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Abstract
We study the standard communication problem of broadcast for mobile agents moving in a network.
The agents move autonomously in the network and can communicate with other agents only when
they meet at a node. In this model, broadcast is a communication primitive for information transfer
from one agent, the source, to all other agents. Previous studies of this problem were restricted
to static networks while, in this paper, we consider the problem in dynamic networks modelled
as an evolving graph. The dynamicity of the graph is unknown to the agents; in each round an
adversary selects which edges of the graph are available, and an agent can choose to traverse one of
the available edges adjacent to its current location. The only restriction on the adversary is that
the subgraph of available edges in each round must span all nodes; in other words the evolving
graph is constantly connected. The agents have global visibility allowing them to see the location
of other agents in the graph and move accordingly. Depending on the topology of the underlying
graph, we determine how many agents are necessary and sufficient to solve the broadcast problem in
dynamic networks. While two agents plus the source are sufficient for ring networks, much larger
teams of agents are necessary for denser graphs such as grid graphs and hypercubes, and finally
for complete graphs of n nodes at least n − 2 agents plus the source are necessary and sufficient.
We show lower bounds on the number of agents and provide some algorithms for solving broadcast
using the minimum number of agents, for various topologies.
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1 Introduction

We are interested in communication problems for mobile agents moving in a network. The
classical problems of broadcast or convergecast deal with the dissemination of information in
the network. In the case of message passing networks, broadcast is achieved by spreading
the information from the source node to all other nodes. For a system of mobile agents,
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24:2 Broadcasting with Mobile Agents

the equivalent problem is the propagation of information from one source agent to all other
agents in the system. Such problems are relevant for teams of mobile sensor robots sent on
data collection missions. We assume that the agents autonomously move along the edges
of a graph that represents the network; when two agents are at the same node, they can
communicate and share information. We would like to stress here that the agents are not
allowed to use any means of communicating at a distance (e.g., due to security reasons). The
information to be broadcast can be transferred only when agents meet physically.

The problem of broadcasting has been originally investigated in message passing multi-hop
radio networks (see e.g. [33, 19]). Previous studies on broadcast and other communication
problems have focussed on the efficiency of performing the task, either in terms of time
taken [6], or in terms of energy expended [9]. A slightly different line of research considers
the problem of broadcast in the presence of faults and the objective is to tolerate as many
faults as possible. The faults can be missing links or nodes [20] in the network or loss of
messages [21], in case of message passing networks. Recently there has been a lot of interest
in so called dynamic networks which model both faults and changes in network topology in
a uniform manner by considering that the network may change in each round during the
execution of the algorithm. The evolving graph model [17] represents a dynamic network
by a sequence of graphs G = G1, G2, . . . based on the same set of nodes V but the set of
edges changes in each round i, i.e., each graph Gi = (V, Ei) is a spanning subgraph of the
underlying graph G = (V,∪Ei), which is called the footprint of the dynamic network. For
solving most problems, some assumptions about the connectivity of the dynamic network
need to be made. In this paper, we consider the model of constantly connected dynamic
networks where in round i, the graph Gi is assumed to be connected. No other assumptions
are made about the network. This means that in some cases, the graphs Gi and Gi+1 in two
consecutive rounds may differ completely in the set of available edges. To show correctness of
our algorithms, we will assume that an adversary having knowledge of the algorithm, chooses
the graph Gi in each round (respecting the connectivity constraint). This assumption is
based on a worst case scenario and similar to the model of T -interval connected networks
studied previously [26, 27], where the network is assumed to contain a stable spanning tree
for a continuous period of T rounds (with T = 1 in our case).

When the underlying graph G is sparse, there are fewer edges so the adversary has less
choice about possible changes in the network, while if G is a dense graph, the adversary has
more choice about which subset of edges to make available, and it can drastically change
the network which makes it difficult to design algorithms for these cases. We will consider
different network topologies, including sparse topologies, e.g., when G is a ring or a cactus, as
well as denser topologies, e.g., when G is a grid, a hypercube or a complete graph. For each
topology we will design algorithms to solve the broadcast problem under the assumption
that agents have global visibility allowing them to see the entire graph and the location of
other agents in any round of the algorithm. We denote by k, the number of agents, other
than the source that participate in the algorithm. We will show that the problem becomes
easier when there are more agents since at least one of them may be able to reach the source
agents and thus make progress in the propagation of the message. In fact we show tight lower
bounds on the value of k necessary to solve the broadcast problem in various topologies. We
formally define the problem as follows:

I Problem 1 (The broadcast problem). Given a constantly connected dynamic network G
based on an underlying graph G consisting of n ≥ 2 nodes, a source agent that has a message
M and k ≥ 1 other agents that are initially located at distinct nodes of the network, the goal
is to broadcast this messageM to all the agents.
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Related Work

Dynamic networks using the evolving graph model or the equivalent notion of time-varying
graph model have been studied in [5, 23, 28, 30]. Earlier studies have been devoted to message
passing networks in a dynamic setting, often assuming that the future changes to the network
are known a priori to the algorithm designer, or, that the dynamicity follows a predefined
pattern of repetition as, e.g., in [4]. In message passing dynamic networks, the problem of
information dissemination has been studied in [2, 4, 7, 27, 32]. The investigation of mobile
agents on dynamic networks started only recently. When agents know the dynamicity of
the graph, the problem of exploring a graph in the fastest possible way has been studied
in several papers, e.g,. [16, 31]. In the case of constantly connected dynamic graphs, the
exploration problem has been solved by Ilcinkas et al. [26, 24] in O(n) rounds for rings and
in 2O(

√
n)n rounds for cactus graphs.

The scenario when agents do not know the dynamicity of the graph as in this paper, has
been mostly studied under restrictive assumptions about the dynamicity, such as periodic
[18, 25] or recurrent [26] graphs; while another line of research has looked at probabilistic
dynamicity [34]. In the adversarial model (also called the unknown adversary model), the
adversary chooses the dynamicity of the network, and the agents have no prior knowledge
about it. This scenario is the most challenging for designing algorithms and most prior work
under this model has been for very simple topologies, namely rings and tori. In this setting,
the problem of exploration with termination has been studied for constantly connected rings
[14], while the exploration of dynamic tori has been studied in [22] with the assumption that
each ring in the torus is constantly connected. The problem of gathering many agents at
a node [15] or periodically patrolling the nodes using many agents [13] has been studied
for constantly connected dynamic ring networks (See the recent survey by Di Luna [29] for
many of the above results). The only previous work in this model which considers arbitrary
topologies is by Balev et al. [3] who studied the problem of cops and robbers on sparse graphs
of arbitrary topology. In this problem, a team of agents called cops have to capture (i.e.,
meet) a malicious agent called the robber, while the cops and the robber move in alternate
rounds (the adversary may change the graph after both have moved). The similarity of this
problem with the broadcast problem is only the first step when one of the ignorant agents
needs to meet the source agent (although they can collaborate unlike in the cops and robbers
problem). One major difference between the problems is that the cops can choose their
location in the graph, unlike the agents in our problem that are placed by the adversary.
Consequently the approach used in [3] cannot be adapted to our problem. Moreover the
bounds on the team size even for simple topologies are different for the two problems. Only
in the trivial case of tree networks (when the graph is essentially static) both problems allow
a solution with a single ignorant agent (cop).

In static networks, the communication problems of broadcast among mobile agents were
studied by Anaya et al. [1] for agents with limited energy, while Czyzowicz et al. [8, 9] studied
the problem with the objective of energy optimization. Other types of faults that have been
considered for static networks are faulty agents in the context of collaborative patrolling [10]
or the presence of a mobile adversary that blocks the path of agents [11, 12].

Our Contributions

In this paper we consider the broadcast problem for mobile agents in dynamic networks
with various underlying topologies. For each topology, we determine the minimum number
of agents that makes the problem solvable, which apparently depends on the density of
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24:4 Broadcasting with Mobile Agents

the underlying graph G or, the number of redundant edges in G. For tree networks, the
adversary can never delete an edge without disconnecting the graph, thus broadcast is always
solvable for any number of agents. When the underlying graph is a ring, we show that at
least 2 agents (apart from the source agent), are needed, except for small rings of less than
5 nodes. For cactus graphs, which are collections of rings that can pairwise intersect in no
more than one node, we show that the number of agents necessary must be more than the
number of cycles. We then consider denser and regular graphs. For grid graphs, where the
total number of edges in G is still linear in n, we show that agent teams of size Ω(n) are
needed for broadcast. For the special case of grids with only two rows, we have tight results
and a strategy for solving broadcast using one more than the minimum number of agents.
For complete graphs, which are the densest graphs we show a tight result that k = n − 2
agents are necessary and sufficient. Finally we consider hypercube networks, and we show
that almost half of the nodes of the graph must be occupied to succeed in solving broadcast.
For the special case of 3-dimensional hypercube, we show a tight result of k = n/2 agents,
while for higher dimensional hypercubes, there is a gap between the lower and upper bounds
on the team size needed for solving broadcast.

The paper is organized as follows: In Section 2 we introduce the model and the required
background, followed by some preliminary observations. In Section 3 we present solutions
for sparse network topologies such as rings and cactus graphs. Section 4 considers grids
graphs, while in Section 5 we present solutions for dense networks including hypercubes
and complete graphs. To the best of our knowledge, these are the first results on broadcast
with mobile agents in dynamic graphs, and unlike previous work in this model, we consider
various distinct topologies, providing new techniques for dealing with the dynamicity in these
networks.

2 The Model

2.1 The network and the agents
The network topology is given by a connected graph G = (V, E) with n = |V | nodes.
The network is locally oriented in the following sense. All edges incident to a node have
distinct port labels. However, the network is dynamic – not all edges are available at
all times. We model the network as Constantly connected Dynamic Graphs denoted by
G = {G0 = (V, E0), G1 = (V, E1), . . .}, as a sequence of static graphs, where Gr corresponds
to the graph at round r. We emphasize that apart from the restriction that the graph remains
connected at any time, there is no other assumption or restriction with respect to which or
how many links might fail at a time. For instance, an adversary might keep deactivated any
number of links forever, as long as the graph remains connected. Thus, for any r > 0, Gr is
any connected spanning subgraph of the original graph G. The distance between nodes u

and v in G is denoted by dG(u, v).
The agents: The agents are autonomous entities with distinct identifiers. Each agent

has its own internal memory and is able to move along the available edges of the graph.
The agents cannot leave marks on the nodes or the edges of the graph. The agents are
initially located at distinct nodes of the network, they all start in the same initial state, and
they execute the same deterministic algorithm. They have global visibility and they move
in synchronous steps, i.e., time is discretized into atomic time units called rounds. During
each round r, each agent can see the graph Gr and the location of all agents in Gr along
with their identifiers, and can distinguish which agents have the messageM (called source
agents), and which agents do not (called ignorant agents). Based on this information, the
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agent can decide to stay at the current node or move to a neighboring node in Gr. In the
latter case, the agent arrives at its destination node at the end of the round. At the start of
the next round r + 1, the adversary chooses the graph Gr+1, and the agents execute the next
step of the algorithm. In the initial round, there is exactly one source agent and k ignorant
agents in the network.

The adversary: The adversary can decide the initial placement of all the agents in the
network, and in each round the adversary chooses the graph Gr which represents the available
links in the network for that round. The adversary may have knowledge of the algorithm
and can use this knowledge for deciding the placement of agents and the dynamicity of the
network (subject to the connectivity constraint as described).

Unknown Adversary: The agents do not have any knowledge of the adversary, and
thus they do not know the dynamic network G in advance.

As mentioned before, the adversary in this model is quite powerful, which makes it
necessary to make some strong assumptions about the capabilities of the agents. In particular
the global visibility makes it easier to coordinate among the agents as they all have the same
knowledge about the network in each round. The assumption about distinct initial locations
is not strictly necessary, since the agents could move to distinct nodes by virtue of their
distinct identifiers. On the hand, if the agent do not have distinct identities but start from
distinct locations, it is possible to assign distinct identifiers to the agents at the start of the
computation, due to the global visibility assumption and the fact that there is a uniquely
identifiable source agent initially. For simplifying the discussion, we assume agents have
distinct identities and start at distinct locations. Moreover, we shall describe the algorithms
in a centralized manner, describing which agents performs which operations in any round. It
is evident that the agents executing the same algorithm, can autonomously decide their role
in the computation.

2.2 Preliminaries
We make some preliminary observations about the problem.

I Observation 1. Given a constantly connected dynamic network G based on the underlying
graph G consisting of n nodes, k ≥ n− 2 ignorant agents starting from distinct nodes of the
network, can solve the broadcast problem.

Proof. Since there are at least n − 2 ignorant agents on distinct nodes and one node is
occupied by the source agent, there is at most one empty node. Thus, in any connected graph
Gi there would be a path of length at most two between a source agent and an ignorant
agent. These two agents would meet in this round. So, we reduced the number of ignorant
agents. The agents can now spread to distinct nodes by virtue of their distinct identities and
we can repeat the same argument. J

The above result provides a general upper bound on the team size needed for solving
broadcast. We will present smaller lower bounds for specific topologies. For the special case
of trees, the adversary cannot block any edge with losing connectivity. Hence we have the
following trivial upper bound for trees.

I Observation 2. If G is a tree then broadcast can be solved for any k ≥ 1.

Proof. The adversary cannot block any edge without disconnecting the graph. Thus, the
graph is static and in each step each agent can move one step closer to the node containing
the source agent, thus in O(D) time all agents would be colocated with the source agent and
we solve broadcast in O(D) time, where D is the distance of the farthest agent from the
source. J
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24:6 Broadcasting with Mobile Agents

3 Broadcast in sparse graphs

In this section, we will study the broadcast problem with agents in sparse graphs. The
simplest non-trivial network is the ring topology.

I Theorem 3. If G is a ring of size n ≥ 5, then broadcast can be solved if and only if k ≥ 2
If G is a ring of size n < 5, then broadcast can be solved for any k ≥ 1.

Proof. Consider a ring of size n ≥ 5, with one source that has the information M and
one ignorant agent. In each round, the adversary can remove an edge on the shortest path
between the two agents. Note that, the longer path is always of size at least 3, thus the
agents cannot meet on this path in this round. Hence the two agents can never meet.

Now we show that if there are at least two ignorant agents (k ≥ 2), then broadcast
is possible. The two agents can try to reach the source agent by moving towards it from
opposite directions, then at each step one of the agents gets closer, and eventually one of
the agents would reach the source and obtainM. At this stage there are 2 source agents,
they can traverse the ring in opposite directions, thus at least one of them will soon meet
the remaining ignorant agent and broadcast is solved.

The impossibility of solving broadcast with k = 1, does not hold for rings of size 3 as in
this case any path between the source and the other agent is of size at most 2, and since
one of these paths must be available, the two agents can meet in one step and solve the
problem. For rings of size 4, if the longer path between the source agent and an ignorant
agent has length 3, then one of the agents can always move such that both paths between
the agents are of length 2. Then within the next step, the two agents meet in one of those
paths, similarly as in the case of rings of size 3. Thus, broadcast is solvable for rings of size
n < 5 with any k ≥ 1. J

We now make the following observation that will allow us to generalize the results from
rings to other graphs containing cycles.

I Lemma 4. If G contains a cycle C of length at least 3, such that there is a single node
v ∈ C that is connected to nodes in G \ C, then the adversary can always prevent at least
one agent located in C \ v from reaching node v, thus trapping the agent in cycle C.

Proof. Consider an agent located at a node u ∈ C \ v. Since the cycle must be of length
at least 3, the longer path from node u to node v is of length ≥ 2. If the adversary always
blocks the shorter path from the agent’s location to node v, then the agent cannot reach
node v. The only way to get out of the cycle is passing through node v, so the agent is
forever trapped in C. J

I Lemma 5. If G is a ring of size n ≥ 3, given any node v ∈ G, if there are two agents at
distinct nodes of G, then there is an algorithm to ensure that within n rounds either (i) the
two agents meet at a node of G or (ii) at least one of the agents (chosen by the algorithm)
can reach node v.

Proof. Let us call the two agents A and B. If we require agent A to reach node v, then the
algorithm asks agent B to move along the path containing agent A and then node v in this
order (if agent B was already at node v then we first move it to any neighbouring node of v).
In each round, only one edge of G may be unavailable, so either agent B will move closer to
agent A or agent A will move closer to node v. So eventually either condition (i) or (ii) will
be true. J
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In the following we consider cactus graphs which can be seen as combinations of trees
and rings.

I Definition 6. A cactus graph is a connected graph in which any two simple cycles have at
most one node in common.

In cactus graphs, the size of the team depends on the number and sizes of the cycles of
the graph, as follows:

I Lemma 7. If G is a cactus graph of size n having c1 ≥ 1 cycles of length < 5 and no
larger cycles, then broadcast can be solved if and only if k ≥ c1.

Proof. Consider the family of cactus graphs obtained from a line of length c1 by attaching
to each node of the line a cycle of length < 5. Each cycle thus satisfies the conditions of
Lemma 4.

If k < c1, the total number of agents is k + 1 ≤ c1, so the adversary can place each agent
in a distinct cycle, including the source agent. No agent can leave its cycle due to Lemma 4.
So, no two agents can meet, thus broadcast is not possible.

For k ≥ c1, broadcast is solvable in any cactus graph with c1 small cycles. To prove this
it is enough to analyze the case where at least one cycle has at least two agents, either two
ignorant ones or one ignorant agent and a source. This is because if an agent is outside of
any cycle it can always move to a cycle (all non cyclic edges are available in each round). If
two agents are in a cycle and none of them is the source, then one of the agents can leave the
cycle within at most 2 steps (both agents try to move towards an elected exit by approaching
it from different directions). The agent that leaves the cycle can move towards the source,
until it reaches another cycle.

Thus, one agent will eventually reach the cycle containing the source. This agent can
meet the source and obtain the informationM due to Theorem 3. Now, there are two source
agents in the same cycle, and thus, one of them can leave the cycle as described before
within at most 3 steps. This source agent reaches another ring containing an ignorant agent,
the information is propagated and we have again two source agents in a cycle. Repeating
the same algorithm, all agents will eventually learn the information, and thus we can solve
broadcast. J

I Lemma 8. If G is a cactus graph of size n having c2 cycles of length ≥ 5 and no cycles of
smaller length, then broadcast can be solved if and only if k ≥ c2 + 1.

Proof. Consider the family of cactus graphs obtained from a line of length c2 by attaching
to each node of the line a cycle of length ≥ 5.

Suppose that k < c2 + 1. Then, the adversary places each of the k ≤ c2 agents in a
distinct cycle and the source in one of these cycles. Due to Theorem 3, the source and the
other agent cannot meet, since the ring is of length ≥ 5. At the same time, due to Lemma 4
the adversary can trap each other agent in its cycle. In the cycle that contains the source, at
most one of the two agents can exit this cycle. Even if the source agent exits this cycle and
enters another cycle the configuration is similar to the initial one. Hence, no two agents can
ever meet and therefore the problem is unsolvable.

To prove that k ≥ c2 + 1 agents are enough to solve broadcast, we first show that at least
one ignorant agent can reach the source and can become a new source. As in the proof of
Lemma 7, we assume all agents move to some cycle if they are not in a cycle. If the source
agent is in the same cycle with at least two ignorant agents, by Theorem 3 both these agents
can become sources. If not, then, given k ≥ c2 + 1, there must be some cycle with two or
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24:8 Broadcasting with Mobile Agents

more ignorant agents and all except one of these agents can leave the cycle to reach another
cycle. Eventually two or more ignorant agents would reach the same cycle as the source,
and again applying Theorem 3, all these agents would become source agents. Thus we have
now at least x ≥ 3 source agents in a cycle. Furthermore each of the remaining k − x + 1
ignorant agents are alone in some cycle. This implies that the number of empty cycles (cycles
without any agent) are at most x− 3. Among the x source agents, x− 1 of them can move
to another cycle. Whenever these source agents arrive at an empty cycle, at most one of
them may be trapped. In total x− 3 source agents can be trapped, thus at least two source
agents can reach any other cycle that contains an ignorant agent, so this agent will meet a
source. Hence, all ignorant agents will eventually become sources and thus broadcast can be
solved. J

I Theorem 9. Let G be a cactus graph of size n having c1 cycles of length < 5 and c2 cycles
of length ≥ 5, then:

If c2 = 0, broadcast can be solved if and only if k ≥ c1.
If c2 > 0, broadcast can be solved if and only if k ≥ c1 + c2 + 1.

Proof. If c2 = 0, then the cactus graph has only c1 cycles of length < 5, and in view of
Lemma 7 broadcast can be solved if and only if k ≥ c1.

On the other hand if c2 > 0 and c1 = 0, then in view of Lemma 8 broadcast can be solved
if and only if k ≥ c2 + 1, and thus the second condition holds.

Finally, if c1 > 0 and c2 > 0, similarly as in the proofs of Lemmas 7 and 8, we can
construct a cactus graph from a line of length c1 + c2 by attaching a cycle of length < 5 to
each of the first c1 nodes and attaching a cycle of length ≥ 5 to each of the remaining c2
nodes. Now, if k ≤ c1 + c2, then the adversary places each ignorant agent in a distinct cycle,
and places the source agent in the last big cycle C of length ≥ 5. Since there is at most one
ignorant agent and the source in cycle C of length ≥ 5, they cannot meet (see the proof of
Theorem 3). Furthermore no other agent (in a cycle different than C) can leave its cycle due
to Lemma 4. The source agent may escape from the cycle C and reach another cycle C ′. If
the cycle C ′ is big (size ≥ 5), then as before the source agent would not be able to meet the
only agent that is in cycle C ′. On the other hand, if the source reaches a small cycle (size
< 5) it may meet the ignorant agent in that cycle, so we will have two sources; however at
most one of the two can leave this cycle. Thus the agents in the big cycles would never meet
any source agent. Thus broadcast can not be solved.

We now show how to solve broadcast using k ≥ c1 + c2 + 1 ignorant agents. First, as
argued before, any agent that is not on a cycle can move to the nearest cycle. Since there
are more agents than cycles, there are some cycles that contain multiple agents. In any such
cycle, one of the agents can move to a neighboring empty cycle if there is one. Repeating
this process, we can distribute the agents such that there is at least one agent in each cycle.

Let C be the cycle that contains the source. In any cycle other than C, if there are more
than one ignorant agents, all except one of them can move to another cycle that is closer to
cycle C. Repeating this process, we will reach a configuration where there will be at least 2
ignorant agents and the source in cycle C and exactly one agent in each other cycle. Now it
is easy to solve broadcast from this configuration. Using the ring algorithm (Theorem 3) all
ignorant agents in cycle C would become sources. Since we have at least three source agents
now, at least two of them can move to a different cycle. In any other cycle reached by those
two source agents, there is one ignorant agent, so we can apply the same algorithm and have
3 source agents in this cycle. Repeating this process all ignorant agents will become sources
and broadcast is solved. J
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4 Broadcast in Grids

We now study grid graphs which are slightly more dense than rings or cactuses. Even for
2-dimensional grids, we show that we need Ω(n) agents to solve broadcast. Let us first
consider the simplest grid graph with only two rows (so called ladder graph).

I Theorem 10. If G is 2× L grid graph, then broadcast is unsolvable for k < L− 1.

Proof. Suppose that k < L− 1. The adversary can put all k agents in one row consisting
of L nodes and the source agent in the other row. So, there is at least one column where
both nodes are empty. The adversary would allow this edge and remove all other edges
connecting the two rows. So the agents could only move within their respective rows. After
some agents move, there would again be some column containing only empty nodes. So the
above argument can be repeated. Thus, no agent can leave its respective row at any step,
and hence no agent can meet the source. J

The above lower bound is almost tight as we can show an upper bound of k ≥ L for
broadcast in any 2× L grid graph.

I Theorem 11. If G is a 2× L grid graph, then broadcast is solvable for k ≥ L.

The proof is omitted, but we present some basic ideas here. The algorithm for broadcast
in 2× L grids is based on the following lemma which ensures that the ignorant agents can
get closer and closer to the source until one of the agents meets the source.

I Lemma 12. If G is 2×L grid graph containing a source agent at origin [0, 0], such that the
number of nodes occupied by ignorant agents is strictly greater than the number of unoccupied
nodes in G, then there exists a move of a subset of the agents which maintains the ignorant
agents in distinct locations and, either (i) one ignorant agent meets the source agent, or (ii)
the sum of distances from the ignorant agents to the source agent in G, decreases by at least
one.

To see why the lemma holds, consider any agent x and the path from this agent to the
source during the current round of the algorithm (there always exists such a path as the
dynamic graph is constantly connected). If all the agents on this path simultaneously move
by one edge along this path, and if there are more agents than unoccupied nodes, then we can
show more than half of the agents would get closer1 to the source. Thus the sum of distances
from the agents to the source will decrease monotonically and the algorithm makes progress.
Note that there are k ≥ L agents in distinct locations, there are at most L− 1 unoccupied
nodes. Thus, there is always some path with more occupied nodes than unoccupied nodes.
However the algorithm should always maintain the agents in distinct locations. There are
several other technical difficulties that need to be overcome to make the algorithm work, for
example, when the source is not in the corner node but somewhere in the interior then we
need to partition the grid and apply the lemma selectively on one partition and so on. The
resulting algorithm is quite involved and the above approach does not generalize to general
grids with more than two rows.

Indeed in larger grids we need a larger team of agents to solve the problem. We will now
consider the general case of a W × L grid graph for W, L > 2 and show some lower bounds
for broadcast in such grids. We first prove the following technical lemma.

1 closer in terms of distances in the original graph G
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24:10 Broadcasting with Mobile Agents

I Lemma 13. If G is an h × L grid graph, with h ≥ 1, L > 2, then starting from a
configuration with L− 1 agents in each row, the adversary can ensure that there are never
more than L− 1 agents in the bottom row. Moreover, if we add an additional agent at the
bottom row, again the adversary can ensure that there are never more than L agents in the
bottom row.

Proof. If h = 1 then there is only one row, so the number of agents on the bottom row never
changes and the lemma holds trivially. We now prove the lemma by induction on the number
of rows. Suppose that the lemma holds for a grid G with h ≥ 1 rows. We can construct a
grid G′ by adding an additional row at the bottom with L nodes and L− 1 agents on distinct
nodes. Since the bottom row of G has at most L− 1 agents (by induction hypothesis), there
exists an empty node v in this row. In the grid G′ the adversary makes available the edge
from v to the node directly below (on the additional row); all other edges between G and
the additional row are unavailable. In the current round, no agent can enter the bottom row
of G′; although an agent from the bottom row may go up and reach grid G. In the next
round if there are L− 2 agents in the bottom row, and L agents in the row above then the
adversary makes available the edge between a node (containing at most one agent) in this
row to the node below in the bottom row (and disables all other edges between these two
rows). So, either an agent moves to the bottom row or the number of agents in the bottom
row remains the same. In the first case, we are back in the initial situation and we could use
the same arguments as before. In the second case, the number of agents at the bottom row
is smaller than what was initially. Thus the lemma holds for grids of h + 1 rows and thus by
induction for all grids satisfying the conditions of the lemma. Furthermore, note that all
arguments remain the same if initially there are x > L− 1 agents in the bottom row, i.e.,
the number of agents in the bottom row is never more than x if the higher rows contain at
most L− 1 agents initially. J

I Lemma 14. If G is a W × L grid graph, with W > 2 then broadcast in unsolvable for
k < (L− 1)(W − 1).

Proof. We can construct a grid of size W×L by joining two grids: a grid G1 of (h = W−2)×L

with a grid G2 of size 2× L (by adding L edges between the bottom row of G1 and the top
row of G2). In grid G1, we place L− 1 ignorant agents on each row, at distinct locations,
while in grid G2 we place k2 < (L− 1) agents plus the source agent, as in Theorem 10. Thus
the total number of agents is k = (W − 2) ∗ (L− 1) + k2 < (L− 1)(W − 1). We now show
that broadcast is not solvable in this graph.

First, if no additional agents enter grid G2 and the source never leaves G2 then by
Theorem 10, broadcast is not possible as no agent would meet the source in G2. Furthermore,
if the source is in the bottom row, it can never leave this row and thus it cannot leave G2.
In the grid G1 there are L− 1 agents in the bottom row and by the Lemma 13 the number
of agents on this row does not increase (considering only agents in G1), so there is at least
one empty node on this row. The edge between this node and the grid G2 is made available
and all other edges between the two grids are unavailable. In this case, no agents from G1

can enter G2. However, some ignorant agents from G2 can enter G1. If x ignorant agents
from G2 enter the grid G1, then by Lemma 13, the number of agents on the bottom row of
G1 is at most L− 1 + x. In each round, if there is some empty node v on this row, the edge
between v and G2 is the only edge between the two grids that is made available in that round
(in this case, no agents can move from G1 to G2). Otherwise any node in the bottom row of
G1 can have at most x agents in this round; so, if one edge is available between the two grids,
at most x agents can move from G1 to G2. Thus, after each round, the number of ignorant
agents in G2 is less than L− 1 and thus broadcast is not possible by Theorem 10. J
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We can generalize the above to higher dimensional grids as follows:

I Theorem 15. If G is a (d + 1)-dimensional grid graph of size W1×W2× . . . Wd×L where
Wi ≥ L ≥ 2 then broadcast in unsolvable for k < (L− 1)(W1 ·W2 . . . Wd − 1).

Proof. Consider the subgraph of the grid that is a 2-dimensional grid of size (W1 ·W2 . . . Wd)×
L. In each round the adversary chooses the available graph to be a connected subgraph of
this 2D grid, then we can apply Lemma 14 to obtain the above lower bound. J

5 Broadcast in Dense graphs

In dense graphs there are many disjoint paths between two nodes and thus there are many
possible ways for the adversary to change the network while keeping it connected. In other
words, the dynamicity of a (constantly connected) dynamic graph whose footprint is a dense
graph, is higher than that of sparser graphs that we studied before. The worst case is when
the underlying graph is a complete graph.

5.1 Broadcast in Complete graphs
I Theorem 16. If G is a complete graph of size n then broadcast can be solved if and only
if k ≥ n− 2 within O(n) steps.

Proof. If k < n − 2 then at most n − 2 nodes are occupied (including the source), and
therefore there are at least two empty nodes. The adversary will make available the spanning
tree where the source is connected to one empty node and all other occupied nodes are
connected to the other empty node. The two empty nodes are connected with an edge. This
is a spanning tree of G and in this tree, the distance from the source to any occupied node is
more than two. So no agent can meet the source in one step. After one step, during which
some agents may move, there will still be at least two empty nodes; thus the same argument
can be repeated for any step. Hence broadcast is impossible for k < n− 2.

If k ≥ n− 2, then by the Observation 1, it is possible to solve broadcast in any arbitrary
topology, and thus in a complete graph. J

The impossibility result above can be generalized to arbitrary graphs G having the
following property.

I Lemma 17. Consider a graph G and an integer k ≥ 1. Suppose that for every possible
placement of the source agent and k agents on distinct nodes of G, there always exists a
spanning tree of G where the distance from each agent to the source is ≥ 3. Then, broadcast
is impossible in G with k ignorant agents.

5.2 Broadcast in Hypercubes
We now study the problem in hypercube networks as defined below.

I Definition 18. A d-dimensional hypercube is a graph Hd = (V, E) with n = 2d nodes
labelled with distinct d-bit strings. A node vi ∈ V , 0 ≤ i ≤ 2d− 1, is connected to the d nodes
whose labels differ in exactly one bit from its own. Hereafter, we freely identify nodes with
their labels.

A hypercube Hd consists of two d − 1 dimensional hypercubes labelled as [0 ∗ ∗ · · · ∗]
and [1 ∗ ∗ · · · ∗], the corresponding nodes of these two hypercubes are connected by edges of
dimension d.
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I Theorem 19. Given a hypercube Hd of dimension d > 2, at least k = n/2− 1 ignorant
agents are necessary to solve broadcast in the dynamic graph based on Hd.

Proof. Assume k < n/2− 1. Suppose the source agent is at the node [00 . . . 0] of Hd; the
adversary places all the ignorant agents among the nodes of the sub-hypercube Hd−1 labelled
[1 ∗ ∗ · · · ∗]. Out of the n/2 nodes in Hd−1[1 ∗ ∗ · · · ∗], there must be at least 2 empty nodes.
At most one of these two nodes can be a neighbor of the source node [00. . . 0] in the other
sub-hypercube. So, the other empty node v must be a neighbor of an empty node u in
Hd−1[0 ∗ ∗ · · · ∗]. The adversary chooses the available graph Gi as the union of a spanning
tree of Hd−1[0 ∗ ∗ · · · ∗] and a spanning tree of Hd−1[1 ∗ ∗ · · · ∗], plus the edge (u, v). All
other edges of dimension d are missing in Gi. After the agents move in this round, the
ignorant agents would still be in sub-hypercube Hd−1[1 ∗ ∗ · · · ∗] and the source would be in
the other sub-hypercube Hd−1[0 ∗ ∗ · · · ∗]. Thus, using the same argument, in each round r

the adversary can choose the graph Gr as a spanning tree where each ignorant agent is at a
distance of at least 3 from the source, so by Lemma 17, broadcast is impossible. J

The above result does not hold for the trivial case of d = 2, since H2 is simply a ring of
four nodes where broadcast can be solved even for k = 1 (see Theorem 3). For a hypercube
of dimension d = 3 (i.e., a cube) we can show a matching lower and upper bound of k = n/2
ignorant agents.

1

u2 u3

u1

2u
2

1u
2

3u
1

u0

3

2u
1

[000]

[101]

[110]

[011]

Figure 1 (a) The cube with a single source (denoted by a square) in the proof of Theorem 20.
(b) The cube with two sources at distance 2; the remaining agents must occupy the two black nodes.

I Theorem 20. If G = H3 is a hypercube of dimension d = 3 consisting of n = 23 nodes,
then k = n/2 ignorant agents are necessary and sufficient to solve broadcast.

Proof (Lower Bound). We provide only a sketch of the proof that if there are only k = 3
ignorant agents, then it is not possible to solve broadcast starting from arbitrary configurations.
In particular, we define a class QF of forbidden initial configurations, with one source and 3
ignorant agents in a cube, such that starting from any such configuration, the adversary can
force the agents to move only to another configuration in QF . Further, in every configuration
in QF , there is a spanning tree (defined by the available links) where the distance from
source to the nearest agent is at least 3. The configurations in the set QF are listed below
by showing the positions of the 3 agents, with respect to the source node which is always
assumed2 to be [000]:

2 After any moves, we rename the nodes.
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Q1 ([100], [010], [110])
Q2 ([100], [010], [011])
Q3 ([100], [110], [101])
Q4 ([100], [101], [011])
Q5 ([100], [110], [111])
Q6 ([100], [011], [111])
Q7 ([101], [011], [111])
Note that starting from any other initial configurations with 3 agents permits a solution
to broadcast. However, when the 3 ignorant agents start in any configuration isomorphic
to configurations in QF , then the configuration in the next round can only be another
configuration in QF . This implies that no ignorant agent can meet the source after any
number of rounds, and thus it is not possible to solve the Broadcast problem. J

Proof (Upper Bound). We show that k = 4 agents can solve broadcast by providing an
algorithm. We first show that one of the four agents can meet the source agent. We denote
the nodes of the cube as follows: u0 = [000] is the node containing the source, u1

1, u1
2, u1

3 are
the three nodes at distance one from source, u1

i means a generic node at distance 1 from the
source, u2

1, u2
2, u2

3 are the three nodes at distance 2 from the source, and u3 = [111] is the
only node at distance 3 (see Figure 1(a)). We now consider all possible initial configurations
with agents placed on distinct nodes; Note that, each such configuration has at least three
empty nodes. We denote such a configuration as [x, y, z, l] showing the positions of the 4
ignorant agents at nodes x, y, z, l (with ∗ denoting any node other than the source).
C1 Configuration [u1

1, u1
2, u1

3, ∗]: At least one of the links (u0, u1
1), (u0, u1

2), or (u0, u1
3) must

be active, otherwise node u0 would be disconnected. Hence at least one agent can meet
the source within the next time unit.

C2 Configuration [u2
1, u2

2, u2
3, ∗]: At least one of the paths of distance two between the source

node u0 and one of the nodes u2
1, u2

2, or u2
3 must be available, otherwise node u0 would

be disconnected from nodes u2
1, u2

2 and u2
3. Hence, within the next step the agent at a

distance two from the source, and the source agent move to the middle node of the path
and meet.

C3 Configuration [u1
1, u1

2, u3, ∗]: If at least one of the links (u0, u1
1) or (u0, u1

2) are active,
then at least one agent can meet the source within the next time unit. Otherwise, the
link (u0, u1

3) must be active (to ensure connectedness), so in that case, the source agent
moves to node u1

3. The configuration we obtain is isomorphic to the configuration [c2]
above, so we are done.

C4 Configuration [u1
1, u1

2, u2
1, u2

2]: Assume that there are no paths of length 1 or 2 from
source to any agent (otherwise we are done as explained above). In that case, any possible
spanning tree must have the edges (u0, u1

3) and (u1
3, u2

3) and further at least one of the
edges (u1

2, u2
3) or (u2

1, u3) or (u2
2, u3). In the first case, one agent moves to u2

3 and we
obtain the configuration [c2]. In the other two cases, one agent moves to node u3, and
thus we obtain the configuration [C3]. So, we are done in all cases.

C5 Configuration [u1
i , u2

1, u2
2, u3]: In G0, if there are no length-2 paths from source to any

agent, then any path from u0 must go through u2
3; If node u2

3 has an available edge
to some agent, this agent will move to u2

3 and we would obtain the configuration [c2].
Otherwise u2

3 has an available edge to some empty node u1
j 6= u1

i which is connected
to some node occupied by an agent. Thus, this agent moves to u1

j , and we obtain the
configuration [C3].
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We have shown one agent can reach the source within a constant number of steps and
obtain the message. Now, there are two source agents and three ignorant agents. The two
source agents can place themselves at distance two in G (this is always possible in at most 2
steps). Assume without loss of generality, that the two sources are at nodes [000] and [011]
as in Figure 1(b). There are exactly two nodes ([110] and [101]) that are at distance 2 from
both the sources. If the ignorant agents occupy these two nodes, then in any spanning tree
chosen by the adversary, at least one of the ignorant agents would be at distance two from a
source agent. And in fact, it is easy to see that either the three ignorant agents occupy all
three adjacent nodes of one of the two sources (which means that in the next step at least
one more agent will meet a source), or three ignorant agents occupy two adjacent nodes of
each source. In the last case (due to connectedness) at least two of the ignorant agents will
occupy the two nodes ([110] and [101]) in the next step. Finally, if only one of the ignorant
agents occupies one of the nodes ([110] and [101]), then in the next step this agent can
move from that node and therefore we obtain the previous configuration (i.e., where three
ignorant agents occupy two adjacent nodes of each source). Thus eventually at least two of
the ignorant agents will occupy the two nodes ([110] and [101]) and in the next round, at
least one more ignorant agent will meet a source and therefore we will have 3 source agents.

Note that the case of 3 sources and 2 ignorant agents is analogous to the case of 2 sources
and 3 ignorant agents, while the case of one ignorant agent and four sources, is analogous to
the initial situation with one source and four ignorant agents. So, using the same strategies
as above eventually all agents will obtain the message and broadcasting is solved. J

For hypercubes of higher dimensions d ≥ 4, we do not have any general strategy for
solving the problem as the adversary has too many possible ways of choosing the available
subgraph. However, the lower bound of k = n/2− 1 agents from Theorem 19 still holds and
we have the upper bound of k = n− 2 (from Observation 1).

6 Conclusion

In this paper, we studied the problem of broadcast for mobile agents moving in constantly
connected dynamic networks. The main objective is to understand how many agents are
necessary and sufficient to allow broadcast to be solved in various topologies. It turns out
that for sparse topologies such as rings and cactus graphs, the number of agents needed for
solving the broadcast problem can be independent of the network size n, while for denser
graphs including grids, hypercubes, as well as the complete graph, Θ(n) agents are needed.
This preliminary investigation on broadcast in dynamic graphs opens many new research
directions. For both grids and hypercubes, we have large gaps between the lower bounds
of (n − 2

√
n) and (n/2 − 1) respectively, and the upper bound of (n − 2). It seems that

solving the problem in grids requires more agents than in hypercubes, since grid networks
contain more redundant edges. However, the lower bound on hypercubes shows that the
number of agents needed can sometimes be much more than the number of redundant edges
in the network. This is in contrast to the cops and robbers problem where the number of
cops needed is roughly equal to the number of redundant edges in the underlying graph [3].
In the future, we would like to study the differences between various problems in this model
and try to adapt techniques used for broadcast, to solve other problems in dynamic networks.
Moreover it would be nice to classify various problems according to the resources needed for
solving them under the adversarial model studied in this paper. Another possible direction
of research would be to replace the strong assumption of global visibility with some weaker
assumptions about the agent’s capabilities that still suffices to solve broadcast in this model.
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