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Abstract
The graph model enables a broad range of analysis, thus graph processing is an invaluable tool in
data analytics. At the heart of every graph-processing system lies a concurrent graph data structure
storing the graph. Such a data structure needs to be highly efficient for both graph algorithms and
queries. Due to the continuous evolution, the sparsity, and the scale-free nature of real-world graphs,
graph-processing systems face the challenge of providing an appropriate graph data structure that
enables both fast analytical workloads and low-memory graph mutations. Existing graph structures
offer a hard trade-off between read-only performance, update friendliness, and memory consumption
upon updates. In this paper, we introduce csr++, a new graph data structure that removes these
trade-offs and enables both fast read-only analytics and quick and memory-friendly mutations. csr++
combines ideas from CSR, the fastest read-only data structure, and adjacency lists to achieve the
best of both worlds. We compare csr++ to CSR, adjacency lists from the Boost Graph Library, and
LLAMA, a state-of-the-art update-friendly graph structure. In our evaluation, which is based on
popular graph-processing algorithms executed over real-world graphs, we show that csr++ remains
close to CSR in read-only concurrent performance (within 10% on average), while significantly
outperforming CSR (by an order of magnitude) and LLAMA (by almost 2×) with frequent updates.
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1 Introduction

Graph processing is an invaluable tool for data analytics, as illustrated by the plethora of
relatively recent work aiming at achieving high performance for graph algorithms [12, 17, 23,
34, 35, 41], such as PageRank [29], or graph querying/mining [13, 21, 26, 27, 31, 33, 38], e.g.,
using PGQL [5]. At the heart of each graph system lies the graph data structure, responsible
for holding the vertices and the edges comprising the graph, and whose performance largely
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contributes to the general performance of the system. The ideal graph structure should offer
excellent read-only performance, fast mutations (i.e., vertex or edge insertions and deletions),
and low memory consumption with or without mutations.

Classic graph data structures typically trade some characteristics for others (see Sec-
tion 2.1). Adjacency lists enable quick graph updates and consume relatively little memory,
but sacrifice performance, as they lead to expensive pointer chasing. Adjacency matrices
enable quick edge updates, but sacrifice vertex insertions and consume a lot of memory.
Finally, the Compressed Sparse Row (CSR) representation offers a good memory footprint
with excellent read-only performance by completely sacrificing mutability: even a single
vertex or edge insertion requires complete reallocation of the underlying structures. There
have been efforts to improve the update-friendliness of CSR (see Section 2.2). These include
in-place update techniques [36, 39], batching techniques [11, 24], and changeset-based up-
dates with delta maps [22] and multi-versioning [23]. A multi-versioning solution is used in
LLAMA [23], a state-of-the-art update-friendly graph structure that enables mutability on
top of CSR by appending delta snapshots. However, having a frequent flow of graph updates
– which is the common case in real-life scenarios, such as financial transactions – results in a
large number of delta logs, and thus high memory utilization and decreased performance.
Compaction operations on these data structures are often expensive, hindering the benefits
of fast mutability (see Section 4 for a performance analysis). Very often, users simply need
to operate on the most up-to-date version of the graph data, thus asking for fast in-place
graph updates.

In this paper, we introduce csr++, a concurrent graph data structure with performance
comparable to CSR, efficient updates, and memory consumption proportional to the number
of mutations. csr++ maintains the array-continuity that makes CSR very fast. In particular,
vertices are stored in arrays, segmented for better update-friendliness. As in CSR, vertex
IDs in csr++ are implicitly determined by the location of the vertex, but include both the
segment ID and where in the segment the vertex lies. Accordingly, the 64 bits of vertex IDs
are split into {int segment_id; int in_segment_id}, making vertices directly addressable.
Due to segmentation, inserting a new vertex is as simple as (i) if needed, appending a new
segment to the array of segments, and (ii) appending the vertex to that segment.

In contrast to CSR, and like adjacency lists, csr++ can independently manage the edges
of each vertex. If a vertex has two or more edges, csr++ holds a pointer to an array storing
the edges. To reduce memory usage, for single-edge vertices, the target vertex of the edge is
inlined in lieu of the array pointer. All in all, csr++ maintains the array-oriented structures
of CSR for performance, while enabling per-vertex edge-list modifications to enable fast
updates as with adjacency lists.

Apart from vertices and edges, graph structures also need to store vertex and edge
properties, which are a prominent feature of property graphs. csr++ includes segmentation
techniques to enable fast property updates when new vertices or edges are inserted. Vertex
properties are stored in segmented arrays, and each vertex holds a pointer to an array of edge
property values, allowing for fast per-segment or per-vertex reallocation of property arrays.

We evaluate csr++ with both read and update workloads, with various graphs and
graph algorithms, and compare it against CSR, adjacency lists, and LLAMA. Our results
indicate that csr++ is much faster than adjacency lists, is almost as fast as CSR on read-
only workloads, and has faster updates and lower memory consumption than LLAMA. In
particular, csr++ performs on average within 10% of the read-only performance of CSR with
36 threads and is an order of magnitude faster for updates. Furthermore, csr++ is faster
than LLAMA for most read-only workloads, is almost 2× faster in applying batched updates,
and consumes 4× less memory when 100 update batches are applied on a base graph.
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Figure 1 (1) An example graph with newly inserted edges in green, represented in different graph
structures: (2) CSR, (3) Adjacency list, and (4) LLAMA with implicit linking and deletion vectors.

The main contributions of this paper are as follows:
csr++, a new graph data structure that supports fast in-place updates, without sacrificing
read-only performance or memory consumption; and
Our thorough evaluation that shows that csr++ achieves the best of both read-only and
update-friendly worlds.

2 Background & Related Work

Graphs are already a prominent data model, especially in the current era of big data and
data deluge [16]. The advantage over the traditional relational model is that graphs can
inherently model entities and their relationships. While a relational model needs to join
tabular data in order to process foreign-key relationships, graph-processing engines have
built-in ways to efficiently iterate over the graph [37], e.g., over the neighbors of vertices, and
support a plethora of expressive graph algorithms (such as Green-Marl [19, 34]) and graph
pattern-matching queries (such as PGQL [5], SPARQL [8], and Gremlin [9]).

Graphs can be represented with different models and data representations. A popular
model is the RDF (Resource Description Framework) graph data model [8], which became
popular with the rise of the semantic web [10]. RDF regularizes the graph representation
as a set of triples. RDF adds links for all data, including constant literals, and it does not
explicitly store vertices, edges, or properties separately. As the graph is not stored in its
native format, it results in reduced performance [40], as RDF engines are forced to process
and join a large number of intermediate results.

Our paper focuses on a more recent model, the Property Graph (PG) model [6, 38], which
is widely adopted by various graph databases and processing systems (such as Neo4J [27]
and PGX [28, 31]). PG represents the topology of a graph natively as vertices and edges,
and stores properties separately in the form of key-value pairs. This separation allows for
quick traversals over the graph structure. Classic graph algorithms, such as PageRank [29]
and Connected Components, are very naturally expressed on top of property graphs [34].

In order for graph-processing engines to provide efficient solutions for large-scale graphs,
they rely on efficient data structures, potentially resident on main memory [23, 41, 18, 15],
to store and process vertices and their relationships. One of the key challenges for in-memory
graph-processing engines is to design data structures with reasonable memory footprint [23]
that can support fast graph algorithm execution [19] and query pattern matching [32], whilst
supporting topological modifications (like additions or removals of vertices and edges), either
in batches or in a streaming fashion [25, 11]. In the following, we discuss the most prominent
data structures in related work [15], and motivate the necessity of the novel csr++. We show
in Figure 1 an example of a graph and how it is represented in different formats.
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2.1 Graph Representations

Adjacency Matrices and Lists. An adjacency matrix represents a graph with a V 2 matrix
M , where V is the number of vertices in the graph. A non-zero cell M [vs][vd] represents the
directed edge from a source vertex vs to a destination vertex vd. An adjacency matrix is not
preferred for sparse graphs, i.e., graphs where the number of edges E � V 2, due to increased
memory footprint and decreased performance in analytics.

Adjacency lists represent the graph with a set of vertices, where each vertex is associated
with a list of neighbors, as shown in Figure 1(3). An adjacency list typically consumes less
memory than an adjacency matrix, since for a given vertex only the existing edges need to
be stored. The typical format for the adjacency list uses linked lists, with extra pointers, but
more cache-friendly variants exist, such as Blocked Adjacency Lists, where adjacencies are
represented by simple arrays [41] or with linked lists of buckets containing a fixed size of
edges [14, 17]. As an example, the popular Boost C++ Library [1] implements adjacency
lists and the edge structures can be configured to either be vectors, lists, or sets. Although
adjacency lists can be efficient in terms of mutations, they struggle in read-only workloads,
as we show in Section 4.

Compressed Sparse Row (CSR). CSR [19] is a commonly used data structure for sparse
graphs, because it compacts adjacencies into two arrays: The vertex array and the edge array.
In the vertex array, each vertex is identified by its array index. The vertex cell stores the
begin offset in the edge array (the end offset is implicit, as it is equal to the begin offset of
the next vertex cell), where the list of the destination neighbors of this vertex is stored, as
shown in Figure 1(2). In terms of graph mutations, CSR is very inefficient. For example, to
add an edge, the whole edge array needs to be reallocated with the newly-added edge and
the subsequent edges shifted by one place.

2.2 Graph Mutations

Graph mutations, or updates, mostly refer to vertex or edge insertions and deletions. Although
CSR is one of the most popular data structures for representing a graph, it is, as mentioned
above, very limiting for graph mutations. This has prompted a lot of related work on mutable
data structures to represent graphs that can efficiently digest sets of updates.

In-Place Updates. Techniques that use in-place updates employ the aforementioned static
data structures in a way that allows for in-place digestion of sets with insertions and deletions
of vertices and edges, without requiring the expensive rebuild of the data structure. For
instance, Dense [20] is a concurrent graph adjacency matrix that supports mutations and
partial traversals through a coordination protocol, but does not handle graph properties.
NetworKit [36], in order to perform edge insertions, stores adjacencies vectors that double the
size of the initial array to reserve enough space for new incoming edges. Madduri et al. [24]
use the same underlying technique but define a configurable size of the new edge array instead
of using factor 2. Ediger et al. [14] implement blocked adjacency lists and allow insertions
by appending new blocks and updating pointers. Wheatman et al. [39] implement a variant
of CSR that leaves space at the end of each adjacency list to allow efficient single-threaded
mutations. We employ similar techniques in csr++ to ingest mutations, but in a parallel
manner while also handling graph property mutations.
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Batching. Regarding the sources of changes, they can be continuous streams of updates [11,
14] or single changes applied as “local” mutations. Generally, when applying a batch of
updates, frameworks perform pre-processing to re-arrange the batches in ways that can
speed-up the mutations. For instance, Madduri et al. [24] apply techniques on the list of new
edges, such as sorting, re-ordering, and partitioning, in order to exploit parallelism at the
time of the changes application. Similarly, csr++ groups updates by their source vertices,
and uses multiple threads to perform fast edge insertions (see Section 3.2).

Multi-Versioning & Deltas. One way to extend CSR to support fast updates is by allocating
a separate structure to store only the new changes [22] in delta maps. Furthermore, by
using deltas, the following systems can run analytical workloads on different static versions
(snapshots) of the changing graph over time. LLAMA [23] is a state-of-the-art snapshot-based
graph system that supports multi-versioning by storing deltas as separate snapshots and
supports concurrent access to those snapshots (see Figure 1(4)). ASGraph [17] limits its
read-access to one snapshot at a time but still ensures high performance by extending its
underlying data structure [14] with temporal attributes. Graphite [30] is an in-memory
relational column-store that employs also multi-versioning snapshots using deltas.

The downside of the above approaches is two-fold. First, maintaining separate snapshots
increases the memory requirements of the system, as a frequent flow of graph updates results
in a large number of deltas. Second, the performance of analytics is degraded because they
need to read from both the original structure and the deltas and reconcile them. A solution
to the potential performance degradation is to periodically merge the delta maps into CSR,
an operation called compaction. Compaction, however, can become very expensive, often
zeroing the mutability performance benefits of these structures. For users that wish to
operate on the most up-to-date version of the graph data, we show that csr++, which is
designed for in-place graph mutations, achieves better analytics and update performance than
LLAMA [23], with up to an order of magnitude lower memory requirements (see Section 4).

3 CSR++: Design and Implementation

With csr++, our goal is to design a data structure that stores graphs and allows fast in-
place mutations with analytics performance comparable to CSR. In order to allow for fast
algorithms, csr++ enables fast concurrent accesses to the main graph data (vertex and edge
tables) and stores additional graph data, such as reverse edges, user-defined keys, and vertex
and edge properties. csr++ does not aim to support versioning, but instead fast in-place
updates, allowing to withstand frequent small updates without the overhead of snapshots.

3.1 Graph Topology and Properties
csr++ is a concurrent structure that stores the graph in memory using segmentation techniques.
It allows in-place insertions by allocating additional space for new incoming edges and supports
logical deletions of vertices and edges. Figure 2 shows the building blocks of csr++.

Segments. csr++ stores vertices in arrays called segments. The graph is represented as an
array of segments, each storing a fixed number of vertices defined by a global configurable
parameter NUM_V_SEG. Segments give flexibility to csr++ in three ways: (i) memory allocations
and reallocations use segment granularity, (ii) vertex properties are allocated per segment,
and (iii) synchronization for concurrency uses segment granularity. As with CSR, csr++
packs the vertices in arrays to reduce the memory footprint when storing sparse graphs,

OPODIS 2020
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which also results in better cache locality. The entry point to csr++ is an array that stores
all segments; this also enables quick segment additions. Finally, each segment stores a vector
of pointers to the vertex property arrays.

Vertices. Each vertex stores its degree, a pointer to its list of neighbors, and optionally
a pointer to the property values of its edges. This design resembles a mix of CSR and
adjacency lists, however, adding a new vertex in csr++ is faster (see Section 3.2) considering
that the vertex array is segmented, i.e., we do not need to copy the whole vertex array to
add or remove entries. csr++ does not store explicit IDs for vertices nor edges, but since
all segments store a fixed number NUM_V_SEG of vertices, we can compute implicit IDs for
vertices using the segment ID and the index of the vertex in the segment: global_v_id =
(seg_id * NUM_V_SEG) + v_id . Overall, the vertex structure consists of the following fields:

length (4 bytes): The vertex degree. A length of −1 indicates a deleted vertex.
neighbors (8 bytes): A pointer to the set of neighbors. As a space optimization, if
length = 1, this field directly contains the neighbor’s vertex ID.
edge_properties (8 bytes): A pointer to the set of edge properties. As a space
optimization, this field can be disabled in case the graph does not define edge properties.

Edges. csr++ represents the neighbors list of a vertex by an array of edges, where every
entry stores the coordinates (i.e., the vertex ID and the segment ID) of the corresponding
neighbor. At loading time, the edges are sorted; as with CSR and LLAMA, keeping the
edges sorted allows for better cache performance. Moreover, this semi-sorting is necessary for
csr++ in a deletion-frequent context, as we use binary search to locate edges. Additionally,
as an optimization for update-friendliness, csr++ can be configured to create extra empty
space for new incoming edges during graph loading (see Section 3.2). The edge structure
consists of the following fields:

deleted_flag (2 bytes): For logical deletion of edges.
vertex_id (2 bytes): The index of the neighbor in the segment; using 16 bits allows
for segments with a capacity NUM_V_SEG of up to 65536 entries.
segment_id (4 bytes): The segment ID where the neighbor is stored.

For better cache utilization when scanning over vertices and better load balancing when using
multiple threads, the number of vertices that a segment stores should neither be very small
nor too large, in order to avoid copying large amounts of data when the graph is updated.
By default we use NUM_V_SEG = 4096 vertices per segment.

Properties. Vertex property values are stored in arrays parallel to the vertices array. csr++
keeps a vector of pointers to each vertex property array within the segment. The size of
each array is therefore NUM_V_SEG * sizeof(Property_Type). For edge properties, we use the

Edge Array

prop_1
{type = char}

prop_2
{type = int}

Segments

V1 {num_edges = 3}

Vertex Array

Edge Properties Array

Vertex Array

Lock

Properties DesignTopology Design

Vertex Property Array

Figure 2 The building blocks of csr++: Graph topology (left) and graph properties (right).
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same segmentation approach as vertices. If the user enables edge properties, each vertex
structure stores a pointer to an array of edge property values, as shown in Figure 2. In
case of multiple properties, we allocate an array that stores the values for different edge
properties in an cache-aligned manner. In order to locate a specific edge property p, we use
offsets and the position of its values can be calculated given the type of that property Tp,
the index i of the edge in the neighbor list, and the degree d of the vertex v. For example,
suppose the user registers n edge properties, then the total size of the edge properties of
a vertex v is

∑n
p=1(sizeof (Typep) ∗ d). Similarly, the values of the xth property begin at

Values(x) =
∑x

p=1(sizeof (Typep) ∗ d). Accordingly, the property value for the xth property
of the edge i is Value(x, i) = Values(x) + (i ∗ sizeof (Typex)).

The reason for this choice is that having the edge properties stored in parallel to the edge
arrays allows to copy-on-write the edge property arrays of the updated vertices only, unlike
with CSR where there is a need to rebuild edge properties for the entire graph. In addition,
this design makes it easier to keep the property values in the same order as the edges in case
we have to sort them after an update operation. As we show in Section 4.6, this design adds
a moderate memory overhead. Naturally, if the to-be-loaded graph configuration does not
include edge properties, edge property support can be disabled to save memory.

Additional Structures. Most real-life graphs include user-provided vertex IDs, e.g., a full-
name string. csr++ supports mapping of user vertex keys to internal IDs by storing them in a
map and, inversely, internal IDs are mapped directly inside the segments of csr++ using one
ID mapping array per segment. For directed graphs, some algorithms, e.g., PageRank, require
access to reverse edges and sometimes mappings from reverse to their corresponding forward
edges (e.g., Weighted PageRank; see Section 4). To ensure fast lookup over the reverse edges
and their mapping, similar to most representations, such as CSR in Green-Marl [2] and
LLAMA, csr++ reserves additional structures to store the reverse edges corresponding to
each forward edge, as well as the mapping between their indices stored as an edge property.
These increase the memory footprint but contribute to higher performance.

Synchronization. Synchronization in csr++ is implemented at the segment level, using
spinlocks to protect data writes. csr++ does not support scans concurrent to updates.

3.2 Update Protocols
csr++ supports efficient concurrent in-place mutations by allowing both single local updates
(e.g., inserting edge by edge) and batch update operations.

Vertex and Edge Insertion. For vertex insertions, as described in the previous section, the
length field in the vertex structure stores the degree of the vertex. Lengths ≥ 0 indicate a
valid vertex. New vertex insertions land in the last segment. To add a vertex: in case there
is enough space in the last segment, csr++ finds the first non-valid vertex, and then sets the
vertex accordingly. Setting the vertex also indicates that there is a reserved space for the
corresponding vertex property entries. Otherwise, if the last segment is full, the insertion
operation allocates a new one, along with new arrays for each registered vertex property.

Inserting a new segment in csr++ is as simple as appending a new pointer to the segment
array. Extending this array is lightweight, given that even for large graphs such as Twitter,
csr++ only needs to copy ≈ 3MB worth of pointers.

As for edge insertions, the per-vertex edge arrays use classic allocation amortization
techniques for efficient edge insertions. If there is no space left to add edges, we double the size
of the array through reallocation. This way we keep the size of the allocated array as a power
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of two, which helps amortize the allocation costs upon possible future insertions. Naturally,
csr++ can support different growing factors than 2× to enable tuning edge insertion and
memory consumption performance.

Although csr++ efficiently supports single vertex and/or edge insertions, in practice,
insertions happen in batches, e.g., inserting a set of new transactions in a financial graph.
Batch insertion enables csr++ to leverage multi-threading and reduces the cost of maintaining
per-vertex edge sorting. Batch insertions are implemented with the following steps:
1. Collect an input of edges grouped by their source vertices and convert both source and

destination user keys to internal keys. New vertices are inserted in csr++ and each
acquires a new internal ID. We keep this step sequential in csr++, as it is very lightweight
(see Section 4.2).

2. Sort new edges (parallel for each source vertex) then insert them in direct and reverse
maps (parallel for each source vertex).

3. Sort the final edge arrays using a technique that merges two sorted arrays (i.e., the
old edges and the new ones) and reallocate edge properties (parallel for each modified
segment) according to the new order of edges.

Vertex and Edge Deletion. Deletions are not very frequent in real-life workloads. Accord-
ingly, we develop a very lightweight protocol of logical deletions. As presented above, for
vertices, setting the length to a negative value indicates an invalid/deleted vertex. For edges,
the separate delete_flag indicates deletion. Of course, vertex and edge iterators are adapted
to take these flags into account and disregard deleted entities. Optionally, when deleting
a vertex, the list of neighbors can be destroyed. Currently, csr++ instead restricts access
to the edges if the vertex length is negative. Since csr++ does not store explicit edge keys,
deleting an edge requires to translate the source and destination vertex keys to internal IDs
and scan over the neighbor list to locate the edge to be deleted. As already mentioned, for
fast scans, csr++ keeps the per-vertex edges sorted and performs binary searches. In case
storage becomes very fragmented due to many deletions, a rather heavyweight compaction
operation needs to be invoked to physically remove logically deleted entities. The cost of this
operation is proportional to the cost of populating the same graph from scratch. However, we
expect that this operation seldom happens in real-life deployments. Additionally, segments
with no deletions can be reused as-is in the compacted graph.

3.3 Algorithms on Top of CSR++
csr++ is written in C++ and is simple to use when writing graph algorithms. To iterate over
vertices, csr++ requires a nested loop to iterate over the segments then over the vertices per
segment. Using parallelism APIs, such as OpenMP [4], the nested loops can be automatically
collapsed and optimized. For algorithms requiring access to edges, the vertex structure
implements a get_neighbors() method that returns its edge list.

4 Evaluation

In this section, we answer to the following questions regarding the performance of csr++: How
does csr++ perform on read-only and on update workloads? How much memory does csr++
consume on these workloads? How does csr++ perform in comparison to other read-friendly
(i.e., CSR) and update-friendly graph structures (i.e., adjacency lists and LLAMA [23])?
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To this end, we compare the graph-structure configurations in Table 1, using two real-world
graphs [7], LiveJournal (4.8 million vertices and 68 million edges) and Twitter (41 million
vertices and 1.4 billion edges), as well as the four algorithms in Table 2 in various workload
configurations. Before we present the experimental results, we describe our configuration.

Table 1 Graph structures and the configurations that we use in our evaluation.

Name Type Configuration
csr++ Segmentation based Pre-allocating extra space for new edges. Deletion support

enabled only on deletion workloads, in order to have fair
comparison to LLAMA that does not support deletions by
the default.

BGL [1] Adjacency list Bidirectional with default parameters.
CSR [2] CSR Implementation in the Green-Marl library [2].
LLAMA [3] CSR with delta logs Read- and space-optimized with explicit linking. The fast-

est overall variant of LLAMA. Deletion support enabled
only on deletion workloads.

Table 2 Algorithms used in our evaluation.

Algorithm Description
PageRank Computes ranking scores for vertices based on their incoming edges.
Weakly Connected
Components (WCC)

Computes affinity of vertices within a network.

Breadth-First Search
(BFS)

Traverses the graph, starting from a root vertex, visits neighbors and
stores distance of vertices from the root vertex, as well as parents.

Weighted PageRank Computes ranking scores like the original PageRank and allows a weight
associated with every edge. It requires access to edge properties.

Experimental Methodology. For every result point, we perform five iterations and plot
the median. We report the execution time as a function of the number of threads. For most
analytics workloads we use CSR as a baseline. We run our benchmarks on a two-socket,
36-core machine with 384GB of RAM. Its two 2.30Ghz Intel Xeon E5-2699 v3 CPUs have
18 cores (36 hardware threads) and 32KB, 256KB and 46MB L1, L2, and LLC caches,
respectively. We disable Intel TurboBoost and do not use Intel Hyper-Threading in all
experiments. Both csr++ and the other evaluated systems are implemented in C++ and
compiled using GCC 4.8.2, with optimization level -O3 and -fopenmp on Oracle Linux 7.3.
We use the implementation of graph algorithms from Green-Marl [2].

We use the evaluated graphs as follows. For the read-only and deletion workloads, we
initially load the whole graph structures. For workloads with insertions, we initially load
80% of the graph and then insert batches of different sizes, generated using the graph-split
techniques used for loading and testing in the original LLAMA paper [23]. The first split
contains the 80% of the graph (≈1.1 billion edges for Twitter) that is loaded as a base graph.
Then, the remaining 20% is split using a random uniform distribution over N files; we refer
to N as the number of batches. Depending on the workload, we refer in figures to either the
batch size (e.g., 1% corresponds to splitting the 20% in 20 batches, hence 1% of the overall
graph), or the number of batches.
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Figure 3 Read-only performance of CSR, csr++, LLAMA, and adjacency lists (BGL).

4.1 Read-Only Workloads

We load the graph in memory and execute the evaluated algorithms. We report the execution
time taken to complete each algorithm and examine how it scales with multiple threads.

Figure 3 includes the results for csr++, CSR, BGL adjacency lists, and LLAMA. As
expected, the read-only CSR provides the best performance in this workload, since with
CSR, any graph access, for vertices, edges, and properties is as simple and efficient as an
indexed array access. Still, csr++ delivers performance comparable to CSR, especially in the
presence of multi-threading. Over all datapoints, csr++ is on average 15% slower than CSR,
while with 36 threads, csr++ is on average less than 10% slower than CSR.

As shown in Figure 3, we evaluate BGL adjacency lists only with PageRank. The reason
for this is that the other algorithms require reverse-to-forward edge mapping, which is
not supported out of the box in BGL. Still, the results of PageRank are conclusive: plain
adjacency lists cannot deliver performance comparable to read-friendly structures such as
CSR and csr++. Based on these results, and for simplicity of presentation, we omit adjacency
lists from the experiments in the rest of the paper.

Compared to LLAMA, csr++ is faster for four out of the six configurations by 16% on
average with 36 threads. Overall, the two systems perform within 1% of each other on
average. LLAMA is faster than csr++ for Pagerank with Livejournal and for BFS on Twitter.

For Weighted PageRank, we only evaluate CSR and csr++ and omit LLAMA because it
does not support edge properties out of the box. csr++ still performs close to CSR as shown
in Figures 3h and 3i. With 36 threads, csr++ is 1% faster than CSR on Twitter and 42%
slower for Livejournal. The slowdown in Livejournal is due to the small size of the graph:
with CSR’s representation, all data is served from the last-level cache, while csr++ needs to
slightly spill to main memory. These results show that the representation of edge properties
in csr++ performs comparably to CSR, especially on large graphs.

Overall, csr++ is very fast on read-only workloads, especially in the presence of concur-
rency, which is the intended use case of graph analytics.
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4.2 Updates: Vertex Insertions
Vertex insertions in csr++ are very lightweight, mainly due to segmentation (see Section 3.2).
Table 3 shows the time to insert different number of vertices on a fully loaded Twitter graph
(the choice of the graph has little impact on the performance of vertex insertions in csr++),
when the graph contains either no vertex properties or 50 vertex properties. Vertex insertions
are fast: With 10M insertions, inserting a vertex takes an average of 118 and 126 nanoseconds
per-vertex with no and 50 properties, respectively. Vertex properties are lightweight in csr++,
as they require just one memory allocation per property per segment.

Table 3 Time to add new vertices to Twitter graph in milliseconds.

#Vertices 10K 100K 1M 10M
Time (ms) – 0 vertex properties 1.6 11 120 1188
Time (ms) – 50 vertex properties 10 32 181 1259

4.3 Updates: Edge Insertions
First, we evaluate the time to insert all edges of one batch in both forward and reverse
structures (plus edge semi-sorting). Figure 4a shows the results. csr++ completes this full
batch insertion one order of magnitude faster than CSR. As expected, CSR completes all
batch insertions in the same amount of time, regardless of the batch size. In contrast, csr++
performs localized graph updates and thus delivers fast performance that is proportional to
the batch size.

Next, we examine the scalability of edge insertions with csr++ using the same workloads
and exploiting multi-threading. The results are shown in Figure 4b. We isolate insertions
by removing the edge semi-sorting that takes a significant amount of overall insertion time.
csr++ achieves good scalability for up to 12 threads. For more threads, performance does
not improve, in part because of the effects of memory contention and NUMA, but mainly
because of actual vertex contention: Twitter is a very skewed graph, hence many of the edge
insertions land in the same high-degree vertices, hindering parallelism. Note that for these
workloads, due to limited space, we only show the results with Twitter; we reach very similar
conclusions with the smaller LiveJournal graph.

We further compare csr++ to LLAMA for graph insertions. In Figure 5, we compare
the edge-insertion latency and memory consumption. We apply 1000 batches of insertions
(equivalent to the 0.02% workload in Figure 4), and print the memory usage and timestamp
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Figure 4 Graph mutations on Twitter. (a) Time to insert batches of edges of different sizes in
CSR and csr++ and sorting the edge arrays using 36 threads; (b) Time to insert different batch sizes
in csr++ without sorting using 1 to 36 threads; (c) Time to delete different batch sizes in csr++.
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Figure 5 Memory consumption and batch-insertion latency of update workloads with 36 threads.
(a) & (b): Comparing csr++ and LLAMA without compaction. (c) & (d): Comparing csr++ and
LLAMA with compaction after every 100th batch insertion.

after inserting each batch. As shown in Figures 5a and 5b, the memory usage of LLAMA
explodes after applying 370 batches, causing the system to run out of memory. In contrast,
csr++ consumes memory proportional to the actual graph size. Additionally, csr++ is up to
2.7× faster in performing the insertions.

LLAMA provides a function to compact all snapshots into a single one. Figures 5c
and 5d show the performance of csr++ and LLAMA with compaction. After every 100
batches, we compact all 100 snapshots. LLAMA’s memory usage increases until compaction
is invoked, but it is still higher than csr++, even immediately after compaction. Note
that the compaction method in LLAMA does not provide instructions for building the
reverse edges, hence these figures show the performance of inserting only forward edges. In
principle, building the reverse edges is quite more expensive than building forward edges,
i.e., if the reverse operation was included, the cost of compacting would be significantly
higher. Compacting 100 snapshots with only direct edges in LLAMA takes up to 40 seconds
with a single thread and 5-7 seconds with 36 threads. As shown in Figure 5c, csr++ is still
consistently faster than LLAMA by a factor of approximately 1.8×.

4.4 Updates: Edge Deletions
To support edge deletions, we modify our vertex and edge iterators in csr++ to check whether
a vertex or an edge is deleted, using the embedded flag in their respective structures. For
LLAMA, we enable the deletion vector which similarly adds the cost of checking whether
edges are deleted. Figure 4c shows the time csr++ takes to perform edge deletions. Each
data point represents the time to delete a whole batch of edges. The scalability is almost
linear relative to the number of threads, and, as we increase the batch size, the effect of
multithreading is more noticeable.

With a single thread, deletions are more computationally heavy, and therefore slower
than insertions, as can be seen in Figures 4b and 4c. As we mention earlier, csr++ does
not store edge indices (it would be very memory consuming), which means that for every
edge that is deleted, the thread needs to perform a (binary) search to find the target edge to
delete logically. Note that csr++ can “easily” also support physical deletion of edges, at the
additional cost of having to reshuffle edge properties to match the new edge array.

4.5 Analytics After Graph Updates
To evaluate csr++ in a mutation context, we first load the initial 80% of the graph and
simulate the insertion of a stream of updates (batches of new edges and new vertices), then
we evaluate PageRank. For insertions, this workload evaluates the impact of updates on
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Figure 6 PageRank performance after graph updates. (a) Comparing performance of CSR, csr++,
and LLAMA after applying 100 (of size 0.2%) batches of new edges; (b) Performance of csr++ after
applying 12 (1.6%), 20 (2%), 100 (0.2%) and 1000 (0.02%) batches of new edges, CSR is used as a
baseline; (c) Performance of csr++ and LLAMA after deleting one batch of edges of different sizes.

the performance of the graph structures, e.g., for csr++ reallocations of edge arrays and the
added pointers to newly-allocated segments. For deletions, we examine the overhead of the
extra conditional branch to check the deleted flags and the cost of virtual deletions.

Figure 6 shows the performance of PagerRank with csr++ and LLAMA after applying
mutations to the graph. In Figure 6a, we observe that, after inserting 100 batches of new
edges, the performance of csr++ only decreases by a factor of less than 1.25× as compared
to CSR, which shows the moderate overhead that is caused by the continuous reallocations
of edge arrays and the copy-on-write of the indirection layer. Additionally, LLAMA is faster
than csr++ by a factor of 1.12× but consumes ≈5× more memory than csr++ (see also
Table 4). This is due to the 100 snapshots LLAMA stores as multi-versioning support. If
we need to perform analytics on the latest version of the graph (which is the case of most
real-world scenarios), the significant memory overhead of these snapshots may not be worth
the minimal performance improvement. Figure 6b shows a breakdown of the performance of
csr++ when inserting different numbers of new batches: increasing the number of batches
results in more reallocations and copy-on-write operations. csr++ scales well in all cases and
keeps the moderate overhead of ≈1.25× over CSR even after inserting 1000 batches.

Finally, Figure 6c shows the performance of csr++ and LLAMA after deleting one batch
of edges of different sizes, relative to csr++’s performance without deletions. As we mention
earlier, we modified the iterators in csr++ to check for deletion flags in vertices and edges. We
delete up to 23 million edges from the 1.47 billion total edges of Twitter, and as expected, the
performance is similar to that of the baseline (i.e., without deletions). The extra conditional
branches in csr++ do not introduce considerable overhead. In case there are only few
deletions, branch prediction makes sure that these deletion checks have minimal overhead,
resulting in performance close to the original implementation (i.e., without deletion checks).
In contrast, LLAMA’s performance significantly suffers when enabling support for deletions
and makes LLAMA ≈30% slower than csr++.

4.6 Memory Footprint
We calculate the memory footprint of Twitter and LiveJournal graphs stored in CSR, csr++,
and LLAMA (read-optimized), both just after loading them in memory and after applying
different numbers of batch insertions on Twitter (Table 4).

As shown in Table 4, CSR is the most compact representation and consumes the least
memory – at the cost of mutability. The memory overhead of LLAMA is small when storing
one snapshot (i.e., before applying mutations), but as can be seen in the same Table 4, this
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Table 4 Memory footprint of different graph structures in GB in read-only workloads and after
inserting a different number of batches (Twitter-x, where x is the number of batches).

Graph Structure LiveJournal Twitter Twitter-12 Twitter-20 Twitter-100
CSR 0.53 11.09 11.09 11.09 11.09
csr++ read-only 0.57 11.54 - - -
csr++ 0.82 16.55 16.55 16.55 16.55
LLAMA 0.58 11.56 21.66 27.03 78.00
LLAMA implicit 0.58 11.56 19.02 23.99 73.64
linking

overhead increases steeply when applying batches. It is primarily due to storing different
delta-snapshots of the graph for versioning. As mentioned earlier, for realistic workloads
such as applying updates at a high frequency and then running analytics on recent versions
of the graph, this memory overhead may lead to out-of-memory errors. As a reference, we
include a second variant of LLAMA with implicit linking across snapshot versions, which
trades performance for memory. The memory savings of this variant are low, however, and
its performance is significantly worse (hence why our performance figures do not include it).

The default version of csr++ has a moderate memory overhead of 33% compared to CSR,
due to the pre-allocation of extra space for edge arrays. When this optimization is disabled,
memory is allocated in a tight manner and csr++ consumes closely to CSR.

5 Concluding Remarks

We introduced csr++, a new concurrent graph data structure that is as fast as the fastest
existing read-only graph structure, namely CSR, while enabling fast and memory-efficient
in-place graph mutations. csr++ achieves this sweet spot by combining the array-based
design of CSR with the mutability of adjacency lists. In practice, csr++ is within 10% of the
performance of CSR and delivers an order of magnitude faster updates.

Future work includes using smarter synchronization mechanisms in csr++ (such as e.g.,
developing lock-free protocols to avoid per-segment locking) as well as improving scalability
with concurrent updates. Furthermore, we intend to explore smarter, faster, and locality-
preserving memory reallocations using different memory allocators that are better suited for
multithreaded applications.
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