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Abstract
In the new generation of message-based systems such as network-based smart systems, distributed
components collaborate via asynchronous message passing. In some cases, particular ordering among
the messages may lead to violation of the desired properties such as data confidentiality. Due to
the absence of a global clock and usage of off-the-shelf components, there is no control over the
order of messages at design time. To make such systems safe, we propose a choreography-based
runtime enforcement algorithm that given an automata-based specification of unwanted message
sequences, prevents certain messages to be sent, and assures that the unwanted sequences are not
formed. Our algorithm is fully decentralized in the sense that each component is equipped with a
monitor, as opposed to having a centralized monitor. As there is no global clock in message-based
systems, the order of messages cannot be determined exactly. In this way, the monitors behave
conservatively in the sense that they prevent a message from being sent, even when the sequence
may not be formed. We aim to minimize conservative prevention in our algorithm when the message
sequence has not been formed. The efficiency and scalability of our algorithm are evaluated in terms
of the communication overhead and the blocking duration through simulation.
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1 Introduction

The new generation of message-based systems such as network-based smart applications are
usually distributed and may consist of off-the-shelf components developed by different vendors.
These systems are maintainable and scalable as components collaborate via asynchronous
message passing.

Such systems must satisfy the required properties such as data confidentiality, safety,
robustness, and security. However, a sequence of messages may lead to the property violation.
As an example (inspired by [19]), assume a building that consists of different locations
named A-E where the location E is restricted and a visitor must enter the restricted location
through a legal path (Figure 1). The only legal path to the restricted location is through the
consecutive locations A, C, and then E. Each location is equipped with a smart security
camera and a smart door that the visitor must use a smart door to enter the location. The
path between different locations is such that if the consecutive locations B and D are visited,
then the visitor will return to the location A. If a visitor is entered the restricted location
by passing through the consecutive locations A, B, and then E, it can be inferred that
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21:2 Decentralized Runtime Enforcement

the visitor accesses the restricted location illegally. This illegal access violates the security
rules of the building and can be detected by the message sequence Open(A,v) (the smart
door of the location A has opened by the visitor v), Open(B,v) and Open(E,v). There are
other examples of sequence-based patterns in the Complex Event Processing domain [28, 30].
Furthermore, a message protocol violation bug [24] and linked predicates [26] are also related
to the certain order of communicated messages. The former occurs in an actor-based program
[1], as a sample of a message-based program, when the components exchange messages that
are not consistent with the intended protocol of the application. The latter defines properties
(predicates) on a sequence of events interpreting events to messages.

A C E

B
D

: smart door equipped with a security camera which observes the location X

A C E

B E

D

X

Figure 1 The locations of a building denoted by A, B, C, D, and E separated by smart doors
equipped with security cameras.

As most systems in practice are an integration of various components which may be
closed-source and proprietary, the message sequences cannot be inspected statically at design
time to guarantee that unwanted sequences never happen at runtime. Runtime enforcement
can be used as a verification technique that makes sure such systems satisfy the given
properties and correct the execution of the system [23]. In this paper, we focus on the
decentralized runtime enforcement of properties where each component is equipped with a
local monitor. These decentralized monitors communicate with each other to prevent the
violation of the given property. The given property is violated by the formation of messages
sequences, where the sequences obey a specific pattern and specify the particular orderings
among sending and receiving messages of distributed components. Upon the occurrence of a
message, it may either lead to the sequence formation or cancel the effect of the partially
formed sequence. In the previous example, the message sequence Open(A,v), Open(B,v),
Open(D,v), Open(C,v), and Open(E,v) does not violate the security rule as the visitor returns
to the previous location A by passing through the consecutive locations B and D. Finally,
the visitor enters the restricted location E by passing through the location C.

Our decentralized runtime enforcement approach (Sect. 3) uses the choreography setting
[9], where local monitors are organized into a network and collaborate with each other by
using a specific protocol. This setting deals with decentralized specifications in which each
local monitor has access to some parts of the message sequences. The decentralized runtime
prevention of messages sequences formation in a message-based system is challenging due
to the absence of a global clock and asynchronous message passing. With the absence of
a global clock, the order of messages can not be distinguished as components own their
local clocks which are not synchronized [34]. With the asynchronous message passing, a
component is not synchronized with other components and so it has no information about
the status of a sequence formation. In the proposed algorithm (Sect. 4), we will use vector
clocks [25] in our messages to detect the partial ordering among messages, and then prevent
the sequence formation. When monitors cannot detect the total order among messages, they
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may prevent the sequence formation conservatively in the sense that they prevent a certain
message from being sent even if that message does not lead to a sequence formation. We
aim to minimize the conservative prevention in our algorithm when the message sequences
have not been formed. To prevent a sequence formation, a component may be blocked
before sending its message until its monitor makes sure about the effect of that message
on the sequence formation. We also aim to prevent the sequence formation by minimizing
the number of blocked components and manipulation of messages ordering. To the best of
our knowledge, there is no decentralized runtime enforcement of sequence-based properties
in message-based systems. We evaluate the performance of our algorithm and show that
our algorithm is scalable: with the increase of the complexity of applications or the length
of message sequences, the number of monitoring messages and the blocking duration of
processes grow linearly (Sect. 5).

2 Background

2.1 Message-Based Systems
We define a Message-Based System D = {P1, . . . , Pn} as a set of n processes that commu-
nicate via asynchronous message passing and guarantees in-order delivery, i.e., two messages
sent directly from one process to another will be delivered and processed in the same order
that they are sent. We assume that each process has a unique identifier and a message queue.
A process sends messages to a target process using its identifier. Each process takes messages
from its queue one by one in FIFO order and invokes a handler regarding the name of the
message.

Let ID be the set of possible identifiers, ranged over by x, y, and z. For simplicity, we
assume ID = N throughout the paper. Let MName be the set of message names and Msg
be the set of messages communicated among processes ranged over by m. Each message
m ∈ Msg has three parts: the sender identifier, the message name, and the receiver identifier,
hence Msg = ID ×MName × ID. Each process Px with the identifier x is defined by a set
of message handlers and state variables where a message handler specifies how the received
message must be responded to. The computation of the process Px can be abstracted in
terms of events which are categorized into internal, send, and take events, where an internal
event changes the state variables of Px, the event send(Px ,m,Py) occurs when Px sends m
to Py where m ∈ MName, and the event take(Py,m,Px) occurs when Px takes m ,which is
sent by Py, from its queue.

Events in the message-based system can be partially ordered according to the happened-
before relation [21] which is implemented by the vector clock. Let a message mi ∈ Msg be a
triple of (Px,mi, Py). A happened-before relation  defines a causal order among events:
(1) within a single message handler, the ordering of events is defined as their execution order
which can be determined unambiguously, (2) send(Px ,m,Py) take(Px ,m,Py), and (3) for
events ea, eb, ec, if ea  eb and eb  ec then ea  ec.

Two events ea and eb are concurrent and denoted by ea ‖ eb if there is no happened-before
relation between them.

2.2 Message-Based Property Specification
We aim to prevent certain unwanted sequences of send/take events from being formed. For
an unwanted sequence, the occurrence of some events contributes to the formation of the
sequence, while some other events may cancel the effect of the previous ones. To formalize
our message sequences, we use the sequence automaton defined in [32] as an extension to
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21:4 Decentralized Runtime Enforcement

nondeterministic finite automata. In this model, transitions are partitioned into two sets of
forward and backward transitions. Forward transitions, denoted by → , lead to the sequences
formation while backward transitions, denoted by 99K , cancel the formation of sequences.
Let →∗ be the transitive closure of the → relation.

I Definition 1 (Sequence Automaton [32]). Given a nondeterministic finite automaton
(Q,Σ, δ, Q0, F ), the 6-tuple (Q,Σ, δf , δb, Q0, F ) is a sequence automaton (SA), where δ =
δf ∪ δb, δf ∩ δb = ∅, and the transitions specified by δf (resp. δb) are forward (resp. backward)
transitions, i.e.,

For all simple paths from any initial state q0 ∈ Q0 to any final state qn ∈ F passing
through q1 . . . qn−1, it holds that ∀ i < n, qi 699K qi+1.
qi 99K qj ⇒ qi 6= qj ∧ qj →∗ qi.

To simplify the explanation, we restrict Σ to send events and show send(m) by m in our
graphical representation of sequence automata.

q0start q1 q2 q3 q6

q4

q5

(P1,m1, P2)
true

(P1,m7, P3)

(P3,m8, P1)

(P3,m2, P2)

¬(P3,m2, P2)

(P2,m3, P3)
¬(P2,m3, P3)

(P1,m7, P3)
¬((P3,m4, P1) ∧ (P3,m5, P1) ∧ (P1,m7, P3))

(P2,m3, P3)

¬((P3,m5, P1) ∧ (P2,m3, P3))

true

(P2,m6, P1)

¬(P2,m6, P1)

(P3,m5, P1)

(P3,m5, P1)

(P3,m4, P1)

Figure 2 The sequence automaton A1 where the solid edges denote the forward transitions and
the dashed edges denote the backward transitions.

The sequence automaton A1, in Figure 2, represents the sequences of send events. For
instance, this automaton describes that if first the message (P1,m7, P3) is sent and then the
message (P2,m3, P3) is sent while the message (P3,m5, P1) is not sent after (P1,m7, P3) and
before (P2,m3, P3), then the sequence (P1,m7, P3)(P2,m3, P3) is formed. If the sequence
(P1,m7, P3)(P3,m5, P1)(P2,m3, P3) is observed, the occurrence of (P3,m5, P1) has eliminated
the effect of the occurrence of (P1,m7, P3) and so, the occurrence of (P2,m3, P3) will not
form a sequence (as the reaching state q0 is not a final state). However, a sequence is formed
by the occurrence of (P1,m7, P3)(P3,m5, P1)(P1,m7, P3)(P2,m3, P3). The self-loop over the
state q4 expresses that between the occurrences of (P1,m7, P3) and (P2,m3, P3), any message
except (P3,m5, P1) and (P2,m3, P3) can be sent.

When a message m occurs, a transition like (q,m, q′) may lead to the formation of a
sequence from the initial state up to q′. To form such a sequence, it is necessary that at
least a message over one of the preceding transition of (q,m, q′), like t, has occurred and no
message over the backward transitions has eliminated the effect of t. The pre-transitions
of (q,m, q′) is the set of preceding transitions whose labeled messages can occur before m

in a sequence. The preceding transitions have the same destination as the source state of
(q,m, q′), i.e., q.

I Definition 2 (pre-transition). For the given sequence automaton A, the pre-transitions of
the transition (q,m, q′) ∈ δf , where q 6= q′, is the set of forward transitions that end in state
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q. Also, the pre-transitions of the transition (q,m, q′) ∈ δb is the set of forward transitions
that end in state q and are visited on a path from q′ to q:

preTrns(A, (q,m, q′)) =
{
{(q′′,m′, q) ∈ δf | q 6= q′′} if (q,m, q′) ∈ δf

{(q′′,m′, q) ∈ δf | q 6= q′′ ∧ q′ →∗ q′′} if (q,m, q′) ∈ δb

A backward transition (q,m, q′) can eliminate the effect of all forward transitions on a
path from q′ to q, when m occurs after the occurrence of labeled messages over the sequence
of forward transitions on a path from q′ to q.

I Definition 3 (vio-transition [32]). For the given sequence automaton A, the vio-transitions
of the transition (q,m, q′) ∈ δf , where q 6= q′, is the set of backward transitions that can violate
the effect of (q,m, q′) in a path made up of only forward transitions from the destination to
the source of the backward one:

vioTrns(A, (q,m, q′)) = {(qn,m
′, q0) | (qn,m

′, q0) ∈ δb ∧ q0 →∗ q ∧ q′ →∗ qn}

For example, in Figure 2, preTrns(A1, (q0,m1, q1)) = ∅, preTrns(A1, (q4,m3, q6)) and
preTrns(A1, (q4,m5, q0)) are equal to (q0,m7, q4). Furthermore, the transition (q4,m5, q0)
violates the effect of (q0,m7, q4) and so vioTrns(A1, (q0,m7, q4)) = {(q4,m5, q0)}.

3 Choreography-Based Runtime Enforcement Approach

We aim to prevent the formation of unwanted message sequences that are specified by a se-
quence automaton in a message-based system at runtime. A message sequencem1 . . .mx . . .mn

is formed if we move from the initial state by the message m1 and reach a final state by the
message mn. To avoid the sequence formation, we equip each process Px with a monitor Mx.
The local monitors of the processes are organized as a network and communicate with each
other to prevent the sequence formation.

To prevent the formation of m1 . . .mx−1mx . . .mn, the process Pn as the sender of mn

must make sure that m1 . . .mn−1 has not been formed before sending mn. One possible
solution is that its monitor, i.e., Mn, communicates with other monitors and asks if all of
the messages m1 to mn−1 have been sent. However, this solution imposes a high overhead
on the system as there may be many sequences that lead to mn, and so Mn must ask other
monitors about the sending status of many messages. So, we propose a choreography-based
prevention approach where monitors have access to some parts of the sequence, detect the
sequence formation incrementally, and finally the monitor Mn informs its process to either
send the message mn safely or send an error message. To this end, upon sending a message
mx, the sender Px informs its monitor Mx, which in turn asks Mx−1 about the formation
of m1 . . .mx−1. The sequence m1 . . .mx−1mx will be formed if m1 . . .mx−1 is formed and
mx−1  mx. This way, the communication overhead between the monitors is distributed
over time, instead of happening all at the final states.

In the following, first, we explain how monitors have access to some parts of the specifica-
tion. Then, we demonstrate how monitors must communicate with each other to prevent the
formation of unwanted message sequences.

3.1 Choreography-Based Property Specification
In this section, we use the choreography-based specification in [32] where each monitor has
its own local property. As we explain in Section 2.2, the message sequences can be specified
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by a sequence automaton. To specify the choreography-based specification, the sequence
automaton should be broken down into a set of transition tables. Each monitorMx maintains
a transition table that contains the transitions labeled by the messages that their sender is Px.
For each transition, the set of its pre-transitions is also stored in the table. Since the effect
of a pre-transition may be violated by the occurrence of its vio-transitions, it is necessary
to store the set of vio-transitions for each pre-transition in the table too. A transition is
uniquely identified in terms of the identifiers of its source/destination states. Self-loops are
ignored in the transition tables, as they do not change the state of monitors.

Table 1 The transition table TP1 .

transition final pre-transition vio-transition
(q0, (P1, m1, P2), q1) ⊥ ∅ ∅
(q0, (P1.m7.P3), q4) ⊥ ∅ ∅

(q3, (P1, m7, P3), q6) > (q2, @ P2, q3) {(q3, @ P3, q2),
(q3, @ P3, q0)}

Table 2 The transition table TP2 .

transition final pre-transition vio-transition
(q2, (P2, m3, P3), q3) ⊥ (q1, @ P3, q2) {(q3, @ P3, q0)}
(q4, (P2, m3, P3), q6) > (q0, @ P1, q4) {(q4, @ P3, q0)}
(q5, (P2, m6, P1), q6) > (q0, @ P3, q5) ∅

Table 3 The transition table TP3 .

transition final pre-transition vio-transition
(q1, (P3, m2, P2), q2) ⊥ (q0, @ P1, q1) {(q3, @P3, q0)}
(q3, (P3, m4, P1), q2) ⊥ (q2, @ P2, q3) ∅
(q0, (P3, m8, P1), q5) ⊥ ∅ ∅
(q4, (P3, m5, P1), q0) ⊥ (q0, @ P1, q4) ∅
(q3, (P3, m5, P1), q0) ⊥ (q2, @ P2, q3) ∅

For instance, the automaton in Figure 2 is decomposed into three tables shown in Table 1, 2,
and 3. Table 1 is maintained by the monitor of P1 and contains information of the transitions
which the sender of the labeled messages is P1. The transition (q0, (P1,m1, P2), q1) does not
lead to a final state and it has no pre-transition and so no corresponding vio-transition. So, the
first row ((q0, (P1,m1, P2), q1),⊥, ∅, ∅) is included in TP1 . The transition (q3, (P1,m7, P3), q6)
leads to the final state and has only one pre-transition as (q2, (P2,m3, P3), q3) and two corres-
ponding vio-transitions of (q3, (P3,m5, P1), q0) and (q3, (P3,m4, P1), q2). The corresponding
row of the transition (q3, (P1,m7, P3), q6) in TP1 is :

((q3, (P1,m7, P3), q6),>, (q2,@P2, q3), {(q3,@P3, q2), (q3,@P3, q0)}).

3.2 Choreography-Based Communication Mechanism
In this section, we demonstrate how monitors communicate with each other to prevent
sequences formation. Upon sending a message m by the process Px, the monitor Mx
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communicates with other monitors to determine the sequence formation up to m. In the case
that m is the last message in at least one sequence, Px must be blocked before sending m

until Mx gets information about the partial sequence formation from others and makes sure
that sending m does not complete the sequence formation up to m. Otherwise, Px sends the
message m, and then its monitor tries to detect the sequence formation up to m.

P2 M2 M1P1

send(P2,m2,P3)

send(P1,m1,P3)

ask

reply
send(P2,m2,P3)

blocked on

(a)

P2 M2 M1 P1

send(P2,m2,P3)

send(P1,m1,P3)

reply
send(P2,m2,P3)

notify

ask
blocked on

send(P1,m1,P3)
blocked on

(b)

Figure 3 The monitors collaborate to avoid the sequence formation (P1, m1, P3)(P2, m2, P3). The
sequence has been formed in (a) as the process P1 sends the message m1 immediately before M1

receives the notify message. However, in (b), the sequence has not been formed as the process P1

sends the message m1 after M1 receives the monitoring message notify. The dashed part of a thread
denotes that the process is blocked until its monitor gets some information from other monitors.

The monitors communicate with each other using monitoring messages. There are three
types of monitoring messages called ask, reply, and notify. A monitor sends the monitoring
message ask to inquire if a message has been sent and receives the response by the monitoring
message reply.

I Example 4. In Figure 3a, the monitors communicate with each other to avoid the sequence
formation (P1,m1, P3)(P2,m2, P3) at runtime. The process P2 is blocked on the message
(P2,m2, P3) as it is the last message in the sequence. Then, M2 sends the monitoring message
ask to M1 to check if m1 has been sent. The monitor M1 responds to M2 by sending the
monitoring message reply.

In the case that the process Px is blocked on m until the monitor Mx makes sure about
the completion of the sequence formation, Mx may receive the response that the inquired
message has not been sent. Due to the delay of the network, this response may be received
late and meanwhile the inquired message may be sent before receiving this response. So,
the process Px sends m and the sequence is formed. To avoid the sequence formation, the
inquired message must not be sent by the process of the inquired monitor until the message
m is sent by Px, and the monitor Mx notifies the inquired monitor.

I Example 5. In Figure 3a, M1 responds to M2 that the message (P1,m1, P3) has not been
sent. However, P1 sends m1 immediately after sending this response. In this case, when
M2 receives the response, it finds that m1 has not been sent and so P2 can send m2 safely.
But, P2 sends the message m2 after sending m1 and so the sequence has been formed. In
Figure 3b, the sequence is not formed as the inquired message (P1,m1, P3) cannot be sent
until M1 receives the monitoring message notify from M2.
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3.2.1 Choreography-Based Communication Strategy
As the message sequence m1 . . .mx−1mx . . .mn is decentralized between monitors, the monitor
Mx−1 must inform Mx the result of the sequence formation m1 . . .mx−1. Results can be
either pushed into or pulled from a monitor. We use a pulling strategy for collaboration
among monitors. With this strategy, monitors find out the order of messages more accurately.
We explain the reason through an example.

As we assumed that there is no global clock, processes and monitors append their vector
clocks to the events and communicated messages. Consider the property that the event
send(P2,m2, P3) must never occur after the event send(P1,m1, P3). Assume that P1 sends
m1 after m2 has been sent, but the vector clocks of these messages are concurrent as depicted
in Figure 4. With a pushing strategy, the monitor M1 must inform the monitor M2 the
moment that m1 has been sent, i.e., [j, 0]. When P2 sends m2, M2 cannot conclude about
the violation of the property as it has not received the moment that m1 was sent. After
pushing the moment of m1 by M1, M2 cannot conclude the order among the two events
accurately and decide on the property, which is not held, as the vector clocks of the messages
are concurrent, i.e., [0, i] ‖ [j, 0]. However, with the pulling strategy, M2 inquires about
the sending status of m1 from M1 after sending m2. If P1 has not sent m1 yet, then M1
responds with a false result. Upon receipt of this response, M2 can conclude accurately that
the property is not violated.

P2
M2

M1
P1

send(P2,m2,P3) [0, i]

send(P1,m1,P3) [j, 0]

pull(send(P1,m1,P3) status) reply false push(send(P1,m1,P3),[j, 0])

M2 finds out that the property has not been violated

M2 cannot decide about the property violation as [0, i] and [j, 0] are concurrent

Figure 4 The two communication strategies between the monitors where the pulling strategy is
denoted by dotted lines and the pushing strategy is denoted by a dashed line. The vector clock [0, i],
where i > 0, denotes that P2 executes the event send(P2, m2, P3) as the ith event while it has no
information about the events of P1.

4 Choreography-Based Runtime Enforcement Algorithm

In this section, we aim to introduce the choreography-based runtime enforcement algorithm,
where the unwanted message sequences are specified on the sequences of send events.

4.1 The Process Environment
The process Px maintains the variable lastmessages which denotes the list of messages labeled
on transitions reach to final states. The process is blocked before sending m ∈ lastmessages
until its monitor makes sure that sending m does not complete a sequence formation.
The process and its monitor also have three shared variables sendingmsgx, blockmsgx, and
waitingmsgx, where:

sendingmsgx is a list of triples which consists of a message, which the process is going to
send, a vector clock of the process upon sending the message, and the type of a monitoring
message which the monitor must send to other monitors.
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(m,vc,ask)

((qi,m,qj),vc,result)

Px Mx

((q′
i,m′,q′

j),vc′,result′)

((q′
i,m′,q′

j),vc′,result′ 6= ?)

Mpre/Mvio Ppre/Pvio

(2)

(5)

(3)

(8)

final pre-transition vio-transition
(qi,m,qj) (q′′

i ,@ Pvio,q′′
j )(q′

i,@ Ppre,q′
j)>

((qi,m,qj),vc,?)
(4) ask

(7) reply

transition
TPx

result′=?→ reply later

sendingmsg

history

empty set

empty set

i

ii

(6)

(1)
send(m,vc)

Figure 5 The algorithm steps taken upon sending the message m by the process Px where m is
not the last message in any sequence.

blockmsgx is a pair of a message which Px has been blocked on it , and the status of a
message to be sent in which it can be either ok or error .
waitingmsgx is the list of messages that must not be sent by Px until its monitor receives
a notify message as explained in Section 3.2.

We assume that the mutual exclusion of shared variables is ensured by using some
well-known mechanisms like semaphore and monitors [20, 17].

4.2 The Monitor Environment
The monitor Mx maintains a transition table Tx as described in Section 3.1 to prevent a
sequence formation. We call a transition t of the table Tx is taken if its labeled message
m has been sent, and a partial sequence up to the transition t has been formed. A partial
sequence up to the transition t is formed if at least one of its preceding transitions has been
taken before, and after that, no violating transition (of those taken preceding transition) has
been taken. In the case that t has no preceding and violating transition, the transition t is
taken when its labeled message has been sent. The time that the transition t is taken equals
the time that m was sent, and is denoted by a vector clock appended to m. The monitor Mx

also maintains a variable historyx which is the list of triples that consists of the transition t
that is taken before, a vector clock of a process upon sending the message m, and a result of
a partial sequence formation up to t.

4.3 The Algorithm Sketch
When the process Px wants to send a message m, there will be two cases depending on
whether m is the last message in at least a sequence. In the following, we explain the behavior
of the process and its monitor in the two cases.

Case 1: m is not the last message in any sequence

If m is not the last message in any sequence, i.e., m 6∈ lastmessages, the process Px sends
the message and appends the triple (m, vc, ask) to the end of sendingmsgx. The monitor
Mx takes a message from sendingmsgx. If the type of message is ask, it inspects if any
transition of Tx can be taken. Then, Mx finds those rows of Tx whose labeled message on its
transition equals m. For each row, Mx inquires about the taken status of the pre-transition
and vio-transitions in the row by sending appropriate monitoring messages to the monitors
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corresponding to the sender of the messages over these transitions. Additional information is
appended to the monitoring messages including the vector clock of the sending event of m,
the inspected transition of Tx labeled by m, called t, the blocked status of the process Px on
m, the type of the monitoring message, and the inquired transitions. Then, Mx adds the
temporary record (t, vc, ?) to its history. The triple (t, vc, result) expresses that the taken
status of the transition t that its labeled message was sent at the moment vc, is either under
inspection or defined. The former case is indicated by the result value of “?” while the latter
is indicated by the result values of Frm or Frmp which are explained later. Adding the
record (t, vc, ?) is helpful when another monitor inquires Mx about the taken status of the
transition t. In such cases, the monitor Mx must postpone its response to the inquiry until
the result of the transition t be defined. Figure 5 shows the steps of the algorithm in this
case and (1)− (5) denotes the steps explained so far.

I Example 6. In Figure 2, when P2 sends the message m3, it appends the triple (m3, vc,

ask) to the end of sendingmsg2. Upon taking this triple from sendingmsg2, the monitor M2
checks the transition table TP2 (Table 2) and finds two transitions labeled by (P2,m3, P3). For
instance, as the transition (q4, (P2,m3, P3), q6) has one pre-transition and one vio-transition,
M2 prepares two monitoring messages to inquire about the taken status of the pre-transition
(q0,@P1, q4) from M1 and the vio-transition (q4,@P3, q0) from M3. Then, M2 adds the triple
((q4, (P2,m3, P3), q6), vc, ?) to its history.

Upon receiving the monitoring message ask by My, there are two cases according to the
blocked status of Py which is the sender of a message m′ labeled on the inquired transition:

(1) The process Py is not blocked on m′: In this case, if My has either an unknown result “?”
in historyy corresponded to the inquired transition or an unhandled message in sendingmsgy

corresponded to m′ in which send(m′) send(m), then it must postpone responding to the
monitoring message. Otherwise, if My finds a record with a defined result value about the
inquired transition, it infers that the transition has been previously taken. If so, My attaches
the corresponding information found in its history to its response monitoring message. If
there is no record with a defined result value about the inquired transition, it attaches an
empty set to the monitoring message (6i). Then, My communicates with Mx by sending the
monitoring message reply.

I Example 7. In Figure 2, suppose that the monitor M2 inspects the taken status of the
transition (q4, (P2,m3, P3), q6), and inquires about the taken status of (q0,@P1, q4) from M1.
If M1 finds any record ((q0,m

′, q4), vc′, ?) in history1, where send(m′)  send(P2,m3, P3),
then it postpones responding to this monitoring message until the result value “?” be defined.
Otherwise, it attaches the found records to the monitoring message and send to M2.

(2) The process Py is blocked on m′: The monitor My checks historyy to investigate whether
m′ has been previously sent and there is any record with a defined result value corresponding
to the inquired transition. If such a record with a defined result value is found, My attaches
the found information to its response monitoring message. Otherwise, it attaches an empty
set to the monitoring message (6ii). Then, My communicates with Mx by sending the
monitoring message reply. In this case, there may be a record corresponding to the inquired
transition with the unknown result “?” in historyy. However, a defined value of this result
does not affect on the sequence formation as m′ has not been sent yet, and the inspected
message m has been sent by Px. So, My can send the records with a defined result value to
Mx irrespective of the records with an unknown value about the inquired transition.
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I Example 8. In Figure 2, if P1 is blocked on the message (P1,m7, P3), then there will be a
record with an unknown result value for the transition (q0, (P1,m7, P3), q4) in history1. At this
time, if M1 receives a monitoring message with the inspected transition (q4, (P3,m5, P1), q0),
then M1 does not wait for a defined result value of (q0, (P1,m7, P3), q4). As the inspected
message (P3,m5, P1) has been sent and the inquired message (P1,m7, P3) has not been sent
up to now, the sequence (P1,m7, P3)(P3,m5, P1) cannot been formed.

When Mx receives all responses from other monitors, it checks whether the inspected
transition can be taken. In this case, Mx updates the result value of the corresponding record
in historyx (7)− (8). Otherwise, it removes the record (t, vc, ?) from historyx.

If there exists at least one taken pre-transition for the transition t that was not taken
before its vio-transitions and its taken time is before the occurrence of m, it is concluded
that a bad-prefix is going to be formed. So, the result value of the corresponding record of t
in the history is updated to “Frm”. This result denotes that a sequence as a bad-prefix of
the property is going to be formed. In the case that there is no happened-before relation
between the taken time of the pre-transition and the taken time of the transition t, then the
monitor decides conservatively, and updates the result value of the corresponding record of
t to “Frmp”. This result denotes that due to the concurrent occurrence of the events, the
bad-prefix probably may be formed. It is noteworthy that if the transition of Tx has no
pre-transition, the monitor Mx does not consult with any monitor, and adds this transition
with the result of “Frm” to historyx.
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(m,-,ask)

((qi,m,qj),-,result)

Px Mx

((q′
i,m′,q′

j),vc′,result′)

Mpre/Mvio Ppre/Pvio

(2)

(5)

(3)

(8)

(10)

final pre-transition vio-transition
(qi,m,qj) (q′′
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j )(q′
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j)>

(9)
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i

ii
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m′
remove m′

(14)

(1)

Figure 6 The algorithm steps taken upon sending the message m by the process Px where m is
the last message in at least one sequence.

Case 2: m is the last message in at least one sequence

If m is the last message in at least one sequence, i.e., m ∈ lastmessages, Px does not send
the message until it makes sure that sending m does not lead to a sequence formation. Then,
Px appends the triple (m,−, ask) to the end of sendingmsgx, where “−” denotes that the
process is blocked before sending m and so m has no assigned vector clock. The process Px

also sets the blockmgsx to (m,−), and then it is blocked. Figure 6 shows the steps of the
algorithm in this case. The process Px will be blocked until its monitor updates blockmsgx
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to either (m, ok) or (m, error). The pair (m, ok) denotes that no sequence will be formed by
sending m. In this case, Px can continue its execution and send the message safely. The
pair (m, error) denotes that a sequence up to the last message m has been formed and so
sending m leads to a complete sequence formation. The monitor Mx behaves similarly to
the previous case upon taking a message from sendingmsgx (2)− (4). Then, Mx adds the
temporary record (t,−, ?) to historyx (5).

Upon receiving the monitoring message by My, there are two cases based on the blocked
status of Py which is the sender of the message labeled on the inquired transition, i.e., m′:

(1) The process Py is not blocked on m′: The monitor My behaves similarly to the first item
of the previous case, except that it must also add m′ to waitingmsgy if it finds no record
with a defined result value about the inquired transition (6i).

(2) The process Py is blocked on m′: As the process Py is blocked on m′, there will be a record
((q,m′, q′),−, ?) in historyy. The monitor My must postpone responding to this monitoring
message as it does not know whether a sequence up to m′ is formed (6ii).

The monitor Mx behaves similarly to the previous case upon receiving all responses from
other monitors. If a sequence up to m is formed, then Mx updates blockmsgx to (m, error)
to inform Px that sending m leads to a complete sequence formation. Otherwise, it updates
blockmsgx to (m, ok) to inform Px that m can be sent safely (7)− (9).

The process Px either sendsm or sends an error message regarding the status of the message
in blockmsgx, and appends the triple (m, vc,notify) to the end of sendingmsgx (10)− (11).
The monitor Mx takes the triple with the message type notify from sendingmsgx and sends
the corresponding monitoring message (12)− (13). If Px sends m by the vector clock vc,
Mx also updates the vector clock of the transition labeled by m in historyx from “−” to vc.
Finally, the monitor My which receives the notify message from Mx, removes the message
labeled on the inquired transition from waitingmsgy (14).

4.4 Discussion
We have assumed that processes and their monitors behave honestly and do not suffer from
any failures or byzantine behavior [14]. If a monitor fails or a process fails before updating the
shared variable, the algorithm will not be sound due to the loss or the incomplete information
of the monitor. In cases that processes tamper with events or behave maliciously, they
may not inform their monitors upon the occurrence of send/take events. Hence, monitors
conclude wrongly and the algorithm will not be sound again. The proposed algorithm can be
implemented in the execution framework of message-based systems. For instance, the send
function of the open source Akka library [2] or the control layer of Theater [8] which regulates
the message scheduling and dispatching can be modified to incorporate our enforcement
algorithm. On the other hand, the given specification for the unwanted message sequences
may lead our algorithm to reach a communication deadlock [31] among the monitors. For
instance, suppose that we aim to prevent the formation of the message sequences m1m2 and
m2m1. According to our algorithm, the process P2 is blocked before sending the message
m2 and then M2 asks M1 if m1 has been sent. The process P1 also may be blocked before
sending m1 and then M1 inquires M2 if m2 has been sent. So, both processes P1 and P2 will
be blocked as their monitors cannot determine the sequence formation up to their blocked
messages. However, our algorithm works correctly for sequences without such dependencies.
The proof sketch of our algorithm is given in Appendix A. We are working on an extended
version of our algorithm to detect and resolve communication deadlocks as a future work.
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5 Evaluation and Experimental Results

In this section, we present the results of a set of experiments to evaluate our runtime
enforcement algorithm. We investigate the effect of different parameters on the efficiency
of the algorithm including the number of processes, the maximum number of message
handlers of processes, the maximum message communication chain between processes, and
the length of the message sequences. The maximum message communication chain denotes
the maximum number of processes in a chain of message handlers that send messages to each
other. We develop a test case generator 1 which produces message-based applications with
different parameters and a set of message sequences according to the generated application.
Applications are generated in terms of a simple actor-based language [1]. We also develop a
simulator 2 which simulates the execution of each application and our prevention algorithm,
and then measures the communication overhead of our algorithm. The simulator tools assume
a random network delay and our simulator delivers messages after this delay. We perform all
the experiment on a single machine with a dual core processor (Intel i5-520M 2.4GHz) with
4 GB memory.

To evaluate the scalability and the monitoring communication overhead of our algorithm,
we generate four applications with 3, 6, 9, and 12 processes, where each process has maximum
five message handlers, and the maximum message communication chain in each application
is 4, 5, 6, and 7, respectively.
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Figure 7 (a) The average number of monitoring messages in different applications regarding

three sequences (denoted by n3) with different lengths of six (denoted by l6), eight, and ten, (b)
The average time that processes are blocked regarding the same message sequences of (a).

Scalability: To show that our algorithm is scalable in terms of the average number of
monitoring messages and the average blocking time of processes, we run each experiment ten
times. The average number of monitoring messages for each application is shown in Figure 7a
where the given properties are three message sequences with the length of six, eight, and ten.
The number of times that a monitor inquires others because of a message m (occurring in
sequences) depends on the number of times that the message m has occurred at runtime. To
make our experiments fair, we enforce the restriction that each message can appear in at
most two communication chains. In this case, each constituent message of the sequence can
occur at most two times. Our results show that as the length of message communication
chain increases, the number of monitoring messages grows linearly for complex applications.

We also evaluate the average time that the processes of each application are blocked. In
the proposed algorithm, only the senders of the last messages in the sequences are blocked.
Figure 7b shows that the average blocking time of processes grows linearly for complex
application to prevent the formation of three message sequences with the length of six, eight,
and ten.

1 Available at https://gitlab.com/vmoh.ir/rebeca-generator, Accessed: 2020-11-04
2 Available at https://gitlab.com/mSamadi/enforcement, Accessed: 2020-11-04
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Figure 8 (a) the average number of monitoring messages, (b) the average of memory consumption,

(c) the average time for preventing the message sequence formation for different properties where Si

denotes three sequences with the length of i + 4.

Monitoring Communication Overhead:
We evaluate the average number of monitoring messages, the average of memory consumption
of the monitors, and the average time to enforce a property for the application with nine
processes. As illustrated in Figure 8a and Figure 8b, the average number of monitoring
messages and the average memory consumption of the monitors grows linearly as the length
of sequences increases. To measure the average time to enforce the property, we measure the
average time that the monitors are waited for receiving the responses from other monitors,
plus the total time that a process is blocked until its monitor informs it to send a message.
It is shown in Figure 8c that as the length of the sequence increases, the monitors involve in
more collaborations and hence, more time to gather all responses from other monitors.

6 Related Work

Several centralized monitoring algorithms [34, 4, 9] and decentralized ones [32, 27, 3] have
been proposed to detect the property violation in distributed systems at runtime . Among
the centralized runtime enforcement approaches which aim to avoid the property violation,
we can mention [33] which introduces security automata to specify security properties. Using
this model, the execution of the program is stopped if a sequence of events does not satisfy
the desired property. Using the edit automaton [22], the execution of the program can be
corrected by suppressing or inserting a new event. This automaton assumes that monitors
can predetermine the results of events without executing them. In [10, 23], an enforcement
model is presented for the cases that the results of events are not predetermined. In the
presented model, for every event generated by the program, the underlying executing system
returns a result to the target program. The predictive runtime enforcement [29] deals with
systems that are not entirely black-box, and there is some knowledge about their behavior.
The knowledge allows to output some events immediately, and the system is not blocked until
more events are observed. The timed properties are enforced, in [12] at runtime. Furthermore,
in [6], an enforcement approach for the reactive systems is presented where the output should
be corrected only if necessary, as little as possible, and without delay. In addition to these
work, [11, 7] deals with the runtime enforcement of component-based systems, where systems
are modeled within the BIP framework [5]. In this approach, monitors are synchronized
with their components. However, the proposed algorithm is decentralized and monitors
collaborate to prevent the unwanted sequences formation.

The existing approaches in the domain of runtime enforcement are categorized in [13],
and decentralized runtime enforcement is considered as an open challenge in distributed
systems. We can address [15] as a decentralized enforcement approach in which a frame-
work, called service automata, is specified in Hoare’s CSP language [18]. This framework
considers networks of service automata that are not fully connected. Each service automaton
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synchronizes with the system on the critical events. This automaton controls the execution
of a program and communicates with other service automata to decide whether a property is
satisfied. However, in our choreography-based approach, the monitors are fully connected and
a monitor can communicate with others monitors directly and so fewer monitoring messages
are transmitted in the network. In addition, there is no synchronization among processes and
their monitors, and the monitors take advantage of the specific communication mechanism
(Sect. 3.2) to prevent the scenario of sequence formation given in Figure 3. The work of [16]
is considered as a decentralized enforcement approach in the domain of business processes
where a document must follow a specific workflow. It uses the notion of migration strategy [9]
where the document is transmitted among different parties. The document carries fragments
of its history, and is protected from tampering using hashing and encryption. Here, the
workflow as a specification is shared among different parties as opposed to our method.

7 Conclusion and Future work

We addressed the choreography-based runtime prevention of message sequences formation
in systems where distributed processes communicate via asynchronous message passing.
We have assumed that there is no global clock and the network may postpone delivery of
messages. Our proposed algorithm is fully decentralized in the sense that each process is
equipped with a monitor which has partial access to some parts of the property specification.
Monitors cannot identify the total ordering among messages using the vector clock and hence,
may prevent a sequence formation conservatively. We developed a simulator to evaluate the
effect of different application and the length of the message sequences on various factors,
including the number of monitoring messages, memory consumption of the monitors, and
the time to prevent the sequence formation. Our experimental results show that with the
increase of the complexity of application or the length of message sequences, the number of
monitoring messages, memory consumption, and the time to prevent the sequence formation
grows linearly. We are going to resolve the possible communication deadlock based on the
given message sequences in the future and integrate our algorithm with the AKKA library.
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A Soundness of The Algorithm

We aim to prove that the proposed algorithm is sound meaning that the output of a
message-based system is correct and no given message sequences will be formed at runtime.

I Lemma 9. For any sequence m1 . . .mn−1mn ∈ L(A), the corresponding monitor of mn−1
declares the formation of m1 . . .mn−1 correctly.

Proof. It is trivial that if ω = m1 . . .mn−1mn ∈ L(A), then there exists at least a sub-
sequence mi

1m
j
2m

w
3 . . .m

h
l . . .m

k
n, called ω̂, where for the message mh

l , h is the index of the
message in ω and l is the index of the message in ω̂, i. e., 0 ≤ l ≤ n. For each pair of mi′

l′m
j′

l′+1
of ω̂, there is no message mo in ω, where i′ < o < j′, that cancel the effect of mi′

l′ . In other
words, the messages of ω̂ comprise of only forward transitions from the initial state of A to
the final state, and for each pair of mi′

l′m
j′

l′+1, mi′

l′ occurs as the label of a pre-transition of
the transition carrying mj′

l′+1. We show that the corresponding monitor of mn−1, declares
the formation of m1 . . .mn−1 correctly.

The message mi has occurred before the message mj , denoted by mi → mj , if and only if
¬(vc(mj) < vc(mi)). So, it can be concluded that in ω̂, either mi

1 has happened before mj
2 or

mi
1 is concurrent with mj

2 i.e., mj
2 6 mi

1 in short. By running our algorithm, the monitor
of mj

2, namely M2, checks the taken status of its pre-transitions and the vio-transitions
of the pre-transitions ((3) in Figure 5). So, a transition labeled by mi

1, called t, and its
corresponding vio-transitions are investigated. If a message belonging to the vio-transitions
of t, called mv, has occurred in ω, it must have occurred before mi

1, where v < i, in ω due
to our condition on the sub-sequence. Two cases can be distinguished: either the message
mv has happened before mi

1 or mv is concurrent with mi
1. In the first case, where the vector

clock of mv is less than the vector clock of mi
1, the effect of mi has not been canceled by mv.

So, M2 checks the vector clocks of mi
1 and mj

2. If mi
1 has happened before mj

2, M2 concludes
that the sequence mi

1m
j
2 has been formed so far and stores the “Frm” result in its history.

If there is no relation between the vector clocks of mi
1 and mj

2, M2 behaves conservatively
and stores the result value “Frmp” in its history ((8) in Figure 5). In the second case, where
the vector clock of mi

1 is concurrent with mv, M2 does not know whether mv has cancel the
effect of mi

1 and so it adds the result value “Frmp” to its history since mj
2 6 mi

1.
Up to here, the result with “Frm” or “Frmp” value has been correctly inserted into the

M2’s history. With the same discussion, we select mw
3 of ω̂ and assume that the message mv′ ,

which cancels the effect of mj
2, has occurred and due to our condition on the sub-sequence, it

must have occurred before mj
2 in ω. So, the message mj

2 has happened before mw
3 or mj

2 is
concurrent with mw

3 . By applying our algorithm, the monitor of mw
3 , namely M3, inquiries

about mj
2 and mv′ . The monitor M3 compares the received information about mj

2 and mv′

and decides whether mv′ cancels the effect of mj
2. If mv′ has not canceled the effect of mj

2,
M3 investigates the vector clocks of mj

2 and mw
3 . If m

j
2 has happened before mw

3 , then M3
stores the result value “Frmp” or “Frm” sent by M2 to the history. If there is no relation
between the vector clocks of mj

2 and mw
3 , it behaves conservatively and stores the “Frmp”

result to its history. These scenarios will be continued to reach the message mn−1 and the
“Frm” or “Frmp” results values have been correctly propagated to the monitor of the message
mn−1 and hence declares the false verdict. J
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21:18 Decentralized Runtime Enforcement

I Theorem 10. In a message-based system D = {P1 . . . Pn}, no message sequence ω ∈ L(A)
will be formed at runtime.

Proof. We prove by contradiction: suppose that the unwanted message sequence m1 . . .mn

is formed at runtime. Based on the second case of the proposed algorithm, the process Pn

is blocked before sending the message mn and its corresponding monitor Mn inquires the
sending status of mn−1 from Mn−1. The process Pn−1 cannot be blocked as mn−1 is not the
last message in the sequence. There are two cases depending on the response of Mn−1:
(1) The message mn−1 has not been sent: The monitor Mn−1 responds to Mn that mn−1 has

not been sent and adds mn−1 to waitinglistn−1. In this case, The message mn−1 cannot
be sent until mn has been sent and then Mn sends notify to Mn−1. As Mn finds that
mn−1 has not been sent, it informs Pn to send mn safely ((10) in Figure 6). After sending
mn, the monitor Mn sends notify to Mn−1 ((13) in Figure 6). Then, Mn−1 removes
mn−1 from waitinglistn−1 and after that Pn−1 can send mn−1. Hence, the message mn

has been sent after mn−1 and is contradicted by the assumption that mn−1mn is formed.
(2) The message mn−1 has been sent: The monitor Mn−1 send the records of its history

that are related to mn−1 to Mn. By Lemma 1, the monitor Mn−1 responds correctly
if m1 . . .mn−1 has been formed. There are two cases depending on the result of the
received records: If there is any record which its result is Frm or Frmp, Mn finds that the
sequence m1 . . .mn−1 is formed. Hence, it informs Pn to send an error message instead
of mn. So, the message mn has not been sent and the sequence m1 . . .mn is not formed
and hence it is a contradiction. Otherwise, since there is no record with the result of
Frm or Frmp, Mn finds that the sequence m1 . . .mn−1 is not formed and informs Pn to
send mn safely. So, the message mn has been sent as the sequence m1 . . .mn−1 has not
been formed. This is also contradicted by the formation of m1 . . .mn−1. J
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