m&m model in the presence
of f failures if there is a SM-cut (B,S, T ) such that |S| ≥ n− f and |T | ≥ n− f .

Although the resilience of HBO is not optimal, we show that this lower bound on resilience
is optimal, by proving that if a system is f -partitionable then the condition in Theorem 16
holds. By Theorem 9, these two conditions are equal in the m&m model.

I Theorem 17. In the uniform m&m model, if the system is f -partitionable then there is an
SM-cut (B,S, T ) with |S| ≥ n− f and |T | ≥ n− f .

6 The Cluster-based Model

In the hybrid, cluster-based model of [28,31], processes are partitioned into m, 1 ≤ m ≤ n,
non-empty and disjoint subsets P1, . . . , Pm, called clusters. Each cluster has an associated
shared memory; only processes of this cluster can (atomically) read from and write to this
shared memory. The set of processes in the cluster of p is denoted cluster[p]. As in the m&m
model, there are no access restrictions on the shared memory. Hence, |Rp| = |Wp| = 1 for
every process p, and therefore, ρ = n and σ = O(n2).

In the cluster-based model, p↔ q if and only if p and q are in the same cluster.
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If p↔ q and q ↔ w, for some processes p, q and w, then p and q are in the same cluster
and q and w are in the same cluster. Since clusters are disjoint, it follows that p and w are
in the same cluster, implying that ↔ is transitive.

I Definition 18. fcluster is the largest integer f such that for all sets of processes P and P ′,
each of size (n− f), either P ∩ P ′ 6= ∅ or some cluster contains a process in P and a process
in P ′.

I Observation 1. In the cluster-based model fopt = fcluster.

I Lemma 19. In the cluster-based model, fopt = fmaj.

I Lemma 20. In the cluster-based model, for every two sets of processes, P and Q, and
f ≤ fopt, if |

→
P | ≥ n− f and |

→
Q| ≥ n− f then P ↔ Q.

Raynal and Cao [31] present two randomized consensus algorithms for the cluster-based
model. One is also based on Ben Or’s algorithm [15], using local coins, and the other is based
on an external common coin (whose implementation is left unspecified). These algorithms
terminate in an execution if there are distinct clusters whose total size is (strictly) larger than
n/2, each containing at least one nonfaulty process. Clearly, if f ≤ fmaj , this condition holds
for every execution with at most f failures. Since fopt ≤ fmaj , the condition holds if there
are at most f ≤ fopt failures. Lemma 19 implies that these two definitions are equivalent by
proving that fopt = fmaj . This means that the maximum resilience guaranteeing that every
two sets of nonfaulty processes can communicate is equal to the one guaranteeing that every
set of nonfaulty processes can communicate with a majority of the processes.

In the cluster-based model, if a process p ∈ Pi does not crash then all other processes
receive the information from all the processes of Pi, as if none of them crashed. For this
reason, we say that p represents all processes in Pi (note that this definition is different
than Definition 14). If a process q receives messages from processes representing k clusters
P1, . . . , Pk, such that |P1|+ · · ·+ |Pk| > n/2, then it has received information from a majority
of the processes. This observation does not change the resilience threshold, i.e., the maximal
number of failures that can be tolerated, but allows to wait for a smaller number of messages,
thereby, making the algorithm execute faster. Lemma 20 proves that every two sets of
processes representing at least n− fopt processes can communicate. Therefore, instead of
waiting for a majority of represented processes, as is done in [31], it suffices to wait for
n− fopt represented processes. Since n− fopt ≤ bn/2c+ 1, this means that in some cases it
suffices to wait for fewer than a majority of represented processes.

This is not the case in the m&m model. For example, in the graph of Figure 1, fopt = 6.
For P = {p7, p9},

→
P = {p1, p6, p7, p8, p9}, and for Q = {p3, p5},

→
Q = {p1, p2, p3, p4, p5}, so

|
→
P | = |

→
Q| = 5 > n/2, but P 6↔ Q. Therefore, even though the system is not f -partitionable,

and the set of non-faulty processes can communicate with a majority of the processes, it
does not suffice to wait for more than n/2 represented processes.

7 Discussion

This paper studies the optimal resilience for various problems in mixed models. Our approach
builds on simulating a SWMR register, which allows to investigate the resilience of many
problems, like implementing MWMR registers and atomic snapshots, or solving randomized
consensus, approximate agreement and renaming. Prior consensus algorithms for mixed
models [5, 31] start from a pure message-passing algorithm and then try to exploit the
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added power of shared memory. In contrast, we start with a shared-memory consensus
algorithm and systematically simulate it in the mixed model. This simplifies the algorithms
and improves their complexity, while still achieving optimal resilience.

It would be interesting to investigate additional tasks and objects. An interesting example
is k-set consensus [19], in which processes must decide on at most k different values. This is
trivial for k = n and reduces to consensus, for k = 1. For the pure message-passing model,
there is a k-set consensus algorithm [19], when the number of failures f < k. This bound is
necessary for solving the problem in shared memory systems [17,26,32]. Since resilience in
a mixed system cannot be better than in the shared-memory model, it follows that f < k

is necessary and sufficient for any mixed model. Thus, when fopt < k − 1, a system can be
f -partitionable and still offer f -resilience for k-set consensus.1

The weakest failure detector needed for implementing a register in the cluster-based
model is strictly weaker than the weakest failure detector needed in the pure message-
passing model [28]. This aligns with the improved resilience we can achieve in a mixed
model compared to the pure message-passing model. It is interesting to explore the precise
improvement in resilience achieved with specific failure detectors and other mixed models.

We would also like to study systems where the message-passing network is not a clique.
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