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Abstract
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-
dynamic setting, in which arbitrarily many edge changes may occur in each round. Our algorithm
significantly improves upon prior work in its combination of (1) having an O(1) amortized time
complexity, (2) using only O(log n)-bit messages, (3) not posing any restrictions on the dynamic
behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate
solutions, and (6) being applicable for a wide family of tasks.

The tasks for which we deduce such an algorithm are maximal matching, (degree + 1)-coloring,
2-approximation for minimum weight vertex cover, and maximal independent set (which is the
most subtle case). For some of these tasks, node insertions can also be among the allowed topology
changes, and for some of them also abrupt node deletions.
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1 Introduction

We present a family of deterministic distributed algorithms that rapidly fix solutions for
fundamental tasks even in a highly-dynamic environment. Specifically, we provide algorithms
for maximal matching, (degree + 1)-coloring, 2-approximation for the minimum weighted
vertex cover (2-MWVC), and maximal independent set (MIS). We further show that for
some of these tasks, fast fixing is also possible with node insertions and deletions. Here, we
consider the severe case of abrupt deletions, where a deleted node does not have a chance to
inform its neighbors about its upcoming departure from the system.

Our algorithms enjoy the combination of (1) having an O(1) amortized time complexity,
(2) using only O(logn)-bit messages, (3) not posing any restrictions on the dynamic behavior
of the environment and in particular not requiring topology changes to be spaced in time, (4)
being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being
applicable for a wide family of tasks. In recent years, there has been much progress on
distributed dynamic algorithms, achieving different combinations of the above promises. Our
algorithms significantly improve upon all prior work by that they guarantee the combination
of all the above properties. We elaborate upon – and compare to – prior work in Section 1.4.

We stress that as opposed to centralized dynamic data structures, not posing any
restrictions on the dynamic behavior of the environment is vital in the distributed setting, as
the input graph is the communication graph itself. More concretely, in centralized dynamic
data structures when multiple topology changes occur, we can simply handle them one by
one. However, in our setting, nodes cannot communicate over a deleted edge, and so we
cannot sequentially apply an independent update algorithm for each topology change – an
edge deletion affects the communication already when it happens, not only when it is handled.

1.1 Motivation
Each of the aforementioned problems is a locally-checkable labeling (LCL) problem. The
notion of an LCL is a celebrated concept in distributed computing, first defined by Naor and
Stockmeyer [32] in order to capture tasks in which nodes can efficiently detect inconsistencies,
motivated by the unstable nature of distributed systems. Since the publication of this
pioneering work, the complexity of solving tasks that can be described as LCLs has been
extensively studied in the distributed setting. We ask the following question, paraphrased in
correspondence with the title of [32]:

Question: What can be fixed locally?

We begin by recalling the definition of LCLs of [32], restricting our attention to LCLs with
radius r = 1. A centered star is a pair (H, s) where H is a star graph and s is its center. An
LCL L is a tuple (Σ,Γ, C), where Σ is a set of input labels, Γ is a set of output labels, and
C is a set of locally consistent labelings. Each element of C is a centered star, with a label
in Σ× Γ for each of its nodes.1

A labeling λ : V → Σ × Γ is called L-legal for a graph G = (V,E), if for every v ∈ V ,
there exists a centered star (H, s) in C with a label-pair at each node, which is consistent
with λ in the following sense: there exists a mapping π that maps the star centered at v
in G into (H, s), with π(v) = s, such that for every node w in the star centered at v, the
label-pair given by λ is the same as the label-pair of the node π(w) in (H, s).

1 In the work of Naor and Stockmeyer [32] the set of labels Σ has a fixed size, while here we omit this
limitation in order to give more power to the labelings. However, algorithmically, we always keep the
size of messages small even when labels are large, by sending only pieces of them.
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As explained in [32], the set C defines allowed labels for neighborhoods, as opposed to
defining a set of forbidden ones. If the LCL has no inputs, then one can simply choose a
default input label, i.e., |Σ| = 1. An algorithm that solves the problem defined by an LCL L
is an algorithm whose output on a graph G is an L-legal labeling.

Not all LCLs are easily fixable. The following variant of the sinkless orientation problem [13]
is an example of an LCL problem that is not easily fixable. Each node has a label that
corresponds to an orientation of its edges, such that labels at endpoints of an edge are
consistent, and such that there is no node of degree greater than 1 that is a sink, i.e., has no
outgoing edge. It is easy to verify that every graph has a valid labeling2, and that this is an
LCL. To see that this LCL cannot be fixed within an amortized complexity of O(1), consider
a graph on n nodes that evolves dynamically, creating two paths of roughly n/2 nodes each.
Each path must be oriented consistently with a single sink in one of its endpoints. Inserting
an edge between the sinks of the two paths forces the orientation of all of the edges in one of
the sub-paths to flip, which takes Ω(n) rounds. Deleting this edge induces again two paths
with a single sink each, and repeating the process of inserting an edge between the new sinks
and deleting it causes a linear number of rounds that can be attributed to only two topology
changes, which implies an amortized time of Ω(n). This holds even if topology changes do
not happen concurrently, and even if the messages can be of arbitrarily large size.

1.2 The challenges
For any LCL problem we address, we assume that the system begins with a globally correct
labeling, and thus what an algorithm needs to do as a consequence of topology changes is
to have the affected nodes update their labels. Naturally, for some problems, the update
procedure may also require that a node updates the labels of its neighbors (more precisely,
this is accomplished via sending messages to its neighbors requiring them to update their
labels). For example, in a solution for maximal matching this might occur when an edge
that is in the matching is deleted, and its endpoints need to match themselves to other
neighbors. At a first glance, this may sound as a simple and straightforward approach for
fixing matchings and problems of local flavor. However, this approach turns out to be far
from trivial, and below we describe multiple key challenges that we must overcome in order
to implement it successfully.

(1) Defining fixing and amortized complexity. We need to define what fixing the solution
means. We aim for our algorithm to work in a very harsh setting, in which it might be the
case that there are so many topology changes that we never actually obtain a globally correct
labeling, but still we maintain strong guarantees for intermediate labelings. Notice that
this is in stark contrast to centralized dynamic data structures, which can always consider
globally correct solutions since topology changes may be handled one-at-a-time because they
only affect the input and not the computation itself. This is also the case for the majority
of previous distributed algorithms: they are designed under the assumption that topology
changes are spaced well enough in time so that it is possible to obtain a globally correct
solution before the next topology change happens.

2 If G is a tree, choose an arbitrary root and orient the edges away from the root. Otherwise, choose a
cycle in G and orient its edges cyclically, then imagine contracting its nodes into a single super-node
and orient edges towards this super-node along some spanning tree, and orient other edges arbitrarily.

OPODIS 2020
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(2) Coping with concurrent fixing with a timestamp mechanism. Because we might need
a node to change the labels of its neighbors and not only its own label in order to fix the
solution, we make sure that concurrent fixing always happens for nodes that are not too close,
and other nodes wait even if their labeled stars are not yet correct (e.g., to avoid two nodes
u, v, trying to get matched to the same node w concurrently). To this end, our method is to
assign a timestamp to each node involved in a change, and fix a node only if its timestamp
is a local minimum in some short-radius neighborhood, thus avoiding conflicting concurrent
fixes. We call such a node active.

(3) Detecting and aborting conflicting timestamps. Such a timestamp mechanism alone
is still insufficient: the uncontrolled number of topology changes may, for example, suddenly
connect two nodes that were previously far enough so that they could become active
simultaneously, but after concluding that they can both become active, an edge insertion
now makes them part of the same short-radius neighborhood. We carefully take care of such
cases where our timestamps have been cheated by the topology changes, by detecting such
occurrences and aborting the fixing, without harming the amortized complexity guarantees.

(4) Bounding the size of timestamps to cope with message size restrictions. Finally,
the restriction on the size of messages forbids unbounded timestamps, despite an unbounded
number of rounds (e.g., times). To resolve this issue, we utilize ideas from the literature
on shared memory algorithms, e.g., [3], for deterministically hashing the timestamps into a
small bounded domain so that the nodes can afford sending a hashed timestamp in a single
small message, and we do so in a way that preserves the total order over timestamps.

1.3 Our contributions
Our main contribution is thus deterministic dynamic distributed fixing algorithms for
several fundamental problems. Our algorithms share a common approach, and only minor
modifications that are specific to each labeling are required. In some cases we can also handle
a node insertion/deletion, which is a-priori possibly harder to deal with, because it may
affect more nodes while in the amortized analysis we count it as a single topology change.

The following theorem summarizes the end-results, which hold in a model with an
unbounded number of topology changes that may occur concurrently, and when only a
logarithmic number of bits can be sent in a message.

I Theorem 1. There is a deterministic dynamic distributed fixing algorithm for (degree+1)-
coloring and for a 2-approximation of a minimum weight vertex cover, which handles
edge insertions/deletions and node insertions in O(1) amortized rounds.

There are deterministic dynamic distributed fixing algorithms for maximal matching,
(∆ + 1)-coloring (where ∆ is the maximum node degree) and MIS, which handle edge/node
insertions/deletions in O(1) amortized rounds.

Section 3 shows our algorithm for maximal matching. This is developed and modified in
the full version of the paper to present our 2-MWVC algorithm. We mention that the labeling
for the solution of 2-MWVC that we maintain is not the naïve one that only indicates which
nodes are in the cover, but rather contains information about dual variables that correspond
to edge weights, and allow the fast fixing.

Section 4 gives our algorithm for MIS. In the MIS case, the restriction of message size
imposes an additional, huge difficulty. The reason is that if an MIS node v needs to leave
the MIS because an edge is inserted between v and some other MIS node u, then all other
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neighbors of v who were previously not in the MIS are now possibly not covered by an MIS
neighbor. Yet, they cannot all be moved into the MIS, as they may have an arbitrary topology
among them. With unbounded messages this can be handled using very large neighborhood
information but such an approach is ruled out by the the restriction of O(logn)-bit messages.

Nevertheless, we prove that with some modifications to our algorithmic approach, we
can also handle MIS without the need to inform nodes about entire neighborhoods. The
road we take here is that instead of fixing its neighborhood, a node tells its neighbors that
they should become active themselves in order to fix their labeled stars. On the surface, this
would entail an unacceptable overhead for the amortized complexity that is proportional
to the degree of the node. The crux in our algorithm and analysis is in blaming previous
topology changes for such a situation – for every node u in the neighborhood of v which is
only dominated by v, there is a previous topology change (namely, an insertion of an edge
{u,w}, where w may or may not be v) for which we did not need to fix the label of w. This
accounting argument allows us to amortize the round complexity all the way down to O(1),
and the same technique is utilized to handle node insertions and deletions. In the full version
of the paper, we present our algorithm for (degree+ 1)-coloring, as well as a generalization
of our algorithm, by defining a family of graph labelings, in the flavor of the LCL definition,
which can all be fixed in constant amortized time.

1.4 Related work
The end results of our work provide fast fixing for fundamental graph problems, whose
static algorithmic complexity has been extensively studied in the distributed setting. A full
overview of the known results merits an entire survey paper on its own (see, e.g., [8,35]). An
additional line of beautiful work studies the landscape of distributed complexities of LCL
problems, and the fundamental question of using randomness (see, e.g., [5, 6, 14,17,18,23]).

For dynamic distributed computing, there is a rich history of research on the important
paradigm of self-stabilization (see, e.g., the book [20]) and in particular on symmetry breaking
(see, e.g., the survey [24]). Related notions of error confinement and fault-local mending
have been studied in [4,30,31]. Our model greatly differs from the above. There are many
additional models of dynamic distributed computation (e.g., [12,29]), which are very different
from the one we consider in this paper.

Some of the oldest works in similar models to ours are [22,26], who provide algorithms for
distance-related tasks. Constant-time algorithms were given in [28] for symmetry-breaking
problems assuming unlimited bandwidth and a single topology change at a time. The work
of [15], provides a randomized algorithm that uses small messages to fix an MIS in O(1)-
amortized update time for a non-adaptive oblivious adversary, still assuming a single change
at a time. The latter left as an open question the complexity of fixing an MIS in the sequential
dynamic setting. This was picked up in [1,2,21,25], giving the first non-trivial sequential MIS
algorithms, which were recently revised and improved [10, 19]. Specifically, the algorithm
of [1] achieves an O(min{∆,m3/4}) amortized message complexity and O(1)-amortized round
complexity and adjustment complexity (the number of vertices that change their output after
each update) for an adaptive non-oblivious adversary in the distributed setting. However,
they handle only a single change at a time, and sometimes need to know the number of
edges, which is global knowledge that our work avoids assuming. In fact, if one is happy with
restricting the algorithm to work only in a model with a single topology change at a time,
then sending timestamps is not required, so O(1)-bit messages suffice in our algorithm for
MIS, resembling what [1] obtains.

OPODIS 2020
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[33] provides a neat log-starization technique, which translates logarithmic static dis-
tributed algorithms into a dynamic setting such that their amortized time complexity becomes
O(log∗ n). This assumes a single change at a time and large messages. [34] shows that maxi-
mal matching have O(1) amortized complexity, even when counting messages and not only
rounds, but assuming a single change at a time.

The (∆ + 1)-coloring algorithm of [9] also implies fixing in a self-stabilizing manner –
after the topology stops changing, only O(∆ + log∗ n) rounds are required in order to obtain
a valid coloring, where ∆ bounds the degrees of all the nodes at all times.

Perhaps the setting most relevant to ours is the one studied in [7], who also address a
very similar highly-dynamic setting. They insightfully provide fast dynamic algorithms for a
wide family of tasks, which can be decomposed into packing and covering problems, in the
sense that a packing condition remains true when deleting edges and a covering condition
remains true when inserting edges. For example, MIS is such a problem, with independence
and domination being the packing and covering conditions, respectively. An innovative
contribution of their algorithms is providing guarantees also for intermediate states of the
algorithm, that is, guarantees that hold even while the system is in the fixing process. They
show that the packing property holds for the set of edges that are present throughout the
last T rounds, and that the covering property holds for the set of edges that are present
in either of the last T rounds, for T = O(logn). Moreover, their algorithms have correct
solutions if a constant neighborhood of a node does not change for a logarithmic number
of rounds. Our algorithm guarantees correctness of labeled stars for nodes for which any
topology change touching their neighborhood has already been handled. In comparison with
their worst-case guarantee of O(logn) rounds for a correct solution, our algorithm only gives
O(n) rounds in the worst case. However, our amortized complexity is O(1), our messages
are of logarithmic size, and our algorithm is deterministic, while the above is randomized
with messages that can be of polylogarithmic size. In addition, a recent work [16] studies
subgraph problems in the same model described in our paper.

A different definition of local fixability [11, Appendix A], suitable for sequential dynamic
data structures, requires a node to be able to fix the solution by changing only its own state.
While this captures tasks such as coloring, and is helpful in the sequential setting for avoiding
the need to update the state of all neighbors of a node, in the distributed setting we can
settle for a less restrictive definition, as a single communication round suffices for updating
states of neighbors, if needed. Our algorithmic framework captures a larger set of tasks:
notably, we provide an algorithm for MIS, while [11] prove that it does not fall into their
definition. In addition, [11, Section 7] raises the question of fixing (in the sequential setting)
problems that are in P-SLOCAL3 [23]. Notably, this class contains approximation tasks, and
indeed for some approximation ratios we can apply our framework: Our algorithm has the
flavor of sequentially iterating over nodes and fixing the labels in their neighborhood, with
the additional power of the distributed setting that allows it to work concurrently on nodes
that are not too close. This also resembles the definition of orderless local algorithms [27],
although a formal definition for the case of fixing does not seem to be simpler than ours.

3 Roughly speaking, SLOCAL(t) is the class of problems that admit solutions by an algorithm that
iterates over all the nodes of the graph, and assigns a solution to each node based on the structure of
its t-neighborhood and solutions already assigned to nodes in this neighborhood. P-SLOCAL is the
class SLOCAL(polylog n).
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2 Model

We assume a synchronous network that starts as an empty graph on n nodes and evolves
into the graph Gi = (Vi, Ei) at the beginning of round i; in most of our algorithms, one
can alternatively assume any graph as the initial graph, as long as the nodes start with a
labeling that is globally consistent for the problem in hand. In some cases, we also allow
node insertion or deletion, and then n serves as a universal upper bound on the number
of nodes in the system. Each node is aware of its unique id, the edges it is a part of, its
weight if there is one, and of n. In addition, the nodes have a common notion of time, so the
execution is synchronous. New nodes do not know the global round number. (We mention
that in our algorithms it is sufficient for each node to know the round number modulo 15n,
and a new node can easily obtain this value from its neighbors, so we implicitly assume all
nodes have this knowledge.)

In each round, each node receives indications about the topology changes that occurred
to its incident edges. We stress that the indications are a posteriori, i.e., the nodes get them
only after the changes occur, and thus cannot prepare to them in advance (these are called
abrupt changes). After receiving the indications and performing local computation, each
node can send messages of O(logn) bits to each of its neighbors.

We work in a distributed setting where each node stores its own label. A distributed
fixing algorithm should update the labels of the nodes in a way that corrects the labeled
stars that become incorrect due to topology changes. Naturally, for a highly-dynamic setting,
we do not require a global consistent labeling in scenarios in which the system is undergoing
many topology changes.

We consider four classical graph problems. In the maximal matching problem, the nodes
have to mark a set of edges such that no two intersect, and such that no edge can be added to
the set without violating this condition. In minimum weight vertex cover (MWVC), the nodes
start with weights, and the goal is to choose a set of nodes that intersect all the edges, and
have the minimum weight among all such sets; we will be interested in the 2-approximation
variant of the problem, where the nodes choose a set of weight at most twice the minimum.
Finally, in the maximal independent set (MIS) problem, the nodes must mark a set of nodes
such that no two adjacent nodes are chosen, and such that no node can be added to the set.

The complexity of distributed fixing algorithms. When the labels of a star become
inconsistent due to changes, a distributed fixing algorithm will perform a fixing process,
which ends when the labels are consistent again, or when other changes occur in this star.
The worst-case round complexity of a distributed fixing algorithm is the maximum number
of rounds such a fixing process may take.

In our algorithms, it could be that it takes a while to fix some star, but we can argue
that this is because other stars are being fixed. We measure this progress with a definition
of the amortized round complexity.

When studying centralized algorithms for dynamic graphs, the amortized complexity
measure is typically defined by an aggregate analysis, i.e., considering the time when the
fixing process ends, and dividing the number of computation steps taken so far by the number
of changes that occurred. The natural generalization of this definition to the distributed
setting could be to take a time when the graph labeling is globally correct, and divide the
number of rounds occurred so far by the number of changes the network had undergone.
The first and most eminent problem in such a definition is that it requires a time when the
global solution is correct, which is something that we cannot demand in a highly-dynamic
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environment. The second problem with it is that the adversary can fool this complexity
measure, by doing nothing for some arbitrary number of rounds in which the graph is correct,
while the algorithm still gets charged for these rounds.

To overcome the above problems, we define the amortized round complexity as follows.
Starting from round 0, in which the labeling is consistent for all stars, we consider the
situation in each round i. We denote by incorrect(i) the number of rounds until round i in
which there exists at least one inconsistent star. These are the computation rounds for which
we charge the algorithm. Notice that we do not count only communication rounds in order to
prevent an algorithm that cheats by doing nothing.4 We denote by changes(i) the number
of changes which occurred until round i. We say that an algorithm has an amortized round
complexity k if for every i with changes(i) > 0, we have incorrect(i)/ changes(i) ≤ k. This
definition captures the rate at which changes are handled, in a way that generalizes the
sequential definition.

Guarantees of our algorithm. Our algorithms have an O(1) amortized fixing time, and in
addition, they have additional desired progress properties. First, our algorithms guarantee a
worst-case complexity of O(n), which implies that repeated changes far from a given star
will not postpone it from being fixed for too long. Moreover, if a labeled star is consistent
and no topology change touches its neighborhood, then it remains consistent. Thus, our
algorithm has strong guarantees also for intermediate solutions.

3 An O(1) amortized dynamic algorithm for maximal matching

The solution to the maximal matching problem at any given time is determined according
to the labels of the nodes. A label of a node v can be either unmatched or matched-to-u,
indicating that v is unmatched, or is matched to u, respectively. Each node starts with the
label unmatched. Alternatively, one can assume any graph as the initial graph, as long as
the nodes start with a legal maximal matching solution. We prove the following.

I Theorem 2. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge insertions/deletions in O(1) amortized rounds.

Proof. First, we assume that all nodes start with an initial globally consistent solution.

The setup: We denote γ = 5.
Let Fi be a set of edge changes (insertions/deletions) that occur in round i ≥ 0 (for

convenience, the first round is round 0). With each change in Fi, we associate two timestamps
such that a total order is induced over the timestamps as follows: for an edge e = {u, v} in
Fi, we associate the timestamp ts = (i, u, v) with node u, and the timestamp (i, v, u) with
node v. Since u and v start round i with an indication of e being in Fi, both can deduce their
timestamps at the beginning of round i. We say that a node v is the owner of the timestamps
that are associated with it. In each round, a node only stores the largest timestamp that it
owns, and omits the rest.

Notice that timestamps are of unbounded size, which renders them impossible to fit in
a single message. To overcome this issue we borrow a technique of [3], and we invoke a
deterministic hash function H over the timestamps, which reduces their size to O(logn)

4 One could count also rounds in which the labeling is globally correct if the algorithm chooses to
communicate in these rounds. Our algorithm never communicates in such rounds, so such a definition
would not change our amortized complexity.
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bits, while retaining the total order over timestamps. The reason we can do this is that not
every two timestamps can exist in the system concurrently. To this end, we define h(i) = i

mod 3γn and H(ts) = (h(i), u, v) for a timestamp ts = (i, u, v), and we define an order ≺H
over hashed timestamps as the lexicographic order of the 3-tuple, induced by the following
order ≺h over values of h. We say that h(i) ≺h h(i′) if and only if one of the following holds:

0 ≤ h(i) < h(i′) ≤ 2γn, or
γn ≤ h(i) < h(i′) < 3γn, or
2γn ≤ h(i) < 3γn and 0 ≤ h(i′) < γn.

If two timestamps ts = (i, v, u), ts′ = (i′, v′, u′) are stored in two nodes v, v′ at two times
i, i′, respectively, it holds that ts < ts′ (by the standard lexicographic order) if and only if
H(ts) ≺H H(ts′). The reason that this holds despite the wrap-around of hashed timestamps
in the third bullet above, is the following property that we will later prove: for every two
such timestamps, it holds that i′− i ≤ γn. This implies h(i) ≺h h(i′) whenever i < i′ despite
the bounded range of the function h.

The algorithm: In the algorithm, time is chopped up into epochs, each consisting of
γ consecutive rounds, in a non-overlapping manner. That is, epoch j consists of rounds
i = γj, . . . , γ(j + 1)− 1. For every epoch j ≥ 0, we consider a set Dj ⊆ V of dirty nodes at
the beginning of each epoch, where initially no node is dirty (D0 = ∅). Some nodes in Dj

may become clean by the end of the epoch, so at the end of the epoch the set of dirty nodes
is denoted by D′j , and it holds that D′j ⊆ Dj . At the beginning of epoch j + 1, all nodes
that receive any indication of an edge in Fi in the previous epoch are added to the set of
dirty nodes, i.e., Dj+1 = D′j ∪ Ij , where Ij is the set of nodes that start round i with any
indication about Fi, for any γj ≤ i ≤ γ(j + 1)− 1.

Intuitively, the algorithm changes the labels so that the labels at the end of the epoch are
consistent with respect to the topology that was at the beginning of the epoch, unless they
are labels of dirty nodes or of neighbors of dirty nodes.

The algorithm works as follows. In epoch j = 0, the nodes do not send any messages, but
some of them enter I0 (if they receive indications of edges in Fi, for 0 ≤ i ≤ γ − 1).

Denote by N i
v the neighborhood of v in round i, denote by Liv the label of v at the

beginning of round i, before the communication takes place, and denote by L̂iv the label at
the end of the round. Unless stated otherwise, the node v sets L̂iv ← Liv and Li+1

v ← L̂iv.
Now, consider an epoch j > 0. On round γj every node v ∈ Dj may locally change its label
to indicate that it is unmatched, in case the edge between v and its previously matched
neighbor is deleted:

Lγjv =
{

matched-to-u, if L̂γj−1
v = matched-to-u and u ∈ Nγj

v

unmatched, otherwise
(1)

where L̂γj−1
v is the label that v has at the end of round γj − 1 = γ(j − 1) + 4, which, as we

describe below, may be different from its label Lγj−1
v at the beginning of the round.5 Then,

the node v sends Lγjv to its neighbors. These are the labels for the graph Gγj which the
fixing addresses. We stress that the new labels Lγjv might not form consistent stars. Instead,
the nodes update Lγjv and send it to all neighbors in order to maintain a common graph,
with respect to which we show local consistency. As an example, consider a triangle w, v, u,

5 We stress that one can describe our algorithm with labels that can only change at the beginning of a
round, but we find the exposition clearer this way.
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undergoing the deletion of the edge {w, v} and of another edge connecting u with some other
node (see Figure 1). Suppose that w immediately tries to fix the labels in its star, according
to the fact that the edge {w, v} does not exist, while u is selected to fix its own star before v,
without knowing of the deletion of the edge {w, v}. Both nodes then simultaneously try to
change the label of u, and it could not be clear what u should do, and which neighborhood
of u will be corrected.

u

w v

Figure 1 Dashed lines represent edges that were deleted.

We continue describing the algorithm. On rounds γj + 1 to γj + 3 the nodes propagate
the hashed timestamps owned by dirty nodes. That is, on round γj + 1, each node in Dj

broadcasts its hashed timestamp, and on the following two rounds all nodes broadcast the
smallest hashed timestamp that they see (with respect to the order ≺H). Every node v in
Dj which does not receive a hashed timestamp that is smaller than its own becomes active.

On the last round of the epoch, γj + 4, every active node v computes the following
candidate for a new label, denoting by Nγj

v = {u1, . . . , ud} the neighborhood it had at
round γj.

`v =


matched-to-ui, if Lγjv = matched-to-ui
unmatched, if Lγjv = unmatched and for every 1 ≤ i ≤ d, Lγjui

6= unmatched

matched-to-ui, if Lγjv = unmatched and 1 ≤ i ≤ d is the smallest index
for which Lγjui

= unmatched

(2)

Notice that v has the required information to compute the above, even if additional
topology changes occur during the rounds in which timestamps are propagated. Yet, we
need to cope with the fact that topology changes may occur also throughout the current
epoch and, for example, make active nodes suddenly become too close. For this, we denote
by Tj ⊆ Ij the set of tainted nodes who received an indication of a topological change for at
least one of their edges during the epoch j.

Now, only an active node v which is not in Tj sets L̂γj+4
v ← `v and sends this new label to

each neighbor u. Otherwise, an active node v that is tainted (i.e., is in Tj) aborts and remains
dirty for the next epoch. Of course, if nodes u and v are neighbors at the beginning of an
epoch but not when v sends the computed label, then u does not receive this information.

Finally, every active node v /∈ Tj , if L̂γj+4
v = matched-to-u then u updates L̂γj+4

u =
matched-to-v (note that such u has the required information since it receives `v, as otherwise,
if by the time that `v is computed it holds that u and v are no longer neighbors, then v must
be tainted). At the end of round γj + 4 = γ(j + 1)− 1, node v becomes inactive and, unless
it aborts, is not included in D′j , i.e., we initialize D′j = Dj \ {v | v /∈ Tj is active in epoch j}
at the end of epoch j.

Correctness. For correctness we claim the following invariant holds at the end of round
i = γj + 4 = γ(j + 1)− 1: For every two nodes u, v that are clean at the end of the epoch
and for which {u, v} is an edge in Gγj , it holds that (1) at least one of L̂γj+4

u and L̂γj+4
v is

not unmatched and (2) if L̂γj+4
u = matched-to-v then L̂γj+4

v = matched-to-u.
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We prove the above by induction on the epochs. The base case holds trivially as during the
first epoch the labels do not change, and we assume that the nodes start with a legal maximal
matching for the initial graph. Now, assume the above invariants hold for epoch j − 1.

For every two nodes u, v that are clean at the end of the epoch and for which {u, v} is an
edge in Gγj , if their labels do not change during the epoch, then the invariant follows from
the induction hypothesis.

If only one of their labels changes, say that of v, then either v is active and not tainted
or there is a (single) neighbor w of v which is active and not tainted and makes v change its
label. In the former case, since the label `v of v changes compared to Lγjv , it does not remain
unmatched and does not remain matched-to-x for some node x. So the new label `v must
be matched-to-y, for some node y. Since the label of u does not change, we have that u 6= y,
and so if the label of u is not unmatched then it cannot be matched-to-v (as otherwise
Lγjv would be matched-to-u and so `v would also be matched-to-u, thus did not change).
In the latter case, if v changes its label because of the new label `w that is sent to it by a
neighbor w, then `w = matched-to-v and hence the new label of v is set to matched-to-w.

Finally, if both of their labels change, then without loss of generality v is active and not
tainted and computes `v = matched-to-u, making u update its label to matched-to-v. The
crucial thing to notice here is that it cannot be the case that a node wv changes the label
of v and a different node wu changes the label of u at the same time, because this implies
that the distance between wv and wu is at most 3, in which case either at least one of them
aborts due to an edge insertion, or the edge {u, v} is inserted (maybe immediately after
being deleted), but then v and u are not clean.

Since the invariant holds, we conclude that whenever Dj = ∅, it holds that the labeling
is that of a maximal matching for Gγj . Further, what the invariant implies is that some
correctness condition holds even for intermediate rounds: at the end of every epoch j, the
entire subgraph induced by the set of nodes that are clean and have all of their neighborhood
clean consists of nodes with locally consistent labels.

Round complexity. We now prove that the algorithm has an amortized round complexity
of O(1), by proving incorrect(i) ≤ 2γ · changes(i) for all i. First, note that the algorithm
communicates in each round where the graph is incorrect, and these communication rounds
can be split into epochs, implying incorrect(i) ≤ γ · epochs(i), where epochs(i) denotes
the number of epochs of computation done by the algorithm until round i (if round i is the
middle of an epoch then it does not affect the asymptotic behavior, so we can safely ignore
this partial epoch). On the other hand, the node with minimal timestamp at the beginning
of the j-th epoch becomes active during the epoch, and its timestamp is handled – even if
it becomes tainted by a change, the old timestamp is replaced by the new one. So, in each
epoch at least one timestamp disappears from the system. Now, since each topology change
creates at most two timestamps, we have that the number of timestamps created until round
i is at most 2 · changes(i), implying epochs(i) ≤ 2 · changes(i), and the claim follows.

Finally, we show that the timestamps can be represented by O(logn) bits. First, we claim
that for every two timestamps ts = (i, v, u) and ts′ = (i′, v′, u′) such that ts < ts′, that are
simultaneously owned by nodes at a given time, it holds that i′ − i ≤ γn. Assume otherwise,
and consider the first time when this condition is violated by a timestamp ts′, with respect to
a previous timestamp ts < ts′. This means that the owner v of ts does not become active for
more than n epochs. Since up to this point in time there were no violations, in each epoch
at least one timestamp was handled, and this was done in the desired order, i.e., all these
labels where smaller than ts. So, v not becoming active for more than n epochs can only
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happen if at round i there were more than n timestamps which were then not yet handled,
stored in various nodes. But there are at most n nodes and each one stores at most one
timestamp so the above is impossible. Since i′ − i ≤ γn, we have that H(ts) ≺H H(ts′),
because h(i) ≺h h(i′), as argued earlier.

Using the above we can also see that the worst case running time of our algorithm is
O(n). To see this, fix some node v with an inconsistent star which does not experience
topology changes touching its 1-hop neighborhood for (γ + 1)n rounds. This guarantees that
its timestamp does not change throughout these rounds, and after γn rounds its timestamp
must become a local minima. In the following epoch, if no changes occur within its 1-hop
neighborhood then its star becomes consistent, which matches the definition of having a
worst-case complexity of O(n). Further, once a node v successfully invokes a fixing of its
star, the star remains consistently labeled as long as no topology changes touch the 1-hop
neighborhood of v, thus we obtain strong guarantees for intermediate solutions. J

For node insertions and deletions, a direct application of the algorithm of Theorem 2
increases the amortized complexity if all neighbors of a changed node (inserted or deleted)
become dirty and O(∆) timestamps are associated with this topology change. However,
notice that when an edge is inserted, it suffices that only one of its endpoints becomes dirty in
the algorithm and gets matched to the other endpoint if needed. Hence, if a node is inserted,
it suffices that the inserted node becomes dirty, and we do not need all of its neighbors to
become so. An only slightly more subtle rule for deciding which nodes become dirty upon a
node deletion gives the following.

I Theorem 3. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We modify the algorithm of Theorem 2 as follows. Upon an insertion of a node v,
the node v becomes dirty. Upon a deletion of a node v with neighbors {u1, . . . , ud}, only the
node ui, for 1 ≤ i ≤ d, that is matched to v (if there exists such a node) becomes dirty.

The O(1) amortized round complexity remains, as every topology change induces at most
two new timestamps. Correctness still holds because it is not affected by a node insertion,
which can be viewed as multiple edge insertions (in terms of correctness, but without paying
this cost for the amortized time complexity), and it is not affected by a node deletion because
for any other node uj ∈ {u1, . . . , ud} such that j 6= i it holds that the deletion of v does not
influence its local consistency. J

4 An O(1) amortized dynamic algorithm for MIS

One can use a similar approach in order to obtain an MIS algorithm. However, when a
node v needs to be removed from the MIS due to an edge insertion, a neighbor u of v may
need to join the MIS if none its other neighbors are in the MIS. One way to do this is to
mark all of the neighbors of v as dirty, but this violates the amortized time complexity as
a single topology change may incur too many dirty nodes. Another option is to have v’s
label include neighborhood information such that upon receiving this label, its neighbors
know which of them should be moved into the MIS. This would give a simple O(1) amortized
rounds algorithm for MIS, but only if messages are allowed to be large. Instead, we present a
labeling that does not contain all the neighborhood information and uses only small labels.

To handle the new subset of neighbors that needs to be added to the MIS in the
aforementioned example, our approach is to have the active node simply indicate to all of its
neighbors that they cannot remain clean and must check for themselves whether they need
to change their labels. Of course, such a single topology change may now incur a number of
dirty nodes that is the degree of this endpoint, which may be linear in n.
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Yet, we make a crucial observation here: any node that becomes dirty in this manner,
can be blamed on a previous topology change in which only one node becomes dirty. This
implies a budget, to which we add 2 units for every topology change, and charge either
0, 1, 2, or d (current node degree) units for each invocation of the fixing function, in a
manner that preserves the budget non-negative at all times. Note that due to the accounting
argument, here we must start with an empty graph for the amortization to work, unlike
previous problems, where we could start with any graph as long as the nodes have labels
that indicate a valid solution. Roughly speaking, we rely on the fact that since all nodes
that are in the graph start as MIS nodes because there are no edges, then a node switches
from being an MIS node to being a non-MIS node only upon an insertion of an edge between
two MIS nodes, and the other endpoint of the inserted edge safely remains in the MIS. Note
that we impose the rule that an inserted node never makes a node switch from being an MIS
node to being a non-MIS node, since the inserted node chooses to become an MIS node only
if all of its neighbors are already non-MIS nodes.

I Theorem 4. There is a deterministic dynamic distributed fixing algorithm for MIS, which
handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We consider labels which are in {true, false} and maintain that the set of nodes
with the label true form an MIS. We start with an empty graph and all labels are true.
We first define the assignments of Liv and `v as in assignments (1) and (2) in the algorithm
for maximal matching in the proof of Theorem 2. Then, we explain how we modify the
algorithm further in order to avoid large messages with neighborhood information.

First, the label for Lγjv does not change from the previous round, i.e., assignment (1) is
Lγjv = L̂

γ(j−1)+4
v . For assignment (2) we set `v to be false if Lγjui

= true for some ui ∈ Nγj
v

and otherwise we set `v to be true. If v is active and not in Tj then it sets L̂γj+4
v to be `v

and sends this label to all of its neighbors. Notice that this is insufficient for arguing that the
labels at the end of the epoch form an MIS if all nodes are clean, for the same reason as in
the tricky example above: if v leaves the MIS due to an edge insertion, its neighbors do not
have enough information to decide which of them joins the MIS. To overcome this challenge,
we consider an algorithm similar to the one of Theorem 2, with the following modifications.

(1) When an edge e = {v, u} is deleted, if the labels of both u and v are false then neither
of them becomes dirty, and if only one of them is false then only this node becomes
dirty.

(2) When an edge e = {v, u} is inserted, if at least one of the labels of u and v is false then
neither of them becomes dirty, and if both are true then only the node with smaller ID
becomes dirty.

(3) When a node v is inserted then only v becomes dirty.
(4) When a node v is deleted then a neighbor z becomes dirty only if its label is false and

it has no neighbor with a label true.

In order for a node v to indicate that new labels may be needed for its neighbors, we add
the following item:
(5) When an active node v changes its label to false, all of its neighbors marked false

that do not have a neighbor marked true become dirty.

As we prove in what follows, this allows the correct fixing process that we aim for, but
this has the cost of having too many nodes become dirty. However, the crucial point here is
that not all nodes that become dirty in items (4) and (5) will actually utilize their timestamp

OPODIS 2020



28:14 Fast Deterministic Algorithms for Highly-Dynamic Networks

– some will drop their timestamp before competing for becoming active, and hence we will
not need to account for fixing them. That is, we add the following item:
(6) When an active node v changes its label to true, all of its dirty neighbors become clean.

Correctness. The correctness follows the exact line of proof of the algorithm in Theorem 2,
with the modification that making some neighbors dirty in item (5) compensates for not
being able to assign them directly with good new labels. That is, at the end of the epoch,
we still have the following guarantee: if all nodes are clean, then their labels induce an MIS;
otherwise, for every two clean neighbors, either exactly one of them is in the MIS, or both
have a neighbor in the MIS.

Amortized round complexity. The proof follows the same lines as the previous complexity
proofs, with the addition of an accounting argument. This is used to prove that the cumulative
number of epochs in which any node becomes active is at most twice the number of topology
changes. This proves our claim of an amortized O(1) round complexity.

First, as in the former algorithms, we note that incorrect(i) ≤ γ ·epochs(i), and at each
epoch at least one timestamp is handled. Thus, we only need to upper bound the number of
timestamps created by round i as a function of changes(i). However, here we need to be
much more careful and we can not simply account each change for two timestamps, as some
changes create much more timestamps than others.

Consider a node v that is deleted in round i as in item (4) (or v is active and marked
false as in item (5)), and a set Z = {z1, . . . , zk} of its neighbors that become dirty by
satisfying the condition in item (4) (or item (5)) above, ordered by their timestamps (i, v, zj)
for 1 ≤ j ≤ k, as induced by this topology change. For each 1 ≤ j ≤ k, if a node zj becomes
active due to this timestamp, then by item (6), starting from round i none of its neighbors
change their label to true. Consider the last round i′ before round i in which the label of zj
is true (i′ exists since this condition occurs initially when the graph is empty). We claim
that the topology change whose associated active node changed the label of zj to false in
round i′ + 1, is either an insertion of an edge {zj , u} that satisfies the condition of item (2)
with ID(zj) < ID(u), or an insertion of the node zj which connects it to at least one node
whose label is true. The reason for this is that these are the only topology changes which
cause zj to be assigned the label false.

Finally, notice that these topology changes both induce only a single dirty node (thus a
single active node and a single epoch), and therefore we can blame zj becoming active on
the corresponding topology change. This is an injective mapping, as any other node cannot
blame these changes (they are changes that made zj dirty), and zj itself may become active
again in the future due to satisfying the condition in item (4) (or item (5)) above only if its
label is changed to false again in between.

In other words, this blaming argument implies epochs(i) ≤ 2 · changes(i) here as well,
completing the proof. J
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