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—— Abstract

Reliable broadcast is a communication primitive guaranteeing, intuitively, that all processes in a
distributed system deliver the same set of messages. The reason why this primitive is appealing
is twofold: (%) we can implement it deterministically in a completely asynchronous environment,
unlike stronger primitives like consensus and total-order broadcast, and yet (7i) reliable broadcast is
powerful enough to implement important applications like payment systems.

The problem we tackle in this paper is that of dynamic reliable broadcast, i.e., enabling processes
to join or leave the system. This property is desirable for long-lived applications (aiming to be
highly available), yet has been precluded in previous asynchronous reliable broadcast protocols. We
study this property in a general adversarial (i.e., Byzantine) environment.

We introduce the first specification of a dynamic Byzantine reliable broadcast (DBRB) primitive
that is amenable to an asynchronous implementation. We then present an algorithm implementing
this specification in an asynchronous network. Our DBRB algorithm ensures that if any correct
process in the system broadcasts a message, then every correct process delivers that message unless
it leaves the system. Moreover, if a correct process delivers a message, then every correct process
that has not expressed its will to leave the system delivers that message. We assume that more than
2/3 of processes in the system are correct at all times, which is tight in our context.

We also show that if only one process in the system can fail — and it can fail only by crashing
— then it is impossible to implement a stronger primitive, ensuring that if any correct process in
the system broadcasts or delivers a message, then every correct process in the system delivers that
message — including those that leave.
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1 Introduction

Networks typically offer a reliable form of communication channels: TCP. As an abstraction,
these channels ensure that if neither the sender nor the destination of a message fail, then
the message is eventually delivered. Essentially, this abstraction hides the unreliability of
the underlying IP layer, so the user of a TCP channel is unaware of the lost messages.

Yet, for many applications, TCP is not reliable enough. Indeed, think of the situation
where a message needs to be sent to all processes of a distributed system. If the sender does
not fail, TCP will do the job; but otherwise, the message might reach only a strict subset of
processes. This can be problematic for certain applications, such as a financial notification
service when processes subscribe to information published by other processes. For fairness
reasons, one might want to ensure that if the sender fails, either all or no process delivers
that message. Moreover, if the correct processes choose to deliver, they must deliver the same
message, even when the sender is Byzantine. We talk, therefore, about reliable broadcast.
Such a primitive does not ensure that messages are delivered in the same total order, but
simply in the “all-or-nothing” manner.

Reliable broadcast is handy for many applications, including, for example, cryptocurren-
cies. Indeed, in contrast to what was implicitly considered since Nakamoto’s original paper
[24], there is no need to ensure consensus on the ordering of messages, i.e., to totally order
messages, if the goal is to perform secure payments. A reliable broadcast scheme suffices [15].

Reliable broadcast is also attractive because, unlike stronger primitives such as total
order broadcast and consensus, it can be implemented deterministically in a completely
asynchronous environment [7]. The basic idea uses a quorum of correct processes, and makes
that quorum responsible for ensuring that a message is transmitted to all processes if the
original sender of the message fails. If a message does not reach the quorum, it will not be
delivered by any process. It is important to notice at this point a terminology difference
between the act of “receiving” and the act of “delivering” a message. A process indeed might
“receive” a message m, but not necessarily “deliver” m to its application until it is confident
that the “all-or-nothing” property of the reliable broadcast is ensured.

A closer look at prior asynchronous implementations of reliable broadcast reveals, however,
a gap between theory and practice. The implementations described so far all assume a static
system. Essentially, the set of processes in the system remains the same, except that some of
them might fail. The ability of a process to join or leave the system, which is very desirable
in a long-lived application supposed to be highly available, is precluded in all asynchronous
reliable broadcast protocols published so far.

In this paper, we introduce the first specification of a dynamic Byzantine reliable broadcast
(DBRB) primitive that is amenable to an asynchronous implementation. The specification
allows any process outside the broadcast system to join; any process that is inside the system
can ask to leave. Processes inside the system can broadcast and deliver messages, whereas
processes outside the system cannot. Our specification is intended for an asynchronous
system for it does not require the processes to agree on the system membership. Therefore,
our specification does not build on top of a group membership scheme, as does the classical
view synchrony abstraction [10].

Our asynchronous DBRB implementation ensures that if any correct process in the system
broadcasts a message, then eventually every correct process, unless it asks to leave the
system, delivers that message. Moreover, if any correct process delivers a message, then every
correct process, if it has not asked to leave prior to the delivery, delivers that message. The
main technical difficulty addressed by our algorithm is to combine asynchrony and dynamic
membership, which makes it impossible for processes to agree on the exact membership.
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Two key insights enable us to face this challenge. First, starting from a known membership
set at system bootstrap time, we construct a sequence of changes to this set; at any time,
there is a majority of processes that record these changes. Based on this sequence, processes
can determine the validity of messages. Second, before transitioning to a new membership,
correct processes exchange their current state with respect to “in-flight” broadcast messages
and membership changes. This prevents equivocation and conflicts.

Our algorithm assumes that, at any point in time, more than 2/3 of the processes inside
the broadcast system are correct, which is tight. Moreover, we show that the “all-or-nothing”
property we ensure is, in some sense, maximal. More precisely, we prove (see [14]) that in
an asynchronous system, even if only one process in the system can fail, and it can merely
fail by crashing, then it is impossible to implement a stronger property, ensuring that if
any correct process in the system broadcasts (resp., delivers) a message, then every correct
process in the system delivers that message, including those that are willing to leave.

The paper is organized as follows. In §2, we describe our system model and introduce
the specification of DBRB. In §3, we overview the structure of our algorithm. In §4, we
describe our implementation, and in §5, we argue its correctness. We conclude in §6 with a
discussion of related and future work. Detailed proofs are delegated to the full version of the
paper [14].

2 Model and Specification

We describe here our system model (§2.1) and specify our DBRB primitive (§§ 2.2 to 2.4).

2.1 A Universe of Asynchronous Processes

We consider a universe U of processes, subject to Byzantine failures: a faulty process may
arbitrarily deviate from the algorithm it is assigned. Processes that are not subject to failures
are correct. We assume an asymmetric cryptographic system. Correct processes communicate
with signed messages: prior to sending a message m to a process ¢, a process p signs m,
labeled (m),,. Upon receiving the message, ¢ can verify its authenticity and use it to prove
its origin to others (non-repudiation). To simplify presentation, we omit the signature-related
notation and, thus, whenever we write m, the identity of sender p and the signature are
implicit and correct processes only consider messages, whether received directly or relayed by
other processes, if they are equipped with valid signatures. We also use the terms “send” and
“disseminate” to differentiate the points in our algorithm when a process sends a message,
resp., to a single or to many destinations.

The system U is asynchronous: we make no assumptions on communication delays
or relative speeds of the processes.We assume that communication is reliable, i.e., every
message sent by a correct process to a correct process is eventually received. To describe
the events that occur to an external observer and prove the correctness of the protocol, we
assume a global notion of time, outside the control of the processes (not used in the protocol
implementation). We consider a subset of U called the broadcast system. We discuss below
how processes join or leave the broadcast system.

2.2 DBRB Interface

Our DBRB primitive exposes an interface with three operations and one callback:
1. DBRB-JOIN: used by a process outside the system to join.
2. DBRB-LEAVE: used by a process inside the system to leave.
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3. DBRB-BROADCAST(m): used by a process inside the system to broadcast a message m.
4. DBRB-DELIVER(m): this callback is triggered to handle the delivery of a message m.
If a process is in the system initially, or if it has returned from the invocation of a DBRB-JOIN
call, we say that it has joined the system. Furthermore, it is considered participating (or,
simply, a participant) if it has not yet invoked DBRB-LEAVE. When the invocation of DBRB-
LEAVE returns, we say that the process leaves the system. Note that in the interval between
the invocation and the response of a DBRB-LEAVE call, the process is no longer participating,
but has not yet left the system.

The following rules (illustrated in Figure 1) govern the behavior of correct processes: (i)
a DBRB-JOIN operation can only be invoked if the process is not participating; moreover, we
assume that DBRB-JOIN is invoked at most once; (ii) only a participating process can invoke a
DBRB-BROADCAST(m) operation; (iii) a DBRB-DELIVER(m) callback can be triggered only if
a process has previously joined but has not yet left the system; (iv) a DBRB-LEAVE operation
can only be invoked by a participating process.

broadcast()deli"er() deliver()

Participant in leave() Non-participant,
the system  (may be invoked once) still in system

leave()
completed completed

join()

(may be invoked once) ~ Non-participant,

not in system

Figure 1 State transition diagram for correct processes.

2.3 Standard Assumptions

We make two standard assumptions in asynchronous reconfiguration protocols [1, 2, 5, 26],
which we restate below for the sake of completeness.

» Assumption 1 (Finite number of reconfiguration requests). In every execution, the number
of processes that want to join or leave the system is finite.

» Assumption 2. Initially, at time 0, the set of participants is nonempty and known to every
process in U.

Assumption 1 captures the assumption that no new reconfiguration requests will be made
for “sufficiently long”, thus ensuring that started operations do complete. Assumption 2 is
necessary to bootstrap the system and guarantees that all processes have the same starting
conditions. Additionally, we make standard cryptographic assumptions regarding the power of
the adversary, namely that it cannot subvert cryptographic primitives, e.g., forge a signature.

We also assume that a weak broadcast primitive is available. The primitive guarantees
that if a correct process broadcasts a message m, then every correct process eventually delivers
m. In practice, such primitive can be implemented by some sort of a gossip protocol [18].
This primitive is “global” in a sense that it does not require a correct process to know all the
members of U.
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2.4 Properties of DBRB

For simplicity of presentation, we assume a specific instance of DBRB in which a predefined
sender process s disseminates a single message via DBRB-BROADCAST operation. The
specification can easily be extended to the general case in which every participant can
broadcast multiple messages, assuming that every message is uniquely identified.

» Definition 1 (DBRB basic guarantees).
Validity. If a correct participant s broadcasts a message m at time t, then every correct
process, if it is a participant at time t' > t and never leaves the system, eventually delivers
m.
Totality. If a correct process p delivers a message m at time t, then every correct process,
if it is a participant at time t' > t, eventually delivers m.
No duplication. A message is delivered by a correct process at most once.
Integrity. If some correct process delivers a message m with sender s and s is correct,
then s previously broadcast m."
Consistency. If some correct process delivers a message m and another correct process
delivers a message m’, then m = m’.
Liveness. FEvery operation invoked by a correct process eventually completes.

To filter out implementations that involve all processes in the broadcast protocol, we add
the following non-triviality property.

» Definition 2 (Non-triviality). No correct process sends any message before invoking DBRB-
JOIN or after returning from DBRB-LEAVE operation.

3 Overview

We now present the building blocks underlying our DBRB algorithm (§3.1) and describe typical
scenarios: (1) a correct process joining or leaving the system (§3.2), and (2) a broadcast

(§3.3).

3.1 Building Blocks

Change. We define a set of system updates change = {+, —} x U, where the tuple (+,p)
(resp., (—,p)) indicates that process p asked to join (resp., leave) the system. This abstraction
captures the evolution of system membership throughout time. It is inevitable that, due
to asynchrony, processes might not be able to agree on an unique system membership. In
other words, two processes may concurrently consider different sets of system participants to
be valid. To capture this divergence, we introduce the view abstraction, which defines the
system membership through the lenses of some specific process at a specific point in time.

View. A view v comprises a set of updates v.changes. The set determines the view
membership as v.members = {p € U : (+,p) € v.changes\(—,p) ¢ v.changes}. For simplicity,
sometimes we use p € v instead of p € v.members; |v| is a shorthand for |v.members|.
Intuitively, each correct process p in DBRB uses a view as an append-only set, to record all
the changes that the broadcast system underwent up to a point in time, as far as p observed.
Some views are “instantiated” in DBRB protocol and those views are marked as valid (a

! Recall that the identity of sender process s for a given message m is implicit in the message (§2.1).
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Figure 2 Protocol overview for DBRB-JOIN or DBRB-LEAVE (left), and DBRB-BROADCAST (right).

formal definition is deferred to §5). Our protocol ensures that all valid views are comparable.
Formally, v1 C v means that vi.changes C vy.changes, we say that vy is more recent than
v1. Two different views are comparable if one is more recent than the other, otherwise they
conflict. We assume that the initial view, i.e., the set of participants at time 0, is publicly
known (Assumption 2).

A valid view v must be equipped with a quorum system: a collection of subsets of
v.members. We choose the quorums to be all subsets of size v.q = |v| — Lw%j

» Assumption 3 (Quorum systems). In every valid view v, the number of Byzantine processes
is less than or equal to L‘vl_lj and at least one quorum in v contains only correct processes.

Thus, every two quorums of a valid view have a correct process in common and at least one
quorum contains only correct processes.?

Sequence of views. We now build upon the comparability of views to obtain the abstraction
of a sequence of views, or just sequence. A sequence seq is a set of mutually comparable
views. Note that a set with just one view is, trivially, a sequence of views, so is the empty
set.

Reliable multicast. In addition to the use of signed messages (§2.1), we build our algorithm
on top of an elementary (static) reliable Byzantine broadcast protocol. We instantiate this
protocol from a standard solution in the literature for a static set of processes, as described
e.g., in [9]. The terms “R-multicast” and “R-delivery” refer to the request to broadcast a
message and deliver a message via this protocol to (or from) a static set of processes. For
completeness, we provide the pseudocode of the static reliable Byzantine broadcast primitive
in [14].

3.2 DBRB-JOIN and DBRB-LEAVE Operations

Upon invoking the DBRB-JOIN operation, a process p first learns the current membership —
i.e., the most recent view v — of the broadcast system through a View Discovery protocol
(§4.1). The joining operation then consists of four steps (the left part of Figure 2). First, p
disseminates a (RECONFIG, (+,p)) message to members of v. In the second step, when any
correct process ¢ from v receives the RECONFIG message, ¢ proposes to change the system
membership to a view v/, where v’ is an extension of v including the change (+,p). To
do so, ¢ disseminates to members of v a PROPOSE message, containing the details of v’.
Third, any other correct member in v waits until v.q matching PROPOSE messages (a quorum

2 Note that this bound applies both to processes that are active participants, as well as processes leaving
the system. This requirement can be relaxed in practice by enforcing a correct process that leaves the
system to destroy its private key. Even if the process is later compromised, it will not be able to send
any protocol messages. Note that we assume that messages sent while the process was correct cannot
be withdrawn or modified.
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of v confirms the new view). Once a process collects the confirmation, it disseminates a
(CONVERGED, v’) message to members of v. This concludes step three. In the fourth step,
each correct process g in v waits to gather matching CONVERGED messages from a quorum
(i.e., v.q) of processes. We say that processes that are members of view v are trying to
converge on a new membership. Then, ¢ triggers an R-multicast of the (INSTALL, v’) message
to members of v U v'; recall that the process p belongs to v'. Upon R-delivery of an INSTALL
message for v/, any process q updates its current view to v’. The DBRB-JOIN operation
finishes at process p once this process receives the INSTALL message for v’ 3 p. From this
instant on, p is a participant in the system.

The steps executed after a correct process p invokes the DBRB-LEAVE operation are almost
identical, except for the fact that p still executes its “duties” in DBRB until DBRB-LEAVE

returns.®

3.3 DBRB-BROADCAST Operation

A correct process s that invokes DBRB-BROADCAST(m) first disseminates a PREPARE message
to every member of the s’ current view v. When a correct process q receives this message, ¢
sends an ACK message to s, representing a signed statement asserting that ¢ indeed received
m from s. Once s collects a quorum of matching ACK messages for m, s constructs a message
certificate 3 out of the collected signatures p, and disseminates this certificate to every
member of v as part of a COMMIT message. When any correct process g receives a COMMIT
message with a valid certificate for m for the first time, ¢ relays this message to all members
of view v. Moreover, ¢ sends a DELIVER message to the sender of the COMMIT message. Once

any process ¢ collects a quorum of matching DELIVER messages, ¢ triggers DBRB-DELIVER(m).

The right part of Figure 2 presents the overview of this operation. In Figure 2, we depict
process s collecting enough DELIVER messages to deliver m, assuming that all processes in
the system use the same view. The details of how views are changed during an execution of
a broadcast operation are given in §4.2.

4 DBRB Algorithm

In this section, we describe our DBRB algorithm, starting with dynamic membership (§4.1),
and continuing with broadcast (§4.2). We also present an illustrative execution of DBRB

(§4.3).

Algorithm 1 introduces the variables that each process p maintains, as well as two helper

functions to compute the least recent and most recent view of a given sequence, respectively.

4.1 Dynamic Membership

Algorithms 2 and 3 contain the pseudocode of the DBRB-JOIN and DBRB-LEAVE operations.

Let us first discuss the join operation.

After a correct process p invokes the DBRB-JOIN operation, p obtains the most recent
view of the system, and it does so through the View Discovery protocol. We describe the
View Discovery protocol at the end of this section; for the moment it suffices to say that p
obtains the most recent view v and updates its local variable cv to reflect this view. Next,
process p disseminates a (RECONFIG, {+, p), cv) message to every member of cv (Algorithm 2)

3 There is a detail we deliberately omitted from this high-level description and we defer to §4.1: multiple
processes may try to join the system concurrently, and thereby multiple PROPOSE messages may circulate
at the same time. These messages comprise different views, e.g., one could be for a view v’ and another
for v"/. These conflicts are unavoidable in asynchronous networks. For this reason, PROPOSE messages
(and other protocol messages) operate at the granularity of sequences, not individual views. If conflicts
occur, sequences support union and ordering, allowing reconciliation of v’ with v’ on a sequence that
comprises their union.
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notifying members of cv of its intention to join. The view discovery and the dissemination

are repeated until the joinComplete event triggers or a quorum of confirmation messages has

been collected for some view v to which RECONFIG message was broadcast (Algorithm 2).
Every correct member r of the view cv proposes a new system membership that includes

process p, once r receives the aforementioned RECONFIG message from process p. The new

proposal is incorporated within a sequence of views SEQY, v = cv, (containing, initially,
just one view) and disseminated to all members of the view cv via a PROPOSE message

(Algorithm 2).

The leaving operation invocation is similar: Process p disseminates a RECONFIG message
with (—, p) as an argument, and process r proposes a new system membership that does not
include p. The main difference with the joining operation is that if p delivered or is the sender
of a message, p must ensure validity and totality properties of DBRB before disseminating a
RECONFIG message (Algorithm 2).

Let us now explain how a new view is installed in the system. The correct process r € cv
receives PROPOSE messages disseminated by other members of cv. First, r checks whether it
accepts* the received proposal (recall that a proposal is a sequence of views). Moreover, 7
checks whether the received proposed sequence seq is well-formed, i.e., whether seq satisfies
the following: (1) seq is a sequence of views, (2) there is at least one view in seq that r is
not aware of, and (3) every view in seq is more recent than cv.

If all the checks have passed, the process r uses the received PROPOSE message to update
its own proposal. This is done according to two cases:

1. There are conflicts between r’s and the received proposal (Algorithm 2 to Algorithm 2).
In this case, r creates a new proposal containing r’s last converged sequence for the view®
and a new view representing the union of the most recent views of two proposals.

2. There are no conflicts (Algorithm 2). In this case, r executes the union of its previous
and received proposal in order to create a new proposal.

Once 7 receives the same proposal from a quorum of processes, r updates its last converged

sequence (Algorithm 2) and disseminates it within a CONVERGED message (Algorithm 2).
When r receives a CONVERGED message for some sequence of views seq’ and some view

v (usually v is equal to the current view cv of process r, but it could also be a less recent
view than cv) from a quorum of members of the view v (Algorithm 2), r creates and reliably
disseminates an INSTALL message that specifies the view that should be replaced (i.e., v), the
least recent view of the sequence seq’ denoted by w (Algorithm 2) and the entire sequence
seq’ (Algorithm 2). Moreover, we say that seq’ is converged on to replace v. An INSTALL
message is disseminated to processes that are members of views v or w (Algorithm 2). Note
that INSTALL messages include a quorum of signed CONVERGED messages which ensures its
authenticity (omitted in Algorithms 2 and 3 for brevity).

Once the correct process r receives the INSTALL message (Algorithm 3), r enters the
installation procedure in order to update its current view of the system. There are four parts
to consider:

1. Process r was a member of a view v (Algorithm 3): Firstly, » checks whether cv C w,
where cv is the current view of r. If this is the case, r stops processing PREPARE, COMMIT

4 Process r accepts a sequence of views seq to replace a view v if seq € FORMAT® or ) € FORMAT®
(Algorithm 2). The following holds at every correct process that is a member of the initial view of the
system vo: ) € FORMAT" . Note that FORMAT?", for any view v, is a set of sequences, i.e., a set of
sets.

5 We say that seq is the last converged sequence for a view v of a process if the process receives the same
proposal to replace the view v from a quorum of members of v (variable LCSEQ").
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Algorithm 1 DBRB algorithm: local variables of process p and helper functions.

: variables:

cv = Vo // current view; vg is the initial view

RECV =10 // set of pending updates (i.e., join or leave)

SEQ" =10 // set of proposed sequences to replace v

LCSEQ" =10 // last converged sequence to replace v

FORMAT" =0 // replacement sequence for view v

cer =L // message certificate for m

Veer = L // view in which certificate is collected

> set of messages allowed to be acknowledged; initially, any message could be acknowledged by a
process

allowed__ack = L // L - any message, T - no message

stored = false; stored__value = L

can__leave = false // process is allowed to leave

delivered = false // m delivered or not

> for every process ¢ € U and every valid view v

acks[q,v] = L; X[q,v] = L; deliver[q,v] = L

State = L // state of the process; consists of ack, conflicting and stored fields

: function leastirecent(seq) returns w € seq: ﬂu/ € seq : W Cw
: function most_recent(seq) returns w € seq: fw’ € seq:w C W’

and RECONFIG messages (Algorithm 3; see §4.2). Therefore, process r will not send
any ACK or DELIVER message for PREPARE or COMMIT messages associated with v (and
views preceding v). The same holds for RECONFIG messages. We refer to acknowledged
and stored messages by a process as the state of the process (represented by the State
variable). The fact that r stops processing the aforementioned messages is important
because r needs to convey this information via the STATE-UPDATE message (Algorithm 3)
to the members of the new view w. Therefore, a conveyed information is “complete”
since a correct process r will never process any PREPARE, COMMIT or RECONFIG message

associated with “stale” views (see §4.2).

. View w is more recent than r’s current view cv (Algorithm 3 to Algorithm 3): Process

r waits for v.q of STATE-UPDATE messages (Algorithm 3) and processes received states
(Algorithm 3). STATE-UPDATE messages carry information about: (1) a message process
is allowed to acknowledge (allowed__ack variable), (2) a message stored by a process
(stored__value variable), and (3) reconfiguration requests observed by a process (see §4.2).
Hence, a STATE-UPDATE message contains at most two PREPARE messages associated
with some view and properly signed by s (corresponds to (1)). Two PREPARE messages
are needed if a process observes that s broadcast two messages and are used to convince
other processes not to acknowledge any messages (variable State.conflicting; Algorithm 4).
Moreover, STATE-UPDATE messages contain at most one COMMIT message associated with
some view with a valid message certificate (variable State.stored) and properly signed by
s (corresponds to (2)), and a (possibly empty) list of properly signed RECONFIG messages
associated with some installed view (corresponds to (3)). Note that processes include only
PREPARE, COMMIT and RECONFIG messages associated with some view v” C v in the
STATE-UPDATE message they send (incorporated in the state(v) function). The reason
is that processes receiving these STATE-UPDATE messages may not know whether views
v” D v are indeed “created” by our protocol and not “planted” by faulty processes.
Process r is a member of w D cv (Algorithm 3 to Algorithm 3): If this is the case, r
updates its current view (Algorithm 3). Moreover, r installs the (updated) current view
cv if the sequence received in the INSTALL message does not contain other views that are
more recent than cv (Algorithm 3).

Process r is not a member of w D cv (Algorithm 3 to Algorithm 3): A leaving process r
executes the View Discovery protocol (Algorithm 3) in order to ensure totality of DBRB
(we explain this in details in §4.2). When r has “fulfilled” its role in ensuring totality of
DBRB, 7 leaves the system (Algorithm 3).
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Algorithm 2 DBRB-JOIN and DBRB-LEAVE implementations at process p.

19: procedure DBRB-JOIN()
20: repeat

21: cv = view__discovery(cv)
22: disseminate (RECONFIG, (+,p), cv) to all ¢ € cv.members
23: until joinComplete is triggered or v.q (REC-CONFIRM, v) messages collected for some v

24: wait for joinComplete to be triggered

25: procedure DBRB-LEAVE()

26: if delivered V p = s then wait until can_ leave

27: repeat in each installed view cv do // in each subsequent view p installs
28: disseminate (RECONFIG, (—,p), cv) to all ¢ € cv.members

29: until leaveComplete is triggered or v.q (REC-CONFIRM, v) messages collected for some v

30: wait for leaveComplete to be triggered

31: upon receipt of (RECONFIG, (c,q),v) from ¢ /] ce{—+}
32: if v=1cv A {c,q) ¢vA(if (c=-) then (+,¢q) € v) then

33: RECV = RECV U{{c,q)

34: send (REC-CONFIRM, cv) to ¢

35: end if

36: upon RECV # (0 A installed(cv) do
37: if SEQ®” = then

38: SEQ = {cv U RECV'}
39: disseminate (PROPOSE, SEQ®, cv) to all ¢ € cv.members
40: end if

41: upon receipt of (PROPOSE, seq,v) from ¢ € v.members such that seq € FORMAT® Vv ( €
FORMAT"®

42: if valid(seq) then // filter incorrect proposals
43: if conflicting(seq, SEQ") then

44: w = most__recent(seq)

45: w' = most_recent(SEQ")

46: > merge the last view from the local and ¢’s proposal

47: SEQ" = LCSEQ" U{wUuw'}

48: else // no conflicts, just merge the proposals
49: SEQ' = SEQ" U seq

50: end if

51: disseminate (PROPOSE, SEQ",v) to all ¢’ € v.members

52: end if

53: upon receipt of (PROPOSE, SEQ",v) from v.q processes in v
54: LCSEQ" = SEQ"

55: disseminate (CONVERGED, SEQ",v) to all ¢ € v.members

56: upon receipt of (CONVERGED, seq’,v) from v.q processes in v

57: w = least_recent(seq’)

58: R-multicast({j : j € v.membersV j € w.members}, (INSTALL, w, seq’, v))

View Discovery. Views “created” during an execution of DBRB form a sequence (see [14]).
The View Discovery subprotocol provides information about the sequence of views incor-
porated in an execution so far. Since every correct process in the system knows the initial
view (Assumption 2) and valid transition between views implies the existence of an INSTALL
message with a quorum of properly signed CONVERGED messages, any sequence of views
starting from the initial view of the system such that appropriate INSTALL messages “connect”
adjacent views can be trusted.

A correct process that has invoked the DBRB-JOIN operation and has not left the system
executes the View Discovery subprotocol constantly. Once a correct process starts trusting
a sequence of views, it disseminates that information to all processes in the universe. A
correct process executing the View Discovery subprotocol learns which sequences of views are
trusted by other processes. Once the process observes a sequence of views allegedly trusted
by a process, it can check whether the sequence is properly formed (as explained above) and
if that is the case, the process can start trusting the sequence and views incorporated in it
(captured by the view_ discovery function for the joining and leaving process; Algorithms 2
and 3).
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Algorithm 3 DBRB algorithm: installing a view at process p.

59: upon R-delivery({j : j € v.membersV j € w.members}, (INSTALL, w, seq,v)) do
60: FORMAT® = FORMAT® U {seq \ {w}}

61: if p € v.members then // p was a member of v
62: if cv C w then stop processing PREPARE, COMMIT and RECONFIG messages

63: R-multicast({j : j € v.membersV j € w.members}, (STATE-UPDATE, state(v), RECV'))

64: end if

65: if cv C w then // w is more recent than p’s current view
66: wait for (STATE-UPDATE, *, *) messages from v.q processes in v // from the reliable broadcast
67: req = {reconfiguration requests from STATE-UPDATE messages }

68: RECV = RECV U (req \ w.changes)

69: states = {states from STATE-UPDATE messages}

70: installed(w) = false

71: invoke state-transfer(states) // Algorithm 4
72: if p € w.members then // pisinw
73: cw=w

74: if p ¢ v.members then trigger joinComplete // can return from DBRB-JOIN
75: if 3w’ € seq: cv C W’ then

76: seq = {w' €seq:cvCw'}

e if SEQ® = () AVw € seq’ : cv C w then

78: SEQ® = seq

79: disseminate (PROPOSE, SEQ®’, cv) to all ¢ € cv.members

80: end if

81: else

82: installed(cv) = true

83: resume processing PREPARE, COMMIT and RECONFIG messages

84: invoke new-view() // Algorithm 4
85: end if

86: else // p is leaving the system
87: if stored then

88: while —can_leave do

89: cv = view__discovery(cv)

90: disseminate (COMMIT, m, cer, Veer, cv) to all ¢ € cv.members

91: end while

92: end if

93: trigger leaveComplete // can return from DBRB-LEAVE
94: end if

95: end if

The View Discovery protocol addresses two main difficulties: (1) it enables processes
joining and leaving the system to learn about the current membership of the system, (2) it is
crucial to ensure the consistency, validity and totality properties of DBRB since it supplies
information about views “instantiated” by the protocol and associated quorum systems. We
formally discuss the View Discovery protocol in the full version of the paper [14].

4.2 Broadcast

In order to broadcast some message m, processes in DBRB use the following types of messages:
PREPARE: When a correct process s invokes a DBRB-BROADCAST(m) operation, the algorithm
creates a Myrepare = <PREPARE, m, cv5> message, where cv, is the current view of the system

of process s. Message Mprepare 1S sent to every process that is a member of cvs (Algorithm 4).

Process s disseminates the PREPARE message if cv, is installed by s; otherwise, s does not
disseminate the message to members of cvs (Algorithm 4), but rather waits to install some
view and then disseminates the PREPARE message (Algorithm 4).

ACK: When a correct process ¢ receives mprepare message, q firstly checks whether view
specified in Mprepare is equal to the current view of ¢ (Algorithm 4). If that is the case, ¢
checks whether it is allowed to send an ACK message for m (see Consistency paragraph in
§5; Algorithm 4) and if it is, ¢ sends mgcr, = (ACK, m, 0, cv,) message to process s (i.e., the

sender of Mpyepare ), where o represents the signed statement that s sent m to ¢ (Algorithm 4).
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Algorithm 4 DBRB-BROADCAST(m) and DBRB-DELIVER(m) implementations at process p.

96: procedure state-transfer(states)

97: if (allowed _ack = L V allowed__ack = m) A'm is the only acknowledged message among states
then

98: allowed__ack = m; update_if bot(State.ack, prepare__msg) // updated only if it is L

99: else if there exist at least two different messages acknowledged among states then

100: > p and p’ are different PREPARE messages

101: allowed__ack = T; update__if __bot(State.conflicting, p,p’); State.ack = L

102: else if there exists a state among states such that it provides two different broadcast messages
then

103: allowed__ack = T; update__if _bot(State.conflicting, p,p’); State.ack = L

104: end if

105: if —stored A there exists a stored message m with a valid message certificate among states then

106: stored = true; stored_value = (m, cer, veer) // cer is the message certificate collected in view
Ucer

107: update__if _bot(State.stored, commit__msg) // updated only if it is L

108: end if

109: procedure new-view()

110: if p = s A cer = L then disseminate (PREPARE, m, cv) to all ¢ € cv.members

111: if p=s A cer # L A —can_leave then disseminate (COMMIT, m, cer, Veer, cv) to all ¢ €
cv.members

112: if p # s A stored A —can__leave then disseminate (COMMIT, m, cer, Vcer, cv) to all ¢ € cv.members

113: procedure DBRB-BROADCAST(m)
114: if installed(cv) then disseminate (PREPARE, m, cv) to all ¢ € cv.members

115: upon receipt of (PREPARE, m,v) from s € v.members such that v = cv
116: if allowed ack = m V allowed ack = 1 then

117: allowed__ack = m; update_if _bot(State.ack, (PREPARE, m,v)) // updated only if it is L
118: o = sign(m, cv); send (ACK, m, 0o, cv) to s

119: end if

120: upon receipt of (ACK, m,o,v) from q € v.members // only process s

121: if acks[q, v] = L A wverifysig(q,m,v,o) then acks[q, v] = m; X[q,v] =0

122: upon exists m # L and v such that [{g € v.members|acks[q,v] = m}| > v.g A cer = L do
123: cer = {X[q,v] : acks[q,v] = m}; veer = v
124: if installed(cv) then disseminate (COMMIT, m, cer, Veer, cv) to all ¢’ € cv.members

125: upon receipt of (COMMIT, m, cer, veer,v) from ¢ such that v = cv
126: if verify__certificate(cer, veer, m) then

127: if —stored then

128: stored = true; stored__value = (m, cer, Veer)

129: update_if _bot(State.stored, (COMMIT, m, cer, Vcer, V) // updated only if it is L
130: disseminate (COMMIT, m, cer, Veer, cv) to all ¢’ € cv.members

131: end if

132: send (DELIVER, m, cv) to ¢

133: end if

134: upon receipt of (DELIVER, m,v) from g € v.members
135: if deliver[q,v] = L then deliver[q,v] =T

136: upon exists v such that |{g € v.members|deliver[q,v] = T}| > v.q for the first time do

137: delivered = true

138: invoke DBRB-DELIVER(m)

139: can__leave = true // If p = s, DBRB-BROADCAST is completed

When some process ¢ sends an ACK message for m (m is a second argument of the message),
we say that g acknowledges m. Moreover, if an ACK message is associated with some view v,
we say that g acknowledges m in a view v.

COMMIT: When process s receives a quorum of appropriate ACK messages associated with
the same view v for m (Algorithm 4), s collects received signed statements into a message
certificate. Process s then creates Meommit = (COMMIT, M, cer, Ueer, CVs) message and dissem-
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inates Meommat to every process that is a member of cv; (Algorithm 4). Note that cvs may
be different from v (we account for this in the rest of the section). Moreover, s disseminates
the COMMIT message (Algorithm 4) if cv; is installed by s; otherwise, s does not disseminate
the message to members of cvg, but rather waits to install some view and then disseminates
the COMMIT message (Algorithm 4).
DELIVER: When a correct process q receives Meommi+ message, it firstly checks whether view
specified in Meommit i equal to the current view of ¢ (Algorithm 4). If that is the case
and the message certificate is valid (Algorithm 4), g “stores” m (Algorithm 4) and sends
Mgeliver = (DELIVER, m, cvy) to process s as a an approval that s can deliver m (Algorithm 4).
When a process ¢ executes Algorithm 4 or Algorithm 4 for a message m, we say that ¢ stores
m. Observe that ¢ also disseminates Mmeommit in order to deliver m itself (Algorithm 4).
Lastly, once a correct process receives a quorum of appropriate DELIVER messages
associated with the same view v for m (Algorithm 4), it delivers m (Algorithm 4).
Every PREPARE, ACK, COMMIT and DELIVER message is associated with one specific view.
We can divide the broadcasting of message m by the correct sender s into two phases:
Certificate collection phase: This phase includes a dissemination of an appropriate
PREPARE message and a wait for a quorum of ACK messages by process s. Note that
PREPARE and ACK messages are associated with the same view v. We say that certificate
collection phase is executed in view v. Moreover, if s indeed receives a quorum of ACK
messages associated with v, we say that certificate collection phase is successfully executed
in v. In that case, sometimes we say that s collects a message certificate in v.
Storing phase: In this phase, each correct process p (including s) disseminates a COMMIT
message (containing a valid message certificate collected in the previous phase), and
waits for a quorum of DELIVER messages. Note that COMMIT and DELIVER messages
are associated with the same view v. We say that storing phase is executed in view v.
Moreover, if p indeed receives a quorum of DELIVER messages associated with v, we say
that storing phase is successfully executed in v.
Observe that the certificate collection phase can be successfully executed in some view
v, whereas the storing phase can be executed in some view v D v. This is the reason
why we include v.., argument in a COMMIT message, representing the view in which a
message certificate is collected. Lastly, in order to ensure validity and totality, processes
must disseminate PREPARE and COMMIT messages in new views they install until they collect
enough ACK and DELIVER messages, respectively. This mechanism is captured in the new-view
procedure (Algorithm 4) that is invoked when a view is installed (Algorithm 3).

4.3 lllustration

Consider four participants at time t = 0. Process p; broadcasts a message m. Hence,
p1 sends to processes p1, P2, P3, Pa & Mprepare = (PREPARE, m, vp) message, where vy =
{{(+,p1), (+,p2), (+,p3), (+,p4)}. Since all processes consider vy as their current view of the
system at time of receiving of My cpare message, they send to p; an appropriate ACK message
and p; collects a quorum (with respect to vg) of ACK messages for m.

However, process ps invokes a DBRB-JOIN operation and processes po, p3, P4, Ps set
v1 = {{+,p1), (+.p2), (+,p3), (+,p4), (+,p5)} as their current view of the system. Pro-
cess py still considers vg as its current view of the system and disseminates a Meommit =
(COMMIT, m, cer, Veer = Vg, V) message. Processes po, ps and py do not store m, since vy
(specified in Meommit message) is not their current view. Observe that p; stores m since vy
is still the current view of the system from p;’s perspective.

Once process p; assigns vy as its current view of the system, it disseminates mcommit =
(COMMIT, m, cer, Veer = Vg, v1) Mmessage to processes that are members of vy and they all
store m and relay mcomms+ message to all processes that are members of v;. Hence, they
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all deliver message m once they collect a quorum (with respect to v1) of matching DELIVER
messages. In this execution p; has successfully executed a certificate collection phase in vg
and then reused the message certificate to relay an appropriate COMMIT message to processes
that are members of v (since the system has reconfigured to v1). Note that Figure 3 depicts
the described execution. For presentation simplicity, Figure 3 just shows the coMMIT and

e
i

DELIVER messages that allow process p; to deliver m.

ll vi II

1\
L

i}
PREPARE! ACK COMMIT | COMMIT ! pELIVER
(m, voy ' (m, g, vo) '<m, g, vo,vo)! (m, B, vo,vid!  (m, vi)

[)2\A : vi
AN LA
N

Figure 3 Example of a broadcast operation in DBRB algorithm, considering a dynamic membership.

5 DBRB Algorithm Correctness

We now give an intuition of why our DBRB algorithm is correct; we give formal arguments in
the full version of the paper [14].

We first define the notions of valid and installed views. A view v is valid if: (1) v is
the initial view of the system, or (2) a sequence seq = v — ... is converged on to replace
some valid view v’. A valid view v is installed if a correct process p € v processed PREPARE,
COMMIT and RECONFIG messages associated with v during an execution. By default, the
initial view of the system is installed. Lastly, our implementation ensures that installed views
form a sequence of views.

Liveness. DBRB-JOIN and DBRB-LEAVE operations complete because any change “noticed”
by a quorum of processes is eventually processed. Intuitively, a sequence can be converged on
if a quorum of processes propose that sequence. Moreover, noticed changes are transferred
to new valid views. DBRB-BROADCAST operation completes since a correct sender eventually
collects a quorum of DELIVER messages associated with an installed view (see the next
paragraph).

Validity. Recall that we assume a finite number of reconfiguration requests in any execution
of DBRB (Assumption 1), which means that there exists a view vfinq from which the system
will not be reconfigured. In order to prove validity, it suffices to show that every correct
member of Vginq delivers a broadcast message.

A correct process s that broadcasts a message m executes a certificate collection phase
in some installed view v (the current view of s). Even if s does not successfully execute a
certificate collection phase in views that precede vyinqe in the sequence of installed views,
s successfully executes a certificate collection phase in vfinqe;. Note that process s does
not leave the system before it collects enough DELIVER messages (ensured by the check at
Algorithm 2 and the assignment at Algorithm 4).

Moreover, a correct process p that stored a message m eventually collects a quorum of
DELIVER messages associated with some installed view v. As in the argument above, even if
p does not collect a quorum of DELIVER messages associated with views that precede v¢inq
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in the sequence of installed views, p does that in vfinq;. Observe that if at least a quorum of
processes that are members of some installed view v store a message m, then every correct
process p € v, where view v’ D v is installed, stores m. Let us give the intuition behind this
claim. Suppose that view v’ directly succeeds view v in the sequence of views installed in
the system. Process p € v’ waits for states from at least a quorum of processes that were
members of v (Algorithm 3) before it updates its current view to v’. Hence, p receives from
at least one process that m is stored and then p stores m (Algorithm 4). The same holds for
the correct members of v.

It now suffices to show that s collects a quorum (with respect to some installed view) of
confirmations that m is stored, i.e., DELIVER messages. Even if the correct sender does not
collect a quorum of DELIVER messages in views that precede vfinqi, it collects the quorum
when disseminating the COMMIT message to members of vfine. Suppose now that the
sender collects the aforementioned quorum of DELIVER messages in some installed view v. If
U # Ufinal, €very correct member of vyinq stores and delivers m (because of the previous
argument). If v = vfinq, the reliable communication and the fact that the system can
not be further reconfigured guarantee that every correct member of v;nq stores and, thus,
delivers m.

Totality. The intuition here is similar to that behind ensuring validity. Consider a correct
process p that delivers a message m: p successfully executed a storing phase in some installed
view v. This means that every member of an installed view v’ D v stores m. Consider a
correct participant ¢ that expressed its will to leave after process p had delivered m. This
implies that ¢ € v”, where v/ D v is an installed view, which means that process ¢ eventually
stores m. As in the previous paragraph, we conclude that process ¢ eventually collects enough
DELIVER messages associated with some installed view and delivers m.

Consistency. A correct process delivers a message only if there exists a message certificate
associated with the message (the check at Algorithm 4). Hence, the malicious sender s
must collect message certificates for two different messages in order for the consistency to be
violated.

Suppose that process s has successfully executed a certificate collection phase in some
installed view v for a message m. Because of the quorum intersection and the verification at
Algorithm 4, it is impossible for s to collect a valid message certificate in v for some message
m’ # m. Consider now an installed view v that directly succeeds view v in the sequence of
installed views. Since s collected a message certificate for m in v, every correct process p € v’
receives from at least one process from the view v that it is allowed to acknowledge only
message m (Algorithm 4). It is easy to see that this holds for every installed view v"” D v'.
Therefore, if s also collects a message certificate for some message m’, then m’ = m and the
consistency holds.

No duplication. Trivially follows from Algorithm 4.

Integrity. Consider a correct process ¢ that delivers a message m. There is a message
certificate for m collected in some installed view v by s. A message certificate for m is
collected since a quorum of processes in v have sent an appropriate ACK message for m. A
correct process sends an ACK message only when it receives an appropriate PREPARE message.
Consequently, message m was broadcast by s.
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6 Related Work & Conclusions

DBRB vs. Static Byzantine Reliable Broadcast. Our DBRB abstraction generalizes static
BRB (Byzantine reliable broadcast [8, 22]). Assuming that no process joins or leaves the
system, the two abstractions coincide. In a dynamic setting, the validity property of DBRB
stipulates that only processes that do not leave the system deliver the appropriate messages.
Moreover, the totality property guarantees that only processes that have not expressed their
will to leave deliver the message. We prove that stronger variants of these properties are
impossible in our model.

Passive and Active Reconfiguration. Some reconfigurable systems [6, 3, 4] assume that
processes join and leave the system under a specific churn model. Intuitively, the consistency
properties of the implemented service, e.g., an atomic storage, are ensured assuming that
the system does not evolve too quickly and there is always a certain fraction of correct
members in the system. In DBRB, we model this through the quorum system assumption on
valid views (Assumption 3). Our system model also assumes that booting finishes by time
0 (Assumption 2), thus avoiding the problem of unbounded booting times which could be
problematic in asynchronous network [27].

Active reconfiguration allows the processes to explicitly propose configuration updates,
e.g., sets of new process members. In DynaStore [1], reconfigurable dynamic atomic storage is
implemented in an asynchronous environment (i.e., without relying on consensus). Dynastore
implicitly generates a graph of views which provides a way of identifying a sequence of
views in which clients need to execute their r/w operations. SpSn [12] proposes to capture
this order via the speculating snapshot algorithm (SpSn). SmartMerge [17] implements a
reconfigurable storage in which not only system membership but also its quorum system can
be reconfigured, assuming that a static external lattice agreement is available. In [20], it was
shown that reconfigurable lattice agreement can get rid of this assumption and still implement
a large variety of reconfigurable objects. The approach was then extended to the Byzantine
fault model [21]. FreeStore [2] introduced view generator, an abstraction that captures the
agreement demands of reconfiguration protocols. Our work is highly inspired by FreeStore,
which algorithmic and theoretical approach we adapt to an arbitrary failure model.

All reconfigurable solutions discussed above were applied exclusively to shared-memory
emulations. Moreover, most of them assumed the crash fault model. In contrast, in this paper,
we address the problem of dynamic reliable broadcast, assuming an arbitrary (Byzantine)
failure model. Also, we do not distinguish between clients and replicas, and assume that
every process can only suggest itself as a candidate to join or leave the system. Unlike the
concurrent work by Kumar and Welch on Byzantine-tolerant registers [19], our solution can
tolerate unbounded number of Byzantine failures, as long as basic quorum assumptions on
valid views are maintained.

Broadcast Applications. Reliable broadcast is one of the most pervasive primitives in
distributed applications [25]. For instance, broadcast can be used for maintaining caches in
cloud services [13], or in a publish-subscribe network [11]. Even more interestingly, Byzantine
fault-tolerant reliable broadcast (e.g., dynamic solution such as our DBRB, as well as static
solutions [8, 16, 23]) are sufficiently strong for implementing decentralized online payments,
i.e., cryptocurrencies [15].
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Summary. This paper presents the specification of DBRB (dynamic Byzantine reliable broad-
cast), as well as an asynchronous algorithm implementing this primitive. DBRB generalizes
traditional Byzantine reliable broadcast, which operates in static environments, to work

in a dynamic network. To the best of our knowledge, we are the first to investigate an

arbitrary failure model in implementing dynamic broadcast systems. The main merit of

our approach is that we did not rely on a consensus building blocks, i.e., DBRB can be

implemented completely asynchronously.
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